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Abstract

A longstanding problem for Monte Carlo (MC) criticality simulation is the slow con-

vergence of the fission source distribution for systems with a high dominance ratio (DR).

In this thesis, we have developed and tested a new hybrid deterministic and MC method,

called the Functional Monte Carlo (FMC) method, to solve such problems. We show herein

that the FMC method produces a significant improvement in the speed of convergence and

accuracy of criticality calculations, which are particularly important for nuclear reactor

operation and design, as well as for nuclear safety applications. Different from any previous

hybrid method, the FMC method does not directly estimate the eigenfunction and eigenvalue

via MC particle simulation. Instead, it uses MC techniques to directly estimate certain

nonlinear functionals. These functionals are then used in the low-order FMC equations to

calculate the k-eigenfunction and eigenvalue. The resulting estimates have no spatial or

angular truncation errors, and are generally more accurate than estimates obtained using

conventional MC methods.

The FMC method is based on two assumptions:

1. The functionals depend weakly on the angular flux and can be evaluated with MC

more accurately than direct MC estimates of the angular or scalar flux.

2. If the low-order FMC equations are solved with small errors in the functionals, the

resulting errors in the eigenfunction and eigenvalue will be small.

In this work, we have developed the FMC method for monoenergetic, multigroup, and

continuous energy k-eigenvalue problems in 1-D planar geometry. We have tested the FMC

method on various problems, in which standard MC estimates of the eigenfunction tend

xiii



to “wobble.” Our numerical results indicate that the fission source distribution is found to

converge orders of magnitude faster using the FMC approach. Inter-cycle correlation is

very weak for the FMC method. The true and apparent relative errors are about the same

for the FMC method. And with FMC feedback, the performance of MC estimates of the

eigenfunction improved significantly. For future research, it remains to extend the FMC

method to include realistic cross sections and multi-dimensional problems. We see no

fundamental impediment to doing this.
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Chapter 1

Introduction

Nuclear criticality is the ability to sustain a nuclear fission chain reaction in the absence

of external sources - that is, to make the fission chain reaction maintain a steady state. This

is particularly important for nuclear reactor operation, nuclear reactor design, and nuclear

safety applications. Nuclear criticality analyses include k-eigenvalue (core multiplication)

and fundamental mode eigenfunction calculations (flux or power distribution). The calcu-

lation of these quantities is the most common analysis performed in nuclear core studies.

The power distribution is of significant importance to thermal analysis and fuel depletion

studies of the reactor core. These quantities may be obtained by solving a steady-state Boltz-

mann transport equation, which can be derived from the general time-dependent Boltzmann

transport equation [4; 10; 11; 21], given by

1
v

∂ψ

∂ t
(~r,~Ω,E, t)+~Ω ·∇ψ(~r, ~Ω,E, t)+Σt(~r,E)ψ(~r,~Ω,E, t)

=
∫

∞

0

∫
4π

Σs(~r,~Ω′ ·~Ω,E ′→ E)ψ(~r,~Ω′,E ′, t)dΩ
′dE ′

+
χ(E)
4π

∫
∞

0

∫
4π

νΣ f (~r,E ′)ψ(~r,~Ω′,E ′, t)dΩ
′dE ′+

1
4π

Q(~r,~Ω,E, t) , (1.1)

with boundary condition:

ψ(~r,~Ω,E, t) = ψ
b(~r,~Ω,E, t) , ~r ∈ ∂R , ~Ω ·~n < 0 , 0 < E < ∞ , t > 0 , (1.2)

where ψb is specified. If ψb = 0, then ∂R becomes a vacuum boundary.
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Also, ψ(~r,~Ω,E, t) should satisfy the initial condition:

ψ(~r,~Ω,E, t) = ψ(~r,~Ω,E,0) , ~r ∈ R , ~Ω ∈ 4π , 0 < E < ∞ . (1.3)

The variables and the physical meaning of each term in Eq. (1.1) are given as follows:

~r = (x,y,z) = spatial variable,

~Ω = (Ωx,Ωy,Ωz) = direction, or angular variable,

E = energy,

t = time,

ψ(~r,~Ω,E) = angular flux,

~Ω ·∇ψ(~r,~Ω,E) = net leakage rate,

Σt(~r,E)ψ(~r,~Ω,E) = collision rate,∫
∞

0

∫
4π

Σs(~r,~Ω′ ·~Ω,E ′→ E)ψ(~r,~Ω′,E ′)dΩ
′dE ′ = in-scattering rate,

χ(E)
4π

∫
∞

0

∫
4π

νΣ f (~r,E ′)ψ(~r,~Ω′,E ′)dΩ
′dE ′ = fission neutron production rate, and

Q(~r,~Ω,E, t) = external source.

It is possible to obtain a static eigenvalue problem by setting ∂ψ/∂ t = 0 and Q = 0 in

Eq. (1.1), and modifying the fission source term by a factor 1/k. Then Eq. (1.1) becomes a

steady-state Boltzmann transport equation,

~Ω ·∇ψ(~r,~Ω,E)+Σt(~r,E)ψ(~r,~Ω,E)

=
∫

∞

0

∫
4π

Σs(~r,~Ω′ ·~Ω,E ′→ E)ψ(~r,~Ω′,E ′)d~Ω′dE ′

+
1
k

χ(E)
4π

∫
∞

0

∫
4π

νΣ f (~r,E ′)ψ(~r,~Ω′,E ′)d~Ω′dE ′ , (1.4)

where k = eigenvalue = effective multiplication factor, and ψ(~r,~Ω,E) = fundamental mode

eigenfunction.
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Eq. (1.4) can be solved by varying k to adjust the magnitude of the fission source. The

significance of the effective multiplication factor k can be understood as follows: If k = 1,

the production of neutrons due to fission exactly balances the loss of neutrons due to leakage

and capture, i.e. a steady state is achieved. In this case, the fission system is critical. If

k > 1, the production of neutrons is greater than the loss of neutrons. In this case, the fission

system is supercritical. If k < 1, the production of neutrons is less than the loss of neutrons.

In this case, the fission system is subcritical.

Eq. (1.4) can be written in an matrix form:

Lψ +Cψ = Sψ +
1
k

Fψ , (1.5)

where L = Leakage operator, C = Collision operator, S =Scattering operator, and F =

fission operator.

Letting M = (L+C−S)−1F , Eq. (1.5) can be further simplified as

ψ =
1
k

Mψ . (1.6)

In general, M has k1 > k2 > · · · > km eigenvalues, and ~u1 , ~u2 , · · · , ~um are the corre-

sponding normalized eigenfunctions. Eq. (1.6) may be solved using power iteration [4; 27],

i.e.

ψ
(n+1) =

1
k(n) Mψ

(n) , (1.7)

that is to solve

(L+C−S)ψ(n+1) =
1

k(n) Fψ
(n) .

The next estimate of the effective multiplication factor k is obtained by

k(n+1) = k(n)
∫

Fψ(n+1)dV∫
Fψ(n)dV

. (1.8)
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We express the initial flux guess ψ(0) in terms of the normalized eigenfunctions, giving

ψ
(0) = c1~u1 + c2~u2 + · · ·+ cm ~um . (1.9)

Substituting Eq. (1.9) into Eq. (1.7), we obtain

ψ
(n+1) =

1
k(n) Mψ

(n)

=
1

k(n)
1

k(n−1) ·
1

k(0) Mn+1
ψ

(0)

=
[ n

∏
i=0

1
k(i)

]
(c1 · kn+1

1 ~u1 + c2 · kn+1
2 ~u2 + · · ·cm · kn+1

m ~um)

=
[ n

∏
i=0

k1

k(i)

]
· c1

[
~u1 +

c2

c1

(k2

k1

)(n+1)
~u2 + . . .

]
= C1

[
~u1 +C2(

k2

k1
)(n+1)~u2 + . . .

]
. (1.10)

Also, substituting Eq. (1.10) into Eq. (1.8), we obtain

k(n+1) = k(n)

∫
FC1

[
~u1 +C2(k2

k1
)(n+1)~u2 + . . .

]
dV∫

FC1

[
~u1 +C2(k2

k1
)(n)~u2 + . . .

]
dV

= k(n) 1+C3(k2
k1

)(n+1) + . . .

1+C3(k2
k1

)(n) + . . .

≈ k1

[
1+C3(

k2

k1
)(n+1) + . . .

][
1−C3(

k2

k1
)(n) + . . .

]
= k1

[
1+C3(

k2

k1
)n(

k2

k1
−1)+ . . .

]
. (1.11)

In these equations, k1 > k2 > · · · are the eigenvalues and ~u1 , ~u2 , · · · are the corresponding

eigenfunctions of the transport equation. Then k1 and ~u1 are the fundamental eigenvalue and

eigenfunction, respectively. C1, C2, and C3 are constants, and n is the number of iterations.

The dominance ratio (DR) [27; 30] is defined as k2/k1. DR can be obtained using Eq.
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(1.10). We rewrite Eq. (1.10) as

ψ(n+1)

C1
= ~u1 +C2(

k2

k1
)(n+1)~u2 + . . .

= ~u1 +C2DR(n+1)~u2 + . . . ,

then the error after n+1 iterations becomes

~e(n+1) =
ψ(n+1)

C1
− ~u1 = C2DR(n+1)~u2 + . . . .

Thus the dominance ratio satisfies the following condition:

DR =
‖~e(n+1)‖
‖~e(n)‖

. (1.12)

Since the absolute true errors are generally unknown, one can use pseudo-errors instead in

calculating the dominance ratio, i.e.

DR =
‖φ (n+1)−φ (n)‖
‖φ (n)−φ (n−1)‖

. (1.13)

DR is the key parameter that determines the convergence rate of the power iteration pro-

cedure. As the number of iterations increases, the higher order terms die away as DRn→ 0,

the eigenfunction will converge to the fundamental eigenfunction ~u1, and k will converge

to the largest eigenvalue k1 . However, for optically thick fissile systems, k2 → k1 and

DR→ 1. In this case, the eigenfunction and the eigenvalue do not converge at the same

rate. As shown in Eq. (1.11), the higher mode terms in the eigenvalue contain terms like

DRn(DR−1). The additional factor (DR−1) will guarantee that the eigenvalue converges

quickly even for optically thick fissile systems. The convergence of the eigenfunction in

optically thick fissile systems is not as fast, because the higher mode terms contain only

the factor DRn. It may take several hundreds or thousands of iterations for the higher mode
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terms to die away. The slow convergence of the eigenfunction with Monte Carlo has been

known for decades and has been examined in several recent publications [36; 29; 30]. In

this dissertation we propose a new hybrid deterministic and Monte Carlo method called

the “Functional Monte Carlo” (FMC) method for k-eigenvalue problems. This new method

improves the convergence of the eigenfunction significantly.

The calculation of the fundamental k-eigenvalue and eigenfunction is one of the most

important calculations in nuclear reactor design. Typically, there are two sets of methods

that are most commonly used for this calculation: deterministic methods and Monte Carlo

methods.

In the deterministic approach, the integro-differential transport equation is discretized in

space, angle, and energy, and the resulting algebraic equations are solved using iteration

methods. In energy discretization, the energy variable E is discretized into a number of

energy bins or groups, i.e. the multigroup energy approximation. Within each energy group

the fission source, fission spectrum, and flux are integrated. The multigroup cross sections

are treated as flux-weighted cross sections over the given energy group. There are two

types of angular discretization methods, the PN method and the SN method. The SN method

discretizes the angular flux using a quadrature set, and assumes further that the particles can

only travel along a finite number of directions. The PN method approximates the angular

flux by a finite sum of spherical harmonic moments. In spatial discretizations, we impose a

spatial grid on the system. We can then approximate the relation between the cell-averaged

flux and cell-edge flux using finite difference, diamond difference, or step characteristic

methods. Owing to these discretizations in energy, angle and space, a deterministic solution

contains truncation errors.

In the Monte Carlo approach [15; 27], another form of the transport equation, i.e. the

integral transport equation, is solved by simulating a large number of Monte Carlo particles

and recording tallies of their average behavior. Due to the stochastic nature of the Monte

Carlo simulation, this solution contains statistical errors. The advantage of Monte Carlo
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simulations is that there is no approximation in modeling the geometries and physics behind

the theory (there are no truncation errors). However, to simulate a large system, such as a

loosely coupled reactor, within a reasonable statistic error, one needs to process an extraordi-

narily large number of Monte Carlo particles. Thus in general, the Monte Carlo approach is

more expensive computationally, as compared with the deterministic approach. It is natural

to think that if one could combine deterministic methods with the Monte Carlo methods for

solving k-eigenvalue problems, some distinct advantages would be gained. Techniques used

to couple the deterministic and Monte Carlo methods are called hybrid methods.

Historically, Monte Carlo simulations have often been used to generate limited informa-

tion about a physical problem – for instance, “source-detector” problems in which the goal

is to calculate a single detector response. Here, one runs an entire transport calculation with

the goal of calculating a single number. When this is done properly (i.e. when the weight

windows are chosen optimally), one gets accurate estimates of the solution in a small part of

phase space (the part needed to calculate the desired response), but not elsewhere.

Over time, several hybrid methods have been developed for source-detector problems

[9; 13; 14; 32]. In this type of problem, the source and detector are separated far enough

that relatively few Monte Carlo particles can actually reach the detector. In order to decrease

the statistical error, a variance reduction technique called weight window was introduced.

The principle idea of the weight window technique is to keep the Monte Carlo particle’s

weight within a certain “window” by splitting and Russian roulette algorithms. By doing

this, a Monte Carlo particle’s weight can only fluctuate within the “window”, and this

will greatly decease the statistical error if the window is chosen properly. Historically,

users must design the window manually by trial and error. Recently, adjoint deterministic

fluxes (A3MCNP approach) [13; 32] have been used to automatically generate the weight

window. In source-detector problems, we mainly try to have better statistics at the “local”

detector regions. Recently, Cooper’s weight window method [6; 7; 8] utilized the forward

deterministic solution of the “Quasidiffusion” (QD) equation [12; 22; 23] to generate weight
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windows, which were then used to solve global deep-penetration transport problems with the

Monte Carlo method. At Oak Ridge National Laboratory (ORNL), the Forward-Weighted

Consistent Adjoint Driven Importance Sampling (FW-CADIS) method [24; 31] has been

developed for effective global variance reduction. In the FW-CADIS method, a forward

deterministic calculation is performed first. Then, the forward results are used to define

an adjoint source, which is then used in a deterministic adjoint calculation to generate

the adjoint importance function. Finally, the adjoint importance function is employed to

calculate weight windows to be used in a Monte Carlo simulation. The work was done

during the past five years at ORNL by John Wagner and his group. To date, Becker and

Larsen [2; 3] have developed hybrid user-specified particle distribution methods which

can be used to solve many types of shielding problems such as a single response classic

source-detector problem, or a global problem in which accurate estimates of the angular flux

are made in all of phase space. However, the work in this thesis departs from all the prior

work. Our work is not based on the weight window, nor is Monte Carlo used to directly

simulate the flux.

We propose a new hybrid method called the Functional Monte Carlo (FMC) method

to solve the slow convergence k-eigenvalue problem. The FMC method does not employ

standard Monte Carlo particle transport techniques to directly estimate the eigenfunction

and eigenvalue. Instead, the FMC method uses these techniques to directly estimate certain

nonlinear functionals, which depend only weakly on the eigenfunction. These estimated

functionals are then used to calculate the k-eigenfunction and eigenvalue. Because the

functionals depend only weakly on the eigenfunction, the resulting estimates of the k-

eigenfunction and eigenvalue are generally more accurate and have less statistical noise than

estimates obtained using conventional Monte Carlo methods.

The approach of using Monte Carlo to estimate a set of nonlinear functionals, and

solving a discrete algebraic set of low-order equations containing these functionals for the k-

eigenvalue and eigenfunction, has recently been considered by other authors [19; 20; 34; 33].
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In some of this prior work, the discrete low-order equations resemble spatially-discretized S2

equations [33]; in the rest, the low-order equations resemble discretized diffusion equations

[19; 20; 33]. Two of these papers treat 2-D, multigroup problems [19; 20]. The work in

[19; 20; 33] is based on the Coarse Mesh Finite Difference (CMFD) method, which has

been used for more than two decades to accelerate the iterative convergence of deterministic

high-order transport calculations for reactor physics problems [25; 5; 18; 26; 35]. The

CMFD approach consists of deriving from the (high-order) transport equation an algebraic

system of low-order equations obtained from the exact neutron balance equation, integrated

over a coarse spatial cell, together with an equation containing a discrete version of Fick’s

Law and a nonlinear functional D̂. (The functional D̂ is calculated from the high-order

transport equation; it accounts for the fact that Fick’s Law is not exact.) The resulting

low-order CMFD equations yield coarse-grid scalar fluxes, which are used to update the

fine-grid scalar fluxes in the high-order equation. In the Monte Carlo work using this

approach, the high-order transport calculations, previously performed deterministically, are

now performed with Monte Carlo [19; 20; 33]. Variations of this work include modifying

the nonlinear functional D̂, to try to make it less sensitive to statistical noise [33].

The basic approach in the CMFD-based Monte Carlo work and FMC is the same. The

differences occur in how the low-order equations are constructed; and in making these

choices, there are many logical possibilities. CMFD-based methods have used the standard

neutron balance equation, obtained by spatially integrating the angularly-integrated transport

equation over a coarse spatial cell. FMC methods have used higher spatial moments of

the angularly-integrated transport equation (involving spatial tent functions) and attempt to

minimize the effect of the terms involving the neutron current in the low-order equations.

(These terms have been seen to produce larger statistical fluctuations than desired in the

solutions of the low-order equations.)

The FMC method is related to the deterministic QD method, sometimes called the “Vari-

able Eddington Factor” method [12; 22; 23]. This iterative technique for eigenvalue (and
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fixed-source) problems does not employ “high-order” transport sweeps to directly estimate

the eigenfunction, but rather to directly estimate Eddington factors, which depend weakly

on the eigenfunction. The Eddington factors are then used in a “low-order” quasi-diffusion

eigenvalue problem to determine new estimates of the eigenvalue and eigenfunction. These

estimates are used to construct an updated fission source, which enables a new QD iteration

to begin. Because the Eddington factors generally depend weakly on the eigenfunction, the

QD iteration process usually converges rapidly.

The QD method is a deterministic approach for solving particle transport problems;

its converged estimates of the scalar flux have spatial and angular truncation errors. The

QD method can be implemented with Monte Carlo-estimated Eddington factors [12]; the

resulting scalar flux estimates have spatial truncation errors and statistical errors arising

from the Monte Carlo-estimated Eddington factors.

