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Abstruct- Most expectation-maximization (EM) type algo- 
rithms for penalized maximum-likelihood image reconstruction 
converge slowly, particularly when one incorporates additive 
background effects such as scatter, random coincidences, dark 
current, or cosmic radiation. In addition, regularizing smoothness 
penalties (or priors) introduce parameter coupling, rendering 
intractable the M-steps of most EM-type algorithms. This paper 
presents space-alternating generalized EM (SAGE) algorithms 
for image reconstruction, which update the parameters sequen- 
tially using a sequence of small “hidden” data spaces, rather 
than simultaneously using one large complete-data space. The 
sequential update decouples the M-step, so the maximization can 
typically be performed analytically. We introduce new hidden- 
data spaces that are less informative than the conventional 
complete-data space for Poisson data and that yield significant 
improvements in convergence rate. This acceleration is due to sta- 
tistical considerations, not numerical overrelaxation methods, so 
monotonic increases in the objective function are guaranteed. We 
provide a general global convergence proof for SAGE methods 
with nonnegativity constraints. 

I. INTRODUCTION 

MAGING techniques with Poisson measurement statistics I include: positron emission tomography (PET) [ 11, single 
photon emission computed tomography (SPECT), gamma as- 
tronomy, microscopy methods [2], and photon-limited optical 
imaging [3]. Statistical methods for image reconstruction or 
restoration, such as maximum likelihood (ML), penalized 
maximum-likelihood (PML), or maximum a posteriori (MAP), 
are computationally challenging due to the transcendental form 
of the Poisson log-likelihood. EM algorithms [4] have proven 
to be somewhat useful in such problems, except for two 
important drawbacks. The first problem is slow convergence, 
particularly when one includes the additive effects of “back- 
ground” events such as random coincidences [SI, scatter [6], 
dark-current [7], or background cosmic radiation. The second 
problem is that the M-step of the EM algorithm becomes 
intractable when one includes smoothness penalties in the 
objective function, since these functionals further couple the 
parameters. 

In [8], [9] we introduced a class of methods called space- 
altemating generalized EM (SAGE) algorithms that overcome 
these limitations of EM algorithms. Rather than using the 
simultaneous update of nearly all EM-type algorithms, SAGE 
algorithms use sequential parameter updates in which one iter- 
atively cycles through a sequence of hidden data spaces4ne  
for each pixel. By choosing hidden data spaces whose Fisher 
information is smaller than the Fisher information of the ordi- 
nary EM complete data space, one can accelerate convergence 
yet maintain the desirable monotonicity properties of EM 
algorithms. The relationship between Fisher information and 
convergence rate [4], [SI-[14] underscores all of the methods 
we present. In [9], we described two SAGE algorithms for ML 
image reconstruction and presented anecdotal results showing 
that one of them converged faster than the EM algorithm. This 
paper describes a third SAGE algorithm that supersedes the 
previous mo in that it converges faster but negligibly increases 
CPU time. Using a quadratic penalty for illustration, we show 
empirically over a range of background event fractions that the 
new SAGE algorithm converges faster than several EM-type 
algorithms, even when those methods are accelerated using a 
new complete data space. 

Images reconstructed purely by using the ML criterion 
[l]  are unacceptably noisy. Methods for reducing the noise 
include: stopping rules [15], penalized least squares [ 161, 
separable (nonsmoothness) priors [17], [ 181, adding smoothing 
steps [19], and sieves [20]. Recent studies [21] have found that 
MAP (or equivalently PML) methods outperform sieves. In 
this paper, we focus on PML image reconstruction, although 
the new complete-data and hidden-data spaces we introduce 
are also applicable to unpenalized ML methods. Algorithms for 
penalized likelihood objective functions for Poisson statistics 
can be categorized as: 1 )  intrinsically monotonic, 2) forced 
monotonic (typically made monotonic using a line search), 
and 3) nonmonotonic methods. Since one could convert any 
nonmonotonic method to a forced monotonic method by using 
a line search, the latter two categories overlap. Nonmono- 
tonic methods can diverge unless one explicitly checks that 
the objective increases, which often would be expensive in 
applications with many parameters. The SAGE methods we 
propose are intrinsically monotonic, so expensive line searches 
are unnecessary. Although it is not our purpose to argue this 
point, we believe that convergence properties are relevant to 
clinical medical imaging, since algorithm divergence could 
have unfortunate consequences. 
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Intrinsically monotonic methods are those such as the ML- 
EM algorithm for PET [ l ]  where the statistical formulation 
of the recursion inherently ensures that the objective 
function increases every iteration (ignoring finite precision 
computing). The only intrinsically monotonic methods 
for penalized maximum-likelihood that we are aware of 
are the following: 1) extensions of the EM algorithm 
including generalized expectation-maximization (GEM) [22], 
expectationkonditional maximization (ECM) [23], [24], and 
SAGE [9] algorithms, 2) the trivial case with separable 
(nonsmoothness) priors [17], [18], 3) De Pierro’s algorithms 
[25], [26], and 4) the ICM-EM algorithm [27]. For comparison 
purposes, we derive an accelerated monotone converging GEM 
algorithm in Section IV using a new complete-data space. 
Most intrinsically monotonic algorithms converge globally to 
the unique maximum for strictly concave objectives. 

Perhaps a more accurate name for nonmonotonic meth- 
ods would be “not guaranteed monotonic” since most such 
methods do have local convergence and the PML estimate 
is usually a fixed point. An early approach was gradient 
ascent of the objective starting from an ML estimate [28], 
[29], which was stated to “not guarantee convergence to the 
global [maxlimum.” Gradient ascent is complicated by the 
nonnegativity constraint. Most other nonmonotonic methods 
are variations of the one-step late (OSL) method of Green [30], 
[31]. In the OSL approach, one circumvents the problem of 
coupled equations by “plugging in” values from the previous 
iteration. Unfortunately, such an approach can diverge, unless 
modified to include a line search 1321. Similar strategies 
include the BIP algorithm [33], the methods in [34], [35], and 
nested gradient or Jacobi iterations [36], [37], [21]. Most such 
strategies include a user-specified step size parameter, and one 
user has noted that “finding good values for [the step size] and 
the number of times to iterate requires painful experimentation 
[38].” Other OSL-like methods are given in [38], [39], which 
have been reported to occasionally diverge [39]. The sequential 
update of our SAGE methods is close in form (cf. Type-111 
algorithms in Table I) to the coordinate-wise ascent proposed 
by Bouman and Sauer 1401, [411. 

One could force any of the above methods to be monotonic 
by adding a line search. Lange has shown convergence for 
a line-search modification of OSL [32], and Mumcuoglu et 
al. have adapted the conjugate gradient method [42]. We 
show in Section VI that an intrinsically monotonic SAGE 
algorithm converges faster than even a line-search accelerated 
EM algorithm. 

