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Abstract 

The implementation of spectral analysis techniques 
involves solving a highly underdetermined linear system 
equation and is prone to the effect of measurement noise. 
We propose to use a regularized non-negative least-square 
estimator to stabilize the implementation of the technique. 
We introduce a penalty term in our formulation of the 
objective function to discourage disparities in tracer 
kinetics between neighboring pixels and use an iterative 
method to impose positivity constraints. We show results 
from analysis of FDG thorax images of patients suspected 
to have cancers and summarize our findings. 

I. INTRODUCTION 

Spectral analysis is a flexible non-parametric technique 
for characterizing the kinetic behavior of radiotracers. It has 
been known that for all biological systems, linear or 
nonlinear, if the system is injected by a tracer in a steady 
state, the distribution of the tracer follows the kinetics of a 
linear compartmental system, which has sums of 
exponential solutions [ 11. Tobler [2] and Cunningham [3] 
wisely chose a set of exponential functions, convolved with 
the plasma input function, as basis functions. With such 
formulations, the time activity curve of a region or a pixel 
can be written as a linear combination of the basis 
functions with corresponding coefficients. The original 
implementation of the technique used a non-negative 
simplex method or non-negative least-squares to compute 
the coefficient of each basis function [2, 31. Since this 
technique does not require a predefined compartmental 
structure and it can be used to characterize tracer kinetics 
in various tissue types or even mixtures of different tissue 
types, it provides a unique tool for image analysis of 
complex functional structures where image pixels may 
contain inhomogeneous tissue types. However, the 
implementation of the technique involves solving a highly 
underdetermined linear system equation and is prone to the 
effect of measurement noise. 

We propose to use a regularized non-negative least- 
squares  es t imator  (RNNLSE) to  s tabi l ize  the 
implementation of the technique. We introduce a penalty 
term in our formulation of the objective function to 
discourage disparit ies in tracer kinetics between 
neighboring pixels. Since the number of parameters (the 
product of the number of pixels and the number of spectral 
coefficients for each pixel) is too large, the implementation 
of the estimator has to rely on iterative algorithms. We 
choose to use coordinate decent algorithms because it can 

naturally incorporate positivity constraints. To minimize a 
potential problem of loss of resolution due to spatial 
smoothing as a result of regularization, we also implement 
and compare edge-preserving penalty functions with 
quadratic penalty functions. 

We hypothesize that RNNLSE can provide better 
spectral images for visual interpretation. To test our 
hypothesis, we compared RNNLSE with non-negative least- 
squares estimators ("LSE) by analyzing images of 
patients who were suspected to have lung cancers and 
breast cancers and underwent PET FDG imaging. We chose 
to analyze FDG images in this preliminary investigation 
because the kinetic components of FDG are well- 
understood and FDG compartmental parameters can be 
easily related to spectral coefficients (making the 
interpretation of spectral images plausible). 

In Section I, we review some properties of spectral 
analysis and give our formulation. Section I1 describes 
some implementation issues including criteria, penalty 
functions, and algorithms. Section I11 reviews the FDG 
compartmental model. Data analysis experiments are 
described in Section IV. Results are shown in Section V 
and discussion and future work in Section VI. 

11. SPECTRAL ANALYSIS 

We write the time activity of the j-th pixel y j ( t )  as a 
linear combination of a set of basis functions each of which 
has a coefficient xu 

where N (typical values of which is 100) is the number of 
basis functions and the i-th basis function a,(t> is related 
to the plasma time activity B(t )  and an exponential 
function e-Pjr as foIlows 

The values of PI are predetermined in order to cover an 
appropriate spectral range. Therefore, the only unknowns in 
(1) are the coefficients xu. We concatenate all the 
measured time activities (typical number of which is 20) of 
every pixel in a long vector Y ,  collect all corresponding 
terms a, ( t )  in a matrix A ,  concatenate all the x,, in a 
vector X, and rewrite (1) as 

Y = A X .  (2) 

0-7803-3 180-X/96$5.0001996 1680 



Since the typical number of the basis functions is 5 times 
greater than that of measured time activities, (2) is a 
under-determined linear system and the solution of it is 
prone to the effect of measurement noise. 

