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Joint reconstruction of Stokes images from
polarimetric measurements
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In the field of imaging polarimetry Stokes parameters are sought and must be inferred from noisy and blurred
intensity measurements. Using a penalized-likelihood estimation framework we investigate reconstruction
quality when estimating intensity images and then transforming to Stokes parameters, and when estimating
Stokes parameters directly. We define our cost function for reconstruction by a weighted least-squares data fit
term and a regularization penalty. We show that for quadratic regularization the estimators of Stokes and
intensity images can be made equal by appropriate choice of regularization parameters. It is empirically shown
that, when using edge preserving regularization, estimating the Stokes parameters directly leads to lower
RMS error. Also, the addition of a cross channel regularization term further lowers the RMS error for both
methods, especially in the case of low SNR. © 2009 Optical Society of America
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. INTRODUCTION
n remote sensing and astronomical applications the
roperties of light that are commonly measured and ana-
yzed include intensity, wavelength, and coherence [1,2].
n the context of imaging, intensity measurements pro-
ide information on scene content while spectral mea-
urements provide additional information that can be
sed for material classification and target identification.
fourth property of light that is related to imaging is po-

arization. Polarization varies slowly with wavelength
nd so tends to be uncorrelated with spectral measure-
ents [1], thereby offering the potential for image en-

ancements not available with spectral measurements
lone. This paper describes methods for estimating polar-
zation information, i.e., Stokes vectors, from polarimetric
ntensity measurements.

In the context of remote sensing, polarization signa-
ures are used to infer surface features of an object under
ncoherent illumination [1,3]. Manmade objects tend to
ave smoother surfaces than natural objects, so the
echanism of reflection is dominated by specular reflec-

ion, which tends to retain or even enhance any polariza-
ion of the source.

The state of polarization of a transverse optical field
an be represented in several ways [4]; in this paper we
ocus on the Stokes vector representation. The Stokes vec-
or is a four-component vector S= �S0 ,S1 ,S2 ,S3� whose el-
ments are functions of the optical field. The components
f the Stokes vector are defined as follows: S0 is the total
ntensity, S1 is the difference between the intensity trans-

itted by a linear polarizer oriented parallel to the x (0°
eference) axis and one oriented parallel to the y axis, S2
s the difference between the intensity transmitted by a
inear polarizer oriented at 45° to the x axis and one ori-
nted at 135°, and S3 is the difference between the inten-
ity transmitted by a right circular polarizer and a left
1084-7529/09/040962-7/$15.00 © 2
ircular polarizer. In the vast majority of remote sensing
pplications the component S3 is negligible; for this rea-
on it is typical to work with only the first three compo-
ents of the Stokes vector.
The intensity passed by a linear polarizer whose trans-
ission axis is oriented at angle � may be written in

erms of the components of the Stokes vector. The effect of
n ideal linear polarizer is to pass that part of the electric
eld that is along the transmission axis of the polarizer.
et the transmission axis of the polarizer be p�=cos���î
sin���ĵ and the electric field be

E�t� = Ex�t�î + Ey�t�ĵ. �1�

he intensity ���� passed by the polarizer is then

���� = ��E�t� · p��2�

= �Ex
2�t��cos2��� + �Ey

2�t��sin2���

+ 2�Ex�t�Ey�t��sin���cos���, �2�

here �·� indicates time averaging. Using the double
ngle formulas we rewrite expression (2) for the intensity
s

���� = 1
2 ��Ex

2�t�� + �Ey
2�t��� + 1

2 cos�2����Ex
2�t�� − �Ey

2�t���

+ �Ex�t�Ey�t��sin�2��. �3�

The components of the Stokes vector can be written in
erms of the electric field as [5]

S0 = ��0 ° � + ��90 ° � = �Ex
2�t�� + �Ey

2�t��, �4�

S1 = ��0 ° � − ��90 ° � = �Ex
2�t�� − �Ey

2�t��, �5�
009 Optical Society of America
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S2 = ��45 ° � − ��135 ° � = 2�Ex�t�Ey�t��. �6�

y direct substitution, the intensity is related to the
tokes parameters as

���� = 1
2 �S0 + S1 cos�2�� + S2 sin�2���. �7�

or J measurement angles ��1 , . . . ,�J� Eq. (7) becomes a
ystem of J equations. In matrix form the system is

� = TJ�3S. �8�

here �= �����1� , . . . ,���J��� and S= �S0 ,S1 ,S2�. The con-
entional estimate of the Stokes vector uses the pseudo-
nverse, indicated by †, of TJ�3:

Ŝ = TJ�3
† �. �9�

owever, the model (7) and the estimate (9) have ignored
oise, blur, and other degradations. The proposed meth-
ds overcome these limitations.