Like the QD method, the FMC method employs a “high-order” particle transport pro-

cess to estimate nonlinear functionals, which are then used in a “low-order” equation to

estimate the eigenfunction and eigenvalue (One FMC functional is closely-related to the QD

Eddington factor). Another similarity is that the QD and FMC eigenfunctions are estimated

on a preassigned spatial grid.

The FMC method differs from the QD method in the following ways: (i) the FMC

method uses Monte Carlo (rather than a deterministic method) to perform the high-order

calculations used to estimate the functionals; and (ii) the FMC method yields estimates of

the eigenfunction and eigenvalue that have no spatial truncation errors. The only errors in the

FMC estimates of the k-eigenfunction and eigenvalue are those arising from the statistical

errors in the Monte Carlo estimates of the functionals. In this sense, the FMC method is

a pure Monte Carlo method – although the use of a spatial grid could tempt one to think

otherwise.

In this dissertation, all analyses are restricted to 1-D planar geometry. Energy depen-

dence is first taken to be monoenergetic; then multigroup; and finally, continuous energy.
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There appears to be no fundamental obstacle to extending the FMC method to 3-D problems.

(This will be discussed later.) The remaining chapters of this thesis are organized as follows.

Chapter 2: The FMC method for Mono-energetic k-eigenvalue Problems

In this chapter, we first discuss the relationship between the new functional Monte

Carlo method, the previous QD method [12], and Cooper’s work [6; 7; 8]. We then present

the mathematical theory of the FMC method [17; 16] for a monoenergetic k-eigenvalue

problem. We motivate the use of the tent function for the FMC method. A procedure to

generate low-order equations with material discontinuity within a cell is presented. Finally,

we give a brief overview of the Monte Carlo tallies, and the FMC feedback technique used

in this thesis.

Chapter 3: Monoenergetic k-Eigenvalue Problems: Numerical Results

In this chapter, we compare the FMC and standard MC numerical simulations of

k-eigenfunctions and eigenvalues for four mono-energetic problems (including a 1-D full

PWR reactor core). We find that the FMC method significantly reduces the “tilting” that

is often seen in simulations of systems containing one large fissile region, or in systems

with tightly-coupled fissile regions (e.g. nuclear reactor cores). For these problems, FMC

estimates of the k-eigenfunctions and eigenvalues are significantly more accurate than those

obtained using standard Monte Carlo methods. Problems involving weakly-coupled fissile

regions (e.g. storage tanks for spent fuel rods) are inherently more difficult, because the

eigenfunctions for these problems can be highly sensitive to small perturbations. For such

problems, the FMC estimates of the eigenfunction have larger variations from one cycle

to the next than standard Monte Carlo estimates. Nonetheless, our numerical simulations

indicate that the FMC estimate of the eigenvalue and eigenfunction are more accurate than

standard Monte Carlo estimates. We further compare the Shannon entropy behavior of the

fission source for the problems with FMC feedback and without FMC feedback.
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Chapter 4: The FMC method for Multigroup Energy k-eigenvalue Problems

In this chapter, we extend the one-group FMC method derived in Chapter 2 to multi-

group k-eigenvalue problems. We follow the same basic procedure in developing the

multigroup FMC method as was used for monoenergetic problems, but now there is addi-

tional complexity because of the occurrence of between-group scattering processes. We

successfully tested the multigroup FMC method on a homogeneous slab problem. We did

not further develop and test the multigroup FMC method, because it is a straightforward

extension of the monoenergetic FMC method.

Chapter 5: The FMC method for Continuous Energy k-Eigenvalue Problems

In this chapter, we extend the FMC method to planar geometry continuous-energy

k-eigenvalue problems [37; 38]. This is an important step, because energy-varying

cross-sections are necessary for practical applications. In the formulation given here, energy-

integrated or multigroup nonlinear functionals are estimated using the standard Monte

Carlo method. These functionals are then used in multigroup, low-order FMC equations

to estimate the eigenvalue and eigenfunctions. Here the tent functions are defined on the

original spatial grid; initially there is only one kind of material in each spatial cell and the

scalar fluxes are averaged on a staggered grid. Later, we generalize the method to: (1)

accommodate any number of materials within one coarse spatial cell; (2) define the tent

functions on a staggered grid; and (3) obtain the averaged scalar fluxes on the original spatial

grid. To accommodate the continuous-energy feature, we introduce a U-function into the

calculation. The U-function satisfies an adjoint equation. We also give a detailed procedure

to solve for U-function for both the energy-independent case and the multigroup case.
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Chapter 6: Continuous Energy k-Eigenvalue Problems: Numerical Results

In this chapter, we compare the FMC and standard MC numerical simulations of

k-eigenfunctions and eigenvalues for two representative problems. Again, FMC estimates of

the k-eigenfunctions and eigenvalues are shown to be significantly more accurate than those

obtained using standard Monte Carlo methods. We further compare the Shannon entropy for

the standard Monte Carlo calculation and the FMC calculation. Finally, we compare the

true variance and apparent variance for the Monte Carlo simulation with and without FMC

feedback.

Chapter 7: Conclusions and Future Work

We conclude with a summary of the numerical results, and then outline our future work

to extend the FMC method to 3-D problems with a more realistic continuous energy library.
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Chapter 2

The FMC method for 1-D
Monoenergetic k-Eigenvalue Problems

In this chapter, we first discuss the mathematical basis for the Functional Monte Carlo

(FMC) method. We then present the mathematical theory of the FMC method for a monoen-

ergetic k-eigenvalue problem. We motivate the use of the tent function for the FMC method.

A procedure to generate low-order equations with material discontinuity within a cell is

presented. Finally, we give a brief overview of the Monte Carlo tallies used in this thesis.

2.1 Mathematical Basis for the Functional Monte Carlo
Method

Motivated by Cooper’s work on global Monte Carlo simulations for deep penetration

problems [6; 7; 8], we decided to investigate the quasidiffusion (QD) method as the first step

in a hybrid technique for eigenvalue problems. To describe the QD method, we consider for

simplicity a slab-geometry monoenergetic problem with isotropic scattering:

µ
∂ψ

∂x
(x,µ)+Σt(x)ψ(x,µ) =

1
2

(
Σs(x)+

νΣ f (x)
k

)∫ 1

−1
ψ(x,µ

′)dµ
′ , 0 < x < X , (2.1a)

ψ(0,µ) = 0 , 0 < µ ≤ 1 , (2.1b)

ψ(X ,µ) = 0 , −1≤ µ < 0 . (2.1c)
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We define the angular flux moments as

φm(x) =
∫ 1

−1
µ

m
ψ(x,µ)dµ , m = 0,1,2 . (2.2)

Operating on Eq. (2.1a) by

∫ 1

−1
µ

m(·)dµ , m = 0,1 ,

we obtain:

dφ1

dx
(x)+Σa(x)φ0(x) =

νΣ f (x)
k

φ0(x) , (2.3a)

dφ2

dx
(x)+Σt(x)φ1(x) = 0 . (2.3b)

Eq. (2.3b) gives:

φ1(x) =− 1
Σt(x)

dφ2

dx
(x) . (2.4)

Introducing this into Eq. (2.3a), we obtain:

− d
dx

1
Σt(x)

dφ2

dx
(x)+Σa(x)φ0(x) =

νΣ f (x)
k

φ0(x) , 0 < x < X . (2.5a)

Next, operating on Eq. (2.1b) by
∫ 1

0 2µ(·)dµ and using Eqs. (2.2) and (2.4), we obtain:

0 =
∫ 1

0
2µψ(0,µ)dµ

=
∫ 1

−1
µψ(0,µ)dµ +

∫ 1

−1
|µ|ψ(0,µ)dµ

= φ1(0)+
∫ 1

−1
|µ|ψ(0,µ)dµ

=− 1
Σt(0)

dφ2

dx
(0)+

∫ 1

−1
|µ|ψ(0,µ)dµ . (2.5b)

Similarly, operating on Eq. (2.1c) by
∫ 0
−1 2|µ|(·)dµ and using Eqs. (2.2) and (2.4), we
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obtain:

0 =
∫ 0

−1
2|µ|ψ(X ,µ)dµ

=−
∫ 1

−1
µψ(X ,µ)dµ +

∫ 1

−1
|µ|ψ(X ,µ)dµ

=−φ1(X)+
∫ 1

−1
|µ|ψ(X ,µ)dµ

=
1

Σt(X)
dφ2

dx
(X)+

∫ 1

−1
|µ|ψ(X ,µ)dµ . (2.5c)

The Eddington factor is defined as:

E(x) =
φ2(x)
φ0(x)

=
∫ 1
−1 µ2ψ(x,µ)dµ∫ 1
−1 ψ(x,µ)dµ

= 〈µ2〉(x) , 0≤ x≤ X , (2.6a)

and the boundary Eddington factors are defined as:

B(x) =
∫ 1
−1 |µ|ψ(x,µ)dµ∫ 1
−1 ψ(x,µ)dµ

= 〈|µ|〉(x) , x = 0,X . (2.6b)

From Eqs. (2.6), we obtain:

φ2(x) = E(x)φ0(x) ,

and ∫ 1

−1
|µ|ψ(x,µ)dµ = B(x)φ0(x) .
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We may then write Eqs. (2.5) as the following quasidiffusion problem:

− d
dx

1
Σt(x)

d
dx

E(x)φ0(x)+Σa(x)φ0(x) =
νΣ f (x)

k
φ0(x) , 0 < x < X , (2.7a)

0 = B(0)φ0(0)− 1
Σt(0)

dEφ0

dx
(0) , (2.7b)

0 = B(X)φ0(X)+
1

Σt(X)
dEφ0

dx
(X) . (2.7c)

The Quasidiffusion method employs the following iteration scheme:

1. Starting with estimates φ n(x) and kn, an updated angular flux ψ(n+1/2)(x,µ) is obtained

by solving the “high-order” transport problem:

µ
∂ψ(n+1/2)

∂x
(x,µ)+Σt(x)ψ(n+1/2)(x,µ)

=
1
2

(
Σs(x)+

νΣ f (x)
k(n)

)
φ

(n)(x) , 0 < x < X , (2.8a)

ψ
(n+1/2)(0,µ) = 0 , 0 < µ ≤ 1 , (2.8b)

ψ
(n+1/2)(X ,µ) = 0 , −1≤ µ < 0 . (2.8c)

2. The updated angular flux ψ(n+1/2)(x,µ) is then used to estimate the Eddington factors:

E(n+1/2)(x) =
∫ 1
−1 µ2ψ(n+1/2)(x,µ)dµ∫ 1
−1 ψ(n+1/2)(x,µ)dµ

, 0 < x < X , (2.9a)

B(n+1/2)(x) =
∫ 1
−1 |µ|ψ(n+1/2)(x,µ)dµ∫ 1
−1 ψ(n+1/2)(x,µ)dµ

, x = 0,X . (2.9b)

3. The following “low-order” quasidiffusion problem is solved for the new eigenfunction
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and eigenvalue estimates φ (n+1)(x) and k(n+1).

− d
dx

1
Σt(x)

d
dx

E(n+1/2)(x)φ (n+1)(x)+Σa(x)φ (n+1)(x)

=
νΣ f (x)
k(n+1) φ

(n+1)(x) , 0 < x < X , (2.10a)

0 = B(n+1/2)(0)φ (n+1)(0)− 1
Σt(0)

dE(n+1/2)φ (n+1)

dx
(0) , (2.10b)

0 = B(n+1/2)(X)φ (n+1)(X)− 1
Σt(X)

dE(n+1/2)φ (n+1)

dx
(X) . (2.10c)

Eqs. (2.8)–(2.10) have been solved previously using deterministic methods [1; 12]. With

Cooper’s work in mind, we develop a hybrid technique for eigenvalue problems by: (i) using

the Monte Carlo method to solve Eqs. (2.8) for ψ(n+1/2) and Eqs. (2.9) for E(n+1/2) and

B(n+1/2), and (ii) using a standard cell-average discretization to solve a discretized form of

Eqs. (2.10). We describe this hybrid technique as the Monte Carlo quasidiffusion method

(MCQD).

To accomplish this, we assume a spatial grid of J cells with cell-edges

0 = x1/2 < x3/2 < .. . < x j−1/2 < x j+1/2 < .. .xJ+1/2 = X . (2.11)

The jth spatial cell is x j−1/2 < x < x j+1/2, with width h j = x j+1/2−x j−1/2. We assume that

within each jth cell, the cross sections are constant.

At the beginning of the (n+1)st iteration, φ (n)(x) and k(n) are known from having solved

a cell-averaged discretization of Eqs. (2.10) in the previous iteration. We use Monte Carlo to

simulate Eqs. (2.8) and determine ψ(n+1/2)(x,µ). The results of this Monte Carlo simulation

are used to estimate the integrals in Eqs. (2.6), and these are used to estimate the Eddington

18



factors in Eqs. (2.9), e.g.

E(n+1/2)
j =

∫ 1
−1
∫ x j+1/2

x j−1/2 µ2ψ(n+1/2)(x,µ)dxdµ∫ 1
−1
∫ x j+1/2

x j−1/2 ψ(n+1/2)(x,µ)dxdµ
, 1≤ j ≤ J , (2.12a)

B(n+1/2)
1/2 =

∫ 1
−1 |µ|ψ(n+1/2)(0,µ)dµ∫ 1
−1 ψ(n+1/2)(0,µ)dµ

, (2.12b)

B(n+1/2)
J+1/2 =

∫ 1
−1 |µ|ψ(n+1/2)(X ,µ)dµ∫ 1
−1 ψ(n+1/2)(X ,µ)dµ

. (2.12c)

Finally, these Monte Carlo-generated Eddington factors are used in the standard cell-average

discretization of Eqs. (2.10) on the grid defined by Eqs. (2.11). For the first ( j = 1) spatial

cell, we find:

−2

(
E(n+1/2)

2 φ
(n+1)
2 −E(n+1/2)

1 φ
(n+1)
1

Σt2h2 +Σt1h1

)
+

 B(n+1/2)
1/2 E(n+1/2)

1

E(n+1/2)
1/2 + Σt,1h1

2 B(n+1/2)
1/2

φ
(n+1)
1

+Σa,1h1φ
(n+1)
1 =

1
k(n+1) νΣ f 1h1φ

(n+1)
1 ; (2.13a)

for the interior (2≤ j ≤ J−1) spatial cells:

−2

E(n+1/2)
j+1 φ

(n+1)
j+1 −E(n+1/2)

j φ
(n+1)
j

Σt, j+1h j+1 +Σt, jh j

+2

E(n+1/2)
j φ

(n+1)
j −E(n+1/2)

j−1 φ
(n+1)
j−1

Σt, jh j +Σt, j−1h j−1


+Σa, jh jφ

(n+1)
j =

1
k(n+1) νΣ f , jh jφ

(n+1)
j ;

(2.13b)

and for the last ( j = J) spatial cell:

 B(n+1/2)
J+1/2 E(n+1/2)

J

E(n+1/2)
J+1/2 + Σt,JhJ

2 B(n+1/2)
J+1/2

φ
(n+1)
J +2

(
E(n+1/2)

J φ
(n+1)
J −E(n+1/2)

J−1 φ
(n+1)
J−1

Σt,JhJ +Σt,J−1hJ−1

)

+Σa,JhJφ
(n+1)
J =

1
k(n+1) νΣ f ,JhJφ

(n+1)
J . (2.13c)

In Cooper’s work [7] for deep shielding calculations, it was found that Monte Carlo
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estimates of the Eddington factors Eqs. (2.6) are much more accurate and stable than the

Monte Carlo estimates of φ . The reason for this is that the estimates of the Eddington

factors depend only on the angular shape of the Monte Carlo estimate of ψ and not on its

amplitude. We reasoned that for difficult eigenvalue problems, Monte Carlo could yield

accurate Eddington factors, even if it could not yield accurate eigenfunctions, and that these

Eddington factors could be used in Eqs. (2.13) to yield accurate estimates of φ and k.

The MCQD method described above has spatial truncation errors, because of the errors

that occur in approximating Eqs. (2.10) by the discrete Eqs. (2.13). We may then inquire: is

it possible to formulate equations of the general form of the QD equations above, but which

have no truncation errors? If so, these equations could be adapted for use in Monte Carlo

simulations by employing nonlinear functionals as in the QD method. One would then have

a finite set of equations having the general form of a MCQD equation, but which in fact con-

stitute a pure Monte Carlo method having only statistical errors that occur in the estimates

of nonlinear functionals. The affirmative answer to this question is the newly-developed

Functional Monte Carlo (FMC) method, which we describe next.

2.2 Analytical Formulation of the Functional Monte Carlo
Method for the Monoenergetic k-Eigenvalue Problem

Here we consider a standard planar-geometry, monoenergetic k-eigenvalue problem

with anisotropic scattering and vacuum boundaries:

µ
∂ψ

∂x
(x,µ)+Σt(x)ψ(x,µ)−

∫ 1

−1
Σs(x,µ,µ

′)ψ(x,µ
′)dµ

′

=
νΣ f (x)

2k

∫ 1

−1
ψ(x,µ

′)dµ
′ , 0 < x < X , (2.14a)

ψ(0,µ) = 0 , 0 < µ ≤ 1 , (2.14b)

ψ(X ,µ) = 0 , −1≤ µ < 0 , (2.14c)
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where:

Σs(x,µ,µ
′) =

∞

∑
n=0

2n+1
2

Σsn(x)Pn(µ)Pn(µ
′) . (2.15)

Eqs. (2.14) are the “high-order” transport equations for ψ(x,µ) and k. The “low-order”

FMC equations are derived by the following procedure:

1. First, we construct specified angular moments of Eqs. (2.14). Specifically, we take

the zero-th and first angular moments of Eq. (2.14a), multiply Eqs. (2.14b) and

(2.14c) by µ , and integrate over the incident directions. No approximations are made

in performing these operations, and the exact solution of Eqs. (2.14) satisfies the

angularly-integrated equations. This step duplicates the first step of deriving the

low-order QD equations.

2. Next, with the spatial grid of J cells from Eq. (2.11), we define J +1 “tent” functions

on this grid [see Eqs. (2.21) and (2.22)]. Using the tent functions, we construct certain

spatial moments of the angularly-integrated equations obtained in Step 1. Again, no

approximations are made in performing these operations, and the exact solution of

Eqs. (2.14) satisfies these spatially- and angularly-integrated equations. This step is

not part of the QD method.

