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Abstract—Traditional space-invariant regularization methods asymmetric point spread functions mean that objects within an
in tomographic image reconstruction using penalized-likelihood jmage are distorted nonuniformly. For example, circular objects

estimators produce images withnonuniform spatial resolution ; o ; ; ; :
properties. The local point spread functions that quantify the will appear elliptical due to anisotropic blurring (see Fig. 15).

smoothing properties of such estimators are space-variant, asym- The;e distor_tio_ns have been noted by clinical colleagues
metric, and object-dependent even for space-invariant imaging in positron emission tomography (PET) scans. Lymph nodes

systems. We propose a new quadratic regularization scheme gre often found near the edge of an anatomical slice where
for tomographic imaging systems that yields increased spatial the point spread functions are particularly asymmetric. Lymph

uniformity and is motivated by the least-squares fitting of a : . . S
parameterized local impulse response to a desired global response.10d€s, which appeared essentially radially symmetric in FBP

We have developed computationally efficient methods for PET reconstructions (due to the isotropic smoothing of FBP), ap-
systems with shift-invariant geometric responses. We demonstrate peared elliptical in penalized-likelihood image reconstructions
the increased spatial uniformity of this new method versus sing traditional regularization methods.

conventional quadratic regularization schemes in simulated PET

thorax scans Since conventional regularization produces images with

nonuniform resolution properties, one also cannot select the
regularization parameter intuitively. With FBP the noise-res-
olution tradeoff is controlled through the cutoff frequency
I. INTRODUCTION f. of the filter. There is a direct relationship betwegnand

TATISTICAL image reconstruction methods provide imhe global full-width half-maximum (FWHM) resolution of
Sproved noise and resolution properties over conventiorfdf reconstructed image. Such a direct relation does not exist
nonstatistical methods such as filtered backprojection (FBP’%'.th pgnal_lzed—llkellhood reconstructions with conventional
However, methods based purely on the maximum-likelihodggularizations.
estimate produce overly noisy images. This noise may be reOne attempt to analyze and reduce the resolution nonuni-
duced by stopping the iterative procedure used to find the mdgrmity was presented in [4]. The shift-variant regularization
imum-likelihood estimate before convergence [1], by iteratingiethod proposed in [4], which is based on the aggregate cer-
until convergence followed by post-smoothing [2], or by intainty of measurement rays intersecting each pixel, provides
cluding a roughness penalty term in the objective function [3Jicreased spatial uniformity over conventional space-invariant
It is difficult to control resolution properties with stopping cri-regularization. However, the local point spread functions are
teria. Post-smoothing methods allow for better resolution costill highly asymmetric.
trol but require iteration until convergence. Since unregularizedin this paper we present a parameterization of the quadratic
algorithms converge slowly, penalized-likelihood methods argughness penalty function, which in turn parameterizes the
desirable. local impulse response functions. We then propose a novel

However, there are disadvantages with penalized-likelhethod for determining the penalty function coefficients
hood methods that use conventional regularization schemg®tivated by a least-squares fitting of the parameterized local
Space-invariant penalties lead to object-dependent nonunifogipulse response to a desired shift-invariant response (Sec-
resolution properties [4], [5]. For emission tomography, sugfbn |11). We describe a computationally efficient noniterative
estimators tend to smooth the image more in high-count regiqfgthod for computing the coefficients for an idealized PET
than in low-count regions. The local point spread functiongstem (Section VI). This new method provides increased spa-
[4], [6] that quantify this space-variant smoothing can also Ry uniformity compared to the certainty-based method of [4]
highly asymmetric, indicating anisotropic smoothing. Thesgq to conventional regularization techniques. We demonstrate

this increased uniformity through an investigation of the local
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FWHM resolution to specify a desired resolution for reconstrucandom vectoy’ = [Yi, ..., Yy]. These measurements are
tion. Therefore, the proposed regularization possesses the iftaisson with means given by
ition of FBP with respect to resolution and performs better than P
FBP in terms of variance. Y.(Q) = Z ai;Aj + rE i=1...,N
Whether uniform spatial resolution is essential is an open j=1

question. Uniform resolution properties may, in fact, bé Uhere theq, ;s represent nonnegative constants that charac-

desirable for certain ta.sks.. One could use statistical critefjg;,q the tomographic system, and t#f&'s are nonnegative

to choose the regularization parameter [7] and accept stants that specify the contribution due to background
anisotropic smoothing properties of the estimator. Altern@yents (hackground radiation, random coincidences, scatter,
tively, one may desire specific nonuniform resolution Propertiegc ). Given measuremerits we would like to reconstrugl,
through modification of the penalty (e.g., incorporation Oéssuming the,;’s andr£’s are known.

anatomical side and boundary information [8], [9]). Qi and e will focus on penalized-likelihood estimators (PLE’s) of
Leahy have investigated a shift-variant regularization methegk form

that optimizes the local contrast to noise ratio in an attempt to .

improve lesion detectability [10], [11]. AY) = arg max L)\ Y)— R(X)
However, for high-resolution PET images, the geometric dis- a2

tortions due to conventional regularizations may be undeswhere

able for tasks requiring shape preservation. Therefore, resolu- A set of feasible images;

tion uniformity would be important. For cross-patient studiesor ~ L(A,Y) log-likelihood;

single-patient studies taken over a period of time, one would () roughness penalty.

presumably desire the same resolution properties across fr¥ the Poisson model, the log-likelihood is

ages for comparison. Similarly, for full-body PET scans with N

multiple table positions and cross-modality image registration, (), Y) = Z Y; log Y;(A) — Y;(A) — log Y;!.
these space-variant resolution properties and geometric distor- i=1

tions can contribute to registration errors. As mentioned abo\ge focus on pairwise roughness penalties of the following form
in some cases one may desire nonuniform resolution proper- »

ties. The methods described in this paper can also be applied . 1 ¢
to user-specified nonuniform resolution criteria (e.g., regions of RQ) = Z 2 Z Wik (A = M) @)
isotropic smoothing with sharp boundaries) using space-varyin% ) ] )
regularization methods as in [12] and [13]. whereq is a symmetric convex function. ,

In this paper we focus on the resolution properties of penal-!N the case of a quadratic penalty(x) = «°/2 and
ized-likelihood estimators that are iterated until convergendd® roughness penalty may be written in matrix form:

7 _ / .
Other studies have investigated resolution properties of unr%%%) " b(l/Z)A R, where thep x p matrix R has elements
ularized maximum-likelihood expectation-maximization algo- Ined by

j=1 = k=1

rithms as a function of iteration [6], [14]. P 1 )

Real imaging systems usually have intrinsically nonuniform R;, = Z 3 (wiy +wjr), k=3 )
resolution properties. Single-photon-emission computed to- =1 .
mography (SPECT) systems have depth-dependent resolution Wik k# .

