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Conventional numerical reconstruction for digital holography using a filter applied in the spatial-frequency
domain to extract the primary image may yield suboptimal image quality because of the loss in high-frequency
components and interference from other undesirable terms of a hologram. We propose a new numerical re-
construction approach using a statistical technique. This approach reconstructs the complex field of the object
from the real-valued hologram intensity data. Because holographic image reconstruction is an ill-posed prob-
lem, our statistical technique is based on penalized-likelihood estimation. We develop a Poisson statistical
model for this problem and derive an optimization transfer algorithm that monotonically decreases the cost
function at each iteration. Simulation results show that our statistical technique has the potential to improve
image quality in digital holography relative to conventional reconstruction techniques. © 2004 Optical Soci-
ety of America
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1. INTRODUCTION
Holography is a technique for recording and reconstruct-
ing both the amplitude and the phase of a wave field.1

Analog conventional holography consists of two optical
processes: recording and reconstructing. First, the in-
terference pattern between an object wave front and a ref-
erence beam is recorded with photographic material.
The recorded pattern is called a hologram. Then, one re-
constructs the object’s complex wave front by illuminating
the recording medium with a wave that is similar to the
original reference beam. This process generates the
zero-order image and the twin images called the primary
(virtual) and conjugate (real) images. In in-line hologra-
phy invented by Gabor,2 the reconstructed holographic
image suffers from an overlap of these three images, de-
grading resolution and contrast. To separate the pri-
mary image from other terms, Leith and Upatnieks3 in-
vented off-axis holography by introducing the reference
beam at an angle with respect to the object beam. With
this technique, the zero-order, primary, and conjugate im-
ages appear at different locations, so each image can be
observed separately.

Because the processes of optical recording on photo-
graphic film and optical reconstruction preparation in
analog conventional holography are time-consuming and
lack real-time imaging ability, digital recording of a holo-
gram on a digital detector (such as a charge-coupled-
device (CCD) camera) and numerical reconstruction of a
complex object field on a computer become attractive al-
ternatives and have been useful in many applications.4–8

In digital off-axis holography, the most common approach
1084-7529/2004/050737-14$15.00 ©
for extracting the primary image in numerical reconstruc-
tion is to perform a digital ‘‘spatial filter’’ that selects ap-
propriate spatial frequencies in the Fourier domain of a
hologram.9 Limitations of that approach include a loss of
high-frequency components and interference from other
terms in the hologram, which degrade the reconstructed
holographic image quality. Phase-shifting or phase
modulation7,10,11 methods were proposed to suppress the
zero-order and conjugate images, but they require at least
three holograms to reconstruct one holographic image.
The clever approach proposed in Ref. 12 estimates the
complex object beam by solving a small system of equa-
tions; however, no noise model was considered.

To overcome the drawbacks of existing approaches, in
this paper we propose a new numerical holographic recon-
struction approach based on a statistical model for the
measurements and a physical model of the optical system.
Statistical image formation techniques have succeeded in
many applications.13–16 Statistical image reconstruction
for digital holography can be formulated as an inverse
problem in which we try to obtain a complex recon-
structed holographic image (primary image) from holo-
gram intensity data that are real.

Çetin et al.17 proposed a statistical technique for Fou-
rier holography and other coherent imaging applications.
Their method was based on a Gaussian noise model and
used a least-squares approach. Considering the digital
recording process of a hologram, our statistical model fol-
lows a Poisson distribution having the mean associated
with a squared magnitude of the interference between the
object and reference beams. Because of the ill-posed na-
2004 Optical Society of America



738 J. Opt. Soc. Am. A/Vol. 21, No. 5 /May 2004 S. Sotthivirat and J. A. Fessler
ture of image reconstruction, our statistical technique
uses penalized-likelihood (PL) estimation.18–20 This op-
timization problem is challenging because its negative
log-likelihood function contains multiple global minima.
Therefore regularization is necessary to improve the prob-
lem conditioning and to reduce nonuniqueness. More-
over, we show that using two measured holograms can
improve the results when reconstructing a complex holo-
graphic image with the same number of pixels as the re-
cording device. (The use of two data sets to help estimate
complex quantities has been applied in other optical
problems.21,22)

In PL estimation, the unknown parameter vector,
which represents the complex object field, is estimated by
minimizing a cost function. Since closed-form solutions
are unavailable, we need an iterative algorithm to solve
the problem. However, for the Poisson model, conven-
tional gradient-based minimization is difficult. To sim-
plify the optimization problem and to ensure monotonic
decreases in the cost function at each iteration, our pro-
posed reconstruction approach is based on the use of op-
timization transfer and convexity techniques by finding a
‘‘surrogate function’’ that lies above the original cost func-
tion at each iteration.14,23 Instead of minimizing the
original cost function, we minimize the surrogate function
by using an iterative algorithm, such as the separable-
paraboloidal-surrogate (SPS)14,23 or conjugate gradient
algorithm.

In this study, we demonstrate our holographic recon-
struction method in the specific context of image-plane
holography,24,25 which is a new imaging technique for
forming a three-dimensional (3-D) image of a ‘‘thick,’’ par-
tially transparent object without dissection. This tech-
nique has the same optical sectioning property as that in
confocal scanning microscopy but requires no xy
scanning.24,25 The proposed reconstruction method can
also be applied to phase retrieval problems, to Fourier ho-
lography when the system matrix represents the Fourier
transform, and to Fresnel holography when the system
matrix represents the Fresnel transform.

This paper is organized as follows. Section 2 describes
the measurement model of a digitally recorded hologram.
Section 3 reviews conventional numerical reconstruction
using a spatial filtering technique applied in the fre-
quency domain and introduces iterative reconstruction
techniques. Section 4 proposes a statistical model for
digital holography and introduces a new statistical holo-
graphic reconstruction technique based on PL estimation.
Section 5 applies optimization transfer and convexity
techniques to derive the surrogate functions and the it-
erative algorithm for holographic image reconstruction.
Section 6 compares different holographic reconstructed
images obtained by using our statistical approach and the
conventional reconstruction approach. Finally, conclu-
sions are given in Section 7.

