688 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 8, NO. 5, MAY 1999

Conjugate-Gradient Preconditioning Methods
for Shift-Variant PET Image Reconstruction

Jeffrey A. FesslerMember, IEEE,and Scott D. Booth

Abstract—Gradient-based iterative methods often converge generalize those described in [8] and [11]. The methods also
slowly for tomographic image reconstruction and image restora- apply to other inverse problems such as image restoration.
tion problems, but can be accelerated by suitable preconditioners. Gradient-based iterations often converge slowly for poorly-
Diagonal preconditioners offer some improvement in conver- "
gence rate, but do not incorporate the structure of the Hessian conditioned problems and for- Ia.rge-sca.le problems Whgre
matrices in imaging problems. Circulant preconditioners can the Newton—Raphson method is impractical due to the size
provide remarkable acceleration for inverse problems that are of the Hessian matrix. Broadly speaking, the goal when
approximately shift-invariant, i.e., for those with approximately  preconditioning is to induce a coordinate transformation that
block-Toeplitz or block-circulant Hessians. However, in applica- improves the condition number of a problem, which generally

tions with nonuniform noise variance, such as arises from Poisson leads to faster convergence. Several “generic” precondition
statistics in emission tomography and in quantum-limited optical verg : v 9 icp i

imaging, the Hessian of the weighted least-squares objective func-€rs for CG methods are described in textbooks, e.g., [12].
tion is quite shift-variant, and circulant preconditioners perform  The simplest and perhaps most prevalent preconditioners are
poorly. Additional shift-variance is caused by edge-preserving diagonal scaling matrices [12], versions of which have been
reg_ularlzatlon me_thods based on n_o_nquadratlc penalty functions. applied to image reconstructibv{ﬂ], [6][8], [14]. Although

This paper describes new preconditioners that approximate more . :
accurately the Hessian matrices of shift-variant imaging prob- d'ago_“a' _precondltloners cai accelerafcg convergence in m_any
lems. Compared to diagonal or circulant preconditioning, the OPtimization problems, these preconditioners cannot provide
new preconditioners lead to significantly faster convergence rates the fastest convergence rate for imaging problems since they
for the unconstrained conjugate-gradient (CG) iteration. We also ignore the off-diagonal structure of the Hessian of the objective

propose a new efficient method for the line-search step required f,n¢tion (the correlation between pixels and the response
by CG methods. Applications to positron emission tomography

(PET) illustrate the method. of tomogr_aphic systems). . g . .
) _ ) _ Some simple (or perhaps over-simplified) imaging problems
Index Terms— Circulant matrix, edge-preserving, image 5re nearly shift-invariant, i.e., the mafiG’G, which is part
restoration, PET, tomography. . P . " !
of the Hessian of the objective function, is approximately
block-Toeplitz, whereG is a system matrix described in
|. INTRODUCTION (1) below. For these problems the diagonal preconditioner

OMOGRAPHIC image reconstruction using statisticdP ingffective, but approp_riate circulant preconditioners can
T methods can provide more accurate system models, Jpvide very remarkable |mprovement§ in convergence rate.
tistical models, and physical constraints than the conventior(élee [15] for a F,ece”t thorough review of th's S,UbleCt')
filtered backprojection (FBP) method. Most statistical methoddreulant preconditioners are particularly appealing since one
for image reconstruction require minimizing an objectivéd" Use the fast Fourier transform (FFT) for efficient im-
function related to the measurement statistics. For realishiémentation. Several optimal circulant preconditioners are
image sizes, direct minimization methods are computationafyailable for Toeplitz problems [15]-[19]. Such circulant pre-
intractable, so iterative methods are required. For objectig@nditioners, also called “Fourier” preconditioners, have been
functions that are quadratic, or at least convex and locafipPlied to both tomographic image reconstruction [20] and
quadratic, conjugate-gradient (CG) algorithms are appealilfg2g€ restoration problems [21], [22]. Fig. 3, described in
for reasons of convergence rate, simplicity, and potential fgection V illustrates t_he_well-_known effectwen_ess of circulant
parallelization [1]-[10]. This paper describes new precondp_rt_acondlt|oners for shlft—lnvarlgnt problems. Qrculant precon-
tioning methods that accelerate the convergence of gradiefifioners have also been applied to total variation methods for
based iterative methods for penalized weighted least-squaf@glinear image restoration [23], [24].
tomographic image reconstruction. The proposed methods
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pirical results that demonstrate significantly improved conver-
gence rates in PET reconstruction with real data.

Il. REGULARIZED RECONSTRUCTIONPROBLEM

Most tomographic image reconstruction and image restora-
tion problems are specific cases of the following general
inverse problem: find an estimate of object parametees
\ [#1,...,2,] (e.g., pixel intensities) from a measurement vec-
Unpreconditioned Diagonal Precon. tor y related toz by

Q = G&true + nOise (1)

" *-..h_‘.‘ In the context of PETg; is the radioisotope concentration in
the jth voxel, G = {g;; } is the “system” matrix that describes
‘-\\_ the tomographic geometry, agdepresents sinogram data that
oY . has been precorrected for the effects of random coincidences,
N attenuation, scatter, deadtime, etc. However, the proposed
methods apply generally to problems of the form (1) for which

Circul P . i A . r .
ireulant Precon SRS G'G is approximately block Toeplitz.
Fig. 1. Images of the preconditioned HessshH for an 8 x 8-pixel test

image for a small tomographic imaging problem. Preconditionkrdvl ), L .

