
The University of Michigan

Intelligent Vehicle-High way Systems

Interfacing the Nintendo Power Glove
to a Macintosh Computer

Marie Williams
Paul Green

September 1990

IVHS Technical Report-90- 14

Technical Report Documentation Page

b d p h d 8 btrlog b.

r k p ~ ~ t o n *
September, 1990
, -,,,

P w (o n n i n g ~ ~ o n - I k .

U MTRI-90-36
lo. W~~~~U~~~NO.(TRAISI

11. C o n k d a G m m M a

13. ~ ~ ~ ~ ~ ~ ~ r l a d ~ o n n d

Interim Report

14. s~ocl.oring rnq ~ o d .
IVHS TR-90-14

1. kpWlM0.

UMTRI-90-36
2 G O V M ~ I O ~ ~ Aeaukn Ma

4. ~ltkmdsuwtlr

INTERFACING THE NINTENDO POWER GLOVE TO
A MACINTOSH COMPUTER

7.

Marie Williams and Paul Green
a ~ ~ t o d n g a ~ ~ . n , n d ~

The University of Michigan
Transportation Research Institute
Ann Arbor, Michigan 481 09-21 50 U.S.A.
1 2 ~ * g w w y l l v l r u d A d d n u

IVHS Program Office
University of Michigan Transportation Research Inst.
2901 Baxter Road
Ann Arb- 48109-7150 U.S.A. . .
15. suppkmrnrvrNok

Funded by U of M IVHS basic research program
Sponsors: GM, Ford, Motorola, MDOT, NHTSA

16. A b r M

This article describes the software and hardware necessary to interface a
Nintendo Power Glove to a Macintosh computer. Located on top of the hand are two
speakers whose ouput is received by an array of three microphones. Right hand
location (to the nearest 1/4 inch) and orientation are determined by three dimensional
triangulation of the sound signals. In addition, independent information on the state
of all fingers on that hand except the little finger (flexed or extended) is provided.

The glove is normally used as the input device to a video game. In this case the
device serves as a sensor of driver hand position in human factors studies on the
use of automobile controls.

The hardware interface described controls the Power Glove's signal lines and
converts the data from the Glove into RS-422 for the Macintosh serial port. The
interface samples the Glove's position under control of a C program (Appendix B).

In-vehicle tests have shown that some filtering of the data is required. When the
glove is not pointed towards the sensors the ultrasonic pulse from the glove is
reflected off of the windshield or instrument panel and the location of the glove is
incorrectly identified. This is easily corrected.

17. K.y W a d 8

Human factors, ergonomics, human
engineering, engineering psychology,
human movement

19. Dlrtibullon Starmnt

1s. SOCWH~CU~.(O~W~~~~U

Unclassified
P. s.cuwya.u~.(~fthkp.gl)

Unclassified
I ; . N O . ~ P ~ S ~

20
a ~ k .

CONTENTS

METHODS FOR EXAMINING THE USE OF CONTROLS 1

NINTENDO POWER GLOVE ... 2
Description of the Glove Signals ... 4
Hardware Required 5
Software ... 6
I n-Ve hicle Tests .. 7
Future Developments .. 7

.. REFERENCES 8

. APPENDIX A INTERFACE HARDWARE CIRCUIT ... 9

. ... APPENDIX B DATA COLLECTION SOFMIARE 1 0

................. APPENDIX C . HYPERCARD DEMO SOFTWARE 16

METHODS FOR EXAMINING THE USE OF CONTROLS

Knowledge of how and when controls are used is essential in designing controls for
vehicles of all types. (See Turner and Green, 1987 for a review of automobile control
literature.) This information can provide information on frequency and sequence of
use on which new designs can be based and critiqued. In addition, such information
may be desired for more basic studies of human movement and efforts to model
human performance.

Data on control use can be collected by various means--experimenter observation,
driver estimation, instrumentation of the vehicle, or instrumentation of the driver. The
simplest means of recording control use is to have a trained experimenter either watch
drivers directly or look at videotapes of control use. While direct observation is easy to
do and provides accurate frequency data, the time durations associated with control
use are not very accurate. Added accuracy can be obtained by videotaping drivers
and then playing back the tapes, but this is timeconsuming. Furthermore, the data
quality depends on having good lines of sight to the controls, which is not always
possible.

