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Conjugate-Gradient Preconditioning Methods
for Shift-Variant PET Image Reconstruction

Jeffrey A. Fessler,Member, IEEE,and Scott D. Booth

Abstract—Gradient-based iterative methods often converge
slowly for tomographic image reconstruction and image restora-
tion problems, but can be accelerated by suitable preconditioners.
Diagonal preconditioners offer some improvement in conver-
gence rate, but do not incorporate the structure of the Hessian
matrices in imaging problems. Circulant preconditioners can
provide remarkable acceleration for inverse problems that are
approximately shift-invariant, i.e., for those with approximately
block-Toeplitz or block-circulant Hessians. However, in applica-
tions with nonuniform noise variance, such as arises from Poisson
statistics in emission tomography and in quantum-limited optical
imaging, the Hessian of the weighted least-squares objective func-
tion is quite shift-variant, and circulant preconditioners perform
poorly. Additional shift-variance is caused by edge-preserving
regularization methods based on nonquadratic penalty functions.
This paper describes new preconditioners that approximate more
accurately the Hessian matrices of shift-variant imaging prob-
lems. Compared to diagonal or circulant preconditioning, the
new preconditioners lead to significantly faster convergence rates
for the unconstrained conjugate-gradient (CG) iteration. We also
propose a new efficient method for the line-search step required
by CG methods. Applications to positron emission tomography
(PET) illustrate the method.

Index Terms— Circulant matrix, edge-preserving, image
restoration, PET, tomography.

I. INTRODUCTION

TOMOGRAPHIC image reconstruction using statistical
methods can provide more accurate system models, sta-

tistical models, and physical constraints than the conventional
filtered backprojection (FBP) method. Most statistical methods
for image reconstruction require minimizing an objective
function related to the measurement statistics. For realistic
image sizes, direct minimization methods are computationally
intractable, so iterative methods are required. For objective
functions that are quadratic, or at least convex and locally
quadratic, conjugate-gradient (CG) algorithms are appealing
for reasons of convergence rate, simplicity, and potential for
parallelization [1]–[10]. This paper describes new precondi-
tioning methods that accelerate the convergence of gradient-
based iterative methods for penalized weighted least-squares
tomographic image reconstruction. The proposed methods
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generalize those described in [8] and [11]. The methods also
apply to other inverse problems such as image restoration.

Gradient-based iterations often converge slowly for poorly-
conditioned problems and for large-scale problems where
the Newton–Raphson method is impractical due to the size
of the Hessian matrix. Broadly speaking, the goal when
preconditioning is to induce a coordinate transformation that
improves the condition number of a problem, which generally
leads to faster convergence. Several “generic” precondition-
ers for CG methods are described in textbooks, e.g., [12].
The simplest and perhaps most prevalent preconditioners are
diagonal scaling matrices [12], versions of which have been
applied to image reconstruction1 [4], [6]–[8], [14]. Although
diagonal preconditioners can accelerate convergence in many
optimization problems, these preconditioners cannot provide
the fastest convergence rate for imaging problems since they
ignore the off-diagonal structure of the Hessian of the objective
function (the correlation between pixels and the response
of tomographic systems).

Some simple (or perhaps over-simplified) imaging problems
are nearly shift-invariant, i.e., the matrix2 , which is part
of the Hessian of the objective function, is approximately
block-Toeplitz, where is a system matrix described in
(1) below. For these problems the diagonal preconditioner
is ineffective, but appropriate circulant preconditioners can
provide very remarkable improvements in convergence rate.
(See [15] for a recent thorough review of this subject.)
Circulant preconditioners are particularly appealing since one
can use the fast Fourier transform (FFT) for efficient im-
plementation. Several optimal circulant preconditioners are
available for Toeplitz problems [15]–[19]. Such circulant pre-
conditioners, also called “Fourier” preconditioners, have been
applied to both tomographic image reconstruction [20] and
image restoration problems [21], [22]. Fig. 3, described in
Section V, illustrates the well-known effectiveness of circulant
preconditioners for shift-invariant problems. Circulant precon-
ditioners have also been applied to total variation methods for
nonlinear image restoration [23], [24].

1Curiously, the most prevalent preconditioner in the emission tomography
literature is not the usual diagonal matrix (8) formed from the Hessian, but
is rather the particular estimate-dependent diagonal matrix that is implicit
in the popular expectation-maximization (EM) algorithm. (For emission
tomography the EM algorithm is equivalent to a gradient-ascent iteration with
a certain estimate-dependent diagonal preconditioner [13].) Kaufman [4] and
Mumcuogluet al. [6] incorporated this diagonal preconditioner into conjugate-
gradient algorithms. The estimate-dependence of this preconditioner affects
the conjugacy of the direction vectors, leading Lalushet al. to advocate an
iteration-independent diagonal preconditioner [3], [14].

