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Abstract- This paper presents a new class of algorithms for 
penalized-likelihood reconstruction of attenuation maps from low- 
count transmission scans. We derive the algorithms by applying 
to the transmission log-likelihood a variation of the convexity tech- 
nique developed by De Pierro for the emission case. The new al- 
gorithms overcome several limitations associated with previous algo- 
rithms. (1) Fewer exponentiations are required than in the trans- 
mission EM algorithm or in coordinate-ascent algorithms. (2) The 
algorithms intrinsically accommodate nonnegativity constraints, un- 
like many gradient-based methods. (3) The algorithms are easily 
parallelizable, unlike coordinate-ascent algorithms and perhaps line- 
search algorithms. We show that the algorithms converge faster than 
several alternatives, even on conventional workstations. We give ex- 
amples from low-count PET transmission scans and from truncated 
fan-beam SPECT transmission scans. 

I.  INTRODUCTION 

The importance of statistical methods for reconstructing 
attenuation maps has increased recently due to  the widen- 
ing availability of SPECT systems equipped with transmis- 
sion sources [l], the necessity of reconstructing 2D attenu- 
ation maps for reprojection to  form 3D attenuation correc- 
tion factors in septaless PET [2,3], and the potential for re- 
ducing transmission noise in whole body PET images and 
in other protocols requiring short transmission scans [4]. 
The filtered backprojection (FBP) method and the data- 
weighted least-squares method for transmission image re- 
construction lead to  systematic biases a t  low counts [5], due 
t o  the nonlinearity of the logarithm. To eliminate these 
biases, one can use statistical methods which require no 
logarithms [5]. 

Several reconstruction algorithms based on the Poisson 
statistical model for transmission scans have appeared re- 
cently [6-12,5], all of which converge faster than the orig- 
inal transmission ML-EM algorithm [13]. Nevertheless, 
these methods are still less than ideal due to  one or more 
of the following reasons. 

The EM algorithms [13,9] and coordinate-ascent algo- 
rithms [14, 12,5] require a t  least one exponentiation 
per nonzero element in the system matrix per itera- 
tion, which is a large computational expense. 
Enforcing nonnegativity in gradient-based algorithms 
[ l o ,  111 is possible but somewhat awkward. 
Many algorithms are poorly suited to parallel proces- 
sors, such as the i860 arrays that pervade septaless 
P E T  sites. This is true of coordinate-ascent methods 
and of algorithms that  use line searches, since a line- 
search step may not parallelize easily. 

This paper describes a new class of algorithms for recon- 
structing attenuation maps from low-count transmission 
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scans. These algorithms are parallelizable, easily accom- 
modate nonnegativity constraints and nonquadratic con- 
vex penalties, and require a moderate number of exponen- 
tiations. The derivation of these transmission algorithms 
exploits two ideas underlying recent developments in al- 
gorithms for emission tomography: updating the param- 
eters in groups [15, 161, and the convexity technique of 
De Pierro [17, 181. Integrating these two ideas leads to  
new algorithms that converge quickly with less computa- 
tion than previous methods. 

11. PROBLEM 

For brevity we consider the transmission measurement 
model without additive background events (random coin- 
cidences, scatter, emission crosstalk, etc.), although the 
method can be extended to  include those effects. We as- 
sume 

yi - Poisson{bi exp(-(ai., Qtrue))}, (1) 
where (ui  , 8) = Cj a i j B j ,  represents the i th  “line integral,” 
yz denotes the transmission measurement of the i th detec- 
tor, bi denotes the i th  blank scan measurement, Qj denotes 
the unknown attenuation coefficient in the j t h  voxel, and 
the uij’s are the transmission system model. We assume 
{ b i }  and { a i j }  are known. 

The transmission log-likelihood is [13]: 

i 

where 
(3) 

1 hi(l)  = yi log(bie-’) - bie- . 
Note that  each h, is a concave function over all of R. The 
algorithms developed below apply to  any problem of the 
form (2) with concave hi, including weighted least squares. 

The goal is to  compute a penalized-likelihood estimate 
B(y) of 8, defined by 

where the objective includes a roughness penalty 

(5) 

where wjk = 1 for horizontal and vertical neighboring pix- 
els and is zero otherwise. For concreteness, in this paper 
we have used one of the penalties in [7]: 
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which approaches $(x) = x2/2 as 6 + CO, but provides a 
degree of edge preservation for finite 6. Since 

d X $(x) = -$(x) = ~ 

dx 1 + Ix/6l 
implies I$(x)I < 6, this potential function has bounded 
influence. The derivative of $(.) requires no transcendental 
functions, which speeds computation. Since $ is strictly 
convex and L(.,y) is concave, the objective CP is strictly 
concave under mild conditions on A. This concavity is 
central to the development of the algorithms below. 