M¢e, Mepce. The diagonal elements d¥I~H range from .55 to 1.48, A. The Objective Function

whereas the diagonal elements McpcH range from .77 to 1.04. The e yseful statistical criterion for estimatimgrom y is the
eigenvalues ofMcpcH are also more narrowly spread than i H,

which leads to faster convergence for the proposed preconditioner. following penalized weighted least-squatebjective function
[3], [27]:
Unfortu_nately, many imaging prob!ems_a;‘mft variant for ®(z) = = (y — GaY W(y — Ga) + SR(z) @)
the following reasons. Firstly, many imaging systems produce 2= =

heteroscedastic measurements, particularly in quantum-limitggere R(z) is a penalty function that encourages smooth
applications such as emission tomography and photqjy piecewise-smooth estimates, apdis a parameter that
limited optical imaging [25], [26]. In these applications¢ontrols the tradeoff between spatial resolution and noise [30].
the measurement noise covariance is a diagonal matrix Wilflethods for choosing? to specify a desired resolution are
very nonuniform entries, due to both nonuniform Poiss@fescribed in [30].) UsuallyW is the inverse of the covariance
variance and to physical effects such as detector efficiengtrix of y (accounting for any measurement precorrections)
and attenuation [27]. Therefore, the Fisher information terg} an estimate thereof [27]. We restrict the presentation to cases
G'WG within the Hessian (see (5) and Fig. 1) is shift-varianfhere W is a diagonal matrix, although generalizations are
and thus poorly approximated by any circulant preconditionqjossib@ Our goal is to compute an estimateof z, .. from
Secondly, incorporating a nonquadratic edge—preservigg)y finding the minimizer of the objective functioh(z).
penalty function into the objective function to perform™ The unregularized problem (wit = 0) is poorly con-
regularization introduces an additional form of shift variancgitioned or even underdetermined, so some regularization is
into the Hessian matrix (5). Finally, for some imaging systemgquired to ensure a stable solution. Gradient-based iterative
(e.g., SPECT, 3-D PET, and helical CT), even if we were {@ethods generally converge only to local minima for noncon-
disregard the nonuniform noise variance, the maG#G is  yex regularizing functions, so we focus here on convex penalty
still inherently shift-variant due to the system geometry and/@iinctions [31]. The following general form [32] expresses most

spatial variations in detector response. (See [28] for an imag€the convex penalty functions that have been proposed for
restoration method for shift-variant imaging systems.) Thuggularization of imaging problems:

neither diagonal nor circulant preconditioning is well-suited to

shift-variant imaging problems. Since statistical methods for -

image reconstruction yield higher-quality images than FBP R(z) = Zwk([cg_g]k)’ (3)

reconstruction but at a price of increased computation, it is k=1

important to develop methods for accelerating convergeng@ere C is a K x p matrix andc € R, for some user-

of the iterative algorithms. This paper generalizes theefined numbek of soft “constraints” of the formiCz]. ~ ¢

quadratic method described in [8] by developing improvetihe standard roughness penalty simply penalizes differences

preconditioners that accommodate the shift-variance causgiween neighboring pixel values. This penalty is the special

by nonuniform noise and nonquadratic penalties. case of (3) whereX is the number of pairs of neighboring
Section I .r.evieWS thg image recpnstr_uction prOblem and3One could generalize the approach to produce penalized-likelihood esti-

the precpndmoned Conquate gradlen_t iteration. _Sec'uon mates by using iteratively reweighted least-squares [29].

summarizes the preconditioners. Section IV describes a new; g fices to haveG'WG ~ DMD whereD is diagonal andM is

method for the CG line-search step. Section V reports empproximately block-circulant.
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pixel®, the vectorc = 0, and each row ofC contains one When ¢ = 0, which is the typical choicep = G'Wy is
“+1” and one “-1” entry so that[Cz]; corresponds to the essentially a weighted “backprojection” ¢f In the quadratic
difference between two neighboring pixel values [33]. case, the zero of the gradient is “simply” the solution of the
In this paper, we first consider general convex nonquadralicear system of equatiorldz = b. Unfortunately, due to the
functionsq);, that are symmetric, twice-differentiable, and thasize of H for realistic image sizes, even in the quadratic case
have bounded, nonzero second derivatf/@¢e then treat the one cannot compute directly the analytical solutios: H1b.
case of quadratic penalty functiohsyhere(t) = wit?/2 Furthermore, for nonquadratic penalties there is no explicit
for a positive valuew;, as a simpler special case. We alsanalytical solution fot. Thus, one must use iterative methods
assume that the penalty mat has been chosen such thato computez.
the matrixG'WG + C'D[w; | C is positive definite for any set The preconditioned conjugate-gradient (PCG) iteration is
of positive values{w; }< |, whereD[w;] denotes theX x K well-suited to solvingHz = b, and is also useful for min-
diagonal matrix with entries, - - -, wg along its diagonal. In imizing nonquadratic objective functions. The remainder of
particular this assumption implies thé& and C have disjoint this section reviews the PCG algorithm.
null spaces. Regularization methods are generally designed to
ensure such positive definiteness. C. Minimization Using Conjugate Gradients
Since this paper focuses on comparing various precondition-G

LR . . X radient-based minimization methods use the gradient of
ers, for simplicity we ignore any nonnegativity constraint fthe objective functionV'®(z") to determine a series of

Wrection vectors{d™} along which® is minimized via one-

L s Nimensional (1-D) line search [39]. Conjugate-gradient meth-
projection method [36], [37]. Improvements in CONVErgencsys modify the search directions to ensure that they are

rﬁte Qlue to improved preco_n_dmonershshoul_d e;(tsend to meth ﬁtually conjugate (or approximately so for nonquadratic
that incorporate nonnegativity, as shown in [38]. problems). We use the following preconditioned form of the

) Polak—Ribiere CG method [6], [39]:
B. The Gradients

n _ _ 7/ n _ H .
Under the above assumptions, one can determine the unique Qn o an)(g ) ( grf';l.dlent. see (4))
minimizer & of the objective function® by finding the zero p" =Mg" (precondition) (6)
of its gradient. One can express the column gradien® afs 0, n=20
. o n_ n—1_n
follows: S <Q< n_lg n_% >7 00
~V'd(z) = G'W(y - Gz) - fC'2(x), (4 o8 .
2 d* =p" +~v,d""" (search direction)
wherez : RP — R¥ is defined by o, = argmin ®(z" + ad™) (step size) (7)
21(z) 2 n([Cz — ). 2"t =2" + a,d"  (update)