[15], and PET systems often have resolution nonuniformity dir®r a space-invariant penalty using a first-order neighborhood,
to crystal penetration effects [16]. While the analysis presenttite conventional choice is;; = 3 for the horizontal and ver-
here applies generally, the resulting design can be compuigal neighbors, and zero otherwise. The regularization param-
tionally expensive. We have developed a computationally fegfer/3 controls the noise-resolution tradeoff. Largealues in-
practical method for an idealized PET imaging system with@lce smoother reconstructions, hence lower noise. For a second-
shift-invariant geometric response, but including ray-dependeiger penalty, one often includes;. = 3/+/2 for the diagonal
attenuation and detector effects. The central region in the figlgighbors in addition to the first-order neighbors.

of view of many PET systems tends to be nearly shift-invariant The mean of an estimator is given by

and can be accurately modeled in this way. . .
p) = BAW) = [ A7 Dy

wheref is the Poisson measurement distribution. The local im-

Il. BACKGROUND pulse response [4] at thigh pixel is defined as
We focus on emission tomography, although the method Y E(AJHSQj) — Q) 9
) ~ , = lim = = Q)
applies generally. Leh = [A1, ..., A, represent the non- 50 ) OA;

negative emission rates for an object discretized infoxels, ; ) : .
o wheree’ represents thgth unit vectot The local impulse re-
where’ denotes the Hermitian transpose. Detectors surroundin S : .
nse depends on the estimaXpthe object\, and the pixel

the object count photons (SPECT) or photon pairs (PET) thS
are emitted from the object. Measurements are denoted by th&hroughout the paper, the superscjipepresents an index, not an exponent.
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positionj. From [4], for PLE’s with quadratic penaltiésthe terms of these small support neighborhoods by parameterizing
local impulse response may be well approximated by the penalty matrix.

U ~U(R) 2 [ADA+ R¥™|'A'DAc’ (3) A. Penalty Matrix Parameterization

] ] ] For a shift-invariant quadratic penalty, one can treat the
where A is a N x p matrix of the {a;;} elements, for emis- nenaity matrix as a space-invariant filtering operator. There-
sion tomography, D = D[l/[Y/i(A)] is a diagonal matrix with fore multiplying R by the image\ is equivalent to convolving
elementsl /Y ;(\), and R®™ % (1/2)(R + R') is the sym- the image with a kernél,
metric component oR. WhenY';(}) is unknown, one can es-
timate the local impulse respon&eby using a simple plug-in R\ = kr(m, n) x xA(m, n).
technique where the observed measuremgntsplaceY’;(\). ) ) _
SinceD[1/y;] is sandwiched between the projection and backOr example, the conventional first-order penalty described

projection operators, there is an implicit smoothing and ev&§!0W (2) has the following kernel

noisyy; tend to produce relatively accurate estimated’dp A. 0 -1 0
The approximation (3) for the local impulse response is the kg =3 | -1 4 1. (5)
tool we use below for the design and evaluation of different ! 0 —1

quadratic regularization methods.
The design of a space-invariaRtis like a filter design problem
IIl. PENALTY DESIGN METHODS with constraints on the ker_nd&R. SinqeR should yield a
. ) , ) zero penalty for uniform regions, the filter representedkhy
Our goalis to find a penalty functiaR(}) that yields recon- g4 have zero DC gain. (The kernel elements must sum to
structed images with some arbltrary desired space-invariant 58%0.) Since only the symmetric portion & influences the
sponse. For example, we may desire penalty functions that pfs, sjized-likelihood objective function and the local impulse

duce a global impulse response with a Gaussian shape and SPéEBonse in (3), we need only to consider symmetric ketnels
specified FWHM resolution. If we restrict ourselves to quadrati}g for representing the action of a space-invarideit’™

penalty functions, we can formulate such problems in terms o st, we choose to require th&F”™ be nonnegative definite
the dessylgn O_f the penalty matri. E_quwalently, we may de- y, guarantee concavity of the penalized-likelihood objective
sign ™™, since only the symmetric component Bfaffects ¢, qfign Therefore, for the space-invariant penalty, we restrict

the objective function for quadratic penalties. We restRdd o nels to those whose Fourier transform is nonnegative, so
be nonnegative definite to maintain the concavity of the penqﬂ.'—at the eigenvalues @™ are nonnegative

ized-likelihood objective function. To achieve these goals, we parameterize the ketpein

Therefore, we would like to find a nonnegative definf® o g of 4 small number of bases such as those having the fol-
according to an optimization criterion such as the followlngiowing form

» bk, n(m, n) = 26(m, n) —6(m—k, n—1)—6(m+k, n+1)

12— oro i J J

R= A8 R0 z_:l dC(R), k) “) where 6(-) represents a 2-D discrete impulse function, and
= m andn represent spatial coordinates. A collection of such

whered(l’, 1) is some measure of disparity between the loc4x, b (m, n) functions for var!ouikl,nl) pairs forms a basis for
j valid kernels of space-invariadt®™™ matrices. For example,

impulse responsg; and a desired space-invariant response f q iahborhood
13- Solving (4) by plugging in (3) appears to be computationallg?ra Irst-order neighborhoo

intractable. 0 0 0 0 -1 0
Practical penalties use only_ a small neighborhood of_ pixels baoy=|-1 2 —1 boy=10 2 0
for the penalty support (e.g., first- and second-order neighbor- 0 0 0 0 -1 0

hoods). Therefore we reformulate the penalty design problemin
n 4] ation for the local imo derived is a basis for valid kernels d®*™. For a second-order neigh-
n ,an approxmatlon or the local Impulse response was aerived 1or sym- H H
metricR. For an asymmetri, the scalan’RA = (A’RA)’ = A’R’A. There- rBOI’hOOd,{b(L 0)» bo,1): b(1,1), b1,—1)} forms avalid basis set,
fore, R(\) = (1/2)[(1/2)NBA + (1/2NR'A] = (1/2)N[(1/2)(R + Where
R)HA = (1/2)XR=™ ). If an asymmetrid? matrix were used, only the sym-

metric component oR would influence the objective function. -1 0 0 0 0 -1
3The formulation given in (3) also holds for transmission tomography with b(l,—l) = 0 2 0 b(l, )= 0 2 0
D = D[Y(A) —r:)?/Y(A)]. 0 0 -1 -1 0 0
4The notationR > 0 indicates that this minimization is over nonnegative
definite R. 8We use= since the left-hand side (LHS) is a vector, but the right-hand side

50ne might choose a space-varighfor user-specified nonuniform resolu- (RHS) is a 2-D image. The two sides are equivalent in that the vector is a lexi-
tion properties. A space-invariafg is required only for the practical imple- cographic reordering of the 2-D image.
mentation discussed in Section IV. For a desired space-invariant regijaese  “Consider a horizontal penalty and two neighboring pixels; one on the left
a function of the pixel position only in that the desired response must be cerand one on the right. For a symmetf®>™, the penalty applied on the right
tered at pixe}j. That s, since the local impulse response at pj¥sicentered at pixel from the left pixel is the same as the penalty applied on the left from the
pixel j, we must shift the desired response to that location for comparison usiight. Therefore, the left and right sides of the kernel must be the same for the
(-, -). same penalty to be applied in both directions.
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In general, any valid kernel for a space-invariant penalty matiixa shift-invariant operatod’ DA will be shift-variant because
R™ may be specified by a linear combination of such basig the nonuniform diagonal weighting. Althoughi DA is not
functions: globally shift-invariant, it is approximatelyocally shift-in-
variant and we make the following approximation [17] to (3)
kr = Z b, 1) = Br

o V(R ~[QUQ+Q¥QQaqQd
wherery; represent the basis coefficients. Letepresent the , Qi ;
vector of allry,; for a given neighborhood of support. Defing =Q QU+ I Qc ©)

to be the number ofk, ) pairs (the number of basis functions)
and define the x n,, matrix B with column vectors of lexico- where the division is an element-by-element division,

graphically ordered basis functiorig, ;). Qi 2 D[F{A'DA¢}], and ¥ A D[F{RY™¢/Y]. (F{}

