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Regularization for Uniform Spatial Resolution
Properties in Penalized-Likelihood Image

Reconstruction
J. Webster Stayman*, Student Member, IEEE,and Jeffrey A. Fessler, Member, IEEE

Abstract—Traditional space-invariant regularization methods
in tomographic image reconstruction using penalized-likelihood
estimators produce images withnonuniform spatial resolution
properties. The local point spread functions that quantify the
smoothing properties of such estimators are space-variant, asym-
metric, and object-dependent even for space-invariant imaging
systems. We propose a new quadratic regularization scheme
for tomographic imaging systems that yields increased spatial
uniformity and is motivated by the least-squares fitting of a
parameterized local impulse response to a desired global response.
We have developed computationally efficient methods for PET
systems with shift-invariant geometric responses. We demonstrate
the increased spatial uniformity of this new method versus
conventional quadratic regularization schemes in simulated PET
thorax scans.

Index Terms—Gauss–Markov prior, PET, tomography.

I. INTRODUCTION

STATISTICAL image reconstruction methods provide im-
proved noise and resolution properties over conventional

nonstatistical methods such as filtered backprojection (FBP).
However, methods based purely on the maximum-likelihood
estimate produce overly noisy images. This noise may be re-
duced by stopping the iterative procedure used to find the max-
imum-likelihood estimate before convergence [1], by iterating
until convergence followed by post-smoothing [2], or by in-
cluding a roughness penalty term in the objective function [3].
It is difficult to control resolution properties with stopping cri-
teria. Post-smoothing methods allow for better resolution con-
trol but require iteration until convergence. Since unregularized
algorithms converge slowly, penalized-likelihood methods are
desirable.

However, there are disadvantages with penalized-likeli-
hood methods that use conventional regularization schemes.
Space-invariant penalties lead to object-dependent nonuniform
resolution properties [4], [5]. For emission tomography, such
estimators tend to smooth the image more in high-count regions
than in low-count regions. The local point spread functions
[4], [6] that quantify this space-variant smoothing can also be
highly asymmetric, indicating anisotropic smoothing. These
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asymmetric point spread functions mean that objects within an
image are distorted nonuniformly. For example, circular objects
will appear elliptical due to anisotropic blurring (see Fig. 15).

These distortions have been noted by clinical colleagues
in positron emission tomography (PET) scans. Lymph nodes
are often found near the edge of an anatomical slice where
the point spread functions are particularly asymmetric. Lymph
nodes, which appeared essentially radially symmetric in FBP
reconstructions (due to the isotropic smoothing of FBP), ap-
peared elliptical in penalized-likelihood image reconstructions
using traditional regularization methods.

Since conventional regularization produces images with
nonuniform resolution properties, one also cannot select the
regularization parameter intuitively. With FBP the noise-res-
olution tradeoff is controlled through the cutoff frequency

of the filter. There is a direct relationship betweenand
the global full-width half-maximum (FWHM) resolution of
the reconstructed image. Such a direct relation does not exist
with penalized-likelihood reconstructions with conventional
regularizations.

One attempt to analyze and reduce the resolution nonuni-
formity was presented in [4]. The shift-variant regularization
method proposed in [4], which is based on the aggregate cer-
tainty of measurement rays intersecting each pixel, provides
increased spatial uniformity over conventional space-invariant
regularization. However, the local point spread functions are
still highly asymmetric.

In this paper we present a parameterization of the quadratic
roughness penalty function, which in turn parameterizes the
local impulse response functions. We then propose a novel
method for determining the penalty function coefficients
motivated by a least-squares fitting of the parameterized local
impulse response to a desired shift-invariant response (Sec-
tion III). We describe a computationally efficient noniterative
method for computing the coefficients for an idealized PET
system (Section VI). This new method provides increased spa-
tial uniformity compared to the certainty-based method of [4]
and to conventional regularization techniques. We demonstrate
this increased uniformity through an investigation of the local
point spread functions (Section V). In addition, we perform a
noise investigation on simulated data as well as a qualitative
investigation using digital thorax phantom data (Section VI).

Since the proposed quadratic regularization method provides
nearly global resolution uniformity, one can use the direct re-
lationship between the regularization parameter and the global
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FWHM resolution to specify a desired resolution for reconstruc-
tion. Therefore, the proposed regularization possesses the intu-
ition of FBP with respect to resolution and performs better than
FBP in terms of variance.

Whether uniform spatial resolution is essential is an open
question. Uniform resolution properties may, in fact, be un-
desirable for certain tasks. One could use statistical criteria
to choose the regularization parameter [7] and accept the
anisotropic smoothing properties of the estimator. Alterna-
tively, one may desire specific nonuniform resolution properties
through modification of the penalty (e.g., incorporation of
anatomical side and boundary information [8], [9]). Qi and
Leahy have investigated a shift-variant regularization method
that optimizes the local contrast to noise ratio in an attempt to
improve lesion detectability [10], [11].

However, for high-resolution PET images, the geometric dis-
tortions due to conventional regularizations may be undesir-
able for tasks requiring shape preservation. Therefore, resolu-
tion uniformity would be important. For cross-patient studies or
single-patient studies taken over a period of time, one would
presumably desire the same resolution properties across im-
ages for comparison. Similarly, for full-body PET scans with
multiple table positions and cross-modality image registration,
these space-variant resolution properties and geometric distor-
tions can contribute to registration errors. As mentioned above,
in some cases one may desire nonuniform resolution proper-
ties. The methods described in this paper can also be applied
to user-specified nonuniform resolution criteria (e.g., regions of
isotropic smoothing with sharp boundaries) using space-varying
regularization methods as in [12] and [13].

In this paper we focus on the resolution properties of penal-
ized-likelihood estimators that are iterated until convergence.
Other studies have investigated resolution properties of unreg-
ularized maximum-likelihood expectation-maximization algo-
rithms as a function of iteration [6], [14].

Real imaging systems usually have intrinsically nonuniform
resolution properties. Single-photon-emission computed to-
mography (SPECT) systems have depth-dependent resolution
[15], and PET systems often have resolution nonuniformity due
to crystal penetration effects [16]. While the analysis presented
here applies generally, the resulting design can be computa-
tionally expensive. We have developed a computationally fast
practical method for an idealized PET imaging system with a
shift-invariant geometric response, but including ray-dependent
attenuation and detector effects. The central region in the field
of view of many PET systems tends to be nearly shift-invariant
and can be accurately modeled in this way.

