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A Penalized-Likelihood Image Reconstruction
Method for Emission Tomography, Compared
to Postsmoothed Maximum-Likelihood
With Matched Spatial Resolution
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Abstract—Regularization is desirable for image reconstruction a Bayesian prior that encourages local smoothness [1]-[5].
in emission tomography. A powerful regularization method is the  Often, the prior is modeled as a Gibbs distribution of the form
penalized-likelihood (PL) reconstruction algorithm (or equiva-
lently, maximum a posteriori reconstruction), where the sum of

the likelihood and a noise suppressing penalty term (or Bayesian . 1
prior) is optimized. Usually, this approach yields position-de- prior() = 7 P _Z Z BO(Aj, Ak) 1)
pendent resolution and bias. However, for some applications in J keN;

emission tomography, a shift-invariant point spread function
would be advantageous. Recently, a new method has been pro-where Z is a normalization constanty; is the set of neigh-
posed, in which the penalty term is tuned in every pixel to impose pors of pixelj, ® is a function operating on pairs of neigh-

a uniform local impulse response. In this paper, an alternative : : - by .
way to tune the penalty term is presented. We performed positron boring pixels [6], and’ is a constant that specifies the relative

emission tomography and single photon emission computed Strength of the prior. Usuallyp is chosen as a shift-invariant
tomography simulations to compare the performance of the new function that penalizes differences between neighboring pixels.
method to that of the postsmoothed maximum-likelihood (ML) The approach is attractive because it allows one to include the
?hpeprogsctks],m ﬁ[‘rﬁntheﬁ|i<r:rp%§$h§?§t?gfe|:8: m?s fg;meerzmrgitthotﬂeas regularization in the reconstruction (so the final reconstructed
noisg properties ngq the PL algorithm were not supe?ior to thc;se of '”’.'age Is directly verified agalnlst the raw data), e_md because the
postsmoothed ML reconstruction. Gibbs-framework accepts a wide range of functions that can be
optimized for particular purposes. However, because the prior is
shiftinvariant and the likelihood is not, the MAP image has posi-
tion-dependent (and image-dependent) bias and resolution. For
some applications, this is an undesirable feature. For example, in
I. INTRODUCTION tracer kinetic modeling, the time activity curves should only re-

UE TO the low tracer dosage and the limited acquisitioﬂ,ect_changesihtracgrconcentration, arld_changes dueto vgrying
time, clinical emission data [positron emission tomogspatlal resolution will cause errors. Similarly, when applying

raphy (PET) or single photon emission tomography (SPECT ?m_i-quantitative analys_is based on standard u_ptake yglues [71,
are usually strongly affected by Poisson noise. Even with'S important that the bias does not change with position and

optimal [according to the maximum-likelihood (ML) criterion]'Mage contents.

use of the data in statistical reconstruction, the noise propagaFessler and Rogers [8] have proposed to use a position-depen-

tion results in unacceptable noise levels in the reconstruct@ent prior: they replacg in (1) with \//3; 3, and tune these pa-

images. Several regularization methods have been proposedameters to impose position-independent resolution. This makes

powerful method is to replace the ML criterion with a maximunthe “prior” data-dependent, so it can no longer be regarded as

a posteriori(MAP) criterion, by combining the likelihood with & Bayesian prior; the authors call it a penalty term and their
method PL reconstruction. With the position-dependent penalty,
the resolution was more uniform, but there was still position-
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filters, it is possible to obtain uniform resolution with EMS aecausey; = 0 for j # 0, we obtain
well.

An alternative method to obtain uniform resolution is to
postsmooth the reconstruction obtained after many iterations '
of a ML reconstruction algorithm [14], [15]. Applying a Substituting; = ab’ produces a quadratic equationbin
sufficiently high number of iterations ensures a nearly bias-free 2
reconstruction, so after postsmoothing, the spatial resolution is wh” = (14 2w)h +w =0, ©6)
uniform and the point spread function is (nearly) identical t@ith the following solution:
the smoothing filter. Note that the number of iterations needed
depends on the application; for some, several hundreds of po 1t2wtvitdw 7
iterations may be required. In this paper, a new PL method is 2w
proposed to obtain a symmetric and shift-invariant point sprefte that the product of the two solutions foequals 1. It fol-
function. The performance of this new algorithm is comparggws that\; = aexp(—|In(b)j|) is a solution. The local im-
to that of postsmoothed ML reconstruction. pulse response has an exponential shape for this 1-D problem.

This paper is organized as follows. In Section I, we firsthe value of: can be determined by requiring that the sum (over
derive an approximate expression for the “natural” shape gff pixels) of the impulse response equals the sum of the im-
the local impulse response function associated with a quadrgifise. The same result has been derived earlier by Usissr
penalty term. The rest of the section discusses how the CRI6] using the. transform representation.
tainty of the likelihood can be estimated and be used to tunep, Simp|e approximate expression for the two-dimensional
the penalty term. In Section IlI, the setup of the simulatiofp-D) case can be obtained, under the assumption that the local
experiments is discussed. The main experiment is a compigiipulse response is circularly symmetric, and that effects of the
ison of signal-to-noise ratio (SNR) at matched resolution, bgixel grid can be ignored. For many applications, circular sym-
tween postsmoothed ML and the new PL algorithm. Section IMetry is desirable, and experience shows that it can be achieved

w

A= T Mt Ai). ()

presents the results, which are discussed in Section V. with good approximation using a 4- or 8-pixel neighborhood.
Assume that the local impulse is centered at pixet 0, and
[I. THEORY that\; represents the pixel value at a distancg pixels from