3. Introducing no approximations, we manipulate the spatially- and angularly-integrated

equations from Step 2 to obtain a discrete system of “low-order” FMC equations,

containing (i) nonlinear functionals of the exact solution, and (ii) spatial moments of

the scalar flux around each of the J + 1 grid points. Again, no approximations are

made in performing these operations. If the nonlinear functionals are known exactly,

the discrete system yields exactly (i) the spatial moments of the scalar flux around

each of the J +1 grid points, and (ii) the k-eigenvalue.

After deriving the low-order FMC equations, the Monte Carlo simulation of Eqs. (2.14)

can proceed. In this standard Monte Carlo simulation, the user specifies the number of

Monte Carlo particles per generation, the simulation begins with a crude (flat) estimate of

the fission source, “inactive” cycles (generations) are performed to converge the fission
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source, and then “active” cycles (generations) are performed to estimate the eigenfunction

and k. All of these operations are performed using conventional Monte Carlo procedures.

However, while performing these standard Monte Carlo simulations, information from

the Monte Carlo particle histories is used to generate estimates of the scalar flux φ (the

eigenfunction), and of the nonlinear functionals in the low-order FMC equations. More

specifically: for each active generation, we calculate new estimates of the FMC functionals,

using the new data generated from the Monte Carlo histories processed during that genera-

tion. At the end of each generation, after all the “fission” Monte Carlo particles have been

processed, the FMC functionals are calculated and the discrete low-order FMC equations

are solved. This yields the FMC estimates of the k-eigenfunction and k-eigenvalue for that

generation. The process is repeated for each active generation. After a specified number of

active generations, the mean value and standard deviation of the (standard Monte Carlo and

FMC) generation-wise eigenvalues and eigenfunctions are calculated in the usual way.

We pursue two different approaches: (1) the Monte Carlo simulation of Eqs. (2.14)

proceeds independently of the results of the FMC calculations. The FMC calculations are

performed using information extracted from the conventional Monte Carlo particle histories,

but none of this new information impacts the Monte Carlo simulation of Eqs. (2.14). The

purpose of this approach is to describe the FMC method and show that even with a tilted

or otherwise poorly-represented Monte Carlo fission source, this method is much more

accurate than standard Monte Carlo. (2) A more sophisticated approach is the Monte Carlo

simulation with FMC “feedback”, i.e. use the (generally more accurate) estimate of the

fission source from the low-order FMC calculations to modify the Monte Carlo fission

source for the next generation.

Because the FMC functionals are weakly-dependent on the angular flux ψ , the Monte

Carlo estimates of these functionals are less statistically noisy than those of φ , and the FMC

estimates of the eigenvalue and eigenfunction generally have a smaller variance than the

standard estimates. Also, because both the standard Monte Carlo and the FMC methods
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have only statistical errors, in the limit of an infinite number of Monte Carlo particles per

generation and an infinite number of generations, both methods will converge to the exact

eigenvalue and eigenfunction.

We now begin the derivation of the low-order FMC equations. Following Step 1

described above, we take specific angular moments by operating on Eq. (2.14a) with∫ 1
−1 µn(·)dµ for n = 0 and 1. Defining:

φn(x) =
∫ 1

−1
µ

n
ψ(x,µ)dµ , (2.16a)

Σa(x) = Σt(x)−Σs0(x) , (2.16b)

Σtr(x) = Σt(x)−Σs1(x) , (2.16c)

we obtain:

dφ1

dx
(x)+Σa(x)φ0(x) =

νΣ f (x)
k

φ0(x) , (2.17a)

dφ2

dx
(x)+Σtr(x)φ1(x) = 0 . (2.17b)

Next, operating on Eq. (2.14b) by
∫ 1

0 2µ(·)dµ and on Eq. (2.1c) by
∫ 0
−1 2µ(·)dµ , we get:

0 = φ1(0)+
∫ 1

−1
|µ|ψ(0,µ)dµ , (2.18a)

0 = φ1(X)−
∫ 1

−1
|µ|ψ(X ,µ)dµ . (2.18b)

Solving Eq. (2.17b) for φ1(x):

φ1(x) =− 1
Σtr(x)

dφ2

dx
(x) . (2.19)
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Using Eq. (2.19) to eliminate φ1 from Eqs. (2.17a) and (2.18), we obtain:

− d
dx

1
Σtr(x)

dφ2

dx
(x)+Σa(x)φ0(x) =

νΣ f (x)
k

φ0(x) , (2.20a)

1
Σtr(0)

dφ2

dx
(0) =

∫ 1

−1
|µ|ψ(0,µ)dµ , (2.20b)

1
Σtr(X)

dφ2

dx
(X) =−

∫ 1

−1
|µ|ψ(X ,µ)dµ . (2.20c)

Eqs. (2.20) are exactly satisfied by the solution of Eqs. (2.14). This completes Step 1 of the

derivation of the FMC equations.

Next we perform Step 2 described above. We prescribe a spatial grid consisting of J +1

points x j+1/2 satisfying 0 = x1/2 < x3/2 < · · ·< x j−1/2 < x j+1/2 < · · ·< xJ−1/2 < xJ+1/2 = X .

The jth spatial cell consists of the interval x j−1/2 < x < x j+1/2; the width of this cell is

h j = x j+1/2− x j−1/2. Within each jth spatial cell, the cross sections are assumed to be

constant and are written as Σtr(x) = Σtr, j, Σa(x) = Σa, j, and νΣ f (x) = νΣ f , j. Later, we will

discuss problems in which the cross sections are discontinuous within spatial cells.

For each grid point x j+1/2 we define the functions f (x) = f j+1/2(x). For 0≤ j ≤ J−1,

we let:

f +
j+1/2(x) =


1

h j+1
(x j+3/2− x) , 0 = x j+1/2 < x < x j+3/2

0 , otherwise .

(2.21a)

For 1≤ j ≤ J, we let:

f−j+1/2(x) =


1
h j

(x− x j−1/2) , 0 = x j−1/2 < x < x j+1/2

0 , otherwise .

(2.21b)
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Figure 2.1 The functions f +
j+1/2(x).

1.0

  0 = x1/ 2   x3/ 2   
x j−1/ 2   

x j+1/ 2   
x j+3/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f3/ 2 (x)
  
f j+1/ 2 (x)

  fJ +1/ 2 (x)

 x

___

Figure 2.2 The functions f−j+1/2(x).

Then we define the ”tent” functions f j+1/2(x) by:

f j+1/2 =


f +

j+1/2(x) , j = 0

f +
j+1/2(x)+ f−j+1/2(x) , 1≤ j ≤ J−1

f−j+1/2(x) , j = J .

(2.22)
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Since for 1≤ j ≤ J,

f +
j−1/2(x)+ f−j+1/2(x) =


1 , x j−1/2 ≤ x≤ x j+1/2 ,

0 , otherwise ,

the tent functions satisfy the condition:

J

∑
j=1

f j+1/2(x) = 1 ,0≤ x≤ X . (2.23)

1.0

  0 = x1/ 2   x3/ 2   
x j−1/ 2   

x j+1/ 2   
x j+3/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1/ 2 (x)
  
f j+1/ 2 (x)

  fJ +1/ 2 (x)

 x

Figure 2.3 The tent functions.

Next, we multiply Eq. (2.20a) by f j+1/2(x) and integrate over 0≤ x≤ X . For j = 0 we

obtain:

−
∫ x3/2

x1/2

f1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ x3/2

x1/2

f1/2(x)Σa(x)φ0(x)dx

=
1
k

∫ x3/2

x1/2

f1/2(x)νΣ f (x)φ0(x)dx .
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Integrating the first term by parts and using Eq. (2.20b), we get:

∫ x3/2

x1/2

f1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

= f1/2(x)
1

Σtr,1

dφ2

dx
(x)
∣∣∣x3/2

x1/2
−
∫ x3/2

x1/2

d f1/2

dx
(x)

1
Σtr,1

dφ2

dx
(x)dx

=− 1
Σtr,1

dφ2

dx
(0)+

1
Σtr,1h1

∫ x3/2

x1/2

dφ2

dx
(x)dx

=−
∫ 1

−1
|µ|ψ(x1/2,µ)dµ +

1
Σtr,1h1

[
φ2(x3/2)−φ2(x1/2)

]
.

Thus, the preceding equation can be written:

∫ 1

−1
|µ|ψ(x1/2,µ)dµ− 1

Σtr,1h1

[
φ2(x3/2)−φ2(x1/2)

]
+
∫ x3/2

x1/2

f1/2(x)Σa,1φ0(x)dx =
1
k

∫ x3/2

x1/2

f1/2(x)νΣ f ,1φ0(x)dx . (2.24a)

For 1≤ j ≤ J−1, we obtain:

−
∫ x j+3/2

x j−1/2

f j+1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ x j+3/2

x j−1/2

f j+1/2(x)Σa(x)φ0(x)dx

=
1
k

∫ x j+3/2

x j−1/2

f j+1/2(x)νΣ f (x)φ0(x)dx .

Integrating the first term by parts, we get:

∫ x j+3/2

x j−1/2

f j+1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

=−
∫ x j+3/2

x j−1/2

d f j+1/2

dx
(x)

1
Σtr(x)

dφ2

dx
(x)dx

=−
∫ x j+1/2

x j−1/2

1
h jΣtr, j

dφ2

dx
(x)dx+

∫ x j+3/2

x j+1/2

1
h j+1Σtr, j+1

dφ2

dx
(x)dx

=
1

Σtr, j+1h j+1

[
φ2(x j+3/2)−φ2(x j+1/2)

]
− 1

Σtr, jh j

[
φ2(x j+1/2)−φ2(x j−1/2)

]
.
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Thus, the preceding equation can be written:

− 1
Σtr, j+1h j+1

[
φ2(x j+3/2)−φ2(x j+1/2)

]
+

1
Σtr, jh j

[
φ2(x j+1/2)−φ2(x j−1/2)

]
+
∫ x j+3/2

x j−1/2

f j+1/2(x)Σa(x)φ0(x)dx =
1
k

∫ x j+3/2

x j−1/2

f j+1/2(x)νΣ f (x)φ0(x)dx . (2.24b)

For j = J we follow similar steps as for j = 0 and get:

∫ 1

−1
|µ|ψ(xJ+1/2,µ)dµ +

1
Σtr,JhJ

[
φ2(xJ+1/2)−φ2(xJ−1/2)

]
+
∫ xJ+1/2

xJ−1/2

fJ+1/2(x)Σa,Jφ0(x)dx =
1
k

∫ xJ+1/2

xJ−1/2

fJ+1/2(x)νΣ f ,Jφ0(x)dx . (2.24c)

Eqs. (2.24) are a system of J + 1 discrete equations, which are exactly satisfied by the

solution ψ(x,µ) and k of Eqs. (2.14). This completes Step 2 of the derivation of the FMC

equations.

Next we perform Step 3 described above. For each 0≤ j ≤ J, we introduce new func-

tions g j+1/2(x) that are nonzero only where f j+1/2(x) are nonzero. These functions are not

uniquely defined; there is considerable flexibility in choosing them. We use two definitions

of g j+1/2(x). First, we use a “delta-function” definition:

g j+1/2(x) = δ (x− x j+1/2) , 0≤ j ≤ J . (2.25)

We also use a “histogram” definition. With x j = (x j+1/2 + x j−1/2)/2 = midpoint of the jth

spatial cell, we define: for j = 0,

g1/2(x) =


2
h1

, x1/2 ≤ x≤ x1 ,

0 , otherwise ,

(2.26a)
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for 1≤ j ≤ J−1,

g j+1/2(x) =


2

h j+h j+1
, x j ≤ x≤ x j+1 ,

0 , otherwise ,

(2.26b)

and for j = J,

gJ+1/2(x) =


2
hJ

, xJ ≤ x≤ xJ+1/2 ,

0 , otherwise .

(2.26c)

Other definitions of g j+1/2 are possible; for example, g j+1/2 = f j+1/2. However, these will

not be considered in this dissertation.

For 0≤ j ≤ J, we define:

Φ j+1/2 =
∫ x j+3/2

x j−1/2

g j+1/2(x)φ0(x)dx , (2.27)

where φ0(x) is the scalar flux, x−1/2 = x1/2 = 0, and xJ+3/2 = xJ+1/2 = X . The quantities

Φ j+1/2 will be the “flux” unknowns in the low-order FMC equations. If Eq. (2.25) is used

to define g j+1/2(x), then for 0≤ j ≤ J,

Φ j+1/2 = φ0(x j+1/2)

= pointwise (cell-edge) scalar flux at x j+1/2 .

If Eqs. (2.26) are used to define g j+1/2(x), then for 1≤ j ≤ J−1,

Φ j+1/2 =
2

h j +h j+1

∫ x j+1

x j

φ0(x)dx

= scalar flux averaged between the midpoints of the jth and ( j +1)st cells.

In the remainder of this dissertation we refer to the Φ j+1/2 obtained using g j+1/2 defined by

Eq. (2.25) as the edge unknowns, and to the Φ j+1/2 obtained using g j+1/2 defined by Eq.

(2.26) as the average unknowns.
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To proceed, we multiply and divide each of the terms in Eqs. (2.24) by a suitable Φ j+1/2

to obtain the following equivalent system of J +1 equations:

[∫ 1
−1 |µ|ψ(x1/2,µ)dµ

Φ1/2
+

1
Σtr,1h1

φ2(x1/2)
Φ1/2

+

∫ x3/2
x1/2 f1/2(x)Σa,1φ0(x)dx

Φ1/2

]
Φ1/2

−

[
1

Σtr,1h1

φ2(x3/2)
Φ3/2

]
Φ3/2 =

1
k

[∫ x3/2
x1/2 f1/2(x)νΣ f ,1φ0(x)dx

Φ1/2

]
Φ1/2 , (2.28a)

[(
1

Σtr, j+1h j+1
+

1
Σtr, jh j

)
φ2(x j+1/2)

Φ j+1/2
+

∫ x j+3/2
x j−1/2 f j+1/2(x)Σa(x)φ0(x)dx

Φ j+1/2

]
Φ j+1/2

−

[
1

Σtr, jh j

φ2(x j−1/2)
Φ j−1/2

]
Φ j−1/2−

[
1

Σtr, j+1h j+1

φ2(x j+3/2)
Φ j+3/2

]
Φ j+3/2

=
1
k

[∫ x j+3/2
x j−1/2 f j+1/2(x)νΣ f (x)φ0(x)dx

Φ j+1/2

]
Φ j+1/2 , 1≤ j ≤ J−1 , (2.28b)

[∫ 1
−1 |µ|ψ(xJ+1/2,µ)dµ

ΦJ+1/2
+

1
Σtr,JhJ

φ2(xJ+1/2)
ΦJ+1/2

+

∫ xJ+1/2
xJ−1/2 fJ+1/2(x)Σa,Jφ0(x)dx

ΦJ+1/2

]
ΦJ+1/2

−

[
1

Σtr,JhJ

φ2(xJ−1/2)
ΦJ−1/2

]
ΦJ−1/2 =

1
k

[∫ xJ+1/2
xJ−1/2 fJ+1/2(x)νΣ f ,Jφ0(x)dx

ΦJ+1/2

]
ΦJ+1/2 . (2.28c)
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Equivalently, if we define the following nonlinear functionals of ψ:

B1/2 =

∫ 1
−1 |µ|ψ(x1/2,µ)dµ∫ x3/2

x1/2

∫ 1
−1 g1/2(x)ψ(x,µ)dµdx

, (2.29a)

BJ+1/2 =

∫ 1
−1 |µ|ψ(xJ+1/2,µ)dµ∫ xJ+1/2

xJ−1/2

∫ 1
−1 gJ+1/2(x)ψ(x,µ)dµdx

, (2.29b)

E j+1/2 =

∫ 1
−1 µ2ψ(x j+1/2,µ)dµ∫ x j+3/2

x j−1/2

∫ 1
−1 g j+1/2(x)ψ(x,µ)dµdx

, (2.29c)

A j+1/2 =

∫ x j+3/2
x j−1/2 f j+1/2(x)Σa(x)φ0(x)dx∫ x j+3/2

x j−1/2 g j+1/2(x)φ0(x)dx
, (2.29d)

Fj+1/2 =

∫ x j+3/2
x j−1/2 f j+1/2(x)νΣ f (x)φ0(x)dx∫ x j+3/2

x j−1/2 g j+1/2(x)φ0(x)dx
, (2.29e)

then Eqs. (2.28) can be written more compactly as:

[
B1/2 +

1
Σtr,1h1

E1/2 +A1/2

]
Φ1/2−

[
1

Σtr,1h1
E3/2

]
Φ3/2

=
1
k

[
F1/2

]
Φ1/2 , (2.30a)

[(
1

Σtr, jh j
+

1
Σtr, j+1h j+1

)
E j+1/2 +A j+1/2

]
Φ j+1/2−

[
1

Σtr, jh j
E j−1/2

]
Φ j−1/2

−
[

1
Σtr, j+1h j+1

E j+3/2

]
Φ j+3/2 =

1
k

[
Fj+1/2

]
Φ j+1/2 , 1≤ j ≤ J−1 , (2.30b)

[
BJ+1/2 +

1
Σtr,JhJ

EJ+1/2 +AJ+1/2

]
ΦJ+1/2−

[
1

Σtr,JhJ
EJ−1/2

]
ΦJ−1/2

=
1
k

[
FJ+1/2

]
ΦJ+1/2 . (2.30c)

Eqs. (2.29) and (2.30) are exactly satisfied by solution ψ(x,µ) and k of Eqs. (2.14). However,

the following is also true: if the functionals in Eqs. (2.29) are evaluated using the exact

eigenfunction ψ(x,µ), and Eqs. (2.30) are then solved for Φ j+1/2 and k, then the resulting
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Φ j+1/2 and k are exact, i.e. k is the exact eigenvalue, and Φ j+1/2 are the exact appropriate

space-angle moments of ψ . We remark that the QD method has “boundary” and “Eddington

factor” functionals Eqs. (2.9) that are closely related to the B and E functionals in Eqs.

(2.29).

To summarize the FMC procedure used here: Eqs. (2.14) are simulated using the stan-

dard Monte Carlo method of processing fission particles from one cycle to the next. The

standard Monte Carlo k-eigenvalue is estimated for each cycle, and the final (standard

Monte Carlo) estimate of k is obtained by averaging k over all active cycles. During this

process, additional information is processed and stored beyond what is needed to perform

the standard simulation. Specifically, Monte Carlo estimates of each of the integrals in

the numerators and denominators of Eqs. (2.29) are obtained. At the end of each active

cycle, the functionals in Eqs. (2.29) are calculated and Eqs. (2.30) are solved to obtain the

FMC cycle-wise estimates of Φ j+1/2 and k. After the active cycles are completed, the FMC

eigenvalues and eigenfunctions are averaged over the active cycles to obtain the final FMC

estimates of k and φ .