II. BACKGROUND

We focus on emission tomography, although the method
applies generally. Let represent the non-
negative emission rates for an object discretized intopixels,
where denotes the Hermitian transpose. Detectors surrounding
the object count photons (SPECT) or photon pairs (PET) that
are emitted from the object. Measurements are denoted by the

random vector . These measurements are
Poisson with means given by

where the ’s represent nonnegative constants that charac-
terize the tomographic system, and the’s are nonnegative
constants that specify the contribution due to background
events (background radiation, random coincidences, scatter,
etc.). Given measurements, we would like to reconstruct,
assuming the ’s and ’s are known.

We will focus on penalized-likelihood estimators (PLE’s) of
the form

where
set of feasible images;
log-likelihood;
roughness penalty.

For the Poisson model, the log-likelihood is

We focus on pairwise roughness penalties of the following form

(1)

where is a symmetric convex function.
In the case of a quadratic penalty, and

the roughness penalty may be written in matrix form:
, where the matrix has elements

defined by

(2)

For a space-invariant penalty using a first-order neighborhood,
the conventional choice is for the horizontal and ver-
tical neighbors, and zero otherwise. The regularization param-
eter controls the noise-resolution tradeoff. Largevalues in-
duce smoother reconstructions, hence lower noise. For a second-
order penalty, one often includes for the diagonal
neighbors in addition to the first-order neighbors.

The mean of an estimator is given by

where is the Poisson measurement distribution. The local im-
pulse response [4] at theth pixel is defined as

where represents theth unit vector.1 The local impulse re-
sponse depends on the estimator, the object , and the pixel

1Throughout the paper, the superscriptj represents an index, not an exponent.
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position . From [4], for PLE’s with quadratic penalties,2 the
local impulse response may be well approximated by

(3)

where is a matrix of the elements, for emis-
sion tomography,3 is a diagonal matrix with

elements , and is the sym-
metric component of . When is unknown, one can es-
timate the local impulse responseby using a simple plug-in
technique where the observed measurementsreplace .
Since is sandwiched between the projection and back-
projection operators, there is an implicit smoothing and even
noisy tend to produce relatively accurate estimates of .

The approximation (3) for the local impulse response is the
tool we use below for the design and evaluation of different
quadratic regularization methods.

III. PENALTY DESIGN METHODS

Our goal is to find a penalty function that yields recon-
structed images with some arbitrary desired space-invariant re-
sponse. For example, we may desire penalty functions that pro-
duce a global impulse response with a Gaussian shape and some
specified FWHM resolution. If we restrict ourselves to quadratic
penalty functions, we can formulate such problems in terms of
the design of the penalty matrix. Equivalently, we may de-
sign , since only the symmetric component ofaffects
the objective function for quadratic penalties. We restrictto
be nonnegative definite to maintain the concavity of the penal-
ized-likelihood objective function.

Therefore, we would like to find a nonnegative definite
according to an optimization criterion such as the following:4

(4)

where is some measure of disparity between the local
impulse response, and a desired space-invariant response,5

. Solving (4) by plugging in (3) appears to be computationally
intractable.

Practical penalties use only a small neighborhood of pixels
for the penalty support (e.g., first- and second-order neighbor-
hoods). Therefore we reformulate the penalty design problem in

2In [4], an approximation for the local impulse response was derived for sym-
metricRRR. For an asymmetricRRR, the scalar� RRR� = (� RRR�) = � RRR �. There-
fore, R(�) = (1=2)[(1=2)� RRR� + (1=2)� RRR �] = (1=2)� [(1=2)(RRR +
RRR )]� = (1=2)� RRR �. If an asymmetricRRR matrix were used, only the sym-
metric component ofRRR would influence the objective function.

3The formulation given in (3) also holds for transmission tomography with
DDD = D[Y (�) � r ) =Y (�)].

4The notationRRR � 0 indicates that this minimization is over nonnegative
definiteRRR.

5One might choose a space-variantl for user-specified nonuniform resolu-
tion properties. A space-invariantl is required only for the practical imple-
mentation discussed in Section IV. For a desired space-invariant responsel is
a function of the pixel positionj only in that the desired response must be cen-
tered at pixelj. That is, since the local impulse response at pixelj is centered at
pixel j, we must shift the desired response to that location for comparison using
d(�; �).

terms of these small support neighborhoods by parameterizing
the penalty matrix.

A. Penalty Matrix Parameterization

For a shift-invariant quadratic penalty, one can treat the
penalty matrix as a space-invariant filtering operator. There-
fore multiplying by the image is equivalent to convolving
the image with a kernel,6

For example, the conventional first-order penalty described
below (2) has the following kernel

(5)

The design of a space-invariantis like a filter design problem
with constraints on the kernel . Since should yield a
zero penalty for uniform regions, the filter represented by
should have zero DC gain. (The kernel elements must sum to
zero.) Since only the symmetric portion of influences the
penalized-likelihood objective function and the local impulse
response in (3), we need only to consider symmetric kernels7

for representing the action of a space-invariant .
Last, we choose to require that be nonnegative definite
to guarantee concavity of the penalized-likelihood objective
function. Therefore, for the space-invariant penalty, we restrict
kernels to those whose Fourier transform is nonnegative, so
that the eigenvalues of are nonnegative.

To achieve these goals, we parameterize the kernelin
terms of a small number of bases such as those having the fol-
lowing form

where represents a 2-D discrete impulse function, and
and represent spatial coordinates. A collection of such

functions for various pairs forms a basis for
valid kernels of space-invariant matrices. For example,
for a first-order neighborhood

is a basis for valid kernels of . For a second-order neigh-
borhood, forms a valid basis set,
where

6We use� since the left-hand side (LHS) is a vector, but the right-hand side
(RHS) is a 2-D image. The two sides are equivalent in that the vector is a lexi-
cographic reordering of the 2-D image.

7Consider a horizontal penalty and two neighboring pixels; one on the left
and one on the right. For a symmetricRRR , the penalty applied on the right
pixel from the left pixel is the same as the penalty applied on the left from the
right. Therefore, the left and right sides of the kernel must be the same for the
same penalty to be applied in both directions.
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In general, any valid kernel for a space-invariant penalty matrix
may be specified by a linear combination of such basis

functions:

(6)

where represent the basis coefficients. Letrepresent the
vector of all for a given neighborhood of support. Define
to be the number of pairs (the number of basis functions)
and define the matrix with column vectors of lexico-
graphically ordered basis functions, .