A. The Local Impulse Response With the Quadratic Prior anthe centgr. For §|mpI|C|ty, we also assume that t_he nel_ghbo'rs ofa
Uniform Likelihood p|xe! at d|stancg are all Ioca.ted on the circles with raglii- 1, j
andj+1. The neighbors at distangall have the same value and
Consider a one-dimensional (1-D) image, and assume tahtribute a zero term to the quadratic prior fgr. The circle
for every pixel exactly one measured value is available. Assumh radiusj + 1 contains more pixels than the circle with radius
that the measurements are independent, and subject to Gausgian, so pixelj has more neighbors at distante- 1 than at

noise with constant and known variance, equal to one. Then #istancej — 1 from the center. We will assume that the number

logarithm of the likelihood.(y, A) equals of neighbors at distancgis proportional toj + ¢, wheree is
a small positive constant, reflecting the finite size of the pixels
Ly, \) = Z Li=-3 Z N —y;)? (2) [there is afinite pixel at distance zerp £ 0) from the center].
J j With these approximations, the 2-D problem can be described

by modifying the weights in (3)
wherey; and); are the measurement and the image values for

pixel j. We also introduce an a-priori probability distribution.p, () = _1 {w J _ I+e (Aj = Aj_1)?
The logarithm of this Bayesian prior equals 4 Jte
Jt+1l+e ) ) 2
P()\) = —i (w(/\j - )\j_1)2 +w(Aj — )\j+1)2) . 3 tw Jte (Aj = Ajs1) } )

! As before, the prior is combined with the likelihood (2), where
Here,w is the weight assigned to the difference between a pixek assume that, = 0, and the maximum af + P, is computed
and its neighbor. This prior favors smooth images and reachsssetting the first derivative to zero

its maximum when the image is perfectly uniform. As in image

reconstruction from projections, the MAP image is obtained by 0= M
maximizingL + P;. To study the local impulse response of the 8_)‘3'
MAP-image, we assume that the measured values for all pixels - w 7_71“ (Aj — Aj_1)
are zero, except for a single pixgl= 0, for which it equals Jte
A > 0. For a pixel withj # 0, the MAP-image satisfies the T lte O = A1) — Ay ©)
following relation: J+e

. o+ Py Rearranging yields

- ())\] (2w+1)(j+€))\j —w(j— 1+€))\j_1

=—(14+2w)Aj +y; +whj_1 + wAj41. 4) —w(j+1+€e)Xj41=0. (10)
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Substitution of\; = ab’ /(5 + ¢) produces a quadratic equation(CPL). Although this algorithm makes the resolution more uni-
in b, which is identical to (6). Consequently, we find that a maxXerm, the resulting local impulse response is asymmetric, and

imum of L + P; is obtained for the asymmetry is still position dependent. Stayman and Fessler
a ) [9], [10] have extended the algorithm to reduce the asymmetry
Aj G1o°¢ 7 (11)  aswell. Their approach is based on an explicit expression for the

local impulse response function, and they optimize the weights
The main conclusion is that the local impulse response @f; to obtain a best fit between this computed local impulse re-
the quadratic prior has an exponential shape which is rathgjonse and a predefined target impulse response.
different from that of typical low pass filters used in nuclear Here, we follow a slightly different approach. The analysis
medicine. This is important when comparing the performanggesented above suggests that the shape of the local impulse re-
of PL methods to that of filter-based methods. Unless thgonse may be an intrinsic property of the quadratic penalty.
filter is matched to the local impulse response of the Pkor that reason, and also in an attempt to obtain a simpler algo-
method, it will be unclear if performance differences are due fahm, we do not use a target impulse response: we will accept
intrinsic properties of the algorithms, or only to the differen{gny shape, as long as the impulse response is symmetric and po-

characteristics of the impulse responses. sition independent.
The objective function that must be maximizedlis= L+ P,
B. Emission Tomography where L is given by (12) andP by (14). Assuming uncon-
In emission tomography, the log-likelihood function can betrained maximization (and, therefore, ignoring the usual non-
written as [14] negativity constraint), the reconstructiarmaximizing@ must
satisfyoL/do\; = —0P/0\; or
L(y, ) =Y A{wiIn(ri) —ri} (12)
Ty = Z cij Aj + qi (13) XL: (CU T c”> Zk:wjk (g = 2. (16)
J

) ) ] ) To compute the local impulse response, the value in a single
wherey; is the measured photon count in deteaiok; is the pixel p is changed by adding a small impulsg. As a result,

estimated _radiogct_ivity in pixej_, Cij i; the probability that a {he new measuremept and reconstruction’ become
photon emitted iry is detected in, ¢; is the expected number
of counts contributed by such processes as scatter and randoms, "=+ i
. Yi =Yi ipUp
and terms independent afhave been dropped. = A+ AN
In the analysis above, the certainty provided by the likelihood ’j
was the same for every pixel. In contrast, the certainty provided i =1i + AT
by emission tomography is different for every pixel. When the Ar;, = Z Cik ANg a7
nonuniform likelihood is combined with a uniform penalty term, k
posﬂmn-depepdent smoothlqg results..ln [8], an.algorlthm'\ﬁhereup is the impulse and\ \;, is the impulse response. The
presented to impose approximately uniform spatial resolution P L
. . . posterior is now maximized when
by tuning the weightsu;;, of a quadratic penalty of the form