2. MEASUREMENT MODEL FOR DIGITAL
HOLOGRAPHY
For digital holography, a computer performs numerical
reconstruction of the object from a hologram that is re-
corded by a digital detector. Figure 1 illustrates the re-
cording process in digital holography.

We assume a linear relationship between the object
beam uo at the hologram (detector) plane and the object
field f, as described by the following superposition inte-
gral:

uo~r! 5 E h~r; r8!f true~r8!dr8, (1)

where h(r; r8) denotes the continuous-space point-spread
function (PSF) of the optical system, f true(r) denotes the
true object, and r denotes two-dimensional (2-D) spatial
coordinates on the recording plane. For a planar object,
r8 denotes the 2-D coordinates within the object plane.
For a 3-D object, r8 denotes the 3-D coordinates within
the object volume. For 3-D reconstruction in image-
plane holography, one must scan the object (or the focal
plane) along the optical axis and record a set of holo-
grams. For simplicity, in this paper we focus on the 2-D
case. In practice, the recording medium has finite thick-
ness, but we ignore this effect here for simplicity.

For image-plane holography, the PSF h represents the
characteristics of the imaging optics. For Fourier holog-
raphy, h includes a Fourier transform, and for Fresnel ho-
lography, h includes a Fresnel transform (an approxima-
tion of the diffraction integral).1 In all cases, the
information about the object f of interest is embedded in
the object beam uo .

For analog conventional holography, the interference
between the object and reference beams at the recording
plane has the following continuous-space intensity1:
Fig. 1. Diagram of digital holography.
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I~r! 5 uuo~r! 1 uref~r!u2

5 uuo~r!u2 1 uuref~r!u2 1 uo~r!uref* ~r! 1 uo* ~r!uref~r!,

(2)

where uref denotes the (known) field of the reference beam
and * represents the complex conjugate. The first two
terms in Eq. (2) constitute the zero-order image; the third
term, which is proportional to uo , leads to the formation
of the primary image; and the fourth term, which is pro-
portional to uo* , leads to the formation of the conjugate
image.1 For off-axis holography, the reference beam is
oriented at some angle resulting in a known spatial car-
rier frequency denoted by a. An example of such a ref-
erence beam is a plane wave that is tilted by an angle u
5 (ux , uy) in the x and y directions with respect to the
optical axis, i.e.,

uref ~r! 5 Uref exp~2i2pr – a!, (3)

a 5 S sin ux

l
,

sin uy

l
D , (4)

where Uref denotes the amplitude of the reference wave
and l is the wavelength.

Let Y 5 (Y1 ,...,YN) denote the (noisy) hologram mea-
surement data recorded by a digital detector, where N de-
notes the number of measurement elements. We treat
the measurement recorded by the ith element of the digi-
tal detector as a random variable whose mean is modeled
as follows:

E~Yi! 5 uuo~ri! 1 uref~ri!u2 1 bi , i 5 1,...,N, (5)

where bi denotes offsets due to effects such as dark cur-
rent and ri denotes the center of the ith detector element.
For simplicity, we treat the CCD camera response as a
Dirac impulse at the center of each element. One could
generalize Eq. (5) to include convolution with a CCD point
response function. The reconstruction goal is to estimate
the object f from the measurements Y by using the model
(5).

3. NUMERICAL HOLOGRAPHIC
RECONSTRUCTION METHODS
This section first reviews conventional numerical recon-
struction using a filtering method and then introduces it-
erative reconstruction techniques.

A. Conventional Filtering Approach
The first step in conventional numerical holographic re-
construction is to apply a ‘‘filter’’ in the frequency domain
to extract either the primary or the conjugate image cor-
responding to one of the last two terms of Eq. (2). This
conventional approach assumes that the reference beam
is planar, as in Eq. (3). By substituting Eq. (3) into Eq.
(2) and taking the Fourier transform, we convert the
spatial-frequency spectrum of the recorded interference
pattern into an angular spectrum of diffracted waves:

I~n! 5 Io~n! 1 uUrefu2d ~n! 1 Uref Uo~n 2 a!

1 Uref Uo* ~2n 2 a!, (6)
where n denotes 2-D spatial frequencies, Io denotes the
Fourier transform of the intensity of the object beam, Uo
denotes the Fourier transform of the field of the object
beam, and a was defined in Eq. (4). The zero-order spec-
trum, consisting of the first two terms of Eq. (6), must be
eliminated to avoid having a background bias in the re-
constructed image. The two first-order spectra, the last
two terms of Eq. (6), lead to the primary and conjugate
images, respectively. Figure 2 shows a simulated re-
corded hologram for a planar reference beam tilted along
the x direction, the magnitude of the Fourier transform of
the hologram, and the reconstructed image obtained with
the conventional technique.

Considering the Fourier transform of the hologram in
Fig. 2, one can extract either the primary or the conjugate
image by using a mask to select only one of the first-order
spectra and then taking the inverse Fourier transform.
Because Eq. (6) consists of four terms yet only one term is
extracted, one must consider the appropriate dimensions
of the reconstructed image. The usual choice is to recon-
struct a holographic image that is the same size as that of
the CCD array; this requires zero padding in the high-
spatial-frequency regions surrounding the extracted fre-
quency components. This conventional approach yields a
reconstructed image with poorer resolution than the in-
trinsic recorder resolution owing to the discarded high-
frequency components, and it also suffers from degrada-
tion by interference from the residual frequency
components of other undesirable terms.

For image-plane holography, no further processing of
the extracted image is required after computing the in-
verse Fourier transform. However, for digital Fresnel
holography, an additional processing step is required in
which the (discretized) Fresnel transform of the image is
computed (similarly for Fourier holography). In con-
trast, the statistical approach described next requires no
such postprocessing, since the effects of the Fresnel or the
Fourier transform are incorporated into the PSF h in Eq.
(1) and hence into the system matrix A defined in Eq. (9)
below.