For uniform resolution properties, werequirea space-variant
regularization matrix . Therefore, we extend the kernel repre-
sentation (6) and let be parameterized by aspace-variantset
of coefficients , where represents theth pixel.

Let denote the spatial coordinates of theth pixel
and define to be a matrix of shifted basis functions,
with each column having elements defined by the lexicograph-
ically ordered bases, . In the case of a
space-invariant matrix, . (With the choice of sym-
metric bases described previously, .) To parameterize
space-variant , we define the th column of by

(7)

In this case, no longer equals in general. However, we
may form by , as stated previously in foot-
note 2. The parameterization (7) allows for the specification of
valid shift-variant by the set of coefficients . To
guarantee the nonnegative definiteness of it is sufficient
to restrict to be nonnegative. A nonnegative definitemeans
that the penalty is always nonnegative. If we re-
strict to be nonnegative, the local penalty at any pixel will be
nonnegative due to our selection of bases. Therefore, the penalty
on the entire image will be nonnegative as well.

Using the parameterization described in (7), the problem
of determining the matrix in (4) is simplified to
the problem of determining the coefficients .
The penalty design problem thus reduces to the following
optimization problem

(8)

Although this minimization requires less computation than (4),
it still appears to be impractical since allof the vectors
would need to be found simultaneously.

B. Circulant Simplifications

When the operator is approximately shift-invariant, we
may approximate by , where is a 2-D discrete
Fourier matrix operator and is a diagonal matrix representing
a frequency domain filtering operator.8 However, even if

8For an ideal tomographic system, the diagonal elements of
 are approxi-
mately the well-known1=� frequency response of the back-projected projection
operator. WhenAAA AAA is nearly shift-invariant, we may compute the elements of

 by taking the 2-D discrete Fourier transform ofAAA AAAe , wherej is a fixed
pixel in the image (usually the center pixel, in practice). Whenj is not the
center pixel we must include appropriate complex exponentials to account for
the shifting property of Fourier transforms.

is a shift-invariant operator, will be shift-variant because
of the nonuniform diagonal weighting. Although is not
globally shift-invariant, it is approximatelylocally shift-in-
variant and we make the following approximation [17] to (3)

(9)

where the division is an element-by-element division,
, and . (

represents the discrete 2-D Fourier transform operator.)
Since local impulse response functions usually vary smoothly

with position, we expect that the coefficients of our penalty
design will also be smoothly varying. This is also implied by
the above locally shift-invariant approximation. For this reason
we use the approximation . To illustrate this
approximation, consider a simple 1-dimensional example with
a single basis. For a single basis function there is
a single coefficient for each position . In terms of (2), this
means and . If is smoothly
varying (i.e., ), then and is nearly
symmetric. Substituting into (9) yields

(10)

Combining (8) and (10) yields a separable minimization
problem, i.e., depends only on and not for .
Therefore we may determine eachseparately by

(11)

If , then (11) is a set of constrained
nonlinear least-squares (CNLLS) problems, since the depen-
dence on is in the denominator of (10). We have implemented
this method using a BFGS quasi-Newton method, but it is still
computationally expensive. Thus, we further simplify this non-
linear optimization problem into a linear least-squares problem.
Working in the frequency domain simplifies the design problem,
as described next.

C. Linearized Penalty Design

Define to be the local frequency re-

sponse and let be the desired frequency response.
To solve (11), we want to choose so that , i.e.,
from (10)

(12)

Rearranging (12) by cross multiplying and simplifying yields

(13)
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where represents element-by-element multiplication. We can
now design the penalty coefficients as a weighted least-squares
solution to (13). Specifically, we choose such that

(14)

with

(15)

(16)

(For matrices, operates on each column.) The matrix
is a (possibly shift-variant) least-squares weighting,9 where

is a symmetric positive definite matrix.
After one chooses a desired frequency response, or equiv-

alently a desired impulse response, one can use the NNLS
(nonnegative least-squares) algorithm in [18] to perform the
minimization (14) for each pixel position to obtain the coef-
ficients . This provides nearly uniform resolution prop-
erties matching a specified response.

One possible practical inconvenience of the proposed method
(14) is that must be recalculated for every desired response.
We describe a method in the Appendix that yields a convenient
class of penalty matrices that span a range of spatial resolu-
tions for a specific class of desired impulse responses.

IV. PRACTICAL IMPLEMENTATION

While the penalty design method (14) gives a simple form
for the calculation of , in the form described above it still re-
quires more computation than we would like for routine use.
In this section, we outline a computationally efficient method
for closely approximating the parameterized penalty with coef-
ficients given by (14).

Consider each of the terms in (15) and (16). Determination
of requires a single calculation of the 2-D-FFT (fast
Fourier transform) of each of the 2-D basis functions.
(Different only shift the bases. One could incorporate these
shifts with relatively little computational overhead by multi-
plying by appropriate complex exponentials.) For a
shift-invariant , the remaining portion of (15) may also be
computed once with simple matrix multiplications. Therefore,
we can precompute , and determine from by
complex phase shifts. (This step is eliminated below.) For,
the matrix multiplications including and may be
precalculated as well. However, for a direct implementation of
(14), one would have to compute the 2-D-FFT of for
every pixel , which would be computationally expensive.

Therefore, the key to a practical implementation of (14) is
the efficient calculation of for . In
general this term would need to be calculated explicitly, which
would be quite time consuming because of the size ofand
the number of pixels. However, consider a system matrix that

9An equivalent weighted least-squares problem may be stated using a
weighted normkxk = kVVV xk in (14) and eliminatingVVV from (15) and
(16).

has the factorable form , where is an approx-
imately shift-invariant operator and represents the geometric
system response. The diagonal matrix contains known
ray-dependent effects such as detector efficiency and attenua-
tion factors, where is a multiplicative factor for theth mea-
surement, . In this case, we may write

(17)

where for emission tomography . Such
a system model is appropriate for modeling an idealized PET
system, where the geometric response is shift-invariant. This is
a relatively good approximation for real PET systems near the
center of the field of view.

One can show that in an idealized continuous system, if the
continuous equivalent of is a radially constant10 sinogram
scaling operator, then the continuous equivalent of can
be expressed as a position-independent blurring operation [19].
This property should be approximately true in the discrete case.
If were radially constant, we would only need one computa-
tion of .

In practice, the elements of are not globally radially con-
stant. However, since the projection of a single pixel forms a
relatively narrow trace in sinogram space (only a few radial bins
in width), we can approximate locally by a position-depen-
dent radially constant matrix . This property is illustrated in
Fig. 1.