Yi t+ Cipu
PO) =3 > wix (A = M)’ (14) Z(Cz'j ﬁ - Cij) = wik(\j+ AN = A= Ag).
J % P ) i P

(18)
where the weights;;, are zero except when pixejsandk are  Subtracting (16) from (18) yields
neighbors, ana;, = wy;. Based on the analysis of an explicit A
expression for the local impulse response function, the authors Coi CipUpTi — YirTi _ wi (AN — ANL). (19
propose to choose the weights as follows: Z (i Arg)rg ; #(B% B (9

2. 2 Sinceu,, is very small, Ar; is also very small and we have that
Wik ~ Z =L Z ik (15) r; + Ar; ~ r; (we are only interested in the impulse response
7 Yi Yi within an active object, soitis reasonable to assumerthat0).

In addition, we assume that the penalty is not too strong, such
that the calculated and measured projections are very similar,
(,?Snd as a result

wherey; is the measurement mean for deteatofhe factors
between parentheses are flte andkth diagonal elements of
the Fisher information matrix [17], which can be regarded
a measure for the certainty provided by the likelihood. So (15) yi Ar; Ar;
prescribes that the weight used to penalize the difference be- Z Gi =2 = Z Cid =
tween two pixels should be proportional to the geometric mean ‘
of the certainties of the two pixels. The measurement mganWwith these assumptions, (19) can be simplified to
is not available, but the measurement®r the calculated pro-
jectionsy; are useful approximations. We will denote this algo-z 6ij Cipllp — AT _ INY Z win — Z (wpAAL). (21)
rithm as “certainty-based penalized-likelihood reconstruction’ T .

= (20)

k

i
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This result is equivalent to the expression for the local imincreasing distance a All these approximations yield the fol-
pulse response [(18) and (19)] obtained by Fessler and Rogexging recipe:
[8].1

Since the penalty penalizes only differences, it is expected W = o Z cij(cij — cir) 27)
that the mean count is preservedigpo= >, A).. Inserting k= —’
this in (21) and using (17) yields

(2 Ti
where parametet: defines the global strength of the penalty.
Zk:(cil’ = cit) A According to [9], only the symmetric component of the design
Z Cij 7« =A);j Z Wik — Z(wjkA/\k). matrix determines the smoothing characteristics. This compo-
i ' k k nent is
(22)

. . . . . Wik + Wi _ ¢ Z (Ci]’ - Cik)2 (28)
Switching the order of summations and rearranging a bit we 9 ) r :

obtain i

S

k i B

i

AN = AN ijk (23) conclusion in [8] was that approximate uniform spatial resolu-
& tion could be imposed by requiring that the weightg, were
proportional to the Fisher information for estimating the pixel
which can be rewritten as values inj andk. The Fisher information estimates the “resis-
, ' tance” of the likelihood against smoothing, and more smoothing
?Gﬂ“’ i) A is required if the resistance is higher. However, the Fisher infor-
AXj = S wik (24) mation measures the certainty about the absolute pixel values,
k whereas the smoothing only penalizes differences between pixel
G = Z cij(cip — Cv‘,k). (25) values. So it seems meaningful to estimate the resistance against
1P T smoothing by computing the certainty about pidéferences
provided by the likelihood. To do this for a particular pixel pair
If the parametersy;;, are large compared to the contribution ofj, k), we rewrite the likelihood (12) as a function of the differ-
the likelihoodG,, then (24) states that the response in pjxelence and sum of these pixels
is aweighted average of the responses in the neighboring pixels,
as can be expected from a smoothing penalty. The contributionri _ Z ciede + cij sik + dj +oen sik — djp
of the likelihoodG 1, changes the weights in a position-depen- e etk ! 2 2
dent way. Moreover, it also changes the total sum of the Weightsd' -
as there is no contribution from the likelihood to the denomi-"~* ! »
nator. As a result, it is clear that with position-independent pa-*i* =
rametersw;;,, the local impulse response strongly depends on ) ) ) ) )
position. Now, the diagonal element of the Fisher information matrix cor-
To reduce the position dependence, we will try to tune tH&SPonding tal;; can be computed as
parametersu;;, such that at least the sum of the weights in (24)

becomes independent of the position. A somewhat simplistic —E<82L(y’ )\)) B E(Z<cij - cik>2 &>

) Equation (28) can be derived in a different way as well. The

i

+q

)\j—l-/\k.

way to obtain this would be to set ad2, , 2 72
K2

2
W = oGy (26) -2 > % (29)
which would ensure that the sum of the weights in (24) would be _ . _ _
equal tol +1/«. This approach has two problems. Fifsty,, is  WhereF is the expectation, ang is the expectation of;. Equa-
a function of the position of the impulsg,, while w;, is not. It tion (29) reproduces (28) if we can assume #at- r;.
seems not trivial to optimize the response for all possible po- ~ Equations (28) and (29) have an interesting intuitive interpre-
sitionsp of the impulse simultaneously. To avoid this problenfation. For a projection ling intersecting both pixelg andk,
we concentrate on the response ifor a perturbation iry, i.e., We havec;; ~ c;x, so this projection does not contribute any
we setp = j in (24) and (26). The second problem is that fogertainty. In contrast, a projection line perpendicular to the line
practical reasonay;;, should be zero except for the pixels connectingj andk cannot intersect both pixels. Consequently,
that are close neighbors of p|xﬁ|wh||e the support Oijp is prOjection lines with this orientation and intersecting one of the
much larger. We hope that this problem can be ignored, becai#geels contribute a maximum amount of certainty. For example,
G, is a (modified) backprojection, which decays rapidly witthe projection linei intersecting pixelj but notk hasc;;, = 0,
and its contribution is proportional to

