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A Penalized-Likelihood Image Reconstruction
Method for Emission Tomography, Compared

to Postsmoothed Maximum-Likelihood
With Matched Spatial Resolution

Johan Nuyts*, Member, IEEE,and Jeffrey A. Fessler, Senior Member, IEEE

Abstract—Regularization is desirable for image reconstruction
in emission tomography. A powerful regularization method is the
penalized-likelihood (PL) reconstruction algorithm (or equiva-
lently, maximum a posteriori reconstruction), where the sum of
the likelihood and a noise suppressing penalty term (or Bayesian
prior) is optimized. Usually, this approach yields position-de-
pendent resolution and bias. However, for some applications in
emission tomography, a shift-invariant point spread function
would be advantageous. Recently, a new method has been pro-
posed, in which the penalty term is tuned in every pixel to impose
a uniform local impulse response. In this paper, an alternative
way to tune the penalty term is presented. We performed positron
emission tomography and single photon emission computed
tomography simulations to compare the performance of the new
method to that of the postsmoothed maximum-likelihood (ML)
approach, using the impulse response of the former method as
the postsmoothing filter for the latter. For this experiment, the
noise properties of the PL algorithm were not superior to those of
postsmoothed ML reconstruction.

Index Terms—Bayesian reconstruction, PET, regularization,
SPECT, tomography.

I. INTRODUCTION

DUE TO the low tracer dosage and the limited acquisition
time, clinical emission data [positron emission tomog-

raphy (PET) or single photon emission tomography (SPECT)]
are usually strongly affected by Poisson noise. Even with
optimal [according to the maximum-likelihood (ML) criterion]
use of the data in statistical reconstruction, the noise propaga-
tion results in unacceptable noise levels in the reconstructed
images. Several regularization methods have been proposed. A
powerful method is to replace the ML criterion with a maximum
a posteriori(MAP) criterion, by combining the likelihood with
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a Bayesian prior that encourages local smoothness [1]–[5].
Often, the prior is modeled as a Gibbs distribution of the form

(1)

where is a normalization constant, is the set of neigh-
bors of pixel , is a function operating on pairs of neigh-
boring pixels [6], and is a constant that specifies the relative
strength of the prior. Usually, is chosen as a shift-invariant
function that penalizes differences between neighboring pixels.
The approach is attractive because it allows one to include the
regularization in the reconstruction (so the final reconstructed
image is directly verified against the raw data), and because the
Gibbs-framework accepts a wide range of functions that can be
optimized for particular purposes. However, because the prior is
shift invariant and the likelihood is not, the MAP image has posi-
tion-dependent (and image-dependent) bias and resolution. For
some applications, this is an undesirable feature. For example, in
tracer kinetic modeling, the time activity curves should only re-
flect changes in tracer concentration, and changes due to varying
spatial resolution will cause errors. Similarly, when applying
semi-quantitative analysis based on standard uptake values [7],
it is important that the bias does not change with position and
image contents.

Fessler and Rogers [8] have proposed to use a position-depen-
dent prior: they replace in (1) with and tune these pa-
rameters to impose position-independent resolution. This makes
the “prior” data-dependent, so it can no longer be regarded as
a Bayesian prior; the authors call it a penalty term and their
method PL reconstruction. With the position-dependent penalty,
the resolution was more uniform, but there was still position-
dependent asymmetry of the local impulse response function.
Stayman and Fessler have proposed a further sophistication of
the method, by replacing with in (1) and optimizing the
parameters to eliminate the asymmetry and even obtain an op-
timal fit of the local impulse response to a predefined target
point spread function [9], [10]. Interestingly, similar work is
being done for the “expectation-maximization-smooth” (EMS)
algorithm [11], [12], which yields position-dependent resolu-
tion if the smoothing between iterations is position independent.
Mustafovicet al. [13] have shown that with position-dependent

0278-0062/03$17.00 © 2003 IEEE



NUYTS AND FESSLER: PL IMAGE RECONSTRUCTION METHOD FOR EMISSION TOMOGRAPHY 1043

filters, it is possible to obtain uniform resolution with EMS as
well.

An alternative method to obtain uniform resolution is to
postsmooth the reconstruction obtained after many iterations
of a ML reconstruction algorithm [14], [15]. Applying a
sufficiently high number of iterations ensures a nearly bias-free
reconstruction, so after postsmoothing, the spatial resolution is
uniform and the point spread function is (nearly) identical to
the smoothing filter. Note that the number of iterations needed
depends on the application; for some, several hundreds of
iterations may be required. In this paper, a new PL method is
proposed to obtain a symmetric and shift-invariant point spread
function. The performance of this new algorithm is compared
to that of postsmoothed ML reconstruction.