Remarks

1. The FMC method is based on two assumptions:

(a) The functionals in Eqs. (2.29) depend weakly on ψ and can be evaluated with

Monte Carlo more accurately than direct Monte Carlo estimates of φ0.

(b) If Eqs. (2.30) are solved with small errors in the functionals, the resulting errors

in Φ j+1/2 and k will be small.

To argue the first point, we note that the functionals in Eqs. (2.29) are all local,

e.g. E j+1/2 depends on estimates of ψ only in the jthand ( j +1)th spatial cells. Also,

these functionals depend only on low-order spatial and angular moments of ψ , and

because of their nonlinear character, they are only weakly-dependent on the amplitude

of ψ . Therefore, if a Monte Carlo estimate of ψ yield a poor estimate of the ampli-
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tude but a reasonably good estimate of the spatial and angular shape of ψ , then the

functionals in Eqs. (2.29) should be evaluated accurately.

To argue the second point, if we use the crude estimate of ψ:

ψ(x,µ)≈
φ0, j+1/2

2
, x j−1/2 < x < x j+1/2

in Eqs. (2.29), we obtain:

B1/2 = BJ+1/2 =
1
2

, (2.31a)

E j+1/2 =
1
3

, (2.31b)

A j+1/2 =



1
2Σa,1h1 , j = 0

1
2

(
Σa, jh j +Σa, j+1h j+1

)
, 1≤ j ≤ J−1

1
2Σa,JhJ , j = J ,

(2.31c)

Fj+1/2 =



1
2νΣ f ,1h1 , j = 0

1
2

(
νΣ f , jh j +νΣ f , j+1h j+1

)
, 1≤ j ≤ J−1

1
2νΣ f ,JhJ , j = J .

(2.31d)

When these functional values – all of which are independent of φ0, j+1/2 – are intro-

duced into Eqs. (2.29), we obtain the standard cell-edge diffusion discretization of the

diffusion approximation to Eqs. (2.14).

Thus, the discrete system of Eqs. (2.29) is closely related to the classic diffu-

sion approximation to Eqs. (2.14). If the underlying physical transport problem has

eigenfunctions and eigenvalues that are weakly-sensitive to small perturbations in the

fuel or moderator, then small statistical errors in the FMC functionals should produce

comparably small statistical errors in the FMC estimates of the eigenfunction and

eigenvalue.
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2. We give our argument for choosing “tent functions” as in Step 2. Let f j+1/2(x) be

an arbitrary local function, which involves the spatial grid point it is identified with

and adjacent spatial grid points. We shall see what conditions the function f j+1/2(x)

needs to satisfy. Again operating on Eq. (2.20a) by

∫ x j+3/2

x j−1/2

f j+1/2(x) [·]dx

we get:

−
∫ x j+3/2

x j−1/2

f j+1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ x j+3/2

x j−1/2

f j+1/2(x)Σa(x)φ0(x)dx

=
1
k

∫ x j+3/2

x j−1/2

f j+1/2(x)νΣ f (x)φ0(x)dx . (2.32)

Using integration by parts, the leakage term becomes:

∫ x j+3/2

x j−1/2

f j+1/2(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

= f j+1/2(x)
1

Σtr(x)
dφ2

dx
(x)
∣∣∣x j+3/2

x j−1/2
−
∫ x j+3/2

x j−1/2

d f j+1/2

dx
(x)

1
Σtr(x)

dφ2

dx
(x)dx .

If the function f j+1/2(x) satisfies f j+1/2(x j−1/2) = f j+1/2(x j+3/2) = 0, then the first

term is zero and the leakage term is simplified to:

=−
∫ x j+3/2

x j−1/2

d f j+1/2

dx
(x)

1
Σtr(x)

dφ2

dx
(x)dx .

Here we require that function f j+1/2(x) is continuous but need not possess a derivative

at the spatial grid point it is identified with. If we also assume that d f j+1/2(x)/dx

is a constant between adjacent spatial grid points, then the integral above can be

further simplified. The “tent functions” satisfy all the conditions discussed above. By

defining f j+1/2(x) as a tent function at spatial grid point x j+1/2, the above integral
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can now be easily carried out, yielding

=−
∫ x j+1/2

x j−1/2

1
h jΣtr, j

dφ2

dx
(x)dx+

∫ x j+3/2

x j+1/2

1
h j+1Σtr, j+1

dφ2

dx
(x)dx

=
1

Σtr, j+1h j+1

[
φ2(x j+3/2)−φ2(x j+1/2)

]
− 1

Σtr, jh j

[
φ2(x j+1/2)−φ2(x j−1/2)

]
.

The “tent function” is not the only possible choice here. However, it is certainly a

straightforward one. We note that the tent function is also used in the finite element

method as a first-order basis function. However the finite element method has trunca-

tion errors, but in the present context, the use of the tent function does not lead to any

truncation error.

3. We give a brief discussion of attempts to develop an FMC method in which the

functionals depend on the neutron current. (We were not able to obtain a satisfactory

method of this type, for reasons discussed below.)

For simplicity, without considering the spatial dependence, we write the Monte

Carlo estimate of the angular flux as

ψest(µ) = ψ(µ)+δψ(µ) ,

where ψ(µ) is the true angular flux, and δψ(µ) is a small perturbation.

If we define the nonlinear functional

fn =
∫ 1
−1 µnψ(µ)dµ∫ 1
−1 ψ(µ)dµ

, n = 1,2 , (2.33)
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then the Monte Carlo estimate of the nonlinear functional becomes:

fn,est = fn +δ fn

=
∫ 1
−1 µn[ψ(µ)+δψ(µ)

]
dµ∫ 1

−1
[
ψ(µ)+δψ(µ)

]
dµ

=
∫ 1
−1 µnψ(µ)dµ +

∫ 1
−1 µnδψ(µ)dµ∫ 1

−1 ψ(µ)dµ +
∫ 1
−1 δψ(µ)dµ

=

∫ 1
−1 µnψ(µ)dµ

[
1+

∫ 1
−1 µnδψ(µ)dµ∫ 1
−1 µnψ(µ)dµ

]
∫ 1
−1 ψ(µ)dµ

[
1+

∫ 1
−1 δψ(µ)dµ∫ 1
−1 ψ(µ)dµ

]
= fn

[
1+

∫ 1
−1 µnδψ(µ)dµ∫ 1
−1 µnψ(µ)dµ

][
1−

∫ 1
−1 δψ(µ)dµ∫ 1
−1 ψ(µ)dµ

+ · · ·
]

= fn

[
1+
(∫ 1
−1 µnδψ(µ)dµ∫ 1
−1 µnψ(µ)dµ

−
∫ 1
−1 δψ(µ)dµ∫ 1
−1 ψ(µ)dµ

)
+ · · ·

]
. (2.34)

The relative error in the nonlinear functional can expressed as:

δ fn

fn
=
∫ 1
−1 µnδψ(µ)dµ∫ 1
−1 µnψ(µ)dµ

−
∫ 1
−1 δψ(µ)dµ∫ 1
−1 ψ(µ)dµ

. (2.35)

When n = 1 (odd),
∫ 1
−1 µψ(µ)dµ can be very small for diffusive problems where ψ

is nearly isotropic, thus the relative error in fn can be very large. This is not true when

n = 2 (even), since
∫ 1
−1 µ2ψ(µ)dµ is always positive.

Our conclusion is that the “functional” approach is likely to be advantageous

when the FMC method is based on low-order equations in which the current- related

(n = 1) term is algebraically eliminated. This does not mean that efficient methods

containing current do not exist; but it does mean that methods containing these terms

are more likely to be problematic.

4. The FMC method does not have the conventional standard neutron balance equation

for each cell. Integrating Eq.(2.17a) over [x j−1/2, x j+1/2], we obtain the standard
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neutron balance equation for cell j:

φ1(x j+1/2)−φ1(x j−1/2)+
∫ x j+1/2

x j−1/2

Σa(x)φ0(x)dx =
∫ x j+1/2

x j−1/2

νΣ f (x)
k

φ0(x)dx 1≤ j≤ J .

(2.36)

However, operating on Eq. (2.36) by
J

∑
j=1

(·) , we get

φ1(xJ+1/2)−φ1(x1/2)+
∫ X

0
Σa(x)φ0(x)dx =

∫ X

0

νΣ f (x)
k

φ0(x)dx . (2.37)

Eq. (2.37) is a statement of neutron conservation over the system. Eq. (2.37) is also

an ingredient of the FMC method, because the FMC method is based on :

∫ X

0
f j+1/2(x)[Eq.(2.20)]dx , (2.38)

and operating on Eq. (2.38) by
J

∑
j=1

(·) , we have

J

∑
j=1

[∫ X

0
f j+1/2(x)[Eq.(2.20)]dx

]
=
∫ X

0

( J

∑
j=1

f j+1/2(x)
)
[Eq.(2.20)]dx

=
∫ X

0
[Eq.(2.20)]dx , (2.39)

which states that the FMC method satisfies neutron conservation over the system.

5. In this section, the tent functions are defined on a spatial grid having J spatial cells.

The eigenfunctions obtained from the low order FMC equations are defined either “at”

the cell edges [Eq.(2.23)] or averaged on a “staggered” grid [Eqs.(2.24)] as shown in

Figure 2.4, rather than averaged over the spatial cells. We may inquire: is it possible

to make accurate estimates of φ over the spatial cells? The answer to this question is

discussed next.
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xj xj+1 xJx1

1.0

  0 = x1/ 2   x3/ 2   
x j−1/ 2   

x j+1/ 2   
x j+3/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1/ 2 (x)
  
f j+1/ 2 (x)

  fJ +1/ 2 (x)

 x

Figure 2.4 The FMC eigenfunctions are averaged on a “staggered” grid as shown.

2.3 Cross Sections that are Discontinuous within a Cell

In Section 2.2, we have assumed that each spatial cell only contains one kind of

material. Here we adopt the assumption that each interior spatial cell may consist of two

regions with different cross sections except at the boundary layers. For boundary layers,

we assume that each layer only contains one kind of material. The case of a spatial cell

containing multiple regions is discussed later in Chapter 5.

2.3.1 Procedure to Generate Low-order Equations with Material Dis-
continuities within a Cell

Again, we prescribe a spatial grid, consisting of J + 1 points x j+1/2 satisfying

0 = x1/2 < x3/2 < · · ·< x j−1/2 < x j+1/2 < · · ·< xJ−1/2 < xJ+1/2 = X . The jth spatial cell

consists of the interval x j−1/2 < x < x j+1/2; the width of this cell is h j = x j+1/2− x j−1/2.

To obtain the flux average over a spatial cell:

Φ j =
1

x j+1/2− x j−1/2

∫ x j+1/2

x j−1/2

φ0(x)dx

=
1
h j

∫ x j+1/2

x j−1/2

φ0(x)dx 1≤ j ≤ J , (2.40)
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we introduce a staggered grid point x j such that x j−1/2 < x j < x j+1/2 for 2 ≤ j ≤ J− 1.

There are two ways to choose staggered grid points: (1) x j is chosen as the material interface

if the spatial cell contains two material regions; (2) x j is chosen to be the midpoint if the

cell only contains one kind of material. Let hL
j = x j− x j−1/2, and hR

j = x j+1/2− x j. Clearly

the width of the jth cell h j = hL
j +hR

j .

For 1≤ j ≤ J, we define tent functions f j(x) at the staggered grid point x j.

For j = 1:

f1(x) =


1

h1+hL
2
(x2− x) , 0 = x1 < x < x2

0 , otherwise .

(2.41a)

For 2≤ j ≤ J−1:

f j(x) =



1
hR

j−1+hL
j
(x− x j−1) , x j−1 < x < x j

1
hR

j +hL
j+1

(x j+1− x) , x j < x < x j+1

0 , otherwise .

(2.41b)

And for j = J:

fJ(x) =


1

hR
J−1+hJ

(x− xJ−1) , xJ−1 < x < xJ = X

0 , otherwise .

(2.41c)

The tent functions defined on a staggered grid are displayed in Figure 2.5, while detailed

information for a staggered grid point x j is shown in Figure 2.6. We note that the number of

tent functions is equal to the number of spatial cells.

We now begin the derivation of the low-order FMC equations. We multiply Eq. (2.20a)

by f j(x) and integrate over 0≤ x≤ X .
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1.0

  0 = x1/ 2   x5/ 2   
x j−3/ 2   

x j+1/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1(x)   
f j (x)

  fJ (x)

  xJ −3/ 2  
x j+3/ 2  

x j−1/ 2  x3/ 2

x1 x2

  f2(x)

xj-1 xj xj+1

  fJ-1(x)

xJxJ-1

Figure 2.5 The tent functions defined on a staggered grid.

1.0

  xj-3/2   
x j+1/ 2

  
f
j (x)

 x

S j+1

  
xj-1/ 2

S jS j-1

}
h   j-1

} } }

L S j-1
R L S j

R R
S j+1
L

  
xj+3/ 2  

x j+1  
x j  

x j-1

R h   j
R h   j+1

Lh   j
L

Figure 2.6 Detailed information for a staggered grid point x j.

For 2≤ j ≤ J−1, we obtain:

−
∫ x j+1

x j−1

f j(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ x j+1

x j−1

f j(x)Σa(x)φ0(x)dx

=
1
k

∫ x j+1

x j−1

f j(x)νΣ f (x)φ0(x)dx . (2.42)

40



Using integration by parts, we write the first term of Eq. (2.42) explicitly as:

−
∫ x j+1

x j−1

f j(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

=
∫ x j+1

x j−1

d f j

dx
(x)

1
Σtr(x)

dφ2

dx
(x)dx

=
1

hR
j−1 +hL

j

∫ x j

x j−1

1
Σtr(x)

dφ2

dx
(x)dx− 1

hR
j +hL

j+1

∫ x j+1

x j

1
Σtr(x)

dφ2

dx
(x)dx

=
1

hR
j−1 +hL

j

[
φ2(x j−1/2)−φ2(x j−1)

ΣR
tr, j−1

+
φ2(x j)−φ2(x j−1/2)

ΣL
tr, j

]

− 1
hR

j +hL
j+1

[
φ2(x j+1/2)−φ2(x j)

ΣR
tr, j

+
φ2(x j+1)−φ2(x j+1/2)

ΣL
tr, j+1

]
. (2.43)

To simplify notation in Eq. (2.43), we define the contents of the second square bracket as

G j =
1

ΣR
tr, j

[
φ2(x j+1/2)−φ2(x j)

]
+

1
ΣL

tr, j+1

[
φ2(x j+1)−φ2(x j+1/2)

]
. (2.44)

In Section 2.3.2, the function G j is rewritten in terms of φ2(x j) and φ2(x j+1):

G j =
[

1
Σtr, j

+
1
2
|E j|+E j

φ2(x j+1)

]
φ2(x j+1)

−
[

1
Σtr, j

+
1
2
|E j|−E j

φ2(x j)

]
φ2(x j)

= L1, jφ2(x j+1)−L2, jφ2(x j) , (2.45)

where

1
Σtr, j

=
1

hR
j +hL

j+1

(
hR

j

ΣR
tr, j

+
hL

j+1

ΣL
tr, j+1

)
,

E j =

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j ,

E j =φ2(x j+1/2)−φ2(x j)
hL

j+1

hR
j +hL

j+1
−φ2(x j+1)

hR
j

hR
j +hL

j+1
, (2.46)
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and

L1, j =
1

Σtr, j
+

1
2
|E j|+E j

φ2(x j+1)
,

L2, j =
1

Σtr, j
+

1
2
|E j|−E j

φ2(x j+1)
. (2.47)

Using Eq. (2.45), Eq. (2.43) can be written:

−
∫ x j+1

x j−1

f j(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

=
1

hR
j−1 +hL

j
G j−1−

1
hR

j +hL
j+1

G j

=
1

hR
j−1 +hL

j

[
L1, j−1 φ2(x j)−L2, j−1 φ2(x j−1)

]
− 1

hR
j +hL

j+1

[
L1, j φ2(x j+1)−L2, j φ2(x j)

]
=−

L2, j−1

hR
j−1 +hL

j
φ2(x j−1)+

[
L1, j−1

hR
j−1 +hL

j
+

L2, j

hR
j +hL

j+1

]
φ2(x j)

−
L1, j

hR
j +hL

j+1
φ2(x j+1) , (2.48)

where the second moments defined at the spatial grid points φ2(x j±1/2) have been collapsed

into the parameters L1, j and L2, j.

Using Eq. (2.48), for 2≤ j ≤ J−1, Eq. (2.42) becomes:

−
L2, j−1

hR
j−1 +hL

j
φ2(x j−1)+

[
L1, j−1

hR
j−1 +hL

j
+

L2, j

hR
j +hL

j+1

]
φ2(x j)−

L1, j

hR
j +hL

j+1
φ2(x j+1)

+
∫ x j+1

x j−1

f j(x)Σa(x)φ0(x)dx =
1
k

∫ x j+1

x j−1

f j(x)νΣ f (x)φ0(x)dx . (2.49)

Similarly, for j = 1 (left boundary, Figure 2.7) we multiply Eq. (2.20a) by f1(x) and
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integrate to obtain

−
∫ x2

x1

f1(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ x2

x1

f1(x)Σa(x)φ0(x)dx

=
1
k

∫ x2

x1

f1(x)νΣ f (x)φ0(x)dx . (2.50)

1.0

  0 = x1/ 2   x5/ 2

  f1(x)

  x3/ 2

x1
x2

S tr, 2
R

S tr, 2
L

S tr, 1

} } }

h 2
Rh2

Lh1

Figure 2.7 Detailed information on the left boundary.

Integrating the first term of Eq. (2.50) by parts, we get:

−
∫ x2

x1

f1(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

=
∫ 1

−1
|µ|ψ(0,µ)dµ− 1

h1 +hL
2

[
φ2(x3/2)−φ2(x1)

Σtr,1
+

φ2(x2)−φ2(x3/2)
ΣL

tr,2

]

=
∫ 1

−1
|µ|ψ(0,µ)dµ− 1

h1 +hL
2

G1

=
∫ 1

−1
|µ|ψ(0,µ)dµ− 1

h1 +hL
2

[
L1,1 φ2(x2)−L2,1 φ2(x1)

]
. (2.51)

Thus, the preceding Eq. (2.50) for j = 1 can be written:

∫ 1

−1
|µ|ψ(0,µ)dµ +

L2,1

h1 +hL
2

φ2(x1)−
L1,1

h1 +hL
2

φ2(x2)

+
∫ x2

x1

f1(x)Σa(x)φ0(x)dx =
1
k

∫ x2

x1

f1(x)νΣ f (x)φ0(x)dx . (2.52)
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For j = J (right boundary, Figure 2.8), We follow similar steps as for j = 1 by multiplying

Eq. (2.20a) with fJ(x) and integrate to obtain

−
∫ xJ

xJ−1

fJ(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx+
∫ xJ

xJ−1

fJ(x)Σa(x)φ0(x)dx

=
1
k

∫ xJ

xJ−1

fJ(x)νΣ f (x)φ0(x)dx . (2.53)

  xJ +1/ 2 = X

  fJ(x)

  xJ-1/ 2

xJ
xJ-1

S tr, JS tr, J-1
R

} } }

hJhJ-1
R

S tr, J-1
L

hJ-1
L

  xJ-3/ 2

Figure 2.8 Detailed information on the right boundary.