B. Iterative Reconstruction
For iterative holographic reconstruction, one must pa-
rameterize the continuous-space object in Eq. (1). We ap-
proximate the true object f true(r) by using a linear combi-
nation of basis functions as follows26:

f true~r! ' f~r! 5 (
j51

P

xjx j~r!, (7)

where f(r) is an approximation of the true object in the
continuous space, xj is the unknown complex coefficient of
the jth basis function, P is the total number of parameters
(e.g., pixels) to be estimated, and x j(r) is a basis function.
For example, x j(r) is usually chosen to be the indicator
function over the jth ‘‘pixel’’ in the object plane, and we
adopt this choice in our numerical experiments. How-
ever, the formulation is general to any choice of basis
functions. Combining Eq. (1) and relation (7), we write
the object beam uo(ri) in the following discrete form:
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Fig. 2. Holographic reconstruction using a filtering method. IFFT, inverse fast Fourier transform.
uo~ri! 5 E h~ri ; r8!(
i51

P

xjx j~r8!dr8 5 (
j51

P

aijxj 5 @Ax# i ,

(8)

where aij is the ijth element of the system matrix A and
x 5 (x1 ,...,xP). Each aij denotes the contribution of the
jth basis function to the object beam uo(ri) at the center
of the ith recorder element and can be expressed in terms
of the system PSF and the basis functions as follows:

aij 5 E h~ri ; r8!x j~r8!dr8. (9)

Combining these expressions with the definition
ui,uref(ri) leads to the following model for the measure-
ment means:

E~Yi! 5 u@Ax# i 1 uiu2 1 bi , i 5 1,...,N. (10)

We use this model for statistical holographic reconstruc-
tion. The goal is to estimate x from the measured Yi’s,
since x parameterizes the unknown object f of interest.
In the special case of space-invariant systems, the system
matrix is Toeplitz and Ax corresponds to convolution be-
tween the image represented by x and the discrete-space
system PSF.

With the use of Eq. (10), iterative techniques can esti-
mate the complex object field from the measurement data
(recorded holograms). Unlike the conventional filtering
method, iterative techniques can use all of the informa-
tion in the model (2) rather than discarding all but one of
the four terms. Furthermore, iterative methods need not
assume that the reference beam is planar. Therefore it-
erative methods could work for both in-line and off-axis
holography. Since the recorded hologram is real,
whereas the unknown object field is complex, if one at-
tempts to estimate a complex holographic image having
the same number of pixels as CCD elements, i.e., P
5 N, then the problem will be underdetermined, since
each xj in relation (7) is complex valued and so consists of
two unknown numbers. Regularization may help reduce
this problem. Alternatively, one should choose the num-
ber of parameters P (and/or the number of recorded holo-
gram samples N) such that N > P, so that the problem is
not intrinsically underdetermined.
Digital hologram measurements are degraded by noise,
so before describing an iterative algorithm for holographic
reconstruction in Section 5, we first formulate a statisti-
cal model for the noise.

4. STATISTICAL MODEL
Statistical techniques for inverse problems require a
model for the measurement statistics. In digital hologra-
phy, the two major noise sources are light quanta statis-
tics characterized by a Poisson distribution and electronic
readout noise characterized by a Gaussian distribution.
Since Poisson-distributed photon noise is inherent in op-
tical imaging, whereas readout noise depends on detector
design, we focus on the Poisson component.27 (Readout
noise variance can be included in the bi term below if
needed.27) In particular, we model the noisy hologram
measurements as having independent Poisson distribu-
tions with means described in Eq. (10):

Yi ; Poisson~ u@Ax# i 1 uiu2 1 bi!, i 5 1,...,N.
(11)

All terms in this expression are assumed known except
for the unknown image vector x. Because x is complex,
the problem will be underdetermined if the size of the
data vector Y is less than twice the number of elements of
x, i.e., if N , 2P.

Since the system matrix A is usually ill-conditioned in
imaging problems, we use PL estimation to reconstruct
the holographic image by finding the minimizer x̂ of a cost
function of the following form:

F~x! 5 L~x! 1 V~x!, (12)

where L denotes the negative log-likelihood function cor-
responding to the statistical model and V denotes a
roughness penalty function. Our focus is image-plane
holography, which uses incoherent illumination. For im-
aging with highly coherent illumination, one may need to
consider the effects of speckle when designing the rough-
ness penalty.28,29

Ignoring irrelevant constants independent of x, the
negative log-likelihood function corresponding to the sta-
tistical model (11) is given by
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L~x! 5 (
i51

N

hi~@Ax# i!, (13)

where hi is a real function of a complex scalar argument
defined as follows:

hi~l ! , 2yi log~ ul 1 uiu2 1 bi! 1 ~ ul 1 uiu2 1 bi!,
(14)

where l denotes a general complex argument. It will be
convenient to also write hi as an explicit function of the
real and imaginary components of its argument, i.e.,
hi(l) 5 hi(l

R, lI), where l 5 lR 1 ilI, and where the su-
perscripts R and I denote the real and imaginary parts,
respectively. Each yi denotes a (real-valued) realization
of the Poisson random variable Yi .

We consider penalty functions that discourage differ-
ences between neighboring object pixels having the fol-
lowing form23:

V~x! 5 b(
i51

r

c ~@Cx# i!, (15)

where c is a potential function that determines the be-
havior of the penalty function, C is a penalty matrix that
defines adjacent neighboring pairs of pixels, b is a regu-
larization parameter that controls the degree of smooth-
ness in the reconstructed image, and r is the number of
pairs of neighboring object pixels. Examples of potential
functions include the quadratic potential function c (t)
5 t2/2 and nonquadratic potential functions, such as30

c ~t ! 5 d 2@ ut/du 2 log~1 1 ut/du!#, (16)

where d is a parameter than controls the degree of edge
preservation.30–32 The smaller the d, the stronger the de-
gree of edge preservation. For simplicity, the penalty
matrix that we used in this paper consists of horizontal
and vertical adjacent neighbors, which is called a first-
order neighborhood. An example of the matrix C for a
2 3 2 image is

Cx 5 F 21 1 0 0

0 0 2 1 1

21 0 1 0

0 2 1 0 1
G S x1

x2

x3

x4

D 5 S x2 2 x1

x4 2 x3

x3 2 x1

x4 2 x2

D .

Our goal is to estimate x by finding the minimizer of
the cost function:

x̂ , arg min
x

F~x!.

Since closed-form solutions for the minimizer are unavail-
able, iterative algorithms are needed.

