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The second-quantized Dirac Hamiltonian for free electrons is transformed by a canonical transformation
to a representation in which the positive and negative energy wave operators are separately represented
by two-component operators. The transformation employed is the second-quantized analog of the one
derived by Foldy and Wouthuysen in their discussion of the one-particle Dirac theory and its nonrelativistic
limit. This transformation is then applied to the wave operators and the Hamiltonian in the second-
quantized, charge-conjugate formalism for Dirac particles. The wave operators for positrons and electrons
become linearly-independent two-component operators, and the Hamiltonian separates into an electron and
a positron part, each of which contains only the corresponding two-component wave operators.

It is also shown that by means of an appropriate, readily determinable sequence of canonical trans-
formations, Hamiltonians for fields of. spin--, particles interacting via intermediary fields can also be reduced
to nonrelativistic form. This is accomplished by transforming the Hamiltonian to a representation in which
it is exhibited e8ectively as a series expansion in powers of the Compton wavelength of the spin--, particle.
Illustration of the method is provided by detailed examination of the case of nucleons interacting via the
pseudoscalar meson held.

I. INTRODUCTION

HKORIES of elementary particles and their inter-
actions must at the present time be formulated

in very general terms, since the mathematical difficulties
of solution Rnd the experimental difFiculties of veri&ca-
tion of detailed theories have as yet not been sur-
mounted. The general requirements imposed upon
theoI'les of elementary particles and their interactions
in R first-quantized formalism are usuaHy that the
equations descnbing the system shaH be invariant
under the group of Lorentz and gauge transformations,
and that the function containing the physical descrip-
tion of the particle shall have certain special trans-
formation properties corresponding to the known, or
presumably known, spin of the particle.

However, because of the fact that the number of
interacting particles is generally not constant through-
out the course of the interaction, the mathematical
description of such interacting systems is most easily
obtained in the second-quantized formalism of Acid
theory in which the state function becomes a vector in

uantum nurnbcI' spRcc lnstcRd of coordinate spRcc, Rnd
the old one-particle functions whose transformation
properties were prescribed by the ascribed spin of the
particles go over into suitably transforming creation and
destruction operators. The Lorentz and gauge inva-
riance requirements are retained in the field formalism
and are usually accomplished by 6rst assuming that
the proper conjugate variables, equations of motion,
and Hamiltonians are derivable from some suitable
Lagrangian regarded as a functional of the appropriate
creation and destruction dynamical variables, and then
prescribing that the Lagrangian shall be Lorentz and

*This research was supported in part by the AEC.
t From a thesis submitted to Case Institute of Technology in

partial fulhllrnent of the requirements for the degree of Doctor
of Philosophy.

f. Now at Oak Ridge National Laboratory, Oak Ridge, Ten-
nessee.

gauge invariant. Starting from this point of view, the
commutation rules obeyed by the canonical variables
of which thc HRmlltonian ls R function must bc pos-
tulated, and the above invariance properties are
required of them also.

But, though the most satisfactory mathematical
approach to the problem of elementary particles and
their interactions is accomplished in the second-
quantized .Geld theoretical formalism, there are many
practical problems in which a nonrelativistic description
of the interacting systems is adequate. The question
arises immediately, therefore, relative to consideration
of such pI'oblems, as to how, in R simple Rnd rigorously
satisfying way, the initial relativistically covariant
formulation shall be reduced to a nonrelativistic form,
which for purposes of calculation is generally simpler
to deal with.

This question was answered in the one-particle, or
6rst-quantized, formalism by. a method derived by
Foldy and Wouthuysen. ' They pointed out that this
question is especially obscure when particles with
—,'-integral spin are involved, for in that event many of
the dynamical variables occuring in the relativistic
formulation have no obvious analog in the corre-
sponding nonrelativistic (Pauli) formalism. The non-
relativistic system of spin- —, particles is described in
terms of two-component wave functions, whereas the
relativistic system is usually described in terms of four-
component wave functions, and the Hamiltonian gener-
ally contains odd operators which couple the upper and
lower components of these functions.

