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ABSTRACT

Recent advances in medical imaging technologies have made
4D image sequences available in clinical routine. As a con-
sequence, image registration techniques are evolving from
alignment of pairs of static volumetric images to spatio-
temporal registration of dynamic (4D) images. Since the
elastic image registration problem is ill-posed, additional
prior information or constraints are usually required to reg-
ularize the problem. This work proposes to enforce local
invertibility (diffeomorphism) of 4D deformations. A novel
sufficient condition for local invertibility over continuous
space and time is proposed and a practical regularization
prior is designed from the theory. The method has been ap-
plied to an image registration (motion tracking) of a dynamic
4D CT image sequence. Results show that using proposed
regularizer leads to deformations that are more plausible
for respiratory motion than the standard approach without
additional temporal regularization.

Index Terms— 4D deformation, local invertibility, dif-
feomorphism, sufficient condition, image registration

1. INTRODUCTION

Nonrigid image registration has been investigated frequently
for many medical imaging applications because patient mo-
tion may not be able to be described rigidly. Since usual
nonrigid image registration problems are ill-posed, there has
been much effort to regularize this inverse problem. There are
many regularization criteria that have been researched [1].

Diffeomorphic or invertible deformation is one of the
most popular regularization rules among nonrigid image
registration. Since most motions for medical imaging appli-
cations are reversible, it is natural to require deformations
to be diffeomorphic or invertible. There are three different
ways to exploit this criteria: using necessary condition [2, 3],
sufficient condition [4, 5, 6], and limited exact condition [7].
These are methods aligning pairs of static volumetric images.
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Nonrigid image registration has been used for register-
ing a sequence of images and diffeomorphism has been de-
sired to be used in many different medical imaging applica-
tions [8, 9, 10]. De Craene et al. [11] used the work of Beg
et al. [12] to enforce diffeomorphism on spatio-temporal 4D
deformations based on a chain of small and smooth deforma-
tions. In this approach, there is no exact constraint for small
and smooth deformations. Rueckert et al. [13] used a chain of
transformations that satisfy Choi’s sufficient condition [4] for
invertible B-spline deformations. We proposed to use larger
constraints [6] to reduce the number of transformations. How-
ever, these sufficient conditions are valid only for 2D or 3D
B-spline deformations.

This paper addresses the local invertibility of spatio-
temporal 4D B-spline deformations. We provide a simple
example to show that enforcing the local invertibility at each
time sample does not enforce the local invertibility over the
whole continuous time. Then, we propose a sufficient condi-
tion that guarantees the local invertibility of spatio-temporal
4D B-spline deformations. We show the image registration
(motion tracking) result of a 4D image sequence onto a 3D
single volume image using 4D CT images of a real patient
based on this sufficient condition.

2. BACKGROUND

2.1. Mathematical model for nonrigid transformation

A 4D nonrigid transformation T : R
3 × R → R

3 × R can
be written

T (r, t) =

[
r + d(r, t)

t

]
, (1)

where r = (x, y, z)T and d(r, t) is a deformation or a dis-
placement. An identity transformation t in (1) is added to
define a composition of transformations. If one put a constant
instead of t at the last row of T , then one can map a 3D image
sequence onto a single 3D image. We model the 3D defor-
mation d = (dx, dy, dz)T with the time axis using a tensor
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product of nth-order B-splines as follows:

dq(r, t) =
∑
ijkl

cq
ijklβ (x/mx − i)β (y/my − j)

·β (z/mz − k)φ (t/mt − l) , (2)

where q ∈ {x, y, z}, mq is knot spacing in q direction, β is
a nth-order B-spline basis, and φ is a basis that satisfies the
following conditions:

∑
l φ (t/mt − l) = 1, ∀t, (3)

φ (t/mt − l) ≥ 0, ∀t. (4)

The goal in 4D image registration is to estimate the defor-
mation coefficients c = {cq

i,j,k,l} by maximizing a similarity
metric Ψ:

ĉ = argmax
c

Ψ[g(·), f(T (·; c))] (5)

where g(r, t) denote a 4D image sequence and f(r) denote a
3D or 4D image.

To help stabilize the estimation, and to have physically
plausible deformations, often we would like to ensure that the
estimated coefficients ĉ correspond to a diffeomorphic trans-
formation T . The methods in this paper are applicable to any
similarity metric; for a survey of such metrics, see [14].

2.2. Local invertibility of deformations over time

If we enforce the determinant values of the 3 × 3 Jacobian
matrix ∇T (r, t) corresponding to r to be positive for all r
and t, we can truly achieve local invertibility of deformations
in the continuous 4D space. However, enforcing it at discrete
time points does not guarantee that the determinant values in-
between these discrete time points are positive.

