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ABSTRACT 

In this paper we describe a method for computing matrix 
CR bounds for image reconstruction problems using an it- 
erative algorithm that avoids the intractable inversion of 
the Fisher matrix required by direct methods. The algo- 
rithm produces a close approximation to the CR bound re- 
quiring only o(n2) floating point operations per pixel of in- 
terest; an order of magnitude saving relative to the O(n3) 
flops required by non-iterative methods. To illustrate the 
utility of our iterative algorithm we study a prototypical 
application: the dependence of achievable reconstruction 
accuracy on angular and radial sampling. 

I. INTRODUCTION 

The matrix CR bound on the covariance of any unbiased 
image reconstruction algorithm would be very useful for 
establishing fundamental limits on performance for image 
reconstruction and image parameter estimation. The un- 
biased CR bound matrix also enters into the bounds for 
biased estimators we are currently investigating. However, 
direct computation of the CR bound is difficult for image 
reconstruction problems since inversion of a very large di- 
mensional n x n Fisher information matrix Fy is required, 
where n = m2 and image size is m x m pixels. For exam- 
ple, the CR bound for reconstruction of a small q x q ROT 
requires the corresponding p x p submatrix of the inverse 
of Fy, where p = q'. The method of sequential partition- 
ing [l] for computing the upper left p x p submatrix of 
Fŷ ' and Cholesky based Gaussian elimination techniques 
[2] for computing the p first columns of FG1 are efficient 
direct methods for obtaining the CR bound but require 
O(n3) floating point operations (flops). Even for a moder- 
ate image size, O(n3) flops is a tremendous computational 
load. For example, if the image is 128 x 128 then comput- 
ing the inverse Fisher information matrix would require 
on the order of 4 x 10l2 (4 Tera) flops. For comparison, 
this number corresponds to a factor of n = 16,000 more 
than the number of flops required for one iteration of the 
ML-EM image reconstruction algorithm! 
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In this paper we give an iterative algorithm for approx- 
imating the CR bound. The method does not require in- 
verting the Fisher information matrix and requires only 
O(n2) flops/iteration. The algorithm iteratively gener- 
ates a sequence of approximation matrices which converges 
with exponential convergence rate to  the actual CR bound 
matrix FG1. The key to the algorithm is the specification 
of a diagonal "splitting" matrix F which has the proper- 
ties: 1) F-l can be simply computed; 2) the eigenvalues 
of I - F-'Fy are strictly between -1 and +l.  If these 
eigenvalues are nonnegative then the algorithm gives a se- 
quence of approximations that are actually lower bounds 
which converge monotonically to the CR bound. To illus 
trate the utility of our iterative algorithm we study the 
impact of radial and angular sampling on achievable re- 
construction accuracy for ECT. 

11. ITERATIVE CR BOUND ALGORITHM 

Let be the n = m2 element vector of pixel intensities 
for an m x m image, 1 be a d-vector of projections data, 
and A be the d x n system matrix associated with the 
tomographic system. Let e = G(ARo') be a set of param- 
eters of interest which depend only on the pixel intensities 
- ARo' within a region of interest (ROT) of the image, e. . 
when reconstruction of the ROT is of interest G(A) = hRof. 
Without loss in generality assume that the pixels have been 
ordered such that ARo' are the first p elements of A. Then 
!he CR bound on the covariance of any unbiased estimator 
- e is [q: 

COVL(@ 2 VAG * FF1 * VTG, (1) 

where VAG is the gradient [6G/BA1,. . . , OG/8A,,] of the 
function G with respect to 1, and Fy is the n x n Fisher 
information matrix of associated with x. Consider the 
partitions: 

where F11, D are p x p ,  F21, C are (n - p) x p, and F22, E 
are (n - p )  x (n -p). Then since the last n - p  columns 
of VAG are zero the right hand side of the CR bound (1) 
becomes: 

VAG - Fyl VTG, = VAROIG D - VTRorG 
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Note that the CR bound (1) only depende on Fyl through 
its p x p submatrix D. The submatrix D can be found 
from either the first p columna [D,CTIT of the inverse 
FG1 or from the partitioned matrix inverse identity D = 
[F11 - FlaF;;F21]-'; in both cases requiring O(n3) flops. 