If, however, it were possible to transform the Hamil-
tonian from the usual representation in which it con-
tains odd operators to one in which it contains no odd
operators, by means of one or morc canonical trans-

' L. L. Foldy and S. A. %outhuysen, Phys. Rev. 78, 29 (1950).
Some of the results obtained in the paper relative to noninteracting
particles have been previously obtained by Foldy and %'outhuysen
in unpublished calculations.
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formations, then it vrould be possible to describe the
system by means of two unconnected sets of two-com-
ponent wave functions. In this representation, if the
transformation can be accomplished exactly, the non-
relativistic approximation can be obtained directly
simply by stipulating that p/ertc((1. Transformations
accomplishing the desired change of representation in
the 6rst-quantized formalism vrere deduced by I'oldy
and %outhuysen for the free Dirac particle and the
Dirac particle interacting vrith the electromagnetic field.

The purpose of this paper is to generalize this method
' so that 1t Dlay be applied ln tlM second-quantized
formalism. In this formalism the spinor wave functions
go over into four-component creation and destruction
operators. Thus, vrhen the Hamiltonian has been freed
of odd Dirac operators by appropriate canonical trans-
formations, it will be possible to decompose the four-
component spinor operators into two sets of tvro-corn-

ponent operators, one set creating and destroying only
positive energy states of spin--', particles, the other set
creating and destroying only negative energy states.

II. THE TRANSFORMATION IN THE CASE OF
NO INTERACTION

The generalizations required for the case of free
Dirac Gelds are fairly obvious, and the results obtained
are, ln the DlRlQ, slIQply a second-qMtlzcd trallscrlp-
tion of the results in the one-particle formalism. Con-
sequently only a summary of the main points of pro-
cedure and results vrill be presented here.

The Hamiltonian in the usual representation,

one 6nds that by inductive arguments the eth order
commutator may be explicitly evaluated and the series
summed. The result may be most conveniently ex-

pressed by the equation

U= (E+ett —Pe y)/[2E(E+el)]».
Then

V ={E-+~+P y)/PE(E+~)]»,
and it is easily veri6ed that

UU '=1,
and

U-'(e y+ pert) V=p(p'+rite)'.

In the representation in which H is free of odd opera-
tors, the four-component wave operators»t decompose
into two sets of tvro-component operators containing
creation and destruction operators for either positive
or negative energy states separately. One can also show
that the momentum-space eigenfunctions et(p, s) denned
by2

Z "a(p s) "~(p s)d'p
(2n)» ~ ~„

take on a particularly simple form in the nevr repre-
sentation. Specifically, the functions I transform accord-
ing to

p 2E ~»riapy
et+'=

( ) (
iA+(p)N(p, s),

~E+ett& ( 2 i

H=
J

f*(e y+Pmt)fd'tt

is transformed by a uriitary transformation

i t' e'y (y 1

exp(iS) =exp —— f*P tan '~ —~fd'ot,
p

to a representation in which it contains no odd opera-
tors, 1.e.,

I

jP—aisles-is»ieP(Pe+tie)»/der

The proof of the correctness of Eq. (1) consists primarily
in determining how the wave operators P transform
since

f .H'= '

e'sirree 's(e y+Prl)s'sye isd'ot

Thus, if one expands the transformed operator into the
usual series of commutators

pr —aisle-as~ p p' f)a
~-Oet

E= (rn'+P')» A.+(P) =$E&(e y+Prtt) j/2E

and, s a consequence, '
I+'(p, 1)={1,0,0,0},
I+'(p, 2) = {0,1,0,0},
I '(p, 3)={0,0,1,0},
I '(p,4) = {0,0,0,1}.

A transformation to remove the odd operators from
the Hamiltonian for noninteracting spin-~ particles in
the charge-conjugate formalism vras deduced, and the
Hamiltonian in the new representation assumed a form
that one. would intuitively expect. The new Hamil-

tonian is reducible to a sum of three terms, two of whith
are functions of either two-component positron creation
and destruction operators only, or two-component elec-
tron operators only. The third term is an in6nite
constant vrhich arises as a consequence of the fact
that the system has been transformed from a charge
conjugate hole theory representation, in which the
vacuum corresponds to a state of in6nite negative

energy, to a representation 1n which the vacuum cor-

~L. I. Schiff, Quewtgm Mechewks (McGraw-Hill Book Com-

pany, Inc. , New York, 1949), p. 351.
e W. Heitier, The Quantum Theory of Radeatton (Oxford Univer-

sity Press, London, 1949), second edition, p. 86.
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r'esponds to a state of zero energy. Thus, by the trans-
formation, the eigenvalues of the energy operator have
been shifted by an in6nite amount corresponding to
the "de6ning away" of the negative energy states. This
infinite constant is in no sense a self-energy term.