2We use “0” to denote matrix and vector Hermitian transpose.
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Fig. 1. Images of the preconditioned HessianMH for an 8� 8-pixel test
image for a small tomographic imaging problem. Preconditioners:I; MD ;

MC ; MCDC. The diagonal elements ofMCH range from .55 to 1.48,
whereas the diagonal elements ofMCDCH range from .77 to 1.04. The
eigenvalues ofMCDCH are also more narrowly spread than forMCH,
which leads to faster convergence for the proposed preconditioner.

Unfortunately, many imaging problems areshift variant, for
the following reasons. Firstly, many imaging systems produce
heteroscedastic measurements, particularly in quantum-limited
applications such as emission tomography and photon-
limited optical imaging [25], [26]. In these applications,
the measurement noise covariance is a diagonal matrix with
very nonuniform entries, due to both nonuniform Poisson
variance and to physical effects such as detector efficiency
and attenuation [27]. Therefore, the Fisher information term

within the Hessian (see (5) and Fig. 1) is shift-variant
and thus poorly approximated by any circulant preconditioner.
Secondly, incorporating a nonquadratic edge-preserving
penalty function into the objective function to perform
regularization introduces an additional form of shift variance
into the Hessian matrix (5). Finally, for some imaging systems
(e.g., SPECT, 3-D PET, and helical CT), even if we were to
disregard the nonuniform noise variance, the matrix is
still inherently shift-variant due to the system geometry and/or
spatial variations in detector response. (See [28] for an image
restoration method for shift-variant imaging systems.) Thus,
neither diagonal nor circulant preconditioning is well-suited to
shift-variant imaging problems. Since statistical methods for
image reconstruction yield higher-quality images than FBP
reconstruction but at a price of increased computation, it is
important to develop methods for accelerating convergence
of the iterative algorithms. This paper generalizes the
quadratic method described in [8] by developing improved
preconditioners that accommodate the shift-variance caused
by nonuniform noise and nonquadratic penalties.

Section II reviews the image reconstruction problem and
the preconditioned conjugate gradient iteration. Section III
summarizes the preconditioners. Section IV describes a new
method for the CG line-search step. Section V reports em-

pirical results that demonstrate significantly improved conver-
gence rates in PET reconstruction with real data.

II. REGULARIZED RECONSTRUCTIONPROBLEM

Most tomographic image reconstruction and image restora-
tion problems are specific cases of the following general
inverse problem: find an estimate of object parameters

(e.g., pixel intensities) from a measurement vec-
tor related to by

noise (1)

In the context of PET, is the radioisotope concentration in
the th voxel, is the “system” matrix that describes
the tomographic geometry, andrepresents sinogram data that
has been precorrected for the effects of random coincidences,
attenuation, scatter, deadtime, etc. However, the proposed
methods apply generally to problems of the form (1) for which

is approximately block Toeplitz.

A. The Objective Function

One useful statistical criterion for estimatingfrom is the
following penalized weighted least-squares3 objective function
[5], [27]:

(2)

where is a penalty function that encourages smooth
or piecewise-smooth estimates, andis a parameter that
controls the tradeoff between spatial resolution and noise [30].
(Methods for choosing to specify a desired resolution are
described in [30].) Usually, is the inverse of the covariance
matrix of (accounting for any measurement precorrections)
or an estimate thereof [27]. We restrict the presentation to cases
where is a diagonal matrix, although generalizations are
possible.4 Our goal is to compute an estimateof from

by finding the minimizer of the objective function .
The unregularized problem (with ) is poorly con-

ditioned or even underdetermined, so some regularization is
required to ensure a stable solution. Gradient-based iterative
methods generally converge only to local minima for noncon-
vex regularizing functions, so we focus here on convex penalty
functions [31]. The following general form [32] expresses most
of the convex penalty functions that have been proposed for
regularization of imaging problems:

(3)

where is a matrix and , for some user-
defined number of soft “constraints” of the form
The standard roughness penalty simply penalizes differences
between neighboring pixel values. This penalty is the special
case of (3) where is the number of pairs of neighboring

3One could generalize the approach to produce penalized-likelihood esti-
mates by using iteratively reweighted least-squares [29].

4It suffices to haveG0
WG � DMD whereD is diagonal andM is

approximately block-circulant.
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pixels5, the vector , and each row of contains one
“ ” and one “ ” entry so that corresponds to the
difference between two neighboring pixel values [33].

In this paper, we first consider general convex nonquadratic
functions that are symmetric, twice-differentiable, and that
have bounded, nonzero second derivatives.6 We then treat the
case of quadratic penalty functions,7 where
for a positive value , as a simpler special case. We also
assume that the penalty matrix has been chosen such that
the matrix is positive definite for any set
of positive values , where denotes the
diagonal matrix with entries along its diagonal. In
particular this assumption implies that and have disjoint
null spaces. Regularization methods are generally designed to
ensure such positive definiteness.

Since this paper focuses on comparing various precondition-
ers, for simplicity we ignore any nonnegativity constraint for

. One could extend the methods to include a nonnegativity
barrier/penalty function [6], [35], or active-set or gradient
projection method [36], [37]. Improvements in convergence
rate due to improved preconditioners should extend to methods
that incorporate nonnegativity, as shown in [38].