This paper is organized as follows. In Section II, we first
derive an approximate expression for the “natural” shape of
the local impulse response function associated with a quadratic
penalty term. The rest of the section discusses how the cer-
tainty of the likelihood can be estimated and be used to tune
the penalty term. In Section III, the setup of the simulation
experiments is discussed. The main experiment is a compar-
ison of signal-to-noise ratio (SNR) at matched resolution, be-
tween postsmoothed ML and the new PL algorithm. Section IV
presents the results, which are discussed in Section V.

II. THEORY

A. The Local Impulse Response With the Quadratic Prior and
Uniform Likelihood

Consider a one-dimensional (1-D) image, and assume that
for every pixel exactly one measured value is available. Assume
that the measurements are independent, and subject to Gaussian
noise with constant and known variance, equal to one. Then the
logarithm of the likelihood equals

(2)

where and are the measurement and the image values for
pixel . We also introduce an a-priori probability distribution.
The logarithm of this Bayesian prior equals

(3)

Here, is the weight assigned to the difference between a pixel
and its neighbor. This prior favors smooth images and reaches
its maximum when the image is perfectly uniform. As in image
reconstruction from projections, the MAP image is obtained by
maximizing . To study the local impulse response of the
MAP-image, we assume that the measured values for all pixels
are zero, except for a single pixel , for which it equals

. For a pixel with , the MAP-image satisfies the
following relation:

(4)

Because for , we obtain

(5)

Substituting produces a quadratic equation in

(6)

with the following solution:

(7)

Note that the product of the two solutions forequals 1. It fol-
lows that is a solution. The local im-
pulse response has an exponential shape for this 1-D problem.
The value of can be determined by requiring that the sum (over
all pixels) of the impulse response equals the sum of the im-
pulse. The same result has been derived earlier by Unseret al.
[16] using the transform representation.

A simple approximate expression for the two-dimensional
(2-D) case can be obtained, under the assumption that the local
impulse response is circularly symmetric, and that effects of the
pixel grid can be ignored. For many applications, circular sym-
metry is desirable, and experience shows that it can be achieved
with good approximation using a 4- or 8-pixel neighborhood.
Assume that the local impulse is centered at pixel , and
that represents the pixel value at a distance ofpixels from
the center. For simplicity, we also assume that the neighbors of a
pixel at distance are all located on the circles with radii ,
and . The neighbors at distanceall have the same value and
contribute a zero term to the quadratic prior for. The circle
with radius contains more pixels than the circle with radius

, so pixel has more neighbors at distance than at
distance from the center. We will assume that the number
of neighbors at distance is proportional to , where is
a small positive constant, reflecting the finite size of the pixels
[there is a finite pixel at distance zero ( ) from the center].
With these approximations, the 2-D problem can be described
by modifying the weights in (3)

(8)

As before, the prior is combined with the likelihood (2), where
we assume that , and the maximum of is computed
by setting the first derivative to zero

(9)

Rearranging yields

(10)
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Substitution of produces a quadratic equation
in , which is identical to (6). Consequently, we find that a max-
imum of is obtained for

(11)

The main conclusion is that the local impulse response of
the quadratic prior has an exponential shape which is rather
different from that of typical low pass filters used in nuclear
medicine. This is important when comparing the performance
of PL methods to that of filter-based methods. Unless the
filter is matched to the local impulse response of the PL
method, it will be unclear if performance differences are due to
intrinsic properties of the algorithms, or only to the different
characteristics of the impulse responses.

B. Emission Tomography

In emission tomography, the log-likelihood function can be
written as [14]

(12)

(13)

where is the measured photon count in detector, is the
estimated radioactivity in pixel, is the probability that a
photon emitted in is detected in, is the expected number
of counts contributed by such processes as scatter and randoms,
and terms independent ofhave been dropped.

In the analysis above, the certainty provided by the likelihood
was the same for every pixel. In contrast, the certainty provided
by emission tomography is different for every pixel. When the
nonuniform likelihood is combined with a uniform penalty term,
position-dependent smoothing results. In [8], an algorithm is
presented to impose approximately uniform spatial resolution
by tuning the weights of a quadratic penalty of the form

(14)

where the weights are zero except when pixelsand are
neighbors, and . Based on the analysis of an explicit
expression for the local impulse response function, the authors
propose to choose the weights as follows:

(15)

where is the measurement mean for detector. The factors
between parentheses are theth and th diagonal elements of
the Fisher information matrix [17], which can be regarded as
a measure for the certainty provided by the likelihood. So (15)
prescribes that the weight used to penalize the difference be-
tween two pixels should be proportional to the geometric mean
of the certainties of the two pixels. The measurement mean
is not available, but the measurementsor the calculated pro-
jections are useful approximations. We will denote this algo-
rithm as “certainty-based penalized-likelihood reconstruction”

(CPL). Although this algorithm makes the resolution more uni-
form, the resulting local impulse response is asymmetric, and
the asymmetry is still position dependent. Stayman and Fessler
[9], [10] have extended the algorithm to reduce the asymmetry
as well. Their approach is based on an explicit expression for the
local impulse response function, and they optimize the weights

to obtain a best fit between this computed local impulse re-
sponse and a predefined target impulse response.

