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A general method of evaluating upcrossing probabilities for a class of random processes 
consisting of two narrow-band signals is presented. One of the two significant frequencies of 
the corresponding bimodal spectra is assumed to be dominant. The method approximates the 
maxima of these processes by the corresponding values of the envelope processes. It is also 
assumed that the discrete processes of the maxima are Markov. The results have several 
applications. Two prominent examples are detection problems of multipath partially saturated 
processes in underwater acoustics and the problem of the structural reliability of marine diesel 
engine shafting systems. 

PACS numbers: 43.60.Cq, 43.60.Gk, 43.30.Vh 

INTRODUCTION 

The ocean acoustic detection problem has been studied 
for the general case of partially saturated propagation of nar- 
row-band ocean acoustic multipath processes l'2 with special 
cases being the fully saturated 3 and the unsaturated 4 propa- 
gation, respectively. The pressure for these narrow-band 
ocean acoustic multipath processes is given by 

p(t) = X(t)cos wot + Y(t)sin COot. 
Assuming that the pressure processp(t) has a large number 
of independent paths, processes X(t) and Y(t) can be as- 
sumed to be Gaussian. 

This process has also been employed in the formulation 
of the problem of structural reliability of marine diesel en- 
gine propulsion shafting systems. 5-7 That analysis is limited 
to the most common case, where only a single resonance 
(critical) is excited in any operating condition. Recent work 
by one of our colleagues has revealed important cases where 
two separate critical frequencies appear at essentially the 
same engine operating condition. In that example, each criti- 
cal contributed roughly half of the stress at the critical en- 
gine rpm. 

To treat such cases, we need to evaluate the upcrossing 
probability of a random process of the form 

• [X•(t)cosCOit + Yi(t)sinCOit ], n =2, 
i=l 

where X, (t) and Yi (t) are Gaussian, stationary processes 
with known means, autocorrelations, and cross correlations. 
This calculation will also be very important for the under- 
water acoustic detection problem, when the pressure p(t) 
mentioned above is the sum of two narrow-band processes, 
centered at two distinct frequencies. The general case (arbi- 
trary n) for both the acoustic underwater detection and the 
marine shafting system structural reliability problem is very 
difficult to evaluate, but the n = 2 case will be adequate for 
most problems anticipated in practice. Finally, processes 
Xi (t) and Y• (t) may be assumed to be independent. This 

assumption is valid, because even if they are not, we can 
always consider a transformation to a new coordinate sys- 
tem, where they are independent. 

I. SPECTRAL ANALYSIS 

Our process has the form 

Z(t) = W,(t) + Ve'2(t), (1) 
where 

Wl(t) = X•(t)cos CO•t + Y•(t)sin COtt, (2) 

J'V2(2) = X2(t)cos CO2t + Y2(t)sin CO2 t . (3) 

Processes Wt(t ) and Ib'2(t) can be assumed to be narrow 
band, as their entire energy is concentrated in the neighbor- 
hood of co t and CO:, respectively. Hence, Z(t) is the sum of 
two narrow-band processes, whose spectrum has its energy 
concentrated at the two frequencies co n and CO2. 

Our approach for the evaluation of the upcrossing prob- 
ability of our process is based on the approximation of the 
local maxima of Z(t) by the values of the envelope process at 
the times that these maxima occur? Then a discrete time, 
two-state process is defined, with two states defined by the 
requirement that the value of Z(t) exceeds or does not ex- 
ceed (respectively) the specified threshold Zo, during a time 
interval of length T. 

Assuming that the local maxima of Z(t) are approxi- 
mately equal to the value of the envelope at the time they 
occur, the upcrossing probability is equal to the probability 
that at least one of the values of the envelope at t,t2 .... ex- 
ceeds the value of Zo during the time period T, where Zo, T 
are both known. This approach was followed also for the 
one-frequency problem by Nikolaidis et al. 6 The key to the 
following formulation is choosing the appropriate envelope 
that is tangent to our process at the peaks, since we approxi- 
mate the local maxima of Z(t) by the corresponding values 
of the envelope. 
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II. ENVELOPE PROCESS 

The envelope process for W, (t) is 5 

R•(t) = x/X•2 (t) q- Y•2(t) . (4) 
Similarly, the envelope process for W2(t) is 

R2(t) = x/X, (t) + (t). (5) 
Here, R t(t) is derived as follows: We define 

W,(t) = X,(t)cos (ott+ Y,(t)sin tort. 