B. The Gradients

Under the above assumptions, one can determine the unique
minimizer of the objective function by finding the zero
of its gradient. One can express the column gradient ofas
follows:

(4)

where is defined by

The Hessian of (its matrix of second partial derivatives) is
given by

(5)

where and

In general there is no explicit analytical solution for the
zero of the gradient (4). However, in the special case of
quadratic penalty functions with , the vector

simplifies to , and the gradient
simplifies to

where and

5K � 2p and K � 4p for first and second-order neighborhoods,
respectively.

6This assumption precludes the choice [31] k(t) = jtjp for p < 2 which
has unbounded second derivative.

7For certain ROI quantification tasks the quadratic penalty is useful [30]
and even outperforms nonquadratic penalties [34].

When , which is the typical choice, is
essentially a weighted “backprojection” of. In the quadratic
case, the zero of the gradient is “simply” the solution of the
linear system of equations . Unfortunately, due to the
size of for realistic image sizes, even in the quadratic case
one cannot compute directly the analytical solution .
Furthermore, for nonquadratic penalties there is no explicit
analytical solution for . Thus, one must use iterative methods
to compute .

The preconditioned conjugate-gradient (PCG) iteration is
well-suited to solving , and is also useful for min-
imizing nonquadratic objective functions. The remainder of
this section reviews the PCG algorithm.

C. Minimization Using Conjugate Gradients

Gradient-based minimization methods use the gradient of
the objective function to determine a series of
direction vectors along which is minimized via one-
dimensional (1-D) line search [39]. Conjugate-gradient meth-
ods modify the search directions to ensure that they are
mutually conjugate (or approximately so for nonquadratic
problems). We use the following preconditioned form of the
Polak–Ribiere CG method [6], [39]:

(-gradient: see (4))

(precondition) (6)

(search direction)

(step size) (7)

(update)

For quadratic objectives the step size is given explicitly by

and for one can use the alternate form

For nonquadratic objectives, one must find using a line-
search. We used the new efficient line-search method described
in Section IV to generate the empirical results in Section V.

D. Computation Requirements

When is a sparse matrix, which is the case in to-
mography, the unpreconditioned CG algorithm for a first-order
quadratic penalty function requires about
floating point operations per iteration, whereis the fraction of
nonzero elements of . In tomographic image reconstruction
problems, typically . For a tomographic system matrix

based on a “strip-integral” discretization of the Radon
transform, the sparsity factor is about .
Thus, the per-iteration computation of unpreconditioned CG
is approximately . (For a image, this approxi-
mation yields 16.8 megaflops, which agrees reasonably well
with the first line of Table I.) For power-of-two image sizes,
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TABLE I
CPU SECONDS AND MEGAFLOPS PERPCG ITERATION FOR THETHREE OBJECTIVE

FUNCTIONS, FOR THE VARIOUS PRECONDITIONERS. EACH PCG ITERATION WITH

THE PROPOSEDPRECONDITIONERREQUIRES10% MORE FLOPS AND ABOUT 13%
MORE CPU TIME THAN WITH THE CONVENTIONAL CIRCULANT PRECONDITIONER

computing an FFT requires about flops. Typically,
, so preconditioners that are based on FFT’s

require minimal additional computation for tomographic image
reconstruction problems, as evidenced by Table I.

III. PRECONDITIONERS

The matrix in (6) above is the preconditioner; choosing
this matrix is part of the algorithm design. To guarantee
convergence, must be symmetric positive definite. For
quadratic objectives, preconditioning the CG algorithm is
equivalent to solving the transformed linear system of equa-
tions , where , where

is the Hessian of the objective function as defined in (5).
The convergence rate of the CG algorithm generally improves
as the condition number of decreases toward unity. For
quadratic objective functions, the ideal preconditioner would
be so that , because the identity
matrix has the minimal condition number (unity), and the
preconditioned CG algorithm would converge in one step. For
nonquadratic , the inverse-Hessian preconditioner

yields superlinear convergence rates, as does the New-
ton–Raphson method [40]. Since we cannot compute
for large , we must develop preconditioners thatapproximate

.

A. Diagonal Preconditioner

The classical diagonal preconditioner is simply the inverse
of the diagonal elements of :

(8)

These diagonals are positive sinceis positive definite. Since
is sparse and is diagonal, one can easily compute the

diagonal elements without computing all of . Im-
plementing this preconditioner within a CG algorithm does not
require storing the entire diagonal matrix for step (7); one
simply multiplies each element of the gradient vector by the
corresponding diagonal entry of , i.e.,

. The diagonal preconditioner rescales
the problem so that typically has a smaller condition
number than . Fig. 1 displays a diagonally-preconditioned
Hessian for a small two-dimensional (2-D) image

reconstruction problem; the product is far from the ideal
identity matrix, so the convergence rate of PCG is still fairly
slow.