. IMAGE RECONSTRUCTION APPLIED TO
TOKES VECTOR IMAGING
tatistical image reconstruction techniques are applied to
ata that have been corrupted by nonideal system effects,
.e., noise and blur. When applying a reconstruction algo-
ithm to polarimetric imagery we are confronted with the
uestion of which image set to reconstruct: the polarimet-
ic intensity images or the underlying Stokes images.
hile access to the Stokes images is the ultimate goal, we
ust be concerned with the low signal levels in the S1 and

2 images. On the other hand, the intensity images do not
ave this low signal difficulty and so are good candidates
or improvement through image reconstruction. We inves-
igate both approaches theoretically and numerically. Es-
imation of the intensity images is referred to as the tra-
itional approach and estimation of the Stokes vector is
eferred to as the proposed approach. We explore
eighted least-squares estimators with both quadratic

oughness penalty and edge-preserving regularization.
Our proposed method for Stokes vector estimation can

e generalized to account for optical imperfections such as
etardances [6], but for notational simplicity we assume
he polarization properties of the optical components are
deal here.

. Traditional Image Restoration Approach
n the traditional approach to image restoration we try to
ecover the uncorrupted images from the noisy images in-
ividually. For the polarimetric imaging problem this
ranslates into first restoring the true intensity images
nd then converting those images into Stokes space via
he linear transformation (9). We treat the general case of

polarimetric channels (images), each having a unique
ssociated polarization angle.
Denote the lexicographically ordered data collected in

he jth channel by yj. The system matrix that represents
hysical effects such as optical and detector blur is de-
oted Aj and the noise vector by �j. The data vectors �yj�
nd noise vectors �j are each of length nd. The size of the
ystem matrix of the jth channel is n �n , where n is
d p p
he number of pixels in an individual true intensity image
j. (In general, nd�np.) The model for the jth channel of
he collected data is

yj = Aj�j + �j. �10�

or simplicity, we adopt a zero-mean iid Gaussian noise
odel,

�j 	 N�0,�2I�. �11�

Our goal is to estimate the set of intensity images
= ��1 , . . . ,�J� from the set of measurements
= �y1 , . . . ,yJ�. Penalized-likelihood, or maximum a poste-
iori (MAP), estimators have been used extensively for
uch image reconstruction problems [7–10]. A penalized-
ikelihood estimator for � is given by

�̂ = argmin
�

�− log p�y
�� + R�����, �12�

here R� is a regularization function for the intensity im-
ges. Typically, R���� separates, i.e.,

R���� = �
j=1

J

Rj��j�, �13�

nd the likelihood also separates, so the minimization
roblem for �̂ separates into J individual regularized im-
ge restoration operations, i.e.,

�̂j = argmin
�j

�− log p�yj
�j� + Rj��j��, �14�

here

− log p�yj
�j� =
1

2�2 �yj − Aj�j�2. �15�

After restoring each intensity image �j we then esti-
ate the Stokes vector Ŝ� using a generalized version of
q. (9) that is appropriate for images. The generalization

o images is accomplished by writing the transformation
atrix so that we have a pixel-by-pixel version of Eq. (9):

Ŝ1 = Ť†�̂ = �TJ�3
†

� Inp
��̂, �16�

here Inp
is the np�np identity matrix and � denotes

ronecker product.

. Stokes Estimation Model
e now propose a method for estimating S directly from

. The method for estimating the Stokes vector (images)
irectly differs from from the traditional estimation
odel in both the likelihood function and the regulariza-

ion function.
A penalized-likelihood estimator for the Stokes vector

s

Ŝ = argmin
S

�− log p�y
S� + RS�S��, �17�

here RS is a regularization function for the Stokes im-
ges. As in the traditional estimator the regularization
unction R typically separates, i.e.,
S
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RS�S� = �
j=0

2

Rj�Sj�. �18�

owever, unlike the traditional case the likelihood func-
ion p�y 
S� does not separate, and so the minimization
roblem of Eq. (17) is coupled. On the other hand, Eq. (17)
nvolves fewer unknown parameters than Eq. (12) be-
ause typically J�3.