Here, we follow a slightly different approach. The analysis
presented above suggests that the shape of the local impulse re-
sponse may be an intrinsic property of the quadratic penalty.
For that reason, and also in an attempt to obtain a simpler algo-
rithm, we do not use a target impulse response: we will accept
any shape, as long as the impulse response is symmetric and po-
sition independent.

The objective function that must be maximized is ,
where is given by (12) and by (14). Assuming uncon-
strained maximization (and, therefore, ignoring the usual non-
negativity constraint), the reconstructionmaximizing must
satisfy or

(16)

To compute the local impulse response, the value in a single
pixel is changed by adding a small impulse. As a result,
the new measurement and reconstruction become

(17)

where is the impulse and is the impulse response. The
posterior is now maximized when

(18)
Subtracting (16) from (18) yields

(19)

Since is very small, is also very small and we have that
(we are only interested in the impulse response

within an active object, so it is reasonable to assume that ).
In addition, we assume that the penalty is not too strong, such
that the calculated and measured projections are very similar,
and as a result

(20)

With these assumptions, (19) can be simplified to

(21)
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This result is equivalent to the expression for the local im-
pulse response [(18) and (19)] obtained by Fessler and Rogers
[8].1

Since the penalty penalizes only differences, it is expected
that the mean count is preserved so . Inserting
this in (21) and using (17) yields

(22)

Switching the order of summations and rearranging a bit we
obtain

(23)

which can be rewritten as

(24)

(25)

If the parameters are large compared to the contribution of
the likelihood , then (24) states that the response in pixel
is a weighted average of the responses in the neighboring pixels,
as can be expected from a smoothing penalty. The contribution
of the likelihood changes the weights in a position-depen-
dent way. Moreover, it also changes the total sum of the weights,
as there is no contribution from the likelihood to the denomi-
nator. As a result, it is clear that with position-independent pa-
rameters , the local impulse response strongly depends on
position.

To reduce the position dependence, we will try to tune the
parameters such that at least the sum of the weights in (24)
becomes independent of the position. A somewhat simplistic
way to obtain this would be to set

(26)

which would ensure that the sum of the weights in (24) would be
equal to . This approach has two problems. First, is
a function of the position of the impulse , while is not. It
seems not trivial to optimize the response infor all possible po-
sitions of the impulse simultaneously. To avoid this problem,
we concentrate on the response infor a perturbation in , i.e.,
we set in (24) and (26). The second problem is that for
practical reasons, should be zero except for the pixels
that are close neighbors of pixel, while the support of is
much larger. We hope that this problem can be ignored, because

is a (modified) backprojection, which decays rapidly with

1To clarify the equivalence, (21) can be rewritten as(A D(1=r)A+R)V =
A D(1=r)AU , whereA is the system matrix,D(1=r) is a diagonal matrix with
elementsD = 1=r , U is the impulse,V is the impulse response, andR is a
matrix defining the penalty asP (�) = (1=4)� R�.

increasing distance to. All these approximations yield the fol-
lowing recipe:

(27)

where parameter defines the global strength of the penalty.
According to [9], only the symmetric component of the design
matrix determines the smoothing characteristics. This compo-
nent is

(28)

Equation (28) can be derived in a different way as well. The
conclusion in [8] was that approximate uniform spatial resolu-
tion could be imposed by requiring that the weights were
proportional to the Fisher information for estimating the pixel
values in and . The Fisher information estimates the “resis-
tance” of the likelihood against smoothing, and more smoothing
is required if the resistance is higher. However, the Fisher infor-
mation measures the certainty about the absolute pixel values,
whereas the smoothing only penalizes differences between pixel
values. So it seems meaningful to estimate the resistance against
smoothing by computing the certainty about pixeldifferences
provided by the likelihood. To do this for a particular pixel pair

, we rewrite the likelihood (12) as a function of the differ-
ence and sum of these pixels

Now, the diagonal element of the Fisher information matrix cor-
responding to can be computed as

(29)

where is the expectation, and is the expectation of . Equa-
tion (29) reproduces (28) if we can assume that .