B. Circulant Preconditioner

If the Hessian is approximately circulant, then circulant
preconditioners are effective. In general. the Hessian (5) is far
from circulant. However, for didactic purposes, consider the
case of a shift-invariant quadratic penalty with ,
and assume that the weighting matrix has an approximately
constant diagonal, i.e., . Then we can make the
following approximation

(9)

where

(10)

The utility of approximation (9) is that the matrix is suitable
for circulant approximations in most image recovery problems.
Specifically, for any there is a diagonal matrix8 such
that for any power :

(11)

where is the orthonormal version of the 2-D DFT operator9.
Such circulant approximations to Toeplitz matrices have been
studied extensively, e.g., [15], [22], [41].

The matrix is simply the identity matrix when the image
size is a power of two and when all pixels within the image
are to be estimated. However, often only those pixels within
some known support within the image are estimated and the
other pixel values are fixed to zero, e.g., Fig. 2. In such cases,
the matrix is the matrix of ones and zeros that “embeds”
the pixel parameters being estimated into an image “matrix”
(or lexicographically ordered version thereof) with size that is
a power of 2, which facilitates use of the FFT. In particular,

. For simplicity the reader may want to think of
as the identity matrix, but the full generality is often needed
in practice.

Combining (9) with the circulant approximation (11) for
leads to the following circulant preconditioner:

(12)

Clinthorneet al. applied this type of preconditioner to shift-
invariant image reconstruction [20]. Circulant preconditioners
can be efficiently incorporated into the CG algorithm using
2-D FFT’s.

For comparison purposes, we have investigated the effec-
tiveness of the circulant preconditioner even for shift-variant
problems where the circulant approximation is poor. The best
choice of is unclear in the shift-variant case. In Section V,

8See [33] for details about computing
, which consists of the 2-D discrete
Fourier transform (DFT) coefficients of the column ofK corresponding to the
pixel at the center of the image.

9For anyp1�p2 2-D image lexicographically ordered as a vectoru;Qu is
the lexicographically ordered vector of the 2-D DFT coefficients of that image
divided by

p
p1p2. Similarly,Q0

u is the inverse 2-D DFT ofu, scaled by
the same square root factor.
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Fig. 2. Grayscale images of the reconstructed FBP image, the reconstruction support (the set of pixels estimated), and the images reconstructed using
each of the three objective functions: QPULS, QPWLS, and NPWLS.

we apply the above preconditioner to shift-variant image
reconstruction problems using the following choice:

This choice corresponds to the mean value, where is
defined in (14) below. If is aconstantdiagonal matrix, i.e.,

, then equals that constant and (9) is exact rather
than an approximation. The results in Section V demonstrate
that is ineffective for shift-variant problems.

C. Proposed Preconditioner

To understand the limitations of the circulant preconditioner
for shift-variant problems, it is helpful to first consider qual-
itatively how it works in the shift-invariant 1-D case. If
is Toeplitz, then (ignoring end effects) each column of
corresponds to the same 1-D kernel but shifted to be centered
around the pixel corresponding to that column. The circulant
preconditioner is essentially the inverse filter for that 1-D
signal. Computing the product is equivalent to applying
that inverse filter to each column of. When the inverse filter
is applied to the kernel of , the result is (approximately) a
Kronecker delta function located at the center of the kernel.
Thus since in the th column the kernel is centered
about the th pixel in the 1-D case.

For shift-variant problems, the columns of correspond
to differentsignals, and no single inverse filter can reduce all
columns to Kronecker delta functions simultaneously. Thus,

essentially what is needed for shift-variant problems is a sep-
arate inverse filter for each column of the Hessian. However,
such an approach appears to requireFFT’s per iteration,
which is impractical. As a practical compromise, our proposed
preconditioning approach is the following. We precompute
a small number of inverse filters (with a correspondingly
moderate number of FFT’s) and essentially interpolate be-
tween those inverse filters for each pixel (i.e., column of
the Hessian). A subtlety is that a naive implementation of
the above idea would lead to an asymmetric preconditioner
that is not guaranteed to be nonnegative definite. Therefore,
we apply the above idea to the matrix square root of the
Hessian, and then “square” the resulting matrix to ensure a
nonnegative definite preconditioner. From such a nonnegative
definite preconditioner one can easily form a positive definite
preconditioner by adding to the preconditioner for .

This section presents a sequence of approximations to the
inverse of the Hessian matrix in (5). The final approximations
yield a new preconditioner that is efficient computationally.10

Note that our approximations have no effect on the final
solution , only on therate of convergenceto that solution.
Thus, poor approximations do not cause reduced estimate
accuracy, but merely suboptimal convergence rates. The results
in Section V demonstrate that our proposed preconditioners
lead to significantly accelerated convergence, despite possibly
crude approximations in the development!