Asking drivers how often they use various controls does not lead to reliable values.
Driver estimates are particularly poor for controls that are used infrequently. How often
various controls are used often depends on context (for example, the defroster is
generally used only in the winter) and it is difficult for people to accurately estimate the
usage of these controls. Also, driver estimates do not provide information on the
timing associated with control use.

Instrumenting the vehicle might seem like an obvious approach, but connecting
each switch of interest to an interface box and writing a software logging routine is
both expensive and time-consuming. For example, to record the use of a
contemporary cassette-radio unit would require at least three 8 bit I10 ports, and that is
but one of many secondary controls in a car. While the recording of control use data
will be easier when a bus-type architecture replaces the point-to-point wiring in
automobiles, this will not occur for some time.

Instead of monitoring control use directly, an alternative is to monitor driver activity.
Sensors of various types--magnetic, radio frequency (RF), visual, or acoustic--can be
placed on the driver's hands. But magnetic sensors tend not to work very well inside
motor vehicles, and the noisy RF environment of an automobile makes sensors of this
type imprecise. Visual systems, which generally involve automated videotape
analysis either require specialized software, specialized and expensive hardware, or
both (e.g., the Selspot system).

The best known commercial product for measuring hand position is the VPL
DataGlove (Conn, Lanier, Minsky, Fisher, and Druin, 1989; Foley, 1990; Weimer and
Gamapathy, 1989; Zimmennan, Lanier, Blanchard, Bryson, and Harvil, 1987). The
DataGlove uses a polhemus magnetic sensor to determine hand position and a
goniometer for each finger joint to determine its angle. This device is extremely
accurate. One convincing demonstration involves a person pretending to play a guitar
(the "air guitar"). A computer linked to the DataGlove determines the chord and plays
it. But a DataGlove set (two sizes cover the population range) and supporting software
typically costs about $25,000, an amount well beyond the budget of most researchers.

Commercial acoustically-based systems for recording limb positions, such as the
Science Accessories Corporation GP8-3D Sonic Digitizer tend to be somewhat less

expensive (just over $1 5,000), but nonetheless require specialized software for each
application.

NINTENDO POWER GLOVE

An interesting and inexpensive alternative is the Power Glove, a device used with
Nintendo video games. The Power Glove costs only about $80, and comes in two
sizes, smalVmedium and large. The best known game, Punchout, allows a user to box
with a character shown on a video display.

This paper describes the hardware and software needed to interface the Power
Glove to a Macintosh computer. This interface allows the Macintosh to sample the
Power Glove's position at any interval specified by software.

The Power Glove has two modes, standard joystick mode and absolute mode (also
referred to as virtual mode). Joystick mode is used with the Nintendo video games.
Absolute mode returns absolute position, but is accessible only by means of a
proprietary code sent to the glove through one of its signal lines.

A diagram of the Nintendo Power Glove setup is shown in Figure 1. The glove can
either provide information on its absolute position (location in space) or relative motion
(like a joystick). In addition to hand position, the Glove also independently senses the
position of each finger except the little finger.

To determine its location and orientation, the Power Glove emits an ultrasonic pulse
from one of two transmitters located on the Glove unit. The Glove measures the time
delays between its transmission of a pulse and the reception by each of three
receivers in the sensor array. Using the speed of sound in air, the Glove position is
computed via three-dimensional triangulation. The difference in the locations of the
transmitters is used to compute the rotation (roll) of the hand.

The reported lateral resolution (Eglowstein, 1990) of the device is highest, one
quarter of an inch, when the Glove is equidistant from each of the ultrasonic receivers,
and decreases as the Glove moves from this center. The Glove does not function
reliably outside of "the sensing zone," the zone about five feet directly in front of the
sensor assembly. This is due to the directionality of the transmitters and receivers, so
it will track outside of this zone if the Glove's transmitters are aimed at the sensor
assembly.

The glove senses finger position by the charge collected on an internal capacitor
(one for each finger). A conductive strip embedded in the plastic shell above each
finger increases in resistance as it is bent, reducing the current to the capacitor which
is discharged periodically to determine the position of the finger.