This paper is condensed from [43], in which we com- 
pare SAGE to many alternative algorithms and show that 
the convergence rate of SAGE is comparable even to fast 
nonmonotonic methods such as [40], [41]. Just as one can 
force a nonmonotonic algorithm to be monotonic by adding a 
line search, one can also often accelerate monotonic methods 
by over-relaxation. Thus, for meaningful comparisons, one 
should first decide whether or not monotonicity is required. In 
this paper, we focus solely on monotonic (intrinsic or forced) 
algorithms. Additional comparisons can be found in [43]. 

The organization of this paper is as follows. Section I1 
describes the general structure of the SAGE method. Sec- 

tion 111 introduces new complete-data spaces and hidden-data 
spaces for Poisson data, and gives several algorithms for 
unpenalized maximum-likelihood. Section IV presents PML 
algorithms. Sections V and VI illustrate the convergence rates. 
The Appendix gives a global convergence proof. 

11. THE SAGE METHOD 

Previously we described the SAGE method within a sta- 
tistical framework [9], [8], [12]. Here we first describe a 
generalized version of the method without direct statistical 
considerations, and then introduce the statistical version as 
a special case. This new formulation encompasses both the 
previous SAGE method [9], [8], [12] and the convexity 
approach of De Pierro [26], [44] as special cases. 

A. Problem 

Let the observation Y have the probability distribution 
f(y;dtrUejl  where etrue is a parameter vector residing in a 
subset 0 of the p-dimensional space WP. Given a measurement 
realization Y = y, our goal is to compute the penalized 
maximum-likelihood estimate fi of O,,,,, defined by 

8 = argmaxQ(f?), where *(e) = logf(y; 0) - P(0) .  

(1) 

P is an optional penalty function. When analytical solutions 
for fi are unavailable, one must resort to iterative methods, 
most of which update all pixels simultaneously. SAGE algo- 
rithms use sequential updates. 

- A  A 

B E 0  

B. Algorithm 

To describe the SAGE method, we adopt the notation used 
in [9]. Define an index set S to be a nonempty subset of 
{ 1, . . , p}l and S its complement. If the cardinality of S 
is m, then 0s denotes the m dimensional vector consisting 
of the m elements of 8 indexed by the members of S. 
Similarly 0s denotes the p - m dimensional vector consisting 
of the remaining elements of 0. For example, if p = 5 and 
S = {1,3,4}, then S = {2,5}. 0s = [el e3 e4]’, and 
8s = [e, & I 1 ,  where ’ denotes vector transpose. Finally, 
functions like +(e) expect a p-dimensional vector argument, 
but it is often convenient to split the argument 0 into two 
vectors: 0s and 82, as defined above. Therefore, we equate 
expressions such as iE(8s18s) = *(e ) .  

Let 0’ E 8 be an initial parameter estimate. Given e’, i = 
1,2,  . . . a SAGE algorithm produces a new estimate 82’l by 
the following two steps: 

E-step: Choose an index set Sz and a functional @(@S.  ; e’) 
satisfying 

cp(est,vs.) - *yeZ) 2 y(esz;ez) - $ y ( e ; , ; e Z ) .  (2) 

M-step: 0;:’ = arg max $’(Os. ; @) 
@S 

(3) 

(4) 

The maximization in (3) and the inequality in (2 )  are over the 

2+1 - i 
Sl S‘ . e-  - e -  

set { e s x :  (esal e;,) E 0).  
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This is an “algorithm” in a loose sense, since there is 
considerable latitude for the algorithm designer when choosing 
the index sets {S‘} and functionals {@} (see Appendix). The 
basic idea behind the SAGE method is that if maximizing 
+ ( 8 , ~ . 8 ~ ~ )  over Os. at the ith iteration is difficult, then we 
instead maximize some user-specified functional 4’ ( Ost ; e’), 
carefully chosen to ensure (using (2)) that increases in 4% yield 
increases in 9. Often, one can maximize d‘( .: e )  analyricully, 
obviating expensive line searches. We discuss choices for the 
index sets St in [9]. Here we focus on single-pixel index sets, 
e.g.: S‘ = { 1 + ( I  rnodiilop)}. 

C. Convergence Properties 

It follows from (2) and (3) that the sequence of estimates 
{e’} generated by any SAGE algorithm will monotonically 
increase the objective +(e7). If the objective function is 
bounded above, then this monotonicity ensures that { +(e’)} 
converges, but it does not guarantee convergence of the 
sequence {e’}. In [9], we provided regularity conditions under 
which the sequence {e’} also converges monotonically in 
norm, and derived an expression for the asymptotic rate of 
convergence. The nonnegativity constraint for image recon- 
struction violates one of the regularity conditions in [9]. 
Therefore, in the Appendix we prove global convergence 
under mild conditions suitable for image reconstruction with 
nonnegativity constraints. 

D. Hidden-Data Spaces 

A natural approach to choosing functionals qh7 that satisfy 
(2) is to use the underlying statistical structure of the problem. 
Often one can simplify the form of the log-likelihood by (con- 
ceptually) augmenting the observed data with some additional 
unobservable or “hidden” data. The hidden-data spaces we 
defined in [9] were all independent of the iteration I .  Here 
we present a less restrictive definition that allows one to use 
hidden-data spaces that change with iteration. 

Dejinition I :  Let S‘ denote the index set for the zth it- 
eration. A random vector X with probability distribution 
f ( z ;  O s  , B i t )  is an admissible hidden-datu space with respect 
to Os. for f(y;Os1, eiz) at 6’‘ if the joint distribution of X 
and Y satisfies 

( 5 )  

i.e., the conditional distribution f(ylz;  e;, ) must be indepen- 

jyY, 2; os.. e;t ) = f ( Y i z :  e;, )m; e,.. e;, ) 

dent of 0;. 
Any complete-data space associated with a conventional EM 

Given an admissible hidden-data space X. define the fol- 
algorithm is a special case of this definition [9]. 

lowing conditional expectation: 

Q(eSt;ez) = q i o g f ( x : e s q + ) j Y  = y;ez}). 

$(esz;ez) = Q(eSz:ez) - p(esz,e;t). 

(6)  

Combine this conditional expectation with the penalty function 

(7) 
a 

From [9], any 4 generated using (5)-(7) satisfies (2). Thus, 
one can design SAGE algorithms by choosing index sets { S’} 

and admissible hidden-data spaces {X’}, and then generating 
{ $ z }  functionals using ( 5 t ( 7 ) .  The “majorization” method of 
De Pierro [26], [44] is an alternative method for choosing 4’ 
functionals [43]. 

111. MAXIMUM LIKELIHOOD 

In this section we first review the linear Poisson model that 
is often used in image reconstruction problems, and summarize 
the classical EM algorithm (ML-EM- 1)  for maximizing the 
likelihood [ 11. We then introduce a new complete-data space 
that leads to a new, faster converging EM algorithm: ML-EM- 
3. Even less informative hidden-data spaces lead to new SAGE 
algorithms that converge faster than both ML-EM-3 and the 
line-search accelerated EM algorithm (ML-LINU) [45]. We 
presented some of this material in [9], [12]; we include it 
here since the concepts behind the new complete-data spaces 
and hidden-data spaces are easier to explain in the maximum- 
likelihood framework than in the PML case described in the 
next section. 