. ANALYTICAL ESTIMATOR ANALYSIS:
UADRATICALLY PENALIZED
EIGHTED LEAST-SQUARES ESTIMATOR

his section compares analytically the traditional and
tokes estimators. The degrading effect of the imaging
ystem is taken to be optical blur and represented by the
atrix B, i.e., Aj=B in Eq. (10). This matrix is Toeplitz if

he system is shift invariant, but the analysis that follows
pplies to a general B matrix. We assume here that each
hannel has the same optical and detector blur; this is a
easonable assumption, because aberrations and detector
ffects are not affected by linear polarizers.

We focus on the case of four polarimetric measure-
ents (taken with linear polarizers) at angles [0°, 45°,

0°, 135°]; this sets the size of TJ�3 in Eq. (8) to be 4�3,
enoted by T4 hereafter. The Stokes-to-intensity transfor-
ation T4 and the intensity-to-Stokes transformation T4

†

re given by

T4 = 
1
2

1
2

0
1
2

0 1
2

1
2 − 1

2
0

1
2

0 − 1
2

�, T4
† = 

1
2

1
2

1
2

1
2

1 0 − 1 0

0 1 0 − 1
� .

e note for use below that T4�T4=diag�1, 1
2 , 1

2 �, where the
rime indicates conjugate transpose. In fact the analysis
hat follows applies to any set of polarization angles for
hich TJ�3� TJ�3 is a diagonal matrix.

. Traditional Estimator
he data model of Eq. (10) becomes

y = �I4 � B�� + �. �19�

or simplicity we consider a quadratic regularizing pen-
lty function that uses vertical and horizontal neighbor-
ng pixels. In one dimension the regularizer R���� is writ-
en

R���� =
1

2
��

j=1

J

�
k=2

np

��jk − �jk−1
�2 =

1

2
��

j=1

J

�C�j�2, �20�

here C is a finite differencing matrix and � is the regu-
arization “tuning” parameter. Note that it is reasonable
o use the same regularization parameter for the different
olarimetric channels because there is a high correlation
etween them. In two dimensions the summation nota-
ion becomes cumbersome and so we use linear algebra
otation exclusively. Let C be a finite differencing matrix
hat takes both vertical and horizontal differences; then
he regularization function can be succinctly written, not-
ng that C�I � C, as
4
R���� = 1
2��C��2. �21�

he estimator (12) can then be written

�̂ = argmin
�

� 1

2�2 �y − �I4 � B���2 + 1
2��C��2� . �22�

We consider the case of unconstrained optimization and
o the minimizer must satisfy

��� 1

2�2 �y − �I4 � B���2 + 1
2��C��2� = 0.

olving the above equation for �̂ and combining with Eq.
16) yields

Ŝ� = Ť†�I4 � ��B�B + �2�R�−1B���y, �23�

here R=C�C. This expression corresponds to separate
eblurring of each polarimetric channel followed by con-
erting the restored images into Stokes images.

. Stokes Estimator
oting that the system effects are identical to the case of

he traditional estimator we write the data model for the
tokes estimator as

y = �T4 � B�S + �. �24�

Following the same procedure as in the case of the tra-
itional estimator we have the implicitly defined estima-
or

Ŝ = argmin
S

� 1

2�2 �y − �T4 � B�S�2

+ 1
2 ��0�CS0�2 + �1�CS1�2 + �2�CS2�2�� . �25�

n this case the three images being estimated are very dif-
erent and so justify three independent regularization
tuning” parameters. Minimizing with respect to S leads
o the closed form estimator

Ŝ = �T4�T4 � B�B + �2�3 � R�−1�T4� � B��y, �26�

here �3�diag��0 ,�1 ,�2�. We now analyze the two ap-
roaches (23) and (26).

. Spatial Resolution Analysis of the Stokes Estimator
e begin by calculating the mean value of the proposed

stimator (26). To aid in the calculation, define P
diag�1,2,2� and note that T4�T4=P−1=diag�1, 1

2 , 1
2 �. Then

sing Eq. (19),
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here L is a �3np�3np� matrix that acts somewhat like a
iener filter. Each term in the above expression is un-

oupled since the matrices P−1 and �3 are diagonal. To ex-
lore the spatial resolution properties of the estimators,
e approximate B by a circulant matrix. Let Q be the or-

honormal discrete Fourier transform (DFT) matrix; then
he eigendecompostions B and C are approximated by
	Q� and Q
Q�, respectively. Then

E�Ŝ
S� = �P−1
� Q	�	Q� + �2�3 � Q
�
Q��−1

· �P−1
� Q	�	Q��S

= Q��P−1
� 	�	 + �2�3 � 
�
�−1 · �P−1

� 	�	��Q�S.

