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Abstract— Robotic underwater vehicles can perform vast opti-
cal surveys of the ocean floor. Scientist value these surveys since
optical images offer high levels of information and are easily
interpreted by humans. Unfortunately the coverage of a single
image is limited by absorption and backscatter. There is a need
to present an overall view of the survey area. Recent work on
underwater mosaics assume planar scenes and are applicable
only to situations without much relief.

We present a complete and validated system for processing
optical images acquired from an underwater robotic vehicle to
form a 3D reconstruction of the ocean floor. Our approach is
designed for the most general conditions of wide-baseline imagery
(low overlap and presence of significant 3D structure) and scales
to hundreds of images. We only assume a calibrated camera
system and a vehicle with uncertain and possibly drifting pose
information (from, for example, a compass, depth sensor and a
Doppler velocity log).

Our approach is based in a combination of techniques from
computer vision, photogrammetry and robotics. We use a local
to global approach to structure from motion, aided by the
navigation sensors on the vehicle to generate 3D submaps. These
submaps are then placed in a common reference frame that
is refined by matching overlapping submaps. The final stage of
processing is a bundle adjustment that provides the 3D structure,
camera poses and uncertainty estimates in a consistent reference
frame.

We present results with ground-truth for structure as well as
results from an oceanographic survey over a coral reef covering
an area of approximately one hundred square meters.

I. INTRODUCTION

A. Context

Optical imaging of the ocean floor offers scientists high
level of detail and ease of interpretation. However, light un-
derwater suffers from significant attenuation and backscatter,
limiting the practical coverage of a single image to only a
few square meters. For many scientific surveys, however, the
area of interest is large, and can only be covered by hundreds
or thousands of images acquired from a robotic vehicle or
towed sled. Such surveys are required to study hydrothermal
vents and spreading ridges in geology [1], ancient shipwrecks
and settlements in archeology [2], forensic studies of modern
shipwrecks and airplane accidents [3] [4], and surveys of
benthic ecosystems and species in biology [5] [6].

The visible spectrum in water has attenuation lengths of
the order meters, thus most underwater vehicles carry out
optical imaging surveys using their own light source. Apart

from casting shadows that move across the scene as the
vehicle moves, power and/or size limitations lead to lighting
patterns that are far from uniform. Also with the advent of
autonomous underwater vehicles (AUVs) for imaging surveys
[1] [6] additional constraints are imposed by their limited
energy budgets. AUV surveys are typically performed with
strobed light sources rather than continuous lighting, and
acquire low overlap imagery in order to preserve power and
cover greater distances.

Generating a composite view by exploiting the redundancy
in multiple overlapping images is usually the most practical
and flexible way around this limitation. Recent years have
seen significant advances in mosaicing [7] [8] and full 3D
reconstruction [9] [10] [11] though most of these results are
land based and do not address issues particular to underwater
imaging. Underwater mosacing has been motivated largely by
vision-based navigation and station keeping close to the sea-
floor [12] [13] [14]. The large-area mosaicing problem with
low overlap under the assumption of planarity is addressed
in [15]. Mosaicing assumes that images come from an ideal
camera (with compensated lens distortion) and that the scene
is planar [16]. Under these assumptions the camera motion
will not induce parallax; therefore no 3D effects are involved
and the transformation between views can then be correctly
described by a 2D homography. These assumptions often do
not hold in underwater applications since light attenuation
and backscatter rule out the traditional land-based approach
of acquiring distant, nearly orthographic imagery. Underwater
mosaics of scenes exhibiting significant 3D structure usually
contain obvious distortions.

In contrast to mosaicing, the information from multiple
underwater views can be used to extract structure and motion
estimates using ideas from structure from motion (SFM) and
photogrammetry [17]. We propose that when dealing with a
translating camera over non-planar surfaces, recovering 3D
structure is the proper approach to providing a composite
global view of an area of interest. The same challenges
seen in mosaicing underwater apply to SFM underwater with
the added requirement that scene points must be imaged
at least twice to produce a roughly uniform distribution
of reconstructed feature points through triangulation (50%
overlap in the temporal image sequence). These techniques
are considerably more complex than mosaicing: even for



Fig. 1. The Seabed vehicle in the Bermuda 2002 cruise. CAD views
showing the vehicle without shells.

land-based applications (with high overlap, structured motion
and uniform lighting) consistency at large scales can not be
guaranteed unless other sensors are available. Some promising
work has gone into 3D image reconstruction underwater [18]
using a stereo-rig with high overlap imagery in a controlled
environment.