For a linear transformation T (r, t), assume that we have
two invertible transformations at t = 1 and t = 2 such that

T (x, y, 1) =

[
5 6
4 5

] [
x
y

]

and

T (x, y, 2) =

[
5 4
6 5

] [
x
y

]
.

We can easily show that |∇T (x, y, 1)| = |∇T (x, y, 2)| =
1 > 0. However, if we interpolate a T (x, y, t) value at
t = 1/2 by using a usual linear interpolation, we can
show that T (x, y, 1/2) = T (x, y, 1)/2 + T (x, y, 2)/2 and
|∇T (x, y, 1/2)| = 0 for all (x, y). Therefore, |∇T (r, tn)| >
0 for all r and t1, · · · , tN does not imply that |∇T (r, t)| > 0
for all r in general when one has invertible transformations
at discrete time points and one uses an overlapped time bases
for the time axis interpolation.

3. LOCAL INVERTIBILITY CONDITION FOR
SPATIO-TEMPORAL 4D DEFORMATIONS

This section extends the lemmas and theorems in [6] for 4D
deformations in the continuous space and time domain.

Lemma 1. If bm ≤ cq
i+1,j,k,l − cq

i,j,k,l ≤ bM for ∀i, j, k, l,
then bm/mx ≤ ∂dq(r, t)/∂x ≤ bM/mx for ∀r where q ∈
{x, y, z} Similarly, if bm ≤ cq

i,j+1,k,l − cq
i,j,k,l ≤ bM for

∀i, j, k, l, then bm/my ≤ ∂dq(r, t)/∂y ≤ bM/my and if
bm ≤ cq

i,j,k+1,l − cq
i,j,k,l ≤ bM for ∀i, j, k, l, then bm/mz ≤

∂dq(r, t)/∂z ≤ bM/mz for ∀r respectively.

Proof. For h(x) =
∑

i ciβ
n(x/mx−i), by using ∂βn(x)/∂x =

βn−1(x + 1/2) − βn−1(x − 1/2) [15]

∂

∂x
h(x) =

∑
i

(ci − ci−1)β
n−1(x/mx − i + 1/2)/mx.

Similarly as in [6], using the constraints bm ≤ cq
i+1,j,k,l −

cq
i,j,k,l ≤ bM and the nonnegativeness of βn(·) and φ(·), we

have the bounds

∂

∂x
dq(r, t) ≤ bM/mx

∑
i

βn−1(x/mx − i + 1/2)

·
∑

j

βn(y/my − j)
∑

k

βn(z/mz − k)

·
∑

l

φ(t/mt − l)

≤ bM/mx

where
∑

i βn(x/mx − i) = 1 and
∑

l φ(t/mt − l) = 1.
Similarly, ∂dq(r, t)/∂x ≥ bm/mx. The inequalites of
∂dq(r, t)/∂y and ∂dq(r, t)/∂z can also be proved in sim-
ilar ways.

Therefore, the sufficient condition for the local invertibil-
ity of deformations [6] also holds for 4D deformation models
(2) with a basis φ(·) for continuous time:

Theorem 1. Suppose 0 ≤ kq < 1

2
for q ∈ {x, y, z}. Define:

C5 � {c :− mxkx ≤ cx
i+1,j,k,l − cx

i,j,k,l ≤ mxKx,

− myky ≤ cy
i,j+1,k,l − cy

i,j,k,l ≤ myKy,

− mzkz ≤ cz
i,j,k+1,l − cz

i,j,k,l ≤ mzKz,

|cq
i+1,j,k,l − cq

i,j,k,l| ≤ mqkq for q = y, z,

|cq
i,j+1,k,l − cq

i,j,k,l| ≤ mqkq for q = x, z,

|cq
i,j,k+1,l − cq

i,j,k,l| ≤ mqkq for q = x, y,∀i, j, k, l}.

In (1), if c ∈ C5 then 1 − (kx + ky + kz) ≤ |∇T (r, t)| ≤
(1+Kx)(1+Ky)(1+Kz)+(1+Kx)kykz +kx(1+Ky)kz +
kxky(1 + Kz) ∀r ∈ R

3 and ∀t ∈ R. Moreover, if kx +
ky + kz < 1, then the transformation (1) is locally invertible
everywhere.
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Note that this sufficient condition for 4D deformations is
the same as the condition for 3D deformations in [6] and it
does not require temporal regularization. It is because the suf-
ficient condition in [6] is a convex set. As long as a temporal
basis φ(·) satisfies (3) and (4) (e.g. nth order B-spline basis),
we can use the same sufficient condition for local invertibility
of both 3D and 4D deformations.