�27�

We see that the expectation of Ŝ is approximately a fil-
ered version of the true objects with each image having
n independent filter:

Filter for S0 ⇒ Lk =

Bk
2


Bk
2 + �0�2
Fk
2
, �28a�

Filter for S1 ⇒ Lk =
1
2 
Bk
2

1
2 
Bk
2 + �1�2
Fk
2

, �28b�

Filter for S2 ⇒ Lk =
1
2 
Bk
2

1
2 
Bk
2 + �2�2
Fk
2

, �28c�

here �Bk� and �Fk� are the DFT coefficients of the first
olumn of B and C, respectively, and k=1, . . . ,np. We see
hat the S1 and S2 channels have a different spatial res-
lution than the S0 channel unless we choose �1=�2
�0 /2. However, in the intensity model all three channels
lways have identical resolutions.
Matching the spatial resolution of the S1 and S2 chan-

els to the S0 channel also decouples the estimator. That
s, by choosing

�3 = � diag�1, 1
2 , 1

2� , �29�

e have

Ŝ = �T4�T4 � B�B + �2�3 � R�−1�T4� � B��y

= �diag�1, 1
2 , 1

2� � �B�B + �2�R��−1�T4� � B��y

= diag�1,2,2� � �B�B + �2�R�−1�T4� � B��y

= T4
†

� �B�B + �2�R�−1B�y = Ŝ�.

n other words, for the choice (29), with quadratic regu-
arization the Stokes estimator becomes uncoupled and
educes to the traditional estimator.

Next we consider the covariance of the estimator:

Cov�Ŝ
S� = Cov�Ly
S�

= �2�P−1
� B�B + �2�3 � R�−1

· �P−1
� B�B��P−1

� B�B + �2�3 � R�−1.

n the circulant approximation we have

Cov�Ŝ
S� = �2�P−1
� Q	�	Q� + �2�3 � Q
�
Q��−1

· �P−1
� Q	�	Q��

· �P−1
� Q	�	Q� + �2�3 � Q
�
Q��−1

= �2Q�P−1
� 	�	 + �2�3
�
�−1

· �P−1
� 	�	� · �P−1

� 	�	 + �2�3
�
�−1Q�.

�30�

The variance of the ith pixel in each image is

Var�S0i

S� =

�2

np
�

k


Bk
2

�
Bk
2 + �0�2
Fk
2�2 , �31a�

Var�S1i

S� =

�2

np
�

k

2
Bk
2

�
Bk
2 + �1�2
Fk
2�2 , �31b�

Var�S2i

S� =

�2

np
�

k

2
Bk
2

�
Bk
2 + �2�2
Fk
2�2 . �31c�

or the choice (29) the noise in the reconstructed Stokes
mages �S1 ,S2� is twice that of S0, indicating that the
egularization for the �S1 ,S2� images may need to be
tronger than S0. In summary, if one used quadratic regu-
arization with regularization parameters as in Eq. (29),
hen Ŝ and Ŝ� would be identical. Next we turn to the
ase of nonquadratic regularization.

. EMPIRICAL STUDIES
. Edge-Preserving Regularization

n the Stokes images �S1 ,S2� the polarization information
ypically has sharp edges. To recover as much polariza-
ion information as possible the regularization function
hould preserve edges. Since quadratic regularization
ends to wash out edges and smooth noise we explore
dge-preserving regularization using the hyperbolic func-
ion ��t ;��=�2��1+ �t /��2−1�. For fixed � this function is
pproximately quadratic for values of t� and approxi-
ately linear for t��. This behavior will tend to smooth
oise and preserve edges. The Stokes and intensity regu-

arizers are written

R���� = �
j

�
k

���C�j�;��,

RS�S� = �
�=0

2

�
k

���CS��;���.
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The Stokes estimator now has two regularization pa-
ameters per Stokes image and the intensity estimator
as two regularization parameters in total. Since closed
orm expressions for the minimizers of these cost func-
ions are intractable we minimize them numerically. The
umerical optimization was done with the limited
royden–Fletcher–Goldfarb–Shanno algorithm [11]. To
btain optimal values of all regularization parameter
ombinations would be computationally burdensome so
e chose the � parameters by analyzing the local point-

