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ABSTRACT

B-splines are a convenient tool for nonrigid registration, but

ensuring invertibility can be challenge. This paper describes

a new penalty method that is devised to enforce a sufficient

condition for local invertibility and smoothness of nth or-
der B-spline based deformations. Traditional direct Jacobian

penalty methods penalize negative Jacobian determinant val-

ues only at grid points. In contrast, our new penalty method

enforces the sufficient condition for invertibility directly

on the B-spline coefficients by using a modified quadratic

penalty function so that it enforces invertibility globally over

a 3D continuous domain. This approach also saves compu-

tation time and memory compared to using Jacobian deter-

minant values. We apply this method to 3D CT images of a

thorax at inhale and exhale.

Index Terms— B-splines, 3D nonrigid image registra-

tion, topology preserving, penalty method

1. INTRODUCTION

Nonrigid image registration enables more flexible matching

of local details between two images than rigid registration.

B-spline bases are attractive for nonrigid registration because

of their compact support, smoothness and fast interpolation

schemes [1]. However high degrees of freedom in deforma-

tion can lead to unrealistic transformation results such as fold-

ing in the absence of appropriate constraints [2].

There have been efforts to regularize this problem by us-

ing some reasonable assumptions. Rueckert et al. [3] penal-
ized the bending energy of the deformation directly, assuming

that the local deformation of tissues should be smooth. Rohlf-

ing et al. [4] used an incompressibility constraint, assuming
that local deformations should be volume preserving.

Topology preservation has been another reasonable con-

straint for image registration and preserving local invertibil-

ity is one way to achieve it. One way to guarantee the local

invertibility is to constrain the Jacobian determinant of the

transformation to be positive by a penalty method [5]. How-

ever this approach only constrains each discrete grid point and

the local invertibility is not strictly guaranteed on the whole
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continuous domain. Furthermore, penalizing the Jacobian de-

terminant significantly increases the computation time for B-

spline based image registration.

There has been some research on methods that enforce

the local invertibility globally. Noblet et al. [6] devised a
scheme to constrain the Jacobian determinant values of trans-

formation to be positive on continuous domain in 3D. Ro-

hde et al. [7] suggested a sufficient condition for local in-
vertibility derived using Neuman series. Motivated by [7],

Kim et al. [8] suggested similar sufficient conditions for cu-
bic B-spline based transformation and implemented a con-

strained minimization algorithm using Dykstra’s cyclic pro-

jection method. That algorithm was fairly slow.

This paper describes a new penalty function approach that

is based on an extended version of Kim’s sufficient condition

for local invertibility. We implemented it with a simple and

fast quadratic-like penalty function and compared it with a

variant of traditional Jacobian penalty method [5, 8]. The new

method is at least as effective at ensuring local invertibility

and is much faster.

2. METHOD

2.1. Sufficient condition for local invertibility

A nonrigid transformation T in 3D can be represented as

T (r) = r + d(r), (1)

where r = (x, y, z). We model the 3D deformation d =
(dx, dy, dz) using tensor-product nth order B-splines as fol-
lows:

dl(r) =
∑
i,j,k

cl
i,j,kβn

( x

mx

− i
)
βn

( y

my

− j
)
βn

( z

mz

− k
)
,

where l ∈ {x, y, z} and βn is a nth order B-spline basis. The
goal in image registration is to estimate the B-spline coeffi-

cients {cl
i,j,k} by maximizing a similarity metric. Often we

would like to ensure that the coefficients correspond to an in-

vertible transformation T .
Kim et al. [8] proposed sufficient conditions for local in-

vertibility in 3D case with cubic B-spline basis case by two

propositions. Our first proposition is an extended version of

their first proposition.

1099978-1-4244-2003-2/08/$25.00 ©2008 IEEE ISBI 2008



Proposition 1. In (1), suppose that
∣∣∣ ∂
∂q

dl(r)
∣∣∣ ≤ kl < 1

2

where l ∈ {x, y, z}, q ∈ {x, y, z} and l �= q. Also sup-
pose that −kl ≤ ∂

∂l
dl(r) ≤ Kl where l ∈ {x, y, z}. Then

1 − (kx + ky + kz) ≤ detJT (r) ≤ (1 + Kx)(1 + Ky)(1 +
Kz) + (1 + Kx)kykz + kx(1 + Ky)kz + kxky(1 + Kz) for
∀r = (x, y, z) where JT is the Jacobian matrix of transfor-
mation T .