5. ALGORITHM
In this section, we approach the minimization problem by
using optimization transfer and convexity techniques.
These lead to an iterative algorithm that monotonically
decreases the cost function.
A. Optimization Transfer
Directly minimizing the cost function in Eq. (12) is diffi-
cult for nonquadratic hi’s. To simplify the optimization
problem and to ensure monotonic decreases in the cost
function at each iteration, one can apply an optimization
transfer approach by finding a ‘‘surrogate’’ function f that
lies above the cost function.14,23,31,33 At each iteration,
we obtain the next estimate by finding the minimizer of
the surrogate function,

xn11 , arg min
x

f~x; xn!, (17)

where xn denotes the estimate at the nth iteration.
Choosing a surrogate function f that satisfies the fol-

lowing monotonicity condition ensures that the iterates
xn will monotonically decrease the cost function F14,31,33:

F~xn! 2 F~x! > f~xn; xn! 2 f~x; xn! ;x > 0.
(18)

Instead of using the condition above, we choose a surro-
gate function f(x; xn) that satisfies the following suffi-
cient conditions:

~ i! f~xn; xn! 5 F~xn!,

~ ii! f~x; xn! > F~x! ;x P CP,

~ iii!
]

]xj
f~x; xn!ux5xn 5

]

]xj
F~x!ux5xn ;j, (19)

where CP defines a P-dimensional complex space.
Subsection 5.B presents the surrogate functions for the

cost function given in Eq. (12).

B. Paraboloidal-Surrogate Functions
We first focus on the likelihood part. Since quadratic
choices for the surrogate f are particularly easy to mini-
mize, our goal now is to find a parabola that lies above the
negative log-likelihood function. Figure 3 illustrates the

Fig. 3. Illustration of the marginal cost function hi(l
R, 0) and

surrogate functions as a function of lR. The solid curve is the
original marginal cost function. The two other curves lying
above the cost function are the surrogate functions. The func-
tion denoted by the dashed curve is called the paraboloidal-
surrogate function, which has the same first derivative and the
same point as those of the original cost function at l 5 ln.
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one-dimensional plot of the marginal cost function
hi(l

R, 0). In this plot, the marginal cost function has
two optimal minima. However, a 2-D plot of hi(l

R, lI)
consists of multiple solutions that lie on a circle in the
complex plane. Therefore it is a challenging problem to
find the correct optimal solution.

Since l and ui are complex, we adapt De Pierro’s mul-
tiplicative trick34 to rewrite hi(l) in Eq. (14) as follows:

hi~lR, lI! 5 2yi logH a i
R,nF ~lR 1 ui

R!2 1 bi/2

a i
R,n G

1 a i
I,nF ~lI 1 ui

I!2 1 bi/2

a i
I,n G J

1 @~lR 1 ui
R!2 1 bi/2#

1 @~lI 1 ui
I!2 1 bi/2#, (20)

where we define

a i
R,n 5

~lR,n 1 ui
R!2 1 bi/2

ki
n

,

a i
I,n 5

~lI,n 1 ui
I!2 1 bi/2

ki
n

,

ki
n 5 uli

n 1 uiu2 1 bi , li
n 5 @Axn# i .

Combining the fact that a i
R,n 1 a i

I,n 5 1 with the convex-
ity of the negative log function in Eq. (20) leads to our
first surrogate function, in which we separate the real
and imaginary parts,

hi~l ! 5 hi~lR, lI! < hi
R,n~lR! 1 hi

I,n~lI!, (21)

where

hi
R,n~lR! , 2yia i

R,n logF ~lR 1 ui
R!2 1 bi/2

a i
R,n G

1 ~lR 1 ui
R!2 1 bi/2, (22)

hi
I,n~lI! , 2yia i

I,n logF ~lI 1 ui
I!2 1 bi/2

a i
I,n G

1 ~lI 1 ui
I!2 1 bi/2. (23)

In one dimension, the surrogates hi
R,n and hi

I,n each have
two minima (see Fig. 3) and are symmetric about the line

ci
R,n 5

ki
n(bi

2

l 5 2ui . To facilitate the minimization in Eq. (17), we
want to find parabolic surrogates that lie above these
curves. A parabolic-surrogate function for the real part
has the following form:

qi
R,n~lR! 5 hi

R,n~li
R,n! 1 ḣi

R,n~li
R,n!~lR 2 li

R,n!

1
1
2 ci

R,n~lR 2 li
R,n!2, (24)

where ḣi
R,n is the first derivative of hi

R,n and ci
R,n is the

curvature of the parabola qi
R,n . This parabola has the

same value as that of hi
R,n at the current estimate lR

5 li
R,n and the same first derivatives at that point. A

parabolic-surrogate function for the imaginary part is de-
noted by qi

I,n(lI) and has an analogous form.
According to the sufficient conditions in expressions

(19), we must choose the parabola qi
R,n to satisfy the fol-

lowing conditions:

~ i! qi
R,n~li

R,n! 5 hi
R,n~li

R,n!,

~ ii! qi
R,n~lR! > hi

R,n~lR,n! ;lR,

~ iii! q̇ i
R,n~li

R,n! 5 ḣi
R,n~li

R,n!.

Similar conditions apply to qi
I,n . The first and third con-

ditions are satisfied by the construction of qi
R,n and qi

I,n .
The only remaining problem is to find curvatures ci

R,n and
ci

I,n that satisfy the second condition. For the fastest con-
vergence rate,14 ideally we would choose the smallest cur-
vature for which the second condition is satisfied. How-
ever, a closed-form solution for this optimal choice has
proven elusive. Instead, we have chosen the curvatures
by using the general expression

ci
R,n 5 max

lR P R

ḣi
R,n~lR! 2 ḣi

R,n~li
R,n!

lR 2 li
R,n

, (25)

and likewise for ci
I,n . Although this curvature is not op-

timal, Appendix A shows that this choice leads to a para-
bolic surrogate that is guaranteed to lie above the cost
function. For the specific model in relation (11), the cur-
vatures in Eq. (25) have the following closed-form solu-
tion:

Appendix B derives this expression. Computation time
per iteration could be reduced by using precomputed

yi@bi
2 1 2bi~li

R,n 1 ui
R!2#1/2~li

R,n 1 ui
R!2

bi$2~li
R,n 1 ui

R!2 1 @bi
2 1 2bi~li

R,n 1 ui
R!2#1/2%)

1 2. (26)

2

1

curvatures.35
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The following inequalities summarize the construction
of the surrogate functions:

L~x! 5 (
i51

N

hi~@Ax# i!