pread function (PSF) [12] of the quadratic estimators.
he � parameters are chosen so that the FWHM of the
stimator is a prescribed amount in regions where the
egularization function is approximately quadratic. The
ocal impulse response is defined by

lj�S� = lim
�→0

Ŝ�ȳ�S + �ej�� − Ŝ�ȳ�S��

�

= �Ŝ�ȳ�S�� � ȳ�S�ej. �32�

For the quadratically penalized, weighted, least-
quares estimator with white Gaussian noise the local im-
ulse response of each Stokes image is independent and
ritten [13]

lkj
= �B�B + �2�kR�−1B�Bekj

, �33�

here k� �0,1,2� indicates the Stokes image. Using a lo-
al Fourier approximation we can compute this impulse
esponse with fast Fourier transforms (FFTs). Since the
FTs are computationally inexpensive we can sweep over
he � parameters and choose the one that corresponds to
n a priori FWHM of the impulse response. By choosing �
o that the estimator has controlled noise smoothing
roperties we can vary the � parameters to find optimal
alues.

. Cross-Channel Regularization
olarimetric signatures usually are correlated in the
tokes parameters S1 and S2. To exploit this correlation

Table 1. Simulation Results „SN

Stokes Traditio

S0
ˆ 0.71±0.0035% 0.91±0.0

S1
ˆ 42.19±0.17% 62.45±0.2

S2
ˆ 45.93±0.19% 67.08±0.2

DOLP 27.83±0.11% 39.90±0.1

Table 2. Simulation Results „SN

Stokes Traditio

S0
ˆ 2.49±0.011% 3.10±0.

S1
ˆ 61.90±0.27% 126.88±0.

S2
ˆ 65.35±0.29% 137.32±0.

DOLP 43.95±0.20% 96.59±0.
e can introduce a cross-channel regularization term into
he cost function. Cross-channel regularization has
roved beneficial in multispectral image restoration algo-
ithms [8,14]. The cross-channel regularization functions
e adopt for the traditional and proposed estimators are

Rcross��� = �cross�
k=1

np ��
j=1

J

�C�j�k
2, �34�

Rcross�S� = �cross�
k=1

np

��CS0�k
2 + �CS1�k

2 + �CS2�k
2. �35�

he traditional and Stokes estimators, using channel-by-
hannel and cross-channel regularization, are then

�̂ = argmin
�

� 1

2�2 �y − �I4 � B���2 + ��
j

��C�j;���
+ �cross�

k=1

np ��
j=1

4

�C�j�k
2, �36�

Ŝ = argmin
S

� 1

2�2 �y − �T4�3 � B�S�2 + �0��CS0;�0�

+ �1��CS1;�1� + �2��CS2;�2�

+ �cross�
k=1

np

��CS0�k
2 + �CS1�k

2 + �CS2�k
2� . �37�

he additional parameters �cross were varied over a range
f values to find optimal settings.

. SIMULATION EXPERIMENTS
imulation experiments were performed to evaluate both
he traditional and proposed estimators as well as the
ross-channel regularization. For the true imagery we
sed polarimetric images that were collected by General
ynamics Advanced Information Systems in Ypsilanti,

5 dB…: RMS Error Percentages

Stokes with
Cross-Channel

Traditional with
Cross-Channel

1.07±0.0035% 1.30±0.0040%

36.97±0.16% 38.57±0.17%

40.58±0.17% 42.00±0.19%

24.78±0.10% 24.54±0.11%

5 dB…: RMS Error Percentages

Stokes with
Cross-Channel

Traditional with
Cross-Channel

2.74±0.012% 3.44±0.015%

58.13±0.25% 69.18±0.30%

61.14±0.26% 75.00±0.33%

42.37±0.18% 46.68±0.20%
R=2

nal

040%

4%

5%

5%
R=1

nal

015%

57%

60%

31%
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ichigan; the polarization angles of the sensor were {0°,
5°, 90°, 135°}. We added known optical blur and Gauss-
an noise to the imagery. The system PSF had a FWHM of
.9 pixels; the PSF was constructed from a phase screen,
arameterized by a uniform distribution of the first 20
ernike polynomials, and placed in an annular pupil. We
efine the SNR of an image by SNR=20 log10��ȳ� / �ȳ
y�� dB, where ȳ and y are the uncorrupted and corrupted

mages, respectively. The simulation experiments were
one using the same PSF at two SNR levels, 25 dB and
5 dB.
The regularization parameters ��0 ,�1 ,�2 ,�� were cho-

en so that the FWHM of the estimator’s PSF was
.5 pixels under quadratic regularization. We chose to set
he parameters ��1 ,�2�=2�0 for increased noise suppres-
ion in the �S1 ,S2� channels. The second set of regulariza-
ion parameters ��0 ,�1 ,�2 ,�� was determined by sweeping
ach parameter over a range of values and choosing the

ig. 1. Noisy and blurred polarimetric imagery. The first row ha
o right the angle of the polarizer is {0°, 45°, 90°, 135°}.

