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ABSTRACT 

In this paper, a method is introduced for incorporat- 
ing perfectly registered MRI boundary information into 
a penalized likelihood emission reconstruction scheme. 
The boundary curve is modeled as a periodic spline 
whose coefficients are estimated from the MRI image. 
The resulting boundary estimate is mapped to a spa- 
tially variant set of Gibbs weights. When incorpo- 
rated into a quadratic roughness penalty, these weights 
improve emission reconstruction bias/variance perfor- 
mance by preventing smoothing across the estimated 
boundary. Finally, we derive a new penalty function 
that accounts for the uncertainty inherent in the bound- 
ary estimates. 

1. INTRODUCTION 

Emission computed tomography (ECT) images of ra- 
dioisotope concentration are reconstructed from data 
that consists of counts of detected decay events. Sev- 
eral factors, including dose limitations, scatter, attenu- 
ation, and detector efficiency, limit the acquired count 
rates achievable in ECT. The resulting low SNR gives 
rise to a poor bias/variance tradeoff. Recently, various 
researchers have used MRI boundary side information 
to improve performance in the case where functional 
and anatomical boundaries are coincident, e.g. [l] ,[2]. 
However, many use the side information “blindly”, ig- 
noring the uncertainty of the boundary estimate. Here, 
we present a spline-based method for incorporating an 
anatomical boundary estimate from an MRI image into 
the penalized likelihood (PL) emission reconstruction 
paradigm. Specifically, we focus on estimating mean 
uptake in a region of interest (ROI) inside the boundary 
curve. Estimator performance is characterized by the 
biaslvariance tradeoff associated with varying the regu- 

2. MRI BOUNDARY ESTIMATION 

Consider an anatomical slice of interest which contains 
a single organ or tumor that selectively absorbs a rel- 
atively uniform concentration of radionuclide, so that 
the radionuclide and anatomical boundaries coincide. 
Let r ( z ,  y) denote the resulting single boundary curve 
present in the perfectly registered MRI and emission 
slice planes. The MRI boundary estimation problem 
consists of generating an estimate ?(z,y) from YM,  a 
noisy MRI image of the slice. 

We parameterize boundary r ( z ,  y) using a periodic 
polar spline. A periodic polar spline function r (4 )  of 
degree cl is a piecewise polynomial on [0,21r] that is 
defined over a set of A’ scalar “knots” (21 = 0 < 22 < 
. . . < z~ = 2a}, and has the following properties 
[3]: (i) it is a polynomial of degree 5 d on intervals 
[ z j ,  zj+l], (ii) it is continuous and has d - 1 continuous 
derivatives on [0,21r], and (iii) the values of the function 
and its first d - 1 derivatives at 0 equal those at 21r. 
Any periodic polar spline function represents a smooth, 
closed polar curve with respect to a prescribed origin. 
The normalized b-spline basis for this set of splines (see 
[3]) allows us to write any periodic polar spline function 
r (4 )  in terms of a set of A’ - 1 basis splines: 

K-1 

re(4)  = oi ~ i ( + )  v+  E [o, 2 TI . ( 1 )  
i = l  

The scalars 8 = (81,. . . , BK-1) are called spline coeffi- 
cients. Non-negativity of the {Bi(.)} assures that if all 
8i > 0, ~ ( 4 )  represents a non-intersecting, continuous 
closed boundary. 

Side information is extracted from the MRI image 
using ML estimation of 8 141; i.e. 

6 = argmaxe In ~ ( Y M ;  e) . (2) 
We model the MRI scanner as a linear, spatially shift 
invariant system with a symmetric Gaussian 2D im- 

larization parameter, and asymptotic limits on bias/variancepulse response qz, y) and with additive white G ~ ~ ~ -  
performance are determined. sian noise [5]. These system and noise models lead to 

the following Gaussian model for MRI image YM: 
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where matrix I ( 0 )  is the true MRI image containing 
boundary 8 ,  H contains samples of h ( z ,  y) at pixel cen- 
ters, N contains IID white noise, and operator (W’ 
denotes 2D matrix convolution. 

3. P L  RECONSTRUCTION 

The ECT reconstruction problem consists of estimating 
n parameters A, the radionuclide concentrations in the 
slice pixels, from a data set YE of detected counts on 
the surfaces of m detectors. These counts are statisti- 
cally independent and have Poisson statistics with rate 
parameters given by the elements of the vector AX + T ,  

where A is an m x n matrix of rank n corresponding to 
the system transition probabilities, and T is a an off- 
set in the detected rates due to a random background 
intensity level. In penalized likelihood (PL) reconstruc- 
tion with side information, we maximize an objective 
that is the sum of the Poisson data log-likelihood and 
a penalty function R(X,  e): 

X = argmaxxJ(YE;X) 

J(YI.3; A) = [In W E ;  A) - B R(X, 611 . (4) 

The term R(X,6) allows us to direct the reconstruc- 
tion by “penalizing”, via large R values, the likeli- 
hood of images that are undesirable or are not in good 
agreement with prior information. It is often chosen 
proportional to  some measure of roughness of A ,  so 
that smoother (lower variance) images than those ob- 
tained via ML estimation are produced. The parameter 
,f3 in (4) establishes the bias/variance operating point 
(smoothness) by determining the relative importance of 
maximizing In  YE; A) versus minimizing the penalty 
term. 

