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CHAPTER 1

Introduction

1.1 Standard Model

Current understanding of particle physics postulates that there are 17 fundamental

particles that interact via four fundamental forces – gravity, the strong force, the

weak force, and the electromagnetic force. These fundamental particles can be clas-

sified by their spins into bosons, which are the force-carrying particles with integer

spins, and fermions, which have half-integer spins. Fermions can be further divided

into quarks and leptons. The particles and three of the four forces – all but gravity

– are described by the Standard Model, a local SU(3)× SU(2)×U(1) gauge theory.

Electromagnetic and weak interactions as described by Electroweak Theory or Quan-

tum Electrodynamics, SU(2)×U(1). Strong interactions are described by Quantum

Chromodynamics or QCD, SU(3).

Fermions are grouped into three generations as shown in Table 1.1. Each gener-

ation consists of a leptonic doublet containing a charged and a neutral lepton and

a weak isospin doublet containing two quarks. The first generation, containing the

electron, the electron neutrino, the up quark, and the down quark, is the lightest

generation and is thus the most frequently found in nature. The second generation

contains the muon, the muon neutrino, the strange quark, and the charm quark. The

third generation contains the tau, the tau neutrino, the bottom quark, and the top

quark.
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Generation I II III

Lepton electron muon tau
Neutrino electron neutrino muon neutrino tau neutrino

Quark up strange top
Quark down charm bottom

Table 1.1. Standard Model Fermions.

1.2 Top Quark

Predicted to be the weak isospin doublet partner of the bottom quark – with Q = 2
3

and T3 = 1
2

– the top quark was the last quark of the Standard Model to be discovered.

It was first observed by the CDF and DØ experiments at the Fermilab Tevatron in

1995 [1][2]. With a mass of 173.3± 1.1 GeV/c2, it is the most massive quark – over

40 times heavier than the next heaviest quark, the bottom quark [3] – and is the only

quark heavier than the Z and W± bosons. At
√
s = 1.96TeV , the top quark has a

cross section of 7.5± 0.48 pb [22]. Due to its large mass, the top quark decays very

rapidly – with a width of less than 7.6 GeV corresponding to a lifetime of less than

10−24 s – before it has a chance to hadronize or form bound states. The top quark is

unique in this property and allowed the first observation of a bare quark.

Top quarks are produced at the Tevatron in pp̄ collisions at
√
s = 1.96TeV through

two primary mechanisms: quark-antiquark annihilation, qq̄ → tt̄ (85%), and gluon

fusion, gg → tt̄ (15%). The theoretical cross section for these tt̄ production mecha-

nisms is σtt̄ = 7.50 ± 0.48 pb. Top quarks are also produced singly at the Tevatron

through weak interactions: qq̄ → tb and qg → qtb. The cross section for single top

production at the Tevatron is σtt̄ = 2.3± 0.5 pb. Once produced, a top quark decays

into a bottom quark and a W boson – the large mass of the top quark and the CKM

angles make this decay process exclusive.

At the Tevatron, after top pair production – pp̄→ tt̄→ WbWb – there are three

dominant decay modes of the resultant W bosons and bottom quarks, as shown in

Table 1.2. The final state quarks from the processes listed in Table 1.2 all hadronize
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and appear as jets in the CDF detector.

Name Process Fraction

Dilepton tt̄→ (W+b)(W−b̄)→ (l̄µlb)(lµl̄b̄) 0.12
Lepton + jets tt̄→ (W+b)(W−b̄)→ (qq̄b)(lµl̄b̄) + c.c. 0.44
All-hadronic tt̄→ (W+b)(W−b̄)→ (qq̄b)(qq̄b̄) 0.44

Table 1.2. The primary decay channels for tt̄ production at the Tevatron.

Due to the recency of the top quark discovery, only the mass and cross section

have been measured with much precision, so top quark properties remain an untapped

are for probing both the Standard Model and new physics. With its high mass, the

top quark is sensitive to the Higgs boson (or Higgs bosons depending on the model)

or new gauge bosons – new bosons could be detected by direct decay from the top

quark or appear in loop corrections to which the top quark is sensitive. New physics

often revolves around symmetries – either the conservation of a previously unobserved

symmetry or the breaking of an established symmetry – and symmetries provide an

important tool for discovering new phenomena where the underlying dynamics are

unknown.

1.3 CP Symmetry

A symmetry is an invariance of a system under a given transformation. Noether’s

Theorem states that any continuous symmetry has a corresponding conservation law.

For example, the invariance of a system with respect to temporal translation cor-

responds to the conservation of energy. Symmetries do not have to be continuous;

discrete symmetries are also common in physics. Charge symmetry (C) is the invari-

ance of a system under the exchange of particles to their anti-particles and vice-versa

which leaves the the charge conserved.1 This property leads to the convention of

1In the context of Noether’s Theorem, QED is a gauge theory with U(1) symmetry, the conser-
vation law associated with this symmetry is charge conservation.
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calling a particle’s anti-particle its charge-conjugate – a convention that extends to

a system of particles. Parity symmetry (P) is the invariance of a system under the

exchange of all spatial coordinates with their additive inverses (e.g., ~x→ −~x). Time

reversal symmetry (T) is the invariance of a system under the exchange of all tempo-

ral coordinates with their additive inverses (e.g., t → −t). Julian Schwinger showed

that a simultaneous conservation of charge, parity, and time reversal (CPT) as a nec-

essary condition for a Lorentz invariant, local quantum field theory with a Hermitian

Hamiltonian. This concept was formalized by Wolfgang Pauli and Gerhart Lüders as

the CPT Theorem. In addition to being conserved together as CPT, it was thought

that each symmetry was always conserved individually. Individual conservation was

disproved by C. S. Wu with her discovery of parity violation in the weak decay of

radioactive nuclei. Simultaneous charge and parity conservation were disproved by

James Cronin and Val Fitch in their observation of weak decay in kaons. For the CPT

Theorem to hold true, if CP-symmetry is broken, then T-symmetry is also broken in

the weak decay of kaons. Other weak interactions have since been shown to violate

these symmetries, but strong interactions are expected to conserve charge-, parity-,

and time-symmetries, though limited work has been able to be done to test this sup-

position, especially at high energy. Top quark pair production at the Tevatron is a

natural place to test symmetries of strong interactions at high energies, as it allows

for an event-by-event comparison of top and anti-top.

1.4 Forward-Backward Asymmetry

As explained in more detail in Section 2.1, interactions at the Tevatron involve protons

traveling in circular direction colliding with anti-protons traveling in the opposite

direction. In such a geometry, it is natural to define a coordinate system with one

axis in along the beam line (the direction of the protons is chosen to be the positive

direction). Top-anti-top pairs are produced with the top and anti-top having equal
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and opposite momenta. One can define an angle, θ, determined by the angle between

the direction of the top quark and the positive beam axis. The differential cross-

section of the top-anti-top production can be expressed as a function of θ.

dσ

d cos θ
=
αs
q2
f(cos θ)f(~s) (1.1)

In terms of symmetries, it is natural to ask if f(cos θ) in Equation 1.1 is symmetric.

To explore charge-symmetry in top pairs, it is useful to define a representation of

charge asymmetry in terms of top and anti-top quarks as given in Equation 1.2.

AC =
Nt(p)−Nt̄(p)

Nt(p) +Nt̄(p)
(1.2)

Ni(j) is defined as the number of particle i traveling in the direction of particle j.

If the charge asymmetry, AC , is non-zero it implies a net top current flowing in the

direction of the protons. With the design of the Tevatron in mind, it is also useful

to define a representation of a forward-backward asymmetry in terms of protons and

anti-protons as given in Equation 1.3.

AFB =
Nt(p)−Nt(p̄)

Nt(p) +Nt(p̄)
(1.3)

If the forward-backward asymmetry, AFB, is non-zero it implies a net top current

flowing in the direction of the protons or anti-protons depending on the sign of the

asymmetry. If C-symmetry is conserved, then Nt̄(p) = Nt(p̄), implying that the

charge and forward-backward asymmetries, Equations 1.2 and 1.3, are equal. Thus a

charge-symmetry is equivalent to a forward-backward symmetry.
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1.5 QCD Asymmetry

Though strong interactions are expected to conserve charge, QCD predicts that strong

interactions in top pair production at the Tevatron will produce net charge asymme-

try. At leading order (LO), no charge asymmetry is expected, as quarks and anti-

quarks are interchangeable. But at next-to-leading order (NLO), interference in the

correction terms leads to differences in quark and anti-quark production, leading to

net charge asymmetries. This process is analogous to the charge asymmetry found

in e+e− → µ+µ− production where the radiative photon corrections of the QED pro-

cess are replaced by radiative gluon corrections in the QCD process. As shown in

Ref. [4], the QCD charge asymmetry is proportional to the QED charge asymmetry

with appropriate color terms added.

f(cos θ) = (1 + cos2 θ) + (1− β2) sin2 θ (1.4)

Two different processes lead to differently signed asymmetries that then combine

to form a net asymmetry. The first process is radiative corrections in the form

of gluon brehmsstrahlung in both the incoming and outgoing states, Figures 1.1a

and 1.1b. These two sub-processes add together to form a negative overall charge

asymmetry. The second process is the interference of box diagram processes with the

Born process, Figures 1.1c and 1.1d; these two sub-processes add together to form a

positive overall charge asymmetry. While one process gives a negative asymmetry and

the other gives a positive asymmetry, the two are not of equal magnitude, creating a

net positive asymmetry when all terms are added together. The predicted QCD NLO

asymmetry is 4-5% [4], and the next-leading-order Monte Carlo generator MC@NLO

estimates 5% [5].

The NLO asymmetry is both mass- and rapidity-dependent, as shown in Figure 1.2

which shows the estimated parton-level NLO asymmetry as generated by the Monte
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Figure 1.1. NLO and LO diagrams. a) final-state-radiation; b) initial-
state-radiation; c) box diagram; and d) Born process

Carlo generator MCFM [6].

1.6 Previous Tevatron Asymmetry Results

With 3.2 fb−1 of pp̄ collisions, CDF measured a forward-backward asymmetry in

the lab frame of AFB = 0.193 ± 0.069 – the mass-dependence of the asymmetry

was examined and found consistent with the NLO expectation [7][8][9][10][11]. With

4.3 fb−1 of pp̄ collisions, DØ measured a forward-backward asymmetry in the lab

frame of AFB = 0.08 ± 0.04 [12]. While these results have remained consistent with

expected QCD asymmetries, other mechanisms beyond the Standard Model have

been proposed to produce the measured asymmetries. These mechanisms include

axigluons, diquarks, new weak bosons, and extra-dimensions which produce forward-

backward asymmetries in tt̄ production while remaining consistent with the observed

tt̄ cross-section and invariant mass distribution [13].
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Figure 1.2. Forward-backward asymmetry in top pair production versus
top pair mass as estimated by Monte Carlo generator MCFM. The asym-
metry versus mass is also shown for two different rapidity regions.
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1.7 Analysis Plan

Following the introduction and motivation of the previous sections, the analysis will

proceed as follows:

• Chapter 2 gives an overview of the collider and detector used to generate and

collect the data sample used in the analysis.

• Chapter 3 summarizes the selection cuts applied to the collected data sample.

• Chapter 4 discusses the simulated event samples that model the signal and

backgrounds for the data sample.

• Chapter 5 describes the reconstruction algorithms applied to the selected data

to produce the data sample along with the validation of the reconstruction.

• Chapter 6 analyzes the inclusive forward-backward asymmetry of the data

sample.

• Chapter 7 expands upon the inclusive analysis of Chapter 6 to analyze the

mass-dependent forward-backward asymmetry of the sample.

• Chapter 8 details checks of non-signal sources of the measured asymmetry.

• Chapter 9 validates the correction technique applied to the data sample in

Chapter 7.

• Chapter 10 reviews the sources of systematic uncertainties in the analysis and

calculates a systematic error for each source

• Chapter 11 wraps up the analysis with a summary of the findings.

.

9



CHAPTER 2

Experimental Apparatus

This analysis uses data collected by the Collider Detector at Fermilab (CDF)

experiment at Fermilab’s Tevatron accelerator. Located in Batavia, Illinois outside

of Chicago, Fermilab was founded in 1967 and is currently the largest laboratory for

particle physics in the United States. The Tevatron collides protons and antiprotons

at a center of mass energy of
√
s = 1.96 TeV.

2.1 The Tevatron

Built in 1983, the Tevatron accelerator was the first superconducting synchrotron in

the world. It is located at the end of a chain of seven Fermilab accelerators which

are used together to accelerate protons and antiprotons to a center of mass energy of

1.96 TeV [14]. The accelerator complex is shown schematically in Figure 2.1.

The acceleration process begins inside a Cockcroft-Walton accelerator, where H−

ions are created by ionizing hydrogen gas. A static electric field between the grounded

wall and an electrically charged dome accelerates the ions to an energy of 750 keV, at

which point they are grouped into bunches and enter a 500 foot long linear accelerator

or Linac. A combination of drift tube Linacs and Klystron amplifiers use 201 MHz

radio frequency (RF) pulses to accelerate the ion beam from 750 KeV to 400 MeV.

The beam then enters a circular synchrotron accelerator called the Booster where

the electrons are stripped off leaving only a proton beam. A synchrotron with a

75m diameter, the Booster converts the proton beam into discrete proton bunches
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Figure 2.1. The Fermilab Accelerator Complex

and then accelerates them using RF cavities. The proton beam is directed along

its circular path using dipole magnets. The beam circles the Booster approximately

20,000 times before reaching an energy of 8 GeV, at which point it is ready to be

passed on to the next accelerator in the chain, the Main Injector. Only a portion of

the protons that reach this stage are actually passed on to the Main Injector, while

the rest are used for other experimental programs at Fermilab.

The Main Injector, a synchrotron with a radius seven times that of the Booster,

serves several purposes. At this point in the accelerator chain, it accelerates the

proton beam from 8GeV to 120GeV. Some of these 120 GeV protons are used for

Fermilab’s other experiments, while the rest are sent to the antiproton source to

create antiprotons. These protons strike the antiproton target, a nickel disk, every

1.5 seconds and create a shower of new particles. The particles created are focused

using a lithium lens, and then the negatively charged antiprotons, which have an

average energy of 8 GeV, are separated from the other particles by passing the shower
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of particles through a magnetic field.1 For every 100,000 protons which strike the

target, only 1 antiproton is created, so a very large number of protons is needed to

accumulate a usable antiproton beam.

Once the antiprotons have been filtered from the other particles, they enter an

accelerator called the Debuncher that cools the antiprotons to a uniform energy. At

this point, the antiprotons are accelerated to a uniform energy of 8 GeV. Because

the antiprotons enter the Debuncher with a spread of energies, the result of this

process is that, although the energy of the beam becomes uniform, the antiprotons

are now spread out in space and no longer in bunches. The beam is then passed

to the Accumulator, which is located in the same tunnel as the Debuncher. By

making the transfers from the Debuncher to the Accumulator at discrete moments in

time, a process called “stacking”, the bunch structure is returned to the antiproton

beam. The antiprotons are collected in the Accumulator over several hours, at which

point they are transferred to the Recycler, a fixed energy storage ring located in the

same tunnel as the Main Injector. It can take 12-24 hours for a sufficient number of

antiprotons to become available for loading into the Tevatron.

When enough antiprotons have been created, the Main Injector is used to accel-

erate proton and antiproton bunches from 8 GeV to 150 GeV and then inject these

bunches into the Tevatron. With a radius of 1 kilometer and a 53.1 MHz RF used for

acceleration, there are 1,113 RF wavelengths along the circumference of the Tevatron.

The spacing between the proton and antiproton bunches is determined by the radio

waves, resulting in 1,113 slots, called “buckets”, in which the proton and antiproton

bunches are able to travel. At the beginning of a run, 36 bunches of protons with an

energy of 150 GeV are injected into the Tevatron from the Main Injector, and 36 an-

tiproton bunches are injected in the opposite direction. The proton bunches generally

1The separation procedure takes advantage of the electrodynamic force relationship, ~F = q ~E× ~B.
Charged particles in a fixed electromagnetic field will curve differently depending on their charge
and energy, allowing one to separate out particles with selected properties.
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contain several times the number of particles that are in the antiproton bunches, since

protons are much easier to obtain. The 36 bunches are injected in three groups of

12, called “trains”. Within a train, there are 20 empty buckets between each bunch,

and there are larger spaces between each train. If the beam becomes unstable for any

reason, the large gap between trains allows time for abort switch magnets to turn on

and abort the beam, directing it into a concrete block before it can do any damage

to the accelerator or the detectors.