The Hessian ofp (its matrix of second partial derivatives) isFor quadratic objectives the step sizg is given explicitly by

given by Q= <dn,gn>/<dn,Hdn>,
— / / .
H(z) = G'WG +C Dw'(g)c’ () and forn > 0 one can use the alternate form
where . (f) = d*/d#* () and o= (g "/l

D () £ Dln([Cz — di)]. For nonquadratic objectiveB, one must findv,, using a line-
search. We used the new efficient line-search method described

In general there is no explicit analytical solution for thg, Section IV to generate the empirical results in Section V.
zero of the gradient (4). However, in the special case of

quadratic penalty functions wit, () = wit?/2, the vector D. Computation Requirements
z(z) simplifies toz(z) = D[wi](Cz — ¢), and the gradient

simplifies to When G is a sparser x p matrix, which is the case in to-
mography, the unpreconditioned CG algorithm for a first-order
~V'®(z) =b— Hz quadratic penalty function requires aboinp + 8n + 17p
floating point operations per iteration, wheres the fraction of
whereH = G'G + SC'D[w;]|C and nonzero elements d. In tomographic image reconstruction

problems, typicallyn ~ p. For a tomographic system matrix
G based on a “strip-integral” discretization of the Radon
°K =~ 2p and K = 4p for first and second-order neighborhoodstransform, the sparsity factgris aboutp = 2/\/n ~ 2/,/p.
reigehfs\;esns/um ton precludes the choice [311(1) = 17 for p < 2 which Thus, the per-iteration computation of unpreconditioned CG
has unboundedpsecopnd derivative. ) = re IS a_ppro?<|mately8p3/2. (For a 128.2 image, this approxi-
"For certain ROI quantification tasks the quadratic penalty is useful [36]13'“0“ yields 16.8 megaflops, which agrees reasonably well
and even outperforms nonquadratic penalties [34]. with the first line of Table I.) For power-of-two image sizes,

b= G'Wy + CDlwe.
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TABLE | reconstruction problem; the product is far from the ideal

CPU Stconps AND MEGAFLOPS PERPCG ITERATION FOR THE THREE OBJECTIVE identity matrix. so the convergence rate of PCG is still fairly
FUNCTIONS, FOR THE VARIOUS PRECONDITIONERS EACH PCG ITERATION WITH ’

THE PROPOSEDPRECONDITIONER REQUIRES 10% MORE FLOPS AND ABOUT 13% slow.
MoRre CPU TiME THAN wiTH THE CONVENTIONAL CIRCULANT PRECONDITIONER
CPU Seconds | Milops B. Circulant Preconditioner
M Per Iteration If the Hessian is approximately circulant, then circulant

| QPULS T QPWLS | NPWLS

preconditioners are effective. In general. the Hessian (5) is far

T
]IMD 82; i:; 8:23 ‘ :22 gjgg ;2; from circulant. However, for didactic purposes, consider the
Me 072 | 212 11073 | 212 || 0.99 | 28.1 case of a shift-invariant quadratic penalty wittt) = 2/2,
Mane || - | - |073 212 - | - and assume that the weighting maf#& has an approximately
M, - - - | - 112308 constant diagonal, i.eW = «I. Then we can make the

following approximation
computing an FFT requires abo6plog, p flops. Typically,

o H(z) = G'WG 4 3C'C ~ oK( 9
log, p < p'/?, so preconditioners that are based on FFT’s () T oK(B/e), ©
require minimal additional computation for tomographic imag&here
reconstruction problems, as evidenced by Table I. A

K(n) = G'G+nC'C. (10)
[ll. PRECONDITIONERS The utility of approximation (9) is that the matrk is suitable

The matrixM in (6) above is the preconditioner; choosindor circulant approximations in most image recovery problems.
this matrix is part of the algorithm design. To guarantepecifically, for anyy there is a diagonal matfix(r) such
convergenceM must be symmetric positive definite. Forthat for any power:
quadratic objectives, preconditioning the CG algorithm is /Nt Ll o TV Ol
equivalent to solving the transformed linear system of equa- K'(n) =[G'G+nCCl' ~T'QQ(nQT, (11)
tions M'/2HM'/2; = M*'/?b, wherei = M~/?%, where whereQ is the orthonormal version of the 2-D DFT operdtor
H is the Hessian of the objective function as defined in (S3uch circulant approximations to Toeplitz matrices have been
The convergence rate of the CG algorithm generally improvegudied extensively, e.g., [15], [22], [41].
as the condition number ¥H decreases toward unity. For The matrixT is simply the identity matrix when the image
quadratic objective functions, the ideal preconditioner woulsize is a power of two and when all pixels within the image
be My = H™" so thatMoH = T, because the x p identity are to be estimated. However, often only those pixels within
matrix I has the minimal condition number (unity), and thgome known support within the image are estimated and the
preconditioned CG algorithm would converge in one step. Fgther pixel values are fixed to zero, e.g., Fig. 2. In such cases,
nonquadratic®, the inverse-Hessian preconditioner the matrix T is the matrix of ones and zeros that “embeds”

1 / y 1 the p pixel parameters being estimated into an image “matrix”

Mo(z) = H™(2) = [GWG +5C Dﬁ@)c] (or lexicographically ordered version thereof) with size that is

yie'ds Super”near convergence rates1 as does the N@\power of 2, which facilitates use of the FFT. In particular,
ton-Raphson method [40]. Since we cannot comgdtet T'T = I,. For simplicity the reader may want to think @f

for |argep, we must deve|op preconditioners thﬂtproximate as the |dent|ty matl’iX, but the full genel’ality is often needed

"L in practice.
Combining (9) with the circulant approximation (11) for
A. Diagonal Preconditioner ! = —1 leads to the following circulant preconditioner:
The classical diagonal preconditioner is simply the inverse Mc 2 lT’Q’Q—l(ﬁ/a)QT. (12)

of the diagonal elements dfl: o

R 1 Clinthorneet al. applied this type of preconditioner to shift-

Mp(z) = D[Hi(x)} (8) invariant image reconstruction [20]. Circulant preconditioners
JIN=

can be efficiently incorporated into the CG algorithm using
These diagonals are positive sirldes positive definite. Since 2-D FFT’s.

