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Abstract— Recently, there have been a number of variant Si-
multaneous Localization and Mapping (SLAM) algorithms which
have made substantial progress towards large-area scalability
by parameterizing the SLAM posterior within the information
(canonical/inverse covariance) form. Of these, probably the most
well-known and popular approach is the Sparse Extended In-
formation Filter (SEIF) by Thrun et al. While SEIFs have been
successfully implemented with a variety of challenging real-world
data sets and have lead to new insights into scalable SLAM, open
research questions remain regarding the approximate sparsifica-
tion procedure and its effect on map error and consistency.

In this paper, we examine the constant-time SEIF sparsifi-
cation procedure in depth and offer new insight into issues
of consistency. In particular, we show that exaggerated map
inconsistency occurs within the global reference frame where
estimation is performed, but that empirical testing shows that
relative local map relationships are preserved. We then present a
slightly modified version of their sparsification procedure which
is shown to preserve sparsity while also generating both local
and global map estimates comparable to those obtained by
the non-sparsified SLAM filter; this modified approximation,
however, is no longer constant-time. We demonstrate our findings
by benchmark comparison of the modified and original SEIF
sparsification rule using simulation in the linear Gaussian SLAM
case and real-world experiments for a nonlinear dataset.

I. INTRODUCTION

Since its inception with the fundamental work of Smith
et al. [1] and Moutarlier and Chatila [2], roboticists have
been trying to address scalability issues associated with an
Extended Kalman Filter (EKF) based approach to SLAM.
While this approach is often considered the “standard” [3]
and is attractive in its simplicity (because it only requires
tracking first and second moments of the joint landmark-robot
distribution), a well known fact is that EKF SLAM inference
requires quadratic complexity in the number of landmarks
per update to maintain the joint-posterior correlations. As a
consequence, the direct application of the EKF to SLAM is
limited to relatively small environments (e.g., less than than
100 landmarks).

Recently, a new class of scalable SLAM algorithms have
been proposed by Thrun et al. [4], Paskin [5], and Frese
[6], [7] — all based upon the canonical-form which has
the nice interpretation as a Gaussian graphical model [5],
[8]. As Thrun et al. [4] empirically first showed, and Frese
later analytically proved [9], the inverse covariance matrix

(i.e., information matrix) of feature-based SLAM exhibits a
“natural” sparseness where many of the off-diagonal elements
(i.e., graphical constraints) are relatively “weak”. This insight
has spawned the development of scalable SLAM algorithms
founded upon pruning these weak constraints and exploiting
the resulting sparse representation [4], [5], [7].

For example, Paskin (Thin-Junction-Tree Filters) [5] and
Frese (Treemap Filters) [7] both employ tree-based approx-
imations to sparsify the canonical-form and have developed
very efficient inference algorithms for this representation.
One drawback to their techniques, though, is that their tree-
representations cannot explicitly model cyclic environments
nor has data association been addressed. Alternatively, the
Sparse Extended Information Filter (SEIF) proposed by Thrun
et al. [4], probably the most well known SLAM information
formulation, is based upon representing the SLAM posterior
through the dual of the EKF (i.e., an Extended Information
Filter). SEIFs maintain a sparse information matrix represen-
tation which has been demonstrated to be efficient, scalable,
allows for explicit representation of cyclic environments, and
addresses data association [10]. The delicate issue, however,
which is at the core of the SEIFs paper, is how to perform
the necessary sparsification step required to keep the informa-
tion matrix representation sparse by eliminating weak robot-
landmark constraints.

In the following, we explore in depth the approximation
employed by SEIFs to enforce sparseness. We show that a
particular assumption in SEIF’s sparsification derivation leads
to inconsistency of the global map error covariance estimates,
however, empirical testing indicates that local map relations
and relative uncertainties are preserved. In addition, we present
a slightly modified derivation which yields a sparsification rule
that is shown to produce both global and local map estimates
comparable to the full-covariance EKF while maintaining the
same sparse representation as SEIFs — however, sparsification
is no longer constant-time. We demonstrate our insights by
concluding with a benchmark comparison for a linear Gaus-
sian SLAM simulation and in addition present results for a
nonlinear experimental dataset.



