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Abstract— Statistical methods for tomographic image recon-
struction lead to improved spatial resolution and noise properties
in PET. Penalized-likelihood (PL) image reconstruction methods
involve maximizing an objective function that is based on the
log-likelihood of the sinogram measurements and on a roughness
penalty function to control noise. In emission tomography, PL
methods (and MAP methods) based on conventional quadratic
regularization functions lead to nonuniform and anisotropic spa-
tial resolution, even for idealized shift-invariant imaging systems.
We have previously addressed this problem for parallel-beam
2D emission tomography [1], and for fan-beam 2D transmission
tomography [2] by designing data-dependent, shift-variant reg-
ularizers that improve resolution uniformity and isotropy. even
for idealized shift-invariant imaging systems. This paper extends
those methods to 3D cylindrical PET, using an analytical design
approach that is numerically efficient.

I. INTRODUCTION

Reconstructed images using Penalized-Likelihood (PL)
methods or MAP methods exhibit non-uniform and anisotropic
resolution as a result of interactions between the log-
likelihood function and conventional quadratic regularizers.
One could use a Quadratic Penalized Unweighted Least
Squares (QPULS) method to avoid non-uniformities and
anisotropy, however QPULS yields poor noise properties (sim-
ilar to FBP). One can also use Maximum-Likelihood(ML)
methods, and then post filter, however convergence of pure
ML is extremely slow due to the ill-conditioned nature of
the problem. We attempt to design quadratic penalties that
will eliminate noise, improve the convergence over pure ML
algorithms, and preserve uniformity and isotropy in the recon-
structed images.

Previous work includes regularization design for parallel
beam 2D PET systems and 2D fan-beam computer tomogra-
phy [3], [2]. Qi and Leahy in [4] also proposed a regularization
design method that provides a uniform peak amplitude of the
local impulse response function for 3D PET, but that approach
does not ensure isotropic resolution properties. This paper
extends the 2D analysis of [3] to 3D cylindrical PET systems.
section III discusses the derivation of the 3D approach and
section V the results of our simulation.

II. BACKGROUND

We use PL estimation in which the object x is estimated by
maximizing this objective function

Φ(y, x) = L(y, x) − βR(x)

L(y, x) =
∑

i

yi log ȳi(x) − ȳi(x), ȳ = Ax

where L is the log-likelihood, y is the data, x is the object,
A is our system matrix, and R is our quadratic regularizer.
Traditional regularizers are of the form

P∑
j=1

P∑
k=1

1
2
rjk(xj − xk)2 (1)

where rjk are user defined weights that allow different penal-
ties for different pixel differences, xj is the jth pixel value
of an object x, and x has P pixels. We use the following
expression to formulate our regularizer which preserves the
same functionality as (1) but makes frequency domain analysis
more intuitive. We define R(x) as:

R(x) =
1
2
x′Rx =

∑
n

∑
l=1

1
2
rj
l |(cl ∗ ∗ ∗ x)(n)|2 (2)

cl[n] =
1

||n|| (δ[n] − δ[n − nl]) (3)

Here cl is a function which when convolved with a volume
takes the difference between a voxel and it’s lth neighbor. rj

l

is a user defined weighting which weights differences between
the jth pixel and it’s lth neighbor.

The Local Impulse Response(LIR) for emission tomography
with a Poisson distribution is [5]:

lj(x) = [A′WA + βR]−1A′WAδj (4)

where W = diag[ 1
ȳi(x) ]. As is evident from (4), the LIR

depends on our regularizer, R. Our goal is to design R
such that our LIR lj matches a target l0 at every pixel
j. Unfortunately, designing a spatially variant R so that lj

matches l0 is incredibly difficult. We look to the frequency
domain to simplify this process.

Assuming A′WA and R are locally shift invariant, we can
create a local frequency response for A′WA and R yielding
the following local frequency response for our reconstruction
system.