10I.e., it requires much less computation time than multiplying byG and
G

0 in (4), which are the most time consuming steps in the CG iteration for
tomographic image reconstruction.
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The first key approximation is one that we have previously
used for analyzing the spatial resolution properties of tomo-
graphic image reconstruction in [30]. Roughly speaking, this
approximation brings the diagonal weighting matrix to the
outside of the Fisher information matrix as follows:

(13)

where and

(14)

This exchange is important in what follows because by as-
sumption is approximately block-Toeplitz, i.e., shift-
invariant, unlike . The matrices on the two sides of
approximation (13) areexactly equal along their diagonals,
and would also be equal off-diagonal if the ’s were all
equal. (The results in [30] demonstrate the accuracy and utility
of this approximation.) Combining the exchange (13) with (5)
leads to our first Hessian approximation:

The inverse of this approximation is not a practical precondi-
tioner, so we must further simplify. We apply an approximate
exchange analogous to (13) to the regularization term:

(15)

where and

(16)

As in (13), the two sides of (15) agree exactly along their
diagonals. Furthermore, in the quadratic penalty case with

, we have so (15) is then exact.
The factor is an effective regularization parameter

for the th pixel [30]. To illustrate, note that if and
, then and for all and .

Combining the approximation (15) with leads to our
second inverse Hessian approximation:

(17)

where

(18)

It is easily shown that is symmetric and positive definite
under the (reasonable) sufficient conditions that
and that the only vector in the nullspace ofis the vector of

ones, which must not be in the nullspace of[27].
The approximations and preconditioners that we derive

below all have the same form as (17), but with different
approximations to . The requirement that the precondi-
tioners be symmetric positive definite increases the challenge
here.

To proceed, we exploit the heuristic that the effect of the
penalty term is predominatelylocal, i.e., the image that one
would reconstruct from measurements corresponding to a point

source at the th pixel is determined primarily by the value
of . A convenient mathematical expression for this heuristic
is as follows:

(19)

where was defined in (10) and is the th unit vector (i.e.,
an impulse at theth pixel). The vector is an approximate
“inverse filter” for the th column (or row) of , in the
sense that

(20)

We synthesize a matrix approximation from (19) by using the
following exact expansion of any matrix :

Applying this expansion to the matrix square root ,
which exists since is positive definite, and combining with
(19) leads to the approximation:

(21)

or equivalently after “squaring”:

(22)

The matrix is an approximation to ; the th column
of is the th column of evaluated at the effective
regularization parameter of the th pixel. Combining
(22) and (21) with (17) leads to our third inverse Hessian
approximation:

(23)

We have used matrix square roots to ensure symmetry of the
approximation. Thus an alternative approximation based on
(21) and (22) is as follows11:

(24)

Both and are plausible starting points for subsequent
approximations.

The purpose of the above sequence of approximations
was to derive a form such as (23) that depends on the
approximately circulant matrix . Applying the circulant
approximation (11) for yields:

so combining with (19):

(25)

11One can easily show thatH�1
4

can also be written in the following form:
H
�1

4
(x) = p

j=1 vj(x) v
0

j(x).
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Essentially, is an approximate inverse filter for theth
column of . Combining (25) with (23) and (21) leads to
our fifth inverse Hessian approximation:

(26)

(27)

Like , the matrix is an approximation to ; the th
column of is the th column of the circulant approximation
to . Again the matrix squaring suggests the alternate form:

(28)

Implementing a preconditioner based on either or
would appear to require 2-D FFT’s per iteration.
Although this is less computation than required for or

, it remains impractical.
To further reduce the number of FFT’s, we propose to use

interpolation. We choose a small number of values
that cover (most of) the range of the values of the

’s in (16), and precompute the 2-D DFT coefficients of
in (10) for those values:

We then apply interpolation to approximate the 2-D DFT’s
corresponding to the required values:

(29)

where are the interpolation factors with
. Since the ’s are positively valued, we

currently determine the ’s by using linear interpolation
with a logarithmic scale for the’s:

otherwise

Incorporating the interpolation approximation (29) into (27)
yields

where . This approximation suggests
the following preconditioners:

Both of these preconditioners require 2-D FFT’s (or
inverse FFT’s) per iteration.

For further simplification, note that

Using the approximation (which is exact when the
image size is a power of 2 and when the entire image is
estimated) and the fact that (since is orthonormal),
we have the following approximation:

This simplification leads to the following preconditioner:

(30)

which requires only 2-D FFT’s per iteration.
As a final simplification, we could consider dropping the

cross terms in the product , i.e.

This approximation leads to the following preconditioner:

which also requires FFT’s per iteration. However, we
have found empirically that leads to faster convergence
than for nonquadratic penalties [33]. Since and
have equivalent computation time, we consider to be the
preferred preconditioner for the nonquadratic case.

