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Abstract 
Previous methods for optimizing the scan times for PET 

transmission and emission scans under a total scan time 
constraint were based on linear non-statistical methods and 
used noise equivalent counts (NEC) criteria. The scan 
times determined by NEC analysis may be suboptimal when 
nonlinear statistical image reconstruction methods are used. 
For statistical image reconstruction, the predicted variance in 
selected regions of interest is an appropriate alternative to NEC 
analysis. We propose a new method for optimizing the relative 
scan times (fractions) based on analytical approximations to 
the covariance of images reconstructed by both conventional 
and penalized-likelihood methods. We perform simulations 
to compare predicted standard deviations with empirical 
ones. Results show that for statistical transmission image 
reconstruction, the optimal fraction of the scan time devoted 
to transmission scanning is shorter than for conventional 
transmission smoothing. 

I. INTRODUCTION 
For PET reconstruction, one has to do two sets of scans, 

namely transmission and emission scans. One uses the 
attenuation correction information obtained from the former 
scan to aid in estimating the radiotracer emission image from 
the latter one. Conventional methods of reconstruction are 
based on linear processing of the transmission and emission 
data, multiplicative correction of attenuation factors in the 
sinogram domain followed by FBP to reconstruct the emission 
image. This approach ignores Poisson nature of the data. 
Recently, there is growing interest on reconstructheproject 
methods for attenuation correction in which one reconstructs 
the attenuation map and, after possibly some processing in 
the image domain, this map is reprojected to be used in the 
attenuation correction factors (ACF) computation. The use 
of statistical methods for reconstructing attenuation maps as 
well as emission images is becoming attractive in the medical 
research community, especially due to faster computers and 
faster algorithms. In this paper, we reconstruct ACFs using both 
conventional and penalized-likelihood reconstructheproject 
(PL) methods for post-injection transmission scans. For brevity, 
we reconstruct emission images with FBP only. Resolution 
matching is critical in attenuation correction, so we add 
a post-filtering step to statistical reconstructions to yield 
approximately Gaussian point spread functions which reduces 
artifacts from point spread function mismatches. This post-filter 
reduces the negative sidelobes from the point spread function of 
penalized-likelihood reconstructions [ 11. 

In this work, we study the effects of emission and 
transmission scan time duration on the variance of the 
reconstructed emission image for different reconstruction 

methods. Particularly we are interested in the optimum scan 
time fractions under a fixed total scan time constraint, which 
would result in the smallest variance in a region of interest in 
the final emission image estimate. Previous studies of scan 
time optimization [2] were based on NEC criteria with multiple 
acquisitions of emission and transmission data and focused on 
conventional reconstructions. The (co)variance approximations 
developed here might also be useful for other purposes such 
as determining the weights in a weighted least-squares image 
reconstruction [3]. We analyze both the conventional and 
statistical reconstruction cases. We give approximate analytical 
formulas for conventional and quadratic penalty attenuation 
map reconstructions and compare empirical results with the 
analytical predictions. Our analysis is based on Poisson 
statistics and mathematical approximations [4]. 

Let yE = [yF . . . YE]’ and yT = [y: . . . yz]’ be emission 
and post-injection transmission scan count vectors, and let 
p = [/11 . . .pp]’ and A = [A, . . .Ap]’ be attenuation map and 
emission image pixel value vectors respectively. 

We define the survival probabilities as follows: cti(p) = 
e - ’ ; ( P ) ,  where l i ( p )  represents the line integral along projection 
i of the attenuation map p. We also define the emission 
contamination count rate  KC^ (A ,  p )  = Li ai ai (p )p i  (A).  Here hi is 
the fraction of emission counts contaminating the transmission 
data (the portion in the transmission window for rotating rod 
sources), pi(A) represents the geometric projections of the true 
emission image A, and ai contains the detector efficiencies and 
a scaling factor that accounts for emission scan count rate. 
We assume that the emission scan measurements yE and the 
transmission scan measurements yT are independent Poisson 
measurements with corresponding means: 

Y& A) = TT(bi%(P) + r? + % ( A ,  p ) )  , (1) 

YP(A,p) = TE(Wi(P)Pi(X) + $). (2) 

l i (p )  = [Gp]i = A Cp= lg i j p j  and 

Here, T~ and rE are transmission and emission scan 

pi(A) = gijXj are geometric tomographic projections 
of parameters p and A. b , ,  rT and r? are blank scan, 
transmission scan randoms and emission scan randoms count 
rates respectively. We assume { b i } ,  { rT},  { ai}, { r?} and { gi j  } 
are known constants throughout this work. 

times respectively. 