Integrating the first term of Eq. (2.53) by parts, we get:

−
∫ xJ

xJ−1

fJ(x)
[

d
dx

1
Σtr(x)

dφ2

dx
(x)
]

dx

=
∫ 1

−1
|µ|ψ(X ,µ)dµ− 1

hR
J−1 +hJ

[
L1,J−1 φ2(xJ)−L2,J−1 φ2(xJ−1)

]
. (2.54)

Thus, the preceding Eq. (2.53) for j = J can be written:

∫ 1

−1
|µ|ψ(X ,µ)dµ +

L1,J−1

hR
J−1 +hJ

φ2(xJ)−
L2,J−1

hR
J−1 +hJ

φ2(xJ−1)

+
∫ xJ

xJ−1

fJ(x)Σa(x)φ0(x)dx =
1
k

∫ xJ

xJ−1

fJ(x)νΣ f (x)φ0(x)dx . (2.55)
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Next, for 1≤ j ≤ J, we introduce functions g j(x) that are to satisfy:

g j(x) =


1
h j

x j−1/2 < x < x j+1/2

0 , otherwise .

For 1≤ j ≤ J, we define:

Φ j =
∫ x j+1

x j−1

g j(x)φ0(x)dx , (2.56)

where x0 = x1/2 = x1 = 0, and xJ+1 = xJ+1/2 = xJ = X . The quantities Φ j are the flux

average over spatial cells, which are also unknowns for the low-order FMC equations as

indicated in Figure 2.9. We note that Eq. (2.56) is equivalent to Eq. (2.40).

1.0

  0 = x1/ 2   x5/ 2   
x j−3/ 2   

x j+1/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1(x)   
f j (x)

  fJ (x)

  xJ −3/ 2  
x j+3/ 2  

x j−1/ 2  x3/ 2

x1 x2 xj-1 xj xj+1 xJxJ-1

Figure 2.9 The heavy line (spatial cell) intervals show the regions where the Φ j are averaged using
tent functions defined on a staggered grid.

In the next step, we define the nonlinear functionals, which are similar to the monoener-

getic case, as follows:
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B1 =
∫ 1
−1 |µ|ψ(0,µ)dµ∫ x2
x1

g1(x)φ0(x)dx
,

BJ =
∫ 1
−1 |µ|ψ(X ,µ)dµ∫ xJ
xJ−1

gJ(x)φ0(x)dx
,

E j =
∫ 1
−1 µ2ψ(x j,µ)dµ∫ x j+1
x j−1

g j(x)φ0(x)dx
,

A j =

∫ x j+1
x j−1

f j(x)Σa(x)φ0(x)dx∫ x j+1
x j−1

g j(x)φ0(x)dx
,

Fj =

∫ x j+1
x j−1

f j(x)νΣ f (x)φ0(x)dx∫ x j+1
x j−1

g j(x)φ0(x)dx
. (2.57)

In terms of nonlinear functionals, Eqs. (2.49), (2.52), and (2.55) can be written as:

[
B1 +

L2,1

h1 +hL
2

E1 +A1

]
Φ1−

[
L1,1

h1 +hL
2

E2

]
Φ2

=
1
k

[F1]Φ1 , (2.58a)

−

[
L2, j−1

hR
j−1 +hL

j
E j−1

]
Φ j−1 +

[(
L1, j−1

hR
j−1 +hL

j
+

L2, j

hR
j +hL

j+1

)
E j +A j

]
Φ j

−

[
L1, j

hR
j +hL

j+1
E j+1

]
Φ j+1 =

1
k

[
Fj
]

Φ j , 2≤ j ≤ J−1 (2.58b)

−

[
L2,J−1

hR
J−1 +hJ

EJ−1

]
ΦJ−1 +

[
BJ +

L1,J−1

hR
J−1 +hJ

EJ +AJ

]
ΦJ

=
1
k

[FJ]ΦJ (2.58c)

Eqs. (2.58) are the FMC low-order equations, which are solved to obtain the FMC

eigenfunctions averaged over spatial cells. To summarize the FMC procedure used here with

material discontinuities within spatial cells, Eqs. (2.14) are simulated using the standard

Monte Carlo method of processing fission particles over a series of cycles. The standard

Monte Carlo k-eigenvalue is estimated for each cycle, and the final (standard Monte Carlo)
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estimate of k is obtained by averaging k over all active cycles. During this process, Monte

Carlo estimates of each of the integrals in the numerators and denominators of Eqs. (2.57)

and the remainder term E Eq. (2.46) are obtained. At the end of each active cycle, the

functionals in Eqs. (2.57) and the terms L1, j and L2, j in Eqs. (2.47) are calculated. Eqs.

(2.58) are solved to obtain the FMC cycle-wise estimates of Φ j and k. The FMC cycle-wise

estimates of Φ j are averaged over spatial cells. This information can be used to update the

Monte Carlo fission source distribution.

It remains to evaluate the G j function defined in Eq. (2.44). A detailed procedure to

accomplish this is described next.

2.3.2 Procedure for Evaluating the G j function

We recall from Section 2.3.1, the G j function is defined as:

G j =
1

ΣR
tr, j

[
φ2(x j+1/2)−φ2(x j)

]
+

1
ΣL

tr, j+1

[
φ2(x j+1)−φ2(x j+1/2)

]
, (2.59)

where x j and x j+1 are staggered grid points, x j+1/2 is the spatial grid point (Figure 2.10). Let

hR
j = x j+1/2− x j, hL

j+1 = x j+1− x j+1/2, and ∆ j = hR
j + hL

j+1. For region [x j, x j+1/2], the

cross section is assumed to be constant and is written as ΣR
j , while for region [x j+1/2, x j+1],

the cross section is assumed to be constant and is written as ΣL
j+1.

  
x j   

x j+1/ 2    x j+1

S tr, j
R S tr, j+1

L}

h j
R

}

h j+1
L

Figure 2.10 G j function is defined on two neighboring staggered grid points.

We want to rewrite G j in Eq. (2.59) so as to eliminate φ2(x j+1/2). The second moment
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φ2(x) can be approximated using linear interpolation:

φ2(x)≈ φ2(x j)
(x j+1− x)

∆ j
+φ2(x j+1)

(x− x j)
∆ j

.

Pursuing this approximation, we define E j to satisfy the following equation:

φ2(x j+1/2) = φ2(x j)
hL

j+1

∆ j
+φ2(x j+1)

hR
j

∆ j
+E j , (2.60)

then E j = O(∆2
j).

Next, using Eq. (2.60) to eliminate φ2(x j+1/2) from Eq. (2.59), we obtain:

G j =
1

ΣL
tr, j+1

φ2(x j+1)−
1

ΣR
tr, j

φ2(x j)+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
φ2(x j+1/2)

=
1

ΣL
tr, j+1

φ2(x j+1)−
1

ΣR
tr, j

φ2(x j)+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)[
φ2(x j)

hL
j+1

∆ j
+φ2(x j+1)

hR
j

∆ j
+E j

]

= φ2(x j+1)

[
1

ΣL
tr, j+1

+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
hR

j

∆ j

]
−φ2(x j)

[
1

ΣR
tr, j
−

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
hL

j+1

∆ j

]

+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j

= φ2(x j+1)

[
hL

j+1

ΣL
tr, j+1

+
hR

j

ΣR
tr, j

]
1
∆ j
−φ2(x j)

[
hR

j

ΣR
tr, j

+
hL

j+1

ΣL
tr, j+1

]
1
∆ j

+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j .

(2.61)

To simplify Eq. (2.61), we define

1
Σtr, j

=

(
hR

j

ΣR
tr, j

+
hL

j+1

ΣL
tr, j+1

)
1

hR
j +hL

j+1

=

(
hR

j

ΣR
tr, j

+
hL

j+1

ΣL
tr, j+1

)
1
∆ j

. (2.62)
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Thus, Eq. (2.61) becomes

G j =
1

Σtr, j

[
φ2(x j+1)−φ2(x j)

]
+

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j . (2.63)

Let:

E j =

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j = remainder term. (2.64)

Rewriting the remainder term and combining it with the first term in Eq. (2.63), we get

G j =
1

Σtr, j

[
φ2(x j+1)−φ2(x j)

]
+E j

=
1

Σtr, j

[
φ2(x j+1)−φ2(x j)

]
+

1
2
(
|E j|+E j

)
− 1

2
(
|E j|−E j

)
=
[

1
Σtr, j

φ2(x j+1)+
1
2
(
|E j|+E j

)]
−
[

1
Σtr, j

φ2(x j)+
1
2
(
|E j|−E j

)]
=
[

1
Σtr, j

+
1
2
|E j|+E j

φ2(x j+1)

]
φ2(x j+1)−

[
1

Σtr, j
+

1
2
|E j|−E j

φ2(x j)

]
φ2(x j) , (2.65)

where 1
2

(
|E j|+E j

)
≥ 0 and 1

2

(
|E j|−E j

)
≥ 0 .

We further define

L1, j =
1

Σtr, j
+

1
2
|E j|+E j

φ2(x j+1)

L2, j =
1

Σtr, j
+

1
2
|E j|−E j

φ2(x j+1)
, (2.66)

which yields

G j = L1, jφ2(x j+1)−L2, jφ2(x j) . (2.67)
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Note that if E j > 0,

1
2
|E j|+E j

φ2(x j+1)
=

E j

φ2(x j+1)

=
1

φ2(x j+1)

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
E j

=

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)
1

φ2(x j+1)

[
φ2(x j+1/2)−φ2(x j)

hL
j+1

∆ j
−φ2(x j+1)

hR
j

∆ j

]

=

(
1

ΣR
tr, j
− 1

ΣL
tr, j+1

)[
φ2(x j+1/2)
φ2(x j+1)

−
φ2(x j)

φ2(x j+1)

hL
j+1

∆ j
−

hR
j

∆ j

]
.

In this way, we show how the remainder term E j and the L1, j,L2, j in Eq. (2.66) are evaluated

using MC simulation.

2.4 MC Fission Source with FMC feedback

A longstanding problem for Monte Carlo criticality calculations is the slow conver-

gence of the fission source distribution for systems with a high dominance ratio (DR). Since

the resulting FMC eigenfunction estimates from the low-order equations are more accurate

than the standard MC estimates, the MC fission source distribution can be improved by

utilization of the FMC fission source distribution. We now list the steps involved in the

straightforward feedback algorithm.

1. Calculate the fraction of fission source distribution occurring in each cell j,

Pj =
νΣ f , jφ j

∑
J
j′=1 νΣ f , j′φ j′

for 1≤ j ≤ J ,

where φ j is the resulting eigenfunction estimate for cell j from the low-order FMC

equations.

2. The expected number of fission neutrons in cell j can then be calculated as

n j = total number of neutrons/cycle ∗Pj .
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3. Finally, we adjust the number of fission neutrons in cell j according to the following

ratio

r j =
expected number of fission neutrons n j

actual number of MC fission neutrons in cell j
.

We do this by randomly deleting particles in cell j if there are too many, or randomly

duplicating in the cell if there are too few.

2.5 Analog Monte Carlo method

2.5.1 Path Length Estimator and Related Functions Tally

The Monte Carlo method can be used to solve the transport equation by following

each of many MC particles from its birth to its death. We can then obtain the information

of interest by tabulating the average behavior of the simulated particles. Quantities we are

interested in here are the scalar flux and FMC nonlinear functionals. The most widely used

method for estimating the scalar flux is the path length estimator. For each MC particle, we

record the path lengths of its tracks from its birth to its death. The scalar flux is defined as

the mean path length generated per MC particle per unit volume, i.e. the scalar flux is in

units of per MC particle per unit area:

φ =
1

V N

N

∑
n=1

( Nn

∑
j=1

ln, j
)

, (2.68)

where V is the volume of tallied region, N is the total number of simulated MC particles,

Nn is the total number of track lengths generated by the nth history, and ln, j is the jth path

length tracked by the nth history in tallied region V .

To evaluate FMC nonlinear functionals, we need to estimate integrals of the type

∫ x j+1/2

x j−1/2

(ax+b)φ(x)dx . (2.69)
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To do this, let xs be a MC particle initial position and xe be the ending position within

the tallied region [x j−1/2,x j+1/2]. Then the path length the MC particle traverses equals

l = |(xe− xs)/µ|, where µ is the direction cosine of the MC particle. The integrals of type∫ x j+1/2
x j−1/2 (ax+b)φ(x)dx can be evaluated as the average of l̂:

∫ x j+1/2

x j−1/2

(ax+b)φ(x)dx =
1
N ∑ l̂ , (2.70)

where

l̂ =
1
µ

∫ xe

xs

(ax+b)dx

=
1
µ

(xe− xs)
[1

2
a(xs + xe)+b

]
=
[1

2
a(xs + xe)+b

]
l . (2.71)

2.5.2 Surface Crossing Estimator

The scalar flux on a planar surface at depth x can be evaluated as

φ(x) =
1
N

N

∑
n=1

( Nn

∑
j=1

1
|µn, j|

)
(2.72)

where

µn, j = direction cosine of the nth particle, the jth time it crosses the surface at depth x;

Nn = number of times the nth particle crosses the surface at depth x.

The surface flux also has the unit of per particle per unit area.

The second moment can be evaluated as

φ2(x) =
1
N

N

∑
n=1

( Nn

∑
j=1

1
|µn, j|

|µn, j|2
)

=
1
N

N

∑
n=1

( Nn

∑
j=1
|µn, j|

)
. (2.73)
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2.5.3 Estimators for the k-eigenvalue

The following information is required to set up a criticality calculation using Monte

Carlo simulation [27]:

1. initial guesses of ke f f and the initial fission source distribution;

2. number of histories N per ke f f cycle (generation);

3. the number of inactive cycles;

4. the number of active cycles M.

With the initial guess for the fission source distribution, N Monte Carlo particles are

simulated. Both eigenvalue and eigenfunction are estimated, and the fission sites for the

next cycle are generated. This iterative process is continued until all active cycles are

completed. The criticality eigenvalue for any active cycle is estimated using the following

three estimators.

k-eigenvalue definition

ke f f is estimated using its definition:

ke f f =
number of fission neutrons in generation i+1

number of fission neutrons in generation i
. (2.74)

Path Length Estimator

The rate of fission neutron production is given by

∫
V

νΣ f (x)φ(x)dx . (2.75)
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Thus the path length estimator of ke f f can be accumulated when a MC particle traverses a

distance l in a fissionable material region with fission cross section Σ f :

ke f f =
1
N

N

∑
n=1

νΣ f l . (2.76)

Collision Estimator

The collision estimator of ke f f takes account the collisions which occur. It is a summa-

tion of the probability of fission occurring over all collisions.

ke f f =
1
N

N

∑
n=1

νΣ f

Σs +Σγ +Σ f

=
1
N

N

∑
n=1

νΣ f

Σt
. (2.77)

2.5.4 Mean, Variance and Relative Standard Deviation

The Monte Carlo estimate of the mean value (sample mean) is calculated as

x =
1
M

M

∑
i=1

xi , (2.78)

where xi is the estimated value for the ith active cycle and M is the total active cycles

simulated in the problem.

The unbiased Monte Carlo estimate of variance of the x values can be estimated as

σ
2
x = ∑

M
i=1(xi− x)2

M−1
. (2.79)
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The Monte Carlo estimate of variance of the sample mean x is given by

σ
2
x =

1
M

σ
2
x

=
1
M

∑
M
i=1(xi− x)2

M−1
. (2.80)

The square root of the variance is called the standard deviation. We define the relative

standard deviation of x values as

σrel =
σx

x
, (2.81)

and the relative standard deviation of the sample mean x as

RSD =
σx

x

=
1√
M

σx

x
. (2.82)

The relative standard deviation in population σrel is a dimensionless quantity, while

the relative standard deviation of sample mean RSD is inversely proportional to
√

M. In

this thesis, the sample mean and the relative standard deviation of the sample mean are

compared in eigenvalue and eigenfunction calculations for all different methods.

For a single MC run with M active cycles, the apparent relative standard deviation of

the sample mean (apparent RSD) is obtained using Eqs. (2.80) and (2.82). The true relative

standard deviation of the sample mean (true RSD) is estimated from L independent MC

runs (with the same M active cycles, and different random number seeds). We then obtain

L estimates of the value of x. The estimated true RSD of x is obtained using equations

analogous to Eqs. (2.79) and (2.81):

σ
2
x (true) =

1
L−1

L

∑
i=1

((x)i− x)2 , (2.83)
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and

σrel(true) =
σx(true)

x
. (2.84)

L = 25 independent MC runs are used in obtaining the estimated true RSD. The central

limit theorem states that we can use the normal distribution to approximate the sampling

distribution of the sample mean. For the uniform, normal, and exponential population distri-

butions, the sample distribution of the sample mean tends to become very nearly normal for

sample size as small as L = 25.

Due to inter-cycle correlation, the MC estimates of the apparent relative standard devia-

tion of the eigenfuntion are much smaller than the MC estimates of the true relative standard

deviations. This is particularly true for problems with high dominance ratios.

2.5.5 Shannon Entropy

The Shannon entropy [29; 30; 28] of a source distribution is defined as

H =−
J

∑
j=1

Pj ln(Pj) (2.85)

where Pj is the source fraction in region j.

Shannon entropy can be used as an index to judge whether the fission source distribution

has converged. (The Shannon entropy fluctuates when equilibrium of the fission source

distribution has not been achieved, but becomes nearly constant when the fission source is

converged.)
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Chapter 3

Monoenergetic k-Eigenvalue Problems:
Numerical Results

In this Chapter, we numerically test the FMC method as described in Chapter 2 on four

problems for which the standard Monte Carlo method is problematic. These problems were

chosen to highlight the strengths and the weaknesses of the FMC method.

3.1 Monoenergetic Problem 1: A Large, Homogeneous
Fissile Region

First, we consider the relatively straightforward problem of a large homogeneous fissile

region surrounded by a thin reflector. The physical data is given in Table 3.1.