Equations (28) and (29) have an interesting intuitive interpre-
tation. For a projection line intersecting both pixels and ,
we have , so this projection does not contribute any
certainty. In contrast, a projection line perpendicular to the line
connecting and cannot intersect both pixels. Consequently,
projection lines with this orientation and intersecting one of the
pixels contribute a maximum amount of certainty. For example,
the projection line intersecting pixel but not has ,
and its contribution is proportional to

(30)
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The diagonal element of the Fisher information matrix for
estimating from the likelihood equals

(31)

Expression (30) is theth term of (31). So, (28) and (29) sug-
gest to compute the Fisher information not from all projections,
but only from a subset containing projection lines which are ap-
proximately perpendicular to the line throughand .

C. Imposing Uniform Resolution

A strong reduction of the complexity and the computation
burden is obtained by introducing the approximation suggested
in the previous section

(32)

where is the subset of projections with projection line ap-
proximately perpendicular to the line connecting the centers of
pixels and . We investigated a modified penalty for 2-D re-
construction by inserting approximation (32) directly in (28).
This approach only somewhat improved the resolution unifor-
mity if the weights were computed using 8 neighbors in
a 3 3 neighborhood. However, if only horizontal and ver-
tical neighbors were used, good resolution performance in ver-
tical and horizontal direction was observed. It seems that there
is some interference between diagonal and vertical directions
in the 8-neighborhood system, which is not captured by (28).
Therefore, we redistributed the penalty weight values using the
following heuristic modifications.

For 2-D reconstruction and with a penalty term defined in a
3x3 neighborhood, eight weights per pixel must be de-
fined. Requiring that reduces the number to four.
Therefore, we assume that there are only four smoothing direc-
tions: horizontal, vertical and the two diagonal ones. In addition,
we assume that the smoothing can be considered as consisting
of two components, a uniform component and a component in
one of the four directions. Finally, we assume that the uniform
component can be implemented using only the weights in the
horizontal and vertical neighbors, and that the directional com-
ponent can be tuned independently by adjusting the two weights
corresponding to that direction.

These heuristics yielded the following recipe: For each of the
four axes, an image is generated that estimates the Fisher infor-
mation along that axis. These four images are computed as

(33)

where equals , or , , is the
subset of projections with projection lines between and

, , and . Note that
is used to define an axis, not a direction, so operations onare
modulo 180. Then, for every pixel , we define as the axis
with the largest value . The likelihood provides the
strongest certainty along this axis , so a stronger penalty
weight along this axis is needed to impose uniform resolution.
The uniform smoothing component is estimated by taking the

minimum of over the four angles, denoted as Fmin. The four
images are then modified to implement the two components, by
applying the following steps:

The resulting images are convolved with a 2-D Gaussian, to
avoid possible artifacts near abrupt changes of Fmax, and nor-
malized to ensure that total strength of the penalty in each pixel
[as estimated by summing (33) over the four images] is not
changed by the heuristic manipulation and Gaussian convolu-
tion. Finally, inspired by (15), we compute the weights as
follows:

(34)

where the axis is parallel to the line connecting pixels
and . The additional computational burden of this method is

small compared to that of traditional PL reconstruction with a
quadratic penalty. Computation of the four imagesinvolves
backprojection for four subsets, so the work is equivalent to
a single backprojection. The rest are simple pixel operations,
and (34) is computed every time is needed. Of course, the
method increases the memory load, because the imagesmust
be precomputed and kept in memory.

This new algorithm is actually a straightforward extension
of the CPL-algorithm (15). The essential difference is that in
the new algorithm, the Fisher information is split in different
components, which represent the information about pixel dif-
ferences along different orientations. It is convenient to give it a
name, so we will denote the new algorithm as “orientation-de-
pendent certainty penalized likelihood” (OCPL)

After designing the penalty function using (34), we are ready
to maximize the PL objective function: the sum of (12) and (14).
One could apply any of the many iterative algorithms in the
literature to this optimization problem. For the results given in
Section III, we have applied a gradient ascent algorithm. The
algorithm is obtained as a simple modification of the classical
ML expectation-maximization (EM) algorithm, and has been
described elsewhere [5].

III. EXPERIMENTS

A. The Shape of the Local Impulse Response

To assess the accuracy of the approximate equation (11), the
2-D uniform likelihood problem has been simulated, using an
8-pixel neighborhood, a weight of 1 for direct neighbors and of

for diagonal neighbors and a strong global weight for the
penalty term. Two hundred iterations of a gradient ascent algo-
rithm were applied. The horizontal row containing the center of
the impulse response was extracted to obtain a 1-D profile, and
the three parameters of (11) were computed with least squares
fitting.

B. Evaluation of the New Method

Two simulation experiments were performed to assess
the performance of the new method. The first experiment
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was designed to evaluate the resolution uniformity obtained
with OCPL, comparing with a quadratic penalty, with the
CPL-method and with postsmoothed MLEM (MLEM). The
main purpose was to verify that extending CPL to OCPL leads
to more uniform resolution. In the second experiment, the
noise characteristics of OCPL and postsmoothed MLEM were
compared by computing the SNR in a few points.