11. ACF ESTIMATION 
Attenuation correction is a must for quantitatively accurate 

emission image reconstruction. We define attenuation 
correction factors (ACFS) -yi(p) = e ’ i ( ~ )  = l /ct i (p).  This 
is the multiplicative factor that corrects for the effects of 
attenuation in the emission data. We consider two different 
ways of estimating the ACFs: 1) Conventional smoothing 
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method and 2) Reconstructheproject penalized-likelihood (PL) 
method. 

In the non-statistical conventional method, we estimate the 
emission contamination by: 

(3) i. - - smooth{ ki(yF/rE - $)} , 

and we estimate the ACFs by reciprocating the survival 
probabilities, that is yi = l/&, where 

Si = smooth { (yT/rT - r: - k i ) / b i }  . (4) 

The smoothing operation is often used to reduce noise in the 
ACFs. We also use smoothing to reduce noise in the emission 
contamination estimate in (3). 

In a statistical reconstruction, one estimates the ACFs 
by = eli@) where ji is the attenuation map estimate 
computed by the reconstruction algorithm. The emission 
contamination estimate (3) is included in the model. The 
statistical reconstruction is considered in detail in section V. 

111. EMISSION IMAGE RECONSTRUCTION 
For brevity, we consider here the conventional FBP method 

We define the attenuated to reconstruct emission images. 
emission projections function as 

zi(X,p) = P i ( X ) a i ( p ) .  

A linear unbiased estimate of this function is 

2. - - smooth{(yF/TE - T ? ) / E ~ } .  

Then, an estimate of the projections pi (  A) can be obtained by: 

p i  = yjij. 

The emission image is reconstructed by standard FBP method. 
We use the ramp filter only because the estimate is already a 
smooth estimate of pi(X). Thus, 

.i = FBPramp {fiji) . 

IV. EMISSION COVARIANCE ESTIMATES 
The covariance of the emission image estimate vector 

obtained by the above procedure can be written as follows: 

cov  { ;\} = PCOV { p }  P’, (6) 

where the matrix P represents the linear FBP operation with a 
ramp filter. We need to find the covariance of the random vector 
6 = [ij+]L1. The computation of the exact covariance of 
this expression is computationally intensive and is not desirable. 
Instead, we prefer to evaluate this covariance as a separable sum 
of the covariances of the vectors i and +. For this purpose, we 
consider the Taylor series expansion of &?; in the neighborhood 
of E i r j  where 2 and 7 are mean values of i and -i. respectively. 
Then: 

and consequently, 

(9) 
The ACFs yi are not linearly related to variables with 

known covariances. In the conventional method, .i;. = 
1/&. In the statistical method = e’*@). These are 
both nonlinear functions. Since the covariance of ti can be 
found exactly for the conventional method and the covariance 
of ji can be approximated for the statistical method, we 
can linearize these formulas around &i and & to get an 
estimate of the covariance of +. This linearization was the 
method used in [6] to estimate the variances of the ACFs. 
But, this linearization is not very accurate for especially the 
conventional method, because the function f(x) = 1/z cannot 
be closely approximated by a linear function especially when 
the denominator (survival probabilities) is close to zero and the 
variance of the denominator is high. 

To overcome this problem, we propose an approximation 
for the probability distribution function of the ACFs. We 
assume that Ti are lognormal distributed. A random variable 
is lognormal distributed if its logarithm is normally distributed. 
We believe this is a very accurate assumption because yi is an 
estimate of e l t ( f i )  and the projections of any random variable 
(here l i ( j i ) )  can be assumed Gaussian due to the Central Limit 
Theorem. This provides us extra information about the ACFs. 
With this assumption, one can compute the mean and variance 
of Ti’s directly in terms of mean and variance of S; in the 
conventional method and in terms of mean and variance of li 
in the statistical method. 