For uniform resolution properties, wequirea space-variant o resents the x p discrete 2-D Fourier transform operator.)
regularization matri#Z. Therefore, we extend the kernel repre- i 6 |ocalimpulse response functions usually vary smoothly
sentation (6) and lek be parameterized byspace-varianset iy position, we expect that the' coefficients of our penalty

of coefficientsr/, where; represents thgth pixel. _ design will also be smoothly varying. This is also implied by
Let (n;, m;) denote the spatial coordinates of fta pixel o apove locally shift-invariant approximation. For this reason
and defineB’ to be ap x n,, matrix of shifted basis functions, we use the approximatioR¥™¢/ ~ B’ri. To illustrate this
with each column having elements defined by the lexicograpls,ximation, consider a simple 1-dimensional example with
ically ordered base:b(lw)(n} Ty n;). In the case of @ 5 gingle[—1 2 —1] basis. For a single basis function there is
space-invariani matrix, e’ = B’r. (With the choice of sym- 5 gingle coefficient? for each positiory. In terms of (2), this
metric bases described previoud®/—= R*™.) To parameterize meansw; ;41 = —r’ andw; 41 ; = —r*L. If 77 is smoothly

space-varianR, we define thejth column of R by varying (i.e.z7 ~ ri+1), themw; ;41 ~ w,,1 ; andRis nearly

R = Biyd, j=1,....p. (7) Symmetric. Substituting®®™™¢’ ~ B’r7 into (9) yields
In this case R no longer equal®®™ in general. However, we i s 1I (pd
, ; . V(R) ~Ip(r)
may formR*™ by (1/2) (R+ R’), as stated previously in foot- ' F{A'DAS}
note 2. The parameterization (7) allows for the specification of U (y) éF—l{ e } . (20)
F{A'DA¢'} + F{B’ri}

valid shift-variantR™™ by the set of coefficient$r/};_, . To

guarantee the nonnegative definitenes®of™" it is sufficient o ) o

to restrict? to be nonnegative. A nonnegative definteneans ~ Combining (8) and (10) yields a separaEIe minimization

that the penalty?()) = \'R) is always nonnegative. If we re- Problem, i.e.’ depends only on’ and notr™ for & # j.

strictr# to be nonnegative, the local penalty at any pixel will b&nerefore we may determine eachseparately by

nonnegative due to our selection of bases. Therefore, the penalty o

on the entire image will be nonnegative as well. = arg min dilp(r?), 1), i=1,...,p. (11
Using the parameterization described in (7), the problem -

of determining thep x p matrix R in (4) is simplified to

the problem of determining the,, - p coefficients {r’ 1;:1.

The penalty design problem thus reduces to the followirﬁg0

optimization problem ©

If d(u,v) = |ju — v||?, then (11) is a set op constrained

nlinear least-squares (CNLLS) problems, since the depen-

nce on’ is in the denominator of (10). We have implemented

this method using a BFGS quasi-Newton method, but it is still

T ) U p computationally expensive. Thus, we further simplify this non-
G S o Z A ({2 B)- @) inear optimization problem into a linear least-squares problem.

T =L Working in the frequency domain simplifies the design problem,

Although this minimization requires less computation than (43s described next.

it still appears to be impractical since allof the /' vectors

would need to be found simultaneously. C. Linearized Penalty Design

p

B. Circulant Simplifications Define L’ (7) 2 F{I.(r7)} to be the local frequency re-
sponse and lek 2 F{lé} be the desired frequency response.
To solve (11), we want to choosgé so thatL’(r?) ~ L, i.e.,

from (10)

When the operaton’ A is approximately shift-invariant, we
may approximated’ A by Q'QQ, where@Q is a 2-D discrete
Fourier matrix operator an@ is a diagonal matrix representing
a frequency domain filtering operatoidowever, even ifA’ A

J(pdY — F{A/DAQ]} ~ I 2
8For an ideal tomographic system, the diagonal elemens® afe approxi- = (7— ) - F{A/DAej} + F{BjTj} ~ =0 (1 )
mately the well-knowr / p frequency response of the back-projected projection = -
operator. Whem’ A is nearly shift-invariant, we may compute the elements of
2 by taking the 2-D discrete Fourier transform4fAc’o, wherej, is afixed Rearranging (12) by cross multiplying and simplifying yields
pixel in the image (usually the center pixel, in practice). Whens not the
center pixel we must include appropriate complex exponentials to account for

the shifting property of Fourier transforms. F{ADAZ} o (1 - L) = L) ® F{B’r’} (13)
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where® represents element-by-element multiplication. We cdras the factorable ford = D[¢;]G, whereG’'G is an approx-
now design the penalty coefficients as a weighted least-squareately shift-invariant operator and represents the geometric

solution to (13). Specifically, we choosé such that system response. The diagonal matf¥c;] contains known
ray-dependent effects such as detector efficiency and attenua-
# = arg min ||®7r7 — d&’||? (14) tion factors, where; is a multiplicative factor for théth mea-
ri>0 surementy;. In this case, we may write
with ADA=GWG a7)
& 2 VJ'D[%]F{BJ} (15) Where for emission tomography = Dlg;] = DI[c2/Y;]. Such
A ; p a system model is appropriate for modeling an idealized PET
& 2 ViD[l - LF{A'DAS). 16 o pprop d

system, where the geometric response is shift-invariant. This is
_arelatively good approximation for real PET systems near the
(For matrices F'{-} operates on each column.) The matfiX center of the field of view.
is a (possibly shift-variant) least-squares weightingshere  One can show that in an idealized continuous system, if the
[V’]'V7 is a symmetric positive definite x p matrix. continuous equivalent di is aradially constant sinogram
After one chooses a desired frequency respdrser equiv-  scaling operator, then the continuous equivaler®d¥ G can
alently a desired impulse responige one can use the NNLS pe expressed as a position-independent blurring operation [19].
(nonnegative least-squares) algorithm in [18] to perform thghis property should be approximately true in the discrete case.
minimization (14) for each pixel positionto obtain the coef- |f w were radially constant, we would only need one computa-
ficients {#’}7_, . This provides nearly uniform resolution prop-ion of F{G'W Ge’}.
erties matching a specified response. In practice, the elements & are not globally radially con-
One possible practical inconvenience of the proposed meth@gnt. However, since the projection of a single pixel forms a
(14) is thatR must be recalculated for every desired respagse relatively narrow trace in sinogram space (only a few radial bins
We describe a method in the Appendix that yields a convenigftwidth), we can approximat# locally by a position-depen-
class of penalty matriceR that span a range of spatial resolugent radially constant matri#?. This property is illustrated in

tions for a specific class of desired impulse responses. Fig. 1.
Consider a single pixel in the image represented by the unit
IV. PRACTICAL IMPLEMENTATION vectore’. The operation off on¢’ forms a relatively narrow si-