< (
i51

N

hi
R,n~@Ax# i

R! 1 hi
I,n~@Ax# i

I!

< (
i51

N

qi
R,n~@Ax# i

R! 1 qi
I,n~@Ax# i

I!

, Q~x; xn!. (27)

Since the likelihood surrogate function Q is quadratic,
many algorithms could find its minimizer. Minimizing Q
is simpler than minimizing the original cost function F.
In this paper, we apply the separable-paraboloidal-
surrogate (SPS) algorithm14,23 for this problem. The con-
jugate gradient method could also be applied easily be-
cause nonnegativity constraints are not required.

C. Separable-Paraboloidal-Surrogate Algorithm
In this subsection, we derive the SPS algorithm for Eq.
(27). To apply the SPS approach, we separate pixels by
using the additive convexity technique developed by De
Pierro,34 permitting simultaneous updates. Using the
convexity of qi

R,n , we have

qi
R,n~@Ax# i

R! 5 qi
R,nX(

j51

P

pijH @aij~xj 2 xj
n!#R

pij
1 li

R,nJ C
< (

j51

P

pijqi
R,nS @aij~xj 2 xj

n!#R

pij
1 li

R,nD ,

(28)

where we choose pij’s that satisfy pij > 0 and ( j51
P pij

5 1. As in previous work,23 we use pij

5 uaiju/( j851
P uaij8u in our simulation study. An analogous

inequality applies to qi
I,n . Combining the real and

imaginary components leads to the following surrogate
function:
Q~x;xn! < (
j51

P

Qj
n~xj!, (29)

Qj
n~xj! , Qj

R,n~xj! 1 Qj
I,n~xj!,

Qj
R,n~xj! , (

i51

N

pijqi
R,nS @aij~xj 2 xj

n!#R

pij
1 li

R,nD ,

(30)

and we define Qj
I,n similarly.

To obtain the update at each iteration, we minimize
Qj

n(xj). When no penalty is used, we obtain the
maximum-likelihood estimate, as is derived in Subsection
5.D.

D. Maximum-Likelihood Estimation
Since Qj

n(xj) 5 Qj
n(xj

R 1 ixj
I) is a quadratic function of

two real variables xj
R and xj

I , we minimize Qj
n by using

one step of Newton’s method, which involves a 2 3 2
matrix–vector multiplication for each pixel as follows:

xj
n11 , arg min

xj
Qj

n~xj!

5 xj
n 2 Hj

21¹Qj
n~xj

n!, j 5 1,...,P, (31)

where the gradient of Qj
n is defined by

¹Qj
n~xj

n! , S ]

]xj
R

Qj
n~xj!

]

]xj
I
Qj

n~xj!
DU

xj5xj
n

5 S (
i51

N

aij
Rḣi

R,n~li
R,n! 1 aij

I ḣ i
I,n~li

I,n!

(
i51

N

2 aij
I ḣ i

R,n~li
R,n! 1 aij

Rḣi
I,n~li

I,n!
D

5 S ]

]xj
R

L~x!

]

]xj
I
L~x!

DU
x5xn

, S L̇j
R,n

L̇j
I,n D (32)
Hj , Fdj
RR dj

RI

dj
IR dj

II G 5 F ]2

]~xj
R!2

Qj
n~xj!

]2

]xj
R]xj

I
Qj

n~xj!

]2

]xj
I]xj

R
Qj

n~xj!
]2

]~xj
I!2

Qj
n~xj!

GU
xj5xj

n

5 F(
i51

N 1

pij
@~aij

R!2ci
R,n 1 ~aij

I !2ci
I,n# (

i51

N aij
Raij

I

pij
~2ci

R,n 1 ci
I,n!

(
i51

N aij
Raij

I

pij
~2ci

R,n 1 ci
I,n! (

i51

N 1

pij
@~aij

I !2ci
R,n 1 ~aij

R!2ci
I,n#

G . (33)
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After matrix multiplication, the explicit form for the SPS
algorithm becomes simply

S xj
R,n11

xj
I,n11 D 5 S xj

R,n 2
1

det Hj
~dj

IIL̇j
R,n 2 dj

RIL̇j
I,n!

xj
I,n 2

1

det Hj
~2dj

RIL̇j
R,n 1 dj

RRL̇j
I,n!

D ,

(34)

where the determinant of the Hessian matrix Hj is

det Hj 5 dj
RRdj

II 2 ~dj
RI!2. (35)

The surrogate functions derived in this subsection do
not include the penalty function. Without regularization,
a noisy image might be obtained after several iterations.
Therefore, in Subsection 5.E, we derive the surrogate
function for the penalty term in PL estimation. The deri-
vation extends our previous work14,23 to the case of com-
plex images.

E. Penalty Surrogate Function and
Penalized-Likelihood Estimation
Lacking any prior information that would relate the real
and imaginary parts of the unknown image x, we employ
separate penalty functions for the two parts. Since we
separately penalize the real and imaginary parts, using
different regularization parameters for the real and
imaginary parts provides more flexibility than having
only one regularization parameter for both. Thus we use
a penalty function of the following form:

V~x! 5 bR(
i51

r

c ~@CRxR# i! 1 bI(
i51

r

c ~@CIxI# i!, (36)

where CR and CI are penalty matrices for the real and
imaginary parts of the estimates and bR and bI are the
corresponding regularization parameters. To preserve
edges, we used the nonquadratic potential function c in
Eq. (16) in our simulations.

Similar to our approach with the nonquadratic likeli-
hood function, we derive the following surrogate func-
tions:

V~x! < V8~x; xn! < (
j51

P

Sj
n~xj!, (37)

where V8 is called the paraboloidal-surrogate function for
the penalty function and Sj

n is called the SPS function for
the penalty function. The first inequality is derived by
forming a parabola that lies above the original penalty
function, and the second inequality is derived by using
the convexity of c. If a quadratic potential function is
used instead, then the first parabola step is unnecessary.
The paraboloidal-surrogate function V8(x; xn) has the
following form:

V8~x; xn! 5 bR(
i51

r

w~@CRxR# i ; @CRxR,n# i!