Power Glove Sc msor Assembly

Nintendo Entertainment
System Game Unit
(not connected for collecting
data with Macintosh)

Intercepting ribbon cable
Junction BOX

Y knes 2 Ultrasonic
transmitters Manual . , .

12 lines

-
Power Glove

Macintosh
Interface

Figure 1. Nintendo Power Glove System Setup.

Description of the Glove Signals
The Glove and Nintendo Game Unit communicate through five lines, three signal

lines plus power and ground. (See Table 1 .) The Game Unit samples the status of the
Glove (or joystick) by pulling the Latch line high. (See Figure 1 .) Triggered by the
rising edge of this line, the Glove responds by putting the first data bit on the Data Out
line. The Nintendo game then sends the Glove eight pulses which the Glove uses to
shift the remaining seven data bits out onto the Data Out line. The Glove is slave to
this signal and its rate can be safely decreased from the approximately 85 Kbaud the
Nintendo Game Unit uses down to a more workable 9600 baud.

The data bits arrive as shown in Figure 2. These data bits relate to the original
Nintendo Entertainment System Controller, where "A" and "B" are buttons used for
various video game functions such as fire buttons. On the Power Glove these bits
usually correspond to bending of the thumb, "A," and index finger, "B." The "select"
button is used for altering game options and the "start" button activates the game and
the Glove itself. The remaining directional bits correspond to deflection of the glove

from center. A signal is active when the bit is low, so a centered glove with all fingers
straight would send a data byte of all high bits (all 1 s).

Table 1
Power Glove1 Nintendo Game Connections

Pin Signal
1 Ground
2 Data Clock
3 Latch
4 Data Out
5 Not used
6 Not used
7 Power +5 volts

I 1 1 1 . 7 4 ~ 8 ~ 500nsec

-
I

m

Figure 2. Power Glove/Nintendo Entertainment System Signals.

Latch

r r

The Power Glove has 14 built-in programs which are described in detail in the
Power Glove Instructions (Mattel, Inc., 1989). Each program has a different set of hand
motions to produce the standard joystick signals. In the current configuration, the
Glove can only return directional information relative to its center, and different finger
position and hand roll information depending on the program being used.

I

Hardware Required
The hardware necessary to connect the Power Glove to a Mac Plus, Mac SE, or any

Mac II series computer, is considerably more complicated then that necessary for
connection to an IBM PC or clone. On a PC, all that is needed is a change of
connectors and a device driver such as the one listed in Eglowstein (1 990). Device
drivers are extremely difficult to write for the Macintosh, so the authors have chosen to

h

90.6psec
500nsec

d h V

-
4 =

Dataout

r

Data Clock

6.87p.sec
I

9

A B select start down up left right

construct hardware to drive the Glove signals and to pass the resulting data to the
Macintosh serial port in RS-422 format.

The interface circuit (in Appendix A), is located in the Power Glove to Macintosh
Interface box shown in Figure 1. The circuit contains a PAL (Programmable Array
Logic chip), a clock chip and crystal, a 4-bit counter, some basic gates, latches, and an
RS-422 driver and receiver. The circuit is controlled by a simple state machine
programmed onto the PAL chip which takes its input signals from the 4-bit counter.
The input signals and corresponding output signals for each state are listed in Table 2.
A data byte is sampled from the Glove whenever the counter input to the PAL is
enabled at the count of zero. The counter is enabled by de-asserting the HSKo
(Handshake Out) signal from the Mac, which is easily done in software. The counter is
cleared and disabled after reaching the count of eleven, and at the next HSKo pulse,
will begin counting again at zero. As the interface receives each data bit from the
Glove, it latches it and passes it through an RS-422 compatible driver to the Mac at the
baud rate specified by the 4702 chip in the circuit.