1To clarify the equivalence, (21) can be rewritter(d$D(1/r)A+ R)V =
A'D(1/r)AU, whereA is the system matrix)(1/r) is a diagonal matrix with 9
elementsD;; = 1/r;, U is the impulse} is the impulse response, afdis a (Cij — Cik) _ g (30)
matrix defining the penalty aB(A) = (1/4)A’RA. 7; 7, ’
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The diagonal elemei(y, j) of the Fisher information matrix for minimum ofFf over the four angles, denoted as Fmin. The four

estimating\ from the likelihood equals images are then modified to implement the two components, by
2 applying the following steps:
Cij
Fjj= Z T (31) Ff) :Fj135 -0
Expression (30) is théth term of (31). So, (28) and (29) sug- Fj = F}" = F min
gest to compute the Fisher information not from all projections, Ff“‘“ = Ff“‘“ + Fmax —Fmin.

but only from a subset containing projection lines which are a|

g . . 6 . _ .
proximately perpendicular to the line througland. Fhe resulting images" are convolved with a 2-D Gaussian, to

avoid possible artifacts near abrupt changes of Fmax, and nor-

C. Imposing Uniform Resolution malized to ensure that total strength of the penalty in each pixel

as estimated by summing (33) over the four images not

hanged by the heuristic manipulation and Gaussian convolu-

tﬁ . Finally, inspired by (15), we compute the weights, as
follows:

2

(cij —cin)?® Cij 32 8(j, k) 120G, k)
D P s @2) we =\ EORO (24)

) ieijk
whereS;_, is the subset of projections with projection line apwhegitr}%ax'jéfjt’. k) IIS paralktal tt_o th?;'nz Con?fhc.tmg aﬁ(ecljs.
proximately perpendicular to the line connecting the centers-pfind”- e additional computational burden of this method 1S

pixels j andk. We investigated a modified penalty for 2-D re.SMall compared to that of traditional PL reconstruction with a

construction by inserting approximation (32) directly in (28)guadrat|c penalty. Computation of the four imagesinvolves

This approach only somewhat improved the resolution unifokP—";‘CkprolECtIOn for four subsets, so the work is equivalent to

it if th iahtsuw . . iah . a single packprojection. The_ rest are simple pixel operations,
mity if the weightsw,; were computed using 8 neighbors M nd (34) is computed every time;;. is needed. Of course, the

a 3 x 3 neighborhood. However, if only horizontal and ver- thod | th load. b thei ¢
tical neighbors were used, good resolution performance in v gthodincreases Ine memaryload, because the infetbesis
precomputed and kept in memory.

tical and horizontal direction was observed. It seems that th ) . ) . .
his new algorithm is actually a straightforward extension

is some interference between diagonal and vertical direction . o : :
in the 8-neighborhood system, which is not captured by (2 fsthe CPL-aIgonthm (15.)' Thg essentl_al d_n‘fere_nc;e IS that in
e new algorithm, the Fisher information is split in different

Therefore, we redistributed the penalty weight values using t . : ; ; .
b y welg 9 components, which represent the information about pixel dif-

following heuristic modifications. ¢ | diff t orientati Iti ient to give it
For 2-D reconstruction and with a penalty term defined in §'ences along difterent orientations. 1S conve:ne_n ogveita
name, so we will denote the new algorithm as “orientation-de-

3x3 neighborhood, eight weights;; per pixelj must be de—r pendent certainty penalized likelihood” (OCPL)

fined. Requiring thatv;, = wy; reduces the number to fou . : :
Therefore, we assume that there are only four smoothing direc—Aﬁer designing the penalty function using (34), we are ready

tions: horizontal, vertical and the two diagonal ones. In additio@ maximize the PL objective functlor_r thelsum of (:.LZ) anq (14).
we assume that the smoothing can be considered as consiﬁ o could apply af‘y."f t.he many iterative algorlthms.m the
of two components, a uniform component and a component Ha gture to this optlmlzat!on problem. For the result; given in
one of the four directions. Finally, we assume that the unifor ect|_on ”I_’ we hgve applled_ a grad|en_t_asc_ent algorithm. The
component can be implemented using only the weights in t orithm is gbtameq asa _S|mple mod|f|c§1t|on of the classical
horizontal and vertical neighbors, and that the directional com- e>.<pectat|on-maX|m|zat|on (EM) algorithm, and has been
ponent can be tuned independently by adjusting the two weig FSSCI’Ibed elsewhere [5].
corresponding to that direction.