Underwater vehicles for scientific surveys use navigation
sensors that provide pose estimates. This information can be
used to constrain and regularize the underwater structure from
motion problem. In previous work [19] [20] we show in detail
how to improve the search for corresponding features between
images. In addition, we use navigation sensors to provide
estimates of baseline magnitude and to select a unique solution
in cases where imagery provides multiple valid solutions.

B. Imaging Platform

The Seabed AUV acquired the field data used in this thesis
(Figure 1). The vehicle was designed as a calibrated and
pose-instrumented platform for underwater imaging. Seabed
is capable of maneuvering at slow speed and passively stable
in pitch and roll. The vehicles specifications are summarized
in Table I. Seabed collected the field data used in this paper
following survey patterns preprogrammed as a mission and
executed in dead-reckoning mode. The vehicle makes acoustic
measurements of both velocity and altitude relative to the
bottom. Absolute orientation is measured within a few degrees
using a magneto-inductive compass and inclinometers, while
depth is obtained from a preseeure sensor.

Vehicle
Depth rating 2000 meters
Size 2.0 m (L) × 1.5 m (H) × 1.5 m (W)
Mass 200 kg
Maximum Speed 1.2 m/s
Batteries 2 kWh Li-ion pack
Propulsion four 150 W brushless DC thrusters
Navigation
Attitude+Heading Tilt ±0.5◦, Compass ±2

◦

Depth Paroscientific pressure sensor, 0.01%
Velocity RDI Navigator ADCP ±1 − 2mm/s
Angular rates Crossbow 3-axis gyro
Altitude RDI Navigator
Optical Im.
Camera Pixelfly 12bit 1280×1024 CCD
Lighting one 200 Ws strobe
Separation 1m between camera and light
Acoustic Im.
Sidescan sonar MST 300 kHz (300 m depth rating)
Pencilbeam sonar Imagenex 881 675 kHz
Other Sensors
CTD Seabird 37SBI

TABLE I

SUMMARY OF THE SEABED AUV SPECIFICATIONS.

Fig. 2. Flowchart of structure and motion recovery from underwater
imagery. An image sequence is processed into short submaps of
structure and motion aided by navigation information. Submaps are
then matched to infer and refine additional spatial constraints (such
as loop closures and parallel tracklines). An initial guess of poses
and structure in a global frame is then used to perform a final bundle
adjustment.

C. Outline

Our methodology (Figure 2) takes a local-to-global ap-
proach inspired by mosaicing [21] and structure from motion
(SFM) [11] [22] but takes advantage of navigation and attitude
information. Local subsequences are derived independently
and then registered in a global frame for bundle adjustment.
Our approach seems more suitable than pure sequential meth-
ods [23] because in an underwater survey each 3D feature
appears only in a few images making the global solution more
like a series of weakly correlated local solutions.

The following section briefly describes our approach fo-
cusing on feature extraction and description, robust two view
relative pose estimation, submap generation, topology explo-
ration and local to global registration. The last section presents
results from a coral reef survey and validation of the proposed
framework by tank experiments with ground truth.



II. ALGORTHIM DESCRIPTION

Our description follows the block diagram presented in
Figure ??.

