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Variance Images for Penalized-Likelihood Image Reconstruction 

We present a 
new approximations 
reconstructed by 
method enables the 
can provide an 
helpful in medical 
reconstruction 
emission tomography 
of the proposed 
image pixels. 

I .  

nonlinear, so the 
variant [l]. Thus it 
of reconstructed 
images to provide 
physician making tl- 
information should 
as generalizing 
from FBP to 
for searching for 
brain activation 
reconstruction 
summarizes a nen 
approximations to 
images reconstructed 

We assume the 
emission measuremznts 

Statistical inethi3ds 

where X j  is the t J  nknown activity in the j th  pixel, 
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fairly simple procedure for computing 
for the pixel variances in images 

penalized-likelihood methods. The 
display of variance images, which 

indication of uncertainty that may be 
diagnosis and in evaluation of image 

algorithms. Simulations of positron 
(PET) scans illustrate the accuracy 

variance approximations in nonzero 

INTRODUCTION 
for image reconstruction are 

image variance can be space- 
may be useful to augment displays 

images with displays of variance 
an indication of uncertainty to the 
e diagnosis. Variance and covariance 
also be useful for purposes such 

Hiiesman's weighting method [2, 31 
peialized-likelihood (PL) estimators, 

statistically significant regions in 
studies [4, 51, or for evaluating image 

algorithm performance. This paper 
simple method for computing 

tne variances of image pixel values in 

isual Poisson statistical model for the 
by PL methods. 

Yi [6]: 

G = { g z J }  represents 
the ci' s represent 
attenuation and 
random coincidences 

i=l 

the geometric system response [7] ,  
ray-dependent factors such as 

deiector efficiency, and the T , ' S  denote 
and scatter. The log-likelihood is: 

(3) 

neglecting constants independent of 1 = [XI . . . A,]', 
where "'" denotes matrix transpose. We focus on the case 
of penalized-likelihood image reconstruction: 

A , .  

X = X(y) = argmax@(X,g) 
X > O  - - 
- _  

%y) = L(X,y) - PR(X), (4) 

where R(X) is a roughness penalty included for 
regularization. The resolutionhoise tradeoff is controlled 
by P ~71.  

11. THEORY 
For the objective function (4), we derived in [ l ]  that 

Cov{i} Fz [ F  + PR(A)]- 'F[F + PR(A)y,  ( 5 )  

- A -  n where X = A ( 4 )  is the estimate given noiseless data, F = 

G'D(ui)G is the Fisher information matrix, ui = c l /% 
is the inverse variance for each ray, and R(X) = V2R(X) 
is the Hessian matrix of the penalty function. 

Using methods described in [l], one can calculate the 
variance of selected pixels of interest using (5): 

A 

Var{&} = [~ov{Ql j j  = g:~ov{Qg~ 

for some pixel j ,  where gj is the j t h  unit vector of 
length p.  However, for display of a variance image 
one must compute all p of the diagonal elements of 
Cov{i}. The methods of [l] require O ( p )  computation 
per diagonal element, so the overall computation for a 
variance image would be O ( p 2 ) ,  which is impractical. 
We summarize here a simpler approximation that 
reduces the computation to only O ( p ) ,  provided certain 
system-dependent factors are precomputed (which is only 
done once). The resulting computation time is less than is 
required for computing the estimate 

Since evaluating ( 5 )  would require an impractical 
amount of computation, we would like an approximation. 
In [7], we proposed the following approximation to the 
Fisher information: 

itself. 
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where D( y c j )  denotes the diagonal matrix with elements 
~ j ,  and where 

reflects the effective “certainty” of the j t h  pixel [7]. 
Elsewhere we consider general convex penalty 

functions [SI. Here, we restrict attention to the modified 
penalty function proposed in [7], defined by 

where ~ “ j  is defined by (7) and where Nj is the four nearest 
neighbors of pixel j .  As shown in [7], the Hessian of R(&) 
is approximately the following: 

(9) 
a R = V2R(X) M D(Kj)RoD(Kj) 

where &(A) denotes the standard penalty function: 

a with corresponding Hessian Ro = V2Ro(X). (The 
Hessian Ro is block-Toeplitz with 4‘s along the diagonal 
and -1‘s in the off-diagonal positions corresponding to 
each pixel’s neighbors.) 