The preconditioners are all practical in the
sense that the computation of 2-D FFT’s is ,
which for small is moderate compared with the
computation required to compute the gradient. Note that while
these preconditioners combine aspects of both the diagonal
and circulant preconditioning methods, the particular diagonal
matrices used here are very different from the conventional
diagonal preconditioning matrix given in (8).
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D. Circulant Preconditioner Revisited

As a sanity check, consider the shift-invariant case where
all of the effective regularization parameters are identical:

and . In this case, suffices, and
clearly we should choose . Then the preconditioners

and simplify to the following:

which is identical to the standard circulant preconditioner (12).
Thus our approximations do not lead to any harm in the
shift-invariant special case.

E. Implementation

Storing the preconditioning matrices is fortunately
unnecessary, since the CG algorithm requires only the ability
to compute the product . FFT’s can compute these
products efficiently using storage of only a few vectors of
length . For example, we compute as follows:12

Even less computation and storage is actually required since
one can compute a pair of real FFT’s using just one complex
FFT [39], and the summations can be done by in-place
accumulation.

F. Combined Diagonal/Circulant Preconditioner for
the Quadratic Case with Modified Penalty

For a quadratic penalty with and , the
objective function simplifies to

where the matrix is the (symmetric) Hessian
of the penalty function. The usual “uniform” first-order 2-
D roughness penalty matrix has 4’s along its diagonal
and 1’s in the off-diagonal positions corresponding to each
pixel’s four neighbors. Surprisingly, this uniform penalty leads
to nonuniform spatial resolutionwhen [30]. Thus, for
quadratic penalties we use themodified penaltyof [30], for
which

(31)

This modified penalty leads to more uniform spatial resolution
[30], which in turn leads to a Hessian that is particularly
amenable to preconditioning, since uniform spatial resolution

12One can think ofgn as both ap-dimensional vector or as anx � ny

image, wherenx and ny are the image column and row dimensions and
p = nxny .

and shift-invariance are equivalent concepts. Under approxi-
mation (31), one can verify that for the quadratic
penalty. Thus from (17) and (11), the following preconditioner
is well-suited to the quadratic objective with the modified
penalty:

(32)

Based on [8], we refer to this approach as the “combined diag-
onal/circulant” preconditioner. The seemingly minor addition
to (12) of the terms in (32) provides significant improve-
ment in convergence rate as shown in Fig. 4 (see Section V).
Fig. 1 also illustrates that for the quadratic case
with the modified penalty, and that that approximation is much
better than with the circulant preconditioner (12).

G. Summary

We recommend the circulant preconditioner (12) for shift-
invariant problems, the combined diagonal/circulant precondi-
tioner (32) for quadratic penalized weighted least squares with
the modified penalty of [30], and the new preconditioner (30)
for the general shift-variant case.

IV. L INE SEARCH METHOD

For nonquadratic objectives, gradient-based methods require
a “line search” in (7) to find the step sizethat minimizes the
objective function along the current search direction. General
purpose line-search methods [39] are applicable but subopti-
mal, since they fail to exploit the specific form (particularly
convexity) of our objective function (2). In this section, we
present a new recursive line-search algorithm that is simple
to implement and isguaranteedto monotonically minimize
the objective function with respect to. This algorithm is
an adaptation of the iteration proposed by Huber [42] for
robust M-estimation. (The essence of Huber’s algorithm has
also resurfaced in the imaging literature as the “half-quadratic”
method [43]–[45].) The convergence proof in [42] requires
the following assumptions: 1) is convex, symmetric, and
differentiable, and 2)

(33)

is bounded and decreasing for . (The functions act as
weighting functions that diminish the influence of neighboring
pixels near edges between object regions for nonquadratic
penalty functions [42], [46], [47].) These assumptions are
reasonable for the convex penalty functions used in imaging.

The line-search algorithm can be stated as follows. Let
and denote the current estimate and search direction,

respectively. For (7) we would like to find the scalar value
that minimizes

First define (and precompute) the following terms:



696 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 5, MAY 1999

where , and were defined in Section II. Then with
some manipulation of (2) and (3) one can show the following:

The Newton–Raphson iteration for is not guaranteed to
converge for this problem. However, the following iteration
is guaranteed to converge to:

(34)

where was defined in (33). (We initialize with .)
The iteration monotonically decreases by the proof of
Lemma 8 in [42]. One can also show that the above iteration
is a strict contraction: monotonically decreases each
iteration [47].

We use about five sub-iterations of the above recursion
for each iteration of the CG algorithm. Since no forward
or backward projections are required, these sub-iterations are
a fairly small component of the computation time for each
iteration. To summarize, the algorithm (34) provides an easily
implemented yet rapidly converging method for finding the
step size for nonquadratic penalty functions.

V. NUMERICAL RESULTS

To compare the convergence rates of the CG algorithm
using the preconditioners described above, we have applied
the algorithms to both simulated and real PET transmission
scans. Results for PET emission scans were reported in [8].
We have investigated the effects of the initial image, the type
of penalty, the choice of weights , and several measures of
convergence rates. We synopsize representative results only;
complete details are given in [33].