Table 3.1 Data for Problem 1.

Region Location Σt Σs,0 Σs,n νΣ f
1 0 < x < 5 1.0 0.856 0.1 0
2 5 < x < 205 1.0 0.856 0.1 0.144
3 205 < x < 210 1.0 0.856 0.1 0

Here x has units of cm, Σ has units of cm−1, in column 5 of the data Table 3.1 n = 1,2,3,

and Σs,n = 0 for n≥ 4. We consider anisotropic P3 scattering. The exact eigenfunction of

Problem 1 has a basic “cosine” shape in the central fissile region. Our fine-mesh SN solution

of this problem, which used the S32 Gauss-Legendre quadrature set with h = 0.01, produced

k = 0.999384. The dominance ratio (DR) of this problem is 0.995, which is obtained by
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using the the S32 Gauss-Legendre quadrature set with 50 inner iterations.

3.1.1 Flat Initial Fission Source without FMC Feedback

We now present results of Problem 1 for a flat initial fission source guess and without

FMC feedback. Our Monte Carlo simulations use 50,000 histories per cycle with a uniform

grid h = 1.0.

In Figures 3.1-3.3 we display for Problem 1 the SN eigenfunction and averaged estimates

of the eigenfunction from (i) standard Monte Carlo (MC), (ii) Functional Monte Carlo using

the “edge” unknowns (FMC edg), and (iii) Functional Monte Carlo using the “averaged”

unknowns (FMC avg). As is indicated in the figures, these plots are obtained by averaging

the Monte Carlo estimates of the eigenfunction over nine 100-cycle spans, i.e. cycles

101-200, 201-300, 301-400, 401-500, 501-600, 601-700,701-800,801-900, and 901-100.

Figures 3.1-3.3 show that the SN and FMC estimates of the eigenfunction are virtually

coincident and are much more accurate than the MC estimates. The MC eigenfunction

appears to be trying to converge to the correct “cosine” shape, but it slowly “wobbles”

around it. This “wobbling” is caused by undersampling of the fission source and can be

suppressed by increasing the number of Monte Carlo particles per cycle.

Figure 3.4 shows the estimates of the eigenfunction, averaged over the last 500 cycles

(501-1000), and the estimated apparent relative standard deviations and true relative standard

deviations in the Monte Carlo, FMC edge, and FMC average scalar fluxes over the cycles.

The apparent relative standard deviations are obtained from a single 1000-cycle (500 inactive

cycles, and 500 active cycles) run; the true relative standard deviations are obtained from 25

independent 1000-cycle runs. A detailed procedure is given in Chapter 2, Section 2.5.4.

The figure shows that, even though it is averaged over a large number of cycles, the

MC estimate of the eigenfunction is inaccurate and “tilted.” The estimated relative standard

deviations (both apparent and true) in the FMC eigenfunctions are smaller than those of the

MC eigenfunction, and the FMC eigenfunction estimates are clearly much more accurate. A
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Figure 3.1 Problem 1 averaged eigenfunction estimates during cycles 101-400.
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Figure 3.2 Problem 1 averaged eigenfunction estimates during cycles 401-700.

60



0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 50 100 150 200
mfp

Sn

MC (701-800)

FMC edg (701-800)

FMC avg (701-800)

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 50 100 150 200
mfp

Sn

MC (801-900)

FMC edg (801-900)

FMC avg (801-900)

0.0E+00

1.0E-02

2.0E-02

3.0E-02

4.0E-02

5.0E-02

6.0E-02

0 50 100 150 200
mfp

Sn

MC (901-1000)

FMC edg (901-1000)

FMC avg (901-1000)

Figure 3.3 Problem 1 averaged eigenfunction estimates during cycles 701-1000.
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Figure 3.4 Problem 1 averaged eigenfunctions and their RSDs over 501-1000 cycles.
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Figure 3.5 Comparison for Problem 1 of apparent RSDs and true RSDs in MC, FMC edge, and
FMC average eigenfunction estimates.
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detailed comparison between the apparent relative standard deviation and the true relative

standard deviation in the MC, FMC edge, FMC average eigenfunction estimates is given

in Figure 3.5. This figure shows that the true relative standard deviation is more than a

factor of 10 greater than the apparent relative standard deviation in the MC eigenfunction

estimate. This is because of the correlations in the fission source between one cycle and the

next. Figure 3.5 also shows that the true relative standard deviations in FMC edge and FMC

average eigenfunction estimates are approximately the same as the apparent relative standard

deviations. Thus, fission source correlations do not seem to affect the FMC estimates. We

conclude that the estimated relative standard deviations in the FMC eigenfunctions from a

single 1000-cycle run can be trusted.

Figure 3.6 gives the apparent relative standard deviations and the true relative standard

deviations in the nonlinear functionals E and A, and in the MC, FMC edge, FMC average

scalar fluxes. The figure shows that the true relative standard deviations in the nonlinear

functionals E and A are approximately the same as the apparent relative standard deviations.

As expected, the MC estimates of the nonlinear functionals E and A are much more accurate

than the direct MC estimates of the eigenfunction. Also, the relative standard deviations

in the “average” FMC functionals are smaller than the relative standard deviations in the

“edge” functionals.

Figures 3.7-3.8 display results for eigenfunction estimates at the 100th, and 500th cycles.

These figures show that the MC eigenfunction estimate is noisier than the FMC “edge”

eigenfunction estimate, which in turn is noisier than the FMC “average” eigenfunction

estimate. These figures also show that the “average” FMC functionals are less noisy than

the “edge” functionals.

We note from Figures 3.7-3.8 that for individual cycles, the MC and FMC estimates of

the eigenfunction all contain high-frequency spatial errors, and from Figures 3.1-3.4 that

by averaging these eigenfunction estimates over 100 or more cycles, the high-frequency

errors are greatly suppressed. However, the MC eigenfunction estimates contain much
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Figure 3.6 Comparison for Problem 1 of apparent RSDs and true RSDs in MC, FMC edge, FMC
average scalar fluxes, and the nonlinear functionals E and A.

larger low-frequency errors than the FMC eigenfunction estimates, and these are not greatly

suppressed by averaging over active cycles.

In Table 3.2 we display the estimates of the Problem 1 eigenvalue and the relative

standard deviation during each of the ten 100-cycle spans that we ran.

This table shows that the FMC estimates of k are several orders of magnitude more accu-

rate than the MC estimates; this is due to (i) the insensitivity of the nonlinear functionals to

statistical errors in the flux estimates, (ii) the insensitivity of the low order FMC equations to
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Figure 3.7 Problem 1 eigenfunction and nonlinear functional estimates for cycle 100.
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Figure 3.8 Problem 1 eigenfunction and nonlinear functional estimates for cycle 500.
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Table 3.2 Estimates of k and its Relative Standard Deviation for Problem 1.

Cycles Standard MC FMC edge FMC average
1-100 0.998050 0.999385 0.999385

(0.0007701) (0.0000002) (0.0000002)
101-200 0.998768 0.999385 0.999385

(0.0005659) (0.0000002) (0.0000002)
201-300 0.999546 0.999385 0.999385

(0.0005243) (0.0000002) (0.0000002)
301-400 0.998978 0.999385 0.999385

(0.0005663) (0.0000002) (0.0000002)
401-500 0.997939 0.999385 0.999385

(0.0005906) (0.0000002) (0.0000002)
501-600 0.998691 0.999385 0.999385

(0.0004900) (0.0000002) (0.0000002)
601-700 0.999997 0.999385 0.999385

(0.0005218) (0.0000002) (0.0000002)
701-800 0.998958 0.999385 0.999385

(0.0006221) (0.0000002) (0.0000002)
801-900 0.999819 0.999385 0.999385

(0.0005835) (0.0000002) (0.0000002)
901-1000 0.999810 0.999385 0.999385

(0.0005316) (0.0000002) (0.0000002)

small errors in the functionals, and (iii) the relative geometric simplicity of the problem. An

unexpected result is that even though the FMC-edge eigenfunction estimate is noisier than

the FMC-average eigenfunction estimates, the two eigenvalue estimates are of comparable

quality.

Since the SN solution of Problem 1 is known, we can calculate the true relative standard

deviation using the “exact” (SN) ke f f value. Our calculation results show that the true relative

standard deviations are identical to the apparent relative standard deviations in the FMC

estimates of ke f f . Also, the ratios of the true relative standard deviations to the apparent

relative standard deviations for the MC estimates of ke f f for ten 100-cycle spans are given in

Table 3.3. From this table, we note that the true relative standard deviations are only slightly

greater than the apparent relative standard deviations (difference in the 5th digits). These

ratios are approximately equal to one. Thus the Monte Carlo estimates of the eigenvalues
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can be trusted.

Table 3.3 MC estimates of Relative Standard Deviation of k for Problem 1.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0007807 0.0007701 1.0138

101-200 0.0005689 0.0005659 1.0053
201-300 0.0005246 0.0005243 1.0006
301-400 0.0005675 0.0005663 1.0021
401-500 0.0006074 0.0005906 1.0284
501-600 0.0004946 0.0004900 1.0094
601-700 0.0005257 0.0005218 1.0075
701-800 0.0006233 0.0006221 1.0019
801-900 0.0005854 0.0005835 1.0033
901-1000 0.0005335 0.0005316 1.0036

3.1.2 Flat Initial Fission Source with FMC Feedback

In Section 3.1.1, it is seen that the MC estimates of the eigenfunction do not converge

to the correct “cosine” shape during a 1000 cycle test run. On the other hand, the resulting

FMC eigenfunction estimates from the low-order equations are seen to converge almost

immediately and remain stable in all 100-cycle spans. A more sophisticated approach to

this problem is the MC simulation with FMC feedback, in which the MC fission source

distribution is improved by utilization of the FMC fission source distribution. A detailed

procedure is given in Chapter 2, Section 2.4.

Figure 3.9 shows estimates of the eigenfunction from standard Monte Carlo (MC) with

FMC feedback, and the consequent Functional Monte Carlo (FMC avg). This figure is

obtained by averaging the Monte Carlo estimates of the eigenfunction over 100-cycle spans,

i.e. cycles 1-100, 101-200, and 201-300. Examining Figure 3.9 we see that Monte Carlo

estimates of the eigenfunction with FMC feedback converge within the first 100-cycle

average.

The Shannon entropy behavior of the fission source for Problem 1 without FMC feed-
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Figure 3.9 Problem 1 averaged eigenfunction estimates during cycles 1-300 with FMC feedback.
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back is shown in Figure 3.10, while the Shannon entropy behavior of the fission source for

Problem 1 with FMC feedback is shown in Figure 3.11. Figure 3.11 shows that the Monte

Carlo estimates of the eigenfunction with FMC feedback converges almost immediately.
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Figure 3.10 Shannon entropy behavior of the fission source for Problem 1 without FMC feedback.
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Figure 3.11 Shannon entropy behavior of the fission source for Problem 1 with FMC feedback.

With FMC feedback, the estimates of the Problem 1 eigenvalue with their estimated

relative standard deviations over ten 100-cycle spans are given in Table 3.4 for the standard

Monte Carlo and FMC average. We note that with FMC feedback (Table 3.4) or without
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FMC feedback (Table 3.2), the estimates of the eigenvalue are identical for the FMC average

simulations, and the estimates of eigenvalue agree within statistical errors for the standard

Monte Carlo simulations. Therefore, the use of feedback can greatly improve the MC

eigenfunction estimates, but not the MC eigenvalue estimates.

Table 3.4 Estimates of k and its Relative Standard Deviation for Problem 1 with FMC Feedback.

Cycles Standard MC FMC average
1-100 0.998977 0.999385

(0.0007465) (0.0000002)
101-200 0.999337 0.999385

(0.0005985) (0.0000002)
201-300 0.999038 0.999385

(0.0006221) (0.0000002)
301-400 0.999360 0.999385

(0.0005173) (0.0000002)
401-500 0.999587 0.999385

(0.0005406) (0.0000002)
501-600 0.999293 0.999385

(0.0005925) (0.0000002)
601-700 0.999616 0.999385

(0.0005773) (0.0000002)
701-800 1.000814 0.999385

(0.0005949) (0.0000002)
801-900 0.999419 0.999385

(0.0005751) (0.0000002)
901-1000 0.999264 0.999385

(0.0005360) (0.0000002)
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3.1.3 Asymmetric Initial Fission Source, with and without FMC Feed-
back

Next, we further demonstrate the strengths of FMC by considering an asymmetric

initial fission source guess. We assume that the initial source sample probability of the left

half fissile region (5cm-105cm) is 85%, while the initial source sample probability of the

right half fissile region (105cm-200cm) is 15%.

First, we run for 1000 cycles, using 50,000 histories/cyc without FMC feedback. In

Figures 3.12-3.14, we compare results for the estimated flux, averaged over 100 cycle

intervals (from a 1000-cycle sequence) for (a) standard Monte Carlo and (b) FMC average.

Although the initial fission source is extremely asymmetric, the FMC results are seen to

have only small fluctuations for the first 100-cycle average, and the fluctuations die out by

the fourth 100-cycle (301-400) average. The MC results are far from the symmetric “cosine”

shape for all 100 cycle averages (from a 1000-cycle sequence).

We also ran this asymmetric initial fission source problem with FMC feedback. Figure

3.15 is obtained by averaging the Monte Carlo estimates of the eigenfunction over 100-cycle

spans, i.e. cycles 1-100, 101-200, and 201-300. This figure shows that the Monte Carlo

estimates of the eigenfunction with FMC feedback converge within the first 100 cycle aver-

age. We investigate the convergent behavior further by averaging the Monte Carlo estimates

of the eigenfunction over 10-cycle spans, i.e. cycles 1-10, 11-20, and 21-30. Figure 3.16

shows that the Monte Carlo estimates of the eigenfunction with FMC feedback converge

within the second 10-cycle span.

The Shannon entropy behavior of the fission source without FMC feedback during 1000

cycles is shown in Figure 3.17, while the Shannon entropy behavior of the fission source

with FMC feedback is shown in Figure 3.18. Again, the figures show that the MC estimates

of the eigenfunction with FMC feedback converge almost immediately.
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Figure 3.12 Problem 1 averaged eigenfunction estimates during cycles 101-400 for asymmetric
initial fission source without FMC feedback.
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Figure 3.13 Problem 1 averaged eigenfunction estimates during cycles 401-700 for asymmetric
initial fission source without FMC feedback.
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Figure 3.14 Problem 1 averaged eigenfunction estimates during cycles 701-1000 for asymmetric
initial fission source without FMC feedback.
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Figure 3.15 Problem 1 averaged eigenfunction estimates during cycles 1-300 for asymmetric initial
fission source with FMC feedback.
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Figure 3.16 Problem 1 averaged eigenfunction estimates during cycles 1-30 for asymmetric initial
fission source with FMC feedback.
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Figure 3.17 Shannon entropy behavior of the fission source in Problem 1 for asymmetric initial
fission source without FMC feedback.
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Figure 3.18 Shannon entropy behavior of the fission source in Problem 1 for asymmetric initial
fission source with FMC feedback.

Next we consider two related problems, each having two slightly different fissile re-

gions separated and surrounded by an absorbing moderator. The purpose of these problems

is to examine the MC and FMC methods when fissile regions begin to decouple.
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3.2 Monoenergetic Problem 2: Two Separated Fissile Re-
gions

In Problem 2, two nearly identical 5.0 cm wide fissile regions are (i) separated by a

7-cm moderator, and (ii) surrounded by equivalent 5.0-cm moderators. This problem differs

from Problem 1 because there are now two local maxima in the scalar flux (corresponding to

the two separated fissile regions), and the amplitude of the scalar flux at these two maxima

depends sensitively on the problem details (the width and values of νΣ f in the two fissile

regions, the optical distance between the two regions, etc.). The data for this problem is

given in Table 3.5.
Table 3.5 Data for Problem 2.

Region Location Σt Σs,0 Σs,n νΣ f
1 0 < x < 5 1.0 0.856 0.1 0.0
2 5 < x < 10 1.0 0.856 0.1 0.19680
3 10 < x < 17 1.0 0.856 0.1 0.0
4 17 < x < 22 1.0 0.856 0.1 0.19764
5 22 < x < 27 1.0 0.856 0.1 0.0

As in Problem 1, column 5 holds for n = 1,2, and 3, with Σs,n = 0 for n ≥ 4. The

entire system is 27 cm thick. The S32 solution, obtained with h = 0.01, yields k = 0.992429.

The dominance ratio (DR) of this problem is 0.993, which is obtained by using the the

S32 Gauss-Legendre quadrature set with 50 inner iterations. Because of the slight (0.43%)

asymmetry in νΣ f , the SN eigenfunction is asymmetric about the midpoint of the system;

the peak of the eigenfunction in the right (slightly more fissile) region is nearly double that

in the left (slightly less fissile) region. Our Monte Carlo simulations used 100,000 histories

per cycle with a uniform grid h = 0.1.

In Figure 3.19, we show plots obtained by averaging the MC and FMC estimates of the

eigenfunction over cycles 101-200, 201-300, and 301-400. As in Problem 1, the SN and

FMC eigenfunction estimates are virtually coincident. However, the MC eigenfunction does

not converge during the first 400 cycles.
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Figure 3.19 Problem 2 averaged eigenfunction estimates during cycles 101 to 400 without FMC
feedback.
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Figure 3.20 Problem 2 averaged eigenfunctions and their RSDs over 501-1000 cycles.
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Figure 3.20 shows the MC estimates of the eigenfunction, averaged over 500 active

cycles (501-1000), and the estimated apparent relative standard deviations and true relative

standard deviations in the MC, FMC edge, and FMC average scalar fluxes over the cycles.

As in Problem 1, the apparent relative standard deviations are obtained from a single 1000-

cycle (500 inactive cycles, and 500 active cycles) run; the true relative standard deviations

are obtained from 25 independent 1000-cycle runs. The figure shows that the apparent

relative standard deviation in the MC eigenfunction estimate is smaller than the apparent

relative standard deviation in the FMC eigenfunction estimates, but the true relative standard

deviation in the MC eigenfunction estimate is noticeably greater than the relative standard

deviation in the FMC eigenfunction estimates. A detailed comparison between the apparent

relative standard deviation and the true relative standard deviation in the MC, FMC edge,

FMC average eigenfunction estimates is given in Figure 3.21.

Figure 3.22 displays the apparent relative standard deviations and the true relative stan-

dard deviations in the nonlinear functionals E and A, and in the MC, FMC edge, FMC

average scalar fluxes. The figure shows that the MC estimates of the nonlinear functionals E

and A are much more accurate than the direct MC estimates of the eigenfunction, and the

relative standard deviations in the “average” FMC functionals are smaller than the relative

standard deviations in the “edge” functionals.

