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Abstract 
Tomographic image reconstruction using statistical methods 

can provide more accurate system modeling, statistical 
models, and physical constraints than the conventional filtered 
backprojection (FBP) method. Because of the ill-posedness 
of the reconstruction problem, a roughness penalty is often 
imposed on the solution. To avoid smoothing of edges, 
which are important image attributes, various edge-preserving 
regularization schemes have been proposed. Most of these 
schemes rely on information from a local neighborhood to 
determine the presence of edges. In this paper, we propose 
an objective function that incorporates non-local boundary 
information into the 3-D regularization method. We use 
an alternating minimization algorithm with deterministic 
annealing to minimize the proposed objective function to 
jointly estimate region boundary surfaces and object pixel 
values. We apply variational techniques implemented using 
level sets to update the boundary estimates; then, using 
the most recent boundary information, we minimize a 
space-variant quadratic objective function to update the image 
estimate. We present three-dimensional reconstructions from 
real PET transmission data. 

I. INTRODUCTION 
The problem of reconstructing an unknown image f from 

a measurement vector y is usually ill-posed. Knowledge of 
the direct model is rarely sufficient to determine a satisfactory 
solution. If we obtain the maximum likelihood estimate (MLE) 
of the image by maximizing the log-likelihood function L ( f ;  y), 
then the resulting image is very noisy. Thus it is necessary to 
regularize the solution by imposing a priori assumptions. One 
simple regularization method supposes that images are globally 
smooth, and enforces a roughness penalty on the solution by 
adding a quadratic function to the negative log-likelihood. Such 
a “penalized” likelihood objective function has the following 
form: 

( 1 )  Wf) = -L(f;  Y) + PV( f ) ,  

where 

V ( f )  = pf(q12d.-  (2) s 
is a measure of image roughness. The image estimate is 
obtained by f = argminf @(f), where the minimization with 
regard to f is often restricted to the nonnegative values. The 
function given in  (2) is often unsatisfactory, due to the fact 
that many images are not globally smooth. They have region 
boundaries across which the image values can vary rapidly. 
The quadratic regularization in (2) causes edges to become 
blurred. 

A more “edge-preserving” penalty results if one replaces the 
quadratic penalty function in (2) with a nonquadratic function 
II, that increases less rapidly than the quadratic function for 
sufficiently large arguments, such as the Huber function [ I ] :  

(3) 

This function increases linearly, instead of quadratically, 
for arguments larger than 6. Thus the objective function 
penalizes large differences between neighboring pixels less 
severely than the quadratic penalty, while maintaining the 
same level of penalty for small differences. This property 
allows sharper edges in the reconstructed image. However, 
this type of approach only relies on information from the local 
neighborhood to determine the presence of an edge locally. 

11. THREE-DIMENSIONAL NON-LOCAL 
EDGE-PRESERVING REGULARIZATION 

We propose a non-local penalty that incorporates boundary 
and region information into the regularization. We assume 
that the actual object to be reconstructed is everywhere 
differentiable (and thus continuous). We also assume that 
the object consists of regions that are piecewise smooth 
everywhere except very close to the region boundaries where 
the object intensity changes rapidly but continuously to values 
in its neighboring region(s). Thus an edge-preserving penalty 
function should penalize local gradients that are within each 
region more than local gradients that are very close to a 
boundary. Furthermore, we assume that the boundary surfaces 
separating the regions are smooth. 

The objective function we propose also consists of a data- 
fit term and a penalty term. However, our penalty considers 
not only the image values but also the characteristics of region 
boundaries within the image. Following the convention in PDE- 
based image analysis literature, we present a non-discretized 
formulation. Let f denote the object, rk E G denote the kth 
boundary surface, and f2 denote the domain of the image. Let 
R,(r) c R3 denote the mth region, where each R, does not 
include its boundary, hence they are open sets. The regions are 
separated by boundary surfaces r, where J? = uf=c=,I’k. We 
assume that the number of boundary surfaces K is fixed (and 
known a priori) and that the boundary surfaces do not touch 
each other, i.e. I’kl n 17k2 = v) if ICl # I C z ,  which is reasonable 
for transmission tomography. 
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We propose the following objective function of the object f 
and the boundaries I‘ [2]: 