Consider a single pixel in the image represented by the unit
vector . The operation of on forms a relatively narrow si-
nusoidal trace in sinogram space. Such a projection is shown in
Fig. 1(a). The backprojection of this sinusoidal trace produces
the familiar response centered at the given pixel. This image
and an enlarged region about the pixel of interest are shown in
Figs. 1(b) and (c). Recall from (17) that the effective sinogram
weighting is . In reconstructions where is unknown,

we choose , where . The
terms are estimates of the detector efficiencies and attenuation
correction factors made from a normalization scan and trans-
mission scan, and are the measurements. The is
included to avoid inordinate ray weighting for low count, by
choosing .

The vector represents a lexicographically
reordered 2-D array of scaling values that is angles by
radial bins in size, where . A typical is presented
in Fig. 1(d). Fig. 1(e) shows the weighted sinogram for
the single pixel’s projection using this particular weighting.

Instead of using , we would like to approximate the
weighting with a local radially constant version. The asso-
ciated diagonal weighting matrix is . To choose

, consider the following. Let , where .
Decompose the system matrixby rows into separate subma-
trices for each projection angle so that
with . Similarly, decompose the weighting vector
into with .

10A “radially constant”WWW scales all of a sinogram’s radial elements for a
particular projection angle by the same scalar value. Such aWWW would have the
block scaled-identity formWWW = D[w III; w III; . . . ; w III], wheren is
the number of angles.
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Fig. 1. Approximation ofGGG WWWGGGwith local radially constant weightings (see text). (a) shows the unweighted projection of a single pixel in the sinogram domain.
(b) and (c) show the backprojection of this unweighted sinogram where (c) is an enlarged portion of (b). Variablesn andm index image coordinates, and variables
� andr index the sinogram measurements. (d)–(g) show the weighted projection (e) and backprojection (f) and (g) for a typical weighting (d). (h)–(k) show the
weighted projection-backprojection using an approximate radially constant weighting (h). (l)–(o) show the weighted projection-backprojectionfor a fixed central
pixel j . Note that (g), (k), and (o) are nearly identical. (d), (e), (h), (i), (l), and m) have a logarithmic color scale.

Due to the response in tomography, is concentrated
about its diagonal. Therefore,

(18)

where the th element of is

(19)

This is the unique choice of that makes with
equality along diagonals for each of the terms in the
summations in (18) (i.e., the diagonal elements of
and are identical for each ).
The approximation would be exact if the’s were all equal.
However, since the local impulse response at pixelrelies
predominantly on the ’s that intersect pixel , and will
be nearly equal. This approximation is reasonable even for very
nonuniform since tend to vary slowly as a function of

because of the implicit smoothing in (19). Similarly, since
concentrates around (cf. [4]),

We choose to form a radially con-
stant, position-dependent weighting, where is a column
vector of ones of length .

Fig. 1(h) shows the radially constant weightingusing this
technique on the weights in Fig. 1(d) for pixel. When applied
to the projection of , the result is very close to the weighting
using . The close agreement between theand weight-
ings can be seen by comparing weighted sinograms in Fig. 1(e)
and (i). Similarly, the agreement is very close for the backpro-
jected weighted sinograms, and , shown in
Fig. 1(f) and (j), respectively. Zoomed versions of the backpro-
jected weighted sinogram for regular and local radially constant
weightings are shown in Fig. 1(g) and (k). Note the close agree-
ment in the image domain as well as the sinogram domain.

Since is an approximately shift-invariant operator for
radially constant , approximately equals a shifted

for an arbitrary fixed pixel (e.g., the center pixel
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in the image). Plots of for equal to the center
pixel are shown in Fig. 1(n) and (o). Note the close agreement
between and . Therefore, we need only to
calculate once, rather than for every.

In terms of in (14), under the radially constant approx-
imation and a shift-invariant weighting , we need only
and may replace (14) with

(20)

where is a “centered” version of . This step eliminates the
need for complex phase shifts. Nevertheless, direct implemen-
tation of (20) would still require 2-D-FFT’s.

To simplify further, define . The
vector contains all of the distinct angular weighting values
in the radially constant . Since is linear in the elements
of , we may write , where is a
matrix. We find by superposition as follows.

Define to be the weighting matrix with radially constant
values having unit values at angle, and zero otherwise. (i.e.,

, where the vector ap-
pears in the th block and and are column vectors of length

.) For each angle define

(21)
Then by superposition .

For the unconstrained case, (20) has the closed form linear
solution . Let

be the combined matrix operator. Therefore we may
determine unconstrained solution of (20) by .

However, for the matrix to be nonnegative definite, we need
to solve the constrained optimization problem (20). It is straight-
forward to modify the NNLS algorithm of [18] using and

to provide the constrained solution.
For simplicity in our implementation, we have used the sub-

optimal greedy approach presented in Table I, which yields non-
negative and nearly the same results as NNLS but with a
slight computational speedup and simpler implementation. This
procedure takes one step for each negative element inand
will complete in at most steps. For small , one could pre-
compute the possible reduced matrices for further
speedup.

As described in the beginning of this section, direct imple-
mentation of the design given by (14)–(16) requiresbackpro-
jections, 2-D FFT’s, and applications of the NNLS
algorithm. Using the simplifications described in this section,
we perform the one-time precomputation of and for a
given system geometry using backprojections and
2-D FFT’s. The coefficients may be determined with cal-
culations of (19), which is on the order of one backprojection,
and applications of the algorithm in Table I (or the NNLS al-
gorithm).

TABLE I
ROUTINE USED TOCONSTRAIN KERNEL COEFFICIENTSr̂

Computing (19) requires floating point operations
(flops), where and is the fraction of nonzero
elements of (or ). Assuming the are precomputed,
the algorithm in Table I requires at most flops per pixel.
Therefore, calculation of all coefficients using the method
summarized in Table I requires at most
flops. Since the precalculation of using (21) requires approx-
imately flops and flops for

, the entire precalculation is .
This precalculation need only be performed once for a specific
system geometry and choice of.

In contrast, computation of the design given by (14)–(16) is
dominated by the calculation of in (16). This term requires

flops for a single pixel location .
Therefore, even without calculating (14) and (15) we require at
least flops to evaluate for all . Clearly,
much of the computational advantage of the proposed method
is due to the order reduction of to .