III. THE TRANSFORMATION FOR THE CASES IN
W'HICH INTERACTIONS ARE CONSIDERED

When 6elds representing spin--,' particles interact
with other fields, it no longer appears possible to go
over to a representation in which the Hamiltonian is
free of odd operators and in which the spinor operators
have a two-component description, by means of a single
canonical transformation. Foldy and Wouthuysen'
showed, however, that in the one-particle formalism,
the Hamiltonian for the interaction of a spin-~ particle
and a given external field could be freed of odd operators
to any desired order in the parameters, (5/one') 8/Bt and
(A/me)V. The essence of their method consisted in
obtaining the Hamiltonian in the form of a power series
in these expansion parameters by a succession of readily
determinable, unique canonical transformations. An
investigation of the conditions under which this ex-
pansion is presumably physically significant (that is,
that the field variables do not vary appreciably over
spatial dimensions of the order of magnitude of the
Compton wavelengths of the particles, or over time
intervals of the order of the time required for light to
travel a Compton wavelength for the particles) em-
phasizes the fact that the end results of the transforma-
tion procedures under consideration are indeed a
reduction of the Hamiltonian to nonrelativistic form.

A. Interactions of Two Syin--,' Particles

1. Diferent Particles

The problem of removing the odd operators from
the Hamiltonian in the cases in which the Dirac
particles are presumed to interact with given external
fields proceeds in strict analogy to the same problem in
the one-particle formalism.

If, however, one considers cases in which two or
more Dirac particles interact through the intermediation
of another 6eld, whether the Dirac particles be repre-
sentable by diferent 6elds as in the case of neutrons
and protons interacting via the meson 6eld, or repre-
sentable by a single field as in the case of two electrons
interacting via the electromagnetic 6eld, one encounters
types of odd terms which at first sight present apparent
difhculties in the application of the above method. The
diKculty arises as a consequence of the generation of
terms which are essentially products of two or more
factors, each separately odd. In general these terms are
neither even nor removable in the form in which they
arise by further canonical transformations. The dif-
6culty is merely apparent, however, and resolves itself
after an examination of these terms in the light of their
physical significance.

Though there is no diQiculty in principle, it is too
laborious to carry through the reduction of the Hamil-
tonian for arbitrarily interacting systems to a form free
of odd operators to a given order in inverse powers of
the masses. Consequently, the case of nucleonic inter-
actions via the pseudoscalar meson field with both
pseudoscalar and pseudovector coupling will be selected
for detailed consideration. This example is chosen
because of its current practical importance; because it
satisfactorily illustrates the nature, source, and resolu-
tion of the difficulties commented upon above; and
because it provides a stat'ement of the equivalence
theorem for pseudoscalar and pseudovector coupling in
the nonrelativistic limit. To further reduce the length
of the calculations involved, another restriction is made
to the case of charged mesons only, and electromagnetic
interactions will be omitted.

The Schrodinger equation for the system under con-
sideration is

HC =i84/Bl,
where C is the time-dependent state function and
FI=fXd x is the time-independent Hamiltonian. The
Hamiltonian density K is obtainable most directly by
derivation from a Lagrangian density 2 by the pre-
scription

OpsX=—2—— +p~v
B(Bpg/Bx~) clxp

The yg are the various fields comprising the system
and n is a unit four-vector normal to the space-time
surface at the point x. Derivatives normal to the space-
time surface may be eliminated from 3C by making use
af the de6nitions of the momenta

Sp)
&(~v ~/». )

and then the noncovariant canonica1 formalism con-
venient for the discussion that follows is obtainable
immediately by specializing to a Rat space-like surface
for which n=(0, 0, 0, i). For the case to be discussed
presently