The simulations were carried out starting from a digital de-
scriptionof the object (anactivity image and an attenuation map).
We only considered a single slice. PET and SPECT projections
were computed taking into account the dominating physical ef-
fects: attenuation for both, and for SPECT also collimator blur-
ring (implemented with Gaussian diffusion [18]). We performed
multiple Poisson noise realizations to estimate the variance for
computing the SNR. The reconstructions were computed using
the same system matrix that was used for computing the projec-
tions. It isclear that thesimulation isasimplificationcompared to
true life. However, the results are useful because the dominating
effectshavebeentaken intoaccountandthealgorithmswereeval-
uated using exactly the same data.

For the second experiment, it was essential to ensure that the
two methods had a (virtually) identical impulse response. Other-
wise, differences in the SNR could be attributed to the impulse
response rather than to the reconstruction algorithm. The fol-
lowing procedure was applied to ensure a close match of the im-
pulse responses. First, a second digital phantom was produced
by increasing the activity value of a single pixel. This is the im-
pulse. Then, two sets of projections were computed, one for the
original phantom, and another one for the phantom with the im-
pulse. Both were reconstructed with OCPL, subtraction yields
the local impulse response. This local impulse response was
then used as the postsmoothing filter in postsmoothed MLEM.
This ensures a close resolution match at the position of the im-
pulse, if MLEM was iterated close to convergence. Assuming
that OCPL is successful in imposing uniform resolution, there
should also be a good resolution match in the other pixels. We
verified this by measuring the OCPL impulse response at a few
other pixels as well. In the following paragraphs, the experi-
ments are described in more detail.

1) Resolution Uniformity With the New Method:The OCPL
method was implemented and evaluated with 2-D PET and
SPECT simulations. Fig. 1 shows the activity distribution of the
2-D software phantom. The object consisted of a uniform low
activity background disk containing circles of higher activity.
The disk and circles had identical and uniform attenuation. The
background activity was 2, the activity of the circles was 10.
The diameter of the attenuating disk was 28 cm for SPECT and
36 cm for PET. In both cases, the attenuation was set to 0.095
per centimeter. For the SPECT simulation, the collimator had a
full-width at half maximum of 2 cm at 30-cm distance and the
camera had an intrinsic resolution of 4 mm. A circle is useful
to evaluate orientation-dependent smoothing, since recovery of
the circular activity is sensitive to smoothing in any direction.
The asymmetric position of the circles ensures strong position
and orientation dependence of the certainties provided by the
likelihood.

For PET, attenuated projections with 100 detector bins were
computed for 80 angles, assuming perfect resolution (except for

Fig. 1. Simulation object to evaluate the new uniform resolution PL with PET
and SPECT.

the blurring due to interpolation in the projection software). For
SPECT, 60 attenuated projections of 66 bins per projection were
computed, simulating an orbit of 180with a parallel hole colli-
mator. The gamma camera started at the top and rotated in clock-
wise direction. No noise was added.

In both cases, reconstructions were computed with a uniform
quadratic penalty, with the CPL-algorithm (15), with the new
OCPL-method (34) and with postsmoothed MLEM. The recon-
structed image size was 100 100 for PET and 66 66 for
SPECT. For the smoothing kernel in postsmoothed MLEM, we
used the impulse response of the OCPL method as described
above (the impulse response was measured in the center of the
image). With the quadratic penalty and the CPL-method, the im-
pulse response is not symmetrical and a close match with the
other methods cannot be imposed. An approximate match was
achieved by tuning the penalty aiming at similar mean signal re-
covery along the circle. A high number of iterations was applied:
200 for PET and 450 for SPECT. We used a higher number for
SPECT, because the inclusion of collimator blurring slows down
convergence.

2) Signal-to-Noise Comparison With Postsmoothed
MLEM: The aim of this experiment was to compare the
SNR obtained with the OCPL algorithm to that obtained with
postsmoothed MLEM. The elliptical object, shown in Fig. 2
was used. It has uniform activity and uniform attenuation.
First, a single hot pixel was inserted in the image (see Fig. 2)
and noise-free attenuated PET-projections were computed
(128 projections with 80 bins per projection). An OCPL-re-
construction was computed using 200 iterations. The very
same procedure was applied again, but this time without the
hot pixel. The difference between the two images is the local
impulse response. This local impulse response was captured in
a filter mask (15 15 pixels), for later use as the smoothing
filter in postsmoothed MLEM.

