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The implications of some elementary solutions of the hydrodynamic equations for simple
fluids are explored for scaling relations for—and insight into—the dynamics of imploded
fusion targets. Because the model is so simple, analytical solutions are available and explicit
formulas for such quantities as neutron yield, bremsstrahlung spectra and yield, etc., can be
deduced. Where possible, comparison is made with the results of laser-fusion experiments

being performed in the KMS Fusion laboratories.

INTRODUCTION

A class of elementary solutions of the hydrodynamic
equations for a simple fluid is examined for implications
for spherically symmetrically imploded plasmas. The
mathematical model of the plasma to be used here is!

on
2tV =0, (1a)
mn<%+w-v>w+w:6=o, (1b)
n<%+w-v>e+§nev-w=o, (1c)

where n, w, and ® are the density, velocity, and energy
of the fluid, respectively. Since the model neglects vis-
cosity, heat flow, coupling to the external world, and
treats the two-component (at least) plasma as a simple
fluid, physical interpretation of any solutions obtained
should be inferred cautiously. Nevertheless, since simple
analytical solutions are readily available, some insight
may be gained into the dynamics of implosions, and,
more importantly, some potentially useful scaling rela-
tions for measured (or measurable) quantities can be eas-
ily deduced, for example, neutron yields from imploded

D-T plasmas. We reiterate that we do not mean to argue -

that this mathematical model has any a priori, peculiar rel-
evance to the description of laser-driven implosions. We
employ it because analytical solutions are available, and
appeal to results obtained for justification (or lack of it)
for its use.

Assuming spherical symmetry, that the fluid is entirely
contained in a sphere of radius R(z), that w = (r/R) R
=rQ, where Q =d InR/dt, and that n@,r) = G(@r(y)
and O(,r) = 6¢)( y), where y =r/R, we find

n=NR/R?, | )
8(H)R%(¢) = ,Ry%, 3)
R()=RyY[1 + (an®/Re} )], @)
vl = 6y/m;, (5)
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where
1
dh
-_—--417/ ydygf. 6)
0

Here, N is the total number of particles with density pro-
file #(y), and h and f are fairly arbitrary except that & is
subject to the normalization

47 foiyzdyh(y)=1. (7

The quantities with the subscript zero are evaluated at
t =0, the time when comipression ceases and expansion
begins. Hereafter we make the isothermal assumption and
setf =1. [This guarantees that the thermal energy in the
fluid at any instant is NG(t).] Actually, if we impose the
reasonable requirement that the sum of the directed
energy and the thermal energy be constant, we find that
f =1 —y% Similar arguments led to the same conclusion
in Ref. 1. Nevertheless, we use the f = 1 assumption
throughout, since the quantitative effect of the parabolic y
dependence is insignificant given the oversimplifications
of the model.

The number of neutrons produced in a D-T plasma
contracting and expanding according to Eqs. (2)-(6) is
(neglecting fuel depletion)

NSPT= f:l dt f d*r npny (vOpr)
“

= (BTN vopr)e/Retvy)IK, ®)
where
= (1
h,[ ¢l +x2)3’20<ﬁ?>’ ©
x=al’%yt/R,, (10)
{vop1) = (VopT)G(8/6,), G(1)=1, (11)
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K=a1/? fol dy y*r(y), (12)

and where we have assumed that np(r,f) = ny(r,?). For
peak temperatures around 1 keV, G(6/6y) =~ (6/8,)'*2, and
x; may be chosen large enough so that / in Eq. (9) is
simply a number slightly less than %2. Equation (9) may
also be displayed as

NPT = (1287°/9)n,2c* R *(voprde/vo)IK,  (13)

where n; = np; = nq; is the initial density of the deuterium
(and tritium), ¢ = (Ri/R,)® is a compression number, and
R; is the initial radius of the sphere before compression
begins. However, the expression in Eq. (13) is more re-
strictive than the one in Eq. (8) in that the former implies
a spatially uniform fuel density. Numerical estimates for
comparison with observation are presented later.

The electromagnetic energy in dE about E radiated per
second from a homogeneous sphere of radius R is?

wEdE
81’73 cY exp(E/6) - 1]

%{z +exp(=k)/k = [1 - exp(- %)/}, (14)

I(E)dE =4nR?

where
k=2Re[exp(E/0)-1]/c, (15)

€ is the probability per second for photon emission by
electrons in the sphere, and w is the index of refraction of
the photons of energy E in the medium in the sphere. The
total energy radiated from our contractmg and expanding
sphere is therefore

t 3 0
E., f Lt / %’ f dEI(E, 1), (16)
8
0

-t1

where the time dependence of I(E,t) stems from its de-
pendence upon R(t), 6(¢), and n{z) (the latter through e€),
and V; is the time-dependent volume of the sphere. The
integrals in Eq. (16) probably cannot be performed analyt-
ically if I is given by Eq. (14). However, if we assume
only bremsstrahlung radiation and that over the important
energy range k << 1, that is, the sphere is transparent
(which also implies = 1), we find that Eq. (16) can be
integrated to yield®

aa =4.9%10°3%(2%0,1 /2 /9 R*)NAK (joules), (17)

for 6, in keV. It is noteworthy that (6,'%/vo) is indepen-
dent of temperature; hence, the total bremsstrahlung yield
(in the transparent limit) depends on temperature only to
the extent that the effective Z of the ions (more accurate-
ly, an appropriate average value) depends upon tempera-
ture. Here, N; is the total number of ions with effective
charge number Z. Because the transparent limit was taken
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in the integrand of Eq. (16), the result in Eq. (17) is no
longer restricted to homogeneous media. Again, numeri-
cal estimates based on Eq. (17) are discussed later.