II. BACKGROUND

Expanding the quadratic in the exponential of the Gaus-
sian random variable ξt ∼ N

(
µt,Σt

)
yields the canonical

parameterization ξt ∼ N−1
(
ηt,Λt

)
where ηt and Λt are the

information vector and information matrix, respectively [11].
Equation (1) shows how the two forms are mathematically
related while Table I expresses the dual relationship they have
with respect to marginalization and conditioning. For a general
discussion of the mechanics and properties of the ensuing
information filter the reader is referred to [4], [11].

Λt = Σ−1
t ηt = Λtµt (1)
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A. Controlling Feature-Based SLAM Sparsity
Most SLAM approaches are feature-based which assumes

that the robot can extract an abstract representation of features
in the environment from its sensor data and then use re-
observation of these features for localization [1]. In this ap-
proach a landmark map is explicitly built and maintained. The
process of concurrently performing localization and feature
map building are inherently coupled, therefore, the robot must
then represent a joint-distribution over landmarks and current
pose, i.e.,

p(ξt | zt,ut) = N
(
µt,Σt

)
= N−1

(
ηt,Λt

)
(2)

where ξt = [x>t ,M
>]> represents the current robot state

and landmark map respectively, zt are the measurements,
and ut the control inputs. In (2) we have explicitly modeled
this distribution as being jointly-Gaussian based upon additive
white noise models and first-order linearizations of our process
and observation models as described in [1], [4]. The key
behind scalable SLAM algorithms in the canonical-form is
based upon the insight that the information matrix Λt naturally
tends to exhibit strong and weak constraints as shown in Fig. 1.

What Thrun et al. [4] insightfully observed was that the
time-projection step is the cause for creating these weak
constraints, and furthermore that by bounding the number of
nonzero off-diagonal elements linking the robot to landmarks,
that they could eliminate the generation of many of these weak
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Fig. 1. A comparison of the structure of the covariance and information
matrices as is typically seen in feature-based SLAM implementations; darker
shades represent larger magnitudes. (left) The correlation matrix is dense and
requires quadratic storage. (right) The normalized information matrix exhibits
“natural” sparsity with a majority of the elements being orders of magnitude
smaller than the few dominant entries.

links and enforce exact sparsity in the information matrix.
Their concept was to partition the landmark map variable M
(i.e., M = {m+,m−}) into a set of active features m+ (i.e.,
those with a nonzero off-diagonal element linking them to the
robot xt) and a set of passive features m− (i.e., those with no
link to xt). They showed that by enforcing an upper bound
on the number of active features m+, that they could control
the resulting fill-in of the information matrix.

A simple explanation for the effectiveness of their strategy
comes from viewing motion prediction as a two-step process
of state augmentation of xt+1 followed by marginalization
over xt. Referring to Fig. 2(a) we see that filtering naturally
tends to fill-in the information matrix by creating new links
between all active features through elimination of xt (see
Table I for details of marginalization in the information form)
while passive features remain unaffected; for a more in depth
discussion of this phenomenon the reader is referred to [5],
[12]. Insightfully, as Fig. 2(b) shows, we can control the
active feature fill-in of the information matrix by bounding the
number of links connected to xt before marginalization occurs.
This key insight motivates the concept behind sparsification
which is the process of how we remove these links to satisfy
our active feature bound.

Before moving on to discuss how SEIFs actually enforce
the upper bound on the number of active features, it will
prove useful to first elucidate the conditional independence
relationship implied by active and passive features.