Subsequently, two more hot pixels were inserted as shown in
Fig. 2, and attenuated PET-projections were computed. These
were used as the mean of a Poisson distribution, and 400 noise
realizations were generated. In addition, 400 noise realizations
in absence of the hot pixels were produced. From all these simu-
lated projections, images were reconstructed with three different
algorithms:

a) Two-hundred iterations of the new OCPL-algorithm;
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Fig. 2. Simulation objects to compare uniform resolution PL reconstruction
to postsmoothed MLEM. Left: the object used to determine the local impulse
response. Right: two more points were added for the SNR measurement.

b) Two-hundred iterations of the MLEM algorithm, followed
by postsmoothing with the local impulse response func-
tion determined in the first step

c) Six iterations of iterative filtered backprojection (IFBP),
followed by postsmoothing with the same impulse re-
sponse.

We used IFBP, because with regular (noniterative) filtered
backprojection (FBP), a small amount of smoothing due to in-
terpolation is hard to avoid. This smoothing is eliminated after a
few iterations of IFBP, resulting in a sharper impulse response.
The iterative FBP-algorithm applies the following scheme:

(35)

where is the measurement precorrected for attenuation,is
the reconstruction, and “ ” denotes nonattenuated projec-
tion. We used 200 iterations of MLEM and 6 iterations of IFBP
to ensure that the impulse response of the unsmoothed recon-
structions was very close to an ideal impulse. Consequently,
after postfiltering, both reconstructions should have nearly ex-
actly the same impulse response as the PL algorithm.

From the 400 noise realizations with and 400 realizations
without signal, the SNR is computed as follows:

(36)

where is the position of one of the three hot pixels, rep-
resents the reconstruction with the hot pixels andthe recon-
struction without the hot pixels.

For visual inspection, also the mean and variance images
were computed for each of the reconstruction algorithms.

The results were verified using a second, very different sim-
ulation object, shown in Fig. 3. It is a simplified simulation of
a PET-study of the thorax. Three hot pixels were inserted, two
in the lungs and one in the tissue. The point in the tissue was
used to define the postsmoothing filter. The image has 100
100 pixels, 128 projections were computed, assuming a contri-
bution of randoms and scatter [in (12)] of 28%. Due to the
asymmetry of the attenuation, the local impulse response func-
tion is very asymmetric if a uniform penalty is used [9]. For this
image, 200 MLEM iterations did not yet produce a sufficiently
sharp impulse response function. Therefore, the equivalent of
about 500 iterations were computed using ordered subsets ac-
celeration (OSEM) [19]. We used a decreasing number of sub-
sets (16, 8, 4, 2, 1) and applied 16 iterations for each of those.
The same was done for the OCPL algorithm, and 10 iterations
of IFBP were applied. For the rest, the processing was identical
as for the elliptical phantom.

Fig. 3. Attenuation map (left) and activity distribution (right) for the simulated
thorax phantom. The points are numbered from bottom to top, the first point (in
tissue) is used the determine the local impulse response.

Fig. 4. Horizontal profile through the impulse response (+) for a 2-D image
with uniform likelihood, with the fitted function (solid line) using expression
(11).

IV. RESULTS

A. The Shape of the Local Impulse Response

Applying 200 iterations of a simple gradient ascent algorithm
seemed sufficient to reach convergence (more iterations did not
produce visible changes). Fig. 4 shows the horizontal profile
extracted from the image, together with the curve produced by
fitting (11) to the profile. The impulse had a value of 100, the
fitted parameters were , per pixel and

pixels.

B. Evaluation of the New Method

Fig. 5 shows the PET-images obtained with the four re-
construction programs. In Fig. 6 profiles along the circles are
shown. They are computed by scanning the pixel positions
on the circles in the true image (Fig. 1) and extracting the
corresponding reconstructed pixel values. The profiles along
the two circles are shown in the same plot. Ideally, the con-
catenated profiles should form a single flat curve, because the
two circles have identical and constant intensity. Figs. 7 and
8 show the corresponding results for the SPECT simulation.
The uniform quadratic penalty produces a very nonuniform
reconstruction, and the two profiles have a different mean
value. With the CPL-algorithm, the nonuniformity is reduced
and the mean values of the two profiles are now much closer,
indicating that some sources of position-dependent resolution
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Fig. 5. The reconstructions of the PET simulations: the MAP-reconstruction
with quadratic penalty, CPL-reconstruction, OCPL-reconstruction and
postsmoothed MLEM-reconstruction. The arrow points at an artifact (see text).

Fig. 6. Profiles along the circles in the PET-images of Fig. 5. Thex axis
corresponds to the position on the perimeter of the circles, they axis is the
reconstructed value at that position. Solid line: MLEM. Long dashes: uniform
quadratic penalty. Short dashes: CPL method. Dotted line: OCPL method.

have been removed. With the OCPL-algorithm, the profiles are
more uniform, although still not as uniform as those produced
by postsmoothed MLEM. Also some oriented artifacts near
the object boundary are visible, in particular in Fig. 5 (one of
them indicated with an arrow). They are most likely caused by
imperfect transition from one of the four smoothing directions
to the other.