Substituting the approximations (6) and (9) into ( 5 )  
and simplifying yields the following approximation for 
the image covariance: 

where 

K(P) [GIG f PRo]-’G‘G[G’G f PRO]-’. (11) 

The matrix K(P) is the image covariance matrix that 
one would obtain if we had assumed the white Gaussian 
noise model 

- jj = GAS noise, 

and had used the standard quadratically-penalized 
unweighted least-squares (QPULS) estimator: 

The additional y c j  terms in the proposed covariance 
approximation (10) account for the nonuniform variance 
of the Poisson measurements. 

In PET, the matrix K(P)  is independent of all 
object-dependent factors, so portions of this matrix can 
be precomputed. In particular, we can precompute and 
store its diagonal elements [K(P)]jj:  

(12) 

We can precompute and store a table of (p ,  o,”(P)) pairs 
for several values of p. This table needs to be computed 
only once for a given system G and regularizer R. From 

n 
= M P I l j j  = ~pwkj.  

(1 l), one can see that to compute a,”(@), 
the system of equations 

[G’G + /~Ro]z = ~j 

for 2, and then compute the following 
the forward projection of g: 

.,“(n) = u;[Gz]P. 
i 

we can first solve 

weighted sum of 

For the case of shift-invariant PET systems, the 
computation is trivial using DFT’ s and Parseval‘s 
theorem. 

Combining (12) with (lo), we have the following 
simple variance approximation: 

I I 

Thus we have the following simple recipe for computing 
approximate variance images for PL estimates. First, 
precompute oj”(p) in (12) for each pixel j of potential 
interest and for a range of p values. Then, for a given 
reconstruction problem, compute ~ “ j ,  which requires a 
modified backprojection in (7), and interpolate the CT? for 
the /3 of interest. Finally, substitute the ycj’s and aj‘s into 
(1 3) to compute the approximate variances for each pixel. 

Because G is a sparse matrix, calculating the  j's and 
substituting into (13) requires only 0 ( p )  computation (one 
backprojection and one table lookup per pixel). 

111. RESULTS 
To evaluate the proposed variance approximations we 

simulated 2000 realizations of PET emission scans using 
the emission phantom shown in Fig. 1. (The simulation 
parameters are identical to those discussed in [7].) From 
each sinogram realization we computed 4 using 10 
iterations of the PML-SAGE-3 algorithm of [9] and the 
modified quadratic penalty of [7]. We also computed the 
PL estimates for the standard quadratic penalty function 
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patial resolution [7]). Both 

structed pixel values, we 
deviations across the 2000 
ed as images in Fig. 2, 

deviations computed 

through the standard 
ese (representative) 

results agree quite well in 
largest disparities are in the 

ect and in the cold 
ues are zero, so the 

small due to the 
redicted standard 
ver the nonzero 

negativity constraint. 

predicted and emp 
the object interior. 

We also exa autocorrelation functions to 
investigate the cov approximation. The empirical 
autocorrelation fu were asymmetric, but this 

realization of required 
seconds on a DEC Alphastation 

clinically feasible. 

We have presented 
the variances of 
penalized-likelihood 
for a particular quadratic 
generalizes easily t 
also show in [8] thlt 
insight into why 
unweighted metho 
illustrated qualitatively 
empirical results in [ 

The analytical 
variance in regions 
plays a significant 
is a severe nonlin 
are based on a l o d  
Further work on this 
empirical histograms 
model proposed 
appear applicable 

I 

I‘V. DISCUSSION 
a new approximation (13) to 

ixels in images reconstructed by 
methods. We have presented results 

penalty function, but the method 
3 other penalty functions [8]. We 

the analytical results give further 
weighted statistical methods outperform 

js for image reconstruction, as 
in [IO] and quantitatively in 

81. 
approximations overestimate the 
where the nonnegativity constraint 

role. The nonnegativity constraint 
Zarity, whereas the approximations 

linearization of the estimator [l]. 
difficult problem is needed. Our 
of i j  show that the log-normal 

i i  [ l l ,  121 for ML-EM does not 
to the penalized-likelihood case. 

Further work is also needed to develop analytical 
autocorrelation function approximations that reflect the 
asymmetric properties of the empirical autocorrelation 
functions. We have also observed such asymmetries in 
the autocorrelation functions for FBP reconstructions, 
so this “problem” is not unique to statistical image 
reconstruction methods. 
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Fig. 1 Emission phantom used for simulations. 
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Fig. 3 Central horizontal profiles through Fig. 2, and through 
corresponding variance image (not shown) for PL with the 
standard penalty. 
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Fig. 4 Central vertical profiles through Fig. 2. 

Fig. 2 Empirical and predicted standard deviation maps (eqn. 
(13)) for & penalized-likelihoodemission image reconstruction 
using the modified quadratic penalty. 

952 