So, for the conventional method, we get: 

and 

Even with the lognormality assumption, the covariance 
matrix of is not easy to compute directly. But, the diagonal of 
the matrix is known. So, we propose this approximation for the 
covariances: 

u ~ . u ~ j  
COV{Ti,+j} M - u&;u&j cov  {S i ,  &j} (12) 

= u+;u+jp(&i, &j), (13) 

where p(&,  Sj) represents the correlation coefficient of the 
vector &. In matrix form: 

cov  {T} M DlCOV {ti} D1, 

where 
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We make sure that the diagonal of the covariance matrix of y 
matches the variances we get from the lognormal assumption. 
This formula assumes that the correlation coefficient of .i. is 
largely determined by the smoothing operator B and is the same 
as the correlation coefficient for &. 

Plugging in the approximation (9) for .i. and writing Zi R 

6ismooth{pi(Atrue)}, we get the following 

COV {@} R DECOV { i }  DE + DTCOV 

where 

and 
A 

DT = D E V  { smooth{pi(Atrue 

The mean and covariance of i can be found easily from 
the expression (5)  since it is linearly related to yE. A simple 
analysis yields: Zj = smooth pi(Atrue)e-~s(~'rUe) and from 
( 5 )  and (2): 

{ } 
(15) 

1 
COV { i }  = -BV {ai} B', 

T E  

where qi = (Ejai(ptrue)pi(Atrue) + $ ) / E ; ,  and B is a 
smoothing convolution matrix along the radial direction of the 
projection space. It was suggested in [5] that angular smoothing 
is not desirable in attenuation correction, so we smooth only in 
radial direction. 

For conventional ACF computation, ignoring the noise in 
the emission contamination estimate, the covariance of ti can 
be found from (4) and (1). 

A 

1 
COV {&} = -BV {si} BT, (16) 

TT 

A where si = (b ia i (p true)  + TT + & ) / b f .  Here, B is the 
same smoothing matrix as in (15). The same operator B is 
used to obtain both i and ti to avoid artifacts from resolution 
mismatch [7, 81. We used Gaussian smoothing as suggested in 
[7] which avoids any artifacts in the reconstructed image. The 
mean of emission contamination can be determined from (3) as 
ii = B [ I C i ~ i a i ( ~ ~ ~ ~ ~ ) p ; ( X ~ ~ ~ ~ ) ] ~ = ~ .  The variance of &i can be 
found from (1 6) as 

N 

U$i = S i / T T  B&. 
k 

Using (4), one can find the mean values of & as 

6 = B [ ( ~ i ( p ~ ~ ~ ~ ) ] z l .  (17) 

The variance of the sum over a region of interest in the 
emission image can be found from (6), (14), (15) and (16) as 

N with vE = qi(wF)2 and vT = Ezl S ~ ( W ? ) ~ ,  and 
where U is a vector of ones in the region of interest and zeros 
elsewhere. We define the vectors 

WE = B ' D ~ P ' ~ ,  wT B'DTP'U. 
A 

V. PENALIZED-LIKELIHOOD ATTENUATION 
RECONSTRUCTION 

While conventional method of ACF computation has been 
used for some time, reconstructheproject methods have gained 
some interest recently. In a statistical reconstructheproject 
method for ACF computation, an attenuation map estimate 
ji is found from noisy transmission data by maximizing the 
penalized-likelihood objective function @(p;  yT) = L ( p ;  yT) - 
PR(p) ,  where L ( p ,  yT) is the log-likelihood function and R(p)  
is a regularizing roughness penalty function. After estimating 
the attenuation map ji, we estimate the ACFs by: 9; = 
e l i ( f i ) ,  where l i ( j i )  = [GfiIi is the geometric projection of 
the attenuation map estimate f i .  If one uses FBP for emission 
reconstruction, then i should be smoothed to yield similar 
resolution with the -i. [9] in order to reduce resolution mismatch 
artifacts. 