This result suggested that local invertibility can be con-

trolled by the first derivatives of deformations. Kim et
al. proved this proposition only for the case Kl = kl. That

restriction meant that the upper bound of the Jacobian deter-

minant of transformation was determined by the lower bound

of it. In contrast, our Proposition 1 enables us to design the

upper bound independently.

Kim et al. showed a second proposition about the relation-
ship between the first partial derivative of deformation and

adjacent deformation coefficients for the cubic B-spline ba-

sis case. As shown in Appendix A, this second proposition is

also valid for the general nth order B-spline basis (n ≥ 1).

Proposition 2. If−b ≤ cl
i+1,j,k−cl

i,j,k ≤ B for ∀i, j, k, then
− b

mx

≤ ∂
∂x

dl(r) ≤ B
mx

. Similarly, if−b ≤ cl
i,j+1,k−cl

i,j,k ≤

B for ∀i, j, k, then − b
my

≤ ∂
∂y

dl(r) ≤ B
my

and if −b ≤

cl
i,j,k+1

−cl
i,j,k ≤ B for ∀i, j, k, then− b

mz

≤ ∂
∂z

dl(r) ≤ B
mz

.

These two propositions show that one can obtain a trans-

formationT that is everywhere locally invertible by maximiz-
ing a similarity metric subject to constraints on the differences

between adjacent deformation coefficients. Kim et al. used
Dykstra’s cyclic projection algorithm for optimization, but it

was slow.

2.2. New penalty design

For faster registration, we propose to relax the constraints in

Proposition 2 by using penalty functions instead. The pro-

posed penalty function are defined as

p(t) =

⎧⎪⎨
⎪⎩

1

2
(t + ζ1)

2, t ≤ −ζ1

0, −ζ1 < t ≤ ζ2

1

2
(t − ζ2)

2, otherwise,

as illustrated in Fig. 1. The argument t denotes a difference
between two adjacent deformation coefficients.

This function does not strictly constrain the sufficient

condition, but its first and second derivatives are simple and

convenient for use in optimization algorithms such as con-

jugate gradient. The final new penalty function is R(c) =∑
l∈{x,y,z}

∑
i,j,k{p

l
x(cl

i+1,j,k − cl
i,j,k) + pl

y(c
l
i,j+1,k −

cl
i,j,k) + pl

z(c
l
i,j,k+1

− cl
i,j,k)}.

Note that choosing ζ1 = ζ2 = 0 would correspond to a
quadratic roughness penalty over B-spline coefficients, which

is akin to the volume preserving constraint detJT (r) = 1 for
∀r.
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Fig. 1. A modified quadratic penalty function (solid) and real
constraints (dashed).

2.3. Discussion and comparison

We compare this new penalty method with a variant of direct

Jacobian penalty method [5, 8].

The direct Jacobian penalty method uses the exact condi-

tion for the local invertibility, so its solution space is larger.

However, our new method has a smaller solution space par-

tially because it constrains the first derivatives of the deforma-

tion. This constraint encourages smoothness inherently which

seems appropriate in medical imaging [3]. Invertibility con-

straints alone do not guarantee smoothness [9] and one could

achieve both invertibility and smoothness by adding a rough-

ness penalty to the Jacobian penalty.

The direct Jacobian penalty method is applied only on dis-

crete grid points of the domain, so it does not enforce local

invertibility on the whole continuous domain. However the

new penalty method can enforce the constraint on the entire

continuous domain.

Lastly, the new penaltymethod is faster andmorememory-

efficient than the direct Jacobian penalty method. The direct

Jacobian penalty method involves the calculation of the Ja-

cobian determinant, which requires additional interpolations

beyond the interpolations needed for the data fitting term. In

general, B-spline interpolations dominate the cpu time for

calculating gradients of the cost function and storing addi-

tional interpolations require lots of additional memory. In

contrast, the new penalty method simply reuses the calcula-

tions needed for common quadratic roughness penalties only

over B-spline deformation coefficients and requires much

smaller additional memory.