We show Problem 2 eigenfunction plots for individual cycles 100, 101, and 102 in

Figure 3.23, and eigenfunction plots for individual cycles 500, 501, and 502 in Figure 3.24.

As in Problem 1, the correlations that exist between cycles cause the MC estimate of the

eigenfunction to change slowly from one cycle to the next. Because the eigenfunction is

sensitive to perturbations in the cross sections (a 0.43% change in νΣ f in one region causes

a factor of 2 change in the eigenfunction), the FMC estimates of the eigenfunction show

considerable variation from cycle to cycle.

Figures 3.25-3.26 display information concerning eigenfunction estimates at the 100th,

and 500th cycles. These figures show that the “average” FMC functionals are less noisy than
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Figure 3.21 Comparison for Problem 2 of apparent RSDs and true RSDs in MC, FMC edge, and
FMC average eigenfunction estimates.
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Figure 3.22 Comparison for Problem 2 of apparent RSDs and true RSDs in MC, FMC edge, FMC
average scalar fluxes, and the nonlinear functionals E and A.

the “edge” functionals.

In Table 3.6, we present the estimates of the Problem 2 eigenvalue during each of the

ten 100-cycle spans that we ran. This table shows that estimated relative standard deviations

in the FMC estimates of k are about a factor of 6 smaller than the MC estimates. The true

relative standard deviations in MC, FMC edge, FMC average (obtained by comparing to

the SN estimate) are given in Table 3.7, Table 3.8 and Table 3.9 respectively. From Table

3.7-3.9, we note that these ratios are approximately equal to one. Thus the estimated relative
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Figure 3.23 Problem 2 eigenfunction estimates for cycles 100, 101 to 102.
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Figure 3.24 Problem 2 eigenfunction estimates for cycles 500, 501 to 502.
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Figure 3.25 Problem 2 eigenfunction and nonlinear functional estimates for cycle 100.
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Figure 3.26 Problem 2 eigenfunction and nonlinear functional estimates for cycle 500.
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Figure 3.27 Problem 2 averaged eigenfunction estimates during cycles 1 to 300 with FMC feed-
back.
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standard deviations in k for the MC, FMC edge, FMC average methods can be trusted.

As in Problem 1, we applied the FMC feedback to Problem 2. Figure 3.27 shows the

estimates of the eigenfunction from standard Monte Carlo (MC) with FMC feedback, and

the consequent Functional Monte Carlo (FMC avg). This figure is obtained by averaging

the Monte Carlo estimates of the eigenfunction over 100-cycle spans, i.e. cycles 1-100,

101-200, and 201-300. Again, the Monte Carlo estimates of the eigenfunction with FMC

feedback converge within the first 100-cycle span.

Table 3.6 Estimates of k and its Relative Standard Deviation for Problem 2.

Cycles Standard MC FMC edge FMC average
1-100 0.987194 0.992272 0.992264

(0.0049541) (0.0002106) (0.0001965)
101-200 0.992240 0.992460 0.992441

(0.0003695) (0.0000524) (0.0000626)
201-300 0.993296 0.992540 0.992488

(0.0004312) (0.0000601) (0.0000545)
301-400 0.992658 0.992478 0.992529

( 0.0003634) (0.0000554) (0.0000611)
401-500 0.993024 0.992477 0.992528

(0.0004106) (0.0000580) (0.0000503)
501-600 0.992746 0.992519 0.992460

(0.0004383) (0.0000525) (0.0000552)
601-700 0.992537 0.992527 0.992608

(0.0003638) (0.0000476) (0.0000580)
701-800 0.992988 0.992352 0.992395

(0.0004511) (0.0000554) (0.0000469)
801-900 0.992907 0.992490 0.992478

(0.0004164) (0.0000577) (0.0000594)
901-1000 0.992255 0.992496 0.992491

(0.0003977) (0.0000509) (0.0000532)

With FMC feedback, the estimates of the Problem 2 eigenvalue with their estimated

relative standard deviations over ten 100-cycle spans are given in Table 3.10 for the standard

Monte Carlo and the FMC average methods. We note that with FMC feedback (Table 3.10)
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Table 3.7 MC Estimates of Relative Standard Deviation of k for Problem 2.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0049564 0.0049541 1.0005

101-200 0.0003700 0.0003695 1.0014
201-300 0.0004404 0.0004312 1.0213
301-400 0.0003642 0.0003634 1.0022
401-500 0.0004153 0.0004106 1.0114
501-600 0.0004396 0.0004383 1.0030
601-700 0.0003640 0.0003638 1.0005
701-800 0.0004549 0.0004511 1.0084
801-900 0.0004194 0.0004164 1.0072
901-1000 0.0003980 0.0003977 1.0008

Table 3.8 FMC Edge Estimates of Relative Standard Deviation of k for Problem 2.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0002112 0.0002106 1.0028

101-200 0.0000525 0.0000524 1.0019
201-300 0.0000611 0.0000601 1.0166
301-400 0.0000556 0.0000554 1.0036
401-500 0.0000582 0.0000580 1.0034
501-600 0.0000533 0.0000525 1.0152
601-700 0.0000486 0.0000476 1.0210
701-800 0.0000559 0.0000554 1.0090
801-900 0.0000580 0.0000577 1.0052
901-1000 0.0000514 0.0000509 1.0098

Table 3.9 FMC Average Estimates of Relative Standard Deviation of k for Problem 2.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0001972 0.0001965 1.0036

101-200 0.0000626 0.0000626 1.0000
201-300 0.0000549 0.0000545 1.0073
301-400 0.0000620 0.0000611 1.0147
401-500 0.0000513 0.0000503 1.0199
501-600 0.0000553 0.0000552 1.0018
601-700 0.0000608 0.0000580 1.0483
701-800 0.0000470 0.0000469 1.0021
801-900 0.0000596 0.0000594 1.0034
901-1000 0.0000535 0.0000532 1.0056
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or without feedback (Table 3.6), eigenvalue estimates agree within statistical errors in MC

and FMC.
Table 3.10 Estimates of k and its Relative Standard Deviation for Problem 2 with FMC Feedback.

Cycles Standard MC FMC average
1-100 0.987645 0.992297

(0.0050033) (0.0001963)
101-200 0.992661 0.992496

(0.0004103) (0.0000486)
201-300 0.992969 0.992420

(0.0003614) (0.0000553)
301-400 0.994029 0.992575

(0.0004095) (0.0000601)
401-500 0.992368 0.992550

(0.0003979) (0.0000511)
501-600 0.992851 0.992455

(0.0003831) (0.0000538)
601-700 0.992706 0.992593

(0.0003511) (0.0000565)
701-800 0.993234 0.992494

(0.0003544 ) (0.0000532)
801-900 0.992830 0.992562

(0.0003935) (0.0000508)
901-1000 0.993140 0.992575

(0.0003766) (0.0000537)

The Shannon entropy behavior of the fission source without FMC feedback during

1000 cycles is shown in Figure 3.28. This figure shows that the FMC estimates of the

eigenfunction have considerable variation from cycle to cycle, while the MC estimate of the

eigenfunction changes slowly from one cycle to the next. Figure 3.29 shows the 10-cycle

running average Shannon entropy behavior without FMC feedback. The FMC variations are

now greatly reduced. The Shannon entropy behavior with FMC feedback in every cycle is

shown in Figure 3.30.

As in Problem 1, these figures indicate that the FMC solution has a notably different

character than the MC solution. Figure 3.28 depicts (i) the slow convergence of the MC

fission source to the correct solution, caused by the correlations between sequential fission
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sources. It also depicts (ii) the relatively rapid convergence of the FMC fission source to the

approximate correct solution, but with a much large statistical variance about this solution

than in Problem 1. This larger statistical variation is caused by the eigenfunction’s inherent

sensitivity to small perturbations in the details of the problem. For example, if the 7.0cm

moderator region between the two fissile regions is increased, the problem will inherently

become more sensitive, and the cycle-to-cycle variations in the FMC Shannon entropy will

increase. Figure 3.29 shows that a 10-cycle running average of the eigenfunction yields

nearly an identical MC result as in Figure 3.28, but a FMC result with greatly reduced

statistical variance. This indicates that the relatively large-amplitude statistical variance in

the FMC solution quickly cancels out when averaged over a small number of cycles. Finally,

Figure 3.30 shows that when the MC method is used with FMC feedback, the resulting

Shannon entropy has the same character as that of the FMC Shannon entropy depicted in

Figure 3.28.
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Figure 3.28 Shannon entropy behavior of the fission source for Problem 2 without FMC feedback.
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Figure 3.29 Shannon entropy (10 cycle running average) behavior of the fission source for Problem
2 without FMC feedback.
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Figure 3.30 Shannon entropy behavior of the fission source for Problem 2 with FMC feedback.

3.3 Monoenergetic Problem 3: Two Loosely Coupled Fis-
sile Regions

Problem 3 is similar to but more difficult than Problem 2. The two fissile regions are now

separated by a wider 10 cm absorbing moderator, and now a smaller (0.073%) increase in

νΣ f in the right fissile region yields an eigenfunction with a factor of 2 difference in the
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peaks at the two fissile regions. The data for this problem is given in Table 3.11.
Table 3.11 Data for Problem 3.

Region Location Σt Σs,0 Σs,n νΣ f
1 0 < x < 5 1.0 0.856 0.1 0
2 5 < x < 10 1.0 0.856 0.1 0.19680
3 10 < x < 20 1.0 0.856 0.1 0
4 20 < x < 25 1.0 0.856 0.1 0.196944
5 25 < x < 30 1.0 0.856 0.1 0

Again, column 5 holds for n = 1,2, and 3; with Σs,n = 0 for n≥ 4. The entire system

is 30 cm thick. The S32 solution, obtained with h = 0.01, yielded k = 0.987828. The

dominance ratio for this problem is 0.999. Our Monte Carlo simulations of this problem

used a uniform grid h = 0.1.

In Figure 3.31 we show plots obtained by averaging the MC and FMC estimates of the

eigenfunction over cycles 201-300, 301-400, and 401-500 using 100,000 histories per cycle.

For this problem the two FMC eigenfunction plots are very similar to each other but are not

as close to the SN eigenfunction as they were in Problem 2. However, the errors in the FMC

eigenfunctions (compared to the SN eigenfunction) are smaller than the errors in the MC

eigenfunctions. In Figure 3.32, we show eigenfunction plots for individual cycles 500, 501,

and 502. As in Problem 2, the MC eigenfunction estimate changes slowly from one cycle to

the next, while now the FMC eigenfunction estimates vary more from cycle to cycle than

in Problem 2. This happens because the system is more sensitive to perturbations in the

cross sections than in Problem 2 (now only a 0.073% change in νΣ f in one fissile region

causes a factor of 2 change in the eigenfunction). The Shannon entropy behavior without

FMC feedback during 1000 cycles is shown in Figure 3.33. Again, the figure shows that the

MC eigenfunction estimate changes very slowly from one cycle to the next, while the FMC

eigenfunction estimates vary rapidly from cycle to cycle. The variation in the FMC Shannon

entropy behavior indicates that the eigenfunction can not be trusted. Since Problem 3 is the

most difficult eigenvalue problem with DR nearly equal to one,100,000 histories per cycle is
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simply not sufficient.
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Figure 3.31 Problem 3 averaged eigenfunction estimates during cycles 201 to 500 without FMC
feedback (100k histories/cycle).
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Figure 3.32 Problem 3 eigenfunction estimates for cycles 500, 501 to 502 (100k histories/cycle).
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Figure 3.33 Shannon entropy behavior of the fission source for Problem 3 without FMC feedback
(100k histories/cycle).

In Figure 3.34 we show plots obtained by averaging the MC and FMC estimates of the

eigenfunction over cycles 201-300, 301-400, and 401-500 using 1,000,000 histories per cy-

cle. The figure shows that the FMC estimates are almost converged to the SN eigenfunction,

while the MC estimates are still far from the SN value.

We show eigenfunction plots for cycles 500, 501, and 502 in Figure 3.35. Again, the

MC eigenfunction estimate changes slowly from one cycle to the next, while the FMC

eigenfunction estimates vary significantly from cycle to cycle.

Figure 3.36 shows the MC estimates of the eigenfunction averaged over 500 active

cycles (501-1000), its estimated apparent relative standard deviations, and the true relative

standard deviations in the MC, and FMC average scalar fluxes over the cycles. The apparent

relative standard deviations are obtained from a single 1000-cycle (500 inactive cycles, and

500 active cycles) run. The figure shows that the apparent relative standard deviation in

the MC eigenfunction estimate appears to be smaller than the apparent relative standard

deviation in the FMC eigenfunction estimates, but the true relative standard deviation in the

MC eigenfunction estimate is noticeably greater than the relative standard deviation in the

FMC average eigenfunction estimate as in Problem 2. A detailed comparison between the
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Figure 3.34 Problem 3 averaged eigenfunction estimates during cycles 201 to 500 without FMC
feedback (1 million histories/cycle).
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Figure 3.35 Problem 3 eigenfunction estimates for cycles 500, 501 to 502 (1 million histo-
ries/cycle).
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apparent relative standard deviation and the true relative standard deviation in the MC, FMC

average eigenfunction estimates is given in Figure 3.37.

The Shannon entropy behavior without FMC feedback during 1000 cycles (one million

histories per cycle ) is shown in Figure 3.38. This figure shows that the MC eigenfunction

estimate changes very slowly from one cycle to the next, while the FMC eigenfunction esti-

mates vary from cycle to cycle but with a smaller magnitude compared to that using 100,000

histories per cycle. Figure 3.39 shows the 10-cycle average Shannon entropy behavior. The

variations are greatly reduced.

In Table 3.12 we present the estimates of the Problem 3 eigenvalue during each of the

ten 100-cycle spans that we ran. As in Problem 2, the FMC estimated standard deviations in

k are about a factor of 6 smaller than the MC estimates. The true relative standard deviations

in MC, FMC edge, FMC average (obtained by comparing to the SN estimate) are given in

Table 3.13, Table 3.14 and Table 3.15 respectively. From Table 3.13-3.15, we note that these

ratios are approximately equal to one. Thus the estimated relative standard deviations in k

for the MC, FMC edge, FMC average methods can be trusted.

As in Problem 2, we applied the FMC feedback to Problem 3. The Shannon entropy

behavior with FMC feedback is shown in Figure 3.40. Figure 3.41 shows the estimates of

the eigenfunction from standard Monte Carlo (MC) with FMC feedback, and the conse-

quent Functional Monte Carlo (FMC avg). This figure is obtained by averaging the Monte

Carlo estimates of the eigenfunction over the first three 100-cycle spans. The Monte Carlo

estimates of the eigenfunction with FMC feedback converges within the second 100-cycle

span.

Problems 2 and 3 show that for systems with fissile regions that are becoming weakly-

coupled, FMC estimates of the eigenfunction can vary significantly from one cycle to the

next, and this variation increases as the fissile regions increasingly decouple. This happens

because (i) the eigenfunction in such physical systems becomes increasingly sensititve

to small perturbations in the cross sections, and (ii) the number of Monte Carlo particles
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Figure 3.36 Problem 3 averaged eigenfunctions and their relative standard deviations over 501-
1000 cycles (1 million histories/cycle).
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Figure 3.37 Comparison for Problem 3 of apparent RSDs and true RSDs in MC and FMC average
eigenfunction estimates (1 million histories/cycle).

per cycle must be increased to avoid undersampling of the fission source. However, the

eigenvalues in such systems are much less sensitive than the eigenfunctions, and indeed our

FMC k-eigenvalue estimates for these problems are significantly more accurate than both

the FMC eigenfunction estimates and the MC eigenvalue estimates. We note that a factor

of 6 difference in the FMC and MC statistical errors in k (roughly seen in Problems 2 and

3) translates into a factor of 62 = 36 computation time. That is, the MC code would have

to run about 36 times as many particles or cycles to obtain an accuracy comparable to the
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Figure 3.38 Shannon entropy behavior of the fission source for Problem 3 without FMC feedback
(1 million histories/cycle).

4.2E+00

4.3E+00

4.4E+00

4.5E+00

4.6E+00

4.7E+00

0 200 400 600 800 1000

Cycle

FMC MC

Figure 3.39 Shannon entropy behavior of the fission source for Problem 3 without FMC feedback
(1 million histories/cycle, 10-cycle average).

FMC results.
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Figure 3.40 Shannon entropy behavior of the fission source for Problem 3 with FMC feedback (1
million histories/cycle).

Table 3.12 Estimates of k and its Standard Deviation for Problem 3.

Cycles Standard MC FMC edge FMC average
1-100 0.982371 0.987647 0.987670

(0.0054625) (0.0001993) (0.0001894)
101-200 0.987948 0.987853 0.987877

(0.0001301) (0.0000191) (0.0000204)
201-300 0.988025 0.987864 0.987835

(0.0001428) (0.0000169) (0.0000187)
301-400 0.988036 0.987890 0.987854

(0.0001254) (0.0000169) (0.0000185)
401-500 0.988040 0.987851 0.987877

(0.0001438) (0.0000191) (0.0000179)
501-600 0.988071 0.987839 0.987854

(0.0001288) (0.0000177) (0.0000189)
601-700 0.988042 0.987851 0.987854

(0.0001142) (0.0000185) (0.0000165)
701-800 0.988069 0.987868 0.987821

(0.0001342) (0.0000175) (0.0000165)
801-900 0.988075 0.987851 0.987842

(0.0001187) (0.0000184) (0.0000179)
901-1000 0.988137 0.987864 0.987825

(0.0001294) (0.0000179) (0.0000177)
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Figure 3.41 Problem 3 averaged eigenfunction estimates during cycles 1 to 300 with FMC feed-
back.
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Table 3.13 MC Estimates of Relative Standard Deviation of k for Problem 3.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0054606 0.0054625 0.9997

101-200 0.0001307 0.0001301 1.0046
201-300 0.0001442 0.0001428 1.0098
301-400 0.0001272 0.0001254 1.0144
401-500 0.0001455 0.0001438 1.0118
501-600 0.0001312 0.0001288 1.0186
601-700 0.0001163 0.0001142 1.0184
701-800 0.0001365 0.0001342 1.0171
801-900 0.0001214 0.0001187 1.0227
901-1000 0.0001332 0.0001294 1.0294

Table 3.14 FMC Edge Estimates of Relative Standard Deviation of k for Problem 3.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0002001 0.0001993 1.0040

101-200 0.0000192 0.0000191 1.0052
201-300 0.0000173 0.0000169 1.0237
301-400 0.0000181 0.0000169 1.0710
401-500 0.0000193 0.0000191 1.0105
501-600 0.0000177 0.0000177 1.0000
601-700 0.0000187 0.0000185 1.0108
701-800 0.0000179 0.0000175 1.0229
801-900 0.0000185 0.0000184 1.0054
901-1000 0.0000182 0.0000179 1.0168

Table 3.15 FMC Average Estimates of Relative Standard Deviation of k for Problem 3.

