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ABSTRACT 

The is used widely in signal processing for efficient 
computation of the Fourier transform (FT) over a set of 
uniformly spaced frequency locations. However, in many 
applications, one requires nonuniform sampling in the fre- 
quency domain, i.e., a nonunifom FT. Several papers have 
described fast approKimations for the nonuniform based 
on interpolating an oversampled FFT. This paper presents 
a method for the nonuniform FT that is optimal in a min- 
max sense. The proposed method minimizes the worst-case 
approximation error over all signals of unit norm. Unlike 
many previous methods for the nonuniform FT, the pro- 
posed method easily generalizes to multidimensional sig- 
nals. We are investigating this method as a fast algorithm 
for computing the Radon transform in 2D iterative tomo- 
graphic image reconstruction. 

1. INTRODUCTION 

The fast Fourier transform (FFT) is used ubiquitously in sig- 
nal processing applications where uniformly spaced sam- 
ples in the frequency domain are needed. The FFT requires 
only O(N log N) operations, whereas direct evaluation of 
the discrete Fourier transform requires O ( N 2 )  operations. 
However, a variety of applications require nonuniform sam- 
pling in the frequency domain; examples include magnetic 
resonance image (MIU) reconstruction and computation of 
the Radon transform by means of the Fourier slice theorem. 
Such problems require a nonuniform Fourier transform, yet 
one would like to retain the O(N log N) computational ad- 
vantages of fast algorithms like the FFT, rather than resort- 
ing to brute-force evaluation of the nonuniform FI’. 

Recently several papers in the scientific computing lit- 
erature have described methods for approximating the ID 
nonuniform F T  by interpolating an oversampled FFT, be- 
ginning with [l] and including [2-91. Such methods are 
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often called the nonuniform FFT, or “FT. Most of these 
algorithms have been presented only for 1D signals, and 
many involve somewhat arbitrary choices for interpolation 
functions. In contrast, this paper presents a min-max ap- 
proach to the interpolation problem derived from first prin- 
ciples. We derive the (shift-variant) interpolator that min- 
imizes the worst-case approximation error over all signals 
of unit norm. This method generalizes naturally to multidi- 
mensional signals such as the medical imaging problems in 
MRI and tomography that motivated this work. 

We have applied our new NUFFT method to iterative 
tomographic image reconstruction problems. For most iter- 
ative reconstruction methods, each iteration requires com- 
putation of one “forward projection” and one ‘backprojec- 
tion,” where the forward projection is roughly a discretized 
evaluation of the Radon transform, and the backprojector 
is the transpose (i.e., adjoint) of the forward projector. The 
projection and backprojection steps traditionally involve op- 
erations such as computing the lengths of intersections be- 
tween each tomographic ray and each image pixel. These 
operations are the principal computational bottleneck in it- 
erative reconstruction methods. A variety of methods for 
accelerating this process have been proposed, see e.g., [lo]. 
One natural approach is to use the Fourier-slice theorem, 
which relates the 1D lT of each projection to samples of 
the 2D FI’ of the object on a polar grid’. This approach 
was proposed by Steams et al. for 3D image reconstruction 
[ 11-13], but largely abandoned thereafter due to unaccept- 
able image artifacts that resulted from significant errors in 
conventional interpolatiodgridding methods for converting 
between polar and Cartesian coordinates in the frequency 
space. Our proposed min-max approach to the NLTFFT pro- 
vides sufficiently increased accuracy to largely eliminate 
those artifacts, so that we can compare Fourier slice based 
projections with conventional projection methods in terms 
of computational requirements. (NUFFT methods allow the 
user to tradeoff computation time and approximation error.) 
Delaney and Bresler [14] proposed a clever iterative algo- 

‘Shift-invariance detector blur is easily included in this fxamework. 
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rithm that also uses frequency domain principles; however, 
it is restricted to a particular form of weighting matrix that 
is suboptimal for low-count PET scans. The NUFFT-based 
projector will allow us to use weighting matrices of the form 
needed in PET [ 151 (at the expense of greater computation 
than required by the algorithm in [ 141). Space constraints 
prohibit display of iterative tomographic image reconstruc- 
tion results; this paper derives the new NUFl;T method and 
illustrates its application as a fast method for computing the 
Radon transform based on the Fourier-slice theorem. 

