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ABSTRACT 11. THEORY 

As investigators consider more comprehensive measure- 
ment models for emission tomography, there will be more 
choices for the hidden or complete data spaces of the asso- 
ciated expectation-maximization (EM) algorithms. In this 
paper, we show that EM algorithms based on smaller com- 
plete data  spaces will typically converge faster. As a exam- 
ple, we compare the two maximum-likelihood (ML) image 
reconstruction algorithms of Politte and Snyder [l], which 
are based on measurement models that  account for attenu- 
ation and accidental coincidences in positron-emission to- 
mography (PET), 

I. INTRODUCTION 

The ML criterion for tomographic image reconstruc- 
tion has received considerable attention since Shepp and 
Vardi [2] introduced an EM algorithm for computing ML 
estimates. Although the medical imaging community of- 
ten refers to  “the” ML-EM algorithm, there are in fact a 
multitude of feasible EM algorithms, each based on a dif- 
ferent hidden, or complete, data space. A useful complete 
data space supplements the observed measurements in a 
way that facilitates parameter estimation [3]. Although 
only one complete-data space has been suggested for PET 
under the simple measurement model used in the early pa- 
pers, there will be more choices as investigators consider 
more comprehensive measurement models, such as those 
accounting for photon attenuation [4], accidental coinci- 
dences [l], deadtime, and scatter [5]. This paper illustrates 
the importance of parsimony in choosing complete-data 
spaces. 

Recently, Politte and Snyder proposed two ML-EM al- 
gorithms for P E T  that directly incorporate the affects of 
attenuation and accidental coincidences into the statistical 
measurement model [l]. The algorithms are based on two 
different complete-data spaces, one of which is a subset of 
the other. They observed in experiments that the algo- 
rithm based on the smaller complete-data space converged 
faster. In this paper we corroborate their observations by 
proving that smaller complete-data spaces yield EM algo- 
rithms with faster asymptotic convergence rates. Due to 
space constraints, all proofs are omitted, and a simplified 
version of the PET application is presented. 

We observe y, a realization of a random vector Y having 
density g(y; 8 )  with the goal of computing the ML estimate 
of 8 .  When the measurements are “incomplete,” one can 
often postulate a “complete data” random vector X having 
density f ( x ; e )  that is more naturally related to 6, and is 
related to  the observed measurements by a many-to-one 
mapping Y= h(X). Let 

= / logf(x; 6) f (xlY = y; e) dx 

= H ( 8 ;  e )  + L ( 6 ) ,  (2) 
where 

A 

A 
H ( B ;  0) = E { logf(X1Y = y; 6 )  IY = y; 8 )  , 

L ( 8 )  = logg(y;@). 

The EM algorithm [3] repeats these steps: 
E-step: 

Compute Q(8; e’), 

e’+’ = argmaxQ(8; e’), 
0 

where 8’ denotes the parameter estimate after the ith it- 
eration. Note that by Jensen’s inequality [3]: 

M-step:  

~ ( 8 ;  e)  5 H ( 8 ;  e) ve, 
so an EM algorithm produces a likelihood sequence L ( @ )  
that is monotonically increasing. The basic idea is to  com- 
pute Q,  the conditional expectation of the complete data 
given the most recent parameter estimate, and then to  
maximize the parameter’s likelihood as if one had observed 
the complete data [3]. The EM algorithm is most useful 
when the complete-data space is chosen such that &(e; e’) 
can be maximized analytically for the M-step, although 
other approaches are possible. 

Several investigators have observed empirically that 
larger complete-data spaces correspond to  slower EM con- 
vergence [3, pp. 25,341. In this section we formalize a ver- 
sion of this result. Here, asymptotic convergence rate is 
defined by the following theorem [6, p. 3011. 

Linear Convergence Theorem: If (i) G : V E R” --). R” 

entiable at e“, and (iii) p(V’G(B*)) < 1, where p ( )  denotes 
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spectral radius, then the root-convergence factor [S, p. 2881 
R1 at @ for the iterative process Oi+' = G(8') is given by 
Ri(G, @) = p(V'G(@)). 