Table 2
Programmable Logic Truth Table

Note--1 means asserted
0 means de-asserted
! indicates negated signal

counter
state
0000
0001
0010
001 1
01 00
01 01
01 10
01 11
1000
1001
101 0
101 1
1100
1101
11 10
1111

The easiest way to connect the interface to the Power Glove is by constructing a
short cable to intercept the Power Glove signals between the Junction Box and the
Glove itself, leaving the cable that would normally plug into the Nintendo Game Unit
disconnected. This straight-through cable consists of a nine contact ribbon cable with
a male DB-9 on one end, a female DB-9 on the other end, and another DB-9

signal
macserial
high
high
startbit
bit 0
bit 1
bit 2
bit 3
bit 4
bit 5
bit 6
bit 7
stopbit

counten
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0

startbit!
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0

stopbit+!
1
1
0
0
0
0
0
0
0
0
0
1
0
0
0
0

glove clken!
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0

latch
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0

connector tap in the middle. The gender of the middle connector depends on the
gender used on the cable connecting the interface board.

The glove can be made less cumbersome by removing the arm portion of the Glove.
By removing the four screws under the manual control pad of the Glove and adding
another few feet of cable to extend the 12 wire cable connecting the transmitter portion
of the Glove to the manual control pad, the rubber arm portion of the Glove can be cut
away making the system more manageable for the user.

Software
The software listed in Appendix B is a generic data collection program written in

Think C (Symantec Corporation, 1989). The program calls the minimum Macintosh
system toolbox initialization routines and de-asserts HSKo at the desired data
collection interval, sending the data (in binary) to the screen and a file called "output."
The screen data are a column of 8 bit binary numbers with the bit definitions (zero is
active) from left to right as follows: right, left, down, up, start, select, B, A. The program
collects data as soon as it is run and terminates when the mouse button is clicked.
The program's purpose is to test and demonstrate the hardware, and to provide a base
on which a more rigorous and easier to use data collection program can be written.

A demo program for Hypercard is listed in Appendix C. It uses external commands
(XCMDs) available through the Apple Developers Association, and four hand icons
(all fingers straight, thumb bent, fingers bent, fingers and thumb bent) created using
Icon Factory, Hyperpress Publishing Corporation (1988). This program samples the
serial port, converts the ASCII into binary and then tests the "A" and "B" bits of the
character and presents the hand icon representing the proper finger positions. The
program then tests the directional bits to determine which of nine regions (center, up,
down, right, left, up-right, up-left, down-right, down-left) the Glove is in and moves the
hand icon to that region.

In-Vehicle Tests
The Glove and Macintosh set-up was tested in a 1981 Chevrolet Caprice station

wagon. The Glove was not disturbed by the background noise of the automobile, and
provided ample coverage of the right half of the steering wheel and center console.

When the Glove leaves "the sensing zone" or aims in a direction other than that of
the sensor assembly, the enclosed space makes erroneous data more likely since
ultrasonic reflections from the many close surfaces (panel surface, windshield) are
strong enough to be interpreted as line-of-sight transmissions by the Glove. In the
future with virtual mode functioning, these data will be easy to filter in software since
the distance travelled by a reflected transmission is enough farther than a genuine
line-of-sight transmission as to make the data unreasonable (the driver seems to have
jumped into the back seat).

The main concern when setting up in a car is assuring direct line-of-sight for the
Glove to all three receivers, and arranging the sensor assembly such that it is mounted
farther back than the farthest control of interest. So, for example, in the test vehicle
with the tubing intact, it was quite easy for a target of interest (e.g., the radio) to be
behind the plane of the sensing array. It may be necessary to disconnect or even
remove the spacing tubing from the sensor assembly to allow for the desired
installation. The 3-112 inches of extra wire between the receivers allows for some
degree of placement freedom. It is important that the final mounted center to center

spacing of the receivers be 16 inches and that they retain the right-angle, flat-plane
positions of the original assembly.

Future Developments
The obvious next step is adding the capability for obtaining absolute position

information from the Glove. VPL Research of Redwood City, California plans to supply
an interface box which will contain the proprietary codes necessary to force the Glove
to return absolute information. This box will be available only to academic institutions
with the next few months. There are plans to offer a low cost DataGlove based on the
Power Glove technology by the summer of 1991.

Transfinite Systems Company, Inc. of Cambridge, MA currently offers the "Gold
Brick," an ADB (Apple Desktop Bus) compatible Power Glove interface for the
Macintosh. This interface allows the Glove to replace the Macintosh mouse, and
includes in it's software a demo program in which the user can do manipulations of a
cube in three dimensions. This interface "fakes" the zdimension by using the "A"
(bending the thumb) and "0" (bending the index finger) signals for positive and
negative z directions, respectively. This interface does not contain Nintendo's
proprietary virtual codes. The authors found this to be an awkward way to manipulate
depth.