2. THEORY 1D CASE 

For simplicity, we first describe our minimax approach in 
the 1D case. The basic idea is to first compute an oversam- 
pled FFT of .the given signal, and then optimally interpo- 
late onto the desired nonuniform frequency locations using 
a small local neighborhood in the frequency domain around 
each desired value. ' 

The problem is as follows. We are given equally spaced 
object samples' x,, fo rn  = -N /2 ,  -N/2+1,.  . . , N/2-1 
with corresponding FT 

N / 2 - 1  

X ( w )  = ' x,e-inw. 
n = - N / 2  

We wish to compute the FT at a collection of(nonuniform1y 
spaced) frequency locations {urn}: 

N / 2 - 1  

(1) 
n ym = X ( & )  = zne--i-,, 

n= - N / 2  

for m = 1,2,  . . . , A4: Directly evaluating ( I )  would require 
O ( M N )  operations, which is undesirable. Fast computa- 
tion of (1) is called the NUFFI'. 

Our NUFFT algorithm is as follows: 

1. O ( K  log K )  Choose a convenient K 2 N and com- 
pute the ordinary K-point FTT of {zn}: 

fork = 0 , .  . . , K - 1 

2. O ( J M )  Interpolate the X k ' s  to approximate each ym 
using the J nearest neighbors to wrIL. The approxima- 
tion, Gm, to ym has the following linear form: 

K-1  

yrn = Xk2rl*nk = ( X ,  wm), (3) 
k=O 

'In imaging problems, indexing from -N/2 to N/2-1 I S  more natural 
than indexing from 0 to N - 1. 

where 'u,k denotes the collection of interpolation co- 
efficients and "*" denotes complex conjugate. 

To contain computational requirements, we constrain w, 
to have at most J nonzero elements corresponding to the J 
nearest neighbors tow, in the set { gk}. For J odd, define 
the integer km as follows3: 

A J f l  k m - (  - argmin I wm - $ k l ) - -  2 '  

Let um3, j = 1,. . . , J denote the J possibly nonzero en- 
tries of w,. Then the interpolation formula (3) becomes 

J 

(4) 
j=1 

TO use this formula, one must precompute the J M  inter- 
polation coefficients um3, and the M indices { k m } .  (By 
precomputing, we mean that the urnj's depend only on the 
desired sample locations {urn}, which are usually related to 
the underlying system of interest, rather than on the signal 
values {x,}.) 

The problem then becomes choosing the urnj's such that 
y, is an accurate approximation to ym, and such that the 
urnj's are relatively easy to precompute. Dutt and Rokhlin 
used Gaussian kernels for their interpolation method [ 13. 
Nguyen and Liu [7] considered an interpolation of the form 
(4) without an explicit criterion for their choice of the umj's. 

We adopt a niin-max criteriun'for choosing the interpo- 
lation coefficients umj. For each desired sample location 
U,, we determine the vector U, = ( ~ ~ 1 ,  . . . , u,~) that 
minimizes the wurst case approximation error between ym 
and fjm over all signals with unit norm. This is a shift- 
variant interpolation method since each desired frequency 
location has its own set of J interpolation coefficients. Thus 
the storage requirements are O ( J M ) .  

Mathematically, our min-max criterion is as follows: 

Remarkably, this min-max problem has an analytical solu- 
tion that we derive as follows. From (4) and (l), we have 
the following expression for the error: 

13771 - ?h = I J  CXn,,,+Ju:?tj - X(Ljnl) 

l J = 1  

Using (2) and (6), this error expression becomes 

I N I L -  1 N/2-1 

.1=1 n = - N / 2  n = - N / 2  

3A similar formula with slightly different offset is needed for the case 
where J is even. 
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(7) 

J 

1 (8) ei@(k,,,+j)n - einw, 

j=l 

for n = - N / 2 , .  . . , N / 2  - 1. In matrix-vector form: 

gm -= D ( m ) W ~ ,  - b,, (9) 

where D(”) is a N x N diagonal matrix with entries 

W is a N x J matrix with entries wnj = ez%jn, and b, is 
a length-N vector with entries bLm) = einwrn. 