After all proton and antiproton bunches have been loaded into the Tevatron, the

beams are accelerated once more from 150 GeV to 980 GeV. Large steel blocks called

“collimators” are inserted close to the beam to remove any stray particles, and the

transverse beam size is reduced to approximately 2 microns using quadrupole magnets

on each side of both the CDF and DØ detectors. At 980 GeV, each bunch circles

the 6 km circumference ring approximately 50,000 times each second. Collisions are

initiated at the CDF and DØ experiments by electrostatic separators that rotate the

helical proton and antiproton beams, creating direct collisions at only two points

along the ring. The detectors are built around these two collision points.

Even though trillions of particles are contained in the proton and antiproton

beams, only a few collisions - generally fewer than 10 - occur each time proton and

antiproton bunches cross. The probability of a collision taking place at a given time

can be quantified by the instantaneous luminosity, which is given by Equation 2.1

[24].

L = n f
Np Np̄

σx σy
cm−2s−1 (2.1)

In this equation, n is the number of bunches, f is the revolution frequency, Np and

Np̄ are the number of protons and antiprotons in each bunch, and σx and σy are the

average width of a bunch in the transverse directions. The luminosity measures the

number of protons that interact with antiprotons per cm2 per second. For a process
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that has a given cross-section σ, the luminosity can be used as in Equation 2.2 to

determine the number of times that process will occur. Once collisions have begun,

the Tevatron can run 30 hours or even longer before it needs to be reloaded, although

generally it is refilled approximately every 20 hours in order to keep the instantaneous

luminosity as large as possible and maximize the number of collisions observed.

N =
∫
L σdt (2.2)

Because the cross sections for various processes will be constant at a given en-

ergy, we can define the integrated luminosity, a measure of the total amount of data

collected, as L =
∫
L dt. Then the total number of events that will take place for a

given process can be written as N = L σ. Since cross sections are often measured in

units of femtobarns (fb) and the number of events is a unitless number, the integrated

luminosity is measured in units of fb−1. The dataset used in the analysis described

here has an integrated luminosity of 4.3 fb−1, which means that for a process that

has a cross section of 1 fb, we would expect to produce 4.3 events.

2.2 The CDF Detector

When a collision takes place at the Tevatron, it can be observed and recorded by the

CDF detector, a general purpose, longitudinally and cylindrically symmetric particle

detector located within and around a solenoidal magnetic field [15]. CDF can mea-

sure the charge, momentum, and energy of various types of particles using several

different detector systems, each of which is optimized for a particular type of particle

or measurement. Figure 2.2 shows the various detector systems, each of which is

discussed below [15].

Different types of particles interact differently with the CDF detector. CDF

has several basic layers of detector systems: tracking chambers, an electromagnetic

calorimeter, a hadronic calorimeter, and muon chambers. The detector needs to
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Figure 2.2. Diagram of the CDF Detector

identify many different types of objects: photons, electrons, muons, jets created by

the hadronization of quarks, and neutrinos. The way that these particles interact

with the detector is summarized in Figure 2.3 [16]. In the CDF detector, the track-

ing chambers are located inside the solenoidal magnetic field, while the remaining

components are outside of the magnet.

Figure 2.3. How Different Particles Interact with the Detector

Because photons are neutral, they will not leave a track in the tracking chambers,
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but will deposit energy in the electromagnetic calorimeter. Electrons, being charged,

will leave tracks in the tracking chambers as well as energy in the electromagnetic

calorimeter. Muons are charged, and thus leave tracks in the tracking chambers, but

they do not interact with most material, so they will not deposit much energy in

either calorimeter system, and will travel all the way through the detector to leave

hits in the muon chambers. Charged hadrons from quark jets will leave tracks in

the tracking chambers and leave some energy in the electromagnetic calorimeter, but

most of their energy will be deposited in the hadronic calorimeter. Neutral hadrons

in quark jets will not leave tracks, and will deposit little energy in the electromagnetic

calorimeter, but will deposit most of their energy in the hadronic calorimeter. Finally,

neutrinos do not interact with any part of the detector, and are detectable only by

their absence - because they carry energy away but do not interact with the detector,

they are detected as an imbalance of momentum left in the detector.

2.2.1 Coordinates and Definitions

The CDF detector can be described by a right-handed spherical coordinate system

with the origin at the center of CDF and the z-axis pointing along the direction of

the proton beam. The x-axis, from which the azimuthal angle φ is measured, points

out radially from the center of the Tevatron in the plane of the Tevatron ring. The

polar angle θ is measured from the z-axis, although it is often transformed to a new

variable called pseudorapidity, η, defined in Equation 2.3.

η = − ln(tan(
θ

2
)) (2.3)

The new variable η is convenient at a hadron collider because Lorentz boosts

along the z-direction appear as linear translations, η → η′ = η + f(β). This is useful

because the momentum along the z-direction of the two initial colliding partons will

be different in each event, depending on what fraction of the proton (or antiproton)
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momentum each parton carries. For the same reason, it is also useful to define the

transverse energy ET = E sin θ and the transverse momentum PT = P sin θ. PT and

η form a complete set of coordinates.

2.2.2 The Silicon Tracking Detectors

The innermost detector system at CDF consists of the silicon tracking detectors. This

detector system is critical to many analyses at CDF because it is able to measure

track impact parameters with a resolution of approximately 30 microns. As will be

discussed in Chapter 3, this allows for the tagging of jets originating from bottom

quarks, providing a very useful way to differentiate signal events from background

events in this analysis and many others.

The silicon detectors are made up of many silicon semiconductor p-n junctions.

When a charged particle passes through the detector, it will cause ionization in the

depletion regions of the semiconductors, allowing the particle to be detected and

tracked. There are three separate detectors that make up the silicon tracking system:

Layer 00 (L00), the Silicon Vertex Detector (SVX), and the Intermediate Silicon Layer

(ISL). Together, these three systems cover a cylindrical area around the beam pipe

with a radial range from 1.5 cm to 32 cm, and they can detect tracks from charged

particles with |η| ≤ 2.

L00 consists of a single-sided silicon microstrip detector and is attached directly

to the beam pipe. It is surrounded by the SVX, which is made up of five layers of

silicon microstrip ladders which are double-sided (each strip contains p-n junctions

on both sides). Outside of the SVX is the ISL, which again consists of double-sided

silicon ladders. There is one ISL layer that covers the central region of the detector

and two additional ISL layers that provide tracking out to |η| = 2.
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2.2.3 The Central Outer Tracker

The entire silicon tracking system is located inside CDF’s other tracking detector,

the central outer tracker (COT). The COT is an open cell drift chamber made up of

eight concentric superlayers of tracking cells which use an argon-ethane mixture for

the ionizing gas. Each cell spans the entire length of the COT and contains alternating

potential wires, held at a voltage of 2 kV, and sense wires, held at a voltage of 3 kV.

When a charged particle enters the COT, it causes the argon-ethane mixture to

become ionized. The electrons released during this ionization drift towards the sense

wires, causing secondary ionization and releasing additional electrons. This charge

is deposited on a sense wire, and the charge and its arrival time are recorded by a

charge integrating amplifier/ADC and a fast time-to-digital converter. By knowing

the electron drift velocity in the gas mixture, the distance to the original ionization

can be determined, and a track can be reconstructed. In this way, the COT is able

to measure tracks for charged particles with |η| ≤ 1.

Both the silicon detectors and the COT are enclosed inside a large superconducting

solenoid magnet which creates a field of 1.4 T. This field causes the paths of charged

particles to curve in the azimuthal plane. The amount of curvature depends on the

transverse momentum of a particle, so the curvature can be used to measure this

momentum. The silicon and COT combined can measure PT with a resolution of

approximately δPT

PT
= 0.0012 PT [15].

2.2.4 The Electromagnetic and Hadronic Calorimeters

The electromagnetic (EM) calorimeters are located directly outside of the magnet

and are used to measure energy deposition by particles that interact mainly via

the electromagnetic interaction (photons and electrons). The central electromag-

netic calorimeter (CEM) covers the range |η| ≤ 1.1, while the plug electromagnetic

calorimeter (PEM), covers 1.3 ≤ |η| ≤ 3.6. Both electromagnetic calorimeter sys-
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tems are made up of alternating layers of lead and plastic scintillator. When an

electron enters the calorimeter, it will radiate photons due to deceleration caused by

the electromagnetic fields of atomic nuclei (bremsstrahlung radiation). Each radiated

photon can then convert into an electron-positron pair, which in turn causes more

bremsstrahlung, and the shower continues to grow until the resulting particles do not

have enough energy to emit any radiation.

The total energy in the shower (equivalent to the energy of the initial particle en-

tering the calorimeter) is proportional to the amount of light produced by the shower

in the scintillator layers.2 The light is collected by the scintillators and transmitted

to a photomultiplier tube, where the total amount of light produced is measured.

In this way, the electromagnetic calorimeters are able to determine the energy of an

incident photon or electron with a resolution of approximately δET

ET
= 0.14/

√
ET [15].

Several layers into the CEM, at the depth where the electromagnetic shower is

expected to be at a maximum, there is a layer of wire chambers called the central

electron strip (CES) detector. Similarly, there is a PES detector located inside the

PEM. These detectors are used to localize the position of an electromagnetic shower

inside the calorimeter, allowing better matching of showers to tracks observed by the

COT.

Charged hadrons that pass through the electromagnetic calorimeter lose a small

portion of their energy, but they do not cause a shower because they do not radiate

photons. In order to measure the energy of hadrons, the hadronic calorimeters (HAD)

are located just outside of the electromagnetic calorimeters. The HAD calorimeters

cover the same range as the EM calorimeters, and are analagous in design - the

HAD calorimeters are made up of alternating layers of iron and scintillator. Hadrons

2Each particle in the shower stimulates the scintillating material to produce photons. The photons
are channeled through the scintillating layer to the photomultiplier tubes, recording the number of
photons produced by the passing of the particle, which is proportional to the energy of the particle
at the time it pass through the scintillating layer.
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entering the HAD calorimeters participate in nuclear interactions within the iron,

creating a shower of new particles which can then undergo nuclear interactions them-

selves. The showering hadrons then enter the scintillator layers and produce light,

which is used to measure the energy in the shower. Because the shower in the HAD

calorimeters depends on nuclear interactions, which occur less frequently than the

bremsstrahlung radiation in the EM calorimeter, there are generally fewer particles

in a shower in the HAD calorimeters, and the energy resolution is poorer - approxi-

mately δET

ET
= 0.50/

√
ET in the central HAD calorimeter [15].

2.2.5 The Muon Chambers

The final layer of the CDF detector, located beyond the HAD calorimeters, consists

of the muon chambers. Muons interact via the electromagnetic force, but because

they are 200 times more massive than the electron, they do not readily produce

bremsstrahlung radiation. They therefore pass through the calorimeters without los-

ing energy or creating a shower. Large steel slabs surround the hadronic calorimeters,

designed to stop all particles except muons from passing through. Wire chamber drift

cells are placed just outside of these slabs to detect muons that travel beyond the

steel slabs. Similar to the COT, when a muon passes through a chamber, it ionizes

the gas (which is argon-ethane, as is used in the COT). The ionization electrons then

drift to high voltage wires in each chamber, and the detector records the passage of

a muon.

The CDF detector contains several sets of muon chambers, each of which consists

of four layers of drift cells with a slight azimuthal offset. Hits in these muon chambers

define a track segment or “stub” which can then be matched to a reconstructed track

in the COT. The central muon detector (CMU) and the central muon upgrade (CMP)

cover the range |η| ≤ 0.6. The central muon extension (CMX), located at the corners

of the detector, covers the range 0.6 ≤ |η| ≤ 1.0. Finally, the barrel muon upgrade
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(BMU) covers the region with 1.0 ≤ |η| ≤ 1.5.

2.3 Data Acquisition at CDF

Collisions occur at the Tevatron every 396 nanoseconds. With 750,000 channels in

the detector to be read out, it is impossible to record every collision on this timescale,

so a “trigger” system must be used to decide which events to record. CDF uses a

three stage trigger system that was designed to look at the 2 million collisions that

occur each second and select only the approximately 75 most interesting ones to be

recorded. This trigger system is shown schematically in Figure 2.4. It was designed

so that the data acquisition (DAQ) system could check at least 95% of the collisions

to determine whether or not to keep the event.

The first trigger stage, the Level 1 selection, stores information for 42 consecutive

bunch crossings in a hardware buffer. Each event is kept for 5500 ns, allowing the

buffers to collect signals from all detector systems but the silicon detectors – including

the COT and muon chambers, which have long drift times. The Level 1 hardware

fits helical tracks to hits in the COT, matches extrapolated COT tracks to hits in

the muon chambers, and finds the energy deposited in the calorimeter. The results

of these operations are compared with the Level 1 selection criteria, as listed in a

“trigger table”, and a decision is made as to whether to pass the event on to the next

level or reject it. The Level 1 system is designed to process the low level information

from each event in less than 4000 ns so that no event is lost from the buffer before a

decision is made.

An event that passes the Level 1 selection is passed on to one of four Level 2 buffers.

At this point, the silicon tracking system is read out and tracks are reconstructed to

determine if there are any jets which could potentially be tagged as bottom quark jets.

Information from the electromagnetic and hadronic calorimeters is used to identify

possible electrons, photons, and jets. Processors then combine the information from
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various sources and make a more sophisticated decision than the Level 1 system by

comparing each event to a set of criteria determined by the trigger table.

After an event is selected by the Level 2 system, the entire detector is read out

and this information is sent to one of several hundred processors that make up the

Level 3 system. This is the first time that the event is fully reconstructed using all

the detector channels. The Level 3 processors can take up to a second to reconstruct

an event and then make a final decision on whether or not to record that event, based

on the types of particles present in the event and certain other properties of the event

as a whole.

Once an event has been accepted by the Level 3 trigger system, it is written

to a magnetic tape at Fermilab’s computing center. From there, offline processing

is performed to apply calibrations for variables that can change over time, such as

beam alignment, and a detailed validation of the data is performed. The data can

then be used for analysis.
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CHAPTER 3

Event Selection

Collisions at the Tevatron can result in many different interactions, producing

many possible final states, but this analysis is concerned with only those events that

have a final state that could have been the result of the decay of a pair of top

quarks. The event selection must be designed to separate these signal events from

the background – the many other processes that occur at the Tevatron. In particular,

we consider events where the final state has a signature consistent with a tt̄ system

decaying via the lepton plus jets decay channel, where one of the top quarks in the

tt̄ system decays leptonically via t → Wb → `νb and the other top quark decays

hadronically via t → Wb → udb. One reason for using this channel is that the

detector is very good at identifying electrons and muons, which are rarely produced

at hadron colliders, greatly in reducing the number of background events.

We use the standard selection that has been developed at CDF for tt̄ events

in the lepton plus jets decay channel. This selection requires one central (|η| <
1), high energy (PT > 20 GeV ) charged lepton (from the leptonically decaying W

boson), four high energy (ET > 20 GeV ) jets (clusters of particles resulting from the

hadronization of the two bottom quarks and the two quarks from the hadronically

decaying W boson), and a large ( 6ET ≥ 20 GeV ) amount of missing energy (from the

neutrino, which passes through the detector without depositing any energy). Due to

the difficulty of correctly identifying tau leptons in the detector, the charged lepton is

required to be an electron or a muon. Electrons are identified by looking for isolated
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tracks pointing to isolated energy deposits in a single electromagnetic calorimeter

tower in the CEM; muons are identified as tracks in the COT that align with track

stubs in the muon chambers. The two jets associated with the bottom quarks are

used to track the bottom quark prior to hadronization. While W bosons decay near-

instantaneously, bottom quarks have a longer lifetime and thus decay away from the

interaction point (the distance is γβcτ = 500 µm), so the bottom quarks in an event

must have a secondary vertex displaced from the primary interaction vertex.

There are several steps in the event selection, the first of which is performed

by the online trigger system as events are selected to be read out and written to

tape. This online selection is primarily driven by the detection of a high momentum

electron in the CEM calorimeter or a high momentum muon in the CMUP or CMX

muon chambers. This method allows us to take advantage of the rarity of leptons

at a hadron collider and immediately reduce the background. Once an event has

been selected by the online trigger system, it is written to disk and the data is then

processed offline. At this point, a number of calibration corrections are made, allowing

tracks and energy showers to be reconstructed using the information taken directly

from the detector. This reconstruction allows us to identify objects like electrons,

muons, or jets. By looking at these objects, we can make a final determination as to

whether an event should be selected as a tt̄ candidate. The details of this selection

are described in [17]. In the dataset used for this analysis, which has an integrated

luminosity of 5.3 fb−1, we select 1,260 candidate tt̄ events.
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CHAPTER 4

Modeling the Expected Signal and Background

It is necessary to have a model for the signal and the background for a given event

sample to check that the events are properly reconstructed. The models are created

using simulated data sets, which are mathematical models based on theoretical and

experimental understanding of the underlying physical interactions. The millions of

events generated in simulated data sets allow for measurements of expected phenom-

ena and detector responses with high statistical precision.

