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ABSTRACT 

Iterative methods for tomographic image reconstruction 
often converge slowly. Preconditioning methods can often 
accelerate gradient-based iterations. Previous precondition- 
ing methods for P E T  reconstruction have used either diag- 
onal or Fourier-based preconditioners. Fourier-based pre- 
conditioners are well suited to problems with near-circulant 
Hessian matrices. However, due to the nonuniform Pois- 
son noise variance in PET,  the circulant approximation to 
the Hessian is suboptimal. This paper shows that a par- 
ticular combined diagonal/Fourier precondi tioner yields a 
more accurate approximation to the Hessian and gives sig- 
nificantly faster convergence rates than doer; either precon- 
ditioner used alone. 

1. INTRODUCTION 

Statistical methods for reconstructing P E T  and SPECT im- 
ages require the maximization of some objective function. 
For realistic image sizes, direct maximization methods are 
computationally intractable, so iterative methods are re- 
quired. Several authors have described conjugate gradi- 
ent methods for P E T  and SPECT [l-41. This paper de- 
scribes a new preconditioning method for alccelerating the 
convergence of the conjugate gradient iterakion for penal- 
ized weighted least-squares image reconstruction in PET. 

Kaufman [1,5] showed that the EM algorithm for emis- 
sion tomography is equivalent to a gradient ascent itera- 
tion with an estimate-dependent diagonal preconditioner. 
Mumcuoglu et a1 [a] incorporated this diagonal precondi- 
tioner into a conjugate-gradient algorithm. Clinthorne et  
a1 [6] proposed a Fourier-based preconditioner for iterative 
reconstruction in PET,  which exploits the fact that ATA 
is approximately circulant-block-circulant (where A is the 
system matrix described below). Both diagonal and Fourier 
preconditioners increase the convergence rate of gradient- 
based iterations. Unfortunately, the Poisson measurement 
noise in P E T  imaging has a covariance matrix K with a 
very nonuniform diagonal, due to the effects of attenuation, 
detector efficiency, etc. [7]. Therefore the term ATKP1A 
within the Hessian (see (2) below) is not particularly well 
approximated by a circulant-block-circulant preconditioner 
(see Fig. 1). (Clinthorne et al used K = I in their simula- 
tions [6].) Further, ATA is not particularly well approxi- 
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mated by any diagonal matrix, since the 1/r  characteristics 
of tomographic systems give significant off-diagonal con- 
tent. Thus, neither the Fourier or diagonal preconditioner 
is optimal for P E T  image reconstruction. 

In related work, we have shown that ATK-’A can be 
reasonably well approximated by a matrix of the form 
AATAA, where A is a particular diagonal matrix [8,9]. 
This property suggests that a combined dzagonal/Fourzer 
preconditioner should yield faster convergence than is real- 
ized by the use of either preconditioner alone. In the follow- 
ing we summarize the development of the combined diag- 
onal/Fourier preconditioner, and present empirical results 
demonstrating significantly improved convergence rates. 

2. THEORY 

PET projection measurements approximately obey the 
Poisson statistical model: 

y N Poisson{Az}, 

where 1: = [1:1 . . . zplT is a vector of the true emission distri- 
bution, y is a vector of the measured projection data, and A 
is the projection matrix. One useful statistical criterion for 
estimating 1: from y is the penalized weighted least-squares 
objective: 

@(x) = 

where K is the covariance matrix of y (or the data-based 
approximate covariance [7]) and the term on the right is a 
roughness penalty. The unregularized estimate (with P=0) 
is poorly conditioned, so some regularization is required to 
ensure a stable solution. For simplicity, in this paper we use 
the quadratic penalty #(z) = i1:’ and a first-order neigh- 
borhood NI,  although the method is applicable to other 
convex penalties. The regularization parameter P controls 
the resolution/noise tradeoff. Methods for choosing /3 to 
specify a desired resolution are described in [8,9]. 

For a quadratic penalty, the objective simplifies to 

1 1 
CP (1:) = 2 (y -  AX)^ K-I (y - Ax) + BB1:TRs, 

where the matrix R is the (symmetric) Hessian of the 
penalty. The usual “uniform” roughness penalty matrix 
R” has 4’s along its diagonal and -1’s in the off-diagonal 
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positions corresponding to each pixel's neighbors. Surpris- 
ingly, this uniform penalty leads to nonuntform spatial res- 
olution [8,9]. Thus, here we follow [8,9] and use a modified 
penalty in which we replace w ] k  above with W j k K j K k ,  where 

In this case one can show that the penalty Hessian satisfies 

R M AR"A, (1) 

where A = diag { K ]  } . This modified penalty leads to nearly 
uniform spatial resolution [8,9], and also fortuitously leads 
to a Hessian that is more amenable to preconditioning. 

For simplicity, in this paper we ignore the nonnegativity 
constraint for z, although the methods could be extended to 
include a barrier function as described in [a] .  In the uncon- 
strained case, one can minimize the quadratic objective by 
setting its derivative to zero, yielding the "ideal" estimate: 

i: = ( A ~ K - ~ A  + PR)-' A ~ K - ~ ~ .  