1 bI(
i51

r

w~@CIxI# i ; @CIxI,n# i!, (38)
where the function w(t; s) is a parabola in t for fixed s,
where t and s denote real scalar arguments and w is de-
fined by

w~t; s ! 5 c ~s ! 1 ċ ~s !~t 2 s ! 1
1
2 v~s !~t 2 s !2,

(39)

with the curvature v of the parabola surrogate32 given by

v~s ! 5
ċ ~s !

s
.

Since the paraboloidal-surrogate function V8 is convex,
we apply the additive convexity technique developed by
De Pierro34 to obtain the SPS function that lies above V8
as follows:

Sj
R,n~xj

R!

, bR(
i51

r

g ij
RwS cij

R~xj 2 xj
n!R

g ij
R

1 @CRxR,n# i ;@CRxR,n# iD ,

Sj
I,n~xj

R!

, bI(
i51

r

g ij
I wS cij

I ~xj 2 xj
n!I

g ij
I

1 @CIxI,n# i ;@CIxI,n# iD ,

Sj
n~xj!

5 Sj
R,n~xj

R! 1 Sj
I,n~xj

I!, (40)

and we define g ij
o 5 ucij

o u/( j851
P ucij8

o u, where o represents R
or I. From Eq. (39), the first derivative of w(t; s) evalu-
ated at t 5 s is ċ (s); thus the gradient of Sj

n is

¹Sj
n~xj

n! 5 S ]

]xj
R

Sj
R,n~xj

R!

]

]xj
I
Sj

I,n~xj
I!
DU

xj5xj
n

5 S bR(
i51

r

cij
Rċ ~@CRxR,n# i!

bI(
i51

r

cij
I ċ ~@CIxI,n# i!

D
5 S ]

]xj
R

V~x!

]

]xj
I
V~x!

DU
x5xn

, S V̇j
R,n

V̇j
I,n D . (41)

Because there is no coupling between xj
R and xj

I in the
penalty or its surrogate functions, the Hessian matrix for
Sj

n is diagonal:

¹2Sj
n~xj

n! 5 Fpj
R,n 0

0 pj
I,nG , (42)

where

pj
o,n 5

]2Sj
o,n

]~xj
o!2U

xj5xj
n

5 bo(
i51

r
~cij

o !2

g ij
o

v~@Coxo,n# i!. (43)
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To obtain the update of the SPS algorithm in PL esti-
mation, we combine the surrogates for the likelihood and
the penalty. Thus the overall surrogate function to be
minimized becomes

f j
n~xj! 5 Qj

n~xj! 1 Sj
n~xj!. (44)

So the update xj is obtained through

xj
n11 5 arg min

xj
f j

n~xj!. (45)

Similar to Eq. (34), the update of the SPS algorithm with
regularization becomes

S xj
R,n11

xj
I,n11 D

5 S xj
R,n

xj
I,n D 2

1

det H̃j

3 S ~dj
II 1 pj

R,n!~L̇j
R,n 1 V̇j

R,n! 2 dj
RI~L̇j

I,n 1 V̇j
I,n!

2dj
RI~L̇j

R,n 1 V̇j
R,n! 1 ~dj

RR 1 pj
R,n!~L̇j

I,n 1 V̇j
I,n!

D ,

(46)

where the new Hessian matrix H̃j is

H̃j 5 Hj 1 Fpj
R,n 0

0 pj
I,nG (47)

and its determinant is

det H̃j 5 ~dj
RR 1 pj

R,n!~dj
II 1 pj

I,n! 2 ~dj
RI!2. (48)

The SPS algorithm outline for holographic image recon-
struction is shown below (for simplicity, we suppress the
‘‘n’’ superscript):

x̂ 5 initial image

ai 5 (
j51

P

uaiju, i 5 1,...,N

for n 5 1,..., N iterations

l̂ 5 (
j51

P

aijx̂ j , i 5 1,...,N

ki
n 5 u l̂ 1 uiu2 1 bi , i 5 1,...,N

hi 5
2 2yi~ l̂ 1 ui!

ki
n

1 2~ l̂ 1 ui!, i 5 1,...,N.

Compute ci
R and ci

I using Eq. (26)

for j 5 1,...,P

L̇j 5 (
i51

N

aij* ḣi

L̇ j
R 5 Re$L̇j%, L̇j

I 5 Im$L̇j%

dj
RR 5 (

i51

N ai

uaiju
@~aij

R!2ci
R 1 ~aij

I !2ci
I#

dj
II 5 (

i51

N ai

uaiju
@~aij

I !2ci
R 1 ~aij

R!2ci
I#
dj
RI 5 dj

IR 5 (
i51

N aiaij
Raij

I

uaiju
~2ci

R 1 ci
I!

V̇j
R 5 bR(

i51

r

cij
Rċ ~@CRx̂R# i!

V̇j
I 5 bI(

i51

r

cij
I ċ ~@CIx̂I# i!

pj
R 5 bR(

i51

r
~cij

R!2

g ij
R

v ~@CRx̂R# i!

pj
I 5 bI(

i51

r
~cij

I !2

g ij
I

v ~@CIx̂I# i!

det Hj 5 ~dj
RR 1 pj

R!~dj
II 1 pj

I! 2 ~dj
RI!2

x̂ j
R 5 x̂ j

R 2
1

det Hj
@~dj

II 1 pj
R!~L̇j

R 1 V̇j
R!

2 dj
RI~L̇j

I 1 V̇j
I!#

x̂ j
I 5 x̂ j

I 2
1

det Hj
@2dj

RI~L̇j
R 1 V̇j

R!

1 ~dj
II 1 pj

R!~L̇j
I 1 V̇j

I!#

end

end

F. Number of Holograms Used
In principle, our statistical technique can be applied to
data with any number of measurement elements N and to
a model with any number of image pixels P. Whereas N
is fixed by the choice of the measurement device (e.g.,
CCD camera pixels), the value of P can be selected by the
algorithm designer. A natural choice for P would be the
number of CCD elements, which is the size of a single ho-
logram. However, when N , 2P, the problem is under-
determined, so the regularization term will be particu-
larly important. An alternative is to estimate half as
many pixels as there are CCD elements, i.e., P 5 N/2,
from a single hologram. However, this option requires
interpolation and downsampling processes that might in-
troduce some artifacts into the reconstructed image. To
study the effect of the sizes of the reconstructed image
relative to the amount of data, we considered the follow-
ing three different cases in our simulations:

Case 1. Use one hologram to reconstruct a holographic
image whose size is half the number of CCD elements
(half-size reconstruction), i.e., P 5 N/2.