These heuristics yielded the following recipe: For each of the
four axes, an image is generated that estimates the Fisher infar-The Shape of the Local Impulse Response
mation along that axis. These four images are computed as

A strong reduction of the complexity and the computatio
burden is obtained by introducing the approximation sugges
in the previous section

l1l. EXPERIMENTS

To assess the accuracy of the approximate equation (11), the
0 ci; 2-D uniform likelihood problem has been simulated, using an
Iy = ag Z 0 (33) 8-pixel neighborhood, a weight of 1 for direct neighbors and of
i€Sy 7 1/+/2 for diagonal neighbors and a strong global weight for the
wheref equalsi®, 45°,90°, or 135°, ' = 6 + 90°, Sy is the penalty term. Two hundred iterations of a gradient ascent algo-
subset of projections with projection lines betwéer22.5° and  rithm were applied. The horizontal row containing the center of
0+22.5°, ag = g = 1, andays = a135 = 1/v/2. Notetha¥)  the impulse response was extracted to obtain a 1-D profile, and
is used to define an axis, not a direction, so operationsamre the three parameters of (11) were computed with least squares
modulo 180. Then, for every pixej, we define,... as the axis fitting.
with the largest valué“f = F max. The likelihood provides the .
strongest certainty aiong this axis..., so a stronger penalty B- Evaluation of the New Method
weight along this axis is needed to impose uniform resolution. Two simulation experiments were performed to assess
The uniform smoothing component is estimated by taking tliee performance of the new method. The first experiment
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was designed to evaluate the resolution uniformity obtained
with OCPL, comparing with a quadratic penalty, with the
CPL-method and with postsmoothed MLEM (MLEM). The
main purpose was to verify that extending CPL to OCPL leads
to more uniform resolution. In the second experiment, the
noise characteristics of OCPL and postsmoothed MLEM were
compared by computing the SNR in a few points.

The simulations were carried out starting from a digital de-
scription ofthe object (an activityimage and an attenuation map).
We only considered a single slice. PET and SPECT projections
were computed taking into account the dominating physical ef-
fects: attenuation for both, and for SPECT also collimator blur-
ring (implemented with Gaussian diffusion [18]). We performed
multiple Poisson noise realizations to estimate the variance f@§. 1. Simulation object to evaluate the new uniform resolution PL with PET
computing the SNR. The reconstructions were computed usirg SPECT.
the same system matrix that was used for computing the projec-
tions. Itis clear that the simulation is a simplification compared ttve blurring due to interpolation in the projection software). For
true life. However, the results are useful because the dominat®gECT, 60 attenuated projections of 66 bins per projection were
effects have beentakeninto accountand the algorithms were egamputed, simulating an orbit of 18With a parallel hole colli-
uated using exactly the same data. mator. The gamma camera started at the top and rotated in clock-

For the second experiment, it was essential to ensure thattvige direction. No noise was added.
two methods had a (virtually) identical impulse response. Other-In both cases, reconstructions were computed with a uniform
wise, differences in the SNR could be attributed to the impulggladratic penalty, with the CPL-algorithm (15), with the new
response rather than to the reconstruction algorithm. The f@0ICPL-method (34) and with postsmoothed MLEM. The recon-
lowing procedure was applied to ensure a close match of the igtructed image size was 100 100 for PET and 66< 66 for
pulse responses. First, a second digital phantom was produS&¥ECT. For the smoothing kernel in postsmoothed MLEM, we
by increasing the activity value of a single pixel. This is the im4sed the impulse response of the OCPL method as described
pulse. Then, two sets of projections were computed, one for thigove (the impulse response was measured in the center of the
original phantom, and another one for the phantom with the irage). With the quadratic penalty and the CPL-method, the im-
pulse. Both were reconstructed with OCPL, subtraction yielgillse response is not symmetrical and a close match with the
the local impulse response. This local impulse response waber methods cannot be imposed. An approximate match was
then used as the postsmoothing filter in postsmoothed MLERchieved by tuning the penalty aiming at similar mean signal re-
This ensures a close resolution match at the position of the iagvery along the circle. A high number of iterations was applied:
pulse, if MLEM was iterated close to convergence. Assumirgf)0 for PET and 450 for SPECT. We used a higher number for
that OCPL is successful in imposing uniform resolution, the@PECT, because the inclusion of collimator blurring slows down
should also be a good resolution match in the other pixels. \Wenvergence.
verified this by measuring the OCPL impulse response at a few2) Signal-to-Noise Comparison  With  Postsmoothed
other pixels as well. In the following paragraphs, the expedLEM: The aim of this experiment was to compare the
ments are described in more detail. SNR obtained with the OCPL algorithm to that obtained with

1) Resolution Uniformity With the New Method@he OCPL postsmoothed MLEM. The elliptical object, shown in Fig. 2
method was implemented and evaluated with 2-D PET am@s used. It has uniform activity and uniform attenuation.
SPECT simulations. Fig. 1 shows the activity distribution of theirst, a single hot pixel was inserted in the image (see Fig. 2)
2-D software phantom. The object consisted of a uniform loand noise-free attenuated PET-projections were computed
activity background disk containing circles of higher activity(128 projections with 80 bins per projection). An OCPL-re-
The disk and circles had identical and uniform attenuation. Tkenstruction was computed using 200 iterations. The very
background activity was 2, the activity of the circles was 1@ame procedure was applied again, but this time without the
The diameter of the attenuating disk was 28 cm for SPECT ahdt pixel. The difference between the two images is the local
36 cm for PET. In both cases, the attenuation was set to 0.00%ulse response. This local impulse response was captured in
per centimeter. For the SPECT simulation, the collimator hacgfilter mask (15x 15 pixels), for later use as the smoothing
full-width at half maximum of 2 cm at 30-cm distance and thélter in postsmoothed MLEM.
camera had an intrinsic resolution of 4 mm. A circle is useful Subsequently, two more hot pixels were inserted as shown in
to evaluate orientation-dependent smoothing, since recovenyrig. 2, and attenuated PET-projections were computed. These
the circular activity is sensitive to smoothing in any directionvere used as the mean of a Poisson distribution, and 400 noise
The asymmetric position of the circles ensures strong posititgalizations were generated. In addition, 400 noise realizations
and orientation dependence of the certainties provided by theébsence of the hot pixels were produced. From all these simu-
likelihood. lated projections, images were reconstructed with three different

