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ABSTRACT 
We quantify fundamental bias-variance tradeoffs for the 

image reconstruction problem in radio-pharmaceutical to- 
mography using Cramer-Rao (CR) bound analysis. The 
image reconstruction problem is very often biased and the 
classical or the unbiased CR bound on the mean square 
error performance of the estimator can not be used. We 
use a recently developed ‘uniform’ CR bound which a p  
plies to biased estimators whose bias gradient satisfies a 
user specified length constraint. We demonstrate the use 
of the ‘uniform’ CR bound for a simple SPECT system 
using several different examples. 

I. INTRODUCTION 
As in any parametric estimation problem, in image re- 

construction there always exists a tradeoff between bias 
and variance of the reconstructed image. For example in 
penalized maximum likelihood reconstruction a smooth- 
ness penalty reduces the variance at the expense of intro- 
ducing bias. This paper provides an estimator indepen- 
dent fundamental tradeoff inherent in emission tomogra- 
phy. In [S, 91 classical CR bound was applied to unbiased 
image reconstruction in emission tomography. Very often 
in tomographic imaging problems an unbiased image re- 
construction with a smoothness constraint may results in 
large variance. For biased image reconstruction classical 
biased CR bound can be used [3]. However the biased CR 
bound is not very useful in that it is only applicable to the 
estimators with a given bias gradient Vg6(e). Therefore 
it is unable to give a meaningful comparison of different 
biased estimators that may have acceptable bias but dif- 
ferent bias gradients. Hero [2] gives a ‘uniform’ CR bound 
that is applicable to all the estimators whose bias gradient 
length is less than a prespecified threshold, permitting a 
meaningful comparison for different biased estimators to 
be performed. 

For images, the calculation of the CR bound involves in- 
versip of a huge n x n Fisher Inermation Matrix (FIM), 
where n is the total number of image pixels. Direct in- 
version algorithms require O(n3) flops and can become 
computationally intractable. The system matrix in im- 
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age reconstruction problem is in general sparse. Here, we 
give an inversion algorithm based on conjugate gradient 
approach that exploits the sparsity of the system matrix 
and can compute only a few columns of the inverse of FIM 
corresponding to pixels of interest. 

We apply the methods of [2] to a simple SPECT system 
for several imaging examples. The examples include deter- 
mining the optimal collimator opening as a function of the 
tradeoff between resolution and sensitivity; deriving bias- 
variance tradeoffi curves for different angular sampling; 
and performance comparison of different unbiased and bi- 
ased image reconstruction algorithms using the uniform 
CR bound. 

A .  System Description 
The system used in this study is shown in Figure 1, 

called the SPRINT I1 system [l]. SPRINT I1 was designed 
specifically for brain imaging and consists of a ring of de- 
tectors and a ring of collimators. During the experiment 
the ring of collimators are rotated through small steps for 
adequate spatial sampling. The system parameters are 
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Figure 1: The SPRINT I1 system: Not drawn to scale. 

given in the appendix and unless otherwise specified are 
those used in the simulations. 

11. CR BOUND 

Given the projection dpta, an n-pixel image and a p ~ b -  
ability density fy(y; e), ? the objective is to estimate the 
intensity in a small Region Of Interest (ROI) BRor = 
[el, 82, ..., 8,IT. In the sequel we specialiie to the case when 
the ROI consists of a single pixel 81. A function 61 (y) is a 
parameter estimator based on the observation Y = y. 61is 
unbiased if the bias 61@) = E[Ol - 011 is equal to zero. 
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The Cramer-Rao lower kound on the variance of unbi- 
ased parameter estimator &is given by the upper-left q x q 
block of the invem of an n x n, symmetric, positive semi- 
definite Fisher information matrix (FIM) Fy: 

u..($) I FY"(@ h,  (1) 

ln fr (y; @ v g  1n fu  (Y; E)],  

where, 

FY (E) = 
and Vtdenotes the (row) gradient vector [&, &, ..., K] B 

and g1 = [1,0, ..., 0lT. 
While the unbiamed CR bound (1) is known to be asymp- 

t o t i d y  achievable for large imaging times, in practice, 
most of the popular image reconstruction algorithms are 
biased and the unbiased CR bound is inapplicable. 