Case 2. Use one hologram to reconstruct a holographic
image whose size is the same as the number of CCD ele-
ments (full-size reconstruction), i.e., P 5 N.

Case 3. Use two holograms to reconstruct a holo-
graphic image whose size is the same as the number of
CCD elements (full-size reconstruction), i.e., N 5 2P.
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6. SIMULATION RESULTS
In this section, we compare the conventional numerical
reconstruction technique with our statistical reconstruc-
tion for the three cases described above. Moreover, we
examined the effect of possible a priori knowledge that
the object f is real. We implemented this constraint by
zeroing the imaginary part of xn after each iteration.

A. Effect of Numbers of Data Sets
A 128 3 128 original image [Fig. 4(a)] that is complex was
Fig. 4. Holographic reconstruction of a complex object. The top half of each pair represents the magnitude of the image, and the
bottom half represents the phase of the image, except for the hologram data in (b). (a) Original image. (b) Two different holograms.
(c) Conventional reconstruction using an apodizing Gaussian filter (NRMSE 5 40.0%). (d) Half-size PL reconstruction using one ho-
logram (NRMSE 5 17.5%). Linear interpolation in the vertical direction to the same size as that of the original image is performed for
display. (e) Full-size PL reconstruction using one hologram (NRMSE 5 17.3%). (f) Full-size PL reconstruction using two holograms
(NRMSE 5 14.1%).
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degraded by the PSF, interference pattern, and Poisson
noise [Fig. 4(b)], as in relation (11). We assumed a space-
invariant optical system with a PSF that is a 7 3 7 jinc
function, given by J1(2pr)/(pr), where J1 is a Bessel
function of the first kind and r is a polar-coordinate pa-
rameter, with full width at half-maximum (FWHM) of 3.5
pixels. We used the following two 2-D reference beams:

ur1~n1 , n2! 5 200 expS 2i
2p

3
n1D ,

ur2~n1 , n2! 5 150 expS 2i
2p

4
n1D , (49)

where the pixel indices n1 and n2 range from 0 to 127.
For experiments with only one hologram, we used the
first reference beam. The offset bi is assigned to be 5 and
10 for the first and the second hologram, respectively.
The Poisson noise has the peak signal-to-noise ratio
(PSNR) of 29 and 24 dB in the first and the second holo-
gram [Fig. 4(b)], respectively. The PSNR in the data is
defined as follows:

Fig. 5. Profiles of the magnitude of the numerical reconstructed
images across the second row of circles.

Fig. 6. Profiles of the phase of the numerical reconstructed im-
ages across the second row of circles.
PSNR , 10 log10H maxi~ yi 2 bi!
2

1

N (
i51

N

@ yi 2 E~ yi!#
2J . (50)

Each simulated real-valued hologram has the same size
(128 3 128 pixels) as that of the original complex-valued
image.

Figure 4(c) shows the conventional reconstruction us-
ing an apodizing Gaussian mask. We applied a 41 3 41
Gaussian mask with FWHM of 27.2 pixels to the selected
region in the frequency domain of the hologram. The
magnitude and the phase of the reconstructed image ap-
pear to be blurry, while noise still remains. Owing to the
effect of the filtering method, noise cannot be removed
completely without oversmoothing edges. Figures 4(d)–
4(f) show our statistical holographic reconstruction based
on PL estimation for the three different cases. Because
of nonconvextity of the cost function F, the reconstructed

Fig. 7. Contours of the marginal objective functions at one pixel
when (a) using one hologram and (b) using two holograms for
full-size reconstruction. The ‘‘3’’ mark indicates the optimal so-
lution at 20 1 i110, and the ‘‘s’’ marks indicate the updates of
the estimates starting at 150 1 i150.
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image can be quite sensitive to the initial image. We
used the image from the conventional approach as the ini-
tial image for the iterations. We used the nonquadratic
penalty function in Eq. (16) with regularization param-
eters bR 5 bI 5 10 and edge-preserving parameters d R

5 d I 5 1. As in most Baysian image reconstruction
methods, these parameters are determined by trial and
error. The SPS algorithm was run for 200 iterations, and
its most expensive computation at each iteration includes
five 2-D convolutions or five fast Fourier transforms. Al-
though SPS might not be the fastest existing algorithm
for this problem, the focus of the paper is to illustrate the

Fig. 8. PL reconstruction of a real object using the real object
constraint: (a) original image, (b) and (c) hologram data, (d) con-
ventional reconstruction using an apodizing Gaussian filter
(NRMSE 5 43.8%), (e) half-size PL reconstruction using one ho-
logram (NRMSE 5 22.8%), (f) full-size PL reconstruction using
one hologram (NRMSE 5 21.1%), (g) full-size PL reconstruction
using two holograms (NRMSE 5 17.2%).
potential of the PL reconstruction technique for digital
holography. Unlike the conventional technique, the PL
reconstruction technique with a nonquadratic penalty can
reduce noise significantly while still preserving edges.

Figure 4(d) shows the half-size reconstruction using
one hologram (case 1). For display, the reconstructed im-
age was linearly interpolated to match the size of the
original image. Figures 4(e) and 4(f) show full-size re-
constructions using one and two holograms, respectively
(cases 2 and 3). The half-size reconstruction has less
noise but a few more artifacts than the full-size recon-
struction using one hologram, perhaps as a result of in-
terpolation and downsampling processes. Figures 5 and
6 show profiles of the magnitude and the phase of the re-
constructed images. As expected, full-size reconstruction
with two holograms yields the best reconstructed image
with the smallest normalized root mean square error
(NRMSE). The NRMSE in percent is defined as follows:

NRMSE 5
ix̂ 2 xtruei

ixtruei
3 100%, (51)

where x̂ is the reconstructed image, xtrue is the true im-
age, and i•i denotes the Euclidean norm.