4. OPTIMIZATION BASED ON PROPOSED
SUFFICIENT CONDITION

One may use constrained optimization with the proposed suf-
ficient condition (hard constraints) or use a simple penalty
based on this condition (soft constraints) [6].

4.1. Lagrange multiplier

One can use a Lagrange multiplier method to perform image
registration (5) with the proposed sufficient condition for the
local invertibility of 4D deformations. Sdika described the
constrained optimization with a Lagrange multiplier for im-
age registration [3]. This method with the proposed sufficient
condition enforces the local invertibility of 4D deformations
and the estimated B-spline coefficients ĉ ∈ C5.

Since it is a sufficient condition, the constraint may not
contain the true deformations. A concatenation of several
transformations that belong to this constraint may be able to
describe more complicated deformations [13, 6], i.e.,

Tn ◦ Tn−1 ◦ · · · ◦ T 1.

Since the proposed sufficient condition guarantees the local
invertibility of deformations over continuous space and time,
the composition of them also guarantees the local invertibility.

4.2. Simple regularizer

Another way to use this proposed sufficient condition is to re-
lax the invertibility condition by using a penalty method [2,
6]. In a penalty method we maximize an objective function
that is the similarity metric minus a penalty function that en-
courages the invertibility condition, but does not enforce it
strictly.

Being based on the somewhat restrictive solution space
C5, the penalty method can “encourage” the local invertibil-
ity on the whole continuous time and space with a fast and
memory efficient implementation [6]. This implementation
is usually possible because C5 does not require additional B-
spline interpolations beyond the interpolations needed for the
data fitting term.

5. SIMULATION RESULTS

We aligned a sequence of 4D CT images (128 × 128 × 64 ×
10, Fig. 1) to a single 3D reference image with a constrained

4D CT images

1 128
1

64

Fig. 1. 4D CT image sequence (128 × 128 × 64 × 10).

optimization. For 4D deformations, we chose mx = my =
mz = 4 and mt = 2. We also performed pairwise 3D image
registrations from every other motion phases to a reference
frame. B-spline interpolation consumes most of computation
time [6]. An efficient interpolation [15] and a parallelization
with GPU can speed up the computation significantly.

Fig. 2 shows the difference images between a target im-
age and source, deformed images by 3D and 4D. It seems that
deformations in 3D and 4D sufficient conditions can align se-
quence of 4D CT images in Fig. 1. Since 3D sufficient condi-
tion contains our proposed 4D sufficient condition by allow-
ing any interpolation instead of allowing only B-spline inter-
polation, the norm of image difference between deformed and
target images for 3D is smaller than for 4D.

Target − Source

1 128
1

64
Target − Deformed (3D)

1 128
1

64

Target − Deformed (4D)

1 128
1

64

Fig. 2. Difference images between a target (frame 7) and a
source (left, up), a deformed image by 3D deformation (right,
up), a deformed image by 4D deformation (left, down).

Fig. 3 shows the z-direction deformations of 3D and 4D
over a breathing cycle at 5 different voxels (anatomical loca-
tions). This 4D result shows more plausible for a breathing
motion than 3D result without additional temporal regulariza-
tion.

We interpolated deformations by using cubic B-spline for
3D and 4D deformations (7 points between two time frames).
Fig. 4 shows Jacobian determinant values at control points
(square and circle) and inbetween values at 2 different voxels
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Fig. 3. Z direction of 3D (left) and 4D (right) deformations
over one cycle of breathing at 5 different voxels.

(anatomical locations). 3D result shows that the Jacobian de-
terminant of inbetween values may go much lower than values
at control points. The minimum Jacobian determinant values
of 3D and 4D deformations at control frames were 0.30 and
0.31. However, the minimum Jacobian determinant values
of 3D and 4D deformations over all interpolated time frames
were 0.25 and 0.30. Smoothness of interpolator for 3D de-
formations prevented the determinant values decrease signif-
icantly, but without any theoretical justification to control in-
between values.

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2
detJ of 3D

1 2 3 4 5 6
0.2

0.4

0.6

0.8

1

1.2
detJ of 4D

Fig. 4. Jacobian determinants at control points (square, circle)
of 3D (left) and 4D (right) over time and inbetween values at
2 different voxels.

6. DISCUSSION

Enforcing the local invertibility of 4D deformations at dis-
crete times does not guarantee the local invertibility of 4D de-
formations over continuous time. One may achieve local in-
vertibility using additional temporal regularization or smooth-
ing, but it is challenging to determine how much one has
to regularize. Instead of using sufficiently small 4D defor-
mations for local invertibility, our proposed sufficient con-
dition provides a guideline to achieve local invertibility of
spatio-temporal 4D B-spline deformations over continuous
space and time. More experimental results such as compar-
ing with ground truth motions is necessary.
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