A. The Problem 

Let the emission distribution be discretized into p pixels 
with nonnegative emission rates A = [A,, . . . , A,]’ 2 0. Let 
Nnk denote the number of emissions from the kth pixel that 
are detected by the nth of N detectors, assumed to have 
independent Poisson distributions: 

Nnk - Poisson {a , kAk }  

where the ank  are nonnegative constants that characterize 
the system [ 11 with a k  = C, ank > 0. The detectors record 
emissions from several source locations as well as background 
events, so we observe 

k 

where {R??} are independent Poisson variates: R, - 
Poisson { r, } . We assume the background rates { r,} are 
known. This assumption is not essential to the general method, 
and one could generalize the approach to jointly estimate [ 111 

Given realizations {yn} of {Yn}, the log-likelihood for this 
{A,} and {rn} .  

problem is given by [l]: 

L(A)  = 1% f b ;  A) = logY,(A) - Yn(A))  (9) 
n 

where 

(We use the symbol “E’’ between expressions that are equiv- 
alent up to constant terms that are independent of A.) We 
would like to compute the ML estimate i 2 0 from y = 
[!/I 1 . . . ! !/’VI’. 

B. ML-EM Algorithms 

is the set of unobservable random variates 
The classical EM complete-data space [ 11 for this problem 

(1  1 )  N x1 = { { N n k ) : = p  {&}}nd, 
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k 

where 

& X I  (.; A') is a separable, concave function of AI: . . . , A,, and 
one can maximize it analytically. This yields the ML-EM- 1 
algorithm [ 11, [ 5 ] ,  which is a Type-I algorithm in Table I with 
its M-step (41) given by 

(14) 
ML-EM-1 converges globally [l], [l 11 but slowly. The slow 
convergence is partly explained by considering the Fisher 
information of the complete-data space XI [ I l l .  One can 
think of X' as data from a hypothetical tomograph that knows 
whether each detected event is a true emission or a background 
event, and knows in which pixel each event originated. Such 
a tomograph would clearly be much more informative than 
real tomographs, and this intuition is reflected in the Fisher 
information matrices. The Fisher information of the parameter 
vector A for the observed data Y evaluated at the ML estimate 
i is 

F I - ( ~ )  = E{-CiL(A)}jA=jl = A'diag { A i  + r } - l A  

F~~~ (i) = ciiag {~.~/i~) 

x;+l = A;, P-k (xi )/a.,. 

whereas the Fisher information for X1 is diagonal: 

(provided is positive). One can show that F ~ I  > F I -  (i.e., 
Fsl - F I -  is a positive definite matrix) using a Fisher 
version of the data processing inequality [46]. Indeed, Fsi 
is completely independent of the background rates { rrL}?  
reflecting the fact that the parameters are completely isolated 
from the uncertainty due to the background events { R,} in 
x1 (see (11)). 

To accelerate convergence, we would like a less informative 
complete-data space than X1. so we depart from the intuitive 
relationship between X1 and the underlying image formation 
physics, and instead exploit the statistical structure of (8). The 
first approach we tried was the following new complete-data 
space: 

TABLE I 
THREE GENERIC PSEUDOCODE ALGORITHM TYPES FOR 

PENALIZED MAXIMUM-LIKELIHOOD IMAGE R!XONSTRUCTION. A L L  
OF THE ALGORITHMS PRESENTED IN THE TEXT ARE OF O N E  OF 
THESE THREE TYPES. WITHIN EACH TYPE, THE ALGORITHMS 
DIFFER IN FORM OF THE FUNCTIONS g() USED IN THE M-STEP 

Type-I Algorithm (e.g.  ML-EM, PML-OSL) 
and Type-I1 Algorithm (e.g. PML-GEM) 

I n i t i a l i z e  A' 
for i = 0 , 1 , .  . . { 

Yn = 

Type-I (see (14), (21): (22), (23), (37)): 

xi+' = g k ( e k ;  A'), k = 1 , .  . . , p ,  (41) 

Type-I1 (see (36)):  

Ai+' = g k ( e k ;  A*; A'), k = 1, . . . , p ,  (42) 

Type-I11 Algorithm (e.g. ML-SAGE, PML-SAGE) 

and smaller than that of X' 

Unfortunately, the function Q . ~ P  (formed using (6)) has no 
analytical maximum (unless the ratio r,/an. is a constant 
independent of n) ,  so the M-step appears intractable. Such 
tradeoffs between convergence rate and computation per- 
iteration are common [ 111.  

To obtain a tractable M-step, we would like to replace the 
term rn/un.  in (15) with a term that is independent of n. 
Therefore, we propose the following new complete data space 

where the { X,,} are unobservable independent Poisson vari- 
ates that include all of the background events: 

where { Mnk} and { B,} are unobservable independent Pois- 
son variates: 

Xnk - Poisson {a ,k(Ak + r n / u n . ) )  

where a,. = f i n k .  Clearly 1; = XI, x , k  has the appropri- 
ate distribution (8). The Fisher information for X 2  is diagonal 

Mnk -Poisson {U,k (& + m k ) }  
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and where { m k }  are design parameters that must satisfy algorithm, which, like ML-EM-1, is also a Qpe-I algorithm 
of Table I, with (14) replaced by 

a n k m k  5 rnrvn (17) 
k 

so that the Poisson rates of { B,} are nonnegative. With these 
definitions, clearly 

k 
has the appropriate distribution (8). 

The Fisher information for X3 is diagonal: 

and now depends on rn though (19) below. This Fisher 
information is smaller than F x ~ ( i ) ,  which leads to faster 
convergence. In light of (18), to make F x ~  small the design 
parameters ( m k }  should be “as large as possible,” but still 
satisfying the constraint (17). We have found it natural to 

A;+’ = [(A: + m k ) e k ( X i ) / a . k  - m k ] + ,  (21) 

where [XI+ = z if z > 0 and is zero otherwise. This simple 
change to the implementation of ML-EM-1 accelerates conver- 
gence, both theoretically and empirically, provided that some 
m k  > 0. Random coincidences are pervasive in PET, so r, > 0 
for all n and mk > 0 for all I C .  

Like ML-EM-1, since ML-EM-3 is an EM algorithm it 
monotonically increases the likelihood every iteration. Unlike 
ML-EM-1, the iterates generated by ML-EM-3 can move on 
and off the boundary of the nonnegative orthant each iteration. 
This may partly explain the faster convergence of ML-EM-3, 
since when ML-EM-1 converges to the boundary, it can do so 
at sublinear rates [ 113. 