A.  Motivating Example 
In Figure 2 the unbiased CR bound, for a high inten- 

sity pixel at the top of the image in Figure 4, is plotted 
88 a function of the collimator rotations. Also plotted is 
the variance of the weighted least square algorithm for the 
same pixel. The variance of the weighted least square a lge  
rithm (section C.2) is clearly less than the CR lower bound 
at all points. This is due to the fact that the weighted least 
quare d i m a t o r  is b i d .  The unbiased CR bound can 
not be uaed for performance analysis in this case. 

Figure 2: The regularized weighted least square estimator 
shows lower variance than unbiased CR bound at all the 
points. 

111. BIASED CR BOUND 
For a biased estimator 61 the following form of the biased 

CR bound is well known [3]: 

u.r(fj.1) I p p l ( e l 1  FF1@) [vp"ellT, (2) 

where V p l ( 8 )  = VZpl(e) + gl is an n element row vector 
of the gradient of the mean &(el) = ml(E). 

A .  Uniform CR Bound 
The application of the biased CR bound (2) is very re- 

stricted due to the fact that it is only applicable to estima- 
tors with a given bias gradient V~bl(e). In [2] Hero gives 
a 'uniform' CR bound on the variance of a single param- 
eter 81 for non-singular Fy. This bound is applicable to 
all biased estimators whose length IlVsbl(E)ll of the bias 
gradient VOpl (e) is less than a small prespecified threshold: 

llvb1(E)Il2 I 62 < 1. (3-4 

Then we have the followhig theorem [2]. 

Theorem 1 Let 81 be an estimator wifh bias ai(@ whose 
n-element bias gradient vector Vg61 = dT satisfies (3-a). 
Then the variance of 01 satisfies: 

uar(&) 1 B(E, a), (3-b) 

where 8(&6) is equal to: 

B(B, 6) = kl+ Lin]TFY"h + k in ] .  (3-C) 

(3-4 

Here gl = [I, 0, ..., o ] ~  is an n-element unit vector and: 

&in = - [ I  + A FY]"c~ 
where X is given by the unique non-negative solution of 
the following equation involving fhe monotone decreasing, 
convex function g ( X )  E [O, 11: 

g ( X )  = gin&, = 62 X 2 0. 
In Theorem 1, kin defined in (3-d) is an optimal bias gra- 
dient in the sense that it minimizes the biased CR bound 
(2) over all vectors Vgbi(Q). 

UnlformCRbound 
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Figure 3: The Uniform CR bound 

Figure 3 shows a typical bias-variance tradeoff curve. 
The curve is drawn for the same pixel as in Figure 2. 
The region above and including the curve is the so called 
'achievable' region where all the realizable estimators ex- 
ist. Note that if an estimator lies on the curve then lower 
variance can only be bought at the price of increased bias 
and vice versa. At 6 = 1 the variance goes to zero. This 
corresponds to the trivial case 81=Constant. 



B. Inversion Algorithm 
Equation (3-d) in the calculation of uniform CR bound 

requires computation of the first column of [ I  + X Fy1-l 
for each A. Often we want to compute the bound at several 
different values of A and therefore it is important to have 
a computationally efficient algorithm to compute (3-d). 

Conjugate gradient is a recursive method to solve the 
linear system of equation Cq = b. If we substitute b = 
[l, 0, 0 ,  ..., 0IT then it is easy to recognize that the solution 
to such a system of equations will be the first column of 
C-'. In general we can get the inverse of the m-th column 
of C if we choose b ,  = 1 and b, = 0 : j # m. The following 
algorithm is applicable to only symmetric, positive definite 
matrices C [4]. 
Algorithm 

INITIALIZATIONS: 

Tv. APPLICATIONS 
The object used in all the following simulations has two 

point sources in a uniform intensity background (figure 4). 
In all cases the pixel of interest was the high intensity pixel 
at the top of the image. Noise due to scatter was neglected, 
however the effect of attenuation was considered. 