For PET, attenuated projections with 100 detector bins wepgorithms:
computed for 80 angles, assuming perfect resolution (except fom) Two-hundred iterations of the new OCPL-algorithm;
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@b @i, .«

Fig. 2. Simulation objects to compare uniform resolution PL reconstructig
to postsmoothed MLEM. Left: the object used to determine the local impulS€
response. Right: two more points were added for the SNR measurement.

Fig. 3. Attenuation map (left) and activity distribution (right) for the simulated
thorax phantom. The points are numbered from bottom to top, the first point (in

b) Two-hundred iterations of the MLEM algorithm, followedtissue) is used the determine the local impulse response.
by postsmoothing with the local impulse response func-
tion determined in the first step e 324 exp(=0.11x) / (x + 1.06)
c) Six iterations of iterative filtered backprojection (IFBP)
followed by postsmoothing with the same impulse re
sponse.

We used IFBP, because with regular (noniterative) filtere
backprojection (FBP), a small amount of smoothing due to il
terpolation is hard to avoid. This smoothing is eliminated afters
few iterations of IFBP, resulting in a sharper impulse respons
The iterative FBP-algorithm applies the following scheme:

3

2

pixel val

A\mew — yold + FBP (y/ — proj (/\Old)) (35)

wherey’ is the measurement precorrected for attenuatias,
the reconstruction, andpfoj” denotes nonattenuated projec-
tion. We used 200 iterations of MLEM and 6 iterations of IFBF
to ensure that the impulse response of the unsmoothed rec
structions was very close to an ideal impulse. Consequenty,
after postfiltering, both reconstructions should have nearly &Xg 4. Horizontal profile through the impulse responsd for a 2-D image
actly the same impulse response as the PL algorithm. with uniform likelihood, with the fitted function (solid line) using expression
From the 400 noise realizations with and 400 realizatiofsh:
without signal, the SNR is computed as follows:

L R
e e b b s

0

w

IV. RESULTS
mean(A} — A9)

\/(var(A;) + var(\9))/2 _ o : _ _
Applying 200 iterations of a simple gradient ascent algorithm
where; is the position of one of the three hot pixel€, rep- seemed sgfﬁcient to reach convergence (more itgrations did .not
resents the reconstruction with the hot pixels afidhe recon- Produce visible changes). Fig. 4 shows the horizontal profile
struction without the hot pixels. gx_tracted from the image, tog_ether with the curve produced by
For visual inspection, also the mean and variance imag&ing (11) to the profile. The impulse had a value of 100, the
were computed for each of the reconstruction algorithms. ~ ttéd parameters were = 3.24, ln(b) = 0.11 per pixel and
The results were verified using a second, very different sirh-= 1-06 pixels.
ulation object, shown in Fig. 3. It is a simplified simulation of .
a PET-study of the thorax. Three hot pixels were inserted, tfb Evaluation of the New Method
in the lungs and one in the tissue. The point in the tissue was~ig. 5 shows the PET-images obtained with the four re-
used to define the postsmoothing filter. The image has 3 00construction programs. In Fig. 6 profiles along the circles are
100 pixels, 128 projections were computed, assuming a consitown. They are computed by scanning the pixel positions
bution of randoms and scattey; [in (12)] of 28%. Due to the on the circles in the true image (Fig. 1) and extracting the
asymmetry of the attenuation, the local impulse response fumorresponding reconstructed pixel values. The profiles along
tion is very asymmetric if a uniform penalty is used [9]. For thithe two circles are shown in the same plot. Ideally, the con-
image, 200 MLEM iterations did not yet produce a sufficientlgatenated profiles should form a single flat curve, because the
sharp impulse response function. Therefore, the equivalenttab circles have identical and constant intensity. Figs. 7 and
about 500 iterations were computed using ordered subsets &show the corresponding results for the SPECT simulation.
celeration (OSEM) [19]. We used a decreasing humber of suflke uniform quadratic penalty produces a very nonuniform
sets (16, 8, 4, 2, 1) and applied 16 iterations for each of thoseconstruction, and the two profiles have a different mean
The same was done for the OCPL algorithm, and 10 iteratiomslue. With the CPL-algorithm, the nonuniformity is reduced
of IFBP were applied. For the rest, the processing was identieald the mean values of the two profiles are now much closer,
as for the elliptical phantom. indicating that some sources of position-dependent resolution