4.1 Event Generation and Simulation

Most of our signal and background samples are modeled by simulating events pro-

duced by each particular signal and background process. This simulation takes place

over several steps. First, the initial conditions of the pp̄ collision must be modeled,

and the momenta of the colliding particles are fed into an event generator. This

event generator performs the matrix element calculation for the various processes

and produces output “events” which fully specify the momenta of the various out-

going particles. The hadronization of any outgoing partons into jets must then be

simulated in a process called parton showering. Finally, the results of this simulation

are passed through a simulation of the detector response, called CDFSim. The out-

put of this final step is a set of data banks identical to those which would be read out

from the detector, as if a given simulated event actually occurred inside the detec-

tor. The various event generators used for modeling both our signal and background
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processes are listed below.

• pythia [18]: pythia is a multi-purpose, leading order event generator which

also includes parton showering. It is used for tt̄ modeling and also for some

of our background samples. pythia models quarks, gluons, PDFs, final state

decays, and parton showers of the underlying events.

• herwig [19]: herwig is a leading order matrix element event generator which

also includes parton showering. It is particularly suited for modeling the emis-

sion of low-energy gluons. Because herwig includes tt̄ spin correlation effects

in the event generation, while pythia does not, it is useful in generating the

signal samples used to test our measurement method.

• alpgen [20]: alpgen is a leading order matrix element generator that does not

include parton showering. It is especially useful for modeling the production

of electroweak vector bosons in association with energetic partons, and is used

for many of our simulated samples for processes which include vector bosons.

Because alpgen does not include parton showering, pythia is used to simulate

the parton showers.

• MadEvent [21]: MadEvent is a leading order matrix element generator that

includes color flow and spin polarization effects, but does not include parton

showering. It is used here to model the background processes involving the

production of single top quarks. Again, pythia is used to simulate the parton

shower in events generated by MadEvent.

4.2 tt̄ Signal Modeling

In this analysis, tt̄ events are our signal, so it is important that we have an accurate

model of the tt̄ production process. We create this model using simulated events.

Having models of both the signal and background will allow us to compare simulated

signal+background distributions to the data which passes our selection so that we can
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ensure that our understanding of the data is accurate. We model tt̄ production using

both pythia and herwig, allowing us to perform cross checks in multiple simulated

samples.

Npp̄→X = ε σpp̄→X

∫
dt L (4.1)

For tt̄ production and several of our background processes, we estimate the number

of events that pass our event selection using the cross section for the process, the

integrated luminosity of the data sample, and the overall selection efficiency for the

chosen process, which is derived from our simulated samples. The expected number

of events for a given process can be determined using Equation 4.1, where ε is the

selection efficiency, σ is the cross section (measured to be σtt̄ = 7.50± 0.48 pb [22]),

and
∫
dt L is the integrated luminosity. For an integrated luminosity of 5.3 fb−1, the

number of predicted tt̄ events is

N tt̄ = 996.3± 129.8

4.3 tt̄ Background Modeling

Our event selection criteria are optimized for selecting tt̄ events in the lepton plus

jets decay channel. However, there are several other physical processes with final

states that are similar to the tt̄ lepton plus jets final state. Of the 1,260 events in

our dataset which pass the event selection cuts, we expect some of them to be the

result of these other background processes. These processes include: electroweak di-

boson production, Drell-Yan production (Z+jets), electroweak production of single

top quarks, QCD production of fake tt̄ events, W-boson plus heavy flavor jets pro-

duction (W+HF), and W-boson plus light flavor jets production (W+LF). Each of

these processes will be discussed in more detail below. Some of these processes are

very well understood and can be modeled fully using simulated events, while others
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Process σ
WW 13.25± 0.25 pb
WZ 3.96± 0.06 pb
ZZ 1.58± 0.02 pb

Table 4.1. Cross Sections for Diboson Production

are not as well understood theoretically and are modeled using real data collected by

the CDF detector [17, 23].

4.3.1 Electroweak Diboson Production

The electroweak interaction can produce events with pairs of vector bosons: WW,

WZ, and ZZ events. Some of these events are able to pass our selection criteria

because they contain a real lepton and neutrino (from the decay of a W boson) as

well as multiple jets (from the decay of the second boson). These diboson backgrounds

are simulated using the pythia event generator. The number of events expected in

our sample is again calculated using Equation 4.1. The cross sections for the various

diboson processes are shown in Figure 4.1 [24].

Using this information, we find the total predicted number of diboson events that

will pass our selection to be

NDiboson = 19.5± 1.3

4.3.2 Drell-Yan Production

The electroweak Drell-Yan production of a Z boson can be accompanied by several

jets. In this case, particularly when the boson decays via Z → ττ , the final state of

such an event could pass our event selection, thanks to the presence of a real lepton

and neutrino (from a τ lepton decay) as well as multiple jets. We model this Z+jets

production using the alpgen event generator, with the parton showering performed

by pythia. The overall normalization is determined in the same way as for the

electroweak diboson production. The contribution from this particular background
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Process σ
Single Top T-Channel 1.98± 0.08 pb
Single Top S-Channel 0.88± 0.05 pb

Table 4.2. Cross Sections for Single Top Quark Production

process is fairly small (the cross section for Z → ττ is σ = 13.0 ± 1.5 pb [24]), but

it is non-negligible. The total predicted number of Drell-Yan events in our sample of

candidate tt̄ events is

NZ+Jets = 8.8± 0.9

4.3.3 Electroweak Single Top Production

This analysis studies top quarks produced in pairs by the QCD interaction, but the

electroweak force can also produce top quarks paired with a bottom quark. When

this occurs, these single top quarks form a background for our analysis. There are

two electroweak processes that can produce single top quarks at the Tevatron. The

first, called s-channel production, occurs when a virtual W boson decays via W ∗ → tb.

The second process, t-channel single top production, occurs when a W boson interacts

with a bottom quark in the “sea” of quarks inside the proton, producing a top quark.

Figures 4.1 and 4.2 depict s-channel and t-channel single top production respectively.

Figure 4.1. S-channel Single Top Production Figure 4.2. T-channel Single Top Production
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Because these events contain one real top quark, as well as extra jets, they are

often able to pass our event selection. We model single top production using the

MadEvent event generator, with the parton showering performed by pythia. The

normalization for the single top quark contribution to the total background is found

using Equation 4.1, with the cross sections given in Table 4.2 [24]. The cross sections

are small, but because these events look very much like tt̄ events, they still make a

sizable contribution to our overall background, with the predicted number of single

top quark events passing our selection given by

NSingleTop = 15.6± 0.9

4.3.4 QCD

The vast majority of collisions at the Tevatron involve only the QCD interaction.

Without any electroweak process taking place, such events will not involve any W

bosons. Because of this, they will not include any real leptons or neutrinos with large

energy, so our event selection removes an overwhelming majority of these events.

However, these events can occasionally pass our event selection by containing both

a jet that happens meets all of our lepton selection cuts and a significant amount of

missing transverse energy – usually due to the mis-measurement of jet energies. The

probability that any individual QCD event will meet both these requirements and

pass our event selection is very small, but because there are so many QCD events

produced at the Tevatron, they form one of the largest backgrounds for the tt̄ events

we are studying.

Only QCD events with very specific characteristics will be able to produce both

a fake lepton and fake missing transverse energy. Because these things require both

mis-identification of a lepton and mis-measurement of energy in the detector, it is

difficult to verify that our detector simulation properly models these effects. There-

31



fore, rather than using simulated samples to model this background, we use the data

itself. To do so, we work with the “jet electron” dataset, which is created using selec-

tion criteria similar to what is used for this analysis, except that there is no 6ET cut

and, instead of tight leptons, we select jet electrons. These jet electrons are defined

as jets containing at least four tracks in the COT, but which deposit most of their

energy in the electromagnetic calorimeter. The jet electrons meet the requirements

for electron identification, except for the fact that they contain multiple tracks and

are thus unlikely to be real electrons. The presumption is that QCD events in the

jet electron dataset are similar kinematically to QCD events where there is a jet that

actually does get identified as a tight electron.

In order to determine the normalization of the QCD background, a fit is performed

to the 6ET distribution in the data using the jet electron sample as one template and a

W+jets simulated sample as a second template. This determines the expected QCD

fraction in the data, and by then applying our 6ET cut, we can determine the number

of expected QCD events that will pass our selection. This prediction is

NQCD = 67.5± 29.6

4.3.5 W + Heavy Flavor

The W + heavy flavor background processes are those which produce a real W boson

as well as heavy quarks (W + bb̄, W + cc̄, and W + c). These events contain a real W

boson which can decay leptonically to produce a real lepton and missing transverse

energy. They also contain multiple jets, and due to the presence of real bottom

quarks, our b-tagging requirement does not significantly reduce this background. As

a result, these events form the largest portion of our overall background model.

The W + heavy flavor background component is modeled using alpgen, with the

parton showering performed by pythia – the combination of these generators gives
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the overall shape of this background distribution. Because it is difficult to determine

the theoretical cross section for the production of W bosons in association with various

numbers of jets, we do not estimate the normalization for this background process

using Equation 4.1. Instead, we start with the pretag data sample, which is the

sample we find when we impose all of our selection cuts except for requiring at least

one jet to be tagged as a b jet. Starting from this sample, the expected number of

W + heavy flavor events in our signal sample can be calculated using Equation 4.2.

NW+HF = (Npretag −NQCD −NDiboson −NZ+Jets −NSingleTop −Ntt̄) fHF εtag (4.2)

Starting with the pretag sample, the number of predicted QCD, diboson, Drell-

Yan, single top, and tt̄ events is subtracted, giving us an estimate of the number

of events containing a W boson and jets. Simulated alpgen samples are used to

calculate the fraction fHF of these events with heavy flavor quarks. The result is then

multiplied by the b-tagging efficiency εtag. In this way, while simulated samples are

used to find the heavy flavor fraction fHF , the absolute normalization is determined

directly from the pretag data. The total number of W + heavy flavor events predicted

using this method is

NW+HF = 135.5± 35.2

4.3.6 W + Light Flavor

The final background component in our sample is made up of processes which produce

a real W boson in association with light quarks. As with the W + heavy flavor

background, the W + light flavor processes produce events with a real W boson,

which can decay into a lepton and neutrino, as well as multiple jets. However, in this

case, there are no real bottom jets in the event. Two poorly reconstructed jets can
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have tracks that cross near the primary vertex giving the appearance of a secondary

vertex. This can be identified as a bottom jet – called a “mistagged” jet. Some jets

have a negative secondary vertex, which cannot come from a physical bottom quark.

Assuming that all tagged events with a negative secondary vertex are mistagged

events, one can determine the ratio of mistags to tags and use the ratio to model

mistags in a given sample based on jet properties.

We again use alpgen, with the parton showering performed by pythia, to model

the W + light flavor background. In order to determine the appropriate normalization

of this background, we first consider the secondary vertex that is the basis of our b-

tagging algorithm. If we let the distance from the primary vertex to the secondary

vertex be T , the path of the decaying particle be ~d, and the direction of the jet be ĵ,

then for a real secondary vertex, we should have T = ~d · ĵ > 0 because the decaying

particle must be traveling in the same direction as the jet. If we consider a sample

of jets with no measurable lifetime (like those in the W + light flavor sample), the

distribution of T will be symmetric around 0, but not exactly 0 because of the finite

detector resolution. Thus a mistagged jet is equally likely to have T > 0 or T < 0.

Since no real process can produce a secondary vertex with T < 0, the number of such

vertices in our data can be used to estimate the number of mistagged jets with T > 0

in our candidate events.

The rate of secondary vertex tags with T < 0 is measured in the data and pa-

rameterized by six jet variables: jet ET , the number of good SVX tracks in the jet,

the total ET for all jets in the event, the jet η, the number of reconstructed primary

vertices in the event, and the z-coordinate of the jet’s primary vertex [23]. Using

these variables, we can determine Nmis, the number of mistagged events predicted in

the pretag sample. We can then multiply this number by the estimate for the fraction

of W + light flavor events in the pretag sample, as in Equation 4.3, to determine the

expected number of W + light flavor events to pass the selection.
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NW+LF = Nmis Npretag −Ntt̄ −NQCD −NW+HF −NDiboson −NZ+Jets −NSingleTop

Npretag

(4.3)

The final result of this estimate is that we expect W + light flavor to be our third

largest background component, with a predicted number of events given by

NW+LF = 45.2± 9.8

4.4 Overall Event Simulation Model

Our overall background model is determined by summing the predictions for all of

the various background processes. The various backgrounds and their respective

normalizations are shown in Table 4.3, giving a total background prediction of 283.3±
91.2 events.1 If we add in the expected tt̄ events, our prediction for the total number

of observed events becomes 1279.6±158.6, which is in good agreement with the 1260

events that pass the selection cuts. The signal to background ratio is approximately

3.5:1.

Process Events
Signal Prediction 996.3 ± 129.8

WW/WZ/ZZ 19.5 ± 1.3
Z+Jets 8.8 ± 0.9

Single Top 15.6 ± 0.9
W + HF Jets 135.5 ± 35.2

Non-W (QCD) 67.5 ± 29.6
Mistags (W+LF) 45.2 ± 9.8

Total Background Prediction 283.3 ± 91.2
Signal+Background Prediction 1279.6 ± 158.6

Table 4.3. Summary of Simulation Model Predictions

1Errors for each background sample are derived from systematic uncertainties in their method of
calculation, so they are not independent and cannot be summed in quadrature to form a total error.
Instead, the error from each source (e.g., jet-energy scale – discussed in more detail in Section 10)
must be propagated through each sample to arrive at a final calculation.
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CHAPTER 5

Reconstructing tt̄ Events

We have identified tt̄ candidate events with a lepton, four jets, and large missing

energy, as described in Chapter 3. In this lepton plus jets decay channel, one top,

called the leptonic top, decays via t → Wb → `νb, and the other, the hadronic top,

decays via t → Wb → udb. Our measurement will require us to use these identified

decay products to measure rapidity values, as measured in the top quark and tt̄ rest

frames. In order to do this, we must be able to fully reconstruct the tt̄ kinematics

for each event, matching each final state jet with the appropriate top decay product

and using simple constraints to determine the t and t̄ momentum vectors [17].

5.1 Kinematic Reconstruction

The final state of a tt̄ event in our selected decay channel contains a lepton, a neutrino,

two bottom quarks, one up-type quark, and one down-type quark. There are several

difficulties in trying to match the objects observed in the detector to these final state

partons. The lepton and the quark jets can be directly observed in the detector, but

for the neutrino, we can measure only the transverse component of its momentum,

PT , which is the source of the 6ET – the Pz must be inferred. The detector can

tag jets from bottom quarks, but otherwise it cannot determine which jet is created

by a given type of quark, so another problem in reconstructing the event from the

available information is determining the correct assignment of jets to partons from

all of the possible combinations. These combinations are subject to the constraints
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Figure 5.1. A tt̄ event in the r-z plane.

of the assumption that the event is a tt̄ event: the mass of the two jets are consistent

with the W boson mass, MW = 80 GeV/c2, the mass of the lepton and neutrino,

M`ν is consistent with MW , and the underlying top quarks each have a mass of

172.5 GeV/c2.

Our reconstruction assumes that the four highest energy jets in the event come

from the four final state quarks. Ignoring any b-tagging information for now, there

are 24 possible combinations for matching the four quarks to the four observed jets.

However, interchanging the up and down quarks from the hadronically decaying W

boson has no effect on the overall kinematics for the t and t̄, so the number of unique

combinations is reduced from 24 to 12.

The 6ET can be used to determine the components px and py of the neutrino mo-

mentum. Unfortunately, we cannot know the portion of the proton and antiproton

momenta carried by the initial colliding partons, so we do not know the total mo-

37



mentum of the event along the beam direction, pz. This means we cannot directly

measure the z-component of the neutrino momentum. It is possible, however, to

calculate the neutrino pz from other information available in the event. Because the

lepton and neutrino are the only two decay products of the leptonically decaying W,

when their momenta are added, they should form a particle whose mass is consistent

with that of the W boson. This equality involves a quadratic term, and thus solving

it produces two possible solutions for the neutrino pz. The kinematic reconstruction

considers both possible solutions, and therefore the number of possible combinations

for the event kinematics is increased again from 12 to 24.