B. Implied Conditional Independence
A very useful property of the canonical-form is that the in-

formation matrix has the direct interpretation as a non-directed
Bayes Net [13] where: random variables are nodes, non-
zero off-diagonal elements are edges/constraints, and zero-
valued off-diagonal elements are missing edges implying avail-
able conditional independencies [8]. Applying this property
to SEIF’s partitioning of landmarks into active and passive
features, we see that Fig. 3 correctly illustrates the resulting
block information matrix and non-directed Bayes net for the
SEIF SLAM posterior over robot and features. In particular,
Fig. 3 clearly shows that there is a missing edge between the
robot xt and the passive features m− implying that the two
are conditionally independent given the active features m+.
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Fig. 2. A graphical explanation of SEIF’s methodology for controlling
sparsity in the information matrix. (a) A sequence of illustrations depicting
the evolution of the Bayes Net and corresponding information matrix resulting
from time projection when viewed as a two-step process of state augmentation
followed by marginalization. Gray shades imply magnitude with white being
exactly zero. From left to right we have: (1) the robot xt connected to four
active features, m1:3 and m5; (2) state augmentation of the time-propagated
robot pose xt+1; (3) marginalized distribution where the old pose, xt, has
been eliminated. (b) A sequence of illustrations highlighting the concept
behind sparsification. If feature m1 can first be made passive by eliminating
its link to the old pose, xt, then marginalization over xt will not link it to
any of the other active features. This implies that we can control fill-in of the
information matrix by bounding the number of currently active features.
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Fig. 3. An illustration of SEIF’s concept of active and passive features
and their relation to the robot. (left) A schematic of the block 3 × 3 SEIF
information matrix. Dark squares correspond to nonzero block-elements while
white squares corresponds to exactly zero block elements. (right) The SEIFs
information matrix expressed as a non-directed Bayes-Net. The missing edge
between xt and m− implies available conditional independence.

Mathematically, we can also easily prove this rela-
tionship by noting that conditional independence for a
Gaussian distribution implies that the conditional posterior
p(xt,m

− | m+, zt,ut) must have a block-diagonal covari-
ance matrix. In the information form, conditioning on the

active features m+ corresponds to simply extracting the
{xt,m−} sub-block from the information matrix Λt (see
Table I). Referring again to Fig. 3, we note that extracting this
sub-block results in a block-diagonal conditional information
matrix over xt and m− whose inverse is a block-diagonal
covariance matrix, thus, conditional independence is proved.

As we show next, we can exploit this conditional indepen-
dence relationship to derive a sparsification rule which allows
us to bound the number of active features.

III. SPARSIFICATION

In feature-based SLAM, landmarks become active through
observation causing them to become linked to the robot
through a shared off-diagonal constraint — this constraint
decays over time if the landmark is not re-observed, but
will never become exactly zero (i.e., passive) unless it is
“sparsified”. Sparsification refers to the operation where these
weak robot-landmark constraints are pruned and features are
made passive. It is a useful approximation which allows
sparsity to be enforced in the information matrix by bounding
the number of active features as described in §II-A.
A. SEIF Sparsification Rule

Sparsification is required whenever the active feature thresh-
old is exceeded through landmark observation. SEIF’s strategy
for sparsification is based upon partitioning the landmark map
M into a union of three disjoint sets M = {m0 ∪m+ ∪m−}
where in a slight abuse of our previous notation: m− are
the currently passive features which will remain passive after
sparsifying, m+ are the currently active features which will
remain active after sparsifying, and m0 are the currently active
features which will become passive after sparsifying.

We begin our derivation of the SEIF sparsification approxi-
mation by factorizing the SLAM posterior over the robot and
map as:
p
(
xt,m

0,m+,m−
)

= p
(
xt | m0,m+,m−

)
p
(
m0,m+,m−

)
(3a)

= p
(
xt | m0,m+,m− = α

)
p
(
m0,m+,m−

)
(3b)

where for notational convenience we have omitted explicitly
writing out the conditioning on zt and ut. The above factoriza-
tion uses the available conditional independence discussed in
§II-B between the robot and passive features to arbitrarily as-
sign a value to the passive features in the conditional (3b) (i.e.,
m− = α) without influencing the conditional robot posterior
(i.e. p

(
xt | m0,m+,m−

)
≡ p
(
xt | m0,m+

)
). Note that in

the derivation presented in [4] α is simply set to zero while
we leave it a free parameter for the purposes of exposition.

The SEIF sparsification approximation is derived from (3b)
by imposing that m0 be passive via dropping it from the robot
posterior as
p̃SEIFs

(
xt,m

0,m+,m−
)

= p
(
xt | m+,m− = α

)
p
(
m0,m+,m−

)
(4a)

=
pB
(
xt,m

+ | m− = α
)

pC
(
m+ | m− = α

) pD
(
m0,m+,m−

)
(4b)



where (4b) merely expresses the conditional of (4a) as a
ratio and the subscripts pB , pC , pD are used for notational
convenience to reference the different pdfs involved in its
calculation. While the factorization expressed in (3b) is the-
oretically exact due to the conditional independence between
xt and m− given the active features, equation (4) is in error
because xt is no longer conditionally independent of m−

given only a partial set of the active features (i.e., the set of all
active features is m0 ∪m+). This implies that the particular
value of α we choose modifies the posterior approximation.