A. Feature Extraction and Description

We relate images using a feature-based approach under
wide-baseline imaging conditions with changing illumination
and unknown scene structure. A modified Harris corner detec-
tor [24] yields interest points by selecting local maxima of the
smaller eigenvalue of the second moment matrix. We extract
features by determining a neighborhood around each interest
point that is invariant to affine geometric transformations using
a modified version of the method proposed by Tuytelaars [25].
In essence, we sample the neighborhood along lines radiating
from the interest point. For each line we select the extrema of
an affine invariant function (maximum difference in intensities
between the interest point and points along the ray). The set
of these maximal points defines the boundary of a region that
can be extracted under affine geometric transformations. This
region is approximated with an elliptical neighborhood which
is then mapped onto the unit circle. These circular patches are
normalized for affine photometric invariance (Figures 3 and
4).

Features are then represented compactly using moment-
based descriptors [26], which have shown promise in describ-
ing image regions for matching purposes. We chose to use
Zernike moments as descriptors as they are compact (generated
from an orthogonal complex polynomials) and highly discrim-
inating [27] [15]. Typical applications only use the magnitude
of Zernike moments as this provides rotational invariance, but
we can pre-compensate for orientation using attitude sensors
and therefore utilize the full complex moments.

For feature matching we derive the proper weighting of the
Zernike moments such that the dot product of the vector of
weighted moments approximates the correlation score for the
original patches (warped into a disc) [28].

Tests with real data demonstrate that the affine-invariant
features offer improved matching under wider viewing angles
(Figure 5).

B. Submap Generation

The core of the algorithm for SFM is based on robust
estimation of the essential matrix (Figure 6) [19]. Similarity of
descriptor vectors is used to propose correspondences between
features.

The navigation-based estimates of inter-image motion and
vehicle altitude are used to limit possible correspondences
(Figure 7) by propagating pose and altitude uncertainties
through the two view point-transfer equation [20].

A modified version of RANSAC [29] determines the cor-
respondences which are consistent with that essential matrix
and the essential matrix consistent with the inliers (Figure
??). In cases of multiple valid solutions the solution closest
to the navigation-based prior in the Mahalanobis sense is
selected. The inliers and the essential matrix estimate are used
to produce a maximum a posteriori estimate of relative pose

Fig. 3. Affine invariant regions extracted using a modified version
of the method proposed by Tuytelaars. Only regions that are found
in correspondence are shown.

with the navigation-based estimates as a prior. The solution
includes the triangulated 3D features (Figure 9).

In cases where scene elements are viewed in three (or
more) views the algorithm attempts to obtain the pose of the
third view by robust resection [29] (Figure 10), otherwise the
two view essential matrix estimation is used. The submap
is generated by incorporating each image in the temporal
sequence by resection or two view estimation until a maximum
number of 3D features have been instantiated. The submap is
then closed and bundle adjusted. We use submaps with 1500
to 2000 3D features as a compromise between the complexity
of individual submap bundle adjustment and the complexity of
the network of submaps formed (and the number of submap
matching operations).

C. Global Representation

The temporal sequence of images is processed into a set
of 3D submaps with estimates of coordinate transformations
between temporally adjacent submaps. This can be viewed as
a graph where each node is the origin of a submap and the
edges in the graph are the coordinate transformations between
submaps (Figure 11). Our algorithm attempts to establish ad-



Fig. 4. Detail of some of the extracted regions in figure 3. The actual
border samples are connected with red lines. The elliptical region that
approximates the border samples is shown in green.
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Fig. 5. For the matches considered inliers it is possible to calculate
the viewing angle change between each camera to the feature. For
all matches, across all pairs in the trial (over 350), we show the
number of inliers as a function of viewing angle. For narrow-baseline
conditions (angles of 10◦ or less) both regions behave similarly. For
larger viewing angles the affine invariant region (green) outperforms
the fixed window (blue).

ditional spatial relationships between submaps (corresponding
to overlap from parallel tracklines or loop closures). This
is performed by placing submaps in a common reference
frame by composing transformations along paths of minimum
uncertainty using Dijkstra’s algorithm [30].

Submaps must be matched in order to establish new edges
in the graph. Registering two sets of 3D points with unknown
correspondences is traditionally performed with Iterative Clos-
est Point (ICP) techniques [31]. In its strictest sense, ICP is
only a refinement of the transformation between two sets of
3D points that are already relatively well aligned and in which
all points in one set have a match in the other.