8% ) f'8$* 8$
~= —+I v" +m~

I
—

I
+~'e*@

~ax„) &ax„ax„)
8$ 8$*

(ay*+@*y)
~

r„* —+r„
&

" ax„"ax„)'

and the final form of X with which we have here to deal
is

X=X„O+%~n p4+4"Pm++if+*Py'(r P+r+P*)%'

(g/&)~' (. vq+-.+vq*)~

+(g/p)O*yr'(r ~*+r+~)+

+l (g/~)'I +*v"-++*v "++
+4*q'r %%*q'r Vj (2)
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is e'~, where

R=if+y'r+0,

1',= (ig/) )+V"V'r++,

x =~*m+vp* vQ+p'$*Q

The constants p, f, and g are the meson mass and the
pseudo scalar and pseudovector coupling constants,
respectively. The nucleon wave operators 0' and
4'=%*p are eight-component column and row matrix
operators (P„P~}where ($„0}represents the neutron
and (0, lt~} the proton;

r+= ,'(r,+ir„)-and r = ', (r. ir-„)—
are the operators that accomplish the change in charge
state of the nucleons as a consequence of the interaction
with the meson field; and the Dirac matrices
y&= ( iPn,—P) have in this representation the form

ra 0'l

40 ~)

The quantities Q and Q* are the meson field operators,
and m and m* are their conjugate momenta. The com-
mutation rules abeyed by the field operators are

[y', ~*'] =[y, ~'] =i&(x—x'),

[+;*,0 ]+——h;, 5(x—x').

The procedure that follows is prescribed by the
requirement that odd operators be removed from the
Haniiltonian to the order (1/m'). Further, explicit
cognizance will be taken of the fact that g/p (f/m)
Write

where

fT= —(i/2m)~ p*[p~ p+ifV'(r 4+-r+0*]

+(g/I) py'(r ~*+r~~)]Cd'x'(4)
X'=e'r'Xe 'r=-X+i[T, X]+2P[T,X]'

+ ',P[T-, X,]' to -1/m'

The commutators may be evaluated by straightforward
calculation, the labor being considerably reduced by
employment of the relation

%*ACad'x, 4*8%b

[a(x), b(x')]% *(x)A e(x)%*(x')B@(x')d'x
4

+b(x)u(x)%'~(x) [A, B]%(x),

where a(x) and b(x) are operators commuting with 0'
and 4'*, but such that [a, b'] is proportional to 8(x—x'),
and A and B are arbitrary functions of V, P, a, y', r~,
and 7- . It is to be noted that, since the transformation
removed odd terms of a given order because of the
properties of the commutators of odd terms with the
(mP) term, each transformation will be of one higher
order in reciprocal masses than the order of the term
to be removed; hence, odd terms of the order (1/m')
or greater can always be removed without making
further contribution and will consequently be ignored
as they arise.

Evaluating the commutators indicated in P) and
collecting terms, one finds

x'=x,+x,+~ —~e*o v(. y+ r+y*)e
&2m ))

f2
+ +*pp'++ +*pl*4+

2tg 2m

and where

Il;= X,d'x
r if' igf ~,
&Sm' 2@m~

x&——4'*pm%,

2 m0)
Kq=%' 0, p%',

X,=if@*pq'(r y+r+y*)%,
x~= (g/) )~*~'(r ~*+.,~)e,
X6= —(g/p)%'*o (r V$+ryVqP)%,
Xq= 2(g/p)'[4y" r %%' 'y'r+0+4*y'r +'p*~ r +]'.

=
2 (g/~)'(D~t),

where (DI) stands for the direct interaction.
The lowest order odd operators, to be removed 6rst,

are the terms 4'*u p%', if4*py'(r p+ r+p*')4, and
(g/p)4*y'(r vr*+r+w)%'. The transformation required

1(g& ' gf+ -I-
I

— + (»).2 &p& 4@m Sm2

+4*py'r %%*py'r+4]+
~

(f
Lsm2 2„m)

X+*pe [p(r ~*+r+~)+(r ~*+r+~)p]e

4*q'(r ~'+r+~)+ (S).
2m



R I CHAR 0 K. OSBORN

(a) (a'&

FIG. i. Diagrams of the processes represented by the direct
interaction terms.