Lj =
F (A′WAδj)

F (A′WAδj) + βF (Rδj)
(5)
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where F () denotes a Fourier transform. Taking the Fourier
transform of (3), and then converting to spherical coordinates
yields the following expression:

R(�,Φ,Θ) ≈ (2π�)2
∑
l=1

rj
l (e(Φl,Θl) · e(Φ,Θ))2 (6)

e(Φ,Θ) = (cos Θ cos Φ, cos Θ sin Φ, sin Θ)

III. 3D REGULARIZATION DESIGN

Assuming small acceptance angles, one can show using
continuous space analogous that the local frequency response
of A′WA is approximately

F (A′WAδj) =
wj(Φ)

|�| cos(Θ)
. (7)

In this equation, wj(Φ) maps the weights from W, which
come from the sinogram, to the image domain. To find wj(Φ)
we backproject the weights from the projection at angle Φ
over the image domain and find the value that corresponds
to the jth voxel. Next we must select our target frequency
response in 3d. We use the LIR from unweighted, regularized
reconstruction since it is uniform and mostly isotropic. This
yields the following:

F (A′Aδj)
F (A′Aδj) + F (βR0δj)

≈
1

|�| cos(Θ)

1
|�| cos(Θ) + F (βR0δj)

≈ 1
1 + β cos(Θ) |�|F (R0δj)

This response is slightly anisotropic, due to the cos(Θ) term in
the denominator. To make it isotropic we choose R0 = |2π�|2

cos(Θ) ,
yielding

L0 =
1

1 + β(2π)2|�|3 . (8)

Now, by choosing rj
l , we design R to make the actual LIR

close to our target LIR,

wj(Φ)
wj(Φ) + β|�| cos(Θ) R(�,Φ,Θ)

≈ 1
1 + β(2π)2|�|3 .

After cross multiplying and simplifying, we use a Non-
Negative Least Squares(NNLS) algorithm to solve the follow-
ing minimization problem for rj

l

rj = arg min
r≥0

∫ π

0

∫ π/2

−π/2

∣∣∣wj(Φ)−
L∑

l=1

rj
l cos(Θ)(e(Φl,Θl) · e(Φ,Θ))2

∣∣∣2dΘ, dΦ

IV. IMPLEMENTATION DETAILS

We can break up the term
∑L

l=1 rj
l cos(Θ)(e(Φl,Θl) ·

e(Φ,Θ))2 as BCrj where rj is a L × 1 vector of penalty
coefficients. We can expand cos(Θ)(e(Φl,Θl) · e(Φ,Θ))2 into
6 orthonormal basis functions which will make up the columns
of B. C is a matrix of linear combinations coefficients
such that

∑
l=1 rj

l cos(Θ)(e(Φl,Θl) · e(Φ,Θ))2 = BCr. We

undergo this factorization to simplify the problem. Our current
problem is framed as

rj = arg min
rj≥0

||w − BCrj ||2

This is equivalent too

= arg min
rj≥0

||w − BCrj ||2

= arg min
rj≥0

< w − BCrj , w − BCrj >

= arg min
rj≥0

||w||2 − 2 < w,BCrj > + < BCrj ,BCrj >

= arg min
rj≥0

||w||2 − 2 < B∗w,Crj >

+ < B∗BCrj ,Crj >

Since the columns of B are orthonormal functions, B∗B is the
Identity matrix. We can replace ||w||2 with ||B∗w||2 since it is
an irrelevant constant which has no effect on our minimization,
leaving us with

= arg min
rj≥0

||B∗w||2 − 2 < B∗w,Crj > +||Crj ||2

= arg min
rj≥0

||B∗w − Crj ||2 (9)

B∗w produces a 6 × 1 vector, and C is 6 × L, making this a
much smaller minimization problem.