This corresponds to the solution of the matrix equation 
Hi: = b ,  where H is the Hessian of CP and b is the backpro- 
jection of y: 

H = A ~ K - ~ A  + PR ( 2 )  
b = ATK-'y. 

Unfortunately, the analytical solution i: = H-lb cannot be 
computed directly because the A matrix is too large. Thus, 
iterative methods must be used to compute i:. 

The preconditioned conjugate-gradient iteration is a well 
known method for solving Hi: = b.  In the following sec- 
tions, we describe this algorithm and discuss three choices 
of preconditioner. 

2.1. Conjugate Gradient Function Minimization 

Traditional methods of iterative function minimization, in- 
cluding the steepest-descent (SD) method, use the gradient 
of the objective function V@(i:) to determine a series of 
direction vectors d" over which @ is minimized: 

;ntl  = i:" + ad", 

where (Y is chosen to minimize @(in + ad") [lo]. The 
method of conjugate gradients modifies the search direc- 
tions d" to ensure that they are mutually orthogonal. This 
method minimizes quadratic objective functions in a finite 
number of steps, and converges faster than steepest-descent 
for both quadratic and nonquadratic objectives [2, lo]. 

A preconditioned form of the Polak-Ribiere Conjugate 
Gradient (CG) method [a, 101 is summarized below: 

i:"" I i:" + a n d n  

d" = p" + ynd"-l 

p n  = -MVT@ (2")  

[VCP (in) - VQ, ( 2 n - 1 ) ]  p" 
V@ (2-1) pn-1 

Y n  = 

VTCP (5.") = ATK-'(Azn - y) + PR?" = H?" - b.  
The positive-definite matrix M determines the precondi- 
tioner, and the step size an is determined as follows: 

an = min@(i:"+ad") 
a 

- 
- (dn)*ATK-IAdn + , B ( d n ) T R d n  ' 

(d")TATK-' (y -Ai:") - /3(d")TRi:" 

Preconditioning the CG algorithm is equivalent to solving 
the equation MHi: = Mb. Thus, the ideal preconditioner 
would be M = H-'. Since we cannot directly compute H-' 
for realistic imaging scenarios, we seek preconditioners that 
approximate H-'. 

Figure l a  displays a typical Hessian matrix for a small 
imaging problem (one for which the Hessian could be eas- 
ily computed). Note that the Hessian is approximately 
circulant-block-circulant, but the Hessian is nonuniform 
along the diagonal. The preconditioners described below 
exploit these two properties. 

2.2. Diagonal Preconditioning 

The simplest preconditioner uses the inverse of the diagonal 
elements of H: 

M = D-', D = diag {H,,}.  

Since A is sparse, the diagonals H,, of the Hessian are 
easily computed without computing H itself. This diagonal 
matrix D effectively rescales the problem so that D-lH 
typically has a smaller condition number than H. Applying 
this preconditioner to the CG algorithm is trivial: 

Figure 1 b displays the diagonally-preconditioned Hessian. 

EM-based diagonal preconditioner used in [ a ,  51. 

2.3. Fourier Preconditioning 

Since ATA and R" are approximately block-circulant' , the 
Fourier basis is a natural choice for a preconditioner [3]. 
The Fourier preconditioner is derived from the point-spread 
function of the ATA (projection-backprojection) operation. 
A single pixel at  the center of the image field (a delta func- 
tion) is projected and then backprojected. This creates a 
2D spatially-invariant blurring filter which models the ATA 
operation: 

Note that this diagonal preconditioner differs from the 

L2 = diag ( f f t2  [(CA% + PR") S ( O , O ) ]  } 
c ~ T ~  + PR" M Q ~ Q * ,  

where Q is the 2D Fourier basis, Q" denotes the conjugate 
transpose of Q, cis  a constant related to the covariance ma- 
trix K, and R" is the uniform roughness penalty matrix dis- 
cussed above. Figure IC displays the Fourier-preconditioned 

2More precisely, if A = diag{c,} G ,  where c, are scan- 
dependent correction factors and G is the system geometric re- 
sponse, then it is GTG that is approximately circulant-block- 
circulant, rather than ATA. These important details will be 
treated more precisely in a forthcoming paper. 
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c: Fourier precon. 

Figure 1: Images of the preconditioned Hessian MH for an 
8-by-8-pixel test image. Preconditioners: (.a) none, (b) di- 
agonal, (c) Fourier, (d) combined diagonal/Fourier. The di- 
agonal elements of the Fourier preconditionetd Hessian range 
from .55 to 1.48, whereas the diagonal elements of MH for 
the combined diagonal/Fourier preconditioner range from 
.77 to 1.04. The eigenvalues of MH similarly have narrower 
spread for the combined diagonal/Fourier preconditioner, 
which leads to  faster convergence. 

Hessian Qs2-l Q*H. This preconditioner can be efficiently 
incorporated into the CG algorithm using 2!D FFTs: 

pn = Q Q - ~ Q * v ~ @  (2") = fftftzl (s2-%t2 [vT@ (;")I) . 