SNR; = (36) A. The Shape of the Local Impulse Response
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Fig. 5. The reconstructions of the PET simulations: the MAP-reconstructidid- 7 The reconstructions of the SPECT simulations: the
with quadratic penalty, CPL-reconstruction, OCPL-reconstruction arfgAP-reconstruction  with  quadratic penalty, ~ CPL-reconstruction,
postsmoothed MLEM-reconstruction. The arrow points at an artifact (see teX@CPL-reconstruction and postsmoothed MLEM-reconstruction.
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Fig. 6. Profiles along the circles in the PET-images of Fig. 5. Thaxis Fig. 8. Profiles along the circles in the SPECT-images of Fig. 7.Tlgis
corresponds to the position on the perimeter of the circlesythgis is the corresponds to the position on the perimeter of the circlesythagis is the
reconstructed value at that position. Solid line: MLEM. Long dashes: uniforneconstructed value at that position.

quadratic penalty. Short dashes: CPL method. Dotted line: OCPL method.

i . ] the background. In the mean images, a small overshoot near the
have been removed. With the OCPL-algorithm, the profiles aBundary of the object is seen for the OCPL-algorithm.
more uniform, although still not as uniform as thos_e producedThe mean image in absence of hot pixels was subtracted from
by postsmoothed MLEM. Also some oriented artifacts negfe mean image with hot pixels, to generate the local impulse re-
the object boundary are visible, in particular in Fig. 5 (one Qfponses at the three hot pixel positions. For each local impulse
them indicated with an arrow). They are most likely caused b¥sponse, four profiles (horizontal, vertical, and the two diag-
imperfect transition from one of the four smoothing directiong, ones) were extracted by sampling along oriented straight
to the other. line intervals through the center of the impulse response. The
profiles are plotted in Figs. 10 and 12. The profiles for the three
algorithms are nearly identical in all four directions, confirming

Figs. 9 and 11 show the variance and mean images catfmat a close match of spatial resolution was achieved.

puted from the 400 noise realizations, for each of the recon-Table | shows the SNRs for each of the points. With 400 sim-
struction algorithms. Because there was no nonnegativity canations, the relative error on the standard deviation should be
straint in IFBP, this algorithm produces noticeable variance about,/1/(2 x 400) = 3.5%. The error on the signal is smaller

C. Comparison to Postsmoothed MLEM
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Fig. 9. The variance (top) and mean (bottom) images, computed from the A@g 1L The varia_ncq (top) and mean (bottom) images, computed from the_400
Poisson noise realizations of the elliptical object. Left: OCPL-reconstructio oisson noise realizations for the thorax phantom. Left. OCPL-reconstruction;

center: postsmoothed MLEM, right: IFBP. The images on the same row a(C:ﬁ;}nter: post_smoothed MLEM; and right: IFBP. The images on the same row are
1ISplayed with the same gray scale.

displayed with the same gray scale.
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Fig. 12. Profiles along straight lines through the three impulse responses in the

Fig. 10. Profiles along straight lines through the three impulse responses in @@ phantom. For each of the three points, the profile along the horizontal,
elliptical object. For each of the three points, the profile along the horizontd€"tical, and the two diagonal axis was computed. Symbekar OCPL, x for
vertical and the two diagonal axis was computed. Symbplfar OCPL, x for ~ Postsmoothed MLEM, and diamonds for IFBP.

postsmoothed MLEM and diamonds for IFBP.

Finally, Fig. 13 compares the coefficients of variation in every
than that, so the SNR has a relative error of about 3.5%. In egiikel, for the three algorithms and for the thorax phantom. Im-
case, point 1 was the hot pixel that was used to define the loegles are produced by setting a pixel to 1 if the ratio of standard
impulse response function. The SNR was best for postsmootltsdiation and mean in that pixel is lower with one algorithm
MLEM, but the performance differences are relatively small arthian with the other. Of course, this figure provides no informa-
position-dependent. tion about signal recovery or SNRs.
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TABLE | [5] is a straightforward extension of MLEM and may not con-
THE SNRs FOR THETHREE POINTS IN THE MONTE CARLO SIMULATION FOR verge faster than MLEM. Moreover, because the OCPL method
THE THREE RECONSTRUCTIONALGORITHMS (OCF’L, FOSTSMOOTHEDMLEM, o 1 s
AND IFBP) AND FOR THE TWO SOFTWARE PHANTOMS focuseson oply fo_ur dl_fferent.smoothm.g axes, itis expecteq that
some nonuniformity will persist at any iteration number. This is
i ngl)lltpﬂc OQE%M TP probably also the cause of the oriented artifacts near the object
point p . .
i 73 84 153 boundary in Fig. 5.
2 14.1 154 13.7 The performance of the OCPL-method degrades near the ob-
3 16.9 18.0 17.1 ject boundaries. A small overshoot phenomenon is visible in
o OT(g‘;’Iiax ps&"&“& TP the reconstruction, e.g., in the mean image of Figs. 9 and 7.
1 235 337 218 The corresponding variance image reveals a lower variance near
2 434 4.63 4.35 the boundaries than for the other algorithms, suggesting that the
3 4.55 474 4.39 boundaries are being oversmoothed. A similar decrease of per-

formance was observed with the method of Staymiaal. [9],
[21].