We select R(X, 6) to implement a spatially variant 
quadratic roughness penalty, where smoothness is en- 
couraged inside and outside, but not across, the bound- 
ary 6: 

R(X; e) = Wkj(8)  (A, - Xj)2 . (5) 
k j  

The summations above are over pixels, and { w k j }  is a 
set of penalty weights that for fixed k promote smooth- 
ing within the neighborhood of the kth pixel. We use 
a Gibbs weighting scheme with a first order 2D pixel 
neighborhood consisting of four adjacent neighbors. By 
definition, the weights are symmetric (wkj = w j k ) ,  and 
wkj  can be non-zero only in the neighborhood of the 
kth pixel (see [SI). 

The side information is encoded into these weights 
’ as follows. Let J ( 6 )  be an image whose j t h  pixel inten- 

sity is equal to the fraction of pixel j that falls inside 
curve e. Intrapixel weight w j k ( 8 )  is 

1 : J j (8)  2 . 5 0 , J k ( e )  2 .50 
w j k ( 8 )  = 1 : J j ( 6 )  < .50, Jk(8) < .50 

.. { 0 : else 

Notice that only pixels more than half inside the bound- 
ary included in the interior. 

The image that maximizes (4) can not be found an- 
alytically; therefore, an iterative method must be used. 
In the sequel we use the PML-SAGE3 algorithm of [7] 
to perform the maximization. This EM-type algorithm 
is characterized by monotonic, fast convergence. 

4. LARGE ,f3 LIMIT 

Next we give the limitingform of the PL reconstruction 
error as p gets large. In this limiting case the penalty 
-PR(X; 8) (5) dominates the objective (4) forcing A to 
be piecewise constant over the neighborhoods defined 
by Gibbs weights w j k ( 8 ) .  In particular, when the wjk’s 

correspond to Gibbs weights enforcing smoothness in- 
side and outside of the estimated ROI, the limitingform 
of the PL objective function is 

where Se = [ARol6, I-LROI. ] is a matrix shose columns 

are indicator functions of the interior (ARoI)  and exte- 
rior (l-lRol) of the ROI, and K = [ K I ,  Q] are constant 
levels within the interior and exterior, respectively. 

is well approximated (up to additive constants) by the 
Gaussian log likelihood - $(YI.~-AX)~A-~(YE-AX)-  + xi  ln[A]ii, where A = diag(AX) is a diagonal matrix 
with the elements of the vector AX arranged along the 
diagonal, and [Alii denotes the i-th diagonal element 
of the matrix A. Ignoring dependence of A on the un- 
known A,  the maximum of the PL objective function 
(7) is attained by the constrained linear least squares 
estimator ic = Sk where 

e 

In the high count regime the log likelihood In f(Y1.3; A) 

k = ( S ~ F , S ) - ’ S ~ A ~ A - ~ ( Y ~  - .), 

and FA = ATA-lA is the Fisher information matrix 
associated with the emission data, and we have sup- 
pressed the subscript 6 from S for simplicity. 

estimator since it requires the matrix A which depends 
on the unknown image A.  However, the bias and vari- 
ance performance of this ideal estimator will be used 
to bound the asymptotic performance of the estima- 
tor (4). The bias and the covariance of this estimator 

Note that ic is an unimplementable ideal least squares 
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are E [ i C ]  = [ S ( F F X S ) - ' ~ F X  - I J X  and cov(ic) = 
S ( g F x S ) - ' F .  When X = Sn the image X is truly 
piecewise constant over the estimated ROI and the bias 
is zero. 

A useful approximation to ic can be implemented 
by replacing the unknown covariance A = diag(E[Y~])  
in (8) by the empirical estimate diag(YE). This can be 
used to initialize iterative optimization algorithms, e.g. 
grouped coordinate ascent, EM, or SAGE, for finding 
the true ML estimate of (4) when the smoothing 
parameter p is large. 
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Figure 1: Variance of MRI boundary extraction meth- 
ods as compared to the CR bound. 
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Figure 3: Average RMS reconstruction error for various 
emission reconstruction methods. 