G is sparse andV is diagonal, one can easily compute the For comparison purposes, we have investigated the effec-
diagonal elementH ;; (z) without computing all ofI(z). Im-  tiveness of the circulant preconditioner even for shift-variant
plementing this preconditioner within a CG algorithm does ngroblems where the circulant approximation is poor. The best
require storing the entire diagonal mathf, for step (7); one choice of« is unclear in the shift-variant case. In Section V,

simply mUIt_Ip“es_ each element of the gridlentnvedor by thesSee [33] for details about computi§®, which consists of the 2-D discrete
corresponding diagonal entry &1, L€, p; = g; /H;;(x),  Fourier transform (DFT) coefficients of the columnksfcorresponding to the
j = 1,---,p. The diagonal precondition&¥;(x) rescales npixel at the center of the image.

the problem so thaMp,'H typically has a smaller condition _°For anyp: x pz 2-D image lexicographically ordered as a veatoQu is
ber thanH. Fig. 1 displavs a diagonallv-preconditione he lexicographically ordered vector of the 2-D DFT coefficients of that image
numoer thantd. Fig. Isplay lag y-p i ivided by \/pipz. Similarly, Q'« is the inverse 2-D DFT of:, scaled by

HessianM;'H for a small two-dimensional (2-D) imagethe same square root factor.
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0.0/cm
FBP Reconstruction Support

0.13/cm

QPULS QPWLS NPWLS

 VRNE VIE Y

Fig. 2. Grayscale images of the reconstructed FBP image, the reconstruction support (the set of pixels estimated), and the images recorgtructed usin
each of the three objective functions: QPULS, QPWLS, and NPWLS.

we apply the above preconditioner to shift-variant imagessentially what is needed for shift-variant problems is a sep-
reconstruction problems using the following choice: arate inverse filter for each column of the Hessian. However,

p 9 such an approach appears to requiréFT’'s per iteration,
1 EZ gijwii .. . . .
- s which is impractical. As a practical compromise, our proposed
pi3 2. 95 preconditioning approach is the following. We precompute
a small number of inverse filters (with a correspondingly
moderate number of FFT's) and essentially interpolate be-
tween those inverse filters for each pixel (i.e., column of
Ghe Hessian). A subtlety is that a naive implementation of
e above idea would lead to an asymmetric preconditioner
that is not guaranteed to be nonnegative definite. Therefore,
we apply the above idea to the matrix square root of the
Hessian, and then “square” the resulting matrix to ensure a

To understand the limitations of the circulant preconditioneronnegative definite preconditioner. From such a nonnegative
for shift-variant problems, it is helpful to first consider qualdefinite preconditioner one can easily form a positive definite
itatively how it works in the shift-invariant 1-D case. H preconditioner by addingl to the preconditioner foe > 0.
is Toeplitz, then (ignoring end effects) each column Hf This section presents a sequence of approximations to the
corresponds to the same 1-D kernel but shifted to be centeiegerse of the Hessian matrix in (5). The final approximations
around the pixel corresponding to that column. The circulapield a new preconditioner that is efficient computationafly.
preconditionedM is essentially the inverse filter for that 1-DNote that our approximations have no effect on the final
signal. Computing the produdti~H is equivalent to applying solution z, only on therate of convergencéo that solution.
that inverse filter to each column &f. When the inverse filter Thus, poor approximations do not cause reduced estimate
is applied to the kernel oH, the result is (approximately) aaccuracy, but merely suboptimal convergence rates. The results
Kronecker delta function located at the center of the kernéh Section V demonstrate that our proposed preconditioners
ThusMcH = I since in thejth column the kernel is centeredlead to significantly accelerated convergence, despite possibly
about thejth pixel in the 1-D case. crude approximations in the development!

For shift-variant problems, the columns ® correspond 10 | , N o

.e., it requires much less computation time than multiplyingGsyand

to differentS|gnaIs, and no Smgle |_nverse_ filter can reduce &@r’ in (4), which are the most time consuming steps in the CG iteration for
columns to Kronecker delta functions simultaneously. Thu®mographic image reconstruction.

A
o =

This choice corresponds to the meah value, wherer; is
defined in (14) below. I'W is aconstantdiagonal matrix, i.e.,
W = oI, then«a equals that constant and (9) is exact rath
than an approximation. The results in Section V demonstr.
that M is ineffective for shift-variant problems.

C. Proposed Preconditioner
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The first key approximation is one that we have previouskource at thejth pixel is determined primarily by the value
used for analyzing the spatial resolution properties of tomof 7;. A convenient mathematical expression for this heuristic
graphic image reconstruction in [30]. Roughly speaking, this as follows:
approximation brings the diagonal weighting matrix to the
outside of the Fisher information matrix as follows: B2 (z)e; = K™ (n;(2))e; 2 v;(z), (19)

G'WG ~ D,G'GD,, (13) whereK was defined in (10) and,; is the jth unit vector (i.e.,
an impulse at thgth pixel). The vectow, is an approximate
“inverse filter” for the jth column (or row) ofB/2, in the

> 9i W sense that
e \/; (14) .
i 9ij Q;VBI/Q(Q)Q]'(Q) ~ { ’ =J (20)

0, k+#3j.

