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ABSTRACT

Statistical reconstruction algorithms in transmission to-
mography yield improved images relative to the conven-
tional FBP method. The most popular iterative algorithms
for this problem are the conjugate gradient (CG) method and
ordered subsets (OS) methods. Neither method is ideal. OS
methods “converge” quickly, but are suboptimal for prob-
lems with factored system matrices. Nonnegativity con-
straints are not imposed easily by the CG method. To speed
convergence, we propose to abandon the nonnegativity con-
straints (letting the regularization discourage the negative
values), and to use quadratic surrogates to choose the step
size rather than using an expensive line search. To ensure
monotonicity, we develop a modification of the transmis-
sion log-likelihood. The resulting algorithm is suitable for
large-scale problems with factored system matrices such as
X-ray CT image reconstruction with afterglow models. Pre-
liminary results show that the regularization ensures mini-
mal negative values, and that the algorithm is indeed mono-
tone.

1. INTRODUCTION

The dominant technique for computed tomography (CT) im-
age reconstruction has been the filtered backprojection (FBP)
algorithm. It is fast (FFT is used in its implementation), de-
terministic and its properties are well understood. In trans-
mission tomography, for scans with low counts or those
contaminated with significant background counts, the FBP
method leads to attenuation maps with systematic biases
due to the nonlinearity of the logarithm [1]. Even statisti-
cal techniques that intrinsically assume Gaussian noise lead
to systematic biases. Thus, Poisson-like statistical measure-
ments can’t be ignored. Statistical methods using the Pois-
son likelihood with suitable regularization have shown good
performance [1-3].

The importance of compute time of the algorithms in
commercial scanners cannot be over-emphasized. Incorpo-
ration of statistical methods became possible with the use
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of ordered subsets expectation maximization (OSEM) algo-
rithms in PET scanners starting from 1997. Since typical
clinical CT images are of sizes 512x512 or larger, statistical
algorithms require very long compute times. So, there is a
need to make algorithms faster for large image sizes.

Various methods have been proposed and used to ac-
celarate iterative image reconstruction algorithms. One of
the most important ones is the ordered subsets method (also
known as the incremental gradient or the block iterative
method) [4-6]. In these methods only a subset of projection
views are used each “sub-iteration”. The ordering of these
views is important and it is desirable they satisfy the sub-
set gradient balance condition. Using ordered subsets in the
initial phases accelarates convergence by a factor equal to
the number of the subsets used. Without relaxation these al-
gorithms usually do not converge [7] and they are not mono-
tonic.

However, OS methods are poorly matched to problems
where the system models for X-ray CT scanners system ma-
trices are in a factored form, for example where detector af-
terglow is significant [8]. So, alternative accelaration meth-
ods are needed for such problems. Pre-conditioned conju-
gate gradient (PCG) algorithms have many desirable prop-
erties over OS algorithms like monotonicity (with a suitable
line search) and capability of handling factored system ma-
trices. They are however slower than OS in the initial it-
erations but not as slow as the older methods. Compared
to co-ordinate descent algorithms, imposition of the non-
negativity constraint on the attenuation constant in PCG al-
gorithms is more difficult. Naive imposition of non-negati-
vity constraint would cause PCG algorithms to lose their
monotonicity property.

In this paper, we describe a method that preserves the
monotonicity of the PCG algorithm while encouraging non-
negativity constraint on the attenuation coefficients to some
extent by suitably modifying the Transmission Penalized
Likelihood (TPL) cost function. For simplicity, we handle
the mono-enegetic case here; in the future this idea can be
extended to the poly-energetic case.
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2. THEORY

In transmission tomography, the means of the data are re-
lated exponentially to the projections (or line integrals) of
the attenuation map through Beer’s Law [9]. In addition,
the measurements are contaminated by extra background
counts, due mostly to random coincidences and scatter in
PET and emission crosstalk in SPECT. Thus, we assume
the following model (using the notation of [2]):

Yi ~ Poisson{bie_[A“]" +ri}, i=1,...,N, (1)

where N is the number of measurements, u; is the average
linear attenuation coefficient in voxel j for j = 1,...,p,

and p denotes the number of voxels. The notation [Ap]; 2
Z§:1 ai;jpr; represents ith line integral of the attenuation
map p and A = {a;;} is the N x p system matrix. We
assume b;, 7; and a;; are known non-negative constants,
where r; is the mean number of background events, b; is
the blank scan factor and y; represents the number of trans-
mission events counted by the ith detector (or detector pair
in PET).