Readers with further interest in these products can contact the manufacturers using
the address given in the notes.

REFERENCES

Apple Computer, Inc. (1990). Guide to the Macintosh Familv Hardware, Cupertino,
CA: Apple Computer, Inc.

Apple Computer, Inc. (1 987), Hv~erCard, (software), Cupertino, CA: Apple Computer,
Inc.

Conn, C., Lanier, J., Minsky, M., Fisher, S., and Druin, A. (1989). Virtual Environments
and lnteractivity: windows to the Future (panel s e s s i o n) , . = ~ ~ ~ '89 Panel

in= 7-18.
E g l o w ~ ~ ~ ~ d (l 99'0). Reach Out and Touch Your Data, m, x (7) , 283-290.
Foley, J.D. (1 987). Interfaces for Advanced Computing, Scientific American, October,

25Z(4), 1 26-1 35. -. ,.

Hyperpress Publishing Corporation, (1 988). Icon F-, (software), Foster City, CA:
Hyperpress Publishing Corporation.

Mattel, Inc. (1 989). P o w e r c t i o ~ , Hawthorne, CA: Mattel, Inc.
Science Accessories Corporation, (1 989). -er Operator's Manua, . , . .

Stratford, CN: Science Accessories Corporation.
Symantec Corporation, (1989). Think C ~ s e r ' s ' ~ a n u J Cupertino, CA: Symantec

Corporation.
Symantec Corporation, (1 989). C 4.4 (software), Cupertino, CA: Symantec

Corporation.
Turner, C.H. and Green, P. (1987). H u m a n - W S Research on Automobil~

Secondary Controls: A Literature Review (Technical Report UMTRI-87-20), Ann
Arbor, MI: The University of Michigan Transportation Research Institute,
October.

Weimer, D. and Gamapathy, S.K. (1989). A Synthetic Environment with Hand
Gesturing and Voice Input, CH1'89 Proceedinas, May, 235-240.

Zimmerman, T.G., Lanier, J., Blanchard, C., Bryson, S., and Harvil, Y. (1987). A Hand
Gesture Interface Device, mI+GI 1987 Conference Proceedin= 189-192.

NOTES
We would like to thank Dave Koziol and John Boreczky for their assistance in

developing the software, and George Zachary and Dave Benman of VPL Research,
656 Bair Island Road, Third Floor, Redwood City, CA 94063, for their input.

Transfinite Systems Company, Inc., Box N, MIT Branch P.O., Cambridge, MA 021 39.

APPENDIX A
INTERFACE HARDWARE CIRCUIT

DB-9 on Power Glove
1 5

+-q-=
4 1 14 9 2.4576 MHz Ctystal

4 2 7404 133
c 3 12 Resistor = 10MQ
c 4 11 h
c 5 16 3 Capacitors = 56pF

1

1 HSKo
2 HSKi
3 TxD-
4 GND
5 RXD-
6 TxD+
7 GPi
8 RxDc

APPENDIX B
DATA COLLECTION SOFTWARE

r
Power Glove Data Collection
This program signals the interface box to sample the power glove and reads the resulting data byte.
This program is set up to communicate through the modem port (port A).
This program is terminated with a mouse click.
The timing in this program is for the Macintosh Plus, adjustments to the timing may be needed for faster machines as
noted in the comments.
' I

#include <SerialDvr.h>
#include ntdio. h>
#include <console. h>
#include ntring.h>

f Configuration Section !! 'I

f The following 2 defines specify to use the A or Modem port within this program
to use the printer port, change both occurrences of ".A" to ".BU.