To determine the correct combination, we evaluate how closely each possible com-

bination matches the expectation that it is the final state of a tt̄ decay. We expect

such a final state to have four basic characteristics:

• The lepton and neutrino should be the decay products of a W boson, W → `ν

• Two of the jets should be the decay products of another W boson, W → jj

• The lepton, neutrino, and a third jet should be the decay products of a top

quark, t→ `νj

• The two jets from the W boson and the fourth jet should also be the decay

products of a top quark, t→ jjj

The degree to which each of the 24 combinations is compatible with these require-

ments is evaluated using a χ2 test, with the χ2 function given in Equation 5.1.

χ2 =
∑

i=`,jets

(pi,measT − pi,fitT )2

σ2
i

+
∑
j=x,y

(pUE,measj − pUE,fitj )2

σ2
j

(5.1)

+
(Mjj −MW )2

Γ2
W

+
(M`ν −MW )2

Γ2
W

+
(Mbjj −Mfit)

2

Γ2
t

+
(Mb`ν −Mfit)

2

Γ2
t

The first term in Equation 5.1 is a sum over the lepton and jet transverse energies,

while the second term is a sum over the “unclustered” energy, which consists of all the
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measured energy in the event that is not part of the actual tt̄ decay. When evaluating

the χ2 function, small corrections to the energies of each object are made by varying

them within the experimental resolution. This improves the energy resolution and

increases the probability of finding the correctly matched combination.

The final four terms in Equation 5.1 are the constraints imposed by the assumption

that the event is a tt̄ event. Mjj is the mass of the two jets. The mass of the lepton

and neutrino is given by M`ν . Mb`ν and Mbjj are the invariant masses of the decay

particles from the leptonically and hadronically decaying top quarks. The kinematic

reconstruction can be used to measure a top quark mass Mfit, but instead we include

the constraint Mfit = Mt = 172.5 GeV/c2 to help improve the reconstruction. The

denominators in these constraints are the W boson and top quark decay widths, but

do not include a factor for the experimental resolution of the lepton and jets because

this resolution has already been accounted for in the first term of Equation 5.1 [25].

The package Minuit [26] is used to find the solution that minimizes the χ2 func-

tion for each of the 24 possible combinations. At this point we use the b-tagging

information in each event to require that any b-tagged jets also be matched to one

of the original bottom quarks. The combination that meets this requirement and has

the smallest χ2 value is then chosen as the best candidate for describing the true tt̄

final state.

5.2 Reconstruction Validation

It is important to verify that the event reconstruction is performed adequately and

that the results are modeled well. In this section, we examine the agreement of the

data with the prediction in the distributions of important kinematic variables as well

as the reconstructed variables; there is reasonable agreement in all cases. For each

plot, a Kolmogorov-Smirnov (KS) test is performed to check the similarity between
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the data the predicted samples across all bins [27].1 The result of each KS test shows

that the data and the model are in agreement at a two-σ confidence level. We can

now proceed with our analysis comfortable with the agreement between the data and

the predicted model.

5.2.1 Detector Variables and Observables

Before passing any detector objects to the kinematic fitter and doing the reconstruc-

tion, the detector variables and observables need to be checked. These include the

four jets, the lepton, and the missing transverse energy. We use the transverse energy

to check the transverse component of the variables and the rapidity to check the lon-

gitudinal component of the variables. For the missing transverse energy, which has

no longitudinal component, the φ distribution is used as a secondary check.
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Figure 5.2. Lead jet transverse energy
Figure 5.3. Second leading jet transverse en-
ergy

1The KS test checks the cumulative distribution in the histograms of the two samples. For a
given bin, the cumulative fraction of each sample is calculated and the values are checked between
the two samples. The KS test represents the largest deviation between these two fractions across
the entire range of the distributions making it a more robust check than the mean or the RMS.
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5.2.2 Kinematic Fitter and Reconstructed Variables

Once the detector variables and observables are checked, the kinematic fitter and

reconstructed variables can be checked. These include the hadronic and leptonic W

bosons, the hadronic and leptonic bottom quarks, the neutrino, and the tt̄ pair. We

use the transverse energy to check the transverse component of the variables and

the rapidity to check the longitudinal component of the variables (except where it

is convenient to check the longitudinal momentum, as with the neutrino and the tt̄

system).
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Figure 5.17. Hadronic B transverse energy Figure 5.18. Leptonic B transverse energy
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CHAPTER 6

The Inclusive Forward-Backward Asymmetry

Before describing the forward-backward asymmetry as a function of mass, we will

describe the main features of the inclusive effect and variables for the study. We

will also review the correction procedure for the inclusive analysis which will then be

extended for the mass-dependent analysis.

6.1 Rapidity Variables

The charge asymmetry appears as a difference between the distributions of t and t̄

production angles or rapidities. In lepton plus jet events, the t and t̄ have distict

signatures: one is a “leptonic” decay and a one is a “hadronic” decay. The t or t̄

assignments are different according to the lepton charge ql:

ql tlep thad

+ t t̄
− t̄ t

Table 6.1. The leptonic and hadronic systems in
events with positive and negative leptons

The leptonic and hadronic systems have different experimental complications. The

leptonic system has that well measured lepton with limited rapidity range | η |≤ 1.0,

a 6ET which is correlated to the hadronic system, and the unconstrained longitudinal

neutrino momentum that must be derived in the fit. The hadronic decay has 3

jets with acceptance out to | η |≤ 2.0, modest energy resolution, excellent direction
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resolution, and no correlation with the leptonic system. Either or both systems could

contain a b-tagged jet confined to central region | η |≤ 1.0.

The centrality of the b-tag and lepton ID create the possibility of acceptance

biases. For example, in an event with a b-tagged leptonic decay, all of the leptonic

measurables are centrally confined. This limits the rapidity range of the leptonic top,

while meanwhile for the hadronic top system all its jets can extend to | η |≤ 2.0. In

order to control effects of this kind, our treatment of top rapidity variables keeps the

leptonic vs. hadronic distinction primary, with the conversion to t and t̄ following

according to Table 6.1.

The most direct measurement of the “top direction” is the lab rapidity of the

hadronic top system, yh. In events with a negative lepton, yh is the lab rapidity of

the t quark, ypp̄t . In events with a positive lepton, yh is the rapidity of the t̄ quark,

ypp̄t̄ . If CP is good, ypp̄t̄ = −ypp̄t , and we can combine both samples by weighting with

the lepton charge. Keeping in mind that half the sample is hadronic ypp̄t̄ going the

other way, we therefore consider −qyh equivalent to ypp̄t , the rapidity of the top quark

in the lab frame. ypp̄t has good directional precision and η acceptance, at the cost of

including an unknown boost from the qq̄ frame to the tt̄ frame. The resulting bin-to-

bin smearing in ypp̄t can be corrected for on average, and this is a major component

in the unfold to the parton-level asymmetry.

An alternative, frame independent, variable is the rapidity difference of the lep-

tonic and hadronic systems ∆ylh = yl− yh. After multiplication by the lepton charge

q, this variable measures the frame independent difference between the top and anti-

top rapidities:
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q∆ylh = qyl − qyh (6.1)

= ypp̄t − ypp̄t̄ (6.2)

= yt − yt̄ (6.3)

= ∆y (6.4)

q∆ylh = ∆y uses all of the information in the event, at the cost of adding uncer-

tainty from the 6ET and unknown longitudinal motion of the leptonic side. It has the

the advantage of compensating for the tt̄ system motion, and is thus more directly

interpretable without the need of unfolding. Most importantly, however, ∆y is pro-

portional to ytt̄t , the top rapidity in the tt̄ rest frame. To see this, transform the top

rapidity in the lab frame back to the tt̄ rest frame by subtracting the motion of the

tt̄ system, ytt̄:

ytt̄t = ypp̄t − ytt̄ (6.5)

= ypp̄t −
1

2
(ypp̄t + ypp̄t̄ ) (6.6)

=
1

2
(ypp̄t − ypp̄t̄ ) (6.7)

=
1

2
(yt − yt̄) (6.8)

=
1

2
∆y (6.9)

The top quark rapidity in the tt̄ rest frame is a function of the top quark produc-

tion angle cos(θ∗) in that frame. Since the transformation from angles to rapidities

preserves sign, an asymmetry in q∆ylh is identical to an asymmetry in the top quark

production angle in the tt̄ rest frame. Thus, while −qyh = ypp̄t is most experimentally

straightforward, q∆ylh = ∆y contains the physics that will be strongly correlated

to the mechanism of the asymmetry. For this reason we will use ∆y and ∆ylh as
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our primary rapidity variable, although we will continue to monitor yh and −qyh as

important cross-checks.
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6.2 Asymmetry Measurement

We show the inclusive yh and ∆ylh distributions in Fig. 6.1. The asymmetries in the

data, the signal model, the background model, and the combined signal+background

prediction are shown in the legend on the top right. In this paper all asymmetries

and their uncertainties use the standard forms:

A =
F −B
F +B

=
F −B
N

(6.10)

σA =

√
4FB

N3
(6.11)

=

√
1− A2

N
(6.12)
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The error of the asymmetry in Equation 6.2 follows from the binomial nature of the

asymmetry.

The distributions in Fig. 6.1 contain the full sample of both lepton signs and

should be symmetric. For both variables the data agrees very well with prediction,

and, in particular, the asymmetries in are consistent with zero.

The asymmetry becomes apparent when the sample is partitioned by charge.

We define the charge asummetry in ∆ylh:

A±lh =
N±(∆ylh > 0)−N±(∆ylh < 0)

N±(∆ylh > 0) +N±(∆ylh < 0)
(6.13)

Note that this is before the sign weighting, ∆ylh = yl − yh. Note also that we

streamline our notation: A = Arest. Fig. 6.3 shows the ∆ylh distributions for events

with negative leptons and Fig. 6.4 with positive leptons. We find A+
lh = 0.084± 0.043

and A−lh = −0.057±0.041, equal and opposite with modest significance. The difference

of these values is 0.141 ± 0.059. Comparison of the positive and negative shapes to

each other with the standard CDF KS test gives KS = 2%.
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We also define the charge asymmetry in hadronic top system:

A±h =
N±(yh > 0)−N±(yh < 0)

N±(yh > 0) +N±(yh < 0)
(6.14)

Fig. 6.5 shows the yh distributions for events with negative leptons and Fig. 6.6

negative leptons (right). Using Table 6.1, this figure suggests a preference for the t

quarks to move in the proton (forward) direction and the t̄ quarks to move in the p̄

direction. The measured asymmetries are A+
h = −0.073± 0.043 and A−h = −0.078±

0.041, equal and opposite with moderate statistical significance. The difference of the

values is 0.151±0.059. Comparison of the positive and negative shapes to each other

with the standard CDF KS test gives KS = 0%.

We measure the total CP conserving asymmetry by combining the separate charge

samples after weighting the distributions by lepton charge q, so that in the sense of

Table 6.1, and assuming the CP consistent inversion yt = −yt̄, −qyh = yt and

q∆ylh = yt − yt̄
We define the frame independent asymmetry

Att̄ =
N(q∆ylh > 0)−N(q∆ylh < 0)

N(q∆ylh > 0) +N(q∆ylh < 0)
(6.15)

=
N((yt − yt̄) > 0)−N((yt − yt̄) < 0)

N((yt − yt̄) > 0) +N((yt − yt̄) < 0)
(6.16)

(6.17)

and the lab frame asymmetry
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App̄ = =
N(qyh > 0)−N(yh < 0)

N(qyh > 0) +N(qyh < 0)
(6.18)

=
N(yt > 0)−N(yt < 0)

N(yt > 0) +N(yt < 0)
(6.19)

(6.20)

The distributions of these variables are shown in Fig. 6.7. The frame dependent

asymmetry is Att̄ = 0.070 ± 0.030, and the inclusive asymmetry in the lab frame is

App̄ = 0.075± 0.030.
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Figure 6.9. Four-bin reresentation of q∆ylh =
ytt̄

t with background subtraction and unfold.

Figure 6.10. Four-bin reresentation of
−qyh = ytlab with background subtraction and
unfold.

q∆ylh qYhad
data 0.057± 0.028 0.073± 0.028
data-bkgd 0.075± 0.036 0.110± 0.036
corrected 0.158± 0.072 0.150± 0.050
mcfm 0.058± 0.009 0.038± 0.038

Table 6.2. Summary of inclusive asymmetries.
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6.3 Correction to the Parton-Level

6.3.1 Overview

To compare the measurements in Section 6.2 to the theoretical predictions, we need

to correct the data to account for backgrounds, incomplete detector acceptance, and

finite rapidity resolution of the reconstruction. The correction of these effects is

two-fold. First, to extract the tt̄ signal, we subtract off the expected background con-

tribution from the reconstructed data. We then correct for acceptance and resolution

effects using a linear matrix inversion.

The nature of the problem is shown nicely in generator level Z ′ study in CDF9813 [28].

Fig. 6.11 shows the generated vs. reconstructed distributions for the top quark lab

rapidity ypp̄t and the total Mtt̄ for low and high mass, narrow, sequential Z ′ decays to

tt̄. For all but the bottom-right plot, solid=generator and dashed=reconstructed; the

bottom right plot has this convention reversed (bug). In the top row, we see how the

reconstructed rapidity is smeared back towards greater symmetry. In the bottom row

we see how the mass distributions are smeared to lower values. If the data contained

such a Z ′, the asymmetry at high mass would be propagated down into the low mass

region in the reconstructed data. The correction would re-concentrate the asymmetry

back to high mass.

We represent the bins of the parton-level ∆y distribution by a vector, ~nparton.

The distribution is first modified by the acceptance and then by the smearing. These

transformations can be expressed as matrices acting on the distribution vector.

~nsignal = SA~nparton (6.21)

To measure the parton-level data, Equation 6.21 is inverted:

~nparton = A−1S−1~nsignal (6.22)
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Figure 6.11. Generated vs. reconstructed ypp̄
t and Mtt̄ for low mass and

high mass sequential Z′. For all but the bottom right, solid = generated,
dashed = reconstructed. Bottom right is reversed.

The matrices A and S are derived from Monte Carlo samples by comparing truth

distributions to the same distributions after reconstruction.

In the final application, we must account for the presence of backgrounds, so

the signal is extracted from the data by subtracting the background events from the

reconstructed sample.

~nsignal = ~nreconstruction − ~nbackground (6.23)

By substituting Equation 6.23 into Equation 6.22, we can express the parton-level

distribution, ~nparton, in terms of known values:

~nparton = A−1S−1(~nreconstruction − ~nbackground) (6.24)

Previous studies of this method found that using four components to the vectors

minimized the errors [17]. In the inclusive analysis, the vectors in Equation 6.24 have
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four components comprising two forward bins and two backward bins in rapidity:

~n =



NF (∆ylh > 1)

NF (∆ylh ≤ 1)

NB(∆ylh ≥ −1)

NB(∆ylh < −1)


(6.25)

The acceptance and smearing corrections are 4x4 matrices relating parton-level and

signal-level values. To allow for easier interpretation, the acceptance matrix is renor-

malized to the number of signal events in the data sample, which means that the

entries in the matrix are close to unity.

We employ a simplified binning of the rapidity [9]. Fig. 6.10 shows the ∆y and

yt distributions in the 4-bin representation used in Refs. [10, 8]. The black marker

shows the data and the green marker is the data after background subtraction. The

green histogram is the Pythia tt̄ model. The background subtracted data is near the

background-free prediction, but continues to show the asymmetries.

The red marker shows the rapidity distributions after correcting for acceptance

and bin migration that arise in the selection and reconstruction. The correction

procedure is a linear unfold in the four rapidity bins based on acceptance and smearing

effects as measured with the Pythia ttop25 simulation. The binning is optimized to

minimize the uncertainty in the correction, with the intermediate bin-edge put at

|∆y| = 1.0 or |ypp̄t | = 0.5. The corrected inclusive asymmetries, whch represent

the physics at the parton level after gluon radiation, are Att̄ = 0.16 ± 0.076 and

App̄ = 0.15 ± 0.055. The asymmetries in the raw data, in the backgrounds (a la

M24U), in the background subtracted data, and fully corrected to the parton level are

summarized in Table 6.2, along with the expected NLO QCD asymmetry predicted

by MCFM.
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CHAPTER 7

Asymmetry and Kinematics
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The NLO QCD asymmetry has a strong Mtt̄ dependence, as shown in Fig. 1.2. The

Mtt̄ dependence allows us to probe the fundamental mechanism of the asymmetry.