C. Comparison to Postsmoothed MLEM

Figs. 9 and 11 show the variance and mean images com-
puted from the 400 noise realizations, for each of the recon-
struction algorithms. Because there was no nonnegativity con-
straint in IFBP, this algorithm produces noticeable variance in

Fig. 7. The reconstructions of the SPECT simulations: the
MAP-reconstruction with quadratic penalty, CPL-reconstruction,
OCPL-reconstruction and postsmoothed MLEM-reconstruction.

Fig. 8. Profiles along the circles in the SPECT-images of Fig. 7. Thex axis
corresponds to the position on the perimeter of the circles, they axis is the
reconstructed value at that position.

the background. In the mean images, a small overshoot near the
boundary of the object is seen for the OCPL-algorithm.

The mean image in absence of hot pixels was subtracted from
the mean image with hot pixels, to generate the local impulse re-
sponses at the three hot pixel positions. For each local impulse
response, four profiles (horizontal, vertical, and the two diag-
onal ones) were extracted by sampling along oriented straight
line intervals through the center of the impulse response. The
profiles are plotted in Figs. 10 and 12. The profiles for the three
algorithms are nearly identical in all four directions, confirming
that a close match of spatial resolution was achieved.

Table I shows the SNRs for each of the points. With 400 sim-
ulations, the relative error on the standard deviation should be
about %. The error on the signal is smaller
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Fig. 9. The variance (top) and mean (bottom) images, computed from the 400
Poisson noise realizations of the elliptical object. Left: OCPL-reconstruction,
center: postsmoothed MLEM, right: IFBP. The images on the same row are
displayed with the same gray scale.

Fig. 10. Profiles along straight lines through the three impulse responses in the
elliptical object. For each of the three points, the profile along the horizontal,
vertical and the two diagonal axis was computed. Symbols:+ for OCPL,� for
postsmoothed MLEM and diamonds for IFBP.

than that, so the SNR has a relative error of about 3.5%. In each
case, point 1 was the hot pixel that was used to define the local
impulse response function. The SNR was best for postsmoothed
MLEM, but the performance differences are relatively small and
position-dependent.

Fig. 11. The variance (top) and mean (bottom) images, computed from the 400
Poisson noise realizations for the thorax phantom. Left: OCPL-reconstruction;
center: postsmoothed MLEM; and right: IFBP. The images on the same row are
displayed with the same gray scale.

Fig. 12. Profiles along straight lines through the three impulse responses in the
thorax phantom. For each of the three points, the profile along the horizontal,
vertical, and the two diagonal axis was computed. Symbols:+ for OCPL,� for
postsmoothed MLEM, and diamonds for IFBP.

Finally, Fig. 13 compares the coefficients of variation in every
pixel, for the three algorithms and for the thorax phantom. Im-
ages are produced by setting a pixel to 1 if the ratio of standard
deviation and mean in that pixel is lower with one algorithm
than with the other. Of course, this figure provides no informa-
tion about signal recovery or SNRs.
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TABLE I
THE SNRS FOR THETHREE POINTS IN THE MONTE CARLO SIMULATION FOR

THE THREERECONSTRUCTIONALGORITHMS (OCPL, POSTSMOOTHEDMLEM,
AND IFBP) AND FOR THE TWO SOFTWARE PHANTOMS

Fig. 13. Comparison of the coefficient-of-variation (cov) images. Left: pixels
are set to white where OCPL-cov was lower than postsmoothed MLEM-cov.
Center: OCPL-cov lower than postsmoothed IFBP-cov. Right: postsmoothed
MLEM-cov lower than postsmoothed IFBP-cov.

V. DISCUSSION

The first experiment confirms the derivation of the expres-
sion for the local impulse response function of a quadratic prior
in combination with a shift-invariant likelihood function. In this
simple denoising problem, the prior produces an exponential
impulse response, with a narrow peak and relatively large extent.
In [20], the impulse response function was studied for an ideal-
ized tomograph, where the sinogram has position-independent
noise properties. For a tomograph with ideal resolution, similar
shapes were observed as reported here, but the shapes change
if more realistic detector blurring is taken into account. These
findings indicate that the penalized likelihood approach offers
little control over the shape of the impulse response, which can
be very different from that of the low-pass filters that are com-
monly used in nuclear medicine applications. For some appli-
cations, the freedom to choose any shape for the impulse re-
sponse may be an advantage for postsmoothed MLEM over
PL methods. Consequently, in studies comparing PL with tra-
ditional filtering, care must be taken to eliminate the influence
of the different impulse responses of the methods.