Equations (5)–(8) summarize the SEIF sparsified posterior
(4) as expressed in both covariance and information form —
due to space limitations we omit their derivation and only
present the resulting expressions. For ease of comparison we
use the same notation as [4] where S denotes a projection
matrix over the state space ξt (e.g., xt = S>xtξt extracts the
robot pose). Note that the mean update in equation (6) clearly
shows that the original mean vector µt is modified during
the sparsification step for values of α 6= S>m−µt indicating
α’s influence on the term p

(
xt | m+,m− = α

)
used in the

approximation (4)1.
Covariance Form

Σ̃t =
(
Sxt,m+Σ−1

B S>xt,m+ − Sm+Σ−1
C S>m+

+ Sm0,m+,m−Σ−1
D S>m0,m+,m−

)−1 (5)
µ̃t = µt + Σ̃t

(
Sxt,m+Σ−1

B S>xt,m+ − Sm+Σ−1
C S>m+

)
×

ΣtSm−
(
S>m−ΣtSm−

)−1(
α− S>m−µt

)
(6)

where

ΣB = S>x,m+

“
I− ΣtSm−

`
S>m−ΣtSm−

´−1
S>m−

”
ΣtSx,m+

ΣC = S>m+

“
I− ΣtSm−

`
S>m−ΣtSm−

´−1
S>m−

”
ΣtSm+

ΣD = S>m0,m+,m−ΣtSm0,m+,m−

Information Form

Λ̃t = Sxt,m+ΛBS
>
xt,m+

− Sm+ΛCS
>
m+ + Sm0,m+,m−ΛDS

>
m0,m+,m− (7)

η̃t = Sxt,m+ηB − Sm+ηC + Sm0,m+,m−ηD (8)

where

ηα = ΣtSm−α

ΛB = S>xt,m+

“
I− ΛtSm0

`
S>m0ΛtSm0

´−1
S>m0

”
ΛtSxt,m+

ηB = S>xt,m+

“
I− ΛtSm0

`
S>m0ΛtSm0

´−1
S>m0

”
(ηt − ηα)

ΛC = S>m+

“
I− ΛtSxt,m0

`
S>xt,m0ΛtSxt,m0

´−1
S>xt,m0

”
ΛtSm+

ηC = S>m+

“
I− ΛtSxt,m0

`
S>xt,m0ΛtSxt,m0

´−1
S>xt,m0

”
(ηt − ηα)

ΛD = S>m0,m+,m−

“
I− ΛtSxt

`
S>xtΛtSxt

´−1
S>xt

”
ΛtSm0,m+,m−

ηD = S>m0,m+,m−

“
I− ΛtSxt

`
S>xtΛtSxt

´−1
S>xt

”
ηt

1The expression for the sparsified information vector as presented in [4]
corresponds to setting α = S>

m−µt, (i.e., the mean of the passive features)
and not α = 0 as stated in their paper.

B. Modified Sparsification Rule
In the previous section we showed that the derivation of the

SEIF sparsification rule introduces a conditioning on a specific
realization of the passive features — i.e., their mean estimate.
This conditioning influences the outcome of the sparsification
approximation and in particular can modify the resulting mean
estimate as evident by the functional dependence on α in
(6). In the following we show that we can easily modify the
original SEIFs approximation to derive a more correct version
of the sparsification rule by explicitly using xt’s conditional
independence of the passive features m− to drop its depen-
dence. This modified version of the SEIFs sparsification rule
will be shown to preserve the state mean and, as demonstrated
in §IV, provide a high fidelity approximation yielding results
comparable to the full-covariance EKF.