This exchange is important in what follows because by as- 7J

sumption G’'G is approximately block-Toeplitz, i.e., shift-\e synthesize a matrix approximation from (19) by using the
invariant, unlike G'WG. The matrices on the two sides offollowing exact expansion of any x p matrix A:
approximation (13) areexactly equal along their diagonals,

whereD,. = D[x;] and

and would also be equal off-diagonal if t&;;'s were all B B il , il ,
equal. (The results in [30] demonstrate the accuracy and utility A=al=a ZQJQJ - Z(AQJ)QJ'
of this approximation.) Combining the exchange (13) with (5) i=t =t

leads to our first Hessian approximation: Applying this expansion to the matrix square rdot= B~1/2,

H(z) ~Hi(z) 2 D,.G'GD, + BC'D,(2)C. which exists sinceB is positive definite, and combining with
(19) leads to the approximation:
The inverse of this approximation is not a practical precondi-
tioner, so we must further simplify. We apply an approximate _1/2 L ;A
exchange analogous to (13) to the regularization term: B/ () = ZQJ (z)ej = Sa(z), (21)

AD;'C'Dy(z)CD; ' ~ D, (z)C'CD,(z), (15)

where D, (z) £ D[y/n,(z)] and

B Y5t n([Ca — dr)
ni(z) & 5 =4 JZ = : (16) The matrixS; is an approximation tB~1/2; the jth column
k Chj

2

i of Sz is the jth column of K evaluated at the effective
As in (13), the two sides of (15) agree exactly along theiegularization parametey;(z) of the jth pixel. Combining
diagonals. Furthermore, in the quadratic penalty case wifd2) and (21) with (17) leads to our third inverse Hessian

or equivalently after “squaring”

B !(z) = B Y*(2)B Y?(z) =~ S4(2)Ss(z).  (22)

Pi(t) = t7/2, we haveD; = I so (15) is then exact. approximation:
The factorn;(x) is an effective regularization parameter . A ey .
for the jth pixel [30]. To illustrate, note that iW = I and H™ (z) = Hy (z) = D S5(2)S3(z)D " (23)

Yi(t) = t2/2, thenk; = 1 andn;(z) = 8 for all j and z. ,
Combining the approximation (15) witH;(z) leads to our We ha\_/e used matrix square roo_ts to ensure sy_mmetry of the
second inverse Hessian approximation: apprOX|mat|on.' Thus an alternative approximation based on
(21) and (22) is as follows:
H'(z) ~H;'(2) £D;'B ' (@)D;Y, (1)

H '(2) ~ H;'(2) £ D;'S3(2)S5(2)D; ! (24)

where
B(z) £ G'G + D, (z)C'CD,(x). (18) SSETOI;% 22(3&% are plausible starting points for subsequent
It is easily shown thaB is symmetric and positive definite The purpose of the above sequence of approximations
under the (reasonable) sufficient conditions thatt) # 0 v¢ Was to derive a form such as (23) that depends on the
and that the only vector in the nullspace@fis the vector of a@pproximately circulant matrixi. Applying the circulant
p ones, which must not be in the nullspace®f[27]. approximation (11) for = —1/2 yields:
The approximations and preconditioners that we derive _1/2 v 1/

below all have the same form as (17), but with different K™ (n)e; = TQQ™ " (n)QTg;,
approximations t@~*(z). The requirement that the precondi-

tioners be symmetric positive definite increases the challensg% combining with (19):

here. 2 wa/o-1/2
p AW, =T'QQ ; Te.. 25
To proceed, we exploit the heuristic that the effect of the vj(e) ~ w;(2) Q (n;(2))QTe, (25)

penalty term is predominatelpcal, i.e., the image that one  11one can easily show thi; ! can also be written in the following form:
would reconstruct from measurements corresponding to a pait' (z) = 37_, v;(z) v/(z).
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Essentially,w; is an approximate inverse filter for thgh whereDAk_(g) = D[Ak(qj(g))]. This approximation suggests
column of B2, Combining (25) with (23) and (21) leads tothe following preconditioners:
our fifth inverse Hessian approximation:

My (z) £ D' S7(2)S7(2)D;;*
H (z) ~ H: '(z) £ DS (2)S5(2)D L, 26 " "
Ss(z) £ w;(z)e). (27) N _
j=1 Both of these preconditioners requizén + 1) 2-D FFT'’s (or

inverse FFT'’s) per iteration.
Like S5, the matrixS; is an approximation tB~1/2; the jth For further simplification, note that

column ofS; is thejth column of the circulant approximation

to K. Again the matrix squaring suggests the alternate form:
. SL( ZD,\k TR | QrT'Qy
H™'(z) ~ Hg'(z) £ D;'S;(2)S5(x)D; ", (28)
Implementing a preconditioner based on eitiHa;l or HG_]L « ZQ;UQQTDM (z) .
would appear to requir@(p + 1) 2-D FFT’s per iteration. b1

Although this is less computation than required Hgl or

H,*, it remains impractical. Using the approximatio'T’ ~ I (which is exact when the
To further reduce the number of FFT’s, we propose to Ug@age size is a power of 2 and when the entire image is

interpolation. We choose a small number < p of values estimated) and the fact th@Q’ = I (sinceQ is orthonormal),

{7 }5x; that cover (most of) the range of the values of th@e have the following approximation:

7;'s in (16), and precompute the 2-D DFT coefficientdofr)

in (10) for those values: S.(2)S7(x) ~ Sh(z)Se(z)

z) 2 ZQ;I/QQTD,\k (z).