The time-integrated bremsstrahlung energy spectrum is
also of interest. Again we content ourselves with the
transparent limit of Eq. (14) to obtain, for the power
radiated per cm® per unit energy at ¢,

IE, 8) _(2/m)'/* Z% ) exp(-2)K)(2) (18)

v 6  Fmd/ic3 g1/2

8

where z = E/26. Integrating over space and time, we find

P(E) f dt/ I(E t)

-t1

_2 gi/zzaeeNIzK exp(=29)@(zg) (19)
"3 m3/cd 81/ 2Ryt

where we have defined

Q(ZO)Ef
-

Because the function [exp(— zoxz)]/(l + x2?) is so sharply
peaked at the origin, the quantity Q can probably be
adequately approximated as

fii‘e(l"p—f;f)ﬂx— K[zl +2%)].  (20)

2
Qzq) = Ko(zo)/ %}gﬂ

T 1/2
=<;m> Ky(zp). (21)

Thus the implosion-integrated spectrum in Eq. (19) is not
markedly different in its energy dependence (z, = E/26,)
from that of Eq. (18).

Another potentially interesting quantity is the number
of D-T neutrons produced during the compression of a
purely deuterium-fueled target,* or, perhaps more conve-
niently, the ratio RppPT = N,PT/N,PP. Neglecting the
burn-up of either the deuterium or the tritium, but taking
due account of the fact that the only tritium present is due
to D-D reactions, this ratio may be displayed as

Rpp®T=( f:l dt f d*r (vopr)np(t)
-ty
X.[ : dt’ (vOppY np ()]
1

X[ f: :: dt f d3r (woppynp (B (22)

Recalling Eqs. (2)-(5), we find that we may reduce Eq.
(22) to the expression
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RppPT = Np(woprhe Ln/veRy’K, (23)

where Egs. (11) and (12) have been resorted to and three
new quantities have been introduced, namely,

(00pp) = (W) F(8/8,), F(1)=1, (24)
L=at [Pyt ayi(y) (25)
and
*1 1 * iyt 1\
175['-[:1 de<1+§’) / (lfx’z)“’F(lw").
1
"t dx 1 \]J+
X[_[x; (1+x%)3/2 F<1+x">_ , (26)

where, as before, x = (a?vy/Ro)t. Here we have assumed
the same density profile 4( y), for both deuterons and tri-
tons, but it is otherwise arbitrary except for the normal-
ization of Eq. (7). For 6, of the order of 1 keV, the func-
tions G and F may be roughly approximated by

G(0/8) = (6/6,)1372,
@7
F(0/8,) = (8/6,)72,

in which case it is estimated that n = 5.

APPLICATIONS AND DISCUSSION

In order to obtain numerical results, we must evaluate
certain integrals involving the density profiles of the par-
ticles participating in the contraction and expansion of the
sphere of fluid. Initially, we assume a flat profile which
is satisfactorily realized by modeling 4( y) by the formula

h(y)=AQ -y") (28)

with n large. The constant A is determined by Eq. (7).
With this choice for the density profile, it is found that
K =1.1x10"2,

Under these circumstances we may use Eq. (13) to es-
timate the neutron yield from an imploded D-T pellet.
Evaluating (vom)u/vo at 0.5 keV, and making use of the
fact that this function varies approximately like 8,% in this
temperature range, we find

NPT =4,6x10"%,°R,c*/3(26,)%. (29)

Some measurements of rieutron yield have been made® for
which n; =9 x 102 atoms/cm®, R;=3 X 1073 cm,
¢ = 103, and 6 = 0.5 keV. From Eq. (29) we find

N,PT=3,0%10* neutrons, (30)
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which is in excellent agreement with the observed yields.
The temperature at peak compression is perhaps the least
accurately known quantity needed for the yield calcula-
tion. If it were estimated to be 0.73 keV instead of 0.5
keV, the estimated yield would be 3.0 X 10°—yields that
have been observed several times. We remark that, if we
had calculated Eq. (29) using f = 1 — y? instead of f = 1,
the numerical factor in this equation would have been re-
duced by about one order of magnitude.

To estimate the bremsstrahlung energy radiated by
these pellets, we may rewrite Eq. (17) in the form

Epoq=8.6%10729(Z39,1/2 22 /3R 'K /1y) (joules).