The value of Mtt̄ is derived using the same reconstruction process described in

Sec. 5 to measure the rapidities of the top quarks. The distribution of Mtt̄ is shown
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in linear and log scales in Fig. 7.1. A recent search for structure in this spectrum

using 1.9fb−1 found no bumps or wiggles, although there is a hint of an excess on

the tail in Ref. [29]. A measurement of the differential cross section in 2.7fb−1 finds

consistency with Ref. [30].1 DØ claims to see an modest excess on the tail [31].

Our studies are performed in the space of rapidity or rapidity difference vs Mtt̄.

The top plot in Fig. 7.3 shows the 2-dimensional distribution of ∆y vs Mtt̄; the

bottom plot shows yt vs Mtt̄. Each dot is one event. The green shading is the relative

probability of events from the combined ttop25+M24U background+signal model.

We expect Mtt̄ and ∆y to be related by a simple kinematic relationship mediated by

the transverse mass of the system: Mtt̄ = 2mT cosh ∆y. As seen in the top plot of

Fig. 7.3, both the data and the prediction confirm this expectation. The extremum

of the rapidity difference grows from less than 0.5 at low masses to greater than 2.0 at

high mass. The bottom plot shows that rapidity of the hadronic top quark is limited

to less than 1.5 and mostly confined to less than 1.0 in a rather flat way across the

whole mass domain.

The comparison of these plots suggests that interesting information on the rapidity

vs. mass correlation exists in the tt̄ frame, but is diluted in the uncontrolled boost to

the pp̄ frame. We have already noted that the MCFM prediction for the asymmetry

(and thus the significance) is larger in the ∆y variable, that ∆y is less diluted in

the raw data, and that the asymmetry in ∆y is equal to the top production angle

asymmetry in the tt̄ frame. For all of these reasons, we will focus on the ∆ylh variables

in much of what follows. yt is still an important cross-check.

We now examine the mass dependence of the asymmetries in the data, and follow

that a detailed cross-check of the results against variations in selection and recon-

struction.

1The cited analysis uses a matrix inversion procedure similar to the one used in Sec. 6.
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7.1 A vs. Mtt̄

A raw differential asymmetry dAtt̄/dMtt̄ is found by binning Mtt̄ in the top plot of

Fig. 7.3 and calculating the asymmetry in each bin. The mass-dependent asymme-

try Att̄(M i
tt̄) is determined by dividing the Mtt̄ axis into i bins and calculating the

asymmetry in each bin:

Att̄(M i
tt̄) =

N(∆ylh > 0,M i
tt̄)−N(∆ylh < 0,M i

tt̄)

N(∆ylh > 0,M i
tt̄) +N(∆ylh < 0,M i

tt̄)
(7.1)

We use 50 GeV/c2 slices of Mtt̄ below 600 GeV/c2, and 100 GeV/c2 slices above.

Fig. 7.5 shows the asymmetry in ∆y for the separate charge species as a function

of Mtt̄. The asymmetries for the two charges behave in approximately equal and

opposite fashion. Fig. 7.5b. shows the combined asymmetry Att̄ in the same mass

bins. The asymmetry is consistent with the expected monotonic positive correlation

with Mtt̄, though the large statistical errors at high mass allow for many possible

models. The differential asymmetries are summarized in Table 7.1.

bin-center N Att̄ MCFM A+
lh A−lh

350 499 -0.026 ± 0.045 0.030± 0 +0.004 ± 0.066 +0.052 ± 0.061
400 322 -0.012 ± 0.056 0.050± 0 -0.026 ± 0.081 +0.000 ± 0.077
450 190 0.157 ± 0.072 0.070± 0 +0.203 ± 0.096 -0.103 ± 0.106
500 95 0.304 ± 0.097 0.090± 0 +0.274 ± 0.140 -0.330 ± 0.136
550 58 0.137 ± 0.130 0.090± 0 +0.131 ± 0.180 -0.140 ± 0.185
600 34 0.098 ± 0.220 0.110± 0 +0.462 ± 0.201 -0.452 ± 0.227
700 20 0.105 ± 0.323 0.140± 0 -0.320 ± 0.268 -0.706 ± 0.243

Table 7.1. The differential asymmetry in ∆y, in MCFM, and in ∆ylh for both lepton charges, as
a function of Mtt̄.

7.1.1 A vs. Mtt̄ Sensitivity

A proper treatment of this information would make a mass and rapidity dependent

correction to derive the functional dependence of A(Mtt̄) that can compared to theory.

A simple technique for doing this has been developed by M. Tecchio and T. Schwarz,

and used to measure App̄ as a function of Mtt̄ in 1.9fb−1, see CDF9813 [28]. In
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order to maximize statistics and mitigate the complication of the unfold corrections,

they use two bins in rapidity and mass, and reuse the 4-bin unfold machinery that

is understood and approved in the inclusive analysis. The effect of the bin choice is

studied by looking at the results as the bin edge is scanned across the mass range. We

will ultimately apply this full procedure to find the parton-level mass dependent Att̄

in the 5.3fb−1 sample. In preparation for this, we first study the dependence of the

asymmetry on Mtt̄ in the raw data, employing the still useful technique of dividing

the data into low and high mass regions above and below a threshold.

The sensitivity of the asymmetry is not only dependent on the rapidity variable

of the asymmetry but also on the magnitude of the asymmetry and the number of

events, both of which depend on the invariant mass. MCFM predicts that asymmetry

increases withMtt̄, potentially increasing the sensitivity, but at the same time the

number of events decreases, lowering the sensitivity. To see if there is a critical point,

we can express the sensitivity in terms of the asymmetry and its error as given in

Equation 7.2.

S =
A

σA
=

A√
1− A2

√
N (7.2)

To maximize sensitivity, we set the derivative with respect to Mtt̄ equal to zero.

dS

dMtt̄

=
1

σA(1− A2)

dA

dMtt̄

+
A

2σAN

dN

dMtt̄

(7.3)

After setting Equation 7.3 equal to zero, the resulting equation can be re-arranged

to give Equation 7.4.

dN

dMtt̄

= − 2

A(1− A2)

dA

dMtt̄

N (7.4)

We note that in Equation 7.4 N, A, and dA
dMtt̄

are all positive, meaning that sensi-

tivity is maximal at a value of Mtt̄ where dN
dMtt̄

< 0, implying that the number of events
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is decreasing. The number of events, N(Mtt̄), is given by a relativistic Breit-Wigner

distribution which decreases after a peak. In the case of the data, the peak is near

Mtt̄=400 GeV/c2. After inserting a relativistic Breit-Wigner distribution with width

Γ and peak at M0 into Equation 7.4 and rearranging, we get Equation 7.5.

Mtt̄(M
2
tt̄ −M2

0 )

(M2
tt̄ −M2

0 )2 + Γ2
=

1

2A(1− A2)

dA

dMtt̄

(7.5)

The right side of Equation 7.5 is very small. Our invariant mass range is restricted

to the range [345 GeV/c2,∞), so the only way Equation 7.5 can be small is by having

Mtt̄ close to the peak, M0. So the optimal sensitivity is for Mtt̄ close to 400 GeV/c2.

While the exact location of the optimal invariant mass depends on the parametrization

of the distributions and the asymmetry, the fact that the location is above the peak

of the mass distribution only depends on the asymmetry being positive and having a

positive mass-dependence. This argument is confirmed by examining the sensitivity

of the asymmetry in the MC@NLO sample which finds the optimal threshold for

sensitivity at 450 GeV/c2.

Fig. 7.7 and Fig. 7.8 show the rapidity difference ∆y at high and low mass when

we divide the data into 2-bins below and above Mtt̄ = 450 GeV/c2. Notice that

the distribution is much broader at high mass, as expected from Fig. 7.3. At high

mass there is a large and significant asymmetry A = 0.210± 0.049, while at low mass

the asymmetry is consistent with zero. The lab frame asymmetry at low mass is

comparable to the inclusive result, increasing to App̄ = 0.100± 0.052 at high mass.

To understand the effect of the cut choice and capture all of the information, we

look at the low-bin/high-bin behavior for both asymmetries as we move the mass

threshold. The left plot in Fig. 8.6 shows the behavior of A±lh in the high mass bin

as a function of the bin edge; the separate charges are seen to behave in equal and

opposite fashion. The combined Att̄ is shown on the right. At the lowest threshold

Mtt̄ = 345 GeV/c2, all of the sample is in the upper bin and the asymmetry is the
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inclusive result 0.070±0.028. The Att̄ grows with Mtt̄ to ∼ 30% at Mtt̄ ≥ 600 GeV/c2,

followed by a drop off at very high mass that may not be statistitically meaningful.

The right plot in Fig. 8.6 shows the behavior of A±lh and Att̄ in the low mass bin as

a function of the bin edge. The asymmetry at low mass is small, growing slowly as

the low bin absorbs more and more events at high mass, and asymptotes to the value

of the inclusive measurement. The asymmetries for the separate charges are again

equal and opposite.

The asymmetry values for the semi-integral samples at high and low Mtt̄ are shown

as a function of the bin edge in Table 7.2. In the high mass bin we find a steady

increase of the asymmetry with mass. For all values of the bin edge cut, Att̄ is larger

than App̄, but with very similar uncertainties. At high mass, the asymmetries in Att̄

are 3−4σ above zero. In the low mass bin, we find that App̄ is approximately constant

at the inclusive value of ∼ 7%, independent of the bin-edge, whereas the behavior of

Att̄ is to grow zero up to the inclusive value.

low mass high mass

bin-edge App̄ Att̄ App̄ Att̄

400 0.079 ± 0.043 -0.019 ± 0.043 0.069 ± 0.037 0.113 ± 0.037
450 0.059 ± 0.034 -0.016 ± 0.034 0.103 ± 0.049 0.212 ± 0.048
500 0.056 ± 0.031 0.015 ± 0.031 0.157 ± 0.067 0.259 ± 0.066
550 0.064 ± 0.030 0.039 ± 0.030 0.156 ± 0.090 0.222 ± 0.088
600 0.066 ± 0.029 0.044 ± 0.029 0.205 ± 0.123 0.299 ± 0.120

Table 7.2. The two asymmetry variables compared at low and high Mtt̄ as the low-high threshold
is scanned.

7.2 Raw Data Summary

We measure an inclusive asymmetry in the tagged tt̄ sample as shown in Table 7.3.

As predicted by MC@NLO, we observe both a mass-dependence and a rapidity-

dependence in the asymmetry, however, the observed asymmetries are larger than

the asymmetries predicted by MC@NLO.
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Figure 7.7. The distribution of q∆ylh at low
mass.

Figure 7.8. The distribution of q∆ylh at high
mass.

A in tt̄ rest frame
N inclusive Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

inclusive tagged 1260 0.057±0.028 -0.016±0.034 0.21±0.049
bkg.-subtracted 977 0.075±0.032 -0.022±0.039 0.265±0.053

pos. leptons 613 0.067±0.040 -0.013±0.050 0.210±0.066
neg. leptons 647 -0.048±0.039 0.020±0.047 -0.210±0.071

MCFM 0.058± 0.009 0.055± 0.009 0.088± 0.013

Table 7.3. The rest frame asymmetry Att̄ in all data, Mtt̄ < 450 GeV/c2, and Mtt̄ ≥ 450 GeV/c2for
various selections.

The asymmetries found are robust under various cross-checks including different

triggers, charge-separation, tighter selection cuts, and b-tagging – though the results

of the single/double tags and different periods neither support nor deny an asymme-

try. To explore the asymmetries and their mass-dependence, we will continue this

analysis using the unfold technique used in previous studies.

7.3 Mass- and Rapidity-Dependent Corrections

We wish to find the asymmetry as a function of Mtt̄. As we anticipated in Section 7.1,

we maximize statistical precision, mitigate unfold complications, and re-use the well-

vetted four-bin unfold machinery by organizing the data into two bins in rapidity,

forward and backward, and two bins in mass, high and low. As in Section 7.1,

the high-low boundary of Mtt̄ is adjustable, and we will examine our results as the
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boundary is varied. Our four-element data vector is:

~n =



NF (Mtt̄ low)

NB(Mtt̄ low)

NF (Mtt̄ high)

NB(Mtt̄ high)


=



FL

BL

FH

BH


(7.6)

The acceptance matrix takes the form of a diagonal matrix:

A =



FLtrue v FLrec 0 0 0

0 BLtrue v BLrec 0 0

0 0 FHtrue v FHrec 0

0 0 0 BHtrue v BHrec


(7.7)

where the diagonal values of A should be perturbations around unity. And the

smearing matrix takes the form:

S =



FLtrue v FLrec BLtrue v FLrec FHtrue v FLrec BHtrue v FLrec

FLtrue v BLrec BLtrue v BLrec FHtrue v BLrec BHtrue v BLrec

FLtrue v FHrec BLtrue v FHrec FHtrue v FHrec BHtrue v FHrec

FLtrue v BHrec BLtrue v BHrec FHtrue v BHrec BHtrue v BHrec


(7.8)

The columns of S sum to unity, as the rows represent all the possible locations of

a given event after smearing. The sums rows of S show the relative proportions of

the final locations of the events after smearing.

At the Mtt̄ = 450 GeV/c2 threshold using ttop25 as the Monte Carlo generator,

the values for A and S are:
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A =



0.932± 0.004 0± 0 0± 0 0± 0

0± 0 1.00± 0.004 0± 0 0± 0

0± 0 0± 0 1.00± 0.005 0± 0

0± 0 0± 0 0± 0 1.100± 0.005


(7.9)

S =



0.631± 0.003 0.258± 0.002 0.216± 0.002 0.139± 0.002

0.254± 0.002 0.620± 0.003 0.132± 0.002 0.237± 0.002

0.088± 0.001 0.032± 0.001 0.578± 0.004 0.072± 0.001

0.028± 0.001 0.091± 0.001 0.074± 0.001 0.552± 0.003


(7.10)

As expected, the entries of A are all close to unity representing the relative fraction

of each sample. Overall there is a slight efficiency bias for high mass events over

low mass events due to the presence of more energetic jets and leptons. There is an

additional bias for backward events over forward events due to angular ordering of

the QCD radiation as discussed in Section 8.6.

The entries of S can be understood by looking at the third column as an example.

Of all the forward events with Mtt̄ ≥ 450 GeV/c2 at the parton level, 21.6% were

reconstructed as forward events below the mass threshold, 13.2% were reconstructed

as backward events below the mass threshold, 57.8% were reconstructed as forward

events above the mass threshold, and 7.4% were reconstructed as backward events

above the mass threshold. The sums of the rows of S show the relative proportions of

the final locations for events after smearing. The matrix in Equation 7.10 reveals that

both the forward low and the backward low bins end up with 1.24 times their original

bin contents, while the forward high bin ends up with 0.77 its original contents and

the backward high bin ends up with 0.75 its original contents. Overall, we see events

in the high mass bins shift to the low mass bins but little in the opposite direction.
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~nparton A~nparton SA~nparton

FL 1000 932 1215
BL 1000 1000 1249
FH 1000 1000 771
BH 1000 1100 798

Att̄ below 0.000 -0.035 -0.014
Att̄ above 0.000 -0.048 -0.017

Table 7.4. The effect of the ttop25 acceptance and smearing matrices on a toy sample of events
with no parton-level asymmetry.

As seen in Table 7.4, both acceptance and smearing effects shift asymmetries

down from the parton-level values. The exact ratios of final bin counts to initial bin

counts depend on the relative proportions of the initial bin counts, but the toy sample

shown allows us to explicitly see how the acceptance and smearing effects work. In

Figure 7.9, the unfold correction is seen explicitly acting on the axigluon validation

sample. At low mass, the raw bin counts (black) are higher than the corrected bin

counts (red), while at high mass in the forward bin raw counts are much lower than

corrected counts. It is easily seen that the corrected asymmetries are higher than the

raw asymmetries — especially at high mass.

7.4 Data Unfold Results

We now turn the unfold technique to the data sample on hand. In Figure 7.10,

the asymmetry values below the mass thresholds show an increase for thresholds

above 500 GeV/c2 while for other mass thresholds the errors are too large — due to

smaller statistics — for unambiguous interpretation. At the 450 GeV/c2 threshold,

the asymmetry below shifts from a raw value of Att̄ = 0.001 ± 0.036 to a corrected

value of Att̄ = −0.037± 0.139 which is consistent with the expected MCFM value of

Att̄ = 0.040± 0.006. In Figure 7.11, the asymmetry values above the mass thresholds

show an increase for thresholds below 700 GeV/c2 while for other mass thresholds the

errors are too large — due to smaller statistics — for unambiguous interpretation.

At the 450 GeV/c2 threshold, the asymmetry above shifts from a raw value of Att̄ =
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Figure 7.9. The unfold for Att̄ in the axigluon sample using ttop25 at
the Mtt̄ = 450 GeV/c2mass threshold in each of the four bins: low mass
forward, low mass backward, high mass forward, high mass backward. True
values of the asymmetry are Alow

lh = 0.150 and Ahigh
lh = 0.466.