Dividing and multiplying by x/X• (t) + Y• (t), we get 

X,(t) cos co•t w,(t) = x/x:, (t) + -x/x,=(t) + 
Y,(t) ) + x/X• (t) + y•2 (t) sin co,t 

= 4x:, (t) + cos[o,t-e,(t)] 
= R,(t)'cos[co d -- 0•(t) ]. 

Hence 

R,(t) = x/x2, (t) + Y•(t) 
and 

0• (t) = tan-'[ Y•(t)/X, (t) ]. (6) 

As W,(t) is a narrow-band process, R,(t) and 0,(t) are 
slowly varying random processes. The same holds for 

For narrow-band random processes, several definitions 
of the envelope have been proposed. Among these, the enve- 
lope defined by Cramer and Leadbetter a is mathematically 
convenient. For a Gaussian process B(t), the Cramer-Lead- 
better (CL) envelope is defined as 

Re(t) = [B2(t) +•2(t)]•/2, 
A 

where B(t) is the Hilbert transform orB(t) (Toro and Cor- 
nell, Ref. 9), defined by 

•(t) -- [cosotdV(u) -sinwtdU(u)], 

and U(u), V(u) are independent random processes with in- 
dependent increments such that B(t) can be expressed as 

B(t) = [cosotdU(u) q- sinotdV(u)]. 

Now for bimodal processes such as Z(t) with two major 
distant frequencies (Toro and Cornell, Reft 9) the CL enve- 
lope is well defined and can be written as 

Rz(t) = {[ •'l(t) q- [4•2(t) ] 2 
A 

q- [•V,(t) q- W2(t)]2} I/2. 
Some characteristics of the envelope are the followingø: The 
envelope should be much smoother than the process, free of 
periodic oscillations, and should follow the process closely, 
making contact near every peak and trough. However, all 
these properties cannot be satisfied by the CL envelope for 
Z(t). In this case, there are two alternatives. Two envelopes 
can be defined in such a way that the first satisfies the 
smoothness and lack of periodicity conditions and the sec- 
ond coincides with the process itself near every peak. 9 The 

first envelope that we mentioned is defined as the sum of the 
envelopes of W• (t), W 2 (t) and is called "rectangular enve- 
lope." The second envelope is defined as $(t) 
= W•(t)+R2(t), where we make the assumption that 
W• (t) has the lower frequency of the tw.o, cot, and the higher 
one, co:, is the corresponding frequency for W2(t). We will 
choose the second one, since our basic requirement for the 
envelope is to approximate the process near the peaks. 

The "envelope" process chosen violates the nonperiodi- 
city requirement, but this in our case is not important. What 
is important is that this "envelope" process is able to follow 
even the low-frequency peaks of Z(t). On the other hand, 
the classical envelope that is found by demodulating at 
(co t + 02)/2 is not well defined, because (as we shall see 
later) co•co2, therefore the difference frequency is not 
"much less" than either carrier. 

Finally, we are going to assume that we have one low 
frequency, <o•, and one high frequency, 0) 2, with co• •ca 2. The 
expression of the envelope process will beø: 

S(t) = W,(t) + R2(t) 

= Xt (t)cos co•t + Y• (t)sin (o,t 

+ x/X, 2 (t) + Y22 (t). (7) 

In the following, the term "envelope process" will refer to 
the "envelope" process defined by (7). 

III. CALCULATION OF THE UPCROSSING 
PROBABILITY 

Wc will now consider a discrete-time random process 
with two states denoted by Uand D, defined by the require- 
ments that the envelope of Z(t) exceeds and does not exceed 
the threshold Z o, respectively. The discrete process takes 
values at the times O,t•,t2 ..... where the maxima of the process 
Z(t) occur. We can assume this discrete process as Markov, 
with one step dependence. m"• We want to calculate the 
probability of an upcrossing during a time interval T. This 
probability equals the probability that at least one of the 
maxima is greater than the threshold, Zo, or 

p-=P{upcrossing in [0, T]} 

= P(•eo> Zo) + P(•, > Zo,•o<Zo) 

+ + ..., (8) 

where •i denotes the ith maximum of the process. 
Clearly, to evalute (8), we need to calculate the number 

v of the maxima in the time interval T. Thus, 

P{upcrossing in [0, T ]) 
= P(U) + P(DU) + P(DDU) 

+ "' + P(D'"DU), (9) 

where D appears (v- l ) times in the last term. 
Let us now denote 

P( U) = c, P( U /D) = b. 