While the sparse set of 3D points contained in the submaps
do not consistently offer discriminating structure, the very fact
that they exist as 3D points implies that their appearance in
multiple views (Figure 12) is characteristic enough to effec-
tively establish correspondences (and be reconstructed by the
SFM algorithm). We therefore extend the feature description
and similarity based matching between images to matching
submaps by relying on the appearance of 3D points to propose
corresponding features between submaps. The average of the
descriptors of the 2D neighborhoods on all views is used as

Fig. 6. Overview of our approach to relative pose estimation from
instrumented and calibrated platforms. Unshaded blocks represent
additional information compared to the uninstrumented/uncalibrated
case. Given two images, we detect features using the Harris interest
point detector. For each feature we then determine search regions in
the other image by using sensor based pose and depth information.
Putative matches are proposed based on similarity and constrained by
regions. We then use RANSAC and the proposed 6-point algorithm to
robustly estimate the essential matrix which is then decomposed into
its proper motion parameters. The pose is then refined by minimizing
the reprojection error over all matches considered inliers.

the appearance of the 3D point. The underlying assumption
is that a similarity measure which was effective to match
3D points along track will also be effective when matching
across submaps. Corresponding 3D points are proposed based
on appearance and a robust registration using RANSAC with
Horn’s algorithm [32] is used to determine which points are
in correspondence and the transformation parameters (Figure
13).

The search of additional links continues until no links are
left to check or an upper limit is reached (typically 8N ). The
submaps are then placed in a global frame by minimizing
the descrepancies between composed global estimates and
the transformations between submaps. Additional cost terms
consider the navigation prior.

Once subamps are in a global frame, camera poses within
submaps can also be placed in the global frame. These camera
poses are then used to triangulate the location of 3D features.
Sparse bundle adjustment [33] [9] then refines both camera
poses and 3D feature locations.

To illustrate this process we present in Figure 14 the
resulting structure from a survey performed in the Johns
Hopkins University (JHU) Test tank. The tank had a carpet
drapped over the bottom and real and artificial rocks of varying
size placed on the bottom to simulate an underwater scene
with considerable 3D structure. The evolution of the submap
graph for that reconstruction is conveyed in Figure 15 while
the reprojection errors for the structure is presented in Figure
16.



Fig. 7. Prior pose restricted correspondence search on a pair of
underwater coral reef images. (left) Interest points are shown in blue.
A sampling of interest points (yellow) is transfered to the right image.
(right) The 99% confidence regions for the transfered points based on
the pose prior and depth standard deviation of 0.75m. The candidate
interests points which fall within these regions are highlighted in
yellow.

III. VALIDATION AND RESULTS

A. JHU Tank Structure ground truth

For validation purposes the tank used in Figure 14 was
drained and scanned with a Leica Geosystems - HDS2500
(serial number P24) laser scanner. The registered model of
the tank has more than 3.8 million points with an estimated
accuracy of 1.2 mm. The surface area was approximately 41m2

resulting, on average on 9 range measurements for each cm2

of the bottom.
We initially aligned SFM reconstruction with the laser data

by selecting easily recognizable landmarks (Figure 17) and
then refined through ICP. The carpet was slightly buoyant
underwater and was kept on the bottom by multiple lead
weights and that after the tank was drained the carpet settled
under its own weight. We attempted two registration strategies
to overcome the non-rigid transformation between surfaces:
using only points belonging to rocks to register (segmenting
by height under the assumption that the rocks in the scene
did not move), and performing ICP based on the points
with registration errors below the median error (under the
assumption that at least half the points remained fixed). Results
were very similar for both strategies and we present the
median-based approach since it highlights regions where the

Fig. 8. Epipolar geometry and correspondences. The given image pair
illustrates the MAP refined image-based epipolar geometry. RANSAC
determined 398 consistent inliers designated ‘x’, from the putative set
of 405 matches. The rejected outliers are designated ‘o’.
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Fig. 9. Triangulated inliers for the pair in figure 8. Coordinates in
meters, in the reference frame of the first camera.