ﬁ]]usoidal trace in sinogram space. Such a projection is shown in
Fig. 1(a). The backprojection of this sinusoidal trace produces

quires more computation than we would like for routine usg?e familiar/r response centered at_the gi\{en pixel. This image_:
In this section, we outline a computationally efficient methoand an enlarged region about the pixel of mterest_ are _shown n
for closely approximating the parameterized penalty with coe'%—'g.s' 1.(b) an_d (5)-_Re°a” from (17)_that the Sﬁ‘?c“"e sinogram
ficients given by (14). weightingWisc; /Y ;. In reconstruActlonswheﬁéi is unknown,
Consider each of the terms in (15) and (16). Determinatid¥e Choose¥ = D[g;], whereq; = & /max{y;, t.}. Theé
of F{Bj} requires a single calculation of the 2-D-FFT (fasterms are estimates of the detector efficiencies and attenuation
Fourier transform) of each of the, 2-D basis functions. correction factors made from a normalization scan and trans-
(Different j only shift the bases. One could incorporate thedBission scan, ang; are the measurements. Thex{-, t.} is
shifts with relatively little computational overhead by multiincluded to avoid inordinate ray weighting for low coupt by
plying F{B’} by appropriate complex exponentials.) For ghoosingt. > 0.
shift-invariantly, the remaining portion of (15) may also be Thevectorg = [qi, ..., qv]’ represents a lexicographically
computed once with simple matrix multiplications. Thereforéeordered 2-D array of scaling values thakis angles byn,
we can precomputeb’s, and determine®’ from @7 by radial bins in size, wher&/ = n,, - ;. A typical ¢ is presented
complex phase shifts. (This step is eliminated below.) Eor in Fig. 1(d). Fig. 1(e) shows the weighted sinogréiiGe’ for
the matrix multiplications includingy’”? andD[1 — Lo] may be the single pixel’s projection using this particular weighting.
precalculated as well. However, for a direct implementation of Instead of usingg, we would like to approximate the
(14), one would have to compute the 2-D-FFTASD Ae/ for  weighting with a local radially constant versi@’l. The asso-
every pixelj, which would be computationally expensive.  ciated diagonal weighting matrix W~ = DI[¢’]. To choose
Therefore, the key to a practical implementation of (14) &, consider the following. Lel/ = G'W G, whereW = D[q].
the efficient calculation of"{A’DAc’} for j = 1, ..., p. In  Decompose the system mat(Xby rows into separate subma-
general this term would need to be calculated explicitly, whidhices for each projection angle so tH@t= [G}, ..., G;, |
would be quite time consuming because of the sizelaind with G,, € R™*?. Similarly, decompose the weighting vector
the number of pixelg. However, consider a system matrix thainto ¢ = [[¢*]’, ..., [¢"]'] with ¢" € R"™.

While the penalty design method (14) gives a simple for
for the calculation of’, in the form described above it still re-

10A “radially constant”W scales all of a sinogram’s radial elements for a
9An equivalent weighted least-squares problem may be stated usingaaticular projection angle by the same scalar value. S"&hwould have the
weighted norm|z||,.; = ||[V7z|| in (14) and eliminating’? from (15) and block scaled-identity forn¥V = D[w VI, w1, ..., w{"<)I], wheren, is
(16). the number of angles.
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Fig. 1. Approximation o'W G with local radially constant weightings (see text). (a) shows the unweighted projection of a single pixel in the sinogram domain.
(b) and (c) show the backprojection of this unweighted sinogram where (c) is an enlarged portion of (b). Varaizles index image coordinates, and variables

¢ andr index the sinogram measurements. (d)—(g) show the weighted projection (e) and backprojection (f) and (g) for a typical weighting (d). (h)—€) show th
weighted projection-backprojection using an approximate radially constant weighting (h). (I)—(o) show the weighted projection-backgoojeditxex central

pixel jo. Note that (g), (k), and (0) are nearly identical. (d), (e), (h), (i), (1), and m) have a logarithmic color scale.

Due to thel/r response in tomograph¥/ is concentrated j because of the implicit smoothing in (19). Similarly, since

about its diagonal. Therefore, G'G¢’ concentrates around (cf. [4]),
U=> G,D["|G,~ ) DIs"|G,G,Dls"] £ U (18) Ud =Y [5"G,Gne.
n=1 n=1 n=1
where thejth element ofs™ is We choosg’ = [[']31’, ..., [s"]?1'] to form aradially con-

stant, position-dependent weighti¢), where1 is a column
vector of ones of length,. B
Fig. 1(h) shows the radially constant weightigigusing this

n=1,..., Ng. (19) technique on the weights in Fig. 1(d) for pixelWhen applied

to the projection ot’, the result is very close to the weighting

usingg. The close agreement between #ileand W weight-

ings can be seen by comparing weighted sinograms in Fig. 1(e)
This is the unique choice of” that makesU ~ U with and (i). Similarly, the agreement is very close for the backpro-
equality along diagonals for each of the, terms in the jected weighted sinogram& W Ge’ andG' W Ge?, shown in
summations in (18) (i.e., the diagonal element&fD[¢"|G,.  Fig. 1(f) and (j), respectively. Zoomed versions of the backpro-
and D[s"|G", G, D[s"] are identical for each = 1, ..., n,). jected weighted sinogram for regular and local radially constant
The approximation would be exact if thg's were all equal. weightings are shown in Fig. 1(g) and (k). Note the close agree-
However, since the local impulse response at pixeklies mentin the image domain as well as the sinogram domain.
predominantly on the;’s that intersect pixe}, U andU will SinceG'WG is an approximately shift-invariant operator for
be nearly equal. This approximation is reasonable even for veagially constanW, G’'WG¢’ approximately equals a shifted
nonuniformyg since[x"], tend to vary slowly as a function of G'W?@e? for an arbitrary fixed pixe, (€.9., the center pixel
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in the image). Plots of¥ W’ G¢’ for j, equal to the center TABLE | _
pixel are shown in Fig. 1(n) and (0). Note the close agreement ~ ROUTINE USED TOCONSTRAIN KERNEL COEFFICIENTSE?
between@' W’ Gel andG'WGe’. Therefore, we need only to
calculateGe’ once, rather than for every

In terms of®’ in (14), under the radially constaWt approx-
imation and a shift-invariant weighting”, we need only®i®
and may replace (14) with

Set H = [$7°])'®" and C = [#°]' M.

Let # = Twi.

while # contains negative values,
Let i equal the index of the minimum value of ﬁj ‘
Remove the ith row and ith column of H.
Remove the ith row from C.

i . " K ~j !