J ( f ,  r) = -LO; Y) + v u ,  r> 

The first term -L(f;y) is the negative log-likelihood that 
measures the “faithfulness” of the reconstructed object to 
the measured data’. The term Jrk dS penalizes the area of 
the boundary surface, so that the boundary surfaces remain 
smooth. The term Jz(f, k, r), which is rotationally invariant, 
penalizes local gradients inside each region more than local 
gradients close to the boundary; b k  : R3 x G k  + R is the 
signed distance of i? to if the closest point on r to i? lies 
on r k ,  otherwise, the function is zero (hence all locations z 
where b k ( z , r )  is nonzero are necessarily in the two regions 
that are separated by r k ) .  The function h k  : IW --t [O, 11 maps 
small arguments to values near zero and larger arguments to 
values near unity. For simplicity, we only use h k ’ s  that belong 
to Cw(-m,+m). The 5 2  term has a similar effect on the 
reconstructed image as the penalty described by Eqn (3); but 
in 52, how much the local gradients at a specific location is 
penalized is decided by where this location is with regard to the 
boundary, hence the penalty is “nonlocal”. 

We use alternating minimization to jointly minimize the 
objective function given in (4) over f and r, i.e., we first hold 
f constant and minimize @ with regard to I?, then using the 
most recent estimate of r, we minimize @ with regard to f ;  
we alternate between these two steps until convergence. When 
f is fixed, the second and third terms depend on I’. We must 
minimize the following objective: 

rn+l = argmin J jn  (r), (9) r 

where J2 was defined in (7). As is common in PDE-based 
image analysis, we perform steepest descent with respect to r. 
For any point 17 = (x, y) on the boundary I’ we evolve that point 
according to the following differential equation: 

where the right-hand side is the negative functional derivative 
of the objective. Since it is difficult to analytically derive 
the functional derivatives of 5 2 ,  we evaluate its functional 

‘The 3-D measurement can be a stack of 2-D measurements, i.e., 
there is no inter-slice rays as in the case of 2.5-D transmission scans; 
or i t  can be truly 3-D. 

derivatives numerically. The functional derivative of JZ must 
point in the normal direction of the curve, as any movement in 
the tangential direction would not change the curve. We use a 
scheme similar to the central difference method for evaluating 
local derivatives. (Central differences are usually accurate to 
a higher order than one-sided differences.) For a given point 
$0 on the contour I?, we define a function z which is zero 
except in the neighborhood of $0 and for which I‘ + z differs 
from I? only in the normal direction. (We can imagine some 
force being exerted on the curve; this force is nonzero only in 
the neighborhood of $0; if we exert this force in the normal 
direction of the curve at & for an infinitesimal period of time, 
then we will have a small perturbation of the curve at $0 in 
the normal direction). Using this idea, we approximate the 
functional derivative of & ( I ? )  at ii = $0 as follows: 

1 J2(r  + z )  - J2(r  - z )  652 
bv’ 2 An 
- - 

1 52(r + z )  - ~ ~ ( r )  - 52(r - z )  - ~ ~ ( r )  
= - (  2 Au AU 

where Au is the area lying between the curve r and the 
perturbed curve + z [3]. 

For the last term in J f ( I ’ ) ,  the direction in which the curve 
length decreases most rapidly is when [4]: 

ar - at = -&, 

i.e., the speed of the evolution at any point is the curvature of 
the boundary at that point, and the curve evolves in the inward 
normal direction. Combining (lo), ( 1  1), and (12), we evolve 
the boundary using the level set method [4-6] according to the 
following: 

h 

dv’ 652 - 
dt 6v’ 
_ -  - -(PK + -)N. 

Evolving the curve according to (13) yields a curve that 
approximately minimizes J f ;  we call this step the “boundary 
estimation” step. 

The force exerted by 52 in (8) is nearly zero in smooth 
regions, and is only significant close to the actual boundary 
where local gradients are large. Fig. 1 illustrates this property 
in one dimension. Let f’ denote the derivative of f in the 
x direction; let ro denote the old boundary at 0.3 and rn 
denote the new boundary at 0.35. Moving the boundary r 
from 0.3 to 0.35 would change h(b(., r)) from h(b(., I’ll)) 
to h(b(., Fn)), i.e., the “valley” of h(b(., I?)) is moved from 
0.3 to 0.35, but the change in the roughness penalty, i.e., 
J (h (b (x ,  r,)) - h(b(x,  ro)))1f’/dx, would be very small. 
Thus evolution according to (13) alone would require a fairly 
close initialization to the actual boundary. We circumvent this 
problem by using the initialization procedure for the boundary 
that employs another force 5 3  (from a global measure) which 
ensures that the boundary moves no matter where the contour 
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is: 

53 penalizes the difference between every pixel value and the 
average pixel value of its region. This is a global measure which 
exerts a force on the curve no matter how close the boundary 
estimate is to the image gradients. 