The last term is odd and of the order (1/N'). However
the transformation required to remove it will be of the
order (I/3P), and the only commutator that it will

have with X' that will be proportional to (I/3P) will

be the one with X2. But this commutator will be odd;
hence, the last term may now simply be dropped. The
term involving the gradient of the meson momenta is
also ignorable to this order. This is explicitly justified

by noting that the term in question is, to the order
(I/m'), simply the commutator of

ff +*p~ Lv(~ 4+~+4*)-
(gm' 2@m) &

+( ~+ +~')I3~&'* (6)

with X', and hence is to this order simply BG/Bt
=ifX', G]. As a time derivative, it should have no
diagonal matrix elements and therefore should be
removable from this order by a canonical transforma-
tion, That this is true is obvious, and the transformation
required is simply exp( —iG).

Consideration must now be given -to the direct inter-
action terms in the Hamiltonian which, in the f'orm in
which they are exhibited, are neither even nor remov-
able by canonical transformations. The terms to which
attention shall be given are of the form

%*y'~ 0 C*y'w+0
and

%~py'r 4%*py'r+%.

If one rewrites the first of these in the form

+*F,~ %@*F2r 4+%*F&r %%*F&~+4
++ Flr 4+ Fl&~ 0+O' —F27' ++ F2ry%)— '

vrhere

&I+P~ &I Pi pl -P~ pl+Pi-
2 ) & 2 ) E 2 ~ I 2

(the second term reducing to exactly the same form
except that the unsymmetric terms are negative), one
observes that there is a fundamental di6'erence between
the first two components which are unsymmetric in the
F's and the second two symmetric components. The
unsymmetric terms accomplish transitions during which
there is no apparent change in the number of either
positive or negative energy particles in the field, whereas
the transitions resulting from the symmetric type terms
do correspond to changes in the number of such par-
ticles. The nature of the djGerence implied here becomes
clear immediately upon inspection of schematic dia-
grams representing the processes involved (Fig. 1).

Diagrams u and u' represent the processes accom-
plished by the symmetric terms in which the number of
positive energy particles (P+, X+) and the number of
negative energy particles (P , 1V )-changes in the
course of the interaction. However, the processes
schematized in b and b' do not involve any apparent
changes in. the number of positive and/or negative
energy particles.

Now, transitions involving such changes in the
number of particles in the field require interaction
energies at least of the order of the rest energies of the
particles, and hence, correspond to fundamentally
relativistic processes. Consequently, the symmetric
components of the direct interaction terms should be
removable from the Hamiltonian by means of a
canonical transformation without generating any fur-
ther contributions to the H@miltonian of the same order
as the terms themselves. This is indeed the case for

~~O*F,r 4+*F&r+%d'x, %*Pm@

= —2m@*1&r @+*I"&~+4.

Thus, if one chooses a canonical transformation whose
generating function is

(i/2m)
~

~V*—F,7 %%'F,r++d Bg,

the corresponding .symmetric term will be canceled
from 3'.. It must be pointed out here that the removal of
the relativistic components of the direct interactions
does not in any way depend upon the assumption of
equal masses for the interacting particles.

Conversely, the unsymmetric terms represent scat-
tering in which the energy exchange may very well be
small. Thus these terms should be even according to
the criterion of commutativity with the Pm term, as
they are from the physical criterion that there is no
observable coupling of positive and negative energy
states. This one easily verifies by direct calculation.