P =arg 7I£ll>1(1) 1@ —d||? Set the ith element of #/ to zero.
N o Find the remaining elements of #/ by H™'Cuw/.
& 2VID[L - LIF{GWIGE) (200 end

where@g is a “centered” version of’. This step eliminates the
need for complex phase shifts. Nevertheless, direct implemenComputing (19) require$ng + 2p floating point operations
tation of (20) would still requirg 2-D-FFT’s. (flops), whereng = n,nypa ande is the fraction of nonzero
To simplify further, definew’ = [[x']3, ..., [s"<]]". The elements ofG (or A). Assuming thel ~'C are precomputed,
vectorw’ contains all of the distinct angular weighting valueshe algorithm in Table | requires at mast? n,, flops per pixel.
in the radially constani-. Sinced’ is linear in the elements Therefore, calculation of alt’ coefficients using the method
of W/, we may writed’ (w’) = Mw’, whereM is ap x n, Summarized in Table | requires at mabtc + 2p + Pngn?
matrix. We findM by superposition as follows. flops. Since the precalculation 84 using (21) requires approx-
DefineW*" to be the weighting matrix with radially constantmatelyne + O(nqp log p) flops andO(n.,p log p) flops for
values having unit values at angle and zero otherwise. (i.e., ®’°, the entire precalculation is¢ + O((na + nw)p log p).

W = D[[0,...,0, 1,0, ..., 0], where thel vector ap- This precalculation need only be performed once for a specific
pears in therth block andl and0 are column vectors of length System geometry and choice lof
ns.) For each angle define In contrast, computation of the design given by (14)—(16) is
dominated by the calculation @f in (16). This term requires
m, = VD[l — Lo|F{G'W?* Ge™}, n=1,...,n,. 2ncnanve + O(plog p) flops for a single pixel locatiory.
(21) Therefore, even without calculating (14) and (15) we require at
Then by superpositioM = [m, ... . mn,]. least2nZ, + O(p? log p) flops to evaluaté”’ for all j. Clearly,
For the unconstrained case, (20) has the closed form lin&agch of the computational advantage of the proposed method
solution#/ = [[®7°] ®70] L[®)] d;. Let is due to the order reduction e, to nc.
For 2-D reconstructions performed in the following section,
T = [®/] i)~ P M 30 iterations of the SAGE algorithm [20] on a 266 MHz Pentium

Il processor took 18.5 s for the conventional space-invariant
be the combinea., x n, matrix operator. Therefore we mayfirst-order penalty given by the kernel in (5), and 20.1 s for the
determine unconstrained solution of (20)#Hy= Tw’. proposed penalty with precomputdde andM. The precalcu-

However, for the matrixR to be nonnegative definite, we needation of /¢ and M took 23.1 sit Thus, the method is very
to solve the constrained optimization problem (20). Itis straightractical. (We performed the reconstructions using the ASPIRE
forward to modify the NNLS algorithm of [18] using’> and iterative reconstruction libraries[21].)
M to provide the constrained solution.
For simplicity in our implementation, we have used the sub- V. SIMULATION RESULTS
optimal greedy approach presented in Table I, which yields non- ) ) _
negative?? and nearly the same results as NNLS but with 2 Resolution Uniformity
slight computational speedup and simpler implementation. ThisThis section provides simulation results comparing the rela-
procedure takes one step for each negative elemeiit and tive resolution uniformity of different regularization schemes.
will complete in at most,, steps. For smatt,,, one could pre- Fig. 2 shows th&28 x 64 emission image (with 3-mm square
compute the™ — 1 possible reducef ~' matrices for further pixels) used for the investigation asin [4]. The image has awarm
speedup. background ellipse, a cold left disk, and hot right disk with rel-
As described in the beginning of this section, direct impleative emission intensities of 2, 1, and 3, and attenuation coeffi-
mentation of the design given by (14)—(16) requisdsackpro- cients of 0.0096, 0.003, and 0.013/mm, respectively. The PET
jections,n,, + p 2-D FFT’s, andp applications of the NNLS system model included projection data with 128 radial bins and
algorithm. Using the simplifications described in this sectiord, 10 angles uniformly spread over ¥8@ith 6-mm-wide strip
we perform the one-time precomputation®f> andM for a integrals (3-mm center-to-center spacing), and detector efficien-
given system geometry using, backprojections and,, +n, cies with a pseudorandom log-normal variance witk 0.3 to
2-D FFT’s. The coefficient$’ may be determined with cal- model detector efficiency effects.
culations of (19), which is on the order of one backprojection,

anQpha%pIications of the algorithm in Table I (or the NNLS al- 117 constrained nonlinear least-squares penalty given in (11) took about 2
gorithm). h.
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To compare the relative spatial uniformity of these regulariz5l9- 8 Local PSF's for penalized unweighted least squares.
tion methods we used (3) to calculate local point spread func-
tions (PSF’S) We approximated the solution of (3) using 100 PSF's for penalized-”kelihOOd with the conventional space-
iterations of a coordinate ascent algorithm initialized with #variant penalty are shown in Fig. 3. This penalty has the first-
Fourier approximation of the target response givenin (23). Sinegder kernel given in (5). These local PSF’s are highly asym-
the responses are space-variant, we investigated four differ@tric and space-variant, blurring more in high-count regions
locations in the object, represented by the whit¢ fnarks in (85, 33) than in low-count regions. The certainty-based penalty
Fig. 2. We systematically examined numerous additional spat@l[4] shown in Fig. 4 provides some improvement by making
locations which yielded similar conclusions (i.e., these are reffie mean FWHM close to 4.0 pixels. However, the responses
resentative results). are still quite asymmetric.

Results of this impulse response survey are presented iflPSF’s for the constrained nonlinear least-squares (CNLLS)
Figs. 3-8. For each penalty, PSF contours at 25%, 50f€nalty given by (11) are shown in Fig. 5. For this design, four
75%, and 99% of peak value are shown. These contours wbesis functions and second-order neighborhood were used. We
generating using theontour command in Matlab 5.3. The used a target responggequal to the response of a penalized
pixel boundaries are represented by the dotted grid in easmweighted least-squares (PULS) estimator with a conventional
plot. Above each set of contours are estimates of the mggan f{irst-order penalty [see (23)]. The contours for these PSF's are
and standard deviatiow) of the FWHM resolution in pixels, nearly radially symmetric and near the 4.0 pixel FWHM target
which quantify the mean resolution and radial variation at thegsolution. The PSF’s of the proposed regularization method
location. (20) are presented in Fig. 6. We used the same basis set and

All reconstruction methods and penalties were designed witlirget response as the CNLLS penalty design. This penalty was
a target resolution of 4.0 pixels (1.2 cm) FWHM resolutiordesigned using the computational simplifications in Section IV
(The relationship between global FWHM resolution ghénd and the simplifications presented in the Appendix. The PSF con-
how to calculates3 is discussed in [5].) For the estimation oftours are also quite symmetric and the average FWHM resolu-
(3) for penalized-likelihood methods, whegein (17) must be tion is within 5% of the target resolution of 4.0 pixels.
computed, we used the noiseless measureménisth a mean In addition to the penalized-likelihood methods, we present
of 1 million counts and we chosg = ¢?/ max{Y;, t.} with results for filtered backprojection (FBP) and a PULS estimator
t. = 10. with a conventional first-order shift-invariant penalty. Both
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TABLE 1l Proposed
SUMMARY OF MEAN ABSOLUTE RADIAL DEVIATION RESULTS - =
Pixel Set 10*
Estimator A B C D
PLE: Conventional 029 [ 0.26 | 0.27 [ 0.23 10°
PLE: Certainty-Based | 0.33 | 0.26 | 0.31 | 0.20
PLE: CNLLS Penalty | 0.19 | 0.10 | 0.06 | 0.08 110°
PLE: Proposed Penalty | 0.24 | 0.12 | 0.07 | 0.09
Filtered Backprojection | 0.02 | 0.02 | 0.02 | 0.02 11072
PULS 0.05 | 0.05 | 0.05 | 0.05
(A) All Phantom Pixels (B) Interior Pixels 1107
(C) Cold Disc Pixels (D) Hot Disc Pixels
11078
of these methods should produce shift-invariant and isotrog L 41078

smoothing properties since we are considering a tomograp. ...

