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Abstract

We present a fairly simple procedure for computing
new approximation$ for the pixel variances in images

reconstructed by pgnalized-likelihood methods.
method enables the

The
display of variance images, which

can provide an indication of uncertainty that may be
helpful in medical diagnosis and in evaluation of image

reconstruction algarithms.

Simulations of positron

emission tomographly (PET) scans illustrate the accuracy

of the proposed V|
image pixels.
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from FBP to pepalized-likelihood (PL) estimators,

for searching for
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reconstruction algc

statistically significant regions in
dies [4, 5], or for evaluating image
rithm performance. This paper

summarizes a neyw simple method for computing
approximations to the variances of image pixel values in
images reconstructed by PL. methods.

We assume the ysual Poisson statistical model for the
emission measurements Y; [6]:

Y,
i(A)

!

where A; is the
G = {g;;} represei
the ¢;'s
attenuation and de]

represent ray-dependent

Poisson{f@ (Atrue)}

D eigih; + i,
g

ey
2)

e 2

unknown activity in the jth pixel,

ts the geometric system response [7],
factors such as
ector cfficiency, and the r;'s denote

random coincidences and scatter. The log-likelihood is:
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neglecting constants independent of A = [A; ... A},
where “/” denotes matrix transpose. We focus on the case
of penalized-likelihood image reconstruction:

(A, y) = L(A,y) - BR(Q), 4

where R()) is a roughness penalty included for
regularization. The resolution/noise tradeoff is controlled

by 8 [7].

II. THEORY

For the objective function (4), we derived in [1] that

Cov{A} = [F + SR())|"'F[F + BR(V)]™", (9

NN . . . N
where A = A(Y) is the estimate given noiseless data, F =

G'D(u;)Q is the Fisher information matrix, u; 2 c2/Y;
is the inverse variance for each ray, and R(A) = V2R(})
is the Hessian matrix of the penalty function.

Using methods described in [1], one can calculate the
variance of selected pixels of interest using (5):

Var{4;} = [Cov{3};; = €jCov{lle

for some pixel j, where ¢; is the jth unit vector of
length p. However, for display of a variance image
one must compute all p of the diagonal elements of
Cov{}}. The methods of [1] require O(p) computation
per diagonal element, so the overall computation for a
variance image would be O(p?), which is impractical.
We summarize here a simpler approximation that
reduces the computation to only O(p), provided certain
system-dependent factors are precomputed (which is only
done once). The resulting computation time is less than is
required for computing the estimate A itself.

Since evaluating (5) would require an impractical
amount of computation, we would like an approximation.
In [7], we proposed the following approximation to the
Fisher information:

F = D(Kj)GIGD(Kj), (6)
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where D(x;) denotes the diagonal matrix with elements
kj, and where

n 2 ..

i=1 9i5 % _

n 2 ] -
2ie1 95

reflects the effective “certainty” of the jth pixel [7].

Elsewhere we consider general convex penalty
functions [8]. Here, we restrict attention to the modified
penalty function proposed in [7], defined by

1 1
R 2 52 > ijfik§()\j - )%,
7 kEN;

M

®)

where «; is defined by (7) and where AV} is the four nearest
neighbors of pixel j. As shown in [7], the Hessian of R(})
is approximately the following:

R £ V2R()) ~ D(k;)RoD(x;) )
where Ro(A) denotes the standard penalty function:
Al 1
LNCVEES D D=L
J kEN;
with corresponding Hessian R, 2 V2Ro()). (The

Hessian Ry is block-Toeplitz with 4's along the diagonal
and —1's in the off-diagonal positions corresponding to
each pixel's neighbors.)

Substituting the approximations (6) and (9) into (5)
and simplifying yields the following approximation for
the image covariance:

Cov{A} ~ D(x;")K(8)D(r;") (10)

where

K(8) £ [G'G + BRy|'G'GIG'G + BRy™. (11)

The matrix K (/) is the image covariance matrix that

one would obtain if we had assumed the white Gaussian
noise model

3 = GA+ noise,

and had wused the standard quadratically-penalized
unweighted least-squares (QPULS) estimator:

~ A - .
Aqputs = [G'G + BRT'G'Y.

The additional k; terms in the proposed covariance
approximation (10) account for the nonuniform variance
of the Poisson measurements.

In PET, the matrix K (3) is independent of all
object-dependent factors, so portions of this matrix can
be precomputed. In particular, we can precompute and
store its diagonal elements [ K (3)];;:

o3(8) £ [K(B)];; = ;K (Be;.

We can precompute and store a table of (53, 0%(8)) pairs
for several values of 3. This table needs to be computed
only once for a given system G and regularizer R. From
(11), one can see that to compute 0]2( B), we can first solve
the system of equations

(12)

[G'G + BRo|z = ¢;

for z, and then compute the following weighted sum of
the forward projection of z:

o) = Y wilGal?.

For the case of shift-invariant PET systems, the
computation is trivial using DFT's and Parseval's
theorem.

Combining (12) with (10), we have the following
simple variance approximation:

a%(8)

7
Ky

Var{};} ~ (13)

Thus we have the following simple recipe for computing
approximate variance images for PL estimates. First,
precompute af(ﬂ) in (12) for each pixel j of potential
interest and for a range of § values. Then, for a given
reconstruction problem, compute x;, which requires a
modified backprojection in (7), and interpolate the 032 for
the § of interest. Finally, substitute the «;'s and o;'s into
(13) to compute the approximate variances for each pixel.
Because G is a sparse matrix, calculating the ;'s and
substituting into (13) requires only O(p) computation (one
backprojection and one table lookup per pixel).

III. RESULTS

To evaluate the proposed variance approximations we
simulated 2000 realizations of PET emission scans using
the emission phantom shown in Fig. 1. (The simulation
parameters are identical to those discussed in [7].) From
each sinogram realization we computed \ using 10
iterations of the PML-SAGE-3 algorithm of [9] and the
modified quadratic penalty of [7]. We also computed the
PL estimates for the standard quadratic penalty function
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V. DISCUSSION

We have presenred a new approximation (13) to

the variances of
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role. The nonnegativity constraint
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al linearization of the estimator [1].
is difficult problem is needed. Our
]is of j\j show that the log-normal
n [11, 12] for ML-EM does not
to the penalized-likelihood case.

Further work is also needed to develop analytical
autocorrelation function approximations that reflect the
asymmetric properties of the empirical autocorrelation
functions. We have also observed such asymmetries in
the autocorrelation functions for FBP reconstructions,
so this “problem” is not unique to statistical image
reconstruction methods,
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Variance of Penalized Likelihood Estimates
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Fig. 1 Emission phantom used for simulations. 0 20 40 60 80 100 120
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Fig. 3 Central horizontal profiles through Fig. 2, and through
corresponding variance image (not shown) for PL with the
standard penalty.
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Fig. 4 Central vertical profiles through Fig. 2.

Fig. 2 Empirical and predicted standard deviation maps (eqn.
(13)) for A: penalized-likelihood emission image reconstruction
using the modified quadratic penalty.
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