We acquired a 12-min PET transmission scan of a Data
Spectrum thorax phantom on an CTI ECAT 921 EXACT PET
scanner. This scan produced 920 653 prompt coincidences,
which is quite noisy data. The sinogram size was 160 ra-
dial bins by 192 angles, with 0.3375 cm radial spacing, so

. Prompt and random coincidences were collected
separately. The mean contributions of randoms were estimated
by time scaling the delayed coincidences from a 15-h blank
scan, as described in [48].

The reconstructed images were 128128 pixels of width
0.42 cm. We reconstructed a FBP image by first smoothing
the ratio of the transmission over the blank scan with the
“constrained least squares” filter described in [30] and [49],
computing the logarithm, and finally applying the ramp filter
prior to pixel-driven backprojection. This approach closely
matches the spatial resolution of the FBP image with that of
the quadratically penalized statistical methods.

The log-likelihood for Poisson transmission data is non-
quadratic [50], and therefore not directly of the form given

in (2). A conventional approach is to make a ray-by-ray 2nd-
order Taylor expansion of the log-likelihood [5], [51] to yield
a quadratic functional of the form (2). Unfortunately, that
approximation leads to systematic bias [51], [52]. Therefore,
we used the FBP image to initialize the grouped-coordinate
ascent algorithm of [50], which was run for two iterations
to produce an intermediate estimate. We then computed
a second-order Taylor expansion of the transmission log-
likelihood about the reprojection of to produce a quadratic
data-fit term of the form given in (2). Regularized versions of
this objective function were then minimized using the PCG
algorithm. The exact form for and are given in [33].
The system model used for reconstruction assumed parallel
strip integrals of width 0.3375 cm.

We investigated the convergence rates of the PCG algorithm
with both the FBP image and a zero image as the initial image

. The FBP initialization always led to faster convergence
[33], so we report only those results here. A manually de-
termined subset of the pixels (see Fig. 2) was reconstructed,
which specifies the matrix in (11).

To compare convergence rates, we examined the normalized
distance between theth iterate and the limiting value

. (We also examined the and
norms, which led to comparable conclusions [33].) The PCG
algorithms were implemented in ANSI C [53] using single
floating-point precision on a DEC AlphaStation 600/5-333
workstation. However, to compute , we implemented a
grouped-coordinate ascent algorithm similar to that described
in [50] in Matlab using double precision. Several hundred
iterations of this algorithm were run, until the change in
the estimates reached the limiting precision. This provided a
limiting value that, while of course not “exact,” is about
7 digits of precision more accurate than the single precision
values computed in C.

We investigated three choices for the objective function. The
simplest was quadratically-penalizedunweightedleast squares
(QPULS), where , giving equal weight to all ray
measurements. In this case we used the standard first-order 2-D
quadratic roughness penalty with . As illustrated
by the image of shown in Fig. 2, QPULS is a poor choice
of an objective function since it ignores the statistics. However,
this case has been extensively studied previously since the
Hessian of is approximately block-circulant. Therefore, we
include it for comparison. Fig. 3 shows that the circulant
preconditioner (12) provides significant acceleration for this
nearly shift-invariant problem, as expected from previous
reports.

The second objective function was quadratically penalized
weightedleast squares (QPWLS), where is the curvature
term in the second-order Taylor expansion of the transmission
log-likelihood [33], [51]. In this case, we used the modified
penalty that provides more uniform spatial resolution [30].
As illustrated in Fig. 2, the QPWLS objective function leads
to a less noisy image, since ray measurements with greater
uncertainty are given lower weight. However, this nonuniform
weighting leads to significant shift-variance. As illustrated
in Fig. 4, for QPWLS the standard circulant preconditioner
performs very poorly. However, the proposed combined di-
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Fig. 3. Normalizedl2 distance to solutionx1 versus iterationn for the
quadratically-penalizedunweightedleast squares (QPULS) objective function.
Shown is CG with no preconditioning, with the diagonal preconditioner (8),
and with the circulant preconditioner (12). In the QPULS case, the Hessian
is nearly block-circulant, so the circulant preconditioner provides remarkable
acceleration.

Fig. 4. Normalizedl2 distance to solutionx1versus iterationn for the
quadratically-penalizedweightedleast squares (QPWLS) objective function.
Shown is CG with no preconditioning, with the diagonal preconditioner
(8), with the circulant preconditioner (12), and with the combined diago-
nal/circulant preconditioner (32). The new preconditionerMCDC leads to
significantly faster convergence than the ordinary circulant preconditioner for
this shift-variant problem.

agonal/circulant preconditioner (32) provides significant ac-
celeration, with negligible increase in computation time per
iteration over the circulant preconditioner.

The third objective function wasnonquadratically-penalized
weighted least squares (NPWLS). We used one of the penalties
proposed in [54] for :

(35)

with cm. This function is approximately quadratic
for , but is approximately linear for ,
which provides a degree of edge preservation. We did not

Fig. 5. Normalizedl2 distance to solutionx1versus iterationn for the
nonquadratically-penalized weighted least squares (NPWLS) objective func-
tion. Shown is CG with no preconditioning, with the diagonal precondi-
tioner (8), with the circulant preconditioner (12), and with the proposed
M9preconditioner (30). The proposed preconditioner provides significant
acceleration in convergence rate over conventional preconditioners.

