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ABSTRACT 

the data sizes in fully 3D PET imaging are very 
iterative image reconstruction algorithms must 
tge in very few iterations to  be useful. One 
nprove the convergence rate of the conjugate- 
:nt (CG) algorithm by incorporating precondi- 
g operators that approximate the inverse of the 
Ln of the objective function. If the 3D cylindri- 
ET geometry were not truncated at the ends, 
;he Hessian of the penalized least-squares objec- 
inction would be approximately shift-invariant , 
‘G would be nearly block-circulant , where G is 
mtem matrix. We propose a Fourier precondi- 
based on this shift-invariant approximation to  

:essian. Results show that this preconditioner 
cantly accelerates the convergence of the CG 
thm with only a small increase in computation. 

I. INTRODUCTION 

tistical methods for tomographic image recon- 
,ion from fully 3D PET scans are particularly 
sing since the number of unknown parameters 
s) is the same as in the 2D problem typically, 
le number of measurements (rays) is many times 
. However, since the data sizes in fully 3D PET 
ng are very large, an iterative image reconstruc- 
dgorithm stands to be clinically useful only if it 
rges in very few iterations. 
e to the large data sizes in 3D PET, it would 
mticularly inconvenient to  have to  acquire and 
a separate set of “sinograms” or projections 

jponding to  random-coincidence events. Hence 
likely that in most 3D PET scans the random 
idences will be precorrected in real time using 
elay-window method, rather than collected as 
arate projection set (on systems that support 
node). This precorrection makes the data non- 
on, so the usual Poisson-based iterative algo- 
IS are inappropriate. We propose instead to re- 
ruct the image volume by minimizing a penal- 
weighted least-squares (PWLS) objective func- 
13. (Although see [a] for possible alternatives.) 
d-3534-1/97 10.0001997IEEE 

11. THEORY 
Both the 2D and 3D reconstruction problems can 

be described by the measurement model: 

- y = G g  + noise (1) 

where - y is the measured sinograms, G is the system 
model (geometric response), and 2 = [Q, . . . , zp]’ is 
the image or volume, where p is the number of pixels 
or voxels. We would like to  estimate from - y by 
minimizing the PWLS objective function: 

- i = arg min @(E) 
X - 

@(LE) = (2- G:)’W(y - - G:) + PR(:), (2) 
where W i s  an estimate of the inverse of the noise 
covariance [l], R(g)  is a penalty function that dis- 
courages rough images, and /3 controls the tradeoff 
between resolution and noise [3]. 

Most of the convex penalty functions proposed for 
regularization of imaging problems can be expressed 
in the following very general form, e.g. [4]: 

K 

R(z )  = +k([C’- Clk),  (3) 
k = l  

where C is a K x p matrix and c E I R K ,  for some 
user-defined number K of soft “constraints” of the 
form [Cg]k M c k .  

The standard roughness penalty, which penalizes 
differences between neighboring pixel values, is the 
special case of (3) where c = 0, where Ir‘ is the number 
of pairs of neighboring pixels’ , and where each row of 
C contains one “+1” and one “-1” entry so that 

[CE]k = zjk,l - x j k , z )  IC = 1 , .  . . , IC, 

where xjk>’ and x j k , z  are two neighboring pixels. 
The preconditioned CG algorithm is naturally 

suited to the PWLS objective, and has been used ex- 
tensively in tomography, e.g. [5-111. The precondi- 
tioned form of the Polak-Ribiere CG method [12] is 

‘For 3D penalty functions, K M 3 p  and K 13p for first and 
second-order neighborhoods respectively. 
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given as follows: 

gn - = -V’@(gn) (-gradient) 

pn - = M g n  - (precondition) 

n=O 

- dn = pn - + yndn-l 

an = argmin a($ + adn) 

- 2”+’ = - zn + andn 

(search direction) 

(step size) 
a 

(update). 