.~ 

choose a set { m k }  whose smallest element is as large as 
possible subject to (17). A simple solution to this min-max 
problem is 

c. ML Line-Search 

Q = 1 of the form 
Kaufman [45] noted that ML-EM-1 is the special case where 

mk = min (rn/a,.}. (19) 
n:a, . fO 

We discuss alternatives to (19) based on other min-max criteria 
in [43], none of which we have found to perform significantly 
better than (19) for PET, but that might be advantageous 
elsewhere. 

The design (19) clearly satisfies (17), and at least one of 
the N constraints in (17) is met with equality. Thus, the M n k  

terms absorb some of the background events, but usually not 
all. For tomographic systems, the a,.’~ vary by orders of 
magnitude between rays traversing the center of the object and 
rays grazing the object’s edge, so a n k m k  << r ,  for most 
n. Many of the background events remain separated in B,. 
In contrast, in image restoration problems, if the point-spread 
function is roughly spatially invariant and the background 
rates { r , }  are uniform, then the ratios {rn/a, .}  will be 
fairly uniform and nearly all of the background events will 
be absorbed into ( k f n k } .  

Using a similar derivation as for (12) one can show 

where e k  was defined by (13). Like QXl,  this function is also 
separable, and its partial derivatives are 

To implement the M-step, one cannot simply maximize QX3 

by zeroing its partial derivatives, because of the nonnegativity 
constraint. However, Qx3 is a concave function with respect 
to Xk, so if its derivative vanishes at a negative Xk, then the 
point XI, = 0 will satisfy the Karush-Kuhn-Tucker conditions 
for the nonnegativity constraint. This leads to the ML-EM-3 

The ML-LINB-1 and ML-LINU-1 algorithms [45] use a line- 
search to choose an ai > 1, which accelerates convergence. 
For ML-LINB-1, the search over Q is bounded such that 
Xi+’ is positive, whereas ML-LINU-1 allows an unconstrained 
“bent line” search, in which Q can be chosen large enough that 
some pixels would become negative, but are set to zero [45]. 
Similarly, ML-EM-3 is the special case where a = 1 of the 
form 

Xi+’ = [x; + Q (  xz, ’ a,k  + mk ) &L(XZ)] . (23) 
+ 

In the few PET experiments we tried, “accelerating” ML-EM- 
3 using a line-search to choose ai 2 1 only slightly increased 
the convergence rate. 

D. ML-SAGE Algorithms 

Since ML-EM-3 is a simultaneous update, the background 
events in (16) must be shared among all the pixels, so the 
values for m k  are fairly small. We now derive a class of 
SAGE algorithms that use sequential updates with Si = {k}, 
where IC = 1 + (i modulop). Two algorithms in this class 
were presented in [9]; here we also present a third algorithm. A 
subtle advantage of sequential updates is that we can associate 
nearly all of the background events with whichever pixel is 
being updated, yielding much less informative hidden-data 
spaces and thus faster convergence. 

Define unobservable independent Poisson variates: 

Z A ~  -Poisson { a , k ( X k  + z i ) }  
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where { z i  } are nonnegative design parameters (discussed in 
more detail below) that must satisfy 

J#k 

so that the Poisson rates of Bkk are nonnegative. This con- 
straint is much less restrictive than (17). Clearly Y, = 2Ak + 
Bkk has the appropriate distribution (8) for any k .  We let the 
hidden-data space for X k  only be 

= {zkki B A k } E = l .  

Using a similar derivation as for Qx3,  one can show 

Q x k ( x k ; A ’ )  ( A k + Z i ) e k ( A ’ )  l o d x k  + . ; ) - a  k ( x k + z ; ) .  

(26) 

Maximizing Qx; (.; A’) analytically (subject to the nonnega- 
tivity constraint), yields the ML-SAGE class of algorithms, 
which are Type-I11 algorithms of Table I, with M-steps (44) 
given by 

A;+’ = [(A; + z ; ) e k ( A z ) / a  k - .;I+. (27) 

Type-I11 algorithms update the parameters sequentially, and 
immediately update the predicted measurements y, within the 
inner loop, whereas Type-I algorithms wait until all parameters 
have been updated.‘ 

The recursion (27) does not completely specify an algorithm 
until we have chosen suitable 2;’s satisfying the constraint 
(25). The Fisher information for xi with respect to AI, is the 
scalar value 

Fx; ( i k )  = a k / ( i k  f 2 ; )  

which (cf. (18)) again suggests that we would like the 2;’s to 
be as large as possible subject to (25). 

The obvious choice is zZ; = 2:) = 0, which trivially 
satisfies (25), and we then refer to the recursion (27) as ML- 
SAGE-1 [9], [8], [12]. This algorithm is generally ineffective 
except for well conditioned problems [8], which is unsurpris- 
ing since when z;  = 0 the Fisher information for XZ, is just 
the kth diagonal entry of Fxl. 

A second choice is based on the following idea: since we are 
updating one pixel at a time, we can associate nearly all of the 
background events with each pixel as it is updated. This may be 
unintuitive in terms of the imaging physics, but is completely 
admissible and sensible from a statistical perspective. The 
choice 

clearly satisfies (25), and when substituted into the recursion 
(27) we refer to the resulting algorithm as ML-SAGE-2 [9]. 
We precompute the zf)  terms in (28) prior to iterating, so the 

‘Incremental updates like (45) will accumulate numerical error, so must 
be treated with caution if used repeatedly. Fortunately, the SAGE algorithms 
converge in a small number of iterations. In those rare occasions that we run 
SAGE for many iterations, we “reset” the estimated projections { 3, } using 
(10) roughly every 20 iterations. 

computation difference between ML-SAGE-1 and -2 is neg- 
ligible. However, this small change significantly accelerates 
convergence [9]. 

When the rates {r,} are small, then the {zf’} are also 
small, and ML-SAGE-2 is little better than ML-SAGE-1. 
Therefore, we now introduce a new choice for 2; that is 
effective even when the {r,} are small or even zero. When 
updating a single pixel, we can consider the contributions from 
all of the other pixels as “pseudobackground’ events. This 
opportunity is indicated by the form of (24), which the reader 
should contrast with (16). The following choice also satisfies 
(25): 

Clearly 2;(3) > zf), which yields faster convergence. Note 
that 2:(3) changes with iteration, which is nevertheless ad- 
missible as defined by Definition 1. We refer to the recursion 
(27) with the choice (29) as the ML-SAGE-3 algorithm. 

Remarkably, with an efficient implementation* the “extra 
work” suggested by the minimizations (29) adds negligibly 
to the execution time. Since the ratios j j n ( A z ) / a n k  in (29) 
are already needed for computing e k  (see (13)), no extra 
floating point divides are required. Only the comparisons for 
the minimization are needed, and those add negligible CPU 
time (at least on our DEC 3000). 

The definitions (28) and (29) involve only a single a n k  

in each denominator, rather than the sum U ,  contained in 
the definition (19) of m k .  Thus, zf) and are orders of 
magnitude larger than mk, and Fx; is much smaller than the 
kth diagonal entry of Fx3, leading to faster convergence. 