11. IMPLEMENTATION ISSUES 

A. Criteria 

The original implementation of spectral analysis used 
NNLSE, which is based on least-square criteria and 
constrained optimization techniques, and can be 
summarized as follows 

@(X) = ( A X -  Y ) T ( A X -  Y )  (3) 

ri = argmin o(x), x 2 o 
X 

where the solution is constrained to be non-negative. 
Notice that this implementation does not have any spatial 
constraints. It allows neighboring pixels to have vastly 
different spectral coefficients and ,therefore, can 
potentially give noisy spectral images. To minimize this 
potential problem, we propose to incorporate a penalty in 
(3) to discourage disparities in the values of spectral 
coefficients between neighboring pixels as follows 

N 

@(X) = ( A X  - Y ) T ( A X  - Y )  + a x  4 ( X ) .  (4) 
i=l 

where c(X) is spatially applied to the i-th spectral 
coefficients. 

B. Penalty functions 

The penalty terms in (4) have the following form 

where wja equals to 1 for horizontal and vertical 
neighboring pixels and is zero otherwise. We choose to use 
a quadratic penalty 

and an edge-preserving penalty [4] 

where 6 can be adjusted to achieve the desired edge- 
preserving effect. Figure 1 shows some properties of (7). 
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Fig. 1. Plots of normalized edge preserving functions. The 
function becomes quadratic when 6 + - and it approaches 
an absolute function when 6 + 0.  

C. Algorithms 

Since the dimension of A in (2) is too large, the 
implementation of RNNLSE has to rely on iterative 
algorithms. We choose to use coordinate decent algorithms 
because it can naturally incorporate positivity constraints. 
Thus, in each iteration n we sequentially update every xii 
using the 1D Newton's method by fixing other parameters at 
their current values as follows 

When quadratic penalty functions are used, (8) has one 
step solution. However, when edge-preserving is used, few 
iterations of (8) are required to achieve sufficient decreases 
in the objective function value. Thus, in each step of (8), 
the minimum of the objective function in the subspace 
spent by the parameter xii will either be reached or 
approached further. 

111. FDG COMPARTMENTAL MODEL 

Fig. 2. Schematic diagram of FDG compartmental model 

The compartmental model of FDG is summarized in 
Fig. 2 .  k,  and k,  characterize the rates of exchange of 
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FDG between the plasma and tissue compartments. FDG as 
an analog of glucose can be phosphorylated to FDG-6-P 
and trapped in the cellular space. This process is described 
by k,. The total tissue time activity C,(t) is the sum of the 
free FDG time activity C,(t) and trapped FDG-6-P time 
activity C,(t). By solving the underlying linear differential 
equations, C,(t) can be written as 

It can be shown [5] that the glucose metabolism rate is 
proportional to k,k,/(k2 + k 7 )  and is therefore proportiona! 
to the first term in (9), which in turn corresponds to the first 
spectral component where the exponent 0, = 0 .  Knowing 
this, we consider the image of the first spectral coefficients 
as a map of glucose metabolism rates. 

Iv. EXPERIMENTS 

PET FDG thorax images of 3 patients suspected to have 
lung cancers (n=2) and breast cancers (n=l) were analyzed 
using both RNNLSE and NNLSE. Twenty-five time frames 
were acquired over 60 minutes: 12 x 10 sec, 3 x 20 sec, 2 x 
60 sec, 5 x 300 sec, and 3 x 600 sec. Eighty basis functions 
with exponent values ranging from 0 to 3 /min were used 
and were spaced logarithmically. Input functions were 
determined from a region drawn on either left atrium or 
ascending aorta. Results provided by NNLSE were used to 
initialize RNNLSE, which was carried out for 100 
iterations. 6 in edge-preserving penalty functions was set to 
0.01. To save computation, images were clipped to smaller 
size. 