It follows that 

P(D)= l--c, P(D/D)= I-b. 

We assume that the process is Markov with one-step depen- 
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dence. In other words, every maximum depends only on the 
previous one, n or 

P(U/D) = P(U/DD) .... = P(U/DD...D). 

For P(UD), we have 

P(UD) = P(U/D)P(D) = b( 1 - c). (10) 

For P(UDD), we have 

P(UDD) = P(U/DD)P(DD) 

= P( U/DD)P(D/D)P(D) 

=b(1 --b)(1 --c). (11) 

Similarly, we obtain 

P( UDD" 'D) = b( 1 -- b) '•- 2( 1 -- c). (12) 

Substituting the probabilities in Eqs. (10), ( 11 ), (12) into 
(8), we obtain 

P{upcrossing in [0, T ]} 
=c + b(1 -c) +b(1 -b)(1 -c) 

+b(1 - b)2(1 --c) + "' 

+b(1 -- b)V-2(1 -c) 

=c+b(1-c)[l+(1-b) +(I-b)2+'" 

+ (1 -b) v-2] 

= 1 -- (1 --c)(1 --b) •-• (13) 

Therefore, in order to calculate the upcrossing probability, 
we need to evaluate b, c, v. 

The expressions for b and c are (see Nikolaidis and Pera- 
kis, Ref. 2) 

c= fs(s)ds, (14) 

b = fs(,),s(, + •) (sl,s2)ds2 dst 
oo o 

X fs(s)ds , (15) 

where fs (s) and f s( ,).s( , + •) (s,s2) are the PDF and the joint 
PDF of the envelope process S(t), respectively. We will next 
derive these two PDF's. 

I¾. CALCULATION OF THE FIRST ORDI:R PDF 

Our envelope process has the form 

S(t) = Xt(t)cos co•t + Yl(t)sin co•t 

+ x/x (t) + (t). (16) 
Processes X I (t), Yt (t), X 2 (t), and Y2 ( t ) are assumed at 

time t jointly independent Gaussian random variables with 
known means and autocorrelations. Since X i (t) and Yl (t) 
are (independent) Gaussian random processes, every linear 
transformation U(t) of Xl (t) and Y• (t) is also a Gaussian 
random process, with mean: 

lau =/xx, cos colt + lar, sin Git , 

where lax, and gr, are the expected values of Xl(t) and 
YI (t), respectively, and second central moment: 

oar = oax, cos 2 co•t + oar, sin 2 cott, 
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where oax, and oar, are the second central moments ofX• (t) 
and Y•(t), respectively. Consequently, the first-order PDF 
for random process 

U(t) = X•(t)cos co•t + Y•(t)sin co•t, is 

For the random process 

P(t) =x/X•(t) + Y2 2(t), 
we obtainl 

fp(P) 

where 

I p2q- lax, q- laY, P exp -- - + -- 
5- 24: 2oa¾ 

X J0 exp[ -- «(a cos 24 + c cos • + d sin 4) Ida, 

a = p2[ ( 2oax: ) - l ( 2oar: ) - • ] , 
b = -- p2 (pxy/O.x_ ' fly,_ ) = O, 
c = - ), 

and 

d = -- 2p(ltr:/oar•_ ), 
and lax;, lar_. are the expected values of X2(t) and Y2(t), 
respectively. A single convolution integral then yields the 
first-order PDF ofS(t): 

fs(S) = fp(p)'fv(s --p)dp. (18) 

V. CALCULATION OF THE JOINT PDF 

The independent processes X• (t) and Y• (t) are Gaus- 
sian and stationary with known means and autocorrelations. 
Then 

U = U(t) -- Xt (t)cos co•t + Y, (t)sin cott 
and 

U '= U(t + r) = Xi(t + r)cos col(t q- •') 

+ Y•(t+r)sinco•(t+r) (19) 

are also Gaussian random processes. Their means are, re- 
spectively, 

lay =lax, cos w•t q- ttr, sin COlt 
and 

lau' =lax, cosco•(t + r) + lar, sin col(t + r), 
while their second central moments are 

oav= oax, cos 2 wit + oar, sin 2 co•t 
and 

oav.= oax, c0s2 col( t +' r) + oar, sin2 cot( t + r). 
The correlation coefficient between U and U' is 