IV. PENALIZED MAXIMUM LIKELIHOOD 

We described the ML algorithms above primarily to in- 
troduce the new hidden data spaces. In this section we turn 
to penalized likelihood objectives. We first present SAGE 
algorithms based on the hidden-data spaces { X i } .  For fair 
comparison with alternative methods, we also derive a new 
version of the GEM algorithm [22] using the new complete- 
data space X 3 .  We derived modified versions of the paral- 
lelizable algorithm of De Pierro [26] and the one-step late 
algorithm of Green [30] in [43]. As we show in Section V, 
these modified algorithms based on X 3  all converge somewhat 
faster than their original versions based on X1, but still none 
converge as fast as SAGE on a serial computer. Nevertheless, 
they should be useful for some parallel computers, and they 
allow us to perform the most conservative comparison between 
SAGE and its alternatives. 

We have implemented the SAGE method with nonquadratic 
penalties [43]. However, to simplify notation, in this paper we 

’The pessimistic results given in [43] were for a very inefficient implemen- 
tation of (29). In our more recent optimized implementations, the execution 
times per iteration of ML-SAGE-1,2,3 were indistinguishable. 
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focus on a simple quadratic smoothness penalty: 

k j E N k  

where N k  is a neighborhood of the kth pixel and W k j  = W j k .  

For the results in Section V, we let N k  be the 8 pixels adjacent 
to the kth pixel, and set w k j  = 1 for horizontal and vertical 
neighbors and W k j  = 1/& for diagonal neighbors. Com- 
bining (30) with the log-likelihood (9) yields the penalized 
likelihood objective function (1): 

= C ( ? / n l O g g n ( X )  - g n ( X ) )  - P(x). 
n 

For the penalty given by (30), 9 is strictly concave under 
mild conditions on A = { { U n k } } .  

A. Penalized SAGE Algorithm 
For generality, we derive the SAGE algorithm for PML with 

generic z; arguments: any choice satisfying (25) can be used. 
Following (7), define 

4 k ( x k ;  A') = Q-y; ( x k ;  A') - p (  x k ,  X L k )  

- = ( A i  + z ; ) e k ( A z )  log ( A k  + z ; )  - a . k ( A k  + X i )  

j € N k  

where Qxi  was defined in (26), and is the vector of 
length ( p  - 1) obtained by removing the kth element from A'. 
The M-step (3) requires maximizing f$k( . ;  Xi), which we can 
do analytically by zeroing its derivative since $ h k ( A k ;  x ~ )  is 
a strictly concave function of X k .  The derivative of 4 k ( . ;  A') 
with respect to X k  is 

Note that updating only one parameter obviates coupled equa- 
tions (cf. (34)). Zeroing this derivative yields a quadratic 
formula: 

( x k  + z;)' + 2 B k ( A k  + 2;) - e k ( X z ) ( x ;  f . ; ) / ( P w k  ) = 0 

where W k  = E J E ~ k  W k J  and 

B k  = [U k - p w k j ( ) o  f z ; ) ] / ( 2 p w k  ). (32) 
3 E N k  

Just as in the derivation of (21), the constrained maximum 
of 4k(*; A') corresponds to either the positive root of the 
quadratic, or the value = 0, since 4 k  is strictly concave. 
This leads to the PML-SAGE class of algorithms, which are 
of Type-I11 in Table I with M-steps (44) given by: 

A;" = [ - B k  + d B i  + e k ( X z ) ( x i  + Z i ) / ( p W k . )  - .I]+. 
(33) 

In words, we first compute the e k  correction term from the 
current projection estimate, then update the kth pixel using 

a quadratic formula that involves both the data and the 
neighboring pixels, and then immediately update the projection 
estimate before proceeding to the next pixel. In practice, the 
actual implementation has two important differences: 1) the 
pixels are updated in four different raster scan orders rather 
than using the same order each iteration (cf. frequency analysis 
in [47]), and 2) the quadratic formula is computed using 
numerically stable formulas [43], [48] (p. 156), rather than 
the conventional form (33). 

We refer to the recursion (33) with the choice (29) for 
z;  as PML-SAGE-3, and define PML-SAGE-1 and -2 analo- 
gously. (PML-SAGE-1 is essentially identical to the ICM-EM 
algorithm of Abdalla and Kay [27].) As described in Section 
V, PML-SAGE-3 converges fastest. Global convergence of 
PML-SAGE is established in the Appendix. 

B. Modified GEM Algorithm 
The GEM algorithm for image reconstruction [22] is an 

intuitive approach to extending the EM algorithm to the PML 
case. Rather than using X1 as in [22], here we develop a GEM 
algorithm using the new complete-data space X3. Following 
(7), let 

$'(A; Xi) = QXz(X; Xi) - P(X) 

where QX3 was defined in (20). The GEM algorithm is similar 
to the special case of the SAGE algorithm of Section I1 where 
Si = { 1, . . . , p }  and @ = 43 for all i. Thus, the M-step (3) 
requires us to maximize 43 (.; xi). Unfortunately, its partial 
derivatives are coupled: 

d 
-43(X; A') 
dA k 

- p W k j ( A k  - A,), k = 1 7 . . . , p .  (34) 
i€Nk 

This coupling prohibits analytical maximization. The GEM 
method [22] abandons maximization in favor of simply in- 
creasing 43 (.; Xi) using coordinate-ascent. It is easier to in- 
crease qh3 than +( .) using coordinate-ascent since we can solve 
(34) with respect to (while holding the other parameters 
fixed) using essentially the same quadratic formula as (33). 
Extending the derivation in [22] leads to the PML-GEM-3 
algorithm, which is a Type-I1 algorithm of Table I, with the 
M-step (42) given by 

B k  = a k  - p w k j ( x 3  + mk) / ( 2 p w k , )  (35) 

(36) 

j E h l k  1 [ 
J.2 + e k ( x i ) ( x i  f m k ) / ( p w k . )  - m k ] + .  k - [ - B k +  

xi+' - 

Here, denotes the most recent estimate of x k ,  e.g., A; = 
= A i ,  i.e., the updates are done "in 

place." We refer to the GEM algorithm based on X1 (where 
n l k  = 0 V k )  as PML-GEM-1. 

if j < k ,  otherwise 
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One can easily verify that A:" given by (36) satisfies 
the one-dimensional Karush-Kuhn-Tucker conditions with 
respect to the nonnegativity constraint. Thus PML-GEM-3 
monotonically increases the objective 9. Global convergence 
of GEM follows from Theorem 3 of [23], provided the 
objective is strictly concave. 

Note that PML-SAGE-2,3 and PML-GEM-3 are somewhat 
similar, except that PML-SAGE-2,3 use the less informative 
hidden data space Xi, and update the projections immedi- 
ately after each parameter update. Although subtle, these two 
differences lead to PML-SAGE-2,3 converging significantly 
faster. 