X 

Figure 1 : Plot of change in JZ when the ‘‘curve’’ is very far from the 
actual boundary 

For the second stage of the minimization, we hold I? fixed at 
its previous estimate rn and minimize with regard to f. When 
r is held fixed, the relevant terms in the objective function (4) 
are the following: 

K 

JrU) = -w; Y) + P J ~ U ,  I C ,  r) (14) 
k = l  

~ ( f ,  k , r )  = h k ( & ( ~ ,  r ) ) iVf(q i2dZ.  J, 
Hence we minimize &(f) with regard to f as follows: 

arg min Jr- ( f )  . f n + l  = (15) 
f 

When updating the boundary using (9), the h function in 
J 2  pushes the boundary toward image locations where the 
gradient is large; when updating the objective f using (15), 
the h function imposes a space-varying weighting of the 
penalty on local gradients. This weighting depends on the 
signed distance from each pixel to the nearest estimated 
boundary. Every term in (14) is quadratic in f, except possibly 
the log-likelihood term, which involves logarithms in the 
case of Poisson measurements. Therefore, the minimization 
problem (15) is a standard penalized likelihood problem, 
and we can minimize Jr over f using methods such as the 
conjugate gradient method [7,8] (if quadratic) or the paraboloid 
surrogates/coordinate ascent method (if not) [9]. 

We iteratively alternate between the two steps (9) and (15). 
Both these two steps will, under ideal circumstances’, 

‘Under realistic circumstances, where dt  is taken to be finite, the 

monotonically decrease the objective as defined in (4). In 
addition, the objective is bounded below, so the algorithm will 
presumably converge toward a local minimum. 

The proposed regularization method allows edge-preserving 
reconstruction of piecewise smooth objects such as PET 
attenuation maps. It does not require any textbook values 
for the attenuation coefficients, and, as illustrated in the 
results below, it allows for nonuniform attenuation coefficients 
in  regions such as the lungs, in contrast to some forms of 
segmentation methods. Qualitatively, the method produces 
good attenuation maps even from 3-minute transmission scans. 
Quantitatively, the bias-variance tradeoffs of the proposed 
method (in 2D results not shown) are superior to statistical 
reconstruction with the “conventional” local Huber penalty 
over the spectrum of regularization parameters. The principal 
disadvantages of the proposed method are implementation 
complexity and computation time, although with an optimized 
implementation the computation associated with the level 
sets should be less than the forward and backprojection 
computations. 

Figure 2: Slice No. 6: left column, 3-minute scan; right column, 
1 O-minute scan; top row, FBP reconstruction; middle row, 3-D Huber 
penalty; bottom row, proposed penalty 

111. RESULTS 
We obtained a I0-minute transmission scan of a real patient 

on a CTI 921 PET scanner, then we thinned this data to the 
equivalent of a 3-minute transmission scan. The image consists 
of 1 3 4 x 1 3 4 ~ 4 7  pixels; the sinogram has 47 slices, each 
consisting of 192 radial samples and 160 angular samples. 
Figs. 4 and 5.  show the reconstructions using the proposed 

minimization of (8) according to a discretized version of (10) may not 
be exactly monotonic. Such effects are inevitable when continuous 
formulations are discretized. 
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penalty. Fig. 2 compares the 6th slice of the reconstruction 
using FBP, the Huber penalty, and the proposed penalty. Fig. 3 
shows the boundary surfaces extracted using the proposed 
penalty. 

IV. DISCUSSION AND CONCLUSION 

We have presented a new regularization method for 
tomographic image reconstruction based on a nonlocal penalty 
function. Simulations show that the nonlocal penalty produces 
transmission reconstructions with better ROI bias/variance 
tradeoffs than a local Huber penalty; when these transmission 
reconstructions are applied to ideal emission data, the nonlocal 
penalty used for transmission reconstruction produces emission 
images with smaller variances (for a fixed spatial resolution) 
for most pixels in  the image [IO]. However, reconstruction 
using the proposed penalty is more time consuming than using 
“conventional” local penalties, i.e., 7- 10 times the time using 
local penalties. 

Currently, the h functions are chosen experimentally, i.e., 
trial and error. A more systematic approach in choosing 
h functions, so that the transition in pixel values between 
neighboring regions can be carefully controlled, will make this 
method much easier to use. 
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Figure 4: Reconstruction using proposed 3-D penalty: slices 1-23 Figure 5: Reconstruction using proposed 3-D penalty: slices 25-47 
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