(4) 

( 5 )  

Computing the gradient of the objective function re- 
quires a forward projection and backprojection: 

-V’@(:) = G‘W ( - y - Gg) - PC’diag { T&( [C: - &)} 

= G’W(y - - Gg) - PC‘Dw(:)(Cg - C) 

= [G’Wy - + C‘Dw(:)c] - [G‘WG + ,8C’Dw(:)C]: 

= b(:) - Hw(:), (6) 

where 

The computation of G’W(y - G:) is the most time 
consuming step in the algorithm, so minimizing the 
number of iterations is essential. 

One can significantly improve the convergence rate 
of the conjugate-gradient algorithm by incorporating 
preconditioning operators M in (4) that approximate 
H-l, the inverse of the Hessian of the objective func- 
tion, defined by 

H(g) = V2@(g) = G‘WG + ,BC’Dli,(g)C 

where &(t) = d 2 / d t 2 $ k ( t )  and 

D&) = diag{ @[C: - C l k ) }  

But we would also like M to be easy to compute, 
unlike H-l. 

The standard diagonal preconditioner is simply: 

MD = diag{Hjj} , 

which improves the convergence rate somewhat, but is 
suboptimal since it ignores the off-diagonal structure 
of the Hessian. 

For some tomographic systems, the matrices G’G 
and C‘C are approximately block-Toeplitz or block- 
circulant , i.e. they correspond to shift-invariant op- 
erators. Block-circulant matrices are diagonalized by 
the Fourier basis. In other words, 

K(q) = G‘G + qC’C M Q’n(q)Q, 

where Q is the 2D or 3D DFT matrix, and R(q) is the 
diagonal matrix of the DFT coefficients of the kernel 
of K. For the unzueighted least-squares problem with 
W = I/a2 and for a quadratic penalty (QPULS), we 
have 

H = -GIG + PC‘C 

so the following Fourier preconditioner leads to very 
rapid convergence: 

1 
0 2  

M~ = M K - ~ ( o ~ P ) .  

Clinthorne et al. applied this idea to 2D tomography 
in f13]. 

In PET the noise covariance W-’ is highly nonuni- 
form, so the Fisher information matrix G’WG is very 
shift variant. Thus Fourier preconditioning is subop- 
timal. In [10,14] we derived the following combined 
diagonal/Fourier preconditioner: 

M = diag{fcyl} T’Q’CE-’(,B)QT diag{fcl) 

which uses the following approximation from [3]: 

G‘WG M diag{lcj} G‘G diagjlcj} , (9) 

The above form is for quadratic penalties with the 
modification described in [3]. 

Additional preconditioners for nonquadratic penal- 
ties are described in [14]. 

111. 3D PET 
If the 3D cylindrical PET geometry were not trun- 

cated at the ends, then the Hessian of the penal- 
ized least-squares objective function would be approx- 
imately shift-invariant . We propose a Fourier precon- 
ditioner based on this shift-invariant approximation 
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3D generalization 

we performed a simu- 
geometry consisting of 

projections at tilts 
had 64 radial bins 

model is as 

is the 2D Fourier matrix, and 0 is the fre- 
of the kernel of the approximately 

Gb,,Go,o + P R ~ D  and R ~ D  is the in- 
penalty. In the implementation we 
perform the multiplication by Q. 

object is shown in Fig. 1. Us- 
and initializing with a uniform 
the conjugate-gradient algorithm 

preconditioner described above. 
objective function @(a) at each 

Clearly the proposed 
the convergence of the 

The computation of 
to  the forward and 
adds only a small 

al- 

preprints. 
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Fig. 1. 4-slice object used in simulation. 
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Fig. 2. Model definition for small 3D PET system used in simulations having 4 642 slices and 3 tilt angles 
# = {-lo, O", lo}. Gd,z denotes the system response for a given tilt # and axial z-offset, and y denotes 
the corresponding sinogram measurement, each of which was 64 radial bins by 70 angles over 180'. The 
usual 2D PET geometry corresponds to the upper 4 x 4 block. Note that the additional rows of the 
system and measurement matrix mean additional counts and information, but of course at the price of 
superposition of the different slices. 
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Fig. 3. Minimization of the objective function by conjugate-gradient algorithm with and without the proposed 
Fourier preconditioner. The objective converges towards its minimum more rapidly with the proposed 
Fourier preconditioner. 
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