TABLE II
NUMBER OF ITERATIONS AND TOTAL CPU SECONDS REQUIRED

FOR THE PCG ITERATES TO “CONVERGE,” AS DEFINED IN

TEXT. ALTHOUGH THE PROPOSEDPRECONDITIONER SLIGHTLY

INCREASESCOMPUTATION PER ITERATION, THE REDUCED NUMBER OF

ITERATIONS LEADS TO SIGNIFICANTLY LESS OVERALL COMPUTATION

use the modified penalty weighting of [30] here, since its
effect is currently unknown for nonquadratic penalties. The
nonquadratic penalty provides shift-variant smoothing, which,
as illustrated in Fig. 2, can lead to (somewhat) improved image
quality (particularly for nearly piecewise-constant objects.
The nonquadratic penalty leads to significant additional shift-
variance, so the circulant preconditioner again performs very
poorly, as shown in Fig. 5. However, the proposed precon-
ditioner leads to significant improvement in convergence
rate, with only a modest increase in computation time per
iteration (see Tables I and II).

To implement we used and
, where . This range

reflects the fact that would be the effective in the shift-
invariant case, and that so most of the required
values of in (16) are smaller than . Increasing gave
negligible improvements, which is expected from Table I of
[33]; increasing may make a better approximation to

, but that can only accelerate convergence slightly since
is an imperfect approximation to .

Table I summarizes the CPU time per iteration of the PCG
algorithm (as reported by the UNIXclock() function)
for the various preconditioners and objective functions for
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the data described above. The additional CPU time needed
for the proposed preconditioners over conventional circulant
preconditioning is modest (less than 15%). The resulting
improvements in convergence rate surpass the small increase
in computation per iteration. A more realistic system model
would use a more dense matrix , which would further
enhance the relative benefits of the proposed precondition-
ers. Table I also shows the required number of flops per
iteration for this problem, as reported by Matlab’sflops
command. The preconditioners require only a modest increase
in computation per iteration.

Table II summarizes how many iterations and what total
CPU time is required for the PCG algorithm to “converge”
for the various preconditioners and objective functions, where
we define convergence here by the iterates having reached
99.9% of the asymptotic value of the objective function, i.e.

. Table II clearly
shows that even though the preconditioners require a slight
increase in computation per iteration, the reduced number
of iterations that result will more than compensate for this
expense. Thus FFT-based preconditioners are very practical
and effective for tomographic imaging problems.

We also compared the CG algorithm using the proposed
preconditioners to the coordinate-descent algorithms of [5]
and [27]. As in [5], we found that coordinate-descent often
converged faster thanunpreconditionedCG [33]. However,
we consistently found that the CG algorithmwith the proposed
preconditionersconverged significantly faster than coordinate
descent [33]. How a nonnegativity constraint would affect the
results requires further evaluation.

VI. DISCUSSION

We have described new conjugate-gradient preconditioning
methods for shift-variant imaging problems, and have pre-
sented representative results that demonstrate that the proposed
preconditioners lead to significantly improved convergence
rates over previous diagonal and circulant preconditioners for
PET image reconstruction.

The development of the preconditioners used several heuris-
tics about the properties of the Hessian for image reconstruc-
tion problems. Although the results show that the methods
work, the derivation is somewhat less theoretically satisfying
than the optimality results known for circulant preconditioners
for Toeplitz problems [15]–[19]. Whether such results can be
extended to the more complicated structure of shift-variant
problems remains an inviting challenge.

Circulant-based methods are perhaps inherently poorly
suited to shift-variant problems. Our preconditioner
partially circumvents this drawback by essentially using
separate Fourier transforms for each pixel (i.e., for each
column of the Hessian), which is then simplified through
the interpolation approximation (29). A more direct
approach might begin with bases that better accommodate
shift-variance, such as wavelets.

Although this paper focuses on image reconstruction, the
preconditioning methods are also useful for calculating ana-
lytical metrics related to imaging system performance, such as
bias, variance, and spatial resolution [30], [52], [55]. Many of

these calculations require iterative methods for solving large-
scale linear systems of equations involving the Hessian of the
objective function.

Although the preconditioner development was presented
for 2-D imaging, the entire argument also applies to higher
dimensions, such as three-dimensional (3-D) PET imaging, or
“2.5-D” imaging, in which each image in a stack is imaged
separately but a 3-D penalty is used during reconstruction to
provide regularization both within and between planes. We
expect these preconditioners will be particularly useful for
fully 3-D PET [10]. The inherent shift-variance of for
such systems will add to the challenge. For 3-D SPECT recon-
struction, one may be able to form suitable preconditioners by
adapting linear methods such as in [56]. We plan to investigate
such methods in the near future.
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