We begin by factorizing the posterior p
(
xt,m

0,m+,m−
)

using Bayes rule like in equation (3a) of the SEIF derivation,
but this time we explicitly employ the available conditional
independence between the robot and passive features given the
active features which allows us to drop m− from the posterior
over xt as

p
(
xt,m

0,m+,m−
)

= p
(
xt | m0,m+,m−

)
p
(
m0,m+,m−

)
(9a)

C.I.
= p

(
xt | m0,m+

)
p
(
m0,m+,m−

)
(9b)

=
p
(
xt,m

0 | m+
)

p
(
m0 | m+

) p
(
m0,m+,m−

)
(9c)

The posterior factorization shown above is exact where for
convenience equation (9c) merely re-expresses the conditional
over xt in (9b) as a ratio. To obtain the sparsified posterior
approximation, we now impose conditional independence be-
tween xt and m0 as

p̆MODRULE
(
xt,m

0,m+,m−
)

=
p
(
xt | m+

)
p
(
m0 | m+

)

p
(
m0 | m+

) p
(
m0,m+,m−

)
(10a)

= p
(
xt | m+

)
p
(
m0,m+,m−

)
(10b)

=
pU
(
xt,m

+
)

pV
(
m+

) pD
(
m0,m+,m−

)
(10c)

where again for convenience equation (10c) simplifies the
sparsified posterior to a ratio of marginals and the subscripts
pU , pV , pD are used to notationally reference the different
pdfs involved. As equations (10a)–(10b) show, sparsification
is equivalent to imposing conditional independence, which in
turn is equivalent to dropping dependence on the set of features
we wish to deactivate (i.e., m0). The resulting modified
sparsification rule is summarized by equations (11)–(14) which
express it in both covariance and information form.
Covariance Form

Σ̆t =
(
Sxt,m+Σ−1

U S>xt,m+ − Sm+Σ−1
V S>m+

+ Sm0,m+,m−Σ−1
D S>m0,m+,m−

)−1 (11)
µ̆t = µt (12)



where

ΣU = S>xt,m+ΣtSxt,m+ ΣV = S>m+ΣtSm+

ΣD = S>m0,m+,m−ΣtSm0,m+,m−

Information Form

Λ̆t = Sxt,m+ΛUS
>
xt,m+ − Sm+ΛV S

>
m+

+ Sm0,m+,m−ΛDS
>
m0,m+,m− (13)

η̆t = Sxt,m+ηU − Sm+ηV + Sm0,m+,m−ηD (14)

where

ΛU = S>xt,m+

“
I− ΛtSm0,m−×
`
S>m0,m−ΛtSm0,m−

´−1
S>m0,m−

”
ΛtSxt,m+

ηU = S>xt,m+

“
I− ΛtSm0,m−

`
S>m0,m−ΛtSm0,m−

´−1
S>m0,m−

”
ηt

ΛV = S>m+

“
I− ΛtSxt,m0,m−×
`
S>xt,m0,m−ΛtSxt,m0,m−

´−1
S>xt,m0,m−

”
ΛtSm+

ηV = S>m+

“
I− ΛtSxt,m0,m−×
`
S>xt,m0,m−ΛtSxt,m0,m−

´−1
S>xt,m0,m−

”
ηt

ΛD = S>m0,m+,m−

“
I− ΛtSxt

`
S>xtΛtSxt

´−1
S>xt

”
ΛtSm0,m+,m−

ηD = S>m0,m+,m−

“
I− ΛtSxt

`
S>xtΛtSxt

´−1
S>xt

”
ηt

In particular, note that equation (12) shows that the modified
sparsification rule clearly maintains the mean estimate. Fur-
thermore, as seen by careful inspection of the projection matri-
ces involved in equation (13), it simultaneously deactivates the
map features m0 (i.e., Sxt,m+ only populates the robot/active
feature sub-block of the resulting information matrix Λ̆t).
However, a major drawback to the modified rule’s correctness
is that sparsification is no longer a scalable operation as
evident by the expressions for ΛU and ΛV which require large
matrix inversions over the passive features m−.

IV. RESULTS

In this section we investigate the implications associated
with the different sparsification rules by considering two differ-
ent scenarios in which we compare the sparsified information
filters to that of the standard Kalman Filter (KF) formulation.
In the first scenario we consider a linear Gaussian (LG)
SLAM simulation in which the KF is the optimal Bayes
estimator and provides a benchmark measure against which
to compare the different sparsification routines. Subsequently,
in the second scenario we test the algorithms on a real-world
indoor nonlinear dataset to understand their performance in
practice.