With these definitions, the min-max problem (5) becomes 

Applying the Cauchy-Schwarz inequality, the worst case 
object z is when z = gL/l/gm/l, i.e., 

Inserting this case into the preceding rnin-max problem (1 1) 
and applying (9) reduces the problem to the following: 

The minimizer of this simple least-squares problem is: 

= (W/j$m)’D(”) W )  -1 W’&4’bm 

= (W’IY) -lW’D(m)’bm, (12) 

using (10). Fortuitously, the inverse of the J x J matrix 
W’W is independent of frequency sample location so it  
is easily precomputed. Nguyen and Liu called this type of 
matrix a (KIN,  N ,  J )  regular Fourier matrix [7]. Similar 
to [7 ] ,  the entries of W W  here are given by 

N / 2 - 1  

[W’W],,j = w : ~ w ~ ~  = ~ ( j  - l ) ,  (13) 
n = - N / 2  

where K ( - )  denotes the following Dirichlet-like kernel: 

Remarkably, in this rnin-max framework the final matrix- 
vector product in (12) also simplifies to a closed-form ex- 
pression as follows 

which is essentially a Dirichlet-like function of the residual 
differences between the desired frequency sample locations 
and the nearest oversampled FFT grid points. 

In summary, we precompute the min-max interpolation 
coefficients in (12) via the analytical results (13) and (14). 
This precomputation requires only O ( J 2 M )  operations. A 
key property of (13) and (14) is that they reduce the summa- 
tions over n, thereby making the precomputing practical. As 
noted near (2) and (3), performing the interpolation itself to 
compute the NUFFT requires O(K log K )  + O( J M )  op- 
erations. An accuracy-computation time tradeoff is avail- 
able through the choices for the oversampling factor KIN 
and the neighborhood size J .  Typically we use K M 3N 
and J < 10, so the overall computational requirements are 
roughly O(N log N), akin to the FFT but with a larger con- 
stant. (The larger constant is an unavoidable consequence 
of needing accurate nonuniform frequency samples!) 

3. THEORY 2D CASE 

Space constraints prohibit a full exposition of the multidi- 
mensional case. The overall approach is a natural gener- 
alization of the min-max framework described above. We 
oversample the 2D FFT in both directions, and find the min- 
max interpolator for each desired frequency location using 
the nearest J x J sample locations. The storage require- 
ments are O ( J 2 M ) .  

4. RESULTS 

We applied the 2D NUFFT in conjunction with the Fourier- 
slice theorem to calculate the tomographic forward projec- 
tion (i.e., Radon transform) of the ubiquitous Shepp-Logan 
digital phantom with N x N = 128 x 128 pixels. For com- 
parison, we also computed the projection using discretized 
strip integrals which are based on the areas of intersection 
of a strip corresponding to a PET detector width with each 
pixel [16]. (This system model for PET realistically ac- 
counts for the finite detector width rather than using overly 
idealized line integrals.) The sinogram size was 160 radial 
bins by 192 angles per CTI EXACT PET scanners. 

We compared the conventional strip-integral projections 
vs the --based projections for several values of the 
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neighborhood size J and the FFT oversampling factor KIN. 
For reasonable values of J and KIN the projections are 
indistinguishable when printed in grayscale or in profiles, 
so are not shown. The figure below shows the tradeoff be- 
tween computation time (using Matlab’s t i c  command on 
a lGHz Pentium I11 running Linux) and percent RMS dif- 
ference between the conventional approach and the NCTFFT- 
based approach. We also examined the 11 and 1, norm dif- 
ferences which showed identical trends. 

Using J =, 6 and K = 2 N ,  ‘the approach is 4 
times faster than the conventional approach in this geome- 
try, yet yields a normalized RMS error of less than 0.15%. 
In this case, precomputing the urn’s required less than 8 
seconds. (This precomputation depends only on the scanner 
geometry, and not the object, so needs only to be done once 
for a given tomographic system so its computation time is 
largely irrelevant.) A reduction by a factor of 4 in compu- 
tation time would be quite significant for the practical use 
of iterative image reconstruction methods. 

5. DISCUSSION 

approach to problems where the frequency samples are uni- 
form but the object samples are nonunifom. 
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