31)

Using the same values as before plus the facts that Z =1
and vy = 1.9 X 107 cm/sec, we find

E,.,=2.3%x10 J, (32)

Suppose, however, there should be some Z > 1 contam-
inant uniformly mixed with the imploding fuel. If fn; is
the density of the contaminant, then Eq. (32) would be
modified to read

Epoq 22.3%X104 (1 + fZ + f2%+ f223). (33)
In such an event, radiation losses would severely compete
with fuel heating during the implosion.

It is worth noting here that, with the pellet parameters
presently under discussion, the time required for contrac-
tion from 30 to 3 wm is, according to Eq. (4), 90 psec.
The rate of neutron production is governed by the inte-
grand of the integral displayed in Eq. (9). If again we ap-
proximate G(6/6,) = (6/6,)'3?, the rate of neutron produc-
tion is given by the function (1 +x%)78 [Recall that
x% = (avo"’/Ro'")tz.] This is a very sharply peaked function
about the origin, falling to half its value in 2.7 psec and
to one-tenth in only 5.2 psec. Thus, according to this
model, neutrons are produced only during a small fraction
of the total time of contraction and expansion.

In Eq. (23) a formula was presented for the estimate of
the ratio of the number of D-T neutrons to the number of
D-D neutrons expected from the implosion of a purely
deuterium-fueled target. In the present case of an essen-
tially flat density profile, that formula may be rewritten as

Rpp®T = (4n/3)(Ln/K)n,c?'?

X R, ((voprhe/v0)1/2(260)8, (34)

where the notation ((va'm)(,/v(,)l,2 implies evaluation of
the quantity at 0.5 keV, that is, ((VO'DT>0/V0)112
=1.9 x 107 cm?. Thus, by recalling that n = %,
K =1.1 x 1072, and evaluating L = 1.5 x 1073, Eq.
(34) reduces to

RppPT = 3. 6X107%1n,c?/ R (26,)°. (35)
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Forn; =9 X 102° cm™3, ¢ =103, R;=3 X 1073 cm, and
6= 0.5 keV, we find

RppPT=9.7x10"1, (36)

The extreme smallness of this ratio is due firstly to the
low peak temperature, and secondly to rather low initial
density. However, most importantly the smallness of this
ratio is due to the assumption that the tritons are in ther-
mal equilibrium with the deuterons. If we had assumed
that the tritons were all at an energy of about 50 keV, the
ratio would be increased by a factor of the order of 107.
Evidently, this ratio can provide a useful diagnostic only
if the mean energy of the tritons can be rather accurately
estimated (or an actual energy spectrum calculated) for a
given implosion.

These implosions imply only a small amount of thermal
energy in the plasma at peak compression. This thermal
energy is

Egp=% (Np+ Ny +N,)6,

=6NG,, @37

where' N =Np =Ny = 0.5N,. In these small targets,
N =1.0 X 10" so that, for §,= 0.5 keV, E; = 48 mJ.

Finally, we reiterate that this simple model neglects
viscosity, heat flow, laser—plasma coupling, and effects
due to charge separation among other things. To account
for some or all of these phenomena, more physically
realistic mathematical models must be employed and
numerical analysis resorted to. In order to appreciate the
greater complexity that the more realistic treatment im-
plies, the reader is referred, for example, to the discus-
sions of this subject by Nuckolls et al.® and Brueckner
and Jorna.” It is our opinion that the main value of the
analysis based upon this simple model is that it leads to
analytic results which, in turn, lead to scaling relations
which appear to be useful.

APPENDIX

The_analysis required to proceed from the model equa-
tions [Eqs. (la)—(lc)] to the solutions displayed in Eq.
(2)-(6) is somewhat involved. Furthermore, our approach
is mildly unconventional.! Thus, we here append an out-
line of this analysis as an aid to the interested (or skepti-
cal) reader.

Given the model, it is then assumed that

wW(r, £)=r(R/R)
=rQ(¢)

=yR(?), (A.1)
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where we have defined Q =R/R =d InR/dt and y =1/
R(t). Here, R(¢) is the time-dependent radius of the sphere
of fluid. It is then further assumed that the other depen-
dent variables n and & are separable functions of the new
independent variables y and ¢; that is,

n(r, t)=n(y, t)=h(y)i(2), (A.2)
and
o(r, t)=o(y, t)=Ay)o(). (A.3)
It then follows that
9 0
3 +We V—’Eﬁ (A. 4)
and Egs. (1a)~(1c) reduce to
&, 3n@=0 (A. 5)
3t +3n@=0, .
A d’R 13ne]|_
r[mnyF+R 5 =0. (A.6)

If one now makes use of the separability assumptions
[Eqs. (A.2) and (A.3)], the solutions given in the text
follow straightforwardly.

It is interesting to note that, if  defined in Eq. (6) is
negative, our solutions are the same as those principally
studied by Kidder in Ref. 1.
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