A. Linear Simulation
In an effort to compare the effects of the two sparsification

strategies in a controlled manner, we start by applying the three
estimators to a synthetic dataset. The vehicle motion is purely
translational, generated by a linear, constant-velocity model
corrupted by additive white Gaussian noise. As the robot

moves around in the environment, it measures the relative
position of local point features, again perturbed by white noise.
The desired sparsity is expressed by limiting the number of
active features to ten percent of the total number of landmarks
in the environment. As the simulation has been restricted to LG
SLAM, we can compare the effects of the two sparsification
routines relative to the optimal Kalman Filter.

To test the consistency between the different filter un-
certainties and the true state estimation errors, we use the
normalized estimation error squared (NEES) [11] computed
based upon a series of Monte Carlo simulations and two
different error metrics. The first metric relates the ground truth
to the direct output of the filters and provides a measure of
global error. The second metric computes the state estimate
as expressed relative to the first feature that was observed xm
via the standard compounding operation: xmi = 	xm ⊕ xi
and provides a measure of local/relative error. Fig. 4(a) and
Fig. 4(c) compare the two error metrics for the vehicle position
NEES score for the KF and information filters. Similarly,
Fig. 4(b) and Fig. 4(d) show the normalized errors for a
single map feature and are representative of the performance
for other map elements. The horizontal threshold signifies the
97.5% upper bound for the chi-square test. Looking at the
estimate of vehicle and map positions in the world frame,
the modified-rule yields errors nearly identical to those of the
KF not only in regards to magnitude, but also behavior over
time. In comparison, the SEIF global errors are seen to be
noticeably larger, though in contrast, the normalized relative
errors are roughly equivalent to those of the KF and modified
filter. This apparent discrepancy is indicative that the relative
map estimates for all three filters have converged while the
global SEIF estimate has an absolute state estimate which is
inconsistent.

We can gain further insight into the consequences of spar-
sification by looking at the covariances associated with each
filter. Fig. 5 provides a histogram comparing the ratio of
determinants of the absolute and relative feature covariance
matrices for the KF to those of the information filters. To aid
in interpreting the ratio as a metric: values of one represent
ideal, while those larger than one indicate the amount of over-
confidence. For both map representations, we see that the two
sparsified uncertainty measures are over-confident with respect
to those of the standard KF and, in turn, are inconsistent with
the true estimation error. However, the difference in magnitude
between the confidence regions associated with the modified-
rule and the standard KF are nearly negligible in both a global
and local sense while the SEIF rule has absolute uncertainty
which is significantly more over-confident2. Upon referencing
the state estimates relative to the first observed feature, though,
the SEIF covariance matrix reflects nearly the same estimate
of uncertainty as the KF and the modified-rule. Note that in the
process of root-shifting the map to the first feature, the original
world origin is now included as a state element. While the

2The exception is with the first feature added to the map which is the source
of the outliers shown in the plots in Fig. 5(a).
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Fig. 5. The KF estimates of feature uncertainty as a fraction of the
uncertainties obtained using the SEIF and modified-rule. In particular, we
show histograms over the ratio of determinants for the map element covariance
matrix sub-blocks. The uncertainties depicted in (a) are computed directly
from the absolute covariances maintained by the filters. The histograms
in (b) describe the relative map determinants for the covariance matrices
corresponding to the state as expressed relative to the first observed feature.
Ratios greater than one indicate that both sparsification methods result in
estimates of feature position which are over-confident. However, the modified-
rule produces uncertainty estimates which are comparable to those of the KF
for both the absolute and relative maps. On the other hand, SEIF maintains
absolute estimates which are significantly over-confident while the relative
uncertainty estimates are approximately equivalent to those of the KF and
modified-rule. In both plots in (a), the outlier nearest to one is that of the first
mapped feature. The outlier shown in the SEIF histogram in (b) corresponds
to the representation of the original world origin in the root-shifted reference
frame and is a consequence of the over-confident absolute map.

world origin uncertainty estimate for the modified-rule agrees
with those of the rest of the relative map estimates, the same
is not true for the SEIF’s uncertainty measure of the world-
origin as indicated by the outlier in Fig. 5(b). This indicates
that while the relative SEIF map estimate has converged, its
estimate of the global world origin remains inconsistent.