Our recursive algorithm for approximating [D, CTIT is 
based on finding a matrix F that dominates Fy in the sense 
F - Fy 2 0. This matrix is called a splitting matrix in 
analogy with classical methods of matrix computations [2]. 
It can be shown that this dominance condition guarantees 
that the eigenvalues of the matrix I - F-'Fy all lie in the 
interval [0, 1) [3]. Define the relaxation parameter 0 5 r 5 
1 and assume that all eigenvalues of rF - Fy lie in the 
interval [-1,1]. Apply the matrix form of the geometric 
series: 

Fyl = [rF - (rF - Fy)]-l 
1 1 -[I - (I - -F"Fy)]-'F-' 
r r 

= 

N t consider the tru cated series for 1 > 0: B(') = 
$r&o[I - !F-'Fy]q F-'. Using induction on k it is 

straightforward to verify that B(') can be obtained by it- 
erating the following recursion out to k = 1: 

r (2) 

with initial condition B(O) = 0, a p x p matrix of zeros. 
By right multiplying each side of the equality (2) by the 
matrix E = kl,. . . ,$,I, where gj is the j-th unit vector in 
R" we obtain the followin recursion for the first p columns 

B(k+l) = [I - -F-lFy]B(k) 1 - -F-l, 1 
, r  

B(')E = E:,. . . ,$] of B a : 
Recursive Algorithm 

h i t  ialiat ion: 

(a) 6') = O an n x p matrix of zeros 
(b) M = [I- !F-'Fy] an n x n matrix 

Recursion: For k = 0, 1, . . . , I :  

The recursive algorithm yields an approximation D(') 
which converges to the p x p  submatrix D of Fyl as 1 + 00. 
The rate of convergence is linear with convergence speed 
inversely proportional to the spectral radius p(M), defined 
as the maximum magnitude eigenvalue of M. Note that 

for r = 1, since in this case D('+') - D(') = ET - [I - 
fF"Fy]'+'F" . E is nonnegative definite, the recursive 
algorithm converges monotonically to D as 1 + 00. Thus 
when r = 1, for each k > $ VAnorG D(k) . VpOl is a 
valid lower bound on CO.@). By letting r < 1 we can 
Baerifice monotone convergence to obtain an acceleration 
in the convergence rate. 

When p is much smaller than n, the n x n times n x p 
matrix multiplication M - @k) requires only O(n2) flops. 
Hence, in these catm the recursion (3) requires only O(n2) 
flops per iteration. Furthermore the initialization step of 
the recursion requires only O(n2) flops since F is diag+ 
nal. Therefore, assuming that the convergence rate p(M) 
is sufficiently fast, the recursive algorithm can be used to 
compute an accurate approximation to the CR bound with 
an order of magnitude fewer flops than the direct Fisher 
inversion methods. 

111. SAMPLING STUDY 

The recursive algorithm of the previous section allows one 
to examine submatrices of CR bounds for ECT problems 
that would have been intractable by conventional meth- 
ods. Define A.,, and A,, the Cth row and Bth column, 
respectively, of the d x n system matrix A = ((Ai,,)). Un- 
der the assumption of Poisson emissions the general form 
for the n x n Fisher information matrix for ECT image (A) 
reconstruction is [3]: 

(5) 