(a) (b)

(c)

(d) (e) (f)

Fig. 10. Illustration of growth of a submap based on resection.
Images (a) and (b) have corresponding features marked by green
dots. The structure and motion implied by those correspondences
is illustrated in (d) with units in meters. Images (b) and (c) have
correspondences marked by red circles. The features viewed by the
three images are marked by both a green dot and a concentric red
circle. (e) These features are used in resection to initialize the pose
of the third camera. (f) Then the additional correspondences between
(b) and (c) are triangulated and the poses refined.

(a) (b) (c)

Fig. 11. Placing nodes (Gray circles) in a globally consistent frame.
From relative transformations (black links) in a temporal sequence
(a), to proposing and verifying new additional links (b) to a network
with nodes consistent with the relative transformations (c).
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Fig. 12. Multiple views of a 3D feature: the image and the feature
neighborhood (left, extracted as described in §??) and a detail of
around the feature point (right column). The top two rows correspond
to images that belong to a submap on the first trackline of the survey,
the bottom two rows are from a submap from the second trackline.
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the survey.



Fig. 14. Two views of the reconstruction of poses and structure for the
JHU tank. The camera poses are connected by a red line. A Delaunay
triangulation interpolates a surface between 3D feature points. The
structure is color-coded according to height. Units are in meters.

carpet moved.
Figures 18 and 19 indicate that the registration errors are

of the order of centimeter level with a 2% change in scale.
Though the tank is a relatively small scale reconstruction
problem, these results suggest that the approach is capable
of delivering reasonable estimates of scene structure.

By using points below the median error to calculate the
similarity transformation to register the SFM and laser data
we effectively segment the data into two halves, one of which
was allowed to deform while the other was not. It is interesting
to note from Figure 20 that most of the outliers correspond to
the broad carpet waves.

B. Bermuda survey

In August 2002 the Seabed AUV performed several tran-
sects on the Bermuda shelf as well as some shallow water
engineering trials. This section presents results from a shallow
water (20 m approx) area survey programmed with several
parallel tracklines for a total path length of approximately
200 m and intending to cover 200 m2. Due to very strong
swell and compass bias the actual path deviated significantly
from the assumed path. This data set illustrates the capabilities
to infer links in the graph of submaps to yield a consistent
reconstruction.

A section of 169 images demonstrates matching and recon-
struction along the temporal sequence and across track with
multiple passes over the same area. Figure 21 presents Delau-
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Fig. 15. (a) Order in which links across track were added to the graph.
The ‘zipper’ effect in parallel tracklines is apparent as links close in
time are established before more distant ones. (b) The number of
matching features between submaps. The closing of the loop can be
seen in the relatively high number of common features between the
first and last submaps. (c) The plane view of the submap origins
according to the shortest path algorithm: the temporal sequence
(fine black), the additional links (dot-dashed blue) and the shortest
uncertainty path from the origin node (wide gray).

nay triangulated surfaces trough the reconstructed points and
the camera trajectory. Plan views of the camera trajectory, the
links (common 3D features) between views and the uncertainty
in the xy position of the cameras are shown in figure 22.

Figure 23 shows features points and the convex hull of
the submaps. Spatial overlap between temporally adjacent
submaps is consistent while across track overlap is a function
of the trajectory followed by the vehicle.

IV. CONCLUDING REMARKS AND FUTURE WORK

We have presented a brief overview of a underwater struc-
ture from motion algorithm that takes advantage of vehicle
navigation estimates to constrain the image-based solution.
The assumed imaging configuration is quite restrictive and
makes the image matching problem particularly challenging.
This work will be extended to provide dense 3D reconstruc-
tions of the ocean floor, which in turn can lead to improved
imagery by range-based compensation of absorption.
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Fig. 22. (Left) Plan view of the camera trajectory (red) and common
features between cameras (green links). (Right) The 99% confidence
ellipses for the xy position of the cameras. Every tenth camera is
numbered on both figures to suggest the temporal sequence
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Convex hull of the 3D features of each submap. The varying degrees
of spatial overlap between submaps is apparent in these figures.
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