We then apply interpolation to approximate the 2-D DFT'’s =t

corresponding to the required valugs This simplification leads to the following preconditioner:

1 2
Q2 ZM (@)%, (29) My(z) £ D} 'S}h(2)So(z)D;?, (30)

where )\, € [0,1] are the interpolation factors withwhich requires only2m 2-D FFT’s per iteration.

w1 A = 1. Since then's are positively valued, we As a final simplification, we could consider dropping the
currently determine the\;’s by using linear interpolation cross terms in the produéSy, i.e.
with a logarithmic scale for the's:

rM) ﬁk S 7 S ﬁk-{—l ZD)\k T/Q Q- lQTD)\k( )
log 71 — log 7k

10‘ 10 I — - -
g7~ log 1, Me—1 SN < M

M) 2 < login — log i1 . This approximation leads to the following preconditioner:
17 k= 17 n S m
17 k= m, n 2 77]rn
L0, otherwise Mo(z <Z Dy, (2)T' Q'O QTD,, (z )> D,
Incorporating the interpolation approximation (29) into (27)
yields which also require2m FFT's per iteration. However, we
P have found empirically thaMy leads to faster convergence
Ss(z) = Z T'Q'Q ?(n;)QTe,e; thanM,, for nonquadratic penalties [33]. Sinddy andM o
j=1 have equivalent computation time, we consifids to be the
p /2 preferred preconditioner for the nonquadratic case.
~ Z)\k n;(z QTe,c; The preconditionerds, Mgy, M, are all practical in the
=1 sense that the computation 2f: 2-D FFT's isO(mplog, p),
m which for smallm is moderate compared with th@(pnp)
= Z TQ Q_l/2QT Z Ar(n;(z computation required to compute the gradient. Note that while
j=1 these preconditioners combine aspects of both the diagonal
and circulant preconditioning methods, the particular diagonal
= ZT’Q’Q;I/QQTDM (z) = S7(2), matrices used here are very different from the conventional

k=1 diagonal preconditioning matrix given in (8).
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D. Circulant Preconditioner Revisited and shift-invariance are equivalent concepts. Under approxi-

As a sanity check, consider the shift-invariant case whef@tion (31), one can verify thay; = § V; for the quadratic
all of the effective regularization parameters are identicdi€n@lty- Thus from (17) and (11), the following preconditioner
n; = no Vi ands; = # Vj. In this casem = 1 suffices, and is well-suited to the quadratic objective with the modified

clearly we should choosg; = no. Then the preconditioners PENalty:
Mgy and M; simplify to the following: Mcpc = DIIT'Q/Q~1(3)QTD L. (32)

Mg =M = %T’Q’Q—l(no)QT, Based on [8], we refer to this approach as the “combined diag-

K onal/circulant” preconditioner. The seemingly minor addition

which is identical to the standard circulant preconditioner (12p (12) of theD,, terms in (32) provides significant improve-
Thus our approximations do not lead to any harm in th@ent in convergence rate as shown in Fig. 4 (see Section V).

shift-invariant special case. Fig. 1 also illustrates tha¥IcpcH = I for the quadratic case
with the modified penalty, and that that approximation is much
E. Implementation better than with the circulant preconditioner (12).

Storing thep x p preconditioning matrices is fortunately
unnecessary, since the CG algorithm requires only the abilfgy Summary
to compute the produgi®™ = Mg™. FFT’s can compute these We recommend the circulant preconditioner (12) for shift-
products efficiently using storage of only a few vectors dhvariant problems, the combined diagonal/circulant precondi-

lengthp. For example, we computlsg™ as follows?2 tioner (32) for quadratic penalized weighted least squares with
. o the modified penalty of [30], and the new preconditioner (30)
ty = Itz (TDy, (2)Dg") for the general shift-variant case.
. m _1/2 .
£= ;19’“ b IV. LINE SEARCH METHOD
P = T/ (Q—l/Qtn) For nonquadratic objectives, gradient-based methods require
=k 2m ko= a “line search” in (7) to find the step sizethat minimizes the
P =D1 an objective function along the current search direction. General
= ® k_l—k' purpose line-search methods [39] are applicable but subopti-

mal, since they fail to exploit the specific form (particularly
Even less computation and storage is actually required singshvexity) of our objective function (2). In this section, we
one can compute a pair of real FFT’s using just one complgxesent a new recursive line-search algorithm that is simple
FFT [39], and the summations can be done by in-plagge implement and igguaranteedto monotonically minimize

accumulation. the objective function with respect ta. This algorithm is

an adaptation of the iteration proposed by Huber [42] for
F. Combined Diagonal/Circulant Preconditioner for robust M-estimation. (The essence of Huber's algorithm has
the Quadratic Case with Modified Penalty also resurfaced in the imaging literature as the “half-quadratic”

method [43]—-[45].) The convergence proof in [42] requires
the following assumptions: 1), is convex, symmetric, and
differentiable, and 2)

For a quadratic penalty withh,(¢) = #2/2 and¢ = 0, the
objective function simplifies to

1 ) 1, ,
®(z) = 5(y — Gz) W(y - Ga) + 5 Az Re, wi(t) £ Yn(t)/t (33)

where the matrixR = C’'C is the (symmetric) Hessianis bounded and decreasing for- 0. (Thew;. functions act as

of the penalty function. The usual “uniform” first-order 2+weighting functions that diminish the influence of neighboring

D roughness penalty matriRo has 4's along its diagonal pixels near edges between object regions for nonquadratic
and —1’s in the off-diagonal positions corresponding to eacpenalty functions [42], [46], [47].) These assumptions are

pixel's four neighbors. Surprisingly, this uniform penalty leadeeasonable for the convex penalty functions used in imaging.
to nonuniform spatial resolutiomwhenW ## I [30]. Thus, for The line-search algorithm can be stated as follows. Let
quadratic penalties we use timeodified penaltyof [30], for z and 4 denote the current estimate and search direction,
which respectively. For (7) we would like to find the scalar value

& that minimizes
R ~D,RyD.. (32)
_ . . _ _ fla) = 2(z + ad).
This modified penalty leads to more uniform spatial resolution _
[30], which in turn leads to a Hessian that is particularl¥irst define (and precompute) the following terms:

amenable to preconditioning, since uniform spatial resolution

-Gz, u=Cz—g

=Y
120ne can think ofy™ as both ap-dimensional vector or as &, X ny a=Gd. h=0Cd
image, wheren, andn, are the image column and row dimensions and - = = =