A. Resolution 
Penalized likelihood (PL) or penalized weighted 

least squares (PWLS) methods are very attractive image 
reconstruction methods due to their superb noise reduction 
properties. The variance weighting in PWLS method reduces 
the variance of the estimates as compared to penalized 
unweighted least squares (PULS) or FBP reconstructions, 
because it makes use of the statistical information in the 
measurements. However, attenuation maps reconstructed 
with PL or PWLS methods have non-uniform resolution [1] 
even with a quadratic penalty. This non-uniform resolution is 
caused by the variance weighting in PWLS (or PL) method 
and hence does not exist in a PULS reconstruction. Due to this 
non-uniform resolution, ACF computation by PL method from 
a real transmission scan causes resolution mismatch between 
the emission data and reconstructed ACFs. This mismatch 
reveals itself as artifacts in the final reconstructed emission 
image. 

Fessler's certainty based penalty [9] yields more uniform 
resolution in terms of the average FWHM of the point spread 
function over the image. But, it still has non-uniform resolution 
in that the psf is not circularly symmetric but the level contours 
look like ellipses whose orientation are image dependent and 
space-variant. Stayman and Fessler have recently proposed a 
new modification to the quadratic penalty [lo] which yields 
more circularly symmetric uniform resolution properties. We 
used this modification in our reconstructions. This modification 
makes the resolution properties of the PL method close to PULS 
method. Quadratic PULS method was shown to be essentially 
equivalent to FBP method with the following constrained least- 
squares (CLS) filter defined in spatial frequency domain by 
(equation (50) in [9]) 

sinc(ku) / sinc(u) 
F p ( u ; P )  = sinc(k.u)2 + +3 ' U E [0,0.5] (19) 

where U denotes spatial frequency, k is the ratio of the detector 
strip width to the pixel size of the system model, and c is a 
constant dependent on system geometry. This CLS filter has 
high negative sidelobes in the space domain. The filters that 
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smooth the ACFs and emission data have to be matched. So, the 
emission data should be blurred with the same filter (19). But, 
due to high negative sidelobes of filter in (19), after dividing 
the appropriately blurred emission data to computed survival 
probabilities from reconstructions, we get artifacts especially 
for higher blurring amounts (higher Ps) around the boundaries 
of the image. So, we conclude that the results in [7] does only 
hold for Gaussian smoothing. 

To overcome this problem, we first reconstruct a higher 
resolution image using a smaller ,f3 value than desired and then 
we filter the projections with the'following filter: 

where Fg(u; w) is the desired Gaussian filter with desired 
FWHM w. Now, the emission data is also filtered with 
the Gaussian shaped filter Fg(u; w). This approach reduces 
artifacts and yields acceptable images. The ACF computation 
in this case is done as follows: 

ji = argmax@(,u;yT), 
P 

f = BzGji,  
=Ui = eii, 

where B2 is the convolution matrix 
above. 

B. Covariance Approximations 

(20) 

corresponding to F2( U) 

The covariance formula in (9) is still valid in PL 
transmission reconstruction. We use the following first order 
Taylor series expansion for the ACFs: 

- . .  - 
;U = el; M eft + e'*(ii - li), (21) 

where r = BzGD is the mean projection vector where ,G = 
arg max@(p; jjT) is the image reconstructed with noiseless 

data. ji is a very good approximation for the mean of fi  [4]. Note 
that, we do not use the lognormality assumption here, because 
we believe that the above approximation is accurate enough and 
lognormal assumption leads to much more computation. From 
(21) and (20), 

P 2 0  

To find the covariance of the implicitly defined estimator ji, we 
use the formulas introduced in [4]. 

The general form of penalized-likelihood estimates is 
fi  = arg max@(,u; yT), where ,u is the parameter vector 

and yT is the measurement vector. This defines an implicit 
function fi  = h(yT). A first order Taylor expansion of the 
equation V @ ( p ;  yT) = 0 around (a,  yT) yields the following 
approximation [4]: 

(22) 

where Q = [-VZo@(/i, GT)]-' V1l@(p, yT). We use this 
formula to evaluate the covariance of the penalized-likelihood 

!J 

Cov {ji} M QCov { yT} Q', 

estimate of the attenuation map p. We again ignore the noise in 
the emission contamination estimate and use the mean value for 
it in our approximations. The formula yields: 

where 

Here R is the Hessian of the penalty function and includes the 
modified penalty weights [ 101 and FT = rT + E* .  

