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ABSTRACT

Analytical gradient based non-rigid image registration meth-
ods, using intensity based similarity measures (e.g. mutual in-
formation), have proven to be capable of accurately handling
many types of deformations. While their versatility is largely
in part to their high degrees of freedom, the computation of
the gradient of the similarity measure with respect to the many
warp parameters becomes very time consuming. Recently, a
simple stochastic approximation method using a small ran-
dom subset of image pixels to approximate this gradient has
been shown to be effective. We propose to use importance
sampling to improve the accuracy and reduce the variance of
this approximation by preferentially selecting pixels near im-
age edges. Initial empirical results show that a combination of
stochastic approximation methods and importance sampling
greatly improves the rate of convergence of the registration
process while preserving accuracy.

1. INTRODUCTION

The aim of non-rigid registration algorithms is to find a trans-
formation (warp) that appropriately maps one image onto the
other. To constrain this ill-posed problem, the warp is usu-
ally parameterized. Mathematically, image registration is an
optimization problem:

0 = arg max, ¥ (6)

where VU is the similarity metric and 0 is the estimate of the
p dimensional warp parameters. We focus on methods that
use differentiable intensity based similarity metrics and gra-
dient optimization techniques. It is possible in such cases to
derive an analytical expression for the gradient of the similar-
ity metric with respect to the warp parameters [1]. However,
the large number of warp parameters in most non-rigid reg-
istration techniques makes the gradient calculation time con-
suming. A simple strategy to reduce this computation time is
to use a small random subset of image pixels to approximate
the gradient [2]. In this random sampling framework the opti-
mization procedure becomes a stochastic approximation (SA)
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technique, with the following updates:
9n+1 =0, + ang(an)a

where 6,, is the warp parameter estimate at the nth itera-
tion, §(6,,) is the gradient approximation at 6,, and a,, is the
step-size. SA has been successfully applied to numerous ap-
plications in the fields of statistical modelling and controls.
This work focuses on techniques to improve the convergence
and accuracy of these SA methods applied to image regis-
tration. The efficiency of SA methods depends on how well
the gradient can be approximated and its variance reduced.
To improve the quality of the gradient approximation, we use
Importance Sampling (IS), choosing a larger fraction of the
samples from image regions that heavily influence the gradi-
ent. Results show a substantial increase in the convergence
rate of IS based optimization techniques over competing SA
techiques that use a uniform sampling distribution and deter-
ministic gradient descent methods, while preserving accuracy.

2. THEORY

2.1. Optimization Procedures

We briefly describe the imaging model and methods used to
register a pair of images. The reference and homologous im-
ages are treated as a set of samples drawn from continuous
space intensity functions ‘v’ and ‘v’ on an equally spaced
grid, respectively: 4; = w(@;),j € [1...N] and 0y =
v(Yk) + ni, k € [1...M]. Here &; and %, are the coordi-
nates at which the continuous functions are sampled. The ba-
sic assumption in image registration is that, these coordinates
are related by a transformation; § = Ty(Z). For our non-
rigid registration, this transformation field is approximated
by a B-spline warp, 6 being the vector of warp parameters
to be estimated. Mutual Information (MI) between the pair of
images is used as the similarity measure. In a typical regis-
tration algorithm, at each iteration the current estimate of the
warp is applied to the homologous image. The homologous
image {0y} is interpolated to obtain intensity values at the
transformed coordinates of the image {f}f }, as follows

M
00 =Y " bC(To(&5) — i), j=1...N (D
k=1
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where C' is the differentiable cubic spline interpolation ker-
nel and {b;} are cubic spline coefficients obtained by pre-
filtering the original image {0y} appropriately. Marginal and
joint probability distributions (pdfs) are estimated using ker-
nel density estimation techniques with a differentiable kernel,
so that the gradient of MI can be evaluated analytically.