The effect of sparsification on the covariance estimates is
consistent with what is observed with the normalized errors.
Though there is little difference between the three sets of
feature position estimates, the errors for the absolute SEIF
map are larger due to the higher confidence attributed to the
estimates. In the case of root-shifting the state, the negligible
difference that we see between a feature’s auto-covariance sub-
block for the relative map leads to nearly identical normalized
errors.

B. Experimental Validation
Simulations are helpful in investigating our findings without

having to take into consideration the effects of linearization.
More often than not, though, real-world SLAM problems
involve nonlinear vehicle motion and perception models and
include noise which is not truly Gaussian. For that reason, we
tested the estimation algorithms on a typical, nonlinear dataset.

For our experimental setup, depicted in Fig. 6, a wheeled

Fig. 6. Photograph of experimental setup on MIT tennis court with hurdles.
Ground truth is determined from the court baselines.

robot was manually driven in an environment consisting of
a set of 64 track hurdles positioned on four adjacent tennis
courts which provide ground truth for the experiment. The
vehicle made observations of the environment using a SICK
laser range finder and was equipped with wheel encoders
for determining the motion control inputs. The problem of
correctly pairing measurement data with the corresponding
hurdle was addressed offline and, thus, data association is
identical for each SLAM filter. Under our feature-based repre-
sentation, each hurdle serves as an individual coordinate frame,
parameterized by a base leg position and its orientation.

An Extended Kalman Filter (EKF) is applied concurrently
with the two information filters, relying upon the sparsification
routines to maintain a limit of ten active features. The resulting
state estimates exhibit much the same behavior as we see in
the LG SLAM case with the contrasting absolute and relative
performance of the SEIF. This is perhaps best revealed by the
SLAM maps generated by the three filters. In Fig. 7(a) we
provide plots of the SLAM maps in terms of the global state
representation. Enforcing sparsity with the modified-rule leads
to estimates of both feature pose and uncertainty which exhibit
negligible difference from the results of the EKF. As in the
LG simulation, the SEIF yields global map estimates which
are inconsistent as a majority of the true hurdle positions fall
well outside the three-sigma uncertainty regions. Alternatively,
root-shifting the map relative to the first feature instantiated
into the map, as depicted in Fig. 7(b), reveals that both
sparsified filters as well as the EKF maintain relative posteriors
which are very similar.

V. DISCUSSION

Both the simulated and nonlinear experimental datasets re-
veal that the modified sparsification rule yields error estimates
which are nearly identical to those of the standard EKF in
both a global and local sense, while the SEIF estimate is only
comparable locally. Despite its advantages, close inspection
reveals that the modified-rule estimates are still slightly over-
confident with respect to the KF. This section seeks to explain



the cause of this inconsistency.
Instructively, it can be shown that this inconsistency is a

natural result of the fact that the sparsification routine imposes
conditional independence between the robot and the deacti-
vated features m0. To illustrate this, consider a general three
state distribution, p(a, b, c) = p(a|b, c)p(b, c) and its sparsified
approximation where any possible dependence between a and
b is ignored

p̃(a, b, c) = p(a|c)p(b, c) (15)

To understand the effect of this approximation on LG SLAM
suppose the true distribution is given by

p(a, b, c) =

N





µa
µb
µc


 ,




σ2
a ρabσaσb ρacσaσc

ρabσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c




 (16)

Applying the sparsification approximation of (15) we have

p̃(a, b, c) =

N





µa
µb
µc


 ,




σ2
a ρacρbcσaσb ρacσaσc

ρacρbcσaσb σ2
b ρbcσbσc

ρacσaσc ρbcσbσc σ2
c




 (17)

A necessary and sufficient condition for the approximation
to be consistent is that the covariance matrices obey the in-
equality, Σ̃−Σ ≥ 0 [14]. A sufficient condition test for positive
semi-definiteness is that the determinant of all upper left sub-
matrices be positive [15]. Applying this test we see that (17),
does not, in general, satisfy the positive semi-definiteness
condition because the determinant of the upper left 2 × 2
of Σ̃− Σ (i.e., det

[ 0 (ρacρbc−ρab)σaσb
(ρacρbc−ρab)σaσb 0

]
) is less

than zero for ρacρbc 6= ρab. Hence, extending this insight we
see that imposing conditional independence between the robot
and the deactivated features, m0, results in an approximation
to the joint posterior which is inconsistent. Therefore, though
the modified-rule estimates are comparable to the KF, this
explains the cause of their slight over-confidence.