Figure 7 shows the contours of the marginal objective
functions at one particular pixel for the cases of one and
two holograms. For this illustration, we examined the
noiseless and blurless case without regularization to
clearly demonstrate how the statistical technique using
two holograms can help reduce nonuniqueness. As
shown in Fig. 7(a), since there are multiple minimizers,
the algorithm converges to an estimate that depends
strongly on the initial guess. When two holograms are
used, the solutions become more distinct, and thus the al-
gorithm often converges to the desired solution, as in Fig.
7(b). However, even with two holograms, the algorithm
can converge to a limit that depends on the initial esti-
mate because the cost function is nonconvex and may
have local minima. In all cases, our statistical technique
decreases the cost function monotonically, although this
alone does not ensure convergence to a global minimizer
for nonconvex cost functions.

B. Real Object Constraint
If the object is known a priori to be real, then we can con-
strain the estimate x̂ to be real by zeroing its imaginary
part at each iteration. In this case, we may not need to
have N > 2P; since effectively the number of unknowns
is reduced by a factor of 2. Thus we expect the statistical
method to yield similar results for the three cases, except
possibly for some artifacts caused by interpolation for the
case of half-size reconstruction. A 128 3 128 real image
[Fig. 8(a)] was degraded by using the same parameters as
those in Subsection 6.A. The conventional numerical re-
construction in Fig. 8(d) is blurry as a result of the Gauss-
ian filter. Figures 8(e)–8(g) show 200 iterations of PL re-
construction with the nonquadratic penalty function (bR

5 bI 5 5, d R 5 d I 5 5). Although the NRMSEs for all
three cases differ slightly, they all provide similar recon-
structed holographic images with less blur than the con-
ventional reconstruction. Because of the real object con-
straint, using one hologram appears to be adequate for
reconstructing a good holographic image.
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7. CONCLUSIONS
We have demonstrated the potential for reconstructing a
digital holographic image by using the proposed statisti-
cal technique. Because the method uses all the informa-
tion in the recorded hologram rather than just one term,
this approach can improve the quality of the image rela-
tive to the conventional numerical reconstruction tech-
nique that uses a spatial filter applied in the spatial-
frequency domain. Moreover, unlike the conventional
approach, our statistical technique is not limited by the
assumption of a planar reference beam. Because of the
ill-conditioning and the nonuniqueness of the problem,
our statistical holographic reconstruction is based on PL
estimation. We constructed a statistical model for this
system and developed a monotonic algorithm. Although
the unique global minimum is not guaranteed because of
the nonconvexity of the negative log-likelihood function in
this problem, one can partially overcome the problem of
multiple minima by using regularization and multiple re-
corded holograms. For a real object, the realness con-
straint can be enforced at each iteration so that the algo-
rithm can converge faster and one hologram should be
sufficient to yield a good reconstructed image.

APPENDIX A
For simplicity, we consider only the real or the imaginary
part and ignore the subscript i in the following proofs.

Lemma 1. If h(l) and q(l) are differentiable and the
three conditions

~C1 ! h~m ! 5 q~m ! for some m,

~C2 ! q̇~l ! > ḣ~l !, ;l > m,

~C3 ! q̇~l ! < ḣ~l !, ;l < m

are satisfied, then it follows that q(l) > h(l) ;l and thus
q(l) is a surrogate for h(l), i.e., q(l) > h(l) ;l.

Proof. If l > m, then
q~l ! 5 q~m ! 1 E
m

l

q̇~t !dt

> h~m ! 1 E
m

l

ḣ~t !dt 5 h~l !. (A1)

If l < m, then

q~l ! 5 h~m ! 1 E
l

m

@2q̇~t !#dt

> h~m ! 1 E
l

m

@2ḣ~t !#dt 5 h~l !. (A2)

Thus q(l) > h(l) ;l under the above conditions.
Lemma 2. If h(l) is differentiable and the maximum

c~m ! 5 max
lÞm

ḣ~l ! 2 ḣ~m !

l 2 m
,

is finite and nonnegative, then

q~l ! 5 h~m ! 1 ḣ~m !~l 2 m ! 1
1
2 c~m !~l 2 m !2

(A3)
is a parabolic surrogate for h, i.e., q(l) > h(l) ;l.

Proof. Condition (C1) of Lemma 1 is clearly satisfied
by q when l 5 m. To prove condition (C2) for l > m, we
differentiate Eq. (A3) with respect to l and replace c(m)
with the proposed curvature as follows:

q̇~l ! 5 ḣ~m ! 1 c~m !~l 2 m !

> ḣ~m ! 1
ḣ~l ! 2 ḣ~m !

l 2 m
~l 2 m ! 5 ḣ~l !. (A4)

Similarly, q̇(l) < ḣ(l) for l < m, so condition (C3) is sat-
isfied. Because all three conditions of Lemma 1 are sat-
isfied, q(l) is a parabolic surrogate for h(l). h

APPENDIX B
The first derivative of ho in Eq. (22) or (23) is

ḣo~l; ln! 5
2 2y~l 1 uo!@~lo,n 1 uo!2 1 b/2#

kn@~l 1 uo!2 1 b/2#

1 2~l 1 uo!. (B1)
Thus we define
f~l ! ,
ḣo~l; ln! 2 ḣo~lo,n; ln!

l 2 lo,n
5

2y

kn F ~l 1 uo!~lo,n 1 uo! 2 b/2

~l 1 uo!2 1 b/2
G 1 2. (B2)

To obtain the maximum of the above continuous function, we equate the first derivative to zero:

ḟ~l ! 5
2y

kn H 2 ~lo,n 1 uo!~l 1 uo!2 1 b~l 1 uo! 1 ~b/2!~lo,n 1 uo!

@~l 1 uo!2 1 b/2#2 J 5 0. (B3)

Then the optimal l* that yields the maximum is

l* 5
b 1 @b2 1 2b~lo,n 1 uo!2#1/2

2~lo,n 1 uo!
2 uo, (B4)

and

f~l* ! 5
2y@b2 1 2b~lo,n 1 uo!2#1/2~lo,n 1 uo!2

kn(b2 1 b$2~lo,n 1 uo!2 1 @b2 1 2b~lo,n 1 uo!2#1/2%)
1 2 (B5)

is the curvature of the parabolic-surrogate function.
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