2.2. Importance Sampling

IS is a variance reduction technique that incorporates knowl-
edge of the quantity being approximated into the sampling
process. It assumes that certain types of random samples af-
fect the approximation more than others. IS is the method
of generating a sampling distribution that emphasizes these
important samples. By weighting the samples appropriately,
estimator bias introduced by using such a biased sampling
distribution can be preempted. To exploit this approach, it is
crucial to design a meaningful distribution that requires min-
imum computational effort.

Given two random variables, MI is a measure of the amount
of information one random variable gives about the other. In
the field of statistical image processing, the intensities of the
images to be registered are treated as discrete random samples
of an underlying continuous function. MI is approximated as
a function of the estimated pdfs that characterise the distribu-
tion of these pseudo random samples. In this scenario, IS re-
quires determining and emphasizing image regions that have
a greater effect on the gradient of MI and consequently on the
pdfs and their gradients.

2.3. Choosing a Sampling Distribution

To reduce computation time a very small random subset of
image pixels is used to estimate MI and its gradient [2]. Re-
taining as much information as possible about the continuous
functions u and v will yield better estimates of MI. Intuitively,
from a sampling perspective, more random samples should be
drawn from image regions that correspond to large variations
in image intensities, i.e., near image edges.

The following analysis considers how IS may be applied
to the MI gradient calculation. Only the homologous image
need be interpolated repeatedly, the reference image remains
unchanged. Thus only quantities involving homologous im-
age intensities will have non-zero gradients with respect to
the warp parameters, viz. the marginal pdf of the homologous
image P, and the joint pdf of the two images P, .

P, is estimated only at a pre-determined set of intensity
levels {v; }/_, . Its estimate at intensity value v; is given by:

N

Py(v) = %ZB(W —9) )

where, given the current warp parameters 6,, = 0, @f is given
by eq. 1. B is the differentiable cubic B-spline density kernel.

The gradient of Py (v;) with respect to the warp parameters is
given by:

N
1
V@Pg Uz = E B Vev 3)
J=1

where B is the derivative of the B-spline kernel. Substituting
eq. (1) for ﬁ‘? in the RHS of eq. (3) gives,

LN M .
-5 (ZbkC(Tg(fj) —%))B(vi —8))VoTy(Z;)

j=1 “Nk=1

The term in the parenthesis is the edge map of the homolo-
gous image. Let w be the width of the B-spline density kernel
B. At a fixed intensity level v;, only pixels that lie on an edge
in the homologous image and whose intensity is within the
neighbourhood N; £ [v; —w /2, v;+w/2] of v; will contribute
to V@P@(’Ui). Because the intensity levels {v; } are chosen to
span the dynamic intensity range of the homologous image,
every pixel in the edge map of this image will belong to the
neighbourhood of at least one intensity level. This implies
that the entire edge map influences the gradient calculation.

Similar considerations, not included due to space con-
straints, apply to P,,, indicating that edges in the reference
image are also important for the gradient approximations. Hence,
at the nth iteration with current parameter guess 6,, = 0, we
base the design of our §-dependent sampling pmf P? on the
gradients of the intensities of these two images. We define P!
as the sum of the magnitude of edge maps of the two images,
normalized to be a valid pmf. The probability P?(j) that a
pixel at index j is selected is:

R+ HY +k Noo
% G=) (Rj+H!+k) 4

j=1
{R;})
{Hf }f’zlz blurred hom. image edge magnitude map

k = max(c, median{R; + Hf}), j=[1...N],

_, = blurred ref. image edge magnitude map

where « is some infinitesimal positive constant. The offset &
in eq. (4) ensures that every pixel has a non-zero probability
of being chosen. In the event that both images have no strong
edges, the sampling distribution becomes uniform with each
pixel having a 1/N chance of being selected.