Since the image space is discrete (divided into pixels), 
one must ensure that the back-projected point-spread func- 
tion ATAG(o,o) is symmetric about the "center" of the im- 
age (i.e. the pixel that corresponds to zero-frequency in the 
Fourier domain). In practice, this requires, first averaging 
the ATA6(o,o) matrix with flipped and shifted versions of 
itself before computing 0. This ensures that the direction 
vector p" is a real vector. 

2.4. A Combined Diagonal/Fourier Method 

Since the utility of the Fourier preconditioning method 
hinges on the assumption that the Hessian is approximately 
circulant-block-circulant, making this assumption more ac- 
curate should make the Fourier preconditioner more effec- 
tive. In [9] the approximation ATK-'A M AATAA is dis- 
cussed in more detail, where A was defined above. Using 
this approximation, note that: 

H = ATK-'A + PR M AATAA + pAR"A 

= A (ATA + PR") A M AQ*slQA. 

This suggests that the combined diagonalj'Fourier precon- 
ditioner 

M = A-~Q*O-~QA-' 

should give a much closer approximation to H-' than ei- 
ther diagonal or Fourier preconditioner alone. (Note that 
the diagonal A used here differs significantly from the con- 
ventional diagonal D.) Figure Id  shows the preconditioned 
Hessian MH for the combined diagonal/Fourier precondi- 
tioner. The corresponding implementation in the CG algo- 
rithm is 

p" = A-'fft,' (Q-lfftz [A-'VT@ (i.")]) . 

The additional computation involved in the multiplication 
by the diagonal matrices A-' is negligible relative to the 
FFTs. The resulting acceleration is remarkable, as shown 
by the results in the next section. 

3. METHODS 

Using Matlab on a DEC 3000/800 workstation, we per- 
formed iterative CG image reconstruction on a set of simu- 
lated projection data using the three preconditioning meth- 
ods described above. For comparison, we also performed 
two steepest-descent reconstructions-one with no precon- 
ditioning, and one with the combined preconditioner. (The 
steepest-descent algorithm is obtained from the CG method 
by setting y = 0.) 

A Radon transform matrix A was chosen to simulate a 
tomographic projection of 94 bins by 70 angles. The data 
set y was created by projecting the intensity distribution x 
of a 64 x 64 simulated emission distribution (Hoffman brain 
phantom) using A to form a projection vector represent- 
ing the mean count rate seen by each detector: 

y = Ax. 

This noiseless projection was then used as the parameter 
vector for a 6580-dimensional Poisson random variable y 
representing the number of counts actually recorded by the 
detectors in a time period t: 

y = Poisson ( t 9 ) .  

The simulated scan time t was chosen to  give a total of 
approximately 600,000 counts over the duration of the sim- 
ulated scan. The diagonal covariance matrix K of the pro- 
jection data y is estimated using the noisy data based on 
the Poisson statistics [7] 

K,, = max(l0, y,}. 

The iterations were initialized with a zero image. We 
used the modified roughness penalty (1) with = 0.001. 

4. RESULTS 

The convergence rates for the unpreconditioned and the 
three preconditioned forms of the CG image reconstructions 
are illustrated in Fig.2, which plots the norm-error criterion 
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Figure 2: Normalized error llin - i m ~ ~ / ~ ~ i m ~ ~  versus iter- 
ation n for unpreconditioned CG and for three precondi- 
tioned forms of CG. The initial image was zero. 

against the iteration number n, where i . O 0  is a “converged” 
reconstruction created by iterating the CG algorithm un- 
til the overall change in the image from one iteration to 
the next was negligible. Figure 3 compares the conver- 
gence of the CG and SD algorithms for the unprecondi- 
tioned case and for the combined diagonal/Fourier precon- 
ditioner. Note that SD with combined diagonal/Fourier 
preconditioning is still significantly slower than CG with 
the combined preconditioner, suggesting there is still room 
for further improvement through the use of better precon- 
ditioners. 

5.  DISCUSSION 

We have described three preconditioning methods for P E T  
image reconstruction using the conjugate-gradient algo- 
rithm. The results clearly demonstrate that all three pre- 
conditioners improve the convergence rate, with the com- 
bined diagonal/Fourier preconditioner yielding significantly 
faster Convergence than either diagonal or Fourier precon- 
ditioning alone. In other simulation results (not shown), 
the ranking of the diagonal preconditioner versus Fourier 
preconditioner depended on the initial image, but the com- 
bined diagonal/Fourier preconditioner consistently demon- 
strated the fastest convergence, reflecting the improved a p  
proximation to  the Hessian illustrated in Fig. 1. In this 
example, the algorithm converged to within single-precision 
floating point accuracy (about in about 30 iterations. 
For noisy data, a numerical precision of, say, 1% is probably 
adequate, and in this case ((2”-2”11/\\2”\\ falls below 0.01 
and about n = 8 iterations. Future work wiU include mod- 
ifying the preconditioner to accommodate the fact that R” 
is less circulant-block-circulant when one uses nonquadratic 
penalties. 
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