For 2-D reconstructions performed in the following section,
30 iterations of the SAGE algorithm [20] on a 266 MHz Pentium
II processor took 18.5 s for the conventional space-invariant
first-order penalty given by the kernel in (5), and 20.1 s for the
proposed penalty with precomputed and . The precalcu-
lation of and took 23.1 s.11 Thus, the method is very
practical. (We performed the reconstructions using the ASPIRE
iterative reconstruction libraries[21].)

V. SIMULATION RESULTS

A. Resolution Uniformity

This section provides simulation results comparing the rela-
tive resolution uniformity of different regularization schemes.
Fig. 2 shows the emission image (with 3-mm square
pixels) used for the investigation as in [4]. The image has a warm
background ellipse, a cold left disk, and hot right disk with rel-
ative emission intensities of 2, 1, and 3, and attenuation coeffi-
cients of 0.0096, 0.003, and 0.013/mm, respectively. The PET
system model included projection data with 128 radial bins and
110 angles uniformly spread over 180with 6-mm-wide strip
integrals (3-mm center-to-center spacing), and detector efficien-
cies with a pseudorandom log-normal variance with to
model detector efficiency effects.

11The constrained nonlinear least-squares penalty given in (11) took about 2
h.
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Fig. 2. Digital phantom used for investigation of resolution properties of
different regularizations, with four pixels of interest marked.

Fig. 3. Local PSF’s for space-invariant penalty.

Fig. 4. Local PSF’s for certainty-based penalty.

To compare the relative spatial uniformity of these regulariza-
tion methods we used (3) to calculate local point spread func-
tions (PSF’s). We approximated the solution of (3) using 100
iterations of a coordinate ascent algorithm initialized with a
Fourier approximation of the target response given in (23). Since
the responses are space-variant, we investigated four different
locations in the object, represented by the white “” marks in
Fig. 2. We systematically examined numerous additional spatial
locations which yielded similar conclusions (i.e., these are rep-
resentative results).

Results of this impulse response survey are presented in
Figs. 3–8. For each penalty, PSF contours at 25%, 50%,
75%, and 99% of peak value are shown. These contours were
generating using the command in Matlab 5.3. The
pixel boundaries are represented by the dotted grid in each
plot. Above each set of contours are estimates of the mean ()
and standard deviation () of the FWHM resolution in pixels,
which quantify the mean resolution and radial variation at that
location.

All reconstruction methods and penalties were designed with
a target resolution of 4.0 pixels (1.2 cm) FWHM resolution.
(The relationship between global FWHM resolution and, and
how to calculate is discussed in [5].) For the estimation of
(3) for penalized-likelihood methods, wherein (17) must be
computed, we used the noiseless measurementswith a mean
of 1 million counts and we chose with

.

Fig. 5. Local PSF’s for CNLLS penalty.

Fig. 6. Local PSF’s for proposed penalty.

Fig. 7. Local PSF’s for FBP.

Fig. 8. Local PSF’s for penalized unweighted least squares.

PSF’s for penalized-likelihood with the conventional space-
invariant penalty are shown in Fig. 3. This penalty has the first-
order kernel given in (5). These local PSF’s are highly asym-
metric and space-variant, blurring more in high-count regions
(85, 33) than in low-count regions. The certainty-based penalty
of [4] shown in Fig. 4 provides some improvement by making
the mean FWHM close to 4.0 pixels. However, the responses
are still quite asymmetric.

PSF’s for the constrained nonlinear least-squares (CNLLS)
penalty given by (11) are shown in Fig. 5. For this design, four
basis functions and second-order neighborhood were used. We
used a target responseequal to the response of a penalized
unweighted least-squares (PULS) estimator with a conventional
first-order penalty [see (23)]. The contours for these PSF’s are
nearly radially symmetric and near the 4.0 pixel FWHM target
resolution. The PSF’s of the proposed regularization method
(20) are presented in Fig. 6. We used the same basis set and
target response as the CNLLS penalty design. This penalty was
designed using the computational simplifications in Section IV
and the simplifications presented in the Appendix. The PSF con-
tours are also quite symmetric and the average FWHM resolu-
tion is within 5% of the target resolution of 4.0 pixels.

In addition to the penalized-likelihood methods, we present
results for filtered backprojection (FBP) and a PULS estimator
with a conventional first-order shift-invariant penalty. Both



STAYMAN AND FESSLER: UNIFORM SPATIAL RESOLUTION 609

TABLE II
SUMMARY OF MEAN ABSOLUTE RADIAL DEVIATION RESULTS

of these methods should produce shift-invariant and isotropic
smoothing properties since we are considering a tomographic
systems whose intrinsic response is shift-invariant. [The
impulse response for a PULS estimator is given by (23) in
the Appendix.] In a real PET (SPECT) system, FBP will have
nonuniform resolution due to the detector response. We chose
a constrained least-squares filter for FBP, which essentially
matches the smoothing properties of FBP and PULS (see [5]).

The local PSF’s for FBP are shown in Fig. 7, and for PULS
in Fig. 8. These responses are nearly perfectly symmetric. Re-
call, our proposed penalty is designed with a target PSF given
by the PULS response (23). Note the similarity between these
method’s responses as shown in Figs. 6 and 8.

As a quantitative assessment of the resolution uniformity, we
calculated the mean absolute radial deviation of the 50% contour
from the 2.0 pixel half-maximum target radius. Then we calcu-
lated the average value of this deviation over a set of sample
locations within the phantom. We performed these calculations
over four pixel sets: Set A consists of all pixels within the dig-
ital phantom object; Set B contains roughly 80% of the interior
pixels of the phantom excluding the outer edge pixels; Set C
contains all pixels in the cold disc; and Set D contains all pixels
in the hot disc. These results are summarized in Table II. All
values are in pixels. The certainty-based penalty and the con-
ventional penalty have the greatest deviation, while the CNLLS
penalty and the proposed penalty are more uniform. The im-
provement in uniformity with these penalties is more dramatic
for the interior pixels (Sets B, C, and D), indicating that these
penalties provide less uniform resolution at the edges of the
phantom. FBP and PULS have the lowest deviations with no
variation between sets.

The calculated coefficients for the CNLLS penalty and the
proposed method are presented in Fig. 9. The coefficient values
are presented as four images (since we used four basis func-
tions) for both methods, separated by dotted lines. Each image
pixel corresponds to the coefficient of a given basis function at
that pixel location. The scale is logarithmic, except for the value
zero, which is represented in white. The largest discrepancies
between the coefficients appear at the edge or outside the object
in the digital phantom. Additionally, we see that the nonnega-
tivity constraints are fairly active (as represented by the white
regions). Future designs may be able to obtain increased resolu-
tion uniformity by relaxing the nonnegativity constraints on.