P =Ngny. f1 = KIWQ, fg = Q/WQ,

=
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whereG, C, W, andy were defined in Section Il. Then within (2). A conventional approach is to make a ray-by-ray 2nd-
some manipulation of (2) and (3) one can show the followingrder Taylor expansion of the log-likelihood [5], [51] to yield
a quadratic functional of the form (2). Unfortunately, that

./ . 2
fla) = rWr afL + O‘_f2 + /3Z¢k(uk + ahy) approximation leads to systematic bias [51], [52]. Therefore,
2 2 & we used the FBP image to initialize the grouped-coordinate
) = —Fi + oo+ 8> hy (1 + ctha ascent algorithm of [50], which was run for two iterations
fe) f f2 [zk: kPl 2 to produce an intermediate estimaite We then computed

: 9 a second-order Taylor expansion of the transmission log-
flay = Fo+ 8 (s + ahy). likelihood about the reprojection af to produce a quadratic
b data-fit term of the form given in (2). Regularized versions of
The Newton-Raphson iteration far is not guaranteed to this objective function were then minimized using the PCG
converge for this problem. However, the following iteratioralgorithm. The exact form foy; and W; are given in [33].

is guaranteed to converge ta The system model used for reconstruction assumed parallel
; strip integrals of width 0.3375 cm.
ot = of — fla) : (34) We investigated the convergence rates of the PCG algorithm
fa+ B34 R wr (“k + Oézhk) ’ with both the FBP image and a zero image as the initial image

z¥. The FBP initialization always led to faster convergence

The iteration monotonically decreas¢éx’) by the proof of [33]’.50 we report only t_hose result; here. A manually de
. ! .termined subset of the pixels (see Fig. 2) was reconstructed,
Lemma 8 in [42]. One can also show that the above iteration . - o
which specifies the matrist in (11).

is a strict contractionjo’ — &| monotonically decreases each . .
To compare convergence rates, we examined the normalized

iteration [47]. : ; n o
We use about five sub-iterations of the above recursi(l)ﬁglsmnce between theth iteratez™ and the limiting value

for each iteration of the CG algorithm. Since no forward ° |l & H/H£ | (we also exam|r_1ed thé and i,
L ; . . norms, which led to comparable conclusions [33].) The PCG

or backward projections are required, these sub-iterations are . . . ; .
gorithms were implemented in ANSI C [53] using single

a fa|r.Iy small compqnent of the f:omputatlon t!me for eac oating-point precision on a DEC AlphaStation 600/5-333
iteration. To summarize, the algorithm (34) provides an eas'\llyorkstation However to compute™. we implemented a
implemented yet rapidly converging method for finding the Lo ' pute ™, we Imp .
step sizen for nonquadratic penalty functions. _grouped—coordlnate a}scent algorithm .s!mllar to that described
in [50] in Matlab using double precision. Several hundred
iterations of this algorithm were run, until the change in
V. NUMERICAL RESULTS the estimates reached the limiting precision. This provided a
To compare the convergence rates of the CG algorithlimiting value = that, while of course not “exact,” is about
using the preconditioners described above, we have appliedligits of precision more accurate than the single precision
the algorithms to both simulated and real PET transmissigalues computed in C.
scans. Results for PET emission scans were reported in [8]We investigated three choices for the objective function. The
We have investigated the effects of the initial image, the tygémplest was quadratically-penalizadweightedeast squares
of penalty, the choice of weigh®® ;;, and several measures of QPULS), whereW = I, giving equal weight to all ray
convergence rates. We synopsize representative results onigasurements. In this case we used the standard first-order 2-D
complete details are given in [33]. quadratic roughness penalty wiih.(t) = t*/2. As illustrated
We acquired a 12-min PET transmission scan of a Ddy the image of:> shown in Fig. 2, QPULS is a poor choice
Spectrum thorax phantom on an CTI ECAT 921 EXACT PE®f an objective function since it ignores the statistics. However,
scanner. This scan produced 920653 prompt coincidenciss case has been extensively studied previously since the
which is quite noisy data. The sinogram size was 160 rklessian of® is approximately block-circulant. Therefore, we
dial bins by 192 angles, with 0.3375 cm radial spacing, soclude it for comparison. Fig. 3 shows that the circulant
n = 30720. Prompt and random coincidences were collectgrteconditioner (12) provides significant acceleration for this
separately. The mean contributions of randoms were estimateshrly shift-invariant problem, as expected from previous
by time scaling the delayed coincidences from a 15-h blam&ports.
scan, as described in [48]. The second objective function was quadratically penalized
The reconstructed images were 128128 pixels of width weightedleast squares (QPWLS), wheW is the curvature
0.42 cm. We reconstructed a FBP image by first smoothitgrm in the second-order Taylor expansion of the transmission
the ratio of the transmission over the blank scan with tHeg-likelihood [33], [51]. In this case, we used the modified
“constrained least squares” filter described in [30] and [49)enalty that provides more uniform spatial resolution [30].
computing the logarithm, and finally applying the ramp filteAs illustrated in Fig. 2, the QPWLS objective function leads
prior to pixel-driven backprojection. This approach closelio a less noisy image, since ray measurements with greater
matches the spatial resolution of the FBP image with that ofcertainty are given lower weight. However, this nonuniform
the quadratically penalized statistical methods. weighting leads to significant shift-variance. As illustrated
The log-likelihood for Poisson transmission data is nonn Fig. 4, for QPWLS the standard circulant preconditioner
guadratic [50], and therefore not directly of the form giveperforms very poorly. However, the proposed combined di-

where w;, was defined in (33). (We initialize with® = 0.)
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Fig. 3. Normalized’; distance to solution:> versus iteration for the g 5 Normalizedl, distance to solutionz“°versus iterationn for the

quadratically-penalizednweightedeast squares (QPULS) objective funCtion-nonquadraticallypenalized weighted least sauares (NPWLS) objective func-
Shown is CG with no preconditioning, with the diagonal preconditioner (8)on. Shown is CG with no preconditioning, with the diagonal precondi-
and with the circulant preconditioner (12). In the QPULS case, the Hessiggher (8), with the circulant preconditioner (12), and with the proposed
is nearly block-circulant, so the circulant preconditioner provides remarkaqﬁgpreconditioner (30). The proposed preconditioner provides significant

acceleration.