The even character of the terms, as well as their
physical significance, becomes still more obvious in the
light of the following argument. Making use of the



relation

O'„'8„,%,@ A;;@,d3x

= —t %„*%;*B„,A;;4,+,d3x+ +„*(x')

XB„A„4;(x)5(»—»') b(» —»')d'xd'x',

one easily deduces that

[%*I'Ir 4%'F3r+0+% *F3r+%%'*1'Ir 4'

+O'F3r 44'Fir+4+@'I'Ir+%@*F3r @gd3x

=
i
t, 4'*(x')+(x)b(» —»') 8(»—»')d'xd'x'

-2~ e,*e,*(r,. )„,(r,r,),;e,e,d3x

—
2~ @„*e;*(I'3r)„,(F rI+);,+,+, d3x. (7)

The first (infinite) term represents a self-energy con-
tribution from the interaction, which presumably is
removable by an appropriate renormalization of the
original Hamiltonian. The second two terms may be
stiB further clari6ed by transforming to momentum-
space and noting that in the eight-dimensional matrix
representation,

'0000 0 0 0 60000 00 I 0
0 I Q Q ) ~ + Q Q 0 Q

,0 0 0 0, 0 0 0 0,

000 I 0000
0 0 0 0 ~ 0 0 0 0

1 + 0 Q 0 Q
P 2 0 0 0 0

0 0 0 0, I 0 0 0,

where I is the two-by-two unit matrix. One obtains
(ignoring the infinite term)

2
d'xd'p"'d'p "d'p'd'p

Xe»P[—3» (P"'+13"—P' —P)3

g g&I S S&iir 0&SI &SS g&S &Sg&&

&&I (p r S3, 3 )I"(p ~ . S)33

XN*(p", S3, 3")IN(p, S3,3),' ' '
(g)

2
d3~3pllld3plld3pld3p

(2x)6,rrr, rr, r, J

&«m[ —('» (p"'+u"—p' —p) 3
1II II1%

Xgirrrr+rrr r33rr&tri grrrrrgrrg (P Sr 3 )

XII(P q SI 3 )I (P, Sl, 3 )IN(P~ SI, 3),

N(p, si, 3)-+positive energy neutron, spin
llP j
down

up
N(p, s3, 3)abnegative energy neutron, spin

do%'n

f

llP
N(p, s3, 3)—positive energy proton, spin,

( down

up
N{Pr SI, 3)~negatlVC Cllel'gy Pl'0'tollr SPlll

down

It is to be noted that y' behaves like a unit matrix in
the two-dimensional spin sub-space, and therefore the
interaction, in this case, does not involve spin transi-
tions.

If the even, nonremovable part of the direct inter-
action bc designated Rs (8 of DI)r thc odd pal ts 1'c-

moved. by canonical transformations, and the terms
combined, keeping in mind that the even parts of the
terms of the form

are of exactly the same form as those of the term types
just discussed but opposite in sign, then the Hamiltonian
density bccomcs

X=x'x+ V@'Vy+N3y'@+ 0 'p333%

(f+ 4'*pp30+
i

——i%*a V(r g+r+g*)%
2333 &2333 p)

(3f' 3' )
I @"r,(rr*y*—rry) @

Egm3

+ -I —
i
— +, (& of ») (9)

2 (33 & 2P,313 83333

Note that the Hamiltonian is now in a form such
that, if the eight-component wave operators %' are
replaced by two sets of four-component operators
31(1+P)+ and 33(1—P)+, it breaks up into a sum of
essentially three diGerent sets of terms. Two of these
sets, resulting from the decomposition of those terms
which al'c lndcpcndcnt of thc odd lsotoplc spin opcratoI's

and v+ contain creation and destruction operators
for either positive energy states of both protons and
neutrons or negative energy states. The third set of
terms is comprised of those which are odd in isotopic
spin space; namely the terms resulting from the reduc-
tion to four-component descriptio'n of the term
4'*II V(r p+r+Ib*)4 and the even parts of the direct
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interaction terms. Note that in the former the coupling
ls strictly bctwccIl diferent chRrgc stRtcs of the same
energy character only, thus these reduced terms separate
in the four-component description; whereas the latter
do not separate —both sets of four-component wave
operators are essential to the formulation of these terms—in spite of the fact that the coupling between nucleo-
onic states of different energy character is observa-
tionally unreal.

It shouM be pointed out here that this represents a
nonrelativistic statement of an "equivalence theoreIn"
for pseudoscalar and pseudovector couplings in the
pseudoscalar meson theory. 4 Such equivalence theorems
have already been derived' for the case of a given ex-
ternal meson 6eld. To the first order in the coupling
constant it is seen that the nonrelativistic Hamiltonians
for either pseudoscalar coupling or pseudovector coup-
l.ing or both are completely equivalent, assuming an
appropriate choice of the coupling constant. To the
second order these three diferent Hamiltonians are
equivalent only to within certain additive terms.