3. SIMULATION

We applied this new penalty method to register inhale and ex-

hale 3D breath-hold CT images of a real patient. The image

size was 396 × 256 × 96 as in Fig. 2. The sum of squared
difference was used for data fitting term. We used the con-

jugate gradient method for optimization and determined each

step size by the first step of Newton’s method.

We tuned the regularization parameter experimentally to

1100



achieve the minimum value of data fitting term such that all

Jacobian determinant values on image grid are positive. We

applied a multiresolution scheme. For the first 3 levels of

multiresolution, knot spacing was every 8 voxels for down-

sampled images and then for the last level of multiresolution

the knot spacing was every 4 voxels in each direction.

Fig. 3 shows the results for both methods. On almost

all voxels, the determinant of deformation Jacobian values

were positive. Fig. 3 (b), (c) and (d) show the effect of reg-

ularization comparing to Fig. 3 (a). Fig. 3 (b) and (c) show

that a roughness penalty helps preserve some details inside

lung such as lung nodule which are weak features. These

show that local invertibility alone does not ensure smooth-

ness [9], which is one of the reasons that roughness penal-

ties are often used for nonrigid image registration in medical

imaging [3, 4]. Yet the new penalty method ensures smooth-

ness implicitly since it controls the magnitude of the first or-

der derivative.

The new penalty method was much faster and more mem-

ory efficient than direct Jacobian penalty method. If one

uses the sum of squared error as a data fitting term and pe-

nalizes negative Jacobian determinant values on each image

grid point in 3D cubic B-spline case, then the interpola-

tions needed for gradients of the direct Jacobian penalty

function requires about 1.8 times more operations than the

interpolations needed for gradient of the data fitting term.

In our implementation the direct Jacobian penalty method

was about 4 times slower than our new penalty method. The

direct Jacobian penalty method requires 9 times of the size of

3D image to store each partial derivatives for deformations

in each direction, whereas the new penalty method requires

much smaller additional memory.
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(a) source image (exhale)

target image − x slice
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(b) target image (inhale)

Fig. 2. Real 3D CT source and target images.

4. CONCLUSION

We apply the invertibility sufficient condition of transforma-

tion to the image registration problem by using quadratic-like

penalty approach. This approach provides not only an invert-

ible deformation, but also a smooth deformation. Over direct

Jacobian penalty method, this approach has the advantages

such as enforcing the invertibility on the continuous domain

as well as memory-efficient, faster computation because it

does not require interpolation for Jacobian values. However,

we observed some bone warping result in each deformed im-

age so the natural further research would be to use a rigidity

penalty term such as [10]. Comparing with constrained opti-

mization methods such as [6] would also be interesting. More

quantitative study is also necessary.

A. APPENDIX

Proof sketch of proposition 1
detJT (r) is an affine function of ∂

∂q
dl(r) for fixed q and

l. This implies that both max and min of detJT (r) are
achieved at either max or min of ∂

∂q
dl(r). Thus, the min and

max of detJT (r) over ∀r is the same as the min and max
of detJT (r) at min ∂

∂q
dl(r) ormax ∂

∂q
dl(r) which are finite

sets. One may easily get the global min and max of det JT (r)
from the given restrictive range of each ∂

∂q
dl(r).

Proof of proposition 2
For d(x) =

∑
i ciβ

n(x/mx − i), by using [11] ∂
∂x

βn(x) =
βn−1(x + 1/2) − βn−1(x − 1/2). Thus,

∂

∂x
d(x) =

∑
i

ci

∂

∂x
βn(x/mx − i)

=
∑

i

(ci − ci−1)β
n−1(x/mx − i + 1/2)/mx.

By using the given cl
i+1,j,k − cl

i,j,k ≥ −b and the property∑
i βn(x/mx − i) = 1, we have the bounds

∂

∂x
dl(r) ≥

∑
i

∑
j

∑
k

(cl
i,j,k − cl

i−1,j,k)βn−1(x/mx − i

+ 1/2)βn(y/my − j)βn(z/mz − k)/mx

≥ −b/mx

∑
i

βn−1(x/mx − i + 1/2)

∑
j

βn(y/my − j)
∑

k

βn(z/mz − k)

≥ −b/mx.

Similarly, ∂
∂x

dl(r) ≤ B/mx and other directions y, z can be
proved in a similar way.
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(b) direct Jacobian penalty method (no roughness penalty)
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Fig. 3. Deformed images (left) and their warped grids (right).
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