5. RESULTS 

We generated 400 realizations of noisy MRI and ECT 
data to investigate the bias variance perfomance of 
ECT uptake estimation with and without MRI side in- 
formation. The ROI boundary was a quadratic spline 
with K = 16 equispaced knots which is a least squares 
fit to an ellipse with major axis 5 pixels and minor 
axis 3 pixels located at (-10,O) pixels relative to im- 
age center. The contrast for both the MRI and ECT 
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Figure 4: Comparison of empirical standard deviation 
vs. bias for no, ideal, and noisy (ML extracted) side 
information. 

mean images were identical: for MRI the mean inten- 
sity inside the ROI was 6 in a zero mean background 
while for ECT the mean intensity inside the ROI was 9 
in a background of mean 3. In both ECT and MRI im- 
ages each boundary pixel was assigned mean intensity 
equal to the interior mean intensity times the fraction 
of the boundary pixel included inside the ROI. The 
MRI spatial blurring width was equal to U, = 0.75 
(approximately 19% of average ROI radius) and a spa- 
tially independent Gaussian noise was added having 
zero mean and standard deviation un = 0.18 (appox- 
imately 3% of contrast). The ECT data was sampled 
by a parallel beam tomograph corresponding to PET 
projections over 64 radial bins, and 60 equispaced pro- 
jection angles over 180". Poisson noise was added to 
the ECT data by generating lo6 Poisson realizations 
of the mean intensity and adding 15% random coinci- 
dences. 

In Fig. 1 we show the total standard deviation of 
the MRI boundary estimates, computed by summing 
estimation errors over a set equispaced angular samples 

of the boundary: std dev = var(?(4i)), based 
on both the maximum 1ikelih;od estimator (ML) and 
an edge filtering estimator (EF) discussed in [8]. Both 
estimators were observed to be virtually unbiased for 
noise standard deviation less than 10% of contrast. The 
EF boundary extractor is a computationally much sim- 
pler, but ad hoc, method as constrasted to ML which 
requires iterative methods (we used a quasi-Newton 
method) to solve the nonlinear least squares problem 
(2). It is significant that both boundary extraction 
methods virtually attain the CR bound on variance 
(derived in [8]) over a large range of noise power. 

In Figures 2a-2d we show the emission phantom, 
the filtered back projection (FBP) reconstruction (FBP 
Hanning filter bandwidth chosen to match p = 8 smooth- 
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Figure 2: (a) Emission phantom. (b) FBP recon corresponding to p = 8. (c) PL recon, p = 8, no side information. 
(d) PL recon, /3 = 8, noisy side information obtained by ML extraction. 

ing of PL), the PL reconstruction (p  = 8) without MRI 
side information (all wij set to 1), and PL reconstruc- 
tion (p  = 8) using wij assignment based on extracted 
MRI boundaries using Maximum Likelihood estimation 
of 8 in the spline model. All reconstructions in Figs. 2c 
and 2d were performed using 60 iterations of the PML- 
SAGE3 algorithm initialized with the filtered back pro- 
jection image. The qualitative difference between the 
severely blurred reconstructions (b) and (c) and the 
highly defined reconstruction (d) is obvious. Figure 3 
shows quantitatively the improvement in terms of % 
RMS reconstruction error as a function of p defined as 

Cij(Xij - i i j ) 2  
%RMS error = x 100. Cij 2 j  

The large-/3 divergence of the RMS error of FBP and 
PL without side information is due to excessive smooth- 
ing accross the boundary of the ROI. 

Figure 4 shows empirical results for estimating the 
uptake inside boundary 8 as we vary the regulariza- 
tion parameter p. The uptake is defined as the sum 
of the total intensity within the ROI &IX. Notice 
that the reconstructions using ideal side information 
suffer from essentially no bias, and approach the the- 
oretical large p limit of performance, labeled "+" in 
Fig. 4. This limit is computed as the coordinate pair 
( l ~ o r E [ x c ] ,  ~ ~ , , C O V ( ~ ~ ) ~ ~ , , )  where the bias and co- 
variance of the two-level constrained estimator X were 
derived in the previous section. At all standard de- 
viation levels, the bias using ideal side information is 
substantially less than without side information, with 
the performance gap increasing to more than a factor 
of 15 as the ideal performance limit is approached. 

..e 

6. CONCLUSIONS AND F U T U R E  W O R K  

that under a spline boundary model for 
d region of interest estimators of spline 

parameters can be effectively incorporated into ECT 

image reconstructions via penalized likelihood (PL) us- 
ing an estimator-dependent Gibbs weighting scheme. 
This approach is blind to the fact that the MRI-based 
boundary estimator is noisy with approximately zero 
mean and variance equal to the inverse Fisher informa- 
tion matrix. A future paper will report on a technique 
which modifies the penalty function in the PL objec- 
tive to discount the MRI spline estimator as a function 
of its variance. 
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