2. Similar I'articles

One other case of interest should be mentioned here;
namely, that of the interaction of two similar particles
through the intermediation of a second 6eld. As an
example, the interactions of similar charged particles
via the electromagnetic 6eld will be considered. The
question that arises is again re1ative to the removability
of contact, or direct interaction, terms. The reason that
the issue here requires some special attention is that, in
this instance, there is only one Dirac Geld involved and
hence formally the situation appears to dier consider-

aMy from the case previous1y discussed; However, as
will be seen, this case is strictly analogous to the
previous one, physically, and the decomposition of the
dll cct lntcrRction terms into odd I'clRtlvlstlc corn"
ponents and even, nonrelativistic components, and the
removal of the odd components proceeds exactly as
before.

Since it is of interest here merely to demonstrate the
generation of "odd-odd" terms and discuss their reduc-
tion to nonrelativistic form, it is convenient for the sake
of simplicity, and quite su%.cient, to restrict ourselves
to the particular case of the interaction of charged par-
ticles via the transverse electromagnetic 6eld, omitting
Coulomb interactions. The Hamiltonian may then be
written as

X=X, +ppmp+f*u (p eA)f, —

4 K. M. Case, Phys. Rev. 76, 14 (1949).Note that the statement
of the equivalence theorem obtained herein is not in agreement
with the one derived by Case. The disagreement disappears if one
chooses Case's relativistic statement of the theorem after altering
the term (2g/kc'k)(f —2kog/k)p*pPP to read (2g/krak}(f —kog/k)
g@*@pfand then reduces the al.tered interaction Hamiltonian to
nonrelativistic form.

~ M. 5ugarawara and V. Ono, Prog. Theoret. Phys. $, 90j. (4950).

and A and P satisfy the operator equations

(v A)e=o (v P)c=o
C being a state vector for the system.

If now one chooses a canonical transformation e' ',

where

T= (~/—2m) I P*Pn (p eA—)gd'x,

will be free of odd operators to the order zero in (1/ta)
and will contain as a consequence of [T, 3C, j' terms
of the form /*Pep /*Peg which are of the second
order in (1/m). This is of the type with which we are
here concerned.

This term may be written as

PI'~4" 4*&~4+4*&24'/&24
PI'A'P—I 24 —PI 24'k*&A

1+pl /'1 —p)

~1 p& &1+—pq

The first two symmetric components are again odd
and essentially relativistic; i.e., they represent the scat-
tering of two positive energy particles (or two negative
energy particles) into negative (or positive) energy
states. Therefore, these terms should be and are re-
movable for

X)' /*Fop f*l gpd'x /*pm/ = 4mXf*l gf Q*—I gp

and similarly for the other odd term. Thus, by an appro-
priate choice of X, the canonical transformation whose
generating function is XJ'/*I'gP. Q*Fgjd'x will remove
the odd components of the "odd-odd" terms.

The second two unsymmetric terms are even and
essentially nonrelativistic in character, for they repre-
sent the scattering of one positive and one negative
energy particle into negative and positive energy states,
respectively. Thus, so far as an observer is concerned,
these terms simply accomplish the scattering of elec-
trons by positrons. The even character of these can
readily be verified by straightforward calculation of
their commutators with the Pm term. If these terms are
combined and then separated explicitly into their
in6nite and 6nite components, and the 6nite com-



ponents transformed into momentum-space and reduced
to a description in spin sub-space as was done in the
previous example, it wi11 be seen that these even parts
of the direct interaction terms accomplish spin transi-
tions. '

' A related paper by S.Tani, Prog. Theoret. Phys. 6, 267 (1951),
has recently been published. In this paper, Tani employs the

The writer gratefully acknowledges his indebtedness
to Dr. Leslie L. Foldy for suggesting this problem, and
for his invaluable advice and criticism throughout the
course of the work.