QPWLS Preconditioned CG Algorithms

10° v T T T T
Initialized with FBP Image X

D.S. Thorax +
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PCG - Diagonal

acceleration in convergence rate over conventional preconditioners.

TABLE 1
NUMBER OF ITERATIONS AND TOoTAL CPU ScoNDSs REQUIRED
FOR THE PCG [TERATES TO “CONVERGE,” AS DEFINED IN
TEXT. ALTHOUGH THE PROPOSEDPRECONDITIONER SLIGHTLY

O PCG- Circutant INCREASES COMPUTATION PER ITERATION, THE REDUCED NUMBER OF

PCG - Combined ITERATIONS LEADS TO SIGNIFICANTLY LESS OVERALL COMPUTATION

Total Iterations | Total CPU Time

8 M QPULS | QPWLS | NPWLS

oy I 6] 5115|113 15] 146

= My 6| 53| 8| 7115|152

£l Mc |2 20| 9| 8322|232
] Mcepe |- | - 50 55| - -

Mg B S - 71 97

use the modified penalty weighting of [30] here, since its

effect is currently unknown for nonquadratic penalties. The
nonquadratic penalty provides shift-variant smoothing, which,
as illustrated in Fig. 2, can lead to (somewhat) improved image
quality (particularly for nearly piecewise-constant objects.

Fig. 4. Normalizedl, distance to solution:*°versus iterationn for the Th(? nonquadratic .penalty leads to.§|gn|f|cant- additional shift-
quadratically-penalizesveightedleast squares (QPWLS) objective function.variance, so the circulant preconditioner again performs very
Shown is CG with no preconditioning, with the diagonal pre_conditi'ongﬁooﬂy, as shown in Fig. 5. However, the proposed precon-
(8), with the circulant preconditioner (12), and with the combined diag Hiti M. leads t ianifi ti ti

nal/circulant preconditioner (32). The new preconditiodi ¢ leads to ! 'Oner_ o I€ads 1o signi |gan |mpr(_)vemen In c_onvgrgence
significantly faster convergence than the ordinary circulant preconditioner fate, with only a modest increase in computation time per
this shift-variant problem. iteration (see Tables | and II).

. . ) L To implement My, we usedm = 4 and 7, =
agonal/circulant preconditioner (32) provides significant a 0.05,0.2,1.,2.} - 3/R2, wherei? = L "?_ «2. This range
celeration, with negligible increase in computation time per,, ' " =" 5 J=LIT )
) . - - reflects the fact that/~* would be the effective in the shift-
iteration over the circulant preconditioner.

The third objective function wasonquadraticallypenalized

invariant case, and tha,(t) < v (0) so most of the required
o 5 .
weighted least squares (NPWLS). We used one of the penalt\fgéugsf Ofn’. in (16) are smalle_r th‘?‘ﬁ/“ - Increasingn gave
roposed in [54] foryy: negI|g|bIe |m.provements, which is expected from Ta_ble | of
P ' [33]; increasingm may makeMgy a better approximation to
P(t) = 82[|t/8| — log(1 + [t/5))], H:', but that can only accelerate convergence slightly since
with 6 = 0.004 cm. This function is approximately quadratic Table | summarizes the CPU time per iteration of the PCG

H; is an imperfect approximation tH.
for [t| < 4, but is approximately linear folt| > &, algorithm (as reported by the UNIXlock() function)
which provides a degree of edge preservation. We did ror the various preconditioners and objective functions for

0 5 10 15 20 25 30 35 40
Iteration

(35)
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the data described above. The additional CPU time needbdse calculations require iterative methods for solving large-
for the proposed preconditioners over conventional circulastale linear systems of equations involving the Hessian of the
preconditioning is modest (less than 15%). The resultimbjective function.
improvements in convergence rate surpass the small increasalthough the preconditioner development was presented
in computation per iteration. A more realistic system modébr 2-D imaging, the entire argument also applies to higher
would use a more dense matri&&, which would further dimensions, such as three-dimensional (3-D) PET imaging, or
enhance the relative benefits of the proposed preconditid@-5-D” imaging, in which each image in a stack is imaged
ers. Table | also shows the required number of flops pseparately but a 3-D penalty is used during reconstruction to
iteration for this problem, as reported by Matlalleps provide regularization both within and between planes. We
command. The preconditioners require only a modest increasgect these preconditioners will be particularly useful for
in computation per iteration. fully 3-D PET [10]. The inherent shift-variance &&'G for
Table Il summarizes how many iterations and what totalich systems will add to the challenge. For 3-D SPECT recon-
CPU time is required for the PCG algorithm to “convergestruction, one may be able to form suitable preconditioners by
for the various preconditioners and objective functions, wheaglapting linear methods such as in [56]. We plan to investigate
we define convergence here by the iterates having reactsegh methods in the near future.
99.9% of the asymptotic value of the objective function, i.e.
B(z") — B(z%) > 0.999 - [B(z™) — B(2")]. Table Il clearly REFERENCES
shows that even though the preconditioners require a slightl E. Artzy, T. Elfving, and G. T. Herman, “Quadratic optimization for

. . . . . image reconstruction, Il,;Comput. Graph. Image Processingpl. 11,
increase in computation per iteration, the reduced number Dp. 242-261, 1979,
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