systems whose intrinsic response is shift-invariant. [The _ _
Fig. 9. Comparison of calculated values for the CNLLS penalty and the

impUIse res_ponse for a PULS estimator is given by _(23) H?oposed penalty. Note the logarithmic color scale. White regions indicate a
the Appendix.] In a real PET (SPECT) system, FBP will havelue of zero.

nonuniform resolution due to the detector response. We chose

a constrained Ieast-_squares fiI.ter for FBP, which essentially.l.he CNLLS penalty and the proposed penalty yield similar
matches the smoothing properties of FBP and PULS (see [SL_% coefficients and produce similar local impulse responses.
The local PSF's for FBP are shown in Fig. 7, and for PUL§ence, we conclude that the computational simplifications pro-
in Fig. 8. These responses are nearly perfectly symmetric. Bgysed in Section IV do not change the calculated valugs of
call, our proposed penalty is designed with a target PSF giveignificantly and that such simplifications are appropriate for
by the PULS response (23). Note the similarity between theggyviding a computationally efficient algorithm for calculating
method’s responses as shown in Figs. 6 and 8. our proposed penalty for uniform resolution properties.
As a quantitative assessment of the resolution uniformity, we
calculated the mean absolute radial deviation of the 50% cont@yir Ngise Properties
from the 2.0 pixel half-maximum target radius. Then we calcu-
lated the average value of this deviation over a set of sampIeThe results presented above describe the resolution properties
locations within the phantom. We performed these calculatiofbthe estimators. As in [4], we also investigated the noise prop-
over four pixel sets: Set A consists of all pixels within the digg'ties. To form sample standard deviation images, we simulated

ital phantom object; Set B contains roughly 80% of the interi(ﬂpo noisy measuremer_n realizations for the digi_tal_phantom in
pixels of the phantom excluding the outer edge pixels: SetFC',g- 2. The PET model included 10% random coincidences and

contains all pixels in the cold disc; and Set D contains all pixef¥eraged 1 million counts per realization. _ _

in the hot disc. These results are summarized in Table II. All e reconstructed each of these 400 realizations using 30 iter-
values are in pixels. The certainty-based penalty and the Caﬁipns of the SAGE algorithm [20] W?th the same re_gulari;atign
ventional penalty have the greatest deviation, while the CNLL@ethOdS used abc_’v? in the resolution properties investigation.
penalty and the proposed penalty are more uniform. The ifor all of the statistical methods except the CNLLS penalty,

provement in uniformity with these penalties is more dramat € use the_z measuremgr@t,sf(_)r calculat!on OfR.' Because .Of
for the interior pixels (Sets B, C, and D), indicating that thest e extensive computation time associated with calculation of

penalties provide less uniform resolution at the edges of t e CNLLS penalty, the noiseless; were used, i.e., the same

phantom. FBP and PULS have the lowest deviations with |;?gnalty based on the noiseless measurements was used for all

variation between sets realizations.
' The results of this noise investigation are presented in Fig.

The calculated’ coefficients for the CNLLS penalty and the1g. The sample standard deviation images are shown on the
proposed method are presented in Fig. 9. The coefficient valygss of the figure. Horizontal and vertical profiles of these im-
are presented as four images (since we used four basis fufiges are shown in the remaining plots. The horizontal profile is
tions) for both methods, separated by dotted lines. Each imagRen through the image center and the vertical profile is taken
pixel corresponds to the coefficient of a given basis function gdrough the center of the cold disk. These profiles are repre-
that pixel location. The scale is logarithmic, except for the valug:nted by dotted lines in the images. Pixel standard deviations
zero, which is represented in white. The largest discrepancigshese plots are expressed in terms of a percentage of the back-
between the coefficients appear at the edge or outside the obigreiund ellipse intensity. If one included error bars on these plots,
in the digital phantom. Additionally, we see that the nonnegée error bars would be smaller than the plot markers. There-
tivity constraints are fairly active (as represented by the whifere we have eliminated the error bars for clarity. For conven-
regions). Future designs may be able to obtain increased restibral regularization, the standard deviation estimate is nearly
tion uniformity by relaxing the nonnegativity constraintsign uniform. FBP and PULS generally have the highest standard
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Horizontal Standard Deviation Profiles (y=33)
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Fig. 10. Sample standard deviation images and profiles. (a) Filtered backproje¢fio(b] Penalized unweighted least-squares PULS. (¢) PLE with
conventional regularization]. (d) PLE with certainty-based penalty)( (e) PLE with proposed penalty). (f) PLE with CNLLS penalty [J).

deviation and the certainty-based penalty have the lowest sttre banded plot as the interval between the minimum and max-
dard deviation. Not only do FBP and PULS share similar resnum diameters. For each pixel location and target resolution,
olution properties, but also similar noise properties. The clofigese plots describe the (single) pixel standard deviation value as
agreement in standard deviation between the proposed methail as therangeof spatial resolutions spanned by the local PSF.
and the CNLLS penalty further justifies our computationally efA method with isotropic resolution properties would appear as
ficient design technique. a single line in such plots, whereas a method with a highly
At first glance, it appears that uniform resolution propertiesnisotropic response appears as a thick band. These tradeoff
come at the price of a variance increase as compared with tueves were calculated for the four pixels positions shown in
certainty-based penalty. However, the certainty-based pendify. 2.
and the proposed penalty hagigferentresolution properties.  Curves for the conventional and proposed penalties are shown
The certainty-based reconstruction often has a greater max¥ig. 11. The lighter band with+" symbols on the border
imum diameter of the local PSF’s (compare Figs. 4 and 6). Thispresents the resolution/noise tradeoff curve for the proposed
causes increased smoothing, yielding a reconstruction wittgularization, while the darker band with™symbols on the
lower variance. border is the curve for reconstruction with conventional regular-
We would like to produce a resolution-noise curve comparinigation. (The light band partially obscures the dark band, how-
the relative performance of these two methods over a rangeeokr the borders are marked by symbols and lines so that the
target resolutions, but this is difficult because they have differetiégree of overlap is visible.)
resolution properties. Using the angularly averaged FWHM asWe also produced a banded resolution/noise tradeoff plot
a resolution metric (cf. [4]) unfairly handicaps estimators withsing the certainty-based regularization of [4]. Since the
isotropic resolution properties. Estimators with anisotropic reertainty-based technique produced a curve nearly identical
sponses can reduce noise by smoothing “optimally” in each @ the conventional regularization, we have omitted the plot.
rection while maintaining the same average FWHM as an &3imilar behavior was observed in [4] using a mean FWHM
timator with isotropic responses. Rather than creating resohesolution criterion. Essentially this means each pixel simply
tion-noise curves where each point on the curve correspomdeves up or down its resolution/noise curve to the specified
to a single resolution value and a single standard deviation, vesolution. This is another indication that the certainty-based
created banded “curves” as follows. For the ordinate, we usegthod does not yield isotropic resolution properties. While
the sample standard deviations of pixel values in images rectime average FWHM resolution may be improved, the PSF's are
structed from 400 noisy sinogram realizations, for each of sestill anisotropic yielding a wide resolution band in our banded
eral target spatial resolutions. For each target resolution we atesolution/noise tradeoff curves.
computed the local PSF and found the smallest and largest diamin Fig. 11 the banded curves for the proposed penalty span a
eters of its half-maximum contour. We specified the abscissaesimall resolution range (i.e., the curve is thin horizontally), in-
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20 3 4 56789 2% 3 4567 89 properties for every plxel._ On the other hand, FBP :’;md the
FWHM Resolution (pixels) FWHM Resolution (pixels)  Proposed penalty both yield nearly the same PSF’s, so a