Ideally, we seek to find a statistical estimate of the at-
tenuation map p which agrees with the data and is anatom-
ically reasonable i.e., its elements are all non-negative. As
in [2] we form a penalized-likelihood cost function ® ()
and denote our estimate of the linear attenuation coefficients
as
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where L(p) is the log of transmission poisson likelihood,
R(p) is the regularizing roughness penalty function as de-
scribed in [10].

We minimize this cost function iteratively by forming
paraboloidal surrogates ¢(u; (™) at each iteration as de-
scribed in [2]. The co-ordinate descent method of [2] is
monotonic but unsuitable for large-scale problems like X-
ray CT. Furthermore, the paraboloidal surrogates described
in [2] rely on the non-negativity of the projections but such
a condition can not be guaranteed to be true for gradient de-
scent methods without a significant compute time overhead.

Our aim in this paper is to modify the cost function
®(p) to () and find a new minimum

arg min @ (p)
©n

such that () =~ ¢(f1) (6)

If (6) is satisfied then we can perform the unconstrained
minimization shown in (6) rather than the constrained mini-
mization shown in (2). In this way, those optimization meth-
ods not suited to the non-negativity constraint (for example,
gradient based methods) can be used to achieve a p which
is not very different from that obtained using methods that
work well with the non-negativity constraint.

2.1. Proposed Cost Function Modification

We start out by noting in (4) that the negative of the log like-
lihood is a sum of functions, h;, that depend on the values
of b;, r; and the measurements y;. The arguments of these
functions are [Ap);. If [Ap]; is negative then at least one
of the 11;’s is negative since the elements of the matrix A
are non-negative. To state more concisely,

[Ap]; <0 = 3T jsuchthatp; <0 @)

The condition p; < 0 indicates that g under consideration
is not physically possible. Thus, we can assume that the
value of h; for £ < 0 is somewhat arbitrary and it is not
essential for it to match the usual log-likelihood function as
negative values of ¢ are not physical.

We thus propose to replace the cost functions h;(¢) for
¢ < 0 with functions that are suited to our goal of preserva-
tion of monotonicity of the PCG algorithm. Now, consider
the representative plots of h; in Fig. 1 for the three possible
cases of detector value y;:

Casel y; <y
Case 2 ri < Y; <r;,+b;
Case3d r;, +b; <y

These plots can be obtained qualitatively by the composition
of the functions b;e~* + r; and = — y; log(x) for the above
three cases. For ¢ < 0 these functions rise exponentially and
it is not possible to find a true paraboloidal surrogate over
R. This is evident from the properties of h; (first derivative
of h;) explained in Appendix A of [2] and a representative
plot of h; on [2, p. 807]. In [2] the optimal paraboloidal
surrogate functions are found such that the surrogate “lies
above” h; for £ > 0.

We propose the following modification to h;. In cases 1
and 2, for £ < 0 we replace h; with a straight line such that
the continuity of the function is maintained and the slope of
the line is equal to hl(()) A straight line is chosen because
it permits the surrogate to have a low curvature. (Low cur-
vatures are advantageous as they increase the convergence
speed of the algorithm [2].) In case 3, it is not possible to
replace h; for ¢ < 0 with a straight line without making
é(u) non-differentiable; we restrict our cost functions to
be differentiable so that conditions of (11) can be applied.
For sake of simplicity we choose a parabola to replace h;
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Case 1

Case 2

I

Case 3

Fig. ~1 Illustrations of h; and BZ for the three cases. Note
that h; = h; for £ > 0 and differs only for non-physical
values of the attenuation coefficients.

for £ < 0. The parabola is chosen such that the continu-
ity of h; and h; are maintained. For reasons of computa-
tional simplicity, the curvature of the parabola is computed
using [2, eq. 29]. It can be shown in cases 1 and 2 that
replacing h; for £ < 0 with a parabola is disadvantageous
when compared to replacing it with a straight line; in the
former case the paraboloidal surrogates would have higher
curvatures.