This theorem leads to the following [7]: 

Theorem 1: Let Oi+' = G(89) define the iterations 
for an EM algorithm such that (i) G and 8" satisfy 
conditions (i) and (ii) of the Linear Convergence Theo- 
rem, (ii) G is defined by solving the system of equations 
V10Q(&t9)l,gG(e)) = 0, and (iii) L e -V2L(8*) is posi- 
tive definite, then the root-convergence factor a t  8* for the 
EM iteration G is 

= p (I - Q - ~ L )  c 1, (3) 

A 
where I is the n x n identity matrix and Q = 
-Vz0Q(@; @). 

Since Q = H + L, where H = -VZ0H(8*;@) is a con- 
ditional Fisher information matrix, one sees from (3) that 
if a larger complete-data space has greater Fisher infor- 
mation, then the corresponding root-convergence factor 
will be larger, and the asymptotic convergence rate will 
be slower. This is the idea behind the next lemma and 
theorem, the main results of this section. 

A 

Lemma 1: If (i) QB = H + L, where H is symmetric 
nonnegative definite and L is symmetric positive definite, 
and (ii) QA = QB + N where N is symmetric nonneg- 
ative definite, then p~ PA, where PA = p (I - QAIL) 
and p~ = p (I - QBIL).  Furthermore, if N is symmetric 
positive definite, then PB < PA. 

Theorem 2: If (i) GA and GB are two EM algorithms 
that satisfy the conditions of Theorem I and that corre- 
spond to complete-data spaces XA and XB respectively, 
(ii) XB is a subset of XA, i.e., XA = [Xb,Xi]', (iii) 
f A  (XA IY; 8 )  = f A  ([XB I xo] lY; 0) = fB (XB (Y ; 6)fo (xo 0)  t 

and (iv) fo(xoJy;8) = f o ( x o ; O ) ,  i.e., X, is extraneous 
complete-data, then algorithm B converges faster than al- 
gorithm A asymptotically a t  a common fixed point p. 

Theorem 2 is true under considerably less restrictive con- 
ditions than (ii)-(iv), but this version is sufficient for the 
purposes of this paper. 

111. P E T  RECONSTRUCTION 

In [l], Politte and Snyder developed two ML algorithms 
for PET image reconstruction accounting for attenuation 
and accidental coincidences. One algorithm, called ML- 
IB, was based on a complete-data space consisting of the 
coincidence contributions of each voxel to each detector, 
as well as the accidental coincidences. The complete-data 
space for the other algorithm, called ML-IA, consisted of 
the ML-IB components as well as the photon emissions 
that are attenuated. These latter events are unobservable, 

so they are extraneous in the sense of Theorem 2. Unfortu- 
nately, Theorem 2 is not strictly applicable to PET because 
condition (i) of the Linear Convergence Theorem requires 
convergence to an interior point, and ML estimates in PET 
usually include zero components. 

One can obtain some insight into the convergence be- 
havior of these two algorithms by considering the following 
scalar version of the problem. Suppose the measurement 
model is: 

y N Poisson(aX + r )  

where the attenuation a E (0 , l )  and the accidental coinci- 
dence rate r 2 0 are known. In this case, the ML estimate 
for emission rate A over V = {A  : A 2 0) is given by: 

i = max { 0, y} , 

a truncated subtraction. 
rithms are given respectively by the maps 

The ML-IA and ML-IB algo- 

and 
Y GIB(A) = 

Note that in the absence of attenuation (a = l), the two 
algorithms are identical. One can also verify that both al- 
gorithms are globally convergent if A' > 0. Differentiating: 

so in particular 

showing that the root-convergence factor for ML-IB is 
smaller than that of ML-IA. Does ML-IB converge faster? 
There are three cases to consider. 
Case 1: If y > P, then both estimates converge to h > 0, 
at asymptotic rates governed by the Linear Convergence 
Theorem, so by (4), ML-IB converges faster. 
Case 2: If y 5 r ,  then both estimates converge to i = 0, 
on the boundary of D ,  so at first it  seems that the Linear 
Convergence Theorem does not apply. However, if P > 
0 then we can actually make the object domain slightly 
larger, say: V- = {A  : X 1 - + r / a } ,  since GIA and GIB are 
both differentiable on V-. Directly applying1 the Linear 
Convergence Theorem to GIA and GIB using (4) shows 