0.216± 0.052 to a corrected value of Att̄ = 0.449± 0.105 deviates from the expected

MCFM value of Att̄ = 0.088± 0.011 by 3.4σ before systematic errors are computed.

The corrected Att̄ can be compared across all thresholds in Figure 9.12. The range

of the MCFM values show the MC values with errors of 12%.

Att̄ Mtt̄ < 450 GeV/c2 Att̄ Mtt̄ ≥ 450 GeV/c2

raw tagged 0.001± 0.036 0.216± 0.052
background subtracted 0.001± 0.040 0.254± 0.055

corrected tagged −0.037± 0.139 0.449± 0.105
inclusive MCFM 0.040± 0.006 0.088± 0.013

Table 7.5. The asymmetry Att̄, both raw and corrected, in all data, Mtt̄ < 450 GeV/c2, and
Mtt̄ ≥ 450 GeV/c2for various selections.
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Figure 7.10. The corrected forward-backward asymmetry in Att̄ below
the 450 GeV/c2in the L = 5.3fb−1 data sample using ttop25 to generate
the correction matrices.
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Figure 7.11. The corrected forward-backward asymmetry in Att̄ above
the 450 GeV/c2in the L = 5.3fb−1 data sample using ttop25 to generate
the correction matrices.
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low mass high mass

edge Raw Att̄ Corrected Att̄ Raw Att̄ Corrected Att̄

400 −0.006± 0.046 −0.089± 0.248 0.126± 0.039 0.299± 0.086
450 0.001± 0.036 −0.037± 0.139 0.216± 0.052 0.449± 0.105
500 0.053± 0.033 0.085± 0.104 0.247± 0.070 0.491± 0.143
550 0.054± 0.031 0.163± 0.090 0.215± 0.094 0.384± 0.199
600 0.057± 0.031 0.162± 0.082 0.321± 0.127 0.631± 0.315
650 0.062± 0.030 0.177± 0.078 0.314± 0.160 0.558± 0.376
700 0.069± 0.030 0.202± 0.076 0.120± 0.199 0.081± 0.386
800 0.070± 0.030 0.204± 0.074 0.000± 0.354 −0.242± 0.774

Table 7.6. The raw and corrected asymmetry values of Att̄ in tt̄ events in L = 5.3fb−1 compared
at low and high Mtt̄ as the invariant mass threshold is scanned.
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CHAPTER 8

Cross-Checks of the A vs. Mtt̄ Dependence

Using the boundary of Mtt̄ = 450 GeV/c2, we now survey the behavior of the

two-bin mass dependence against variations in selection and reconstruction. This

cut at divides the 1260 events of the sample into 854 events at low mass and 406

events at high mass. We reiterate here that a proper study of a real tt̄ effect across

these selections would employ a background subtraction to measure a pure tt̄ signal.

Because we wish to avoid any assumptions at this stage, we perform these cross-checks

using the inclusive tagged lepton+jets data.

8.1 Frame

The comparison of App̄ and Att̄ at high and low mass for all bin edges was presented

in Table 7.2. The ∆y and yt distributions below and above our reference cut at Mtt̄ =

450 GeV/c2 were shown in Figs. 7.7 and 7.8. Table 8.1 summarizes the asymmetries

in Figs. 7.7 and 7.8, along with the expectation from MCFM and Madgraph, and the

asymmetries when the cut is moved to 500 GeV/c2. The MCFM results are at parton

level, and we would expect the values here to be degraded by roughly a factor ∼ 2

in the measurement. ay is consistent with MCFM in any interpretation. Att̄ at high

mass is 4σ above zero and 2σ above the parton-level MCFM prediction. Although

MCFM predicts that Att̄ ∼ 2App̄ in the inclusive sample, at high mass it predicts a

ratio much closer to 1. The data disagrees with this, showing a ratio ∼ 2 at high

mass, although the uncertainty is large. The Madgraph result is for fully simulated

73



Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

sample App̄ Att̄ App̄ Att̄

data 0.059 ± 0.034 -0.016 ± 0.034 0.103 ± 0.049 0.212 ± 0.048
MCFM 0.020 ± 0.003 0.040 ±0.006 0.071 ± 0.001 0.087 ± 0.013
Madgraph 0.037 ± 0.007 0.060 ±0.006 0.220 ± 0.008 0.250 ± 0.008

Table 8.1. Asymmetries in two frames at hi and low mass for data, MCFM (parton level) and
Madgraph coloron.

tt̄ events combined with the standard M24U backgrounds, and can thus be compared

directly to the data. At high mass the ratio Att̄/App̄ in Madgraph is also close to 1,

like MCFM, and in distinction to the data.
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Figure 8.1. The distribution of qyh at low
mass.

Figure 8.2. The distribution of qyh at high
mass.

8.2 Charge

The ∆ylh distributions in the high mass region for the two charge species is shown in

Figs. 8.3 and 8.4.

N events inclusive Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

inclusive tagged 1260 0.057±0.028 -0.016±0.034 0.210±0.049
pos. leptons 613 0.067±0.040 -0.013±0.050 0.210±0.066
neg. leptons 647 -0.048±0.039 0.020±0.047 -0.210±0.071

Table 8.2. The asymmetry Att̄ below and above Mtt̄ = 450 GeV/c2.

Table 8.2 shows the ∆y asymmetries at low and high mass when the sample is

partitioned by the sign of the lepton. At low mass the asymmetries are both small.
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At high mass the asymmetries are equal and opposite at roughly 20%. As seen in

Figs. 8.3 and 8.4, the distributions are qualitatively mirror-symmetric. This is an

amplified version of the “CP-conserving” effect discussed in Sec. 1.3.
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Figure 8.3. The distribution of ∆ylh at high
mass for negative lepton charges.

Figure 8.4. The distribution of ∆ylh at high
mass for positive lepton charges.
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Figure 8.5. The integrated asymmetry above
the Mtt̄ threshold for separate charge species,
positive/negative = red/black.

Figure 8.6. The integrated asymmetry above
the Mtt̄ threshold.

8.3 Reconstruction

The continued presence of the asymmetry in the charge-separated samples makes it

unlikely that a reconstruction bias is the source of the asymmetry. However, it is still

possible that a sub-sample of the events is reconstructed poorly and the asymmetry is

unique to those events. To exclude events with low quality resolution, we cut on the

χ2 variable. Figs. 8.9 and 8.10 show the ∆y distributions at low and high mass when
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Figure 8.8. The integrated asymmetry below
the Mtt̄ threshold.

we make a reconstruction quality cut at χ2 = 3.0. In this sample of 388 events we

find Att̄ = −0.033± 0.065 at low mass and Att̄ = 0.180± 0.099 at high mass. The ∆y

distributions at high and low mass are very similar to those in the full sample of 1260

events with no χ2 cut seen Figs. 7.7 and 7.8, except that much of the background

contribution has eliminated. Thus the high mass asymmetry appears in the best

reconstructed events and seems less likely to be a background effect.
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Figure 8.9. The distribution of ∆ylh at low
mass in events with reconstruction χ2 < 9.0.

Figure 8.10. The distribution of ∆ylh at high
mass in events with reconstruction χ2 < 9.0.

Another concern about the reconstruction is the handling of the b-tag information.

Perhaps forcing the b-tagged jet to be a b-parton creates an asymmetry when that

b-jet is assigned to the wrong top system? To test for b-tag effects, we re-run the

reconstruction having removed the constraint that b-tagged jets should be assigned
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Figure 8.11. The distribution of ∆ylh at low
mass with no requirement the reconstruction
associate b-tags to b-jets.

Figure 8.12. The distribution of ∆ylh at high
mass with no requirement the reconstruction
associate b-tags to b-jets.
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Figure 8.13. The distribution of ∆ylh at high
mass with negative leptons when the recon-
struction is not required to associate b-tags to
b-jets.

Figure 8.14. The distribution of ∆ylh at
high mass with positive leptons when the re-
construction is not required to associate b-tags
to b-jets.
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to b-partons. The ∆y distributions at low and high mass in this case are shown in

Figs. 8.11 and 8.12. Note that we still use the b-tagging to purify the tt̄ signal. We

find Att̄ = 0.0057 ± 0.034 at low mass and Att̄ = 0.190 ± 0.050 at high mass, very

close to the result when the b-tag constraint is used. When we further separate the

events by lepton charge, the ∆y distributions for the no fit with no b-tag constraint

are shown in Figs. 8.13 and 8.14. The ∆ylh asymmetries are A−lh = −0.190 ± 0.074

and A+
lh = 0.190± 0.069.

These results suggest that the mass dependent asymmetry, and its reflection under

lepton charge reversal, is not obviously associated with reconstruction or b-tagging.

8.4 Run Range.

In the inclusive case we found that the asymmetry significance was somewhat lower

than expected in the more recent part of the data. Since the asymmetry is predomi-

nantly at high mass, we expect the significance there will also be reduced in the later

data. The cumulative significance of the q∆ylh asymmetry at high mass is shown in

table and plot form in Fig. 8.15. The later data is indeed a bit flat. On the other hand

maybe the early data was a bit steep. The curve is constrained to go through zero, is a

very good fit to the
√
N hypothesis and its normalization gives AhiM = 0.278±0.010,

consistent with the simple average. We will continue to monitor the integrity of that

overall dataset, but for the purpose of our study we will also continue to consider the

whole data set as a single robust sample.

N events all Mtt̄ Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

CEM 735 0.026±0.037 -0.020±0.045 0.120±0.063
CMUP 332 0.130±0.054 0.047±0.065 0.310±0.095
CMX 172 0.035±0.076 -0.143±0.091 0.430±0.120

Table 8.3. The inclusive and mass dependent asymmetries in qY for various trigger selections
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High Mass Significance

19

fitted a = 0.278 ± 0.010 
asymmetry from fit is consistent 

with observed asymmetry of 
A = 0.220 ± 0.052

Sigfit(n) =
a√

1− a2

√
n

Data Source n Events A Above 450 Significance

tp8 98 0.327 ± 0.096 3.42

tp9 110 0.291 ± 0.082 3.19

tp10 134 0.300 ± 0.082 3.62

tp11 151 0.311 ± 0.077 4.02

tp12 158 0.304 ± 0.076 4.01

tp13 180 0.333 ± 0.070 4.74

tp14 182 0.341 ± 0.070 4.89

tp15 191 0.309 ± 0.069 4.49

tp16 196 0.316 ± 0.068 4.67

tp17 205 0.307 ± 0.066 4.62

tp18 229 0.301 ± 0.063 4.78

tp19 248 0.282 ± 0.061 4.63

tp20 267 0.281 ± 0.059 4.78

tp21 294 0.252 ± 0.056 4.46

tp22 313 0.246 ± 0.055 4.49

tp23 325 0.225 ± 0.054 4.16

tp24 345 0.223 ± 0.052 4.25

tp25 357 0.216 ± 0.052 4.17
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Figure 8.15. Significance of A(q∆ylh) as a function of the total number of
b-tagged events. Each point represents the increment of a new data period.
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Figure 8.16. The distribution of ∆ylh at high
mass, all triggers

Figure 8.17. The distribution of ∆ylh at high
mass for CEM-triggered events.
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Figure 8.18. The distribution of ∆ylh at high
mass for CMUP-triggered events.

Figure 8.19. The distribution of ∆ylh at high
mass for CMX-triggered events.
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Figure 8.20. The distribution of ∆ylh at low
mass for events with 4 tight jets.

Figure 8.21. The distribution of ∆ylh at high
mass for events with 4 tight jets.
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Figure 8.22. The distribution of ∆ylh at low
mass for events with 5 (or more) tight jets.

Figure 8.23. The distribution of ∆ylh at high
mass for events with 5 (or more) tight jets.
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8.5 Triggers

Figs. 8.17, 8.18, and 8.19 show the distribution of ∆y at high-mass as measured

separately for each one of our trigger lepton types. The asymmetries are listed in

Table 8.3. As we saw in the inclusive case, the values are consistent within errors,

although the fluctuations across the trigger types are large.

8.6 Jet Multiplicity

Figs. 8.20, 8.21, 8.22, and 8.23 show the asymmetries at low and high mass when

the sample is partitioned by jet multiplicity. The asymmetry values are summarized

in Table 8.4 along with some predictions from MCFM and Madgraph. In the data, at

low mass there are no asymmetries, while at high mass the asymmetry is increased by

1σ in the 4jet sample and significantly decreased in the 5jet sample. In Fig. 8.23, the

expected PYTHIA asymmetry at high mass in the 5jet sample is−0.110±0.100. The

negative asymmetry is due to color flow in the initial state radation, which produces

a fifth jet. So while the observed asymmetry in the 5jet sample is lower than the

4jet asymmetry, it is higher than the PYTHIA prediction. The MCFM calculation

for NLO QCD effect shows a very large asymmetry in 4-jets at high mass, almost

comparable to the data, although we must remember that the parton-level MCFM

result would likely be diluted by passage to the lab frame and detector. MCFM

predicts the exclusive 4-jet asymmetry to be a factor of 2 larger than the inclusive

asymmetry, whereas the ratio in the data is 1.28± 0.45. The Madgraph model shows

a significant decrease of the small low-mass asymmetry in going from 4-jet to 5-jets,

but a large asymmetry almost independent of jet multiplicity at high mass. The

comparisons here are hampered by the gaps in the MCFM values, we are working to

fill those in.
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N all Mtt̄ Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

incl. data 1260 0.057±0.028 -0.016±0.034 0.21±0.049
4-jet 939 0.065±0.033 -0.023±0.039 0.26±0.057
5-jet 321 0.034±0.056 0.0049±0.07 0.086±0.093

incl. MCFM 0.058± 0.087 0.040± 0.006 0.088± 0.013
4-jet MCFM 0.115± 0.017 0.180± 0.027
5-jet MCFM

incl. Madgraph 0.130± 0.004 0.060± 0.006 0.250± 0.008
4-jet Madgraph 0.140± 0.005 0.073± 0.007 0.270± 0.009
5-jet Madgraph 0.084± 0.010 0.016± 0.012 0.200± 0.016

Table 8.4. The asymmetry A(q∆ylh) in all data, and above and below Mtt̄ = 450 GeV/c2, for 4jet
and 5(or more)jet events.

8.7 B-tagging

We have disucssed the absence of the asymmetry in the inclusive double tagged

sample. Figs. 8.24 and 8.25 shows the ∆y distributions in events with single and

double tags (top and bottom) when the sample is divided into low and high mass (left

and right). The asymmetries in each sample are given in the top rows of Table 8.3.
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Figure 8.24. The distribution of ∆ylh at high
mass for single-tagged events.

Figure 8.25. The distribution of ∆ylh at high
mass for double-tagged events.

In the double tags at high mass, the asymmetry is statistically compatible with

either the single tags or with zero. The double tagged ∆y distribution does show a

suggestion of the same asymmetric behavior as in the single tags. It suggests that

the double tag problem is because the asymmetry is at high mass, and the number

of double tags at high mass is still too small to provide any sensitivity.

It is also interesting that the Pythia prediction for ∆y in the high mass double
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tags is much narrower than in the single tags. This may be evidence of an acceptance

bias related to requirment that both b-tagged jets have | η |≤ 1.0.

8.7.1 Anti-Tags

The complement of the single and double tags is the antitag sample. The ∆y distri-

bution in the anti-tags at high mass is shown in Figs. 8.26, where our model is seen

to be in good agreement with the data. The anti-tags are background dominated, so

this comparison checks the mass dependence of the M24U modeling, and, in particu-

lar, the background asymmetry modelling. Both antitag samples show slight positive

asymmetries. In the high mass case Att̄ = 0.054± 0.035 compared to expected back-

ground and total model predictions of zero. If we mix backgrounds and tt̄ in the

expected ratio for anti-tags ratio and assume the tt̄ component has an asymmetry

of 26.6%, we find a total expected anti-tag of asymmetry Att̄ = 0.079 ± 0.034 in

agreement with the data.
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Figure 8.26. The distribution of ∆ylh at high
mass for anti-tag events.

Figure 8.27. The distribution of ∆ylh at high
mass for pre-tag events.

The good agreement between anti-tag model and data includes a spiky structure

in the background prediction in a limited region of rapidity difference: 1 < ∆y < 2.

The ∆y = q∆ylh distributions at high mass for the nine different components of

the background model are shown in Fig. 8.28. The spikes at high ∆y are produced

by the QCD backgrounds, perhaps an artifact of forcing the QCD events into the

tt̄ hypothesis. This is unexpected and under study, but the QCD backgrounds are
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symmetric (and expected to be), don’t contribute to the asymmetry, and do seem to

be well modeled in the anti-tags.
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Figure 8.28. The M24U background prediction for ∆y at high mass.