*I
#define INPORT "\p.Alnw
#define OUTPORT 7pp.AOutW

f The following define specifies the communications settings to use. Choose from
the following list:

baud300 = 380; (300 baud}
baud600 = 189; (600 baud)
baud1 200 = 94; (1 200 baud)
baud1 800 = 62; {I 800 baud)
baud2400 = 46; (2400 baud}
baud3600 = 30; (3600 baud}
baud4800 = 22; (4800 baud}
baud7200 = 14; (7200 baud)
baud9600 = 10; (9600 baud)
baud 19200 = 4; 19200 baud}
baud57600 = 0; (57600 baud}

note: the baud rate on the interface hardware must also be altered via the 4702 chip.
warning: the power glove does not function consistently with a baud rate below 4800.

stop1 0 = 16384; {I stop bit)
stop1 5 = -32768; (1 .5 stop bits)
stop20 = -16384; {2 stop bits)
noparity = 8192; {no parity)
data8 = 3072; (8 data bits}

*I
#define SERSET baud9600 + stop1 0 + noparity + data8

f The following define specifies the amount of time in ticks (60 ticks to the
second) to wait between requesting a byte from the PowerGlove.

' I
#define CHARDELAY 1

f The following define specifies the amount of time in ticks (60 ticks to the
second) that DTR should be asserted to obtain a byte from the PowerGlove.
k is an integer for loop counts.

*I

#define DEASSERTDELAY 25

f End of Configuration Section ' I

f Canvient Defines ' I
#define assert DTR
#define negateDTR
#define APPLEID
#define FILED
#define c u r
#define ALERT

f Function ProtoTypes 'I
void main
Boolean initserial
char getchar
void alert
void warn
void printchar
void doEventLoop

(void) ;
(void);
(void);
(char '1;
(char '1;
(char);
(void);

r Globals 'I
int outRefNum, inRefNum;
FILE 'output;
MenuHandle menulist[2];
Boolean hellFrozenOver = FALSE;

void main()
{

strcpy(console-options.title, VDTRTerm");
fopenc0;
output = fopen("Outputn1 "w");

menulist[O] = GetMenu(APPLE1D);
AddResMenu(menulis@], 'DRVR');

Boolean initserial()
I

int result;
bng count; r The number of characters waiting in the serial input buffer 'I
char 'thechars; r A Pointer used to flush the input buffer 'I

result = OpenDriver(OUTPORT,&outRefNum);
switch (result)
{

port InUse:
alert("\Port already in use!");
break;

portNotCf:
alert(lPPort not configured for this connection!");
break;

rnemFullErr:
alert("\Not enough room in the heap zone!");
break;

1
if (result)

return(FALSE);

result = OpenDriver(INPORT,&inRefNum);
r We'd probably only get an error in the first case, but copy and paste is easy ... 'I
result = SerReset(inRefNum, SERSET);
if (result)

return(FALSE);

f Shouldnr need to do this since we never output anything, but we'll do it anyways. 'I
result = SerReset(outRefNum, SERSET);
if (result)

return(FALSE);

SerGetBuf (inRef Num, &count);
if (count > 0)
{

r Generally you should use Handles on the Mac to avoid memory fragmentation,
but since we're going to free the memory right away we'll use a pointer because
it's faster ...

'I
thechars = NewPtr(count);
FSRead(inRefNum, &count, thechars);
DisposPtr(theChars);

1

f This routine Dsasserts DTR for DEASSERTDELAY ticks Asserts it, and then attempts to read a
character from the serial port.
Note: All Control calls should go out the output character channel driver.

Note: Delay isnl always exactly accurate (see IM 11-384)' but it should do for our
purposes.

' I
char getchar()
1

long f ina l l i s ; /' Total number of ticks from System Startup to end of Delay ' I
int result; r These functions return results, but we shouldnl ever get errors 'I
bng count; /' The number of characters waiting in the serial input buffer ' I
char thechar;
int i;
int watch;

Contml(outRefNum, negateDTR, OL);

for (i=O;i<=DEASSERTDELAY;i++);

Control(outRefNum, assertDTR, OL);

count=O;
watch 4;

while ((count==O) && (watchQ5))
I
? Now we should have a character waitting to be read. ' I

SerGetBuf(inRefNum, &count);
watch++:

1
if (count == 0)
{

1
else
I

if (count > 1)
warn(">l : 7;

P Loop until there are no more characters in the input buffer ... 'I
while (count != 0)
I

count = 1; /' We're only set up to read in 1 character! ' I
FSRead(inRefNum, &count, &thechar);
printChar(theChar);
printf(", ");
fprintf(output, ", 3;
SerGetBuf(inRefNum, &count);