comparison seems more appropriate. Since these methods have
nearly the same resolution properties, we can fairly identify
Fig. 11. R_esolgtion/noise _tradeoff for penalized—likelihooq emission imag@hich provides better global noise properties. Note, particularly
reconstruction with conventionai/dark) and proposed penalties fight) in the vertical profile in Fig. 10, that reconstructions based on
the proposed penalty have lower variance than FBP.

dicating isotropic smoothing properties relative to the conven-There are a few points in Fig. 10 where the standard deviation
tional penalty. If our design were ideal, minimum and maximumsstimate is slightly greater for the proposed penalty. To illustrate
FWHM resolution would be identical and we would have a linghe relative global noise properties of FBP and the PLE with the
instead of a band. Note that the proposed penalty band lies insiflgposed regularization, we generated a histogram of the rel-
the conventional penalty band. If the proposed penalty band lgiilve variance. For each pixel in the object, we calculated the
above the conventional penalty band over the same resolutigfio of the sample standard deviation at that pixel using filtered
interval, then the proposed penalty would arguably have wornsgckprojection 4rsp) to the sample standard deviation at that
noise properties. The proposed penalty band generally lies in gigel using the PLE with the proposed regularizatiopy(). For
center of the conventional penalty band. However, this is not tb§<els whereoppp /opr, is greater than one, filtered backpro-
case for the pixel (45, 33) in the cold disk. Note that the PSF ffiction has higher standard deviation. This histogram is shown
the conventional penalty at this pixel is especially asymmetiig Fig. 12. The vertical dashed line indicates the position where
(see Fig. 3) having the largest difference between the min aggs ratio equals one. For nearly every pixel the PLE with the
max FWHM resolutions. If this PSF yields an “optimal” kindproposed regularization produces lower variance estimates and,
of smoothing (with its predominantly vertical orientation), it iSor those pixels that have higher variances the difference is only
logical that an isotropic response would decrease the variaright. More than 50% of the pixels have over a 20% reduction
little with additional horizontal smoothing (note that max resdn reconstructed pixel standard deviation.
lution for the conventional PSF is very close to the 4.0 target). |n addition to the variance investigation, we present a corre-
Using this rationale the proposed penalty bands for the othgfion investigation. By specifying the desired resolution prop-
pixel locations lie roughly in the middle of the conventionagrties of PULS, do we also inherit the correlation properties? To
penalty’s band since the PSF’s for these points are less as\#dress this issue we have included a set of typical correlation
metric (with the max resolution greater than 4.0 and min lessaps in Fig. 13 for FBP, PULS, and the PLE’s with conven-
than 4.0 pixels). The isotropic response reduces the max rggnal, certainty-based, and proposed penalties. These maps rep-
olution and increases the min resolution as compared with th&ent the absolute value of the correlation between each pixel
conventional PSF. The “optimal” smoothing of the conventionahd pixel (65, 49). FBP and PULS have nearly identical correla-
PSF is arguably not so directionally dependent in this case afish maps (particularly inside the object). The PLE’s with con-
an isotropic response can provide roughly the same variangentional and certainty-based penalties have similar correlation
While these two methods have different resolution propertiesnifaps, but are noticeably different due to the different resolu-
appears that our penalty design has not adversely affectediBfs. The proposed method is shown in Fig. 13(e). The struc-
noise properties of the estimator. ture of the correlation immediately surrounding (65, 49) is quite

It is difficult to globally compare the proposed penalty withsimilar to FBP and PULS, having lost the nearly isotropic effect
the conventional and certainty-based methods for an entofthe other PLE’s. This behavior is somewhat counterintuitive
image reconstruction because they possess different resolusmte PLE’s usually have much narrower correlation sidelobes
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Fig. 13. Sample absolute correlation maps shown for pixel (65, 49). (a) Filtered backprojection (FBP). (b) Penalized unweighted least-sdbiaie3 FRIEL
with conventional regularization. (d) PLE with certainty-based penalty. (e) PLE with proposed penalty.

a) b) The proposed penalty uses thendependent design (26) with
second-order bases, and the same talgeds PULS.
‘ ' ‘ The reconstructions using these methods are presented in
‘ ‘ Fig. 15. The FBP reconstruction in Fig. 15(a) has uniform
resolution properties. This is evident from the uniformly

smooth edges and radially symmetric tumors. Similarly, the
Fig. 14. Digital thorax phantom used for reconstruction of differen ULS reconstruction in Fig. 15(b) shows the expected nearly
regularizations: (a) is the emission image and (b) is the transmission imageidentical results. (Recall the nearly identical PSF’s of FBP and
PULS in Section V.) The reconstruction using conventional
than FBP and PULS. Perhaps such correlation properties arerggularization is shown in Fig. 15(c). There are distortions
extricably tied to resolution uniformity. Further investigation i®f the four round tumors (particularly in the lungs) in this
required. reconstruction. The tumors are stretched vertically and appear
elliptical. Another indication of resolution nonuniformity is
VI. THORAX PHANTOM RESULTS evident at the outer boundaries of the arms. These boundaries

. . . . are sharper than those in FBP and PULS. The reconstruc-
In the previous section, we investigated our proposed regu-

o : . . . ) with certainty-based penalty in Fig. 15(d) shows some
larization technique using quantitative measures of noise an
improvement. Most notably, the outer edges of the arms are

resolution. In this section, we demonstrate the qualitative im : . .
. o . smoothed in a more uniform fashion. However, the tumors are
provement using our proposed regularization technique throu . . . T .
. : il smoothed preferentially in the vertical direction. Fig. 15(d)
reconstruction of a noiseless thorax phantom. Both transmis-

sion and emission images for the digital phantom are shownJjpon> the reconstruction with our proposed penalty. The

Fig. 14. The phantomis 128 64 and has 0.42 cm square pixelsreSOIUtion uniformity appears much improved over the othgr
: S o . PWLS methods. The tumors appear nearly radially symmetric
Relative emission intensities for the lungs, spine, and heart e e edges appear much more uniformly smoothed
0.4, 0.0, and 3.0, respectively, with the background soft tisstue '
having a relative intensity of 2. In addition, there are four round
tumors with a relative intensity of 4. These simulated tumors
are radially symmetric, neglecting discretization effects. In the Conventional space-invariant regularization methods for
transmission image, the attenuation coefficient of the lungspenalized-likelihood image reconstruction produce images
0.001/mm, the spine is 0.016/mm, and the remaining soft tisswéh space-variant resolution properties. Although the cer-
is 0.0096/mm. The PET system model includes 160 radial bitesnty-based method of [4] attempts to provide more uniform
and 192 angles space uniformly over 18@ith 3.375-mm strip resolution, as we have seen in our investigations, that method
integrals and 3.375-mm center-to-center spacing. does not provide truly isotropic resolution properties.