8.7.2 Pre-Tags

The remaining b-tag comparison sample is the union of the single tags, double tags,

and anti-tags, a.k.a the pre-tag sample. Figure 8.27, shows the pre-tag ∆y distribu-

tion at high mass. At high mass, the predicted asymmetry including the backgrounds

at the M24U asymmetry (zero) and tt̄ at 26.6% asymmetry, is Att̄ = 0.111 ± 0.028,

in agreement with the observed value in the data, Att̄ = 0.100± 0.029.

A final b-tagging exercise tests the impact of b-tag information in the event re-

construction. The standard reconstruction requires that b-tagged jets are used as

b-partons. Perhaps this constraint combines with an asymmetry in the b-tagging to

create an artificial asymmetry in the top direction? To check this we re-run the re-

construction without the requirement that b-tags are associated with b-partons. The

results for tags and pre-tags, shown at the bottom of Table 8.5 and in Fig. 8.30 are
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Figure 8.29. The distribution of ∆y at high
mass for tagged events when the reconstruc-
tion is not required to match b-tag jets with
b-partons.

Figure 8.30. The distribution of ∆y at high
mass for pretag events when the reconstruc-
tion is not required to match b-tag jets with
b-partons.

very close to asymmetries and distributions found when b-tag consistency is required.

These results, particularly for the pretags at high mass, suggest that the asymmetry

at high mass does not arise from any kind of bias associated with b-tagging.

Att̄

N Inclusive Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

b-tags 1260 0.057±0.028 -0.016±0.034 0.210±0.049
single 979 0.058±0.032 -0.015±0.038 0.220±0.056
double 281 0.053±0.060 -0.023±0.076 0.180±0.095

anti 3019 0.033±0.018 0.029±0.021 0.044±0.035
pretag 4279 0.040±0.015 0.017±0.018 0.100±0.029

notagcon 1260 0.062±0.028 0.006±0.034 0.190±0.050
notagcon, pretag 4279 0.042±0.015 0.023±0.018 0.092±0.029

Table 8.5. The asymmetry Att̄ in all data, and above and below Mtt̄ = 450 GeV/c2, for different
b-tagging selections.

8.8 Summary on A vs. Mtt̄

The various cross-checks performed to check the source of the observed asymmetry

are summarized for Att̄ in Table 8.6 and for App̄ in Table 8.7. The checks of the

independent charge samples, the individual triggers, tighter χ2 cuts, relaxed b-tag

consistency, and pre-tag samples are all consistent with a real effect. The checks of

the single/double tags and the different periods are ambiguous regarding the mea-
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surement.

Att̄

N Inclusive Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

inclusive tagged 1260 0.057±0.028 -0.016±0.034 0.210±0.049
pos. leptons 613 0.067±0.040 -0.013±0.050 0.210±0.066
neg. leptons 647 -0.048±0.039 0.020±0.047 -0.210±0.071
χ2 ≤ 3 338 0.030±0.054 -0.033±0.065 0.180±0.099

relax b-tag con. 1260 0.062±0.028 0.006±0.034 0.190±0.05

P0-19 (3.4 fb−1) 777 0.071±0.036 -0.028±0.043 0.280±0.061
P20-27 (3.1 fb−1) 341 0.067±0.054 0.069±0.065 0.064±0.096

CEM 735 0.026±0.037 -0.02±0.045 0.12±0.063
CMUP 332 0.13±0.054 0.047±0.065 0.31±0.095
CMX 172 0.035±0.076 -0.140±0.091 0.430±0.120

pre-tag 4279 0.04±0.015 0.017±0.018 0.1±0.029
pre-tag no tag-con 4279 0.042±0.015 0.023±0.018 0.092±0.029

single tag 979 0.058±0.032 -0.015±0.038 0.220±0.056
double tag 281 0.053±0.060 -0.023±0.076 0.180±0.095

4 jets 939 0.065±0.033 -0.023±0.039 0.260±0.057
5 jets 321 0.034±0.056 0.005±0.070 0.086±0.093

Table 8.6. The asymmetry Att̄ in all data, Mtt̄ < 450 GeV/c2, and Mtt̄ ≥ 450 GeV/c2for various
selections.

8.9 Backgrounds as Source of Observed Asymmetry

In Sec. 8.7, the calculation of the expected value of Att̄ relied on the assumption that

the background was well-modeled and thus the background asymmetry was accurate.

If this assumption is false, it calls into question any conclusions we draw about the

asymmetry. To examine how the backgrounds could affect the asymmetry, we will first

examine the backgrounds in the data using anti-tags, then we will explore the possible

ways the background modeling could alter the observed asymmetry: normalization,

fluctuation, and incorrect estimation.

8.10 Cross-Check of Anti-Tags as Background

The anti-tag sample is dominated by background events, so it allows both a check of

our background models and an estimate of the asymmetry of the background. As seen
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App̄

N Inclusive Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

inclusive tagged 1260 0.073±0.028 0.059±0.034 0.100±0.049
pos. leptons 613 0.070±0.040 0.028±0.050 0.150±0.067
neg. leptons 647 -0.076±0.039 -0.085±0.047 -0.053±0.072
χ2 ≤ 3 338 0.140±0.054 0.170±0.064 0.061±0.100

relax b-tag con. 1260 0.090±0.028 0.069±0.034 0.140±0.051

P0-19 (3.4 fb−1) 777 0.100±0.036 0.081±0.043 0.150±0.063
P20-27 (3.1 fb−1) 341 0.009±0.054 0.009±0.066 0.009±0.096

CEM 735 0.053±0.037 0.086±0.045 -0.012±0.064
CMUP 332 0.130±0.054 0.064±0.065 0.290±0.096
CMX 172 0.035±0.076 -0.042±0.092 0.210±0.130

pre-tag 4279 0.011±0.015 -0.009±0.018 0.059±0.029
pre-tag no tag-con 4279 0.016±0.015 -0.005±0.018 0.070±0.029

single tag 979 0.095±0.032 0.079±0.038 0.130±0.057
double tag 281 -0.004±0.060 -0.023±0.076 0.028±0.097

4 jets 939 0.076±0.033 0.039±0.039 0.160±0.058
5 jets 321 0.065±0.056 0.120±0.069 -0.034±0.093

Table 8.7. The asymmetry App̄ in all data, Mtt̄ < 450 GeV/c2, and Mtt̄ ≥ 450 GeV/c2for various
selections.

in Fig. 8.26, the background model is in good agreement with the anti-tag sample.

The overall asymmetry observed in the anti-tag sample is a weighted combination of

the signal asymmetry and the background asymmetry as expressed in Equation 8.1:

Ameasured = αsignalAsignal + αbackgroundAbackground (8.1)

where αsignal and αbackground represent the relative weights of the signal and back-

ground samples as fractions of the whole. Equation 8.1 can be re-arranged to express

the background asymmetry in terms of the measured and signal asymmetries along

with the respective fractions:

Abackground =
Ameasured

αbackground

− αsignal

αbackground

Asignal (8.2)

The measured asymmetry in the anti-tag sample can be used to estimate an up-

per bound on the background asymmetry. First we note that the signal asymmetry
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is bounded below by the PYTHIA asymmetry, APYTHIA
signal = −0.017, and above by

the parton-level MCFM asymmetry, AMCFM
signal = 0.090. The PYTHIA and MCFM

signal values give good estimates for the low and high values of the signal asymme-

try, because PYTHIA is a leading-order estimate and MCFM is a next-to-leading-

order estimate calculated at the parton-level (roughly a factor of two higher than

the detector-level value). As the slope of the signal asymmetry in Equation 8.2 is

negative, the lower bound of the signal asymmetry will produce the upper bound

on the background asymmetry. To obtain a conservative upper bound, the value

of the anti-tag asymmetry is two standard deviations about the measured value of

Aanti
measured = 0.044 ± 0.035. Thus, Abackground ≤ 0.157. At the estimated background

fraction, αbackground = 0.157, the upper bound of the background asymmetry is not

large enough to account for the measured asymmetry in the tagged sample.

8.11 Background Normalization Errors

If the background normalization is incorrect, then it will change the measured asym-

metry by changing the relative weight of the background asymmetry. This can be

seen directly in Equation 8.1. Taking advantage of the fact that the relative weights

sum to one, Equation 8.1 can be re-arranged to express the background fraction in

terms of the asymmetries:

αbackground =
Ameasured − Asignal

Abackground − Asignal

(8.3)

Using Ameasured = 0.210± 0.049 and the signal and background asymmetries from

various sources, Equation 8.3 can be used to give the background fractions required

for consistency which are summarized in Table 8.8.

To be physical, sample fractions must be between 0 and 1. The background frac-

tions given in Table 8.8 do not meet this condition. It is unlikely that the background

normalization alone – while keeping the background asymmetry fixed – is the source
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Abackground = −0.024 Abackground = 0.157
Asignal αbackground Asignal αbackground

PYTHIA -0.017 -34.39 -0.017 1.30
MCFM 0.090 -1.06 0.090 1.79

Table 8.8. The required background fractions for each signal source and background asymmetry
estimate. The left uses the background asymmetry from the Method II estimates, Abackground =
−0.020, while the right uses the background asymmetry, Abackground = 0.114, estimated from the
anti-tags.

of the observed asymmetry in the tagged sample.

8.12 Background Asymmetry Errors with Variable Normal-

ization

Both fluctuations and errors in the background asymmetry can be considered at the

same time, as they result in different asymmetry values from the expected. Again

taking advantage of the fact that the relative weights sum to one, Equation 8.1 can

be re-arranged to express the background asymmetry in terms of the measured and

signal asymmetries along with the background fraction:

Abackground =
Ameasured

αbackground

+
αbackground − 1

αbackground

Asignal (8.4)

Equation 8.4 is used to plot the required background asymmetry as a function of

the required background fraction as shown on the left of Figure 8.31. As expected, the

curves for PYTHIA and MCFM both converge when the background fraction goes

to unity and the sample is entirely background – thus requiring that the background

asymmetry equal the measured asymmetry, Abackground = 0.210. The vertical black

line in Figure 8.31 shows the expected background fraction, αbackground = 0.114. The

intersections of the this line with the two curves show that at this background fraction

the background asymmetry is required to be between 80 and 100 percent, which is

over 6σ from the expected background asymmetry and over 5σ from the estimated

upper bound for the background asymmetry.
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Figure 8.31. The background asymmetry
versus background fraction for ∆y at high
mass. The estimation using the PYTHIA
Monte Carlo as the signal asymmetry estimate
is in red, and the estimation using the MCFM
Monte Carlo is in green. The vertical black
line shows the expected background fraction of
0.191.

Figure 8.32. The required deviation from
the expected background asymmetry versus
required background fraction in multiples of
the expected background fraction for ∆y at
high mass. The estimation using the PYTHIA
Monte Carlo as the signal asymmetry estimate
is in red, and the estimation using the MCFM
Monte Carlo is in green. The vertical black
line shows the expected background fraction
multiple at 1. The thinner lines mark the re-
quired curves using the upper bound on the
background asymmetry derived from the anti-
tags, while the thicker lines mark the required
curves using the background asymmetry esti-
mated from Method II.
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The number of standard deviations between the required and expected background

asymmetries is given by:

nσ =
Arequired

background − Aexpected
background

σexpected
background

(8.5)

where Arequired
background is from Equation 8.4. At first glance, it seems that if the required

background asymmetry at 80% is over 6σ from the expected value then when the

required background asymmetry is reduced by a factor of four to 22% the distance to

the expected background asymmetry will drop by a similar factor. But, it is important

to note that the denominator in Equation 8.5 is a function of the background fraction,

as with a fixed asymmetry the error decreases as the number of events grows larger.

To make visual interpretation easier, the curves in the left of Figure 8.31 are re-

expressed on the right of the Figure in terms of the number of standard deviations

the required background asymmetry is from the expected background asymmetry as

a function of multiples of the expected background fraction. The vertical black line at

the expected background fraction from the left-hand figure is retained but scaled to

unity in the right-hand figure. The thick curves are the distances given the expected

background asymmetry, while the thin curves are the distances given the upper bound

of the background asymmetry. We see that even in the extreme case of the upper

bound on the background asymmetry, the required background asymmetry is still 3σ

away when the background fraction is twice its expected value and 2σ away when the

background fraction is three times its expected value.

It is unlikely that the background is the source of the asymmetry, even if our

estimates for both the normalization and the asymmetry are off. The anti-tag sample

confirms that our background is modeled reasonably well.
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CHAPTER 9

Validation of the Unfold Procedure

9.1 Prior Validation in CDF9813

A complete study of linearity, bias, and pulls in the unfold was performed in Ref. [28].

Input samples with linear A vs. Mtt̄ behavior in the manner of Fig. 9.1 were created

by reweighting Pythia tt̄. The distribtution of the top production angle in the tt̄

frame was reweighted to add a term of the form A cos θ, where A depends linearly on

Mtt̄ through two adjustable parameters: A = α(Mtt̄)− 350 + β

By varying slope α and offset β it was possible to create samples over a wide

range of A vs. Mtt̄ functions, and study the performance of the unfold on each.

For example to test the output linearity in α, the asymmetry in the two mass bins

was used calculate the “reconstructed A(α)” which was then compared to the “truth

A(α)”. Fig. 9.1 shows the truth-unfold comparison as a function of α for the case of no

constant term (β = 0). The unfold procedure is extremely linear and the largest bias

over the full range of α is δA = 0.028, much smaller than the statistical uncertainty.

The errors returned by the unfold were studied with standard PE techniques, and

it was shown that the pulls in the unfold have width 1.0. For further details, see

Ref. [28].

9.2 Validation Samples

We are using exactly the same algorithm (in some cases, exactly the same code)

as in Ref. [28]. We have rerun our code on the same data samples used there and
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Figure 9.1. The unfold for Att̄ in the axigluon sample using ttop25 at
the Mtt̄ = 450 GeV/c2mass threshold in each of the four bins: low mass
forward, low mass backward, high mass forward, high mass backward. True
values of the asymmetry are Alow

lh = 0.150 and Ahigh
lh = 0.466.

verified that we exactly reproduce the results there. We do not re-invent any of those

performance studies here, but, instead, study two simple samples that reinforce our

confidence and allow us to gauge unexpected possible biases in a simple instructive

way. Of concern are the creation of asymmetries where there are none (Type 1 errors)

and the failure to find asymmetries where they exist (Type II errors). To validate

the technique, two samples are needed: one with no asymmetry and one with an

asymmetry (preferably a mass-dependent one). For the former, we will use ttop25,

which as a leading-order QCD Monte Carlo, has no asymmetry across the whole mass

range. For the latter, we will use MADGRAPH with an axigluon model which has

a large, mass-dependent asymmetry. As seen in Figs. 9.3 and 9.5, the two samples

have similar mass distributions, differing mainly in their rapidity distributions, which

allows for better validation of the technique as it compares to the data sample on

hand [32].
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9.3 Type I Errors

At the leading-order, QCD has no asymmetry at any invariant mass threshold, so

ttop25 is a good sample to test if the unfold technique introduces any asymmetries

where they don’t exist. In Figs. 9.6 and 9.7, the raw values (in black) of the asym-

metries show discrepancies from the truth values (in turquoise). In the asymmetries

below the mass threshold, the asymmetry is relatively constant of roughly -1% –

likely due in part to an acceptance bias in favor of backward events. Above the mass

threshold, the raw asymmetry values seem to exhibit a combination of the acceptance

biases for backward and high mass events – with roughly constant values of around

-1% until around 500 GeV/c2 when the the asymmetry increases to about 5% at

800 GeV/c2. After the unfold, however, the corrected asymmetries (red values) are

constant at the expected value of zero. Tables 9.1 confirms that the corrected values

are consistent with the truth values. This gives us confidence that the unfold does

not create an artificial asymmetry – indeed, in this case it removes an asymmetry

that was an artifact of the acceptance and smearing.
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Figure 9.6. Mass-dependence of Att̄ in ttop25
below the mass threshold with values before
and after ttop25 unfold.