C. Modified One-Step-Late (OSL) Algorithm 

An alternative to the above algorithms is preconditioned 
steepest-ascent. Using a derivation similar to that for (22), 
Lange [32] has shown that Green's OSL algorithm [30] can 
be expressed in the form 

which is a Type-I algorithm in Table I. For (Y = 1, this method 
is not necessarily monotonic, but by choosing a using a line- 
search, one can ensure monotonicity and global convergence 
[32], and also accelerate OSL (often significantly, see [43]). 
We refer to (37) as PML-LINB-1 or PML-LINU-1, depending 
on whether the line-search for N is bounded or unbounded (cf. 
Section 111-C). 

V. SIMULATION METHODS 

We have evaluated the convergence rates of the algorithms 
using a 2-D slice of the digital Hoffman brain phantom shown 
in Fig. 1, with intensity 4 in the gray matter, 1 in the white 
matter, and 0 in the background, discretized on a 80 by 110 
grid with 2 mm square pixels. The phantom was forward 
projected using precomputed factors ank corresponding to an 
idealized PET system having 100 angles evenly spaced over 
180' and 70 radial samples with 3 mm spacing. Each a n k  was 
precomputed as the area of intersection between the square 
pixel and a strip of width 6 mm. (Since the strip width is 
wider than the radial spacing, the strips overlap.) The detector 
response is thus a 6 mm rectangular function. Only image 
pixels within a support ellipse of radii 39 x 54 pixels were 
reconstructed. 

The projections were multiplied by nonuniform attenuation 
factors corresponding to an ellipse with radii 90 and 100 mm 
with attenuation coefficient O.Ol /mm,  surrounded by an ellip- 
tical 5 mm thick skull with attenuation coefficient 0.015/mm. 
Nonuniform detector efficiencies were applied using pseudo- 
random log-normal variates with standard deviation 0.2. The 
sinogram was globally scaled to a mean sum of 900000 true 
events. All of the above effects were also incorporated into 
the ank factors. Pseudo-random independent Poisson variates 
were drawn according to (8), and a uniform field of Poisson 
distributed background events with known mean were added. 
Three data sets were studied, with 0, 5, and 35% background 

Fig. I .  
image (right). 

Digital brain phantom (left) and filtered backprojection reconstructed 

events, representing the range of random coincidences in PET 
scans. The initial estimate Ao was reconstructed using FBP 
with a third order Butterworth filter with cutoff 0.6 of Nyquist 
(10 mm resolution). FBP image values below 0.1 were set to 
0.1 so that A' > 0. 

VI. RESULTS 

We found that the LINU algorithms converged faster than 
the LINB algorithms only in the 0% background case, so the 
LINU results are shown only then. We focus on the PML 
algorithms here; results for the unregularized ML case show 
the same tiends [43]. 

Figs. 3-5 display the objective @(X) - @(Ao) and illustrate 
the following points. 

In all cases, the GEM algorithm and OSL algorithms had 
indistinguishable convergence rates. 
PML-GEM-3 converged faster than the conventional 
PML-GEM-1, and the increase in speed grows with the 
background fraction. 
Even with only 5% random coincidences, PML-SAGE-3 
clearly increased faster and reached its asymptote sooner 
than PML-GEM-3. The advantage for 35% background 
is even greater. 
For 0% background events, z p )  = 0, so PML-SAGE-2 
is identical to PML-SAGE-1 (and the ICM-EM algorithm 
of [27]), and converged at the same rate as PML-GEM-1 
(which is identical to PML-GEM-3 with 0% background). 
However, for 0% background PML-SAGE-3 converged 
faster than all of the other algorithms. 
The results given above in terms of the convergence in 
the objective function @(A')  also apply to convergence 
in L2 norm [43]. 

Since PML-SAGE is a monotonic algorithm applied to a 
strictly concave objective, it is robust to the initial estimate. 
Fig. 2 displays PML-SAGE-2 estimates initialized with a 
uniform image and a FBP image. The difference images 
rapidly decrease to values that are invisible on a conventional 
8-bit display, so we have amplified the differences by a 
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Fig. 2. PML-SAGE-2 estimates from data with 5% random coincidences 
at iterations t = 0.5.10. 20 (left to right). Top row: initialized with uniform 
image. Middle row: initialized with thresholded filtered-backprojection image. 
Bottom row: absolute value of difference between top and middle rows 
amplified by a factor of 4. 
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0% random coincidences. 

Penalized likelihood * ( A L  ) - @(Ao ) versus iteration from data with 

factor of 4 for display. The effects of the initial estimate are 
negligible by 15-20 iterations for 5% background, or by 10 
iterations with 35% background [43]. 

As detailed in [43], the SAGE algorithms require about 
25% more floating-point operations per iteration than ML- 
EM- I ,  although this increase could be eliminated by doubling 
the memory requirements. Nevertheless, even when @(A’) is 
graphed against CPU time [43], the SAGE algorithms still 
have the fastest convergence among monotonic algorithms. 

VII. DISCUSSION 

This paper presents algorithms for image reconstruction that 
converge rapidly, monotonically, globally, and naturally en- 
force nonnegativity constraints. There are two main principles 
that lead to the improved convergence rates. The first is to 
update the pixel estimates sequentially rather than simultane- 
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Fig. 4. Penalized likelihood *(A’)  - *(A”) versus iteration from data with 
5% random coincidences. PML-SAGE-2, which converges slightly slower 
than PML-SAGE-3, is not shown. PML-SAGE-1, which is indistinguishable 
from PML-OSL-1, is also not shown. 
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Fig. 5. As in Fig. 3, but with 35% random coincidences. 

ously. This idea has been used successfully by other authors 
as well [27], [40], [41]. The second is to use less informative 
hidden data spaces formed by “mixing together” some of 
the emission events with the background events. Either idea 
by irseff only slightly improves convergence rates (cf. PML- 
SAGE-I, PML-GEM-3 relative to PML-GEM-1 in Fig. 4), 
but in tandem (e.g., PML-SAGE-2 or PML-SAGE-3) the two 
principles significantly accelerate convergence. 

The monotonicity of SAGE stems in part from the fact that 
all of the (relevant) measured data is used even though only 
one pixel is updated at a time. In contrast, another method pro- 
posed for accelerating EM is the ordered-subsets EM (OS-EM) 
algorithm [49], in which all pixels are updated simultaneously 
but the measurements are used sequentially. OS-EM is not 
guaranteed to be monotonic, and its convergence properties 
are poorly understood. OS-EM achieves a limited form of 
“regularization” through stopping rules, whereas SAGE can 
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be used with any convex penalty function, including edge- 
preserving penalties. 