A. Problems with NNLS

In the 2D case, one can minimize (9) analytically [3] such
that the solution is minimum norm. In a NNLS problem that
is underdetermined there are many solutions that minimize
the cost function. Finding the solution with a minimum norm
solves for rj as a continuous function of B∗w and leads to
good image reconstruction properties. Without the continu-
ous mapping from B∗w to rj , neighboring pixels can have
drastically different weights, thus violating our assumptions of
local spatial invariance. [3] exploits properties of the matrices
used to solve the 2D problem to find a minimum norm
solution. Unfortunately those properties do not hold in the
3D case. To compensate for this problem, we try to alter the
minimization problem from arg minrj≥0 ||B∗w − Crj ||2 to
arg minrj≥0 ||B∗w −Crj ||2 + ε||rj ||2 so that the norm of rj

becomes a factor in the cost function. We append a scaled
identity matrix to the bottom of C and zero pad BHw

C̃ =
(

C
εI

)
, d̃ =

(
BHw

0

)
so that (9) is changed to

rj = arg min
rj≥0

||d̃ − C̃rj || (10)

= arg min
rj≥0

||B∗w − Crj ||2 + ε||rj ||2

This fix eliminates the discontinuities.
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B. Convergence

Since we are minimizing with a non-negative constraint, our
design has the potential to yield many rj

l values that are zero.
If there are too many zeroes in rj

l , there will be zeroes in the
hessian, leaving us with bad convergence properties. Instead
of using a non-negative constraint, we would like to have rj

l

be greater than ε for selected rj
l to ensure that enough rj

l are
non-zero. We select the 3 adjacent neighbors in the immediate
x,y, and z directions to be non-zero. We turn to previous work
to select ε. In [5], Fessler derives a spatially variant β which
seeks to preserve uniform spatial resolution. So for any given
pixel, we take ε = αβ2

j where this βj is the spatially variant
β for a pixel (xj , yj , zj). Increasing α improves convergence
at the expense of isotropy, while use of the spatially variant β
helps us preserve uniformity.

Now we must formulate our problem so that NNLS algo-
rithms will accept this new constraint. We can create a vector
ε which is zero for most neighbors, and αβ2

j for immediate x,
y and z neighbors. let r̃j = rj − ε. Solving with the constraint
of r̃j ≥ 0 ensures that rj ≥ ε. Plugging r̃j into (11) we get
|C̃r̃j − d̃| = |C̃(rj − ε)− d̃| = |C̃rj − (d̃+ C̃ε)| which can be
plugged into an NNLS algorithm. Using r̃j for reconstruction
yields positive results, discussed in the next section.

V. RESULTS

We simulated a 3D PET system that images a 400mm x
400mm x 164mm volume. The simulated imaging system
has 143 rays per view spaced 4mm apart, 80 evenly spaced
view angles rotated along Φ, and 5 cross plane angles for
Θ. The reconstructed images consist of 100x100x41 4mm
pixels. We choose a target spatial resolution with a 2 pixel
FWHM, or equivalently 4 mm. The following images show
cross sections of 3d Point Spread Functions (PSF) at different
locations, showing the xy slice, xz slice, and yz slice from
top to bottom. From left to right, are the PSFs at (25,25,0),
(15,15,0), (15,15,15), and (25,0,0). PSFs from conventional
regularization are shown in figure 1. PSFs from our proposed
regularization scheme are shown in figure 2. Looking at these
images, one may observe a great deal of anisotropy in the
PSFs created from conventional regularization. The xy slices
are stretched out in different directions depending on where
the pixel lies with respect to the center of the image. The xz
and yz slices all seem flatter and smaller when compared to
xy slices. Looking at the PSFs generated using our proposed
regularization scheme, each slice looks more isotropic, and
each slice looks to be about the same size. The flatness of xz
and yz slices has been removed, and the xy slices are no longer
stretched. The pixel at (25,25,0) has not been completely
corrected though, it’s xy slice appears to be boxy with tails,
instead of looking round, and the xz and yz slices are not
completely isotropic. This shows the limitations of this method
in approximating wj(Φ).

In the next few figures, we take xy, xz, and yz slices of the
PSFs, and then measure the FWHM cutting through the center
of the PSF at different angles to get a sense of isotropy. The

Fig. 1. xy, xz, and yz (top to bottom) slices of PSFs created using
conventional regularization at (25,25,0), (15,15,0), (15,15,15), and (25,0,0)
(left to right).