V. RESULTS 

RNNLSE showed significant improvement over NNLSE 
in the analysis of images from one patient suspected to 
have lung cancers (see Fig. 3(a)-(d)). While the image of 
the first spectral coefficients (Fig. 3(c)) provided by 
RNNLSE with the quadratic penalty function (RNNLSE-Q) 
resembles late FDG images (Fig. 3(a)) in the shape of the 
hot spot region of interest (ROI) and has superior ROI-to- 
tissue contrast, the image provided by NNLSE (Fig. 3(b)) 
is noisy and in some cases even fails to show the complete 
shapc of the hot spot ROI. RNNLSE with edge-preserving 
penalty functions (RNNLSE-E) does not show discernible 
sharpening effects. However, RNNLSE-E provides a 
significantly better fi t  to the dynamic image data than 
RNNLSE-Q does and almost resemble the fit provided by 
RNNLSE (see Fig. 4). The patient underwent bronchoscopy 
and was confirmed to have inflammatory tissues in the 
region delineated by the hot spot. 

Fig. 3. Images of the first spectral coefficients from a 
patient suspected to have lung cancers and was confirmed 
only to have inflammatory tissues. (a) Late FDG image. (b) 
Using NNLSE. (c) Using RNNLSE-Q. (d) Using RNNLSE- 
b. 
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Fig. 4. Each curve is an average of all the pixel been 
analyzed. While RNNLSE-E and NNLSE both provide a 
close fit to the data, RNNLSE-Q does not. 

All estimators provided improved tumor-to-tissue 
contrast in the analysis of images from a patient confirmed 
to have malignant lung tumors (see Fig. 5(a)-(d)). The 
image provided by NNLSE shows the sharpest tumor 
outline (Fig. 5(b)) at expense of more noise. Both 
RNNLSE-E and KNNLSE-Q provide cleaner images. 
RNNLSE-E only provides marginal improvement over 
RNNLSE-Q in preserving the tumor outline. Analysis of the 
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patient suspected to have breast cancers showed similar 
results and images are not shown here. 

Fig. 5. Images of the first spectral coefficients from a 
patient confirmed to have malignant lung tumors. (a) Late 
FDG image. (b) Using NNLSE. (c) Using RNNLSE-Q. (d) 
Using RNNLSE-E. 

VI. DISCUSSION AND FUTURE WORK 

Results of our qualitative evaluation of RNNLSE in 
comparison with “LSE are mixed. For all patients (n=2) 
confirmed to have malignant tumors, both RNNLSE-Q and 
RNNLSE-E provided cleaner images than those provided by 
NNLSE. However, “LSE provided the sharpest tumor 
outlines. For the patient confirmed to have inflammatory 
tissues, RNNLSE bettered NNLSE significantly in every 
visual aspect. It is well known that inflammotory tissues 

can have intensive FDG uptakes and may cause difficulties 
in detecting tumors solely by visual interpretation of FDG 
images. In addition, differences in FDG kinetics between 
inflammotory tissues and tumors are not well understood. 
Therefore, we are unable to comment on the inferior 
performance of “LSE in the analysis of images from the 
patient having inflammotory tissues (compare Fig. 3(b) 
with Fig. S(b)) and its significance to our qualitative 
comparison between NNLSE and RNNLSE. 

Future work includes the following. ( I )  Investigate the 
selection of penalty functions and understand their effects 
on spectral coefficients. (2) Investigate strategies for 
selecting the optimal 6 for RNNLSE-E. (2) Investigate the 
significance of the number of non-zero and zero spectral 
coefficients. For example, we have observed significant 
lower numbers of zero coefficients using RNNLSE (in one 
case 10 times lower). (3) Design optimal spacing for the 
exponents. (4) Design optimal data acquisition schedules 
and shapes of input functions. (5) Quantitatively study the 
property of RNNLSE and NNLSE. (6) Develop display 
methods to  facilitate the interpretation of spectral 
coefficients. 
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