2.4. SA Stategy and Parameters

Two common SA approaches are the Robbins-Monro like step-
size controlled SA (Step-SA) [3] and sampling controlled SA
(Samp-SA) [4]. Step-SA requires that the number of image
pixels used to approximate the gradient (i.e. the sample size)
remain fixed over iterations. The step-size is a non-increasing,
non-zero sequence {a,},n € I, such that > >  a, = oo
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and )07 | an? < 0o. A major drawback of this technique is
its sensitivity to the empirically determined step-size. As the
‘optimal’ step-size for each component of the vector of warp
parameters is widely varying, we adopt an adaptive step-size
estimation technique [5]. Let 6,, be the vector guess at itera-
tion n, whose components {6% },7 = 1...p are independent.
This procedure assumes that for a stationary point 6., rapid
changes in the sign of (0 —0%)— (0%, _, —0%) = 0¢ —0¢ _ in-
dicate that §?, is closer to its optima, while fewer sign changes
are indicative of a greater distance from @. The adaptive
technique tracks the number of sign changes of 6! — 6%,
for each component ¢ of the warp parameter vector and re-
duces the corresponding step-size proportionally. Our imple-
mentation estimates the step-size for the ith component ¢, as
follows: a?, = ag/(A® + Q!), where Q¢ is the number of
sign changes in (62, — 0¢ ), m = 2...n and Q!

A? = A, Vi and ag are positive non-zero constants.

Samp-SA maintains a fixed step-size over the iterations
while allowing a gradual increase in the sample size. The
slowest sample size growth rate that ensures convergence, is
proportional to In(n) where n is the iteration number [4]. Us-
ing as slow a growth rate as possible will reduce computation
time. We use Koln(n+ (e—1)),n =1,2,... as our growth
rate, where K is the initial sample size. Both techniques ef-
fectively average out the approximation error as the iterations
progress, yielding convergence.

Empirical registration results (not included here) indicated
that under identical conditions Samp-SA results in faster ini-
tial convergence than Step-SA, while Step-SA has better sta-
bility properties for later iterations. To combine the advan-
tages of both SA methods, we implemented an ‘Hybrid-SA’
approach that starts with Samp-SA for a fixed number of itera-
tions and switches to Step-SA for later iterations. The Samp-
SA iterations also track the number of sign changes, which
are used to initialise step-sizes for Step-SA.

3. RESULTS

Registration experiments used 2D 256 x 256 T1 and T2 MRI
brain images obtained from the International Consortium of
Brain Mapping , with pixel sizes ~ 1mm x 1lmm. This pair of
images was initially registered. Known deformations (ground

truth) resulting in pixel coordinates given by v(Z;),j =1... N,

were applied to the T2 image. This image was treated as
the reference image, the undeformed T1 image was the ho-
mologous image. Two types of known deformation models
were used: (i) a B-spline based deformation, representing
zero model mismatch and (i) a deformation generated by
randomly placed gaussian blobs, not based on B-splines. The
RMS error between the estimated warp given by {7 () }}L,
and the ground truth was given by:

N

1 S o2

RMS error = NZHV(%)—T(;(CUJ‘)H
j=1
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Comparison of SA techniques: We applied a known B-spline
based deformation, using 5 x 5 equally spaced knots to the T2
image. Estimates of the B-Spline warp that maps the unde-
formed T1 image onto the deformed T2 image, were obtained
using (a) Step-SA with ag = 1500, A* = 15 Vi, sample-size
= 5% of the total number of pixels and (b) Hybrid-SA using
Samp-SA with (Ko = 2%) and step-size = 75 for the first
159 (of 2000) iterations. Step-SA was used for the later it-
erations with the sample size set to the average sample size
of the first 159 iterations. To change the step-size smoothly,
we used ag = 75 X min; Q%59 and A = 1 Vi. The two
SA methods were tested using both a uniform sampling dis-
tribution and importance sampling (IS), using the sampling
distribution designed in eq. (4). Thirty realisations of each of
the SA methods with and without IS were obtained. Fig. 1
shows the mean performance of these SA techniques. In this
and subsequent figs. error bars have been omitted to improve
clarity. All +/- one standard deviation error bars were within
0.25 pixels of the mean behavior plots. Hybrid-SA with IS
reduces RMS error faster than other SA configurations.