We reconstructed the noiseless emission measurements usirye have presented a new method for designing a shift-variant
FBP, PULS, and penalized weighted least-squares (PWLS) penalty function that attempts to provide uniform resolution
timators with the conventional, certainty-based, and propospiperties. The proposed method is motivated by a least-squares
penalties. All statistical methods enforced nonnegativity of tHigting of a parameterized local impulse response to a desired
image and negatives in the image reconstructed via FBP weesponsd,. We have developed fast methods to calculate this
set to zero. All methods used a target FWHM resolution of 3enalty for an idealized PET system whose geometric response
pixels (1.25 cm). For PULS and PWLS with conventional reds shift-invariant (while including ray-dependent attenuation
ularization, the penalties were chosen so tRatcorresponds and detector effects). This method yields nearly space-invariant
to the shift-invariant first-order penalty with kernel as in (5)and nearly symmetric local point spread functions at FWHM

VII. DISCUSSION
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Fig. 15. Reconstruction of thorax phantom data using (a) filtered backprojection; (b) penalized unweighted least-squares; (c) PWLS witmalonventio
regularization; (d) PWLS with certainty-based penalty; and (e) PWLS with the proposed regularization scheme.

)

resolutions very close to specified target resolutions. Additio@ne may also achieve slightly better resolution uniformity at
ally, we applied this novel regularization in the reconstructiothe expense of additional computation by using higher-order
of simulated thorax phantom data and demonstrated increasedjhborhoods. Additionally, choices di, other than (24)
resolution uniformity. may require larger neighborhoods to obtain good fits to the
Providing a regularization scheme that yields uniform resdesired response.
lution properties makes the selection of the regularization pa-With additional improvements, the question of noise perfor-
rameter ) more intuitive. One may simply specify the desireenance may arise. If the resolution properties are truly identical,
global resolution of the reconstructed imagéijnAdditionally, does penalized-likelihood still outperform FBP? The variance
creating nearly the same resolution properties in both the si@provements we have seen with our proposed method over
tistical (PLE) and traditional (FBP) reconstruction techniqudsBP are marginal in some regions. As resolution properties are
provides a fair ground for comparing the noise properties of thheatched exactly will the advantages disappear? If so, does this
two methods. As expected, we observed that by using a likehield for shift-variant systems as well?
hood-based estimator and taking the noise model into accountThe correlation images for our proposed penalty appear very
one can reduce estimator variance. similar to FBP and PULS. It appears that uniform resolution
While one may arguably desire space-variant resolution prapay come at the cost of wider correlation sidelobes. Further in-
erties, one would most likely want to be able to control regionagstigation of the tradeoffs between resolution, noise, and cor-
resolution properties, while maintaining radially symmetric rerelation is required for both space-invariant and space-variant
sponses. Our proposed methods can be modified to provide sggstems.
control, allowing for predictable and intuitive specification of The design given in (14) has the advantage of being able
resolution properties in image reconstruction. Recall from (4 provide more uniform resolution in systems even when the
one could choosg, to be a shift-variant set of desired local iminherent system response is shift-variant (e.g., SPECT). How-
pulse responses. Generally, such a choic&, oWill increase ever, there is no computationally efficient method for computing
computation time. (However, one could use the technique pthese roughness penalties yielding uniform resolution properties
sented in the Appendix and simply specify a shift-variant set fdr systems whered’ A is space-variant. Therefore, the ideas
[ values.) used in the practical implementation presented here need to be
As demonstrated in Fig. 6, the proposed second-ordettended to shift-varianttomographic systems. Additionally, the
penalty still yields slight asymmetries in the point spreachethods presented here are for 2-D reconstruction. We also plan
functions. Similarly, in Fig. 15(e), there are slight resolutioto investigate 3D penalties for resolution uniformity in volu-
nonuniformities evident in the reconstruction. In particulametric reconstructions [22].
the edges of the phantom have subtle smoothing differences
between PWLS with the proposed penalty, and the FBP and
PULS reconstructions in Fig. 15(a) and (b) (especially near
the arms). The mean absolute deviation study summarized in
Table Il also indicates increased nonuniformity at the edges
for the proposed design. There are many possible solutiondn the design given by (14)-(16), for every desired response
that merit future investigation. The nonnegativity constrairiy one must recompute a new penalty matRxFor example,
on 7/ may be too strong a condition. (Recall this is a suffiene might want to perform reconstructions with a set of desired
cient condition for nonnegativity oR2.) This constraint could responses with different FWHM resolutions. Each resolution re-
be relaxed providing increase design freedom, yet still maiguires a separat® calculation, much of which may be precom-
taining a nonnegative definitd® and a concave objective.puted as in Section IV. For further simplification, in this Ap-

APPENDIX
SIMPLIFIED PENALTY DESIGN FOR ASPECIFIC CLASS OF
DESIRED RESPONSES
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pendix we present a specific class of desired impulse response®nce we have calculated the parame{@?s»f:l using (26),
that may be specified which require only a single penalty matri#e construct the penalty matri, using (7) withr/ = Bs.
computation. Since only the symmetric componentBf affects the penalty,
As mentioned below (2), for traditional space-invariant penajre useR>™, which requires less memory. TH&>™ has been
ties, thew terms in (2) include the regularization parametejesigned to provide global isotropic resolution properties and,

3, which controls the mean global resolution. Forshift-invariarp)tecause of the least-squares weighting leading to @8)*
penalties wherg is a simple multiplicative factor we may write is independent of the choice of the regularization parameter

R=p R?’ whe(eRo specifies the relative penalty strength be'Therefore oncd®¥™ is calculated one may specify a desired
tween pixel pairs angd controls the mean global resolution. ' *

Therefore it is simple to generate nddfor different desired gllobal resolytionstrlllrougﬁ. -Srhf penalty matrix islgiven by the

resolutions. (One does not have to recompe simple relatlonR y. = ORT™. '(A method relatings to the
Just as the conventional shift-invariant penalty is a simpfe/VHM resolution is discussed in [5].) _ _

function of 3, we would like to design the penalty matriR The computational simplifications discussed in Section IV

as a product of a user-selectgdnd aj3-independenR,, i.e., can also be applied to (26).

R = SR, yetstill yields uniform resolution properties. Interms

of our parameterization oR, we would like factorable coeffi- ACKNOWLEDGMENT
cients such that’ = Ss’. Making this substitution into (14 . . . . :
yields - ps g (14) The authors wish to thank J. Qi for an insightful discussion
regarding the generality of the proposed design.
P =p3, ¥ 2 agmin [|8®s - |2 (22)
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