Fig. 9. Comparison of calculated̂r values for the CNLLS penalty and the
proposed penalty. Note the logarithmic color scale. White regions indicate a
value of zero.

The CNLLS penalty and the proposed penalty yield similar
coefficients and produce similar local impulse responses.

Hence, we conclude that the computational simplifications pro-
posed in Section IV do not change the calculated values of
significantly and that such simplifications are appropriate for
providing a computationally efficient algorithm for calculating
our proposed penalty for uniform resolution properties.

B. Noise Properties

The results presented above describe the resolution properties
of the estimators. As in [4], we also investigated the noise prop-
erties. To form sample standard deviation images, we simulated
400 noisy measurement realizations for the digital phantom in
Fig. 2. The PET model included 10% random coincidences and
averaged 1 million counts per realization.

We reconstructed each of these 400 realizations using 30 iter-
ations of the SAGE algorithm [20] with the same regularization
methods used above in the resolution properties investigation.
For all of the statistical methods except the CNLLS penalty,
we use the measurementsfor calculation of . Because of
the extensive computation time associated with calculation of
the CNLLS penalty, the noiseless, were used, i.e., the same
penalty based on the noiseless measurements was used for all
realizations.

The results of this noise investigation are presented in Fig.
10. The sample standard deviation images are shown on the
LHS of the figure. Horizontal and vertical profiles of these im-
ages are shown in the remaining plots. The horizontal profile is
taken through the image center and the vertical profile is taken
through the center of the cold disk. These profiles are repre-
sented by dotted lines in the images. Pixel standard deviations
in these plots are expressed in terms of a percentage of the back-
ground ellipse intensity. If one included error bars on these plots,
the error bars would be smaller than the plot markers. There-
fore we have eliminated the error bars for clarity. For conven-
tional regularization, the standard deviation estimate is nearly
uniform. FBP and PULS generally have the highest standard
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Fig. 10. Sample standard deviation images and profiles. (a) Filtered backprojection (+). (b) Penalized unweighted least-squares PULS (r). (c) PLE with
conventional regularization (�). (d) PLE with certainty-based penalty (�). (e) PLE with proposed penalty (}). (f) PLE with CNLLS penalty ( ).

deviation and the certainty-based penalty have the lowest stan-
dard deviation. Not only do FBP and PULS share similar res-
olution properties, but also similar noise properties. The close
agreement in standard deviation between the proposed method
and the CNLLS penalty further justifies our computationally ef-
ficient design technique.

At first glance, it appears that uniform resolution properties
come at the price of a variance increase as compared with the
certainty-based penalty. However, the certainty-based penalty
and the proposed penalty havedifferent resolution properties.
The certainty-based reconstruction often has a greater max-
imum diameter of the local PSF’s (compare Figs. 4 and 6). This
causes increased smoothing, yielding a reconstruction with
lower variance.

We would like to produce a resolution-noise curve comparing
the relative performance of these two methods over a range of
target resolutions, but this is difficult because they have different
resolution properties. Using the angularly averaged FWHM as
a resolution metric (cf. [4]) unfairly handicaps estimators with
isotropic resolution properties. Estimators with anisotropic re-
sponses can reduce noise by smoothing “optimally” in each di-
rection while maintaining the same average FWHM as an es-
timator with isotropic responses. Rather than creating resolu-
tion-noise curves where each point on the curve corresponds
to a single resolution value and a single standard deviation, we
created banded “curves” as follows. For the ordinate, we used
the sample standard deviations of pixel values in images recon-
structed from 400 noisy sinogram realizations, for each of sev-
eral target spatial resolutions. For each target resolution we also
computed the local PSF and found the smallest and largest diam-
eters of its half-maximum contour. We specified the abscissae in

the banded plot as the interval between the minimum and max-
imum diameters. For each pixel location and target resolution,
these plots describe the (single) pixel standard deviation value as
well as therangeof spatial resolutions spanned by the local PSF.
A method with isotropic resolution properties would appear as
a single line in such plots, whereas a method with a highly
anisotropic response appears as a thick band. These tradeoff
curves were calculated for the four pixels positions shown in
Fig. 2.

Curves for the conventional and proposed penalties are shown
in Fig. 11. The lighter band with “” symbols on the border
represents the resolution/noise tradeoff curve for the proposed
regularization, while the darker band with “” symbols on the
border is the curve for reconstruction with conventional regular-
ization. (The light band partially obscures the dark band, how-
ever the borders are marked by symbols and lines so that the
degree of overlap is visible.)

We also produced a banded resolution/noise tradeoff plot
using the certainty-based regularization of [4]. Since the
certainty-based technique produced a curve nearly identical
to the conventional regularization, we have omitted the plot.
Similar behavior was observed in [4] using a mean FWHM
resolution criterion. Essentially this means each pixel simply
moves up or down its resolution/noise curve to the specified
resolution. This is another indication that the certainty-based
method does not yield isotropic resolution properties. While
the average FWHM resolution may be improved, the PSF’s are
still anisotropic yielding a wide resolution band in our banded
resolution/noise tradeoff curves.

In Fig. 11 the banded curves for the proposed penalty span a
small resolution range (i.e., the curve is thin horizontally), in-
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Fig. 11. Resolution/noise tradeoff for penalized-likelihood emission image
reconstruction with conventional (�/dark) and proposed penalties (+/light).

dicating isotropic smoothing properties relative to the conven-
tional penalty. If our design were ideal, minimum and maximum
FWHM resolution would be identical and we would have a line
instead of a band. Note that the proposed penalty band lies inside
the conventional penalty band. If the proposed penalty band laid
above the conventional penalty band over the same resolution
interval, then the proposed penalty would arguably have worse
noise properties. The proposed penalty band generally lies in the
center of the conventional penalty band. However, this is not the
case for the pixel (45, 33) in the cold disk. Note that the PSF for
the conventional penalty at this pixel is especially asymmetric
(see Fig. 3) having the largest difference between the min and
max FWHM resolutions. If this PSF yields an “optimal” kind
of smoothing (with its predominantly vertical orientation), it is
logical that an isotropic response would decrease the variance
little with additional horizontal smoothing (note that max reso-
lution for the conventional PSF is very close to the 4.0 target).
Using this rationale the proposed penalty bands for the other
pixel locations lie roughly in the middle of the conventional
penalty’s band since the PSF’s for these points are less asym-
metric (with the max resolution greater than 4.0 and min less
than 4.0 pixels). The isotropic response reduces the max res-
olution and increases the min resolution as compared with the
conventional PSF. The “optimal” smoothing of the conventional
PSF is arguably not so directionally dependent in this case and
an isotropic response can provide roughly the same variance.
While these two methods have different resolution properties, it
appears that our penalty design has not adversely affected the
noise properties of the estimator.