Comparison of the different SA techniques with and without IS
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Fig. 1. Improvement of SA techniques due to Importance Sampling

Improvement due to Importance Sampling: To compare
the benefits in speed afforded by IS with Hybrid-SA over
commonly used deterministic gradient descent methods, we
applied a known deformation made up of randomly placed
gaussian blobs to the T2 image, as mentioned in (i7) above.
This deformation has an inherent mismatch associated with
the B-spline deformation model used to register the two im-
ages. For simplicity, registration was performed at a sin-
gle resolution, using 64 intensity levels to evaluate the pdfs.
The Hybrid-SA method tested both with and without IS, used
Samp-SA with Kg = .5% for the first 159 of 2000 iter-
ations. The remaining iterations used Step-SA with ap =
20 x min; Q%5y and A® = 1 Vi. Deterministic gradient de-
scent was found to perform best by using an adaptive step-
size sequence, like that of Step-SA described earlier, with



ag = 1500 and A* = 15 V. Thirty realisations were obtained
for each of the three optimization methods, with each realisa-
tion of the deterministic method intialized at a random seed
point or warp guess. Fig.2 shows how the mean behaviors of
the different methods compare. The Hybrid-SA method with
IS shows a sharp improvement in the convergence rate.

Comparison of Hybrid—SA with IS and
deterministic gradient descent
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Fig. 2. Improvement in the speed of convergence using Hybrid-
SA with IS over deterministic gradient descent, with B-splines. The
true (applied) deformation was based on randomly placed gaussian
blobs.

We also incorporated the above procedures in the com-
monly used pyramid based B-spline registration scheme [1].
An 11 x 11 knot B-spline warp was applied to the T2 image,
the T1 image was left undistorted. Our SA experiment used
a 3 level pyramid: the first level used 5 x 5 knots to model
the deformation, 32 intensity levels at which to approximate
the pdfs and both images were downsampled by a factor of 4.
Level 2 had 7 x 7 knots, 58 intensity levels and a downsam-
pling factor of 2. The last level used 9 x 9 knots, 64 intensity
levels and no downsampling. Levels 1 and 2 operated at 144
and 128 iterations of Samp-SA each. The initial sample size
K was 1% of the total number of pixels at both levels and the
step-sizes were fixed at 1 and 5 respectively. The last level
used 256 iterations of Step-SA with ag 150, A = 1 and
sample size = 5% of the total number of pixels at this level.
The final warp estimate at a lower level was upsampled and
used to initialise the next level. As the highest level uses only
9 x 9 knots to estimate the B-spline warp and the true (ap-
plied) warp is generated using 11 x 11 B-spline knots, there
is an inherent mismatch in the registration process. The SA
methods were implemented both with and without IS. The
same Pyramid structure and number of iterations were used
for deterministic gradient descent, which gave the best results
by using an adaptive gain sequence with ay = 10 at level
1 and ag = 100 at levels 2 and 3. A was 1 at all levels of
the pyramid. Thirty realisations were obtained for all three
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methods, with the deterministic optimization re-initialized by
a random seed point for each realisation. Hybrid-SA with IS
performed well in the pyramid optimization scheme giving a
large speed up in the rate of convergence.
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Fig. 3. Faster convergence of a pyramid optimization scheme, using
Hybrid-SA with IS

4. CONCLUSION

In these initial comparisons, the speed of convergence of SA
techniques for image registration was increased by the use of
importance sampling. A further improvement in the conver-
gence rate was obtained by implementing Hybrid-SA, which
is a combination of Step-SA and Samp-SA. In both the single
resolution and the pyramid optimization schemes, we con-
sistently found that Hybrid-SA with IS, accelerates conver-
gence significantly for non-rigid image registration. The next
step will be to extend this evaluation of the performance of
Hybrid-SA with IS, using 3D multi-modal data sets.
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