ig. 2. Estimates of Stokes images for SNR=25 dB. All rows
ead from left to right: pristine, proposed method, traditional
ethod. First row, S ; second row, S ; third row, S .
0 1 2
arameters that yielded a minimum RMS error in the es-
imate. The cross-channel regularization was evaluated
or the Stokes estimator with channel-by-channel edge-
reserving regularization. The optimal � values were
sed and the parameter �cross was swept over a range to
etermine an optimal setting. Once the optimal values of
he regularization parameters were determined for both
ata SNR levels, the estimator was evaluated over a 100-
ealization noise ensemble.

. RESULTS
ables 1 and 2 compare the RMS estimation errors of four
uantities over the noise ensemble: (1) the S0 estimate,
2) the S1 estimate, (3) the S2 estimate, and (4) the esti-
ate of the degree of linear polarization (DOLP). The
OLP is a useful quantity in polarimetric image analysis
nd is defined by DOLP=�S1

2+S2
2 /S0.

NR of 25 dB and the second row has an SNR of 15 dB. From left

ig. 3. Estimates of Stokes images for SNR=15 dB. All rows
ead from left to right: pristine, proposed method, traditional
ethod. First row, S ; second row, S ; third row, S .
s an S
0 1 2
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The proposed and traditional estimators both perform
ell in the estimation of S0 at both SNR levels. However,

he proposed estimator outperforms the traditional esti-
ator, especially in the 15 dB SNR case, on the S1 and S2

mages as well as the DOLP. The superior performance of
he proposed estimator can be attributed to the joint na-
ure of the estimator in which regularization is applied di-
ectly to the Stokes images. The addition of the cross-
hannel regularization term improves both estimators.
he cross-channel term improved the traditional estima-
or more than the proposed estimator in RMS error be-
ause of the higher correlation between the intensity
hannels than between the Stokes channels. The addition
f the cross-channel regularization term brought the esti-

ig. 4. Estimates of the DOLP for SNR=25 dB; from left to
ight: pristine, proposed method, traditional method.

ig. 5. Estimates of the DOLP for SNR=15 dB; from left to
ight: pristine, proposed method, traditional method.

ig. 6. Estimates of the DOLP for SNR=25 dB; from left to
ight: pristine, proposed method with cross-channel regulariza-
ion, traditional method with cross-channel regularization.

ig. 7. Estimates of the DOLP for SNR=15 dB; from left to
ight: pristine, proposed method with cross-channel regulariza-
ion, traditional method with cross-channel regularization.
ators into near equivalent performance in the high SNR
ase. In the low SNR case the cross-channel regulariza-
ion helped both estimators but the proposed estimator
aintained superior performance.
Figure 1 shows the noisy and blurred data for both

NR levels; Figs. 2 and 3 show estimates of the Stokes
mages for SNR levels of 25 dB and 15 dB, respectively;
nd Figs. 4 and 5 show estimates of the DOLP for SNR
evels of 25 dB and 15 dB, respectively. Figures 6 and 7
how estimates of the DOLP with the addition of cross-
hannel regularization for both the proposed and tradi-
ional estimators for SNR levels of 25 dB and 15 dB, re-
pectively.

. CONCLUSIONS AND FUTURE WORK
stimation of Stokes vectors directly provides estimates
ith lower overall RMS error as compared with restoring

he intensity images and then transforming to Stokes
pace for interpretation. The addition of a cross-channel
egularization term improves interpretability markedly
or both the proposed estimator and the traditional esti-
ator. In the low �15 dB� SNR regime the proposed esti-
ator outperforms the traditional estimator both with

nd without cross-channel regularization. Future work
ill include addressing nonidealities such as aliasing and
roadband optical PSF effects. Also, estimator efficiency,
onvergence properties, and automatic selection of regu-
arization parameters will be investigated.
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