It can be shown that for emission computed tomography, 
the Fisher information matrix has the form 

140 =Q; b = [ l , O , O  ,"., O]T; rO=b 
FOR i := 0 UNTIL I C U - b I < tolerance DO 

IF. i = 0 DO 

ELSE 

END IF 

END DO 

The iterations are terminated when the error I C g  - b I is 
less than a user specified tolerance. The convergence rate 
of the conjugate gradient depends on the condition number 
of C and its eigenvalue distribution. One advantage in us- 
ing the conjugate gradient algorithm is that the algorithm 
is guaranteed to converge in maximum n iterations. Each 
iteration of the algorithm involves a matrix-vector mul- 
tiplication A pa, requiring O(n2)  flops and therefore the 
algorithm can take O(n3)  flops to converge. For SPECT 
the system matrix in general is sparse (typically less than 
5%) and, if the sparsity of A is taken into account, then 
the total number of flops can be reduced significantly. 

In relation to the recursive algorithm for the unbiased 
CR bound given in [6], a disadvantage of this algorithm is 
its non-monotonic convergence. This means that if stopped 
at iteration k < n then the quantity calculated bythe algo- 
rithm might not be a valid lower bound on var(O1). This, 
however, may not be a problem if we let the algorithm run 
until a desired accuracy is achieved. 

where A is a d x n weight matrix; d = total number of de- 
tectors, and p = A e. Therefore F y  is an n x n symmetric 
positive semi-definite matrix ( F y  >_ 0). Here we will only 
consider non-singular F y ( >  0). The system used in this 

Figure 4: The phantom used in the simulations. The pixel 
of interest is the pixel at the top of the phantom. The 
image dimensions are 32x32 pixels. 

study is the SPRINT I1 system as described before. 

A .  Spatial Sampling Study 

Figure 5: The effect of angular sampling on the unbiased 
CR bound. Curves denote lower bound for 2,3,5,8 and 10 
rotation increments of the collimator. 
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In Figure 5 the bias-variance curves are displayed for 
varying degrees of spatial sampling. Spatial sampling was 
varied by rotating the collimator ring through different 
number of steps. The time for each step was kept con- 
stant. Note the monotonic nature of the curves: they do 
not intersect each other due to the fact that the projec- 
tions from the lower sampled image is a subset of those of 
the higher sampled image. Also it can be seen that be- 
yond a sampling rate of 8 increasing sampling rate does 
not reduce the bound significantly. 
An interesting point to note is that the unbiased CR 

bound (zero bias gradient) for 10 rotations is greater than 
the bound at a bias gradient length of 0.5 for only 5 ro- 
tations. This means that a biased algorithm with lower 
sampling can perform better than an unbiased algorithm 
with higher sampling. For a time normalized case, when 
the total time for each curve is kept constant, the curves 
may intersect each other (Figure 6). They, however, dis- 
play the same trend aa above. 

d e b  

Wdthdthenypt 

Figure 7: Optimal system design using the CR bound to 
study the effect of resolution and sensitivity tradeoffs 

the estimator. 

C. Performance Comparison 
Here we will compare two least square reconstruction al- 

gorithms by placing them on the bias-variance plane and 
comparing them to the uniform CR lower bound. In the 
following simulations we used the standard SPRINT I1 SYS- 

tem with 10 collimator rotations. 
The least square estimator can be motivated by the fol- 

lowing representation of y: 

- y = A B + n  

Where 
is generated by photon scatter. 

is the Poisson distributed noise and in SPECT it 

C.l Unweighted Linear Least Square Es t imator  
Figure 6: The effect of angular sampling on the unbiased 
CR bound. Time normalized case. The unweighted Linear Least Square Estimator (LLSE) 

is given by: 