It is difficult to globally compare the proposed penalty with
the conventional and certainty-based methods for an entire
image reconstruction because they possess different resolution

Fig. 12. Histogram showing the distribution of the ratio of the pixel standard
deviation using filtered backprojection (� ) to the pixel standard deviation
using a PLE with the proposed regularization (� ).

properties for every pixel. On the other hand, FBP and the
proposed penalty both yield nearly the same PSF’s, so a
comparison seems more appropriate. Since these methods have
nearly the same resolution properties, we can fairly identify
which provides better global noise properties. Note, particularly
in the vertical profile in Fig. 10, that reconstructions based on
the proposed penalty have lower variance than FBP.

There are a few points in Fig. 10 where the standard deviation
estimate is slightly greater for the proposed penalty. To illustrate
the relative global noise properties of FBP and the PLE with the
proposed regularization, we generated a histogram of the rel-
ative variance. For each pixel in the object, we calculated the
ratio of the sample standard deviation at that pixel using filtered
backprojection ( ) to the sample standard deviation at that
pixel using the PLE with the proposed regularization (). For
pixels where is greater than one, filtered backpro-
jection has higher standard deviation. This histogram is shown
in Fig. 12. The vertical dashed line indicates the position where
this ratio equals one. For nearly every pixel the PLE with the
proposed regularization produces lower variance estimates and,
for those pixels that have higher variances the difference is only
slight. More than 50% of the pixels have over a 20% reduction
in reconstructed pixel standard deviation.

In addition to the variance investigation, we present a corre-
lation investigation. By specifying the desired resolution prop-
erties of PULS, do we also inherit the correlation properties? To
address this issue we have included a set of typical correlation
maps in Fig. 13 for FBP, PULS, and the PLE’s with conven-
tional, certainty-based, and proposed penalties. These maps rep-
resent the absolute value of the correlation between each pixel
and pixel (65, 49). FBP and PULS have nearly identical correla-
tion maps (particularly inside the object). The PLE’s with con-
ventional and certainty-based penalties have similar correlation
maps, but are noticeably different due to the different resolu-
tions. The proposed method is shown in Fig. 13(e). The struc-
ture of the correlation immediately surrounding (65, 49) is quite
similar to FBP and PULS, having lost the nearly isotropic effect
of the other PLE’s. This behavior is somewhat counterintuitive
since PLE’s usually have much narrower correlation sidelobes
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Fig. 13. Sample absolute correlation maps shown for pixel (65, 49). (a) Filtered backprojection (FBP). (b) Penalized unweighted least-squares (PULS). (c) PLE
with conventional regularization. (d) PLE with certainty-based penalty. (e) PLE with proposed penalty.

Fig. 14. Digital thorax phantom used for reconstruction of different
regularizations: (a) is the emission image and (b) is the transmission image.

than FBP and PULS. Perhaps such correlation properties are in-
extricably tied to resolution uniformity. Further investigation is
required.

VI. THORAX PHANTOM RESULTS

In the previous section, we investigated our proposed regu-
larization technique using quantitative measures of noise and
resolution. In this section, we demonstrate the qualitative im-
provement using our proposed regularization technique through
reconstruction of a noiseless thorax phantom. Both transmis-
sion and emission images for the digital phantom are shown in
Fig. 14. The phantom is 128 64 and has 0.42 cm square pixels.
Relative emission intensities for the lungs, spine, and heart are
0.4, 0.0, and 3.0, respectively, with the background soft tissue
having a relative intensity of 2. In addition, there are four round
tumors with a relative intensity of 4. These simulated tumors
are radially symmetric, neglecting discretization effects. In the
transmission image, the attenuation coefficient of the lungs is
0.001/mm, the spine is 0.016/mm, and the remaining soft tissue
is 0.0096/mm. The PET system model includes 160 radial bins
and 192 angles space uniformly over 180, with 3.375-mm strip
integrals and 3.375-mm center-to-center spacing.

We reconstructed the noiseless emission measurements using
FBP, PULS, and penalized weighted least-squares (PWLS) es-
timators with the conventional, certainty-based, and proposed
penalties. All statistical methods enforced nonnegativity of the
image and negatives in the image reconstructed via FBP were
set to zero. All methods used a target FWHM resolution of 3.0
pixels (1.25 cm). For PULS and PWLS with conventional reg-
ularization, the penalties were chosen so thatcorresponds
to the shift-invariant first-order penalty with kernel as in (5).

The proposed penalty uses the-independent design (26) with
second-order bases, and the same targetas PULS.

The reconstructions using these methods are presented in
Fig. 15. The FBP reconstruction in Fig. 15(a) has uniform
resolution properties. This is evident from the uniformly
smooth edges and radially symmetric tumors. Similarly, the
PULS reconstruction in Fig. 15(b) shows the expected nearly
identical results. (Recall the nearly identical PSF’s of FBP and
PULS in Section V.) The reconstruction using conventional
regularization is shown in Fig. 15(c). There are distortions
of the four round tumors (particularly in the lungs) in this
reconstruction. The tumors are stretched vertically and appear
elliptical. Another indication of resolution nonuniformity is
evident at the outer boundaries of the arms. These boundaries
are sharper than those in FBP and PULS. The reconstruc-
tion with certainty-based penalty in Fig. 15(d) shows some
improvement. Most notably, the outer edges of the arms are
smoothed in a more uniform fashion. However, the tumors are
still smoothed preferentially in the vertical direction. Fig. 15(d)
shows the reconstruction with our proposed penalty. The
resolution uniformity appears much improved over the other
PWLS methods. The tumors appear nearly radially symmetric
and the edges appear much more uniformly smoothed.

VII. D ISCUSSION

Conventional space-invariant regularization methods for
penalized-likelihood image reconstruction produce images
with space-variant resolution properties. Although the cer-
tainty-based method of [4] attempts to provide more uniform
resolution, as we have seen in our investigations, that method
does not provide truly isotropic resolution properties.