Direct maximization of (4) is intractable, so one must 
use iterative algorithms. Generic numerical methods such 
as steepest ascent do not exploit the specific structure of CP, 
nor do they easily accommodate nonnegativity constraints. 
Thus for fastest convergence, one must seek algorithms tai- 
lored to this problem. Relevant properties of L include: 

L(e;  y) is a sum of concave functions hi(.). 
The arguments of the functions hi(.) are inner prod- 
ucts. 
The inner product coefficients are all nonnegative. 

These properties suggest the use of Jensen's inequality. 

111. ALGORITHMS 
As shown by frequency domain analysis in [19], sequen- 

tial updates such as coordinate ascent converge very rapidly 
for tomographic reconstruction. Unfortunately, coordinate 
ascent requires a large number of exponentiations for trans- 
mission tomography. Consider the partial derivative of the 
log-likelihood with respect to  the j t h  pixel value: 

where yi(Q> = biexp(-(ui.,O)) (see Eqn. (8) of [5]). In 
a coordinate ascent algorithm, one must evaluate Lj (P )  
at the current image estimate 8". Since (u i . ,  O n )  changes 
immediately after each pixel is updated, from (7) each iter- 
ation requires M exponentiations, where M is the number 
of nonzero aij's. At the other extreme, the transmission 
scaled-gradient algorithm [ll] updates all pixels simultane- 
ously. Thus the terms in (7) can be computed simultane- 
ously before updating the pixels, so only N exponentiations 
are required, where N is the number of rays. Typically N 
is two orders of magnitude smaller than M .  In other words, 
there is an "economy of scale" in terms of computation by 
updating all pixels simultaneously'. However, simultane- 
ous updates lead to slow convergence [5]. 

Rather than updating a l l  pixels simultaneously, we pro- 
pose to update only certain groups of pixels simultaneously. 
If there are G groups of pixels, then only N G  exponentia- 
tions are needed. On the other hand, if the pixels in each 
group are well-separated spatially, then we anticipate that 

Even if the exponentiations are computed approximately, using 
table lookups for example, the ratio between N and A4 remains 
unchanged. 

they will be fairly decoupled, so the simultaneous update 
will not suffer from slow convergence. The results below 
confirm this intuition. 

Let S be a subset of the pixels (1,. . . , p } ,  let S be its 
complement3, and let p s  be the cardinality of S. Then at  
the nth iteration we update 0s while holding 6'; fixed [15]. 
Unfortunately it is even too difficult to maximize @(Os, 0;) 
over 0s directly, so we will settle for finding an approach 
that chooses a O;+l that  at least provides monotonic in- 
creases in the objective function: 

To assure monotonicity, we use a generalization of 
De Pierro's optimization transfer idea [17, 181, and sub- 
stitute a surrogate function +(Os; P )  with a corresponding 
region of monotonicity Rs Etp" that  must satisfy: 

@(Os, 6';) - @ ( O n )  2 d(6'~; en)  - +(6':; 0") 'dos € Rs. (8) 

The SAGE-like update [15,16] then looks like: 

(9) 

The condition (8) ensures immediately that the iterates 
produced by the above generic algorithm monotonically in- 
crease the objective: @(On+') > @(en).  

We restrict attention here to additively separable surro- 
gate functions +(.; P )  satisfying 

d(Qs;O") = Cdj(0j;Q").  
j €S 

We use a modification of De Pierro's method [17,18] to 
choose the dj's, rather than the EM approach of [15,16]. 
Note that 

for any choice4 of aij that satisfies CjES aij = 1. In par- 
ticular, in this paper we define 

where using (10): 

31n a grouped coordinate ascent method, S varies with n. To sim- 

4We assume atJ = 0 if and only if a t J  = 0 so that (10) is well 
plify notation, we leave this dependence implkit. 

defined. 
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Assuming the groups are chosen so that  no two neighboring 
pixels are in the same group5, then we can define6 

The second-order Taylor's approximation about $7 for 
the Qj (.; P )  component of the numerator is: 