Pv = Coy( U,U')/crvrrv,, 
where 
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= E[ U(t q- r)U(t) J 
or 

C u ( /- ) = C x , ( /- ) eos to • ( t q- 

q- Cr, (/-)sin to•(t +/-)sin 
with '2 

Cx, (/-) = Ei[X,(tq-/-) --gx, ] [X,(t) -gr, ]}, 
Cy, (/-) = E{[ Yl(t q-/-) --gr, ] [ Y,(t) -gr, ]}- 

Then their joint PDF is 

' [ ' fvv.(u,u') -- 2rro'va•(! _p•}l/2 ' exp 1 --p• 

f•. (p,p') - 

where 

,4---- 

(U-gu) 2 pu(U-gu)(u'-gu.) 
(u'-gu')2)] -% 2oav ß . (20) 

Consider now X 2 (t) and Y2 (t). They are also Gaussian, 
stationary, independent random processes with known 
means, autocorrelations, and cross correlation. Then the 
joint PDF of the random processes 

P= P(t} =x/X• (t) + Y22 (t), 

P'=P(t+/-)=x/X,•(t+z)+ Y2•(t+:'), (21) 

is given by2: 
I 

4•1A21 m 30 Jo exp[ -- «(,4 + Bcos 0• + Csin 0• + Deos 20• + Esin 20• + Fcos 02 + Gsin 02 
+Hcos 202 +/sin 26/2 + Jcos 0• cos 02 + K sin 0• cos 02 + L sin 0• sin 02 +Mcos 01 sin 02) ]dOm d0•, 

2.1 •02/2 q-/-/,3,.•tl i q- 2gX:gY:Ai2 q- 2/• 2 13•X_, 

q- •l•X•Y• + 122P 2/2 

+ 1• '2 + •x•l• + •x•l•4 + • 2 2• • 
2 

C = -- • • -- • •: -- 2A•x• -- 2g•4 pg 
D = A • •/2 -- •/2, 
E = A• •, 

H = l•a/2 -- •44 p'•/2, 
I = •34 
J = •p', 

K = •p', 

L = •24 PP', 

M = •i4PP', 

with A 0 •ing elements of the inve•e eovafiance mat•x 
[ A• ]- •. The aovafianee mat6x it•if is given by 

[^21= c(o) (o)/' 
where 

C• (/-) = E{ [X2tt +/-) -- gx.. ] [X2(t) -- gx_. ] }, 

(22) 
i 

Cr_. (/-} = E{[ Y2(t + r} --/•r_. ] [ Y•(t} --gr_. 
Cx._ • ( •') = E{ [ X•( t q- •') -- gx_. ] [ Y2( t} -- gr_. 
Cr_.x_. (/-) = E{[ Y2(t q- r) --gr_. ] [X•(t} --gx_. ]}- 

Finally, if we define 

$--=S(t) and S'=$(t +/-), (23) 

a double convolution integral will yield the desired result: 

fss' (s,s') = fuu' (s -- p,s' -- p') 'fpp, (p•o')tlp dp'. 
(24) 

Let us now focus on the maxima of our process Z(t), in 
the time interval T, which cannot be analytically located. 
Consequently, the number of maxima of our process Z(t), 
denoted by v, cannot be calculated analytically. Hence, we 
are going to adopt an approximate approach. We know that 

Z(t) = I4/•(t) + J'i/2(t). 

Since they are narrow band, the time interval between two 
successive local maxima is approximately constant for each 
process. Therefore, for process W• (t), the expected period 
between successive maxima is 

/-• = 2tt/r_o•, 

and the expected number of maxima in the time interval T is 
one plus the number of cycles in the interval, that is, • 

v• = T//-• + 1. 

Similarly, for the process IV2(t), the expected period be- 
tween successive maxima is 

/'2 = 2•'/t02, 

and the expected number of maxima is 

v 2 = T/r 2 + 1. 

If we now make the assumption that eo• is sufficiently small, 
/-, becomes very large and does not affect the number of 
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maxima. In this case, we can approximate the number of 
maxima of Z(t) as 

V = V2 ---- T/r2 + 1. (25) 

Vl. NUMERICAL EXAMPLE 

In order to verify the above theoretical results we tried 
several numerical examples using the codes developed, one 
of which is discussed below. 