We have attempted a fair comparison between SAGE meth- 
ods and the alternatives. We presented slightly improved 
versions of several alternatives (GEM, OSL, De Pierro, etc.) 
in [43], and experimented with several choices for the design 
parameters m k .  Nevertheless, it is possible that a better choice 
for {mk},  or even a better complete-data space will be 
eventually found. Such an extension could be very useful 
since algorithms such as De Pierro's method are more suitable 
for fine-grain parallel computers than the SAGE algorithms 
herein. However, the generic SAGE method (Section 11) offers 
more flexibility than we have used here, and we are currently 
studying alternatives that may be more suitable to parallel 

We have compared several algorithms, and the reader may 
wonder what is the impact of these results on "practitioners" 
of penalized likelihood image reconstruction? Based on our 
experience, PML-SAGE-3 is the fastest intrinsically mono- 
tonic algorithm for Poisson measurements that we are aware 
of, and it converges faster even than PML-LINU, which is the 
fastest forced monotonic method we are aware of. Therefore 

serial computers. However, given the considerable recent 
progress in accelerating algorithms for image reconstruction, 
it is doubtful that SAGE will be the final word. It is notewor- 
thy that the statistical principles behind the SAGE methods 
yield convergence rates that rival conventional numerical tools 
such as line-searches and Newton's methods, yet ensuring 
algorithm monotonicity. Further development using statistical 
perspectives will likely lead to additional improvements. 

I computing [43]. 

I 

I 
I 

we recommend using PML-SAGE-3 when using conventional 

~ 

l 

APPENDIX 
CONVERGENCE 

The proof in [9] of local monotonic convergence in norm 
to a fixed point is inapplicable to problems with nonnegativity 
constraints, except when the fixed point lies in the interior of 
the nonnegative orthant. In this appendix, we prove conver- 
gence of a general form of SAGE that allows the limit to lie on 
the boundary of the nonnegative orthant. The proof structure 
is based on [ l ]  and [26].  

We begin by stating some general sufficient conditions for 
convergence. These conditions make no specific references to 
the Poisson likelihood or penalty used in this paper, so this 
proof will apply to a broad class of nonnegatively constrained 
estimation problems. Following the general proof, we verify 
that the specific SAGE algorithms presented in this paper meet 
the required conditions under the linear Poisson model. 

Define the following sets: 

%: = (6s: 8 k  2 0. k E s}, 

and 

where for k , j  E Sa 

To eliminate the interior restriction used in [9],  we impose the 
following two regularity conditions on +. 

Assumption I :  +(e) is strictly concave (and continuous and 
differentiable) on e+. 

Assumption 2: For any 8' E e+, the set S(eo) is bounded. 
As noted in [I] ,  the assumption of strict concavity is 

adequate to "make up for" relaxing the restriction to the 
interior of O+. We do not consider strict concavity to be 
an overly restrictive assumption; if 9 is not strictly concave, 
then typically either it does not have a unique maximum, 
in which case it is a questionable choice of objective, or it 
has local maxima, and no known deterministic algorithms are 
guaranteed to find the global maxima, including SAGE. Like 
any monotonic algorithm, for a nonstrictly concave objective 
SAGE will only find a global maximum if initialized suitably 
close to one. 

We assume the iterates are produced by an algorithm having 
the general form given in Section 11, i.e., each iteration is 
associated with an index set Sa and a functional q5'(BS,;BZ), 
and the iterates satisfy 8;:' = e>,. We assume that the 
functionals 4' satisfy the following conditions. 

Condition I :  The functionals @ satisfy (2),  i.e. 

for Os.  E 92:. and Bi E W. 
Condition 2: Each functional @(.; 0) is strictly concave 

and twice differentiable on !I?:, for any 0 E e+, and each 
@(.; .) is continuous on X:, x e+. 

Condition 3: The following derivatives match V i :  

for any 0 E O+ and k E Sa. 

Karush-Kuhn-Tucker conditions V k  E Sa: 
Condition 4: For 8% E e+, the iterates satisfy the 

o+ = (e E RP: ok 2 o, k = 1,. . . , p } ,  Condition 5: For any bounded set S, there exists a CS > 0 
such that for every i, for all 8 E S, and for all ( O s % ,  83) E S: s(eo) ={e :  +(e) 2 +(eo)}. 

Xmin { S ( @ S { ; ~ ) }  L CS, In addition, define 

where X,;,{J} denotes the minimum eigenvalue of J. 
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Condition 6: For each k E { 1, . . , p } ,  there is an index set 
S ( k )  containing k and functional 4(k )  that is used regularly 
to update the kth element of the parameter 8 .  Define Z k  = 
{ i :  Si = S ( k )  and 4i = 4")'). Then for each k there exists an 
integer i,,, (which may depend on k) such that 

Vn > 0 3 i  E [n? n + i,,,] s.t. i E Zk. 

(This condition is clearly satisfied if the index sets and 
functionals are chosen periodically.) 

Using the above conditions, we now prove a series of 
lemmas that establish global convergence. 

Lemma 1: The iterates {ei} yield monotonic increases in 
+(e'), and are thus contained in the set S(8'). Furthermore, 
S(8") is compact and convex. 

Pro03 Monotonicity follows from Conditions 1 and 4. 
Since 9 is strictly concave (Assumption l), S(8') is strictly 
convex. Since + is continuous (Assumption I ) ,  S(8") is closed 
(p. 91 of [50]). Thus S(8") is compact since it is closed and 
bounded (Assumption 2 ) ,  by the Heine-Bore1 theorem (p. 58 
of [50]). 0 

Lemma 2: There exists a C > 0 such that for any i 

- e y 2  5 c-1(9(ei+1) - a(&)). 

Proof: From Condition 1 and since 8:' = B ; . ,  it 
suffices to show V i  

11ez;Y -e;# 5 c-l(@(e$l;B") - 4y(ekt;ei)). 

Expand $ i ( . ;  a i )  about 8;:' using Taylor's expansion with 
remainder (see p. 599 of 1511): 

4y(es.:ei) = &(e$l;eZ) + c104i(e;:1;ez)(est -e;:1) 
2 + 1  I + ( 8 s  - @ S I  ) 

l'(i - t)Ji((i - t)e;:l+ te,, ; ei)  d t  (est - e;:'). 
(381 

From Condition 4, it follows that 

olO@(e;tl; e7)(e;t1 - e; , )  2 0. 

Therefore, setting 0s. = VS, in (38) and applying Condition 
5 yields 

clle;:' -e;# 5 - @(es,:ez), 

where C = Csceo,. We have used the fact that z ' h  2 
11z112AmLn{A} for any symmetric positive definite matrix A . 0  

Proo$ Since {a(@)}  is monotone increasing (Lemma 
1 )  and bounded above (by continuity of 9 and compactness 
(Lemma 1)  of S(8'). see p. 78 of [50]), it follows that 

0 
Lemma 4: The sequence { P }  has a limit point3 e*. For any 

Lemma 3: lleZ+l - ezll + o as 1 + CO. 

a(#+') - a(@) + 0. Apply Lemma 2.  

such limit point, if 0; > 0, then (a/a0,)9(8*) = 0. 