Figure 9.7. Mass-dependence of Att̄ in ttop25
above the mass threshold with values before
and after ttop25 unfold.
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low mass

edge App̄ Att̄ Truth Att̄

400 −0.010± 0.004 0.001± 0.015 -0.002
450 −0.012± 0.003 0.000± 0.009 0.000
500 −0.012± 0.003 −0.001± 0.007 0.000
550 −0.013± 0.002 −0.001± 0.006 0.001
600 −0.014± 0.002 0.000± 0.005 0.000
650 −0.014± 0.002 −0.000± 0.005 0.000
700 −0.014± 0.002 0.000± 0.005 0.000
800 −0.014± 0.002 0.000± 0.005 0.000

high mass

edge App̄ Att̄ Truth Att̄

400 −0.015± 0.003 0.000± 0.006 0.000
450 −0.016± 0.004 0.000± 0.007 0.000
500 −0.017± 0.005 0.001± 0.009 0.001
550 −0.010± 0.007 0.001± 0.012 0.001
600 0.003± 0.009 0.001± 0.016 0.001
650 0.013± 0.012 0.004± 0.023 0.004
700 0.034± 0.000 0.000± 0.032 0.000
800 0.047± 0.029 −0.006± 0.069 0.000

Table 9.1. The pp̄- and tt̄-frame asymmetry values of Att̄ in ttop25 compared at low and high Mtt̄

as the invariant mass threshold is scanned.

9.4 Type II Errors

To create a sample with a large, known asymmetry, we used MADGRAPH with an

axigluon model containing a pole at 1.8 TeV. This served as an improvement over

past asymmetric models which were either a post-reconstruction ad hoc modification

of PYTHIA or a Z ′ model with a mass spectrum that didn’t match the observed Mtt̄

spectrum. Our axigluon model, while explicitly not a prediction for the data, allows

us to use a model that closely matches our invariant mass distribution and can be

fully reconstructed from the parton-level giving useful comparisons of the corrected

values to truth values. While it can be useful in the abstract to check how the

unfold technique functions with matrix entries derived from axigluon truth values,

there is more utility in using ttop25 truth values in the matrices since PYTHIA is

expected to be a first-order model of the data while there is no such expectation
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for an arbitrary and unphysically motivated model such as the axigluon model in

MADGRAPH. In Figs. 9.8 and 9.9, the raw values (in black) of the asymmetries

show discrepancies from the truth values (in turquoise). Below the mass threshold,

the corrected asymmetry values are consistently higher than the truth values by about

25% of the truth asymmetries. Above the mass threshold, the corrected values are

much closer to the truth asymmetries (usually differing by 2-6%). In both above

and below cases, the corrections are an improvement over the uncorrected values.

Table 9.2 confirms that the corrected values are consistent with the truth values.

This gives us confidence that the unfold correctly recovers an asymmetry that is

dampened by detector-level effects.
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Figure 9.8. Mass-dependence of Att̄ in the
axigluon sample below the mass threshold with
values before and after ttop25 unfold.

Figure 9.9. Mass-dependence of Att̄ in the
axigluon sample above the mass threshold with
values before and after ttop25 unfold.

9.5 Validation Summary

In both the axigluon and ttop25 samples, the unfold technique provided corrected

values that were an improvement over the raw asymmetries. The technique also

showed robustness in the face of the creation of both Type I and Type II errors.

The comparison of the corrected values to the truth values will also aid in estimating

systematic errors.
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Figure 9.10. Mass-dependence of Att̄ in tt̄
events in L = 5.3 fb−1 below the mass threshold
with values before and after ttop25 unfold.

Figure 9.11. Mass-dependence of Att̄ in tt̄
events above the mass threshold with values
before and after ttop25 unfold.
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Figure 9.13. Asymmetries below and above
Mtt̄ = 450 GeV/c2.
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low mass

edge App̄ Att̄ Truth Att̄

400 0.052± 0.010 0.134± 0.049 0.101
450 0.078± 0.007 0.189± 0.025 0.150
500 0.103± 0.007 0.236± 0.019 0.188
550 0.119± 0.006 0.269± 0.016 0.218
600 0.134± 0.006 0.298± 0.014 0.239
650 0.143± 0.006 0.314± 0.013 0.255
700 0.150± 0.006 0.329± 0.013 0.265
800 0.160± 0.006 0.350± 0.012 0.277

high mass

edge App̄ Att̄ Truth Att̄

400 0.235± 0.007 0.410± 0.013 0.372
450 0.310± 0.009 0.478± 0.015 0.466
500 0.369± 0.011 0.533± 0.018 0.545
550 0.425± 0.014 0.579± 0.021 0.602
600 0.460± 0.017 0.592± 0.025 0.631
650 0.498± 0.020 0.606± 0.031 0.631
700 0.510± 0.025 0.594± 0.037 0.608
800 0.458± 0.040 0.490± 0.060 0.519

Table 9.2. The pp̄- and tt̄-frame asymmetry values of Att̄ in ctopo3 compared at low and high Mtt̄

as the invariant mass threshold is scanned.
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Figure 9.14. The corrected parton-level value of Att̄ in the high mass
sample, as a function of the high mass Mtt̄ threshold, compared to the
MCFM prediction (12% scale error assumed).
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CHAPTER 10

Systematics

10.1 Overview

All systematic uncertainties represent different uncertainties in our understanding of

the models used to correct the reconstructed data. These uncertainties propagate

along different paths to our measurements. We consider three different sources of

systematic uncertainties for our asymmetry measurements: background, signal, and

correction. In all but one case, to compute the systematic uncertainty from the

background and signal sources variations are made to the model – which we take

to be ttop25 (the leading-order MC sample). The tt̄ data sample is then corrected

using the model and the variations on it. The differing corrected values are then

compared using the standard method of taking the average of the largest pair-wise

difference between all the values [33]. The correction systematics are more straight-

forward: various MC samples are corrected using ttop25 and the resulting values are

compared to the known parton-level values.

10.2 Background Systematics

As in Section 8.9, we consider two different background systematics: background

normalization and background shape. The former is computed by keeping the overall

background shape constant and scaling the number of background events by ±σ. The

latter is computed keeping the number of background events constant and changing

the shape of the background by shifting the background asymmetry by ±σ.
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The background normalization affects the asymmetry in the final measurement

because the background must be subtracted from the reconstructed sample to measure

the asymmetry of the tt̄ sample. The background asymmetry is expected to be

negative, so the tt̄ asymmetry must be larger than the asymmetry in the reconstructed

data, but the size of the normalization determines the magnitude of the shift. The

background normalization is computed from the Method II background tables which

estimate the background contribution from nine different sources: QCD, W plus

heavy flavor, W plus light flavor, single top (in both s- and t-channels), WW, WZ,

ZZ, and Z plus light flavor. QCD is estimated from the data while the other sources

are estimated from Monte Carlo. The errors from the estimates are summed in

quadrature to give the full estimate of the error in the background normalization.

For the tt̄ sample used in this analysis, the background normalization is 283.3 ± 93

events. To calculate the systematic error from the background normalization, the

background normalization is shifted by ±σ = ±93 events.

The background shape affects the asymmetry by determining the background

asymmetry. The background shape only matters in terms of which events are forward

and which events are backward – forward (or backward) events can be shifted around

and the overall asymmetry will not change as long as the events remain forward (or

backward). So the systematic error on the shape of the background is equal to the

systematic error on asymmetry of the background. For a distribution with a given

standard deviation, σ, and number of events, n, the error on the standard deviation is

given by σ/
√

2n. The standard deviation for a distribution is given by Equation 10.1.

σ =

√
1− A2

2n
(10.1)

So the error in the standard deviation, σσ, is given by Equation 10.2.
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σσ =

√
1−A2

n√
2n

=

√
1− A2

2n2
=

√
(1− A2)/2

n
(10.2)

So the shifted asymmetries are given by Equation 10.3.

A± σσ =
nF − nB

n
±

√
(1− A2)/2

n
=
nF − nB ±

√
1−A2

2

n
(10.3)

Equation 10.3 can be re-written as Equation 10.4 using δ =
√

1−A2

8
.

A± σσ =
(nF ± δ)− (nB −±δ)

n
(10.4)

For a given background distribution, the number of forward and backward events

can be shifted to change the asymmetry of the distribution by σσ. The resulting

distributions are then subtracted from the reconstructed data and used to compute

the systematic uncertainty of the asymmetry with respect to the background shape.

Both of these systematics influence the input to the correction technique, as the

correction requires background-subtracted data. Thus these systematics are relevant

not only to the corrected measurements but to the background-subtracted measure-

ments. The results for both systematic background contributions are shown in Ta-

ble 10.1.

10.3 Signal Systematics

We calculate four different sources of the systematics due to the modeling of the tt̄

production and decay. These correspond to changes of±σ in the MC-generated events

for the following effects: initial- and final-state radiation (ISR/FSR), jet energy scale

(JES), color connection, and parton distribution functions (PDF). The last source is

the only one to use a different method to compute the systematic from the method

mentioned in Section 10.1; instead, the standard prescription for PDF systematics is

used. The results of these systematic checks are shown in Table 10.1.
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10.4 Correction Systematics

As in Section 9, we want to evaluate the accuracy of our correction technique in terms

of the bias between the truth and unfolded values. To evaluate this, we use three

different MC samples: ytop25+ltopo3 which is a leading-order sample generated with

PYTHIA with no asymmetry that serves as an alternative to ttop25; ctopo3 which is

an axigluon MC sample generated with MADGRAPH with a high, mass-dependent

asymmetry; and ctopoa which is identical to ctopo3 in all aspects except the asym-

metry which is half that of ctopo3. The first sample gives an intrinsic bias of the

technique, as it is a correction of the same type of sample. The last two samples give

the bias of the technique when correcting a sample with an asymmetry with a model

(ttop25 in this case) with no asymmetry. Of the three samples, ctopoa is the closest

in terms of the measured asymmetry to our data sample, though we make no claims

about the connection between the data and the model beyond noting that they have

similar asymmetries. For each MC sample, the corrected asymmetries are compared

with the truth values. At a given invariant mass threshold, the largest discrepancy

between the truth value and the correction value is taken as the systematic. The

results of these systematic checks are shown in Table 10.1.

10.5 Summary

Overall, apart from extremes at the edges where there are low statistics, the system-

atic uncertainties for a given invariant mass edge are less than 8% for asymmetries

below above. In general, the largest source of systematic uncertainty comes from the

correction bias, which is unsurprising given that the sample used for the correction

and the sample being corrected have much more potential for variance. After cor-

rection bias, the largest source of uncertainty tends to be variation in the jet energy

scale. In the central mass region (400-550 GeV/c2), the systematic uncertainty less

than 5% for asymmetries below above.
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AFB Systematics Below
Source 350 400 450 500 550 600 650 700 800

bkg norm 0.067 0.032 0.017 0.002 0.012 0.012 0.013 0.016 0.016
bkg shape 0.245 0.007 0.003 0.002 0.001 0.001 0.001 0.001 0.000

JES 0.218 0.017 0.005 0.003 0.007 0.006 0.007 0.008 0.007
ISR/FSR 0.259 0.012 0.012 0.005 0.001 0.002 0.002 0.003 0.003

color 0.166 0.009 0.004 0.004 0.005 0.004 0.005 0.004 0.004
PDF 0.038 0.018 0.019 0.047 0.005 0.004 0.006 0.006 0.007

Correction -0.409 0.032 0.037 0.046 0.049 0.057 0.057 0.062 0.071

Total 0.613 0.054 0.047 0.066 0.051 0.059 0.06 0.065 0.073

AFB Systematics Above
Source 350 400 450 500 550 600 650 700 800

bkg norm 0.014 0.022 0.032 0.034 0.02 0.034 0.019 0.011 0.013
bkg shape 0.004 0.002 0.003 0.006 0.012 0.027 0.041 0.045 0.175

JES 0.003 0.004 0.012 0.021 0.021 0.039 0.035 0.012 0.020
ISR/FSR 0.007 0.007 0.008 0.013 0.017 0.008 0.012 0.058 0.073

color 0.007 0.002 0.004 0.010 0.016 0.021 0.028 0.018 0.038
PDF 0.011 0.003 0.004 0.006 0.012 0.013 0.016 0.167 0.528

Correction 0.079 0.036 0.034 0.012 0.032 0.040 0.053 -0.015 0.022

Total 0.082 0.043 0.049 0.046 0.052 0.075 0.086 0.185 0.563

Table 10.1. Summary of systematic uncertainties for the unfolded asymmetries above and below
the invariant mass thresholds.
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CHAPTER 11

Conclusions

We have studied the forward-backward asymmetry of top quark pairs produced

in 1.96 TeV pp̄ collisions at the Fermilab Tevatron. In a data sample with L =

5.3 fb−1 and 1260 events in the lepton+jet decay topology, we measure both the

inclusive asymmetry and the Mtt̄-dependent asymmetry in the pp̄ and tt̄ rest frames.

We compare to NLO predictions for the charge asymmetry in QCD assuming CP

conservation.

below threshold above threshold

threshold App̄ Att̄ App̄ Att̄

400 −0.006± 0.046 −0.171± 0.271 0.126± 0.039 0.293± 0.096
450 0.001± 0.036 −0.116± 0.153 0.216± 0.052 0.475± 0.114
500 0.053± 0.033 0.032± 0.165 0.247± 0.070 0.562± 0.152
550 0.054± 0.031 0.130± 0.105 0.215± 0.094 0.433± 0.201
600 0.057± 0.031 0.141± 0.102 0.321± 0.127 0.633± 0.323
650 0.062± 0.030 0.159± 0.099 0.314± 0.160 0.527± 0.384
700 0.069± 0.030 0.184± 0.101 0.120± 0.199 0.072± 0.401
800 0.070± 0.030 0.181± 0.105 0.000± 0.354 0.038± 0.946

Table 11.1. The lab and rest frame asymmetries in tt̄ events in L = 5.3 fb−1 below and above Mtt̄

as the invariant mass threshold is scanned. Errors in corrected asymmetries reflect both statistical
and systematic uncertainties.

The pp̄ frame measurement uses the rapidity of the hadronically decaying top

system. This distribution shows a parton-level forward-backward asymmetry in the

pp̄ frame of App̄ = 0.150 ± 0.055 (stat+sys). This has less than 1% probability

of representing a fluctuation from zero and is two standard deviations above the

predicted asymmetry from NLO QCD. We also study the frame-invariant difference

of the rapidities, ∆y = yt − yt̄; asymmetries in ∆y are identical to those in the
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top production angle in the tt̄ rest frame. We find a parton-level asymmetry of

Att̄ = 0.158± 0.075 (stat+sys), which is somewhat higher than, but not inconsistent

with, the NLO QCD expectation of 0.058 ± 0.009. The asymmetry is a roughly

monotonic function of the tt̄ invariant mass, Mtt̄, with pp̄ and tt̄ asymmetries as

shown in Table 11.1.

At the optimal sensitivity threshold of Mtt̄ = 450 GeV/c2, the asymmetries in the

tt̄ rest-frame are seen in Table 11.2. The asymmetry at high mass is 3.4 standard

deviations above the current NLO prediction for the charge asymmetry of QCD.

Att̄

Mtt̄ < 450 GeV/c2 Mtt̄ ≥ 450 GeV/c2

L = 5.3 fb−1 events −0.116± 0.153 0.475± 0.114
MCFM 0.040± 0.006 0.088± 0.013

Table 11.2. The rest frame asymmetries in tt̄ events in L = 5.3fb−1 compared to predicted
asymmetries from MCFM. Errors in measured asymmetries reflect both statistical and systematic
uncertainties.

The asymmetries reverse sign under interchange of lepton charge. The tt̄ frame

asymmetry for Mtt̄ ≥ 450 GeV/c2 is found to be robust against variations in tt̄ recon-

struction quality and secondary vertex b-tagging, as well as background normalization

and asymmetry strength. When the high-mass data is divided by the lepton avor, the

asymmetries are larger in muonic events, but statistically compatible across species.

Simple studies of the jet multiplicity and frame dependence of the asymmetry at high

mass may offer the possibility of discriminating between the NLO QCD effect and

other models for the asymmetry, but the statistical power of these comparisons is

currently insufficient for any conclusion.

CDF is predicted to have L 10 fb−1 of data recorded by the end of 2011, almost

doubling the sample used in this analysis. Repeating this analysis with a larger sample

would reduce the statistical uncertainty, likely improving the the discriminatory power

of the measurement. Additionally, this analysis focused on the lepton+jets channel of

tt̄ production. Further analysis in other channels, like the dilepton channel, would add
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clarification to this measurement. Collaboration with DØ would also aid in probing

the results of this measurement. While it is possible to measure effects related to this

analysis at the LHC, it is not possible to make a direct measurement of the same type

at the LHC. The LHC is a pp collider, opposed to a pp̄ collider like the Tevatron,

which means that the direction of the top quark cannot be measured in relation to the

proton direction. Without a defined direction for the proton, the forward-backward

asymmetry is undefined, so it cannot be measured.

The measurements presented here suggest that the modest inclusive tt̄ production

asymmetry originates from a signicant effect at large total invariant mass Mtt̄.
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