For the Monte Carlo simulation at matched resolution,
postsmoothed MLEM achieved a better SNR than postsmoothed
IFBP and OCPL. The performance difference is different for
each point, and seems to be higher when the asymmetry in de-
tection probabilities is more pronounced. Fig. 13 compares the
coefficients of variation in every pixel. This is only meaningful
. . . - . . if we can assume that the local impulse response function is
Fig. 13. Comparison of the coefficient-of-variation (cov) images. Left: pixels if . ded. which v b ified in the th
are set to white where OCPL-cov was lower than postsmoothed MLEM-cd¥! Or_m as 'nte_n e » which can only be verified In the three
Center: OCPL-cov lower than postsmoothed IFBP-cov. Right: postsmoothladt pixels. This figure suggests that postsmoothed MLEM

MLEM-cov lower than postsmoothed IFBP-cov. outperforms OCPL, which in turn outperforms IFBP, but as
indicated by Table I, the performance differences are relatively
V. DISCUSSION small. With their more sophisticated method, Stayrearal.

[21] obtained identical noise performance for postsmoothed

The first experiment confirms the derivation of the expresLEM and their new method. Probably, the approximations
sion for the local impulse response function of a quadratic priatade in the derivation of OCPL have resulted in somewhat
in combination with a shift-invariant likelihood function. In thisdegraded noise performance. However, comparison of the
simple denoising problem, the prior produces an exponentiakults is difficult because they were obtained for different con-
impulse response, with a narrow peak and relatively large extefigurations (SPECT in [21] and PET in our study). In any case,
In [20], the impulse response function was studied for an ide@hese studies suggest that postsmoothed MLEM has excellent
ized tomograph, where the sinogram has position-independaoise characteristics, which are not improved by including
noise properties. For a tomograph with ideal resolution, similéte smoothing as a penalty in our PL methods. Moreover, the
shapes were observed as reported here, but the shapes chamgeélse response in MLEM tends to be more uniform than with
if more realistic detector blurring is taken into account. Thesel methods, because the latter have a suboptimal performance
findings indicate that the penalized likelihood approach offersear the object boundaries.
little control over the shape of the impulse response, which canFor application in clinical practice, several options exist.
be very different from that of the low-pass filters that are conPostsmoothed MLEM has a very low implementation cost,
monly used in nuclear medicine applications. For some appdince MLEM is now available in the system software of
cations, the freedom to choose any shape for the impulse mgest emission tomography systems. Moreover, it allows free
sponse may be an advantage for postsmoothed MLEM owatlection of the shape of the impulse response, in contrast to
PL methods. Consequently, in studies comparing PL with tréhe PL method. So straightforward application of postsmoothed
ditional filtering, care must be taken to eliminate the influencgILEM seems the obvious choice. However, as illustrated by
of the different impulse responses of the methods. our simulation experiments, a very high number of iterations

The PL method (OCPL) can be applied to both PET arnd required to ensure that the MLEM impulse response is
SPECT, and marked improvements were obtained on simulat&Emall compared to that of the target resolution. It is currently
studies for both modalities. The profiles show that the unifocommon practice to apply a few tens of MLEM-iterations (or
mity of signal recovery was similar, though still inferior to thaDSEM-subiterations). This number should be raised to a few
obtained with postsmoothed MLEM after 200 iterations. Thisundreds to ensure uniform resolution, in particular when the
may be partly due to incomplete convergence: even at 200 itaim is to (partially) compensate for the loss of resolution due
ations the MLEM algorithm was not fully converged, which ido the system response (e.g., collimator blurring in SPECT).
why the corresponding profiles are not flat. Convergence is slohw, this work, we have used either pure MLEM-iterations, or
in particular for SPECT, where both attenuation and collimat@SEM-schemes in which the number of subsets gradually
blurring must be compensated. As noted in [8], the penalty idecreases to unity (pure MLEM). When a fixed and high
proves the conditioning of the problem, which could be exxumber of subsets is used for stronger acceleration, OSEM
ploited to design faster optimization algorithms. Our algorithroonverges to a limit cycle with inferior noise characteristics
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[22], so the conclusions of our paper cannot be extrapolated t@s] J. Nuyts, D. Bequé, P. Dupont, and L. Mortelmans, “A concave prior
such OSEM schemes.

As suggested by Staymamal.[21], convergence speed may
be a reason to use a PL approach as a kind of acceleration teclf] S. Geman and D. E. McClure, “Statistical methods for tomographic

nique: the penalty improves the condition number, which can b
exploited to obtain faster convergence than with unregularize

MLEM. In order to avoid possible suboptimal response of the
PL method, or to allow more freedom in selecting the shape of

the impulse response, it could be combined with postsmoothing,
or even with postsmoothed MLEM as a finishing touch.

Finally, it should be noted that we have only studied a

quadratic penalty, applied to emission tomography. No conclu-(g
sions can be drawn about the relation between nonquadratic
penalties and linear or nonlinear postfiltering. Similarly, the
results cannot be extrapolated to transmission tomograph
because there, in contrast to emission tomography, the mea-
surements are a highly nonlinear function of the parameters leal

be estimated.

(12]

VI. CONCLUSION

The impulse response typically produced by PL methods with

a quadratic penalty tends to have a relatively sharp peak angy

wide extent.

Our simulation experiments confirm that the new PL metho
(OCPL) achieves nearly uniform resolution. However, its nois
characteristics are not superior to that of postsmoothed MLEM216]

This finding calls for further study of the performance differ-

ences between postsmoothed MLEM and PL methods.
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