B. Optimal System Design 
Spatial resolution and sensitivity are the two most im- 

portant criteria for tomographic system design. These cri- 
teria are coupled, higher resolution can only be bought at 
the price of lower sensitivity. We demonstrate the use of 
the uniform CR bound (3-b) by determining an aperture 
opening that optimizes the tradeoff between resolution and 
sensitivity. For these simulations 10 collimator rotations 
were used and the aperture opening was varied from very 
narrow (ray width = 0.25 pixels) to very wide (ray width = 
10 pixels). The total imaging time was adjusted so that the 
total number of detected counts are the same for all cases 
hence smaller exposure time for wider openings. Figure 7 
shows a sharp minimum over all 6 when the width of the 
ray is approximately one pixel. Therefore for the object 
and the ROI studied, this one pixel aperture width is 'uni- 
versally' optimal for estimation, irrespective of the bias of 

- eLLSE = (AT A + a I)-' AT - y 

where a 1 0 is a smoothing or regularization parameter 
to counteract any ill-conditioning of A. It can be easily 
shown that the bias vector &) = E(& 

.L LLSE 
-&) is : 

b(e) = I - (AT A + (Y I)-' ~ f l  
Therefore the bias gradient is the n x n matrix: 

Vgb(fl) = I - (AT A + (Y I)-' AT A 

-LLSE . 
The covariance of the LLSE fl IS: 

.. LLSE 
coU(e ) = ( A ~ A + ~ I ) - '  A ~ A ( A T A + ~ I ) - ~  ( 5 )  

Note that the bias gradient and bias are very simply re- 
lated. In particular the bias gradient is equal to the bias for 
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V. CONCLUSIONS 
We have demonstrated, with the help of several exam- 

ples, that the commonly used unbiased CR bound is not 
sufficient by itself for performance analysis and the uniform 
CR bound should be used to get a true overall picture. 

The image reconstruction problem is very often ill-posed 
due to the insufficient radial sampling resulting in a sin- 
gular FIM. Many of the results that are presented in this 
paper have been extended to the case of singular FIM but 
the space limitation does not permit us to include them 
here. For details please see [5]. 

O '; 0.1 0 2  oa 0.4 03 0.6 0.7 0.8 0.0 
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Figure 8: Linear Least Square Estimator 

a point source intensity e= [l, 0, ..., OIT. The bias gradient 
V ~ b l  of 81 is simply the first row of Vtb. The length 
of the bias gradient Vgbl  is a function of the smoothing 
parameter a, increasing from 0 as a increases from 0. In 
Figure 8 the uniform CR bound (3-b) is plotted as a func- 
tion of the length of V g b l .  Also plotted is the variance of 
61 LLSE, obtained from the ( 1 , l )  element of the covariance 
matrix (5). Note that as the smoothing parameter a gets 
large the variance of LLSE approaches the CR bound but 
for small a there is a large difference. 

- LLSE 

C.2 Weighted Least Squares Est imator  

The weighted least squares estimator (WLSE) is: 

- eWLSE = ( A ~  C A  + aq-1 A~ c - 
where a is the regularization parameter C is an n x n weight 
matrix. Note that when C = I, e is simply the unweighted 
least square estimator (4). It is easy to show that the bias 
gradient is: 

Veb(B) - = I - (AT C A  + a I ) - l  AT C A  

and the covariance is: 
- WLSE 

) = ( A ~  c A + a r)-l C A  (A= c A + a I ) - 1  

- WLSE 
For C = d i a g ( l ) ,  where E = A@,  the variance of 81 
is plotted in figure 8. Observe that for this choice of 
weights the WLSE estimator achieves the bound exactly 
for all values of a as shown in [?'J. The WLSE implemented 
with Z = diag( h) is not physically realizable since pi de- 
pends on the unknown image e. However, by replacing 
the mean e by the sample mean j i ,  an estimated WLSE: 

- eWLSE = (AT 2 A  + a I ) - l  AT 2 y, 2 = diag( h) has 
been found to have similar variance i d  bias for large num- 

- 

A System Specifications 
Ring Detector 

2.4 mm 
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