In this case, the variance of the sum over a region can be 
predicted with a formula similar to (18). The emission part of 
the formula is now wE = B'V eli P 'u  and qi remains same. 
The transmission part changes a lot due to statistical method as 
term wT should be changed to: 

{ - }  

The most computationally intensive part' in this computation 
is the part where H-lv* should be computed for U* = 
G'B',V Eie" P'u .  This operation can be performed by 
solving the equation Ha: = v* using iterative methods such 
as conjugate gradient. Also, we assume the mean for =U is now, 

These variance predictions are useful, because they do 
not require hundreds of empirical reconstructions of data 
[4]. However, they require knowing the true parameters and 
noiseless sinograms. For real data, these are not known, but one 
can still get a good approximation of variances by replacing the 
true parameters by their noisy counterparts [4]. 

Finally, the optimal time fraction for the emission scan can 
be found by minimizing the variance in (18) with respect to the 
emission scan time when total scan time is fixed. For the QPL 
method, the simple analysis yields 

{ - }  
? = e  1 ; .  

E - to ta lvE - 
V E - U T  . Topt - 

Note that for the conventional method, the above formula is 
invalid because the vT term is not independent from the scan 
time duration rT. 

VI. RESULTS 
We have done a series of simulations to test the proposed 

variance predictions and to find the optimal scan times under 
a total scan time constraint. We used two 2-D images 
corresponding to attenuation map and emission image to 
generate noisy transmission and emission data with 150000 and 
50000 counts per minute respectively. The true images are 
shown in Figure 1. The transmission scan had 5% randoms 
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and an emission contamination of 5%. Emission scan had 10% 
randoms. Randoms rates were assumed to be constant. The 
total scan time was 20 minutes. To obtain empirical standard 
deviations, 300 realizations were generated for each scan time 
distribution. The emission images were reconstructed with 
FBP with a smoothing filter that yields about 9 mm FWHM 
resolution in the image domain. ACFs were computed using 
the conventional and quadratic penalized-likelihood statistical 
methods. The resolutions for the ACFs were matched for 
these two methods. The standard deviations of the sums over 
the heart region in the reconstructed emission images were 
found empirically and predicted analytically using the derived 
formulas. The results are shown in Figure 2 as a plot of 
standard deviation estimates versus emission scan time fraction. 
The statistical method not only reduces the overall variance, 
but also yields a larger optimum emission scan time fraction 
(about 40%) as compared to the conventional method (about 
30%). The standard deviation is reduced by about 1520% in the 
statistical method as compared to the conventional method. The 
predictions seem to match the empirical data for the statistical 
reconstruction, but the predictions for the conventional method 
seem to underestimate the standard deviations. We conjecture 
that, the approximations used in deriving the variance formulas 
causes the mismatch. We are currently working on improving 
our approximations. Due to highly nonlinear processing of data 
however, it is likely that there will be some discrepancy between 
predicted and empirical standard deviation estimates. 

VII. CONCLUSION 
We presented new approximate formulas for covariances of 

reconstructed emission images with conventional and statistical 
ACF computation for post-injection scans. These formulas can 
be used to predict the variance of the sum over a region of 
interest in the final reconstructed emission image instead of 
expensive empirical reconstructions. These formulas can also 
be used to determine optimal scan times devoted to emission 
and transmission scans under a total scan time constraint. 
Results show that, statistical ACF computation not only reduces 
the overall standard deviation but also yields higher optimum 
emission scan time fraction than the conventional method. The 
covariance approximations for statistical method work well for 
quadratic penalties, but not for non-quadratic penalties. We 
plan to extend our work to cover non-quadratic penalties in the 
future. 

attenuation map emission Image 

sum of pixels inside the heart region 

I 
1 

wnlulon sun tlnn hction 

Figure 2: Standard deviation of the sum over the heart region estimates 
versus emission scan time fraction for conventional and statistical 
ACF computations. 
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Figure 1: The attenuation map and emission image used to generate 
simulation data. 
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