For this paper we used the following diagonal splitting ma- 
trix F 

It can be shown [3] that F is the Fisher information matrix 
associated with the standard choice of complete data in the 
EM-ML algorithm: the set of pixel counts detected in the 
each of d detector "tubes." In [3] it is also shown that, due 
to the data processing inequality for Fisher matrices, the 
Fisher information F for the complete data set dominates 
the Fisher information Fy for the incomplete data set 1. 
To illustrate our recursive algorithm we investigated the 

effect of radial and angular sampling on the CR bound. 
In this study the forward projector corresponds to strip 
integrals whose widths equal the radial sampling interval. 
Three disk objects were studied, each with radii 13 pixels 
within a 32 by 32 image grid. The intensities in Disk 1 
were all set to 1, those in Disk 2 were drawn from a uni- 
form distribution on [1/2,3/2], and those in Disk 3 were 
drawn from a uniform distribution on [0,1]. The ROI con- 
sisted of a single pixel at the center of the disks which was 
set to 1 in all three cases. For each disk object, the CR 
bound on the variance of the center pixel was computed via 

1189 



the recursive algorithm for several different angular sam- 
pling intervals and different radial sampling intervals. The 
mean total number of detected events was held constant 
in all cases. We ran 1000 iterations of the recursive CR 
bound algorithm, and plotted bound versus iteration to 
see if convergence had occurred; it occurred in all but the 
most undersampled case. 

It was observed that the CR bound results for uniform 
disk (Disk 1) and the low variation disk (Disk 2) agree to 
within 2%. This is probably due to the insensitivity of the 
Fisher matrix (5) to object variation as long as the pro- 
jections AA do not vary. Table I displays the relative CR 
bounds for Disk 2, as a function of sampling, and Table I1 
displays the results for Disk 3. “Bin Sire” in these tables 
refers to the ratio of the radial sampling width to pixel 
width. We make the following observations based on Ti+ 
bles I and 11. The fact that the bounds converged to a finite 
value is proof that the systems considered were of full rank. 
As expected, in all cases as radial or angular sampling im- 
proved, the CR bound decreased, reflecting the improved 
condition number of the system matrix. Also, all cases 
showed diminishing returns: beyond some point, further 
sampling is of little value. For Disks 1 and 2, it appears 
that no amount of angular sampling can make up for in- 
adequate radial sampling. This can be seen from the tact 
that when the radial sampling is 0.5 times the pixel size, 
then as the angular sampling increases, the CR bound ap- 
proaches an asymptote which is about 14% higher than the 
bound for 0.125 radial sampling. This implies that along 
the asymptote there is collinearity among the angular sam- 
ples. However, this characteristic is object dependent; for 
Disk 3, the difference between 0.5 and 0.25 radial sampling 
was less than 4%. 

Huesman investigated the effects of radial and angular 
sampling [4] using an analytical approach that relied on 
the assumptions 1) that the noise variance is equal in all 
pixels, and 2) that the system matrix A can be represented 
by line integrals. The iterative method we have described 
can be applied to any system model or noise distribution. 
The results in Tables I and I1 would suggest finer sampling 
is required than is typically implemented. This is due to 
the restriction of the ordinary CR bound to unbiased es- 
timators. In most cases one may be willing to tolerate a 
small amount of bias in an image reconstruction algorithm 
in exchange for reduced variance. Although space limita- 
tions prevent us from going into details, we are currently 
investigating an extension of our CR bound methods to 
biased estimators, based on the uniform bound described 
in [SI. 

Bin Size 
1.0000 
0.5000 
0.2500 
0.1250 
0.0625 

Number of Angles 
20 30 40 60 80 

183.6 166.9 166.9 166.8 166.8 
39.6 15.0 14.8 14.7 14.7 
24.2 4.2 4.1 4.1 4.1 
18.3 1.2 1.0 1.0 1.0 
16.7 0.2 0.0 0.0 0 

Table I: % increase in standard deviation relative to finest 
sampling for Disk 2. 

Bin Size I 
1 I 

Number of Angles 
20 30 40 60 80 ~~ ~~ 

24.9 23.0 22.8 22.8 22.8 
0.5 
0.25 

17.8 4.9 3.8 3.8 3.8 
15.5 1.3 0.0 0.0 0 

Table 11: % increase in standard deviation relative to finest 
sampling for Disk 3. 
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