Cycles True Rel. Std. Dev. Apparent Rel. Std. Dev. Ratio
1-100 0.0001901 0.0001894 1.0037

101-200 0.0000210 0.0000204 1.0294
201-300 0.0000187 0.0000187 1.0000
301-400 0.0000187 0.0000185 1.0108
401-500 0.0000186 0.0000179 1.0391
501-600 0.0000191 0.0000189 1.0106
601-700 0.0000167 0.0000165 1.0121
701-800 0.0000165 0.0000165 1.0000
801-900 0.0000180 0.0000179 1.0056
901-1000 0.0000177 0.0000177 1.0000
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3.4 Monoenergetic Problem 4: A 1-D PWR Full Reactor
Core

Problems 1-3 are challenging problems with very high dominance ratios. Problem 4

however is a simplified 1-D PWR full reactor core. This problem was proposed by Professor

Han Gyu Joo and his student Min-Jae Lee from Seoul National University. The core consists

of 17 assemblies, in which 15 are fuel assemblies and 2 are reflectors. There are 4 different

types of fuel assemblies in the core: fresh UO2 fuel, MOX fuel, burnable poison GD fuel,

and sightly low enrichment fresh UO2 fuel. Each assembly consists of 16 pin cells, and

each pin cell consists of 3 regions of 0.425cm in thickness. The detailed core descriptions

are shown in Figures 3.42-3.44. The material cross sections are given in Table 3.16.

R RC C CB B B B B B B B AM M M

Figure 3.42 Problem 4 reactor core configuration.
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Figure 3.43 Problem 4 five different type of assemblies’ layout.
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Figure 3.44 Problem 4 structure of the six pin cells.
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Table 3.16 Material Cross Sections for Problem 4.

Material Description Σt Σa Σs,0 νΣ f
m1 h2O*0.69 1.74712E-01 9.33242E-04 1.73779E-01 0.00000E+00
m2 UO2 3.32736E-01 5.78256E-02 2.74910E-01 3.32433E-02
m3 MOX*0.85 2.82549E-01 6.76607E-02 2.14888E-01 3.60099E-02
m4 UO2BP*0.035 8.58461E-02 4.25733E-02 4.32728E-02 7.73288E-04
m5 UO2L 3.33356E-01 5.78218E-02 2.75534E-01 3.31856E-02
m6 H2O*0.25 7.85602E-02 7.65957E-04 7.77942E-02 0.00000E+00
m7 H2O*0.35 9.01554E-02 5.25823E-04 8.96296E-02 0.00000E+00

We consider isotropic scattering in this problem. Our fine-mesh SN solution, which

used the S32 Gauss-Legendre quadrature set with h = 0.0425cm, produced k = 1.212215

and dominance ratio DR = 0.989. We ran this problem with a flat initial source guess. Our

Monte Carlo simulations used 100,000 histories per cycle with a uniform grid h = 0.425cm

for total 200 cycles.

The Shannon entropy behavior without FMC feedback for the 200 cycles is shown in

Figure 3.45. The figure shows that the FMC estimates of the eigenfunction converge imme-

diately and the Monte Carlo estimates of the eigenfunction appears to be nearly converged

after 20 cycles. This is due to the fact that the reactor is super critical. There are more

fission sites available in each cycle, so that it is easier to establish the correct fission source

distribution than a critical or sub-critical reactor. We also notice that the Shannon entropy

behavior for the Monte Carlo estimates does not stay constant. It slowly ”wobbles” around.

This is due to the fact that Monte Carlo particles are not sufficient to keep the correct fission

source distribution for an asymmetric core configuration. There is more fuel available at

the left side of the core (3rd from left is a fresh UO2 fuel assembly) than the right side (3rd

from right is a low enrichment fresh UO2 fuel assembly).

In Figure 3.46, we show plots of the MC and FMC estimates of the eigenfunction

averaged over cycle 101-200, and the associated estimated relative standard deviations and

true relative standard deviations. The SN and FMC eigenfunction estimates are virtually

coincident. And as expected, the MC eigenfunction is slightly tilted near both ends. The true
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Figure 3.45 Shannon entropy behavior of the fission source for Problem 4 without FMC feedback.

relative standard deviations are obtained from 25 independent 200-cycle runs (100 inactive

cycles, and 100 active cycles). The estimated relative standard deviations (both apparent

and true) in the FMC eigenfunctions are smaller than those of the MC eigenfunction. A

detailed comparison between the apparent relative standard deviation and the true relative

standard deviation in the MC, FMC average eigenfunction estimates is given in Figure 3.47.

This figure shows that the true relative standard deviation is at least a factor of 5 greater than

the apparent relative standard deviation in the MC eigenfunction estimate. Figure 3.47 also

shows that the true relative standard deviations in FMC average eigenfunction estimates

are approximately the same as the apparent relative standard deviations as we observed in

previous problems.

Table 3.17 displays estimates of the eigenvalue and the relative standard deviation for

Problem 4 during each of the two 100-cycle spans that we ran. The results show that the

FMC estimates of k are much more accurate than the MC estimates.

We ran this problem with FMC feedback for 30 cycles. Figure 3.48 is obtained by

averaging the Monte Carlo estimates of the eigenfunction over 10-cycle spans. Figure 3.48

shows that the Monte Carlo estimates of the eigenfunction with FMC feedback converge
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Figure 3.46 Problem 4 averaged eigenfunctions and their relative standard deviations over 101-200
cycles without FMC feedback.
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Figure 3.47 Comparison for Problem 4 of apparent RSDs and true RSDs in MC, and FMC average
eigenfunction estimates.

within the second 10-cycle span. The Shannon entropy behavior with FMC feedback is

shown in Figure 3.49. This figure shows that the MC estimates converge to the correct

fission source distribution once the FMC feedback is applied.
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Figure 3.48 Problem 4 averaged eigenfunction estimates for 30 active cycles with FMC feedback.
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Table 3.17 Estimates of k and its Standard Deviation for Problem 4.

Cycles Standard MC FMC average
1-100 1.211187 1.212480

(0.0009683) (0.0000193)
101-200 1.212105 1.212480

(0.0003376) (0.0000193)
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Figure 3.49 Shannon entropy behavior of the fission source for Problem 4 with FMC feedback.

3.5 Summary of the Mono-energetic Numerical Results

We have tested the FMC method on four problems for which the standard Monte Carlo

method is problematic:

1. Accuracy in the estimates of the eigenvalue and eigenfunction.

2. Source convergence with a flat initial source guess or an extremely asymmetric initial

fission source guess.

3. Inter-cycle correlation.

4. FMC feedback.

As expected, estimates of the eigenvalue and eigenfunction with the FMC method were

more accurate and more rapidly convergent. For a large, homogeneous fissile region prob-

lem, the FMC estimates of the eigenfunction converged within the first 100-cycle averages
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(50,000 histories per cycle) starting with a flat initial source guess. The FMC estimates of

the eigenfunction also converged at the third 100-cycle averages with an extremely asym-

metric initial fission source guess. However, the MC estimates of the eigenfunction did

not converge after a test run with a total of 1000 cycles. Inter-cycle correlation is quite

weak for the FMC method. The true relative standard deviations are about the same as the

apparent relative standard deviations for the FMC method. The apparent relative standard

deviations are more than a factor of 10 smaller than the true relative standard deviations for

the MC method. With FMC feedback, the MC estimates of the eigenfunction converged

after skipping only 20 cycles. We then tested two problems with loosely coupled fissile

regions. The FMC method was shown to be highly efficient relative to the MC method. One

of the heterogeneous problems has a DR = 0.999, which represents a very difficult problem

in source convergence. With FMC feedback (1 million histories per cycle), the MC results

were fully converged after only 100 inactive cycles. Finally, we tested the FMC method for

a simplified 1-D full PWR reactor core. With FMC feedback, the performance of the Monte

Carlo estimates of the eigenfunction improved significantly. The MC estimates converge to

the correct fission source distribution promptly once the FMC feedback is applied.
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Chapter 4

The FMC method for 1-D Multigroup
Energy k-eigenvalue Problems

In this chapter, we extend the one-group FMC method derived in Chapter 2 to multi-

group k-eigenvalue problems. We follow the same basic procedure in developing the

multigroup FMC method as was used for monoenergetic problems, but now there is ad-

ditional complexity because of the occurrence of between-group scattering processes. As

in the monoenergetic case, the resulting multigroup FMC estimates of eigenvalues and

eigenfunctions have only statistical errors. The FMC method has no spatial, angular, or

energy truncation errors, beyond the errors associated with the multigroup approximation.

4.1 Analytical Formulation of the Functional Monte Carlo
Method for the Multigroup k-eigenvalue Problem

To derive the multigroup approximation to the continuous-energy transport equation,

the energy variable E is discretized into G energy groups.

E1 E0 = EmaxEg Eg-1EG-1Emin = EG

(g    energy group)th

{

The general planar-geometry, multigroup, anisotropically-scattering transport equation
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for a k-eigenvalue problem is:

µ
∂ψg

∂x
(x,µ)+Σtg(x)ψg(x,µ) =

G

∑
g′=1

∫ 1

−1
Σs,g′→g(x,µ

′,µ)ψg′(x,µ
′)dµ

′

+
χg(x)

2k

G

∑
g′=1

∫ 1

−1
νΣ f g′(x)ψg′(x,µ

′)dµ
′ , 0 < x < X , 1≤ g≤ G , (4.1a)

ψg(0,µ) = 0 , 0 < µ ≤ 1 , 1≤ g≤ G , (4.1b)

ψg(X ,µ) = 0 , −1≤ µ < 0 , 1≤ g≤ G . (4.1c)

For each energy group g , we have defined the following parameters:

ψg(x,µ) =
∫ Eg+1

Eg

ψ(x,µ,E)dE (4.2a)

= angular flux for the gth energy group ,

χg(x) =
∫ Eg+1

Eg

χ(x,E)dE (4.2b)

= multigroup fission spectrum .

The gth multigroup cross sections in Eq. (4.1a) are defined as neutron-spectrum-weighted

average cross sections over the gth energy range:

Σtg(x) =

∫ Eg+1
Eg

Σt(x)Ψ(x,E)dE∫ Eg+1
Eg

Ψ(x,E)dE
, (4.2c)

Σ f g(x) =

∫ Eg+1
Eg

Σ f (x)Ψ(x,E)dE∫ Eg+1
Eg

Ψ(x,E)dE
, (4.2d)

where Ψ(x,E) is the specified neutron spectrum. In this chapter, we assume that the multi-

group cross sections have been assigned and are fixed, and we develop an FMC method

that solves Eqs. (4.1) with only statistical errors. (Thus, errors due to the multigroup

approximation will be present in the FMC solution.)
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The differential scattering cross section in Eq. (4.1a) can be expanded as a summation

of Legendre polynomials:

Σs,g′→g(x,µ
′,µ) =

∞

∑
n=0

2n+1
2

Σsn,g′→g(x)Pn(µ
′)Pn(µ) . (4.3)

The FMC equations are obtained by calculating certain space-angle moments of Eqs.

(4.1). To begin, we operate on Eq. (4.1a) by
∫ 1
−1 µn(·)dµ for n = 0 and 1. Defining

φgn(x) =
∫ 1
−1 µnψg(x,µ)dµ , we obtain:

dφg1

dx
(x)+Σtg(x)φg0(x) =

G

∑
g′=1

Σs0,g′→g(x)φg′0(x)+
χg

k

G

∑
g′=1

νΣ f g′(x)φg′0(x) , (4.4a)

dφg2

dx
(x)+Σtg(x)φg1(x) =

G

∑
g′=1

Σs1,g′→g(x)φg′1(x) . (4.4b)

Also, we operate on the left boundary condition [Eq. (4.1b)] by
∫ 1

0 µ(·)dµ:

0 =
∫ 1

0
µψg(0,µ)dµ = φg1(0)+

∫ 1

−1
|µ|ψg(0,µ)dµ , (4.4c)

and on the right boundary condition [Eq. (4.1c)] by
∫ 0
−1 µ(·)dµ:

0 =
∫ 0

−1
µψg(X ,µ)dµ = φg1(X)−

∫ 1

−1
|µ|ψg(X ,µ)dµ . (4.4d)

Eq. (4.4b) can be written explicitly as:



dφ12
dx

dφ22
dx
...

dφG2
dx


+



Σt1 0 · · · 0

0 Σt2 · · · 0
...

... . . .

0 0 0 ΣtG





φ11

φ21

...

φG1


=



Σs1,1→1 Σs1,2→1 · · · Σs1,G→1

Σs1,1→2 Σs1,2→2 · · · Σs1,G→2

...
... . . . ...

Σs1,1→G Σs1,2→G · · · Σs1,G→G





φ11

φ21

...

φG1


.

(4.5)
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By rearranging Eq. (4.5), we obtain



dφ12
dx

dφ22
dx
...

dφG2
dx


=−



Σt1−Σs1,1→1 −Σs1,2→1 · · · −Σs1,G→1

−Σs1,1→2 Σt2−Σs1,2→2 · · · −Σs1,G→2

...
... . . . ...

−Σs1,1→G −Σs1,2→G · · · ΣtG−Σs1,G→G





φ11

φ21

...

φG1


. (4.6)

Solving the set of G simultaneous equations Eq. (4.6) for multigroup first moments in terms

of the second moments, we have



φ11

φ21

...

φG1


=−



Σt1−Σs1,1→1 −Σs1,2→1 · · · −Σs1,G→1

−Σs1,1→2 Σt2−Σs1,2→2 · · · −Σs1,G→2

...
... . . . ...

−Σs1,1→G −Σs1,2→G · · · ΣtG−Σs1,G→G



−1

dφ12
dx

dφ22
dx
...

dφG2
dx


. (4.7)

If we define the G×G matrix



D11 D21 · · · DG1

D12 D22 · · · DG2

...
... . . . ...

D1G D2G · · · DGG


=



Σt1−Σs1,1→1 −Σs1,2→1 · · · −Σs1,G→1

−Σs1,1→2 Σt2−Σs1,2→2 · · · −Σs1,G→2

...
... . . . ...

−Σs1,1→G −Σs1,2→G · · · ΣtG−Σs1,G→G



−1

(4.8)

then for each energy group g, the first order moment φg1(x) can be written as:

φg1(x) =−
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
. (4.9)

Using this result to eliminate φg1 from Eqs. (4.4a), (4.4c), and (4.4d), we obtain:

− d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
+Σtgφg0 =

G

∑
g′=1

Σs0,g′→g(x)φg′0(x)+
χg

k

G

∑
g′=1

νΣ f g′(x)φg′0(x) ,

(4.10a)
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G

∑
g′=1

Dg′g(0)
dφg′2(0)

dx
=
∫ 1

−1
|µ|ψg(0,µ)dµ , (4.10b)

G

∑
g′=1

Dg′g(X)
dφg′2(X)

dx
=−

∫ 1

−1
|µ|ψg(X ,µ)dµ . (4.10c)

These angularly-integrated equations are exactly satisfied by the solution to Eqs. (4.1).

To perform the spatial integrations, we define a spatial grid 0 = x1/2 < x3/2 < · · · <

xJ+1/2 = X , and for each grid point x j+1/2 we define the tent functions f (x) = f j+1/2(x) as

in Chapter 2.

For each j, we now perform the operation
∫ X

0 f j+1/2(x)(·)dx on Eq. (4.10a). For the

interior j’s, i.e. for 1≤ j ≤ J−1, we get:

−
∫ X

0
f (x)

d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx+

∫ X

0
f (x)Σtg(x)φg0(x)dx

=
∫ X

0
f (x)

G

∑
g′=1

Σs0,g′→g(x)φg′0(x)dx+
∫ X

0
f (x)

χg

k

G

∑
g′=1

νΣ f g′(x)φg′0(x)dx . (4.11)

Integrating the leakage (first) term by parts, we get:

−
∫ X

0
f (x)

d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−
∫ x j+3/2

x j−1/2

f j+1/2(x)
d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−

[
f j+1/2(x)

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

∣∣∣x j+3/2

x j−1/2
−
∫ x j+3/2

x j−1/2

d f j+1/2(x)
dx

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

]

=
∫ x j+1/2

x j−1/2

1
h j

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx+

∫ x j+3/2

x j+1/2

(− 1
h j+1

)
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

=
G

∑
g′=1

Dg′g, j

h j
[φg′2(x j+1/2)−φg′2(x j−1/2)]−

G

∑
g′=1

Dg′g, j+1

h j+1
[φg′2(x j+3/2)−φg′2(x j+1/2)] .

(4.12)
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Thus, Eq. (4.10a) yields the following result:

G

∑
g′=1

Dg′g, j

h j
[φg′2(x j+1/2)−φg′2(x j−1/2)]−

G

∑
g′=1

Dg′g, j+1

h j+1
[φg′2(x j+3/2)−φg′2(x j+1/2)]

+Σtg, j

∫ x j+1/2

x j−1/2

f−j+1/2(x)φg0(x)dx+Σtg, j+1

∫ x j+3/2

x j+1/2

f +
j+1/2(x)φg0(x)dx

=
G

∑
g′=1

[
Σs0,g′g, j

∫ x j+1/2

x j−1/2

f−j+1/2(x)φg′0(x)dx+Σs0,g′g, j+1

∫ x j+3/2

x j+1/2

f +
j+1/2(x)φg′0(x)dx

]

+
χg

k

G

∑
g′=1

[
νΣ f g′, j

∫ x j+1/2

x j−1/2

f−j+1/2(x)φg′0(x)dx+νΣ f g′, j+1

∫ x j+3/2

x j+1/2

f +
j+1/2(x)φg′0(x)dx

]
.

(4.13)

To define the FMC flux unknowns, we define functions g j+1/2(x) for 0 ≤ j ≤ J. As

before, we consider two sets of such functions; the first set is:

g j+1/2(x) = δ (x− x j+1/2) , 0≤ j ≤ J . (4.14)

The second set is defined by taking x j = (x j+1/2 + x j−1/2)/2 = midpoint of the jth cell and

setting, for j = 0,

g1/2(x) =


2
h1

, x1/2 ≤ x≤ x1

0 , otherwise ,

(4.15a)

for 1≤ j ≤ J−1,

g