Each 4j only depends on one Oj , so since Rs = Rp in this 
problem due t o  the concavity of hi( . ) ,  the maximization 
step in (9) reduces t o  separate 1D maximizations. Thus (9) 

because from (12) it follows that 

d 
d = -L(B)/ = Lj(B"), 

becomes the parallelizable operations: qQAQOn)l 8,=8; 84 o=on  

BY+' = argmaxdj(Bj;Bn), j E S. (14) and where (also from (12)): 
0,20  

A. Convergence 

It is fa,irly straightforward to apply the general conver- 
~~ 

gence proof in [15] to  prove that the sequence of estimates 
(0") produced by the above algorithm monotonically in- 
creases @(.) and converges from any starting image to the 
unique global maximizer of subject to  0 2 0. There are 
a few caveats that  must be considered however. When us- 
ing finite precision arithmetic, monotonicity often does not 
hold exactly once the sequence gets nears the maximum. 
Also, usually one will not perform exact 1D maximizations 
as implied by (14), but rather partial or approximate max- 
imizations (see below). Finally, when one includes addi- 
tive background effects in the statistical model, the log- 
likelihood is no longer globally concave [5]. Nevertheless, 
it is comforting t o  know that  a t  least under ideal circum- 
stances the convergence is well understood. 

B. The Maximization Step 

Note that 0" only enters d j ( P )  through its projections 
(u i . ,  e n ) .  Thus dj (e")  is fairly insensitive t o  P ,  so we re- 
place (a i  , e n )  with a precomputed approximation to  the 
i th line integral, such as log(bi/yi). Therefore we replace 
d j (S" )  with 

a?. .. 
d j  = Jh;(log(b;/yi)), ffij 

which one can precompute prior to iterating. Thus, we 
replace the numerator of (15) with this approximation: 

One simple approach to  implementing the maximiza- 
tion (14) would be t o  apply a few iterations of the 1D 

L j ( B " )  - di . (Qjwork - 8:) - ,Bxwjk$(BjM.Ork - 0;). (17) 
k 

Newton Raphson method: For the denominator of (15), note that  

Bjwork E 

= d j ( 0 " )  + p W j k & ( S , "  - Qk). 
d 2  

d6': ' - - 4 . ( Q y ; P )  
k 0,=0; 

Since $ has bounded curvature: 

Typically the middle step would be repeated a few times. 
Unfortunately, the partial derivatives of 4j(.; e n )  are fairly 
expensive to  compute. 

To  reduce computation, we apply methods from [12] and 
[5]. For the numerator, we approximate the Qj function 
(but not the penalty!) by its second order Taylor series: 
in a spirit similar to  [12]. For the denominator, we use a 
trick similar to  [5] for precomputing an approximation to  
the second derivative of the Qj function, and a new trick 
for the penalty term that exploits its bounded curvature. 

51f a group contains neighboring pixels, then one can also apply 

6Note that the 3 in (5) disappears in (13) since each pair of pixels 
De Pierro's device [17,18] to the penalty function to ensure (8). 

i s  counted twice in (5). 

we replace the denominator of (15) with 

E d j  + W j k ,  (19) 
d2 

dBj" 4.(@j;gn) 
_- 

0, =fl;nrk k 

which can be precomputed as described in [5]. This ap- 
proach provides a form of built in under-relaxation because 
of the bounded curvature (18) of $. 

To summarize, in practice we replace (15) with (17) and 
(19>, and apply 2 or 3 iterations of (15). No forward or 
backprojections are computed during these subiterations, 
so they compute quickly. As in [19,14, 12,5],  we keep a 
updated "forward projection" (U; , e") to  further save com- 
putation when evaluating the "backprojection" step (7). 
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Note that if one were to use only one subiteration of New- 
ton Raphson7 then the “maximization step” would have the 
following form: 

19:’’ = 0; + D-lVrs@(B”), (20) 

where D is a p s  x p s  diagonal matrix with entries d j  for 
j E S. Thus this algorithm is related to  the scaled gradient 
algorithm of [ll], but with a very different scaling matrix, 
and with groups of pixels rather than all pixels. 

C. Special Cases 

In the special case where the subset S contains only 
one pixel (S = {j}), the above algorithm is equivalent 
to coordinate ascent [14, 12, 51, i.e., it turns out that 
$ j ( B j ; O ” )  = @ ( B y , .  . . l B j n _ l , B j , B j n s l , .  . . ,B,”) .  At the other 
extreme, when S = { 1, . . . , p } ,  the above algorithm is sim- 
ilar to the scaled gradient algorithm [ll], with a different 
diagonal scaling (and one that  leads to  faster convergence). 
However, the algorithms that are between those two ex- 
treme choices of S are the most useful, as discussed next. 