'We cannot apply Theorem 1 to this larger domain since Q I ~  and 
QIB are not differentiable at 0. 



that if y < r ,  then ML-IB converges faster than ML-IA 
even though the ML estimate is O! 
Case 3: If y = T ,  then PA = p~ = 1, so the asymptotic 
convergence rate is not well defined by the Linear Conver- 
gence Theorem. However, since y is an integer number of 
counts, and r is a real number, the outcome y = r seems 
rather unlikely in practice. For a non-asymptotic compar- 
ison, one can verify that if X > 0, then 

(5) 

so the ML-IB algorithm takes larger steps towards the 
ML estimate than the ML-IA algorithm. Therefore, even 
though the convergence is sub-linear when y = r ,  the ML- 
IB algorithm will converge faster in some sense. 

In summary, we have shown that under this scalar 
model, ML-IB usually has faster asymptotic convergence 
rate than ML-IA, and always takes larger steps ( 5 ) .  It is 
difficult to predict what the analogous boundary situations 
would be in higher dimensions. The fact that there exists 
a situation where p(VG) = 1 even in the scalar case sug- 
gests that a comprehensive rigorous comparison of ML-IB 
and ML-IA will be difficult to  obtain. 

IV. DISCUSSION 

We have shown that smaller complete-data choices yield 
EM algorithms with faster asymptotic convergence, pro- 
vided the ML estimate lies in the interior of the parameter 
space. Since EM algorithms are notorious for slow con- 
vergence, this comparison has practical importance. Even 
a small decrease in the root-convergence factor can sig- 
nificantly reduce the required number of iterations. Al- 
though this theoretical result is not always directly appli- 
cable to the ML-IB and ML-IA algorithms for PET, due 
to the boundary conditions, the basic concept should pro- 
vide useful insight for choosing complete-data spaces. The 
fact that the theoretical result agrees with the empirical 
findings in [l] suggests strongly to us that the ML-IB algo- 
rithm should be used in practice over the ML-IA algorithm. 
The heuristic explanation for this is that the complete-data 
space for ML-IA includes the attenuated events that make 
no contribution to  the measurements. We would be most 
interested in any counter-examples in which an EM algo- 
rithm based on a complete-data space with larger Fisher 
information converges to a boundary estimate faster than 
an EM algorithm having smaller Fisher information. 

In principle, our Theorems 1 and 2 directly generalize 
to the case where convex penalties such as those discussed 
in [8] are added to the likelihood, again supporting the 
conclusion that smaller complete-data spaces correspond 
to faster convergence. There is one important caveat how- 
ever: except in the trivial case of independent priors, the 
maximization steps of penalized EM algorithms become in- 
tractable due to  the coupling introduced by the penalties. 
As a consequence, the algorithms for the penalized case are 
usually of the generalized EM (GEM) type [3,9]. GEM 

algorithms only provide an increase in Q(@,@') at each 
iteration, rather than maximizing Q. Therefore, GEM al- 
gorithms do not usually satisfy condition (ii) of our Theo- 
rem 1. They are also usually not globally convergent un- 
less possibly computationally expensive line-searches are 
employed [8]. These factors inhibit making formal state- 
ments about asymptotic convergence rates for penalized 
likelihood algorithms. We have implemented penalized- 
likelihood algorithms based on Hebert's GEM strategy [9] 
for both the ML-IA and ML-IB completedata spaces. We 
have also implemented both ML-IA and ML-IB with sieve 
constraints [l]. In both cases, we found empirically that 
the regularized ML-IB algorithm converged substantially 
more rapidly, in terms of both likelihood increase and ap- 
parent image contrast, than the regularized ML-IA algo- 
rithm. This empirical result is further motivation for using 
smaller complete-data spaces where possible. 
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