We have presented a new method for designing a shift-variant
penalty function that attempts to provide uniform resolution
properties. The proposed method is motivated by a least-squares
fitting of a parameterized local impulse response to a desired
response . We have developed fast methods to calculate this
penalty for an idealized PET system whose geometric response
is shift-invariant (while including ray-dependent attenuation
and detector effects). This method yields nearly space-invariant
and nearly symmetric local point spread functions at FWHM
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Fig. 15. Reconstruction of thorax phantom data using (a) filtered backprojection; (b) penalized unweighted least-squares; (c) PWLS with conventional
regularization; (d) PWLS with certainty-based penalty; and (e) PWLS with the proposed regularization scheme.

resolutions very close to specified target resolutions. Addition-
ally, we applied this novel regularization in the reconstruction
of simulated thorax phantom data and demonstrated increased
resolution uniformity.

Providing a regularization scheme that yields uniform reso-
lution properties makes the selection of the regularization pa-
rameter ( ) more intuitive. One may simply specify the desired
global resolution of the reconstructed image in. Additionally,
creating nearly the same resolution properties in both the sta-
tistical (PLE) and traditional (FBP) reconstruction techniques
provides a fair ground for comparing the noise properties of the
two methods. As expected, we observed that by using a likeli-
hood-based estimator and taking the noise model into account,
one can reduce estimator variance.

While one may arguably desire space-variant resolution prop-
erties, one would most likely want to be able to control regional
resolution properties, while maintaining radially symmetric re-
sponses. Our proposed methods can be modified to provide such
control, allowing for predictable and intuitive specification of
resolution properties in image reconstruction. Recall from (4),
one could choose to be a shift-variant set of desired local im-
pulse responses. Generally, such a choice of, will increase
computation time. (However, one could use the technique pre-
sented in the Appendix and simply specify a shift-variant set of

values.)
As demonstrated in Fig. 6, the proposed second-order

penalty still yields slight asymmetries in the point spread
functions. Similarly, in Fig. 15(e), there are slight resolution
nonuniformities evident in the reconstruction. In particular,
the edges of the phantom have subtle smoothing differences
between PWLS with the proposed penalty, and the FBP and
PULS reconstructions in Fig. 15(a) and (b) (especially near
the arms). The mean absolute deviation study summarized in
Table II also indicates increased nonuniformity at the edges
for the proposed design. There are many possible solutions
that merit future investigation. The nonnegativity constraint
on may be too strong a condition. (Recall this is a suffi-
cient condition for nonnegativity of .) This constraint could
be relaxed providing increase design freedom, yet still main-
taining a nonnegative definite and a concave objective.

One may also achieve slightly better resolution uniformity at
the expense of additional computation by using higher-order
neighborhoods. Additionally, choices of other than (24)
may require larger neighborhoods to obtain good fits to the
desired response.

With additional improvements, the question of noise perfor-
mance may arise. If the resolution properties are truly identical,
does penalized-likelihood still outperform FBP? The variance
improvements we have seen with our proposed method over
FBP are marginal in some regions. As resolution properties are
matched exactly will the advantages disappear? If so, does this
hold for shift-variant systems as well?

The correlation images for our proposed penalty appear very
similar to FBP and PULS. It appears that uniform resolution
may come at the cost of wider correlation sidelobes. Further in-
vestigation of the tradeoffs between resolution, noise, and cor-
relation is required for both space-invariant and space-variant
systems.

The design given in (14) has the advantage of being able
to provide more uniform resolution in systems even when the
inherent system response is shift-variant (e.g., SPECT). How-
ever, there is no computationally efficient method for computing
these roughness penalties yielding uniform resolution properties
for systems where is space-variant. Therefore, the ideas
used in the practical implementation presented here need to be
extended to shift-variant tomographic systems. Additionally, the
methods presented here are for 2-D reconstruction. We also plan
to investigate 3D penalties for resolution uniformity in volu-
metric reconstructions [22].

APPENDIX

SIMPLIFIED PENALTY DESIGN FOR ASPECIFICCLASS OF

DESIREDRESPONSES

In the design given by (14)–(16), for every desired response
one must recompute a new penalty matrix. For example,

one might want to perform reconstructions with a set of desired
responses with different FWHM resolutions. Each resolution re-
quires a separate calculation, much of which may be precom-
puted as in Section IV. For further simplification, in this Ap-
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pendix we present a specific class of desired impulse responses
that may be specified which require only a single penalty matrix
computation.

As mentioned below (2), for traditional space-invariant penal-
ties, the terms in (2) include the regularization parameter

, which controls the mean global resolution. For shift-invariant
penalties where is a simple multiplicative factor we may write

, where specifies the relative penalty strength be-
tween pixel pairs and controls the mean global resolution.
Therefore it is simple to generate newfor different desired
resolutions. (One does not have to recompute.)

Just as the conventional shift-invariant penalty is a simple
function of , we would like to design the penalty matrix
as a product of a user-selectedand a -independent , i.e.,

, yet still yields uniform resolution properties. In terms
of our parameterization of , we would like factorable coeffi-
cients such that . Making this substitution into (14)
yields

(22)

The penalty matrix is completely specified by .
However, the minimization in (22) depends on. We eliminate
this dependence by an particular choice of the target frequency
response and the weighting in (15) and (16).

Let us consider the idealized PET system where (17) is an
appropriate system matrix factorization. In this case, the local
impulse response of an unweighted least-squares estimator with
penalty matrix and with ’s are all unity, is

(23)

If is chosen to be a space-invariant penalty, the response
is approximately independent of the choice ofsince is
a nearly shift-invariant operator. That is, is nearly the same
(with appropriate shifts) for all . This particular choice of
has a form very similar to the local impulse response in (3) and
has resolution controlled by the parameter.

Using the simplifications discussed above (9), we express the
frequency response of (23) as

(24)

Similarly, we may write

(25)

For the particular choice (23) of, the denominators of (24)
and (25) are identical. Additionally, is in the numerator of (25)
and not in the numerator of (24). If we choose a least-squares
weighting of the denominators
of (24) and (25) disappear in (15) and (16), and we can rewrite
the penalty design as

(26)

The design (26) is independent of, as desired.

Once we have calculated the parameters using (26),
we construct the penalty matrix using (7) with .
Since only the symmetric component of affects the penalty,
we use , which requires less memory. This has been
designed to provide global isotropic resolution properties and,
because of the least-squares weighting leading to (26),
is independent of the choice of the regularization parameter.
Therefore, once is calculated one may specify a desired
global resolution through. The penalty matrix is given by the
simple relation . (A method relating to the
FWHM resolution is discussed in [5].)

The computational simplifications discussed in Section IV
can also be applied to (26).
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