VI. CONCLUSION

In conclusion, recent novel insights into the canonical
formulation of SLAM have revealed sparseness as a “natural”
characteristic of the information parameterization and have
lead to promising new research into scalable algorithms. Many
of these new approaches are founded upon pruning relatively
weak constraints in the information form to achieve exact
sparsity. The delicate issue these methods must deal with then
is “how to approximate the posterior with an exactly sparse
representation in a consistent manner?”

In this paper, we have demonstrated that the method of
enforcing sparsity employed by SEIFs leads to an inconsistent
absolute map, while empirical testing indicates that the relative
map relationships are preserved. We then showed that by
exploiting the conditional independence between the robot and
the passive features given the active map, that a new modified
version of the SEIF sparsification rule can be derived. It was

shown that this modified-rule yields a sparsified posterior
comparable to that of the EKF in regards to the mean and
uncertainty estimates for both the absolute and relative maps.
Unfortunately, this accuracy comes at a cost as the modified
rule requires the inversion of a matrix of the size of the number
of passive features and, thus, is no longer constant-time.

Furthermore, despite the modified-rule’s accuracy with re-
spect to the KF, LG SLAM simulation results indicate that both
sparsification routines lead to over-confident state estimates.
We investigated the cause of this inconsistency in §V and
concluded that this over-confidence is a direct result of the
approximation by which the two filters achieve an exactly
sparse representation of the posterior. It appears then that a
computationally efficient and theoretically correct approxima-
tion for maintaining a sparse information matrix representation
for SLAM remains an open research task.
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Fig. 4. The normalized estimation error squared for the vehicle, (a) and (c), and one of the features, (b) and (d), as estimated based upon 20 linear Gaussian
Monte Carlo simulations. The horizontal line signifies the the 97.5% chi-square upper bound. The error shown in the top two plots, (a) and (b), corresponds
to a direct comparison of the filter estimates to the ground truth, and represents a measure of global consistency. In the bottom two plots, (c) and (d), we plot
the local normalized error computed relative to the first feature instantiated in the map: xmi = 	xm ⊕ xi. The larger global normalized error associated
with the SEIF is a result of an absolute state which is significantly over-confident. The relative map error, on the other hand, is nearly identical to that of the
modified-rule and KF, empirically indicating that the SEIF yields locally consistent estimates.

−20 −10 0 10 20

0

10

20

30

40

50

X (m)

Y 
(m

)

EKF

−4 −2 0 2
17

18

19

20

21

22

−20 −10 0 10 20

0

10

20

30

40

50

X (m)

Y 
(m

)

Modified Rule

−4 −2 0 2
16

18

20

22

−20 −10 0 10 20

0

10

20

30

40

50

X (m)

Y 
(m

)

SEIF

−1.2 −1 −0.8 −0.6 −0.4
19.5

20

20.5

(a)

−10 0 10 20 30

−10

0

10

20

30

40

X (m)

Y 
(m

)

EKF

−13 −12 −11

23.5

24

24.5

−10 0 10 20 30

−10

0

10

20

30

40

X (m)

Y 
(m

)

Modified Rule

−13 −12 −11 −10
23

23.5

24

24.5

25

−10 0 10 20 30

−10

0

10

20

30

40

X (m)

Y 
(m

)

SEIF

−13 −12 −11

23.5

24

24.5

(b)

Fig. 7. Comparison of the EKF and information filter SLAM maps with ground truth (cross-hairs) for the hurdles experimental dataset. The plots in (a)
correspond to the absolute feature poses as directly estimated by the three SLAM algorithms together with the three-sigma confidence bounds. Shown in
(b) are the relative maps and corresponding three-sigma uncertainty ellipses transformed relative to the first hurdle added to the map. As indicated by the
right-most plot of (a), the SEIF maintains global feature estimates which are significantly over-confident. The modified-rule, meanwhile, yields estimates for
absolute feature pose and uncertainty which are nearly identical to those of the EKF. Considering the relative map structure, the two sparsified filters perform
similarly to the EKF.