The PL method (OCPL) can be applied to both PET and
SPECT, and marked improvements were obtained on simulation
studies for both modalities. The profiles show that the unifor-
mity of signal recovery was similar, though still inferior to that
obtained with postsmoothed MLEM after 200 iterations. This
may be partly due to incomplete convergence: even at 200 iter-
ations the MLEM algorithm was not fully converged, which is
why the corresponding profiles are not flat. Convergence is slow,
in particular for SPECT, where both attenuation and collimator
blurring must be compensated. As noted in [8], the penalty im-
proves the conditioning of the problem, which could be ex-
ploited to design faster optimization algorithms. Our algorithm

[5] is a straightforward extension of MLEM and may not con-
verge faster than MLEM. Moreover, because the OCPL method
focuses on only four different smoothing axes, it is expected that
some nonuniformity will persist at any iteration number. This is
probably also the cause of the oriented artifacts near the object
boundary in Fig. 5.

The performance of the OCPL-method degrades near the ob-
ject boundaries. A small overshoot phenomenon is visible in
the reconstruction, e.g., in the mean image of Figs. 9 and 7.
The corresponding variance image reveals a lower variance near
the boundaries than for the other algorithms, suggesting that the
boundaries are being oversmoothed. A similar decrease of per-
formance was observed with the method of Staymanet al. [9],
[21].

For the Monte Carlo simulation at matched resolution,
postsmoothed MLEM achieved a better SNR than postsmoothed
IFBP and OCPL. The performance difference is different for
each point, and seems to be higher when the asymmetry in de-
tection probabilities is more pronounced. Fig. 13 compares the
coefficients of variation in every pixel. This is only meaningful
if we can assume that the local impulse response function is
uniform as intended, which can only be verified in the three
hot pixels. This figure suggests that postsmoothed MLEM
outperforms OCPL, which in turn outperforms IFBP, but as
indicated by Table I, the performance differences are relatively
small. With their more sophisticated method, Staymanet al.
[21] obtained identical noise performance for postsmoothed
MLEM and their new method. Probably, the approximations
made in the derivation of OCPL have resulted in somewhat
degraded noise performance. However, comparison of the
results is difficult because they were obtained for different con-
figurations (SPECT in [21] and PET in our study). In any case,
these studies suggest that postsmoothed MLEM has excellent
noise characteristics, which are not improved by including
the smoothing as a penalty in our PL methods. Moreover, the
impulse response in MLEM tends to be more uniform than with
PL methods, because the latter have a suboptimal performance
near the object boundaries.

For application in clinical practice, several options exist.
Postsmoothed MLEM has a very low implementation cost,
since MLEM is now available in the system software of
most emission tomography systems. Moreover, it allows free
selection of the shape of the impulse response, in contrast to
the PL method. So straightforward application of postsmoothed
MLEM seems the obvious choice. However, as illustrated by
our simulation experiments, a very high number of iterations
is required to ensure that the MLEM impulse response is
small compared to that of the target resolution. It is currently
common practice to apply a few tens of MLEM-iterations (or
OSEM-subiterations). This number should be raised to a few
hundreds to ensure uniform resolution, in particular when the
aim is to (partially) compensate for the loss of resolution due
to the system response (e.g., collimator blurring in SPECT).
In this work, we have used either pure MLEM-iterations, or
OSEM-schemes in which the number of subsets gradually
decreases to unity (pure MLEM). When a fixed and high
number of subsets is used for stronger acceleration, OSEM
converges to a limit cycle with inferior noise characteristics
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[22], so the conclusions of our paper cannot be extrapolated to
such OSEM schemes.

As suggested by Staymanet al. [21], convergence speed may
be a reason to use a PL approach as a kind of acceleration tech-
nique: the penalty improves the condition number, which can be
exploited to obtain faster convergence than with unregularized
MLEM. In order to avoid possible suboptimal response of the
PL method, or to allow more freedom in selecting the shape of
the impulse response, it could be combined with postsmoothing,
or even with postsmoothed MLEM as a finishing touch.

Finally, it should be noted that we have only studied a
quadratic penalty, applied to emission tomography. No conclu-
sions can be drawn about the relation between nonquadratic
penalties and linear or nonlinear postfiltering. Similarly, the
results cannot be extrapolated to transmission tomography,
because there, in contrast to emission tomography, the mea-
surements are a highly nonlinear function of the parameters to
be estimated.

VI. CONCLUSION

The impulse response typically produced by PL methods with
a quadratic penalty tends to have a relatively sharp peak and
wide extent.

Our simulation experiments confirm that the new PL method
(OCPL) achieves nearly uniform resolution. However, its noise
characteristics are not superior to that of postsmoothed MLEM.
This finding calls for further study of the performance differ-
ences between postsmoothed MLEM and PL methods.
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