1
I
printf('7nn");
fprintf(output, In");
return(theChar);

1
void printChar(ch)
char ch;
{

bng i;

for (i = 0;i e 8;icc)
I

if (BitTst(&ch, i))
{

printf("1 ");
fprintf(output, "1 ");

1
else

void alert(str)
char *str;

void warn(message)
char 'message;
I

printf("%s ", message);
fprintf(output, 7 0 s ", message);

1
void doEventLoop()

EventRecord currentEvent;
Boolean finished;
brig time, IastDTR;
char ch;

finished = FALSE;

IastDTR = TkkCount();
while (IhellFrozenOver)
I

time = TckCountO;
if (CHARDELAY + IastDTR < time)
{

if (Button())
I

hellFrozenOver = TRUE;
1

1
1
doMouseDown(theEvent)
EventRecord 'theEvent;
I

short whereDown;
brig menuData;
WindowPtr whichwindow;

switch (whereDown)
(

case 1 : 7 inMenuBar ' I

menuData = MenuSelect(theEvent->where);
if ((menuData >> 16) u 0)

I I' Case of gave up on menu 'I
else

doSelection(menuData);

if (IhellFrozenOver)
HiliteMenu(0);

break;

case 2: I' inSysWindow ' I
SystemClick(theEvent, whichwindow);
break;

case 3: r incontent ' I
SelectWindow(whichWindow);
break;

1 r end Switch statement ' I
1

doSelection(menuData)
long menuData;
I

short menuName, menultem, i;
char itemStr[255];
GrafPtr saveport;
Boolean whome;
char ret[255];

menuName = (menuData >> 16);
menultem = (menuData & Ox0000FFFF);

switch (menuNarne)
{

case APPLEID :
Getltem(menulist[O], menultem, &itemStr[O]);

GetPort(&savePort);
OpenDeskAcc(&itemStr[O]);
SetPort(savePort);
break:

case FllElD :
hellFrozenOver = TRUE;

1 end Switch (menuName) ' 1
1

menuData = MenuKey((char)(theEvent->message 8 OxFF));
if ((menuData >> 16) - 0)

p r Case of gave up on menu ' I
else

doSelection(menuData);

if (IhellFrozenOver)
HiliteMenu(0);

1
1

APPENDIX C
HYPERCARD DEMO SOFTWARE

Script for Card BackGround:

on dolt samples
repeat with x = 1 to samples

put recvChars(1) into askii
put charToNum(askii) into askii
put binary(askii) into temp

-put askii into temp
put temp into card field tempfield

if char 1 of temp = 0 then - hand to right
if char 3 of temp I 0 then
- bwer irght comer
set the loc of button showHand to 330,230

else
if char 4 d temp = 0 then
- upper right comer
set the kc of button showHand to 330,100

else
- right onty
set the loc of button showHand to 330,166

end if
end if
else

if char 2 of temp I 0 then - hand to left
if char 3 of temp = 0 then
- bwer left comer
set the loc of button showHand to 180,230

else
if char 4 of temp I 0 then - upper left ftmer

set the loc of button showHand to 180,100
else
-Monty
set the loc of button showHand to 180,166

endif
endif

else
if char 3 of temp = 0 then - hand down
set the loc of button showHand to 257,230

else
if char 4 of temp = 0 then - hand up

set the loc of button showHand to 257,100
else
- middle
set the loc of button showHand to 257,166

endif
endif

end if
end if

- power gbve program 13
if char 8 of temp = 0 then
ifchar7oftemp=Othen
-Anin
set the icon of button showHand to "handAlllnn

else

- thumb only in
set the icon of button showHand to "handThumblnn

end if
eise
if char 7 of temp = 0 then - fingers only in

set the icon of button showHand to "handFingerslnW
else
-allout
set the icon of button showHand to "handAllOut"

end l
end I

end repeat

end dolt

function binary fred
put fred into x
put (x div 128) into final
put (x mod 128) into x
put (x div 64) after final
put (x mod 64) into x
put (x div 32) after final
put (x mod 32) into x
put (x d i i 16) after final
put (x mod 16) into x
put (x div 8) after final
put (x mod 8) into x
put (x div 4) after final
put (x mod 4) into x
put (x div 2) after final
put (x mod 2) after final
return final

end binary