transformation for a detailed elucidation of the physical sig-
ni6cance of the operators commonly occurring in theories of
fermions interacting with fields in the single particle formalism.
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Radioisotopes of Bromine
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Selenium metal enriched with Se'6 was bombarded with 7.3-Mev protons. A new 17.2-hour activity in
bromine was observed and is assigned to Br".The radiations of Br83, Br~, Br", Br", and Br» have been
examined by use of a 180' focusing spectrometer and coincidence methods. Brsa emits a simple negatron
spectrum with a maximum energy of 0.94&0.02 Mev. The ground state of Bro emits a complex negatron
spectrum with components: 1.97&0.03 Mev (80 percent), 1.1 Mev (11 percent), 0.7 Mev (9 percent). The
gamma-rays of Br» are associated with the E-capture process. The ground state of Br" emits positrons
having a complex spectrum with components 3.57+0.07 Mev (46 percent), 1.7 Mev (10 percent), 1.1 Mev
(11 percent), 0.8 Mev (14 percent), 0.6 Mev (19 percent). Gamma-rays identifmd with Br have energies
of 0.25, 0.33, 0.37, 0.42, 0.68, 0.75, 0.96, and 1.2 Mev. The ground state of Br» decays by emission of posi-
trons having a complex spectrum with components 1.70~0.02 Mev (46 percent), 0.8 Mev (20 percent), 0.6
Mev (15 percent), 0.3 Mev (19 percent).

INTRODUCTION

ADIATIONS from several ladiolsotopes of bromine
have been studied by use of the beta-ray spec-

trometer and by absorption and coincidence measure-
ments. The radioisotopes were obtained by proton and
deuteron bombardments on selenium metal. Decay of
their activities was followed with the aid of a %'ulf

electrometer ulled with freon to a pressure of about 2
atmospheres. A magnetic 6eld was used to separate
positrons and negatrons, thus enabling decays of the
activities giving rise to these particles to be determined
separately by use of a 0-M counter.

The spectrometer employed was of the 180' focusing

type with a trajectory radius of 16 cm. The slits were
made long in the direction of the magnetic 6eld in order
to obtain maximum possible intensity' for a predeter-
mined resolution of about two percent. The spec-
trometer source consisted of Gne particles of activated
selenium metal evenly spread on a thin ribbon of Zapon
and held in place by a thin layer of collodion. The
density of the source and backing was about 10mg/cm'.
The thickness of the 0-M counter window was 2.5
IIlg CIIl .

THE 17.2-HOUR Br'6

Two types of samples of selenium metal were bom-

barded with protons of 7.3-Mev energy. One type con-

~ Fellow, National Cancer Institute of the National Institutes
of Health, Public Health Service, Federal Security Agency,
Bethesda, Maryland.

' G. E. Ovren, Rev. Sci. Instr. 20, 916 (1949).

tained the natural isotopic mixture of stable selenium
isotopes, while the other type contained Se" enriched
from 9.0 to 41.5 percent. In addition to the well-1mowrl

bromine activities of 4.4-hour Br" 36-hour Br", and
2.4-day Br~~, a new activity of 17.2 hours was observed.
Some evidence for the existence of a 15.7-hour activity
had been observed previously' and early results for the
work discussed below have already been reported. '
Recently J. Hollander of the University of California
privately communicated that a 16-hour bromine ac-
tivity has been obtained by bombardment of arsenic
with alpha-particles.

In Fig. 1 are shown decay curves obtained for the
total activity and for the electromagnetically separated
particles emitted from a Se~' enriched sample of selenium
metal which was bombarded with protons of 7.3-Mev
energy. Five components are present in the decay curve
for the total activity. Their relative contributions to the
total activity at the beginning of the measurements can
be read from the intercepts of the straight lines. Similar
sets of curves were obtained for samples of natural
selenium bombarded in the same manner.

In Table I is given activity data obtained from three

bombardments. The bottom row contains activities
obtained when the bromine was chemically separated

from the selenium metal. The activity values listed

have been adjusted. to take into account differences in

~ G. T. Seaborg and I, Perlman, Revs. Modern Phys. 20, 585
(1948).

3 S. C. Pule and M. L. Pool, Phys. Rev. 83, 875 (1951).