D. Grouped Ascent 

Optimization algorithms seem to involve the following 
tradeoff. The more parameters one updates simultane- 
ously, the smaller the step sizes must be to ensure mono- 
tonicity, since the parameters are coupled. Therefore up- 
dating the parameters in small groups typically yields the 
fastest convergence rates, with coordinate ascent (one pa- 
rameter a t  a time) being the extreme case. On the other 
hand, as mentioned above there are often “economies of 
scale” that can be used when updating several parameters 
simultaneously. So the actual computation per iteration is 
often reduced by updating larger groups. Thus for fast con- 
vergence but moderate computation, we would thus like to 
update the parameters using a few large groups, but chosen 
such that the parameters within each group are relatively 
uncoupled. 

We have investigated the following grouped ascent 
method. We divide the image into blocks of size m x m, for 
small m, and then update only 1 pixel out of each m x m 
block on a given subiteration. The number of groups is 
thus m2, with p/m2 pixels per group. Thus the required 
number of exponentiations is then only m2 N ,  which is con- 
siderably smaller than the number of nonzero aij  for small 
m. Note that m = 1 is the scaled gradient algorithm, 
and m = fi is the coordinate ascent algorithm. As one 
increases m, the pixels within each group become more 
separated and therefore less coupled, which increases the 
convergence rate, but the computation also increases. Thus 
there I s  a basic tradeoff that can be adapted to the char- 
acteristics of the particular architecture. 

IV. RESULTS 
To examine the convergence rates, we performed simula- 

tions using the thorax phantom shown in Fig. 1. The object 

’One subiteration is adequate when $J is quadratic, for example. 

Fig. 1. Top: thorax phantom attenuationmap (@true) .  Middle: FBP 
reconstruction. Bottom: penalized-likelihood reconstruction d. 

is 128 x 64 4.5” pixels, and the system had 192 radial 
bins and 256 angular samples over 180°, with 6mm wide 
strip integrals on 3mmspacing [5]. We used 6 = 0 . 0 0 4 ~ m - ~  
in (6), and generated noisy data with 3M counts. (Most of 
these counts correspond to rays that do not intersect the 
object.) Fig. 1 also shows the FBP reconstructed attenua- 
tion map and the penalized-likelihood reconstructed image 
using 10 iterations of the grouped-ascent algorithm. The 
statistical method appears to produce better image quality. 
(See [2O] for quantitative comparisons.) 

Fig. 2 shows that with m = 3 (9 groups), the pro- 
posed grouped-ascent, algorithm increased the penalized 
log-likelihood almost as fast as the coordinate ascent al- 
gorithm per iteration. More important is the actual CPU 
time, which is shown in Fig. 3 (for DEC 3000/800). Be- 
cause of the fewer exponentiations, the grouped-ascent al- 
gorithms use far less CPU time per iteration than the coor- 
dinate ascent algorithm, so with m = 3 the penalized log- 
likelihood flattens out in about 25 CPU seconds, whereas 
coordinate ascent takes over 100 CPU seconds. Further- 
more, the grouped ascent algorithm is parallelizable, so 
with appropriate hardware could be significantly acceler- 
ated. Note that “1 * 1 grouped ascent” is similar to the 
scaled gradient algorithm of [ 111. 

Fig. 4 shows similar results for truncated transmission 
scans, such as would be obtained in fan-beam SPECT. 

V. DISCUSSION 

Based on the results in this paper and recent work [11,5], 
we consider the transmission EM algorithm [13,9] to be ob- 
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Transmission Algorithms 

1406 

0 5 15 20 

Fig. 2. Objective function increase @(S”) - @ ( S o )  versus iterationn. 

Transmission Algorithms 

0 3x3 grouped ascent 
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CPU Seconds 

Fig. 3. Objective function increase @(en) - @ ( S o )  versus CPU time. 

Fig. 4. As in Fig. 1, but for truncated transmission data 

solete. For penalized likelihood transmission image recon- 
struction, our proposed grouped ascent algorithm has fast 
convergence, reduced exponentiations per iteration, easily 
accommodates nonnegativity, and is flexibly parallelizable. 

After this abstract was submitted, we became aware of 
a very similar algorithm developed independently by Sauer 
e t  al .  [a l l .  
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