Fig. 2. xy, xz, and yz (top to bottom) slices of PSFs created using our
proposed regularization at (25,25,0), (15,15,0), (15,15,15), and (25,0,0) (left
to right).

uniformity of these plots are a rough measure of the isotropy
of these impulse functions. Figure 3 and 4 shows plots of the
FWHM for PSFs at (25,25,0) and (15,15,15).

Tables I displays maximum and minimum FWHMs for PSFs
at (25,25,0) and (15,15,15) allowing for a more quantitative
assessment of isotropy. Even for (25,25,0) which exhibits less
improvement than (15,15,15), there is less variation in FWHM
for PSFs generated using our proposed regularization scheme
than PSFs generated using conventional regularization.

We simulated a noiseless sinogram using our true image
which consists of 2 spherical shells of uniform intensity inside
a cylinder. For the following figures we will be showing xy
slice 21 of the volume, followed by xz slice 41, and then
yz slices 41. We reconstructed volumes using two methods.
Volumes reconstructed using conventional regularization are
shown in figure 7 and 8 . Volumes reconstructed using our
proposed regularization design are shown in figures 5 and
6. Volumes reconstructed using our proposed regularization
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Fig. 3. FWHM plots for PSF at (25,25,0). Proposed regularization marked
with circles, conventional marked with pluses. xy, xz, yz slices from top to
bottom
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Fig. 4. FWHM plots for PSF at (15,15,15). Proposed regularization on the
left, Conventional on the right. xy, xz, yz slices from top to bottom

design show greater uniformity than those reconstructed using
conventional regularization. However, due to errors in approx-
imating wj(Φ) which results in anisotropic impulse responses
with tails as shown for pixel(25,25,0) in figure 2, there are
streak like artifacts in the xy slice.

We selected the sphere centered at (26,0,0) and cut an xy, xz,
and yz profile through it for volumes reconstructed using our
proposed and the conventional regularization scheme. These
are shown in figures 9, 10, and 11. These figures show a
significant decrease in the variation of intensity around the
uniform ring for volumes reconstructed using our proposed
regularization scheme.

VI. CONCLUSION

This paper has summarized an extension of previous
Fourier-based regularization design [3] to the 3d cylindri-
cal case. Simulation results show that the method improves
isotropy and uniformity of spatial resolution properties com-
pared to conventional quadratic regularization schemes. Un-
fortunately simulation results also show existence of streak-
like artifacts at the edges of the image from our conventional
regularization scheme. In the future, we would like to develop
a sort of hybrid scheme between the proposed regularization
design and conventional regularization which would preserve

TABLE I

MAXIMUM AND MINIMUM FWHM VALUES FOR 2 PSFS

(25,25,0) Proposed Conventional

min max min max

xy 1.9387 2.9770 2.0035 3.1553

xz 2.0061 2.3060 1.4048 2.2946

yz 1.9387 2.3060 1.4048 2.0932

(15,15,15) Proposed Conventional

min max min max

xy 2.1954 2.5281 2.3689 3.1347

xz 2.0137 2.5069 1.6706 2.8698

yz 2.0141 2.5281 1.6706 2.8676

Fig. 5. Volume reconstructed with proposed regularization design. xy slice

Fig. 6. Volume reconstructed with proposed regularization design. xz slice
then yz slice
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Fig. 7. Volume reconstructed with conventional regularization design. xy
slice

Fig. 8. Volume reconstructed with conventional regularization design. xz
slice then yz slice
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Fig. 9. xy profile of sphere. Circles represent our proposed scheme, pluses
represent the conventional scheme.
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Fig. 10. xz profile of sphere. Circles represent our proposed scheme, pluses
represent the conventional scheme.
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Fig. 11. yz profile of sphere. Circles represent our proposed scheme, pluses
represent the conventional scheme.

uniform and isotropic spatial resolution and eliminate the
streak-like artifacts. We would also like to analyze the con-
vergence properties of PL algorithms using these penalties, as
well as work on ways of speeding up the computation of rj

l .
Future work also includes generalization to spatially variant
blur, 3D extensions to cone beam CT, and application to real
PET data.
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