'The reader should note the distinction between linuts and limt points (or 
cluster points) ([50, p 551) 

Pro03 By Lemma 1 and [50] (p. 56) there is a subse- 
quence i, and limit point 8* E S(8') such that [leim -8*)12 + 
0 as m + 00. Now pick any index k, and define k, to 
be the smallest i 2 i, such that i E Zk. By Condition 6, 
k, 5 i, + i,,,. By the triangle inequality: 

the second term of which goes to 0 as m + CO. For the first 
term, applying the triangle inequality repeatedly: 

i = k ,  

which is a sum of at most i,, terms by Condition 6, 
each of which goes to 0 as m + 00 by Lemma 3. Thus, 
IIOk" - 8*ll -+ 0 as m + CQ. Again, using the triangle 
inequality 

n u s ,  Ilekm+l - e*[\  + o as m -+ 00. 

Since km E S(", i.e., on iterations { I c , }  one updates 0 k ?  
by Condition 4: 0:"''' . Vio4(k)(8&; 8") = 0. Taking the 
limit as m + CO and using continuity (Condition 2)  shows: 
0; . Vko4(k)(8>(i);8*) = 0. The lemma then follows from 
Condition 3. 0 

Lemma 5: The sequence (8') converges to a limit 8". 
Pro08 As in Lemma 3 of [ 11, the number of limit points 

is finite (at most 2 P ) ,  due to Assumption 1, the nonnegativity 
constraint, and Lemma 4. However, since a bounded (Assump- 
tion 2) sequence {e ' }  for which Il8"' - O2 I I ---r 0 (Lemma 3) 
has a connected and compact set of limit points (see p. 173 of 

0 
Lemma 6: The limit 8" satisfies the Karush-Kuhn-Tucker 

conditions for 9. 
Proof: For an element 0p > 0, we have d/a&@(O") = 

0 by Lemma 4. Now, suppose for some k ,  we have O k  = 0 
but a/d0,+(8") > 0. Then, by continuity (Assumption 1) and 
Lemma 3, d/d0k+(8' )  > 0 for all i sufficiently large. Thus, 
by Conditions 3 and 6 

[52]), there must be only one limit point. 

for all i E Z k  sufficiently large. But since q5(k)(.;8i) is 
strictly concave (Condition 2),  if Vkoc$(k)(8",k); ai) > 0, 
then 0;" > 0;. This contradicts 0; + 0, so if 13,- = 
0 we must have i3/dO&(Om) 5 0, establishing the 
Karush-Kuhn-Tucker conditions. 0 

Since a strictly concave objective has only one point that 
satisfies the Karush-Kuhn-Tucker conditions, namely the con- 
strained maximum, the limit 8" must be that point. Lemma 
6 thus establishes global convergence under a generic set of 
assumptions and conditions. All that remains is to verify that 
the conditions are satisfied for the SAGE algorithms presented 
in this paper. 
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Remark: In all of SAGE algorithms in this paper, the @ 
functionals are additively separable in their first argument, 
which means that the curvature matrices S ( 8 , c ; B i )  are di- 
agonal. In this case, Condition 5 reduces to verifying that the 
diagonal elements of J’ have a positive lower bound. This 
is clearly the case for convex penalties such as the quadratic 
penalty (30). In other words, for separable @ functionals, a 
sufficient condition for Condition 5 is: 

Condition 5’: For any bounded set S, there exists a Cs > 0 
such that for all 6 E S 

Theorem 1: A sequence { e i }  generated by any of the PML- 
SAGE algorithms for penalized maximum-likelihood image 
reconstruction converges globally to the unique maximum of a 
strictly concave objective function CP having a penalty function 
satisfying Condition 5 ’ ,  provided z i  > 0 Vk. 

Proof: 

log-likelihood as + oc 111. 
Assumption 2 follows from the behavior of the Poisson 

Condition 1 follows from Theorem 1 of [9]. 
Condition 2 is easily verified for the hidden-data spaces 
and penalty functions used in this paper. 
Condition 3 follows by the construction of 4 k  using 

Condition 4 is built into the definition (3), and is satisfied 

Condition 5 follows from Condition 5’ since the SAGE 
algorithms have separable @ functionals. 
Condition 6 is inherently satisfied by the cyclical sequen- 

0 
If one hopes for global convergence, then Condition 5’ is a 
reasonable restriction; it is clearly satisfied for the quadratic 
penalty (30), and for most strictly convex penalties. 

There is an important technical difference between our 
proof and the assumptions in [l]. In [l] it was assumed 
that the sequence was initialized in the interior of e+, and 
remained in the interior of O+ for every iteration. With our 
new complete-data spaces and hidden-data spaces, the iterates 
can come and go from boundary of 0’ since the terms 2; are 
nonzero. However, when z; is positive, one can verify that the 
corresponding functions 4 k  are well-defined and differentiable 
on an open interval containing zero. 

Condition 2 as stated is only met if z; > 0 for all k, which 
will be true if T,  > 0 for all n. If one were to include the 
effects of say, cosmic radiation, then in practice it is always 
the case that T ,  > 0. However, if some T,, and hence some z; 
are zero, it is simple to modify the proof to establish global 
convergence to the maximum. There is one important technical 
detail however; one cannot use z i  > 0 in one iteration and then 
switch to z i  = 0 in a later iteration, since then A i  could get 
stuck on the boundary of Of.  Provided that one consistently 
uses either only the original complete-data space or only the 
new complete-data spaces, then global convergence is assured. 

As stated above, the proof does not always apply to the 
unpenalized maximum-likelihood algorithms ML-EM- 1, ML- 
EM-3, and ML-SAGE-1,2,3 because the curvature assumption 

(5)-47). 

by (33). 

tial update used in PML-SAGE. 

Condition 5 is not necessarily satisfied without a strictly 
convex penalty. However, one can replace Condition 5 with 
an alternative condition that each @(Os.; e i )  must be a mono- 
tonically decreasing function of 8 k .  This approach was used 
in [ 11, [ 111. With this condition, a small modification of the 
above proof establishes global convergence of the unpenalized 
algorithms, provided that Assumption 1 is still satisfied. This 
strict concavity will not be satisfied if the system matrix A 
does not have full column rank. We consider this to be a minor 
point since in the underdetermined case regularization is par- 
ticularly essential, and the above proof shows that PML-SAGE 
converges globally for strictly concave penalized maximum- 
likelihood objectives. We conjecture that the methods of [53] 
could be extended to establish convergence of ML-EM-3, ML- 
SAGE- 1,2,3, etc. without the strict concavity assumption, but 
such a proof would probably be of limited academic interest 
since one rarely iterates a ML algorithm to convergence in the 
unregularized, underdetermined case. 

If one is willing to be content with a local convergence 
result, then it is possible to relax the assumption of strict 
concavity for the @ functionals, using a region of convergence 
idea similar to that in [9], [13]. 
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