The data that we used are the following (we chose the 
data in such a way, that the final probability is a finite num- 
ber): 

upcrossing level --- 5.00000, 

a h = 3.14159, 

t = 1.00000, r = 1.40000 

Px, = -- 0.00300, Pt, = 0.01600, 

Px_. = -- 0.00300, Pt_. = 0.01600, 
ax, = 2.36800, at, = 2.36800, 

Cr, (•') = 1.94652, Cx, (r) = 1.94652, 
] 

2.36800 0.00000 1.87800 0.00000' 

/0.00000 2.36800 0.000(• 1.87800 1.87800 0.000(• 2.36800 0.00000 

L0.00000 1.87800 0.00000 2.36800 

We also used the value of 1.2 for variable v, taken from 
Reft 5. 

We ran the program several times using different values 
for the number of points of integration. The fact that three 
nested numerical integrations are involved in the evaluation 
of the coefficient c and six are involved in the evaluation ofb 

makes the overall computations quite time consuming. 
The variable NT 1 represents the number of points used 

in the double convolution integral (24). 
The variables NT 2 and NT 3 are the equivalent numbers 

for the integration over g• and 02, respectively. In this exam- 
ple we always had: NT2 = NT 3. Here, NT4 is the number of 
points used in the double integration of (15). We set 
NT 1 = NT4. Finally, NT 5 is the number of points used in all 
the integrations involved in calculation of the coefficient c. 

Table I gives the value of the coefficient b and the up- 

TABLE I. The value of the coefficient b and the upcrossing probabilityp for 
different combinations ofNTI, NT2, NT3, and NT4, with NT5 = 50. 

NT2/NT3•NT 1/NT4 5 l0 20 
5 b 0.29132 0.21138 0.21568 

p 0.28341 0.26793 0.26872 

10 b 0.16023 0.13519 0.13954 

p 0.25867 0.25430 0.25505 

20 b 0.15045 •12811 0.13247 

p 0.25695 0.25308 0.25383 

TABLE II. The value of the coefficient C and the upcrossing probability p 
for NT! = NT2 = NT3 = NT4= 5 points, with NT5 ranging from 
10 to 50 points. 

NT5: 10 20 30 40 50 

• 0.23211 0.23229 0.23231 0.23232 0.23232 

p: 0.28320 0.28338 0.28340 0.28341 0.28341 

crossing probability p for different combinations of NT1, 
NT 2, NT 3, and NT 4, with NT 5 = 50. 

The main problem is computational effort: For 5 X 5 
points this was not excessive, but as the number of points 
increased (together with accuracy) the time required in- 
creased to 40 min for 10 X 10 points, to 18 h of computer time 
for the 20 X 20 case. (These refer to an APOLLO-DOMAIN 
Series 3000-computer, but could be used in a comparative 
sense even if a different computer is employed.) 

Nevertheless, we can easily observe from Table I that 
accuracy increases fairly fast, since b tends to stabilize at 
about 0.13, with probability p at 0.25 approximately, as soon 
as 10X 10 points of integration are used. Furthermore, we 
can see that the value ofp is not as dramatically influenced 
by the numbers NT I-NT4, as that of b. This can be ex- 
plained if we recall the formula we derived for p, (13). Yet 
the value ofp is influenced by NT 5, as one can see either from 
(13) or from Table II. To form this table, we set 
NT 1 = NT 2 ---- NT 3 = NT 4 = 5 points, withNT 5 ranging 
from 10 to 50 points. It is easily observed that we get a 
steady-state value for c from 40 points on and for p from as 
low as 40 points, too. 

Closing this brief discussion, we can conclude that 40 
(or 50) points for any single integration would give very 
good results, but even 20 points should provide adequate 
accuracy. 

VII. CONCLUSIONS 

We developed an approach for the evaluation of the lev- 
el crossing probability of a random process of the form (1). 
Processes X• (t) and Y• (t) are jointly Gaussian, jointly sta- 
tionary, and jointly independent, with known means and au- 
tocorrelations. The above probability has been calculated for 
some known time interval T. Our approach was based on the 
approximation of the local maxima of Z(t) by the value of 
the associated envelope. The times that the maxima occur 
define a two-state discrete-time process defined by the re- 
quirements that the value of Z(t) exceeds or does not exceed 
the threshold Zo. This process can be assumed to be Markov 
with one step memory. Independence of maxima can also be 
assumed for this process, in order to facilitate the calcula- 
tions. The level crossing probability was finally given. 
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