h; is modified to iLZ' for cases 1 and 2 as follows :

~ o [ hi(0) if£>0
hi(l) = { hi(0) + hy(0)0 if£ <0 ®)
h; is modified to }Nll for case 3 as follows :
- A hi(€) if¢>0
i Z) = ) . i) g2 ©)
The new cost function can be thus written as :
A
= Z ) + BR(w) (10)

2.2. Construction of Paraboloidal Surrogates and their
Minimization

The following conditions are sufficient for a function
é(p; 11™) to be a surrogate of ®(p) [2, eq. 7] :

o™ p™) = d(u™)

L) . 0P ,
a’u] (u’ /J’( ))|IJ,:I,L(”) = a—‘uj<u‘)|p,:p,(")aj = 1u Y 4
¢(pip™) > d(n), Yp € R (1)

It can be proved that the following surrogate function
satisfies all the above conditions :

Z(b 17 1

[Apli, 1) =

d(p; ™) N4 Bor(pp™)  (12)

where [; = [Ap™);
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if lgn) > 0, cases 1 and 2

if ll(n) <0,cases land2 (14
Case 3

where h;(¢) = d*h;(¢)/d¢*

We use the Huber function as the potential function ¢ in
(5). ¢r(p; u™) is obtained using the surrogate of Huber
function described in [11, p. 184].

3. SIMULATIONS

Size of the attenuation map of the phantom used in the sim-
ulations is 128x128, the number of angles was 80 and num-
ber of bins per angle was 132. Poisson noise is added to the
sinogram. Initial estimate of the attenuation map, g, for
all the algorithms is obtained by first doing the FBP recon-
struction and then setting the negative pixels to zero. The
simulations were done in MATLAB.

We use the pre-conditioned steepest descent method to
minimize the paraboloidal (quadratic) surrogate function (12)
of the modified cost function of ®(p) of (10), which is
named as gs-psd-mod. This is compared against uncon-
strained minimization of the pre-computed curvature [2] based
paraboloidal (quadratic) surrogate function of the original
cost function ® () of (2) using the pre-conditioned steep-
est descent method, called gs-psd-pc here. We use the di-
agonal pre-conditioner mentioned in [12] in both the above
algorithms. We do not set the negative pixels in p to zero
after each iteration. We set the negative pixels to zero only
after the last iteration and hope the solution is close to the
one achieved when negative pixels are set to zero every iter-
ation; this is done because the implementation in the latter
case takes 33% more CPU time as setting negative pixels
to zero requires Ap to be recomputed. These algorithms
are compared against the ordered subsets (with 5 subsets)
separable paraboloidal surrogate with pre-computed curva-
tures (called, os-sps-pc [2]) minimization of the original
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Fig. 2. Plots showing the variation of the original cost func-
tion ® () with number of iterations and CPU time.

cost function ® () of (2). Without much loss of compute
time the non-negativity constraint can be applied easily each
iteration of the os-sps-pc algorithm.

4. RESULTS AND DISCUSSION

Fig. 2 shows that the os-sps-pc algorithm stagnates early
whereas the gradient based algorithms are monotonically
decreasing. Though the os-sps-pc algorithm converges fast-
er initially with respect to the number of iterations it is actu-
ally slower as each iteration takes more CPU time than the
gradient based algorithms. The gradient based algorithms
achieve a lower cost than os-sps-pc. The condition of (6)
has been found to be satisfied thus validating the modifica-
tion of the cost function ®(u) to ®(x). This modification
helps us achieve a lower cost than os-sps-pc. The ratio of
magnitude of most negative pixel to that of the most positive
pixel is approximately 4% in gs-psd-pc and gs-psd-mod.

S. FUTURE WORK

It is straight forward to replace gs-psd-pc and gs-psd-mod
with their PCG versions i.e., qs-pcg-pc and gs-pcg-mod.
Surrogates for qs-pcg-mod with lower curvatures than those
used in this paper can be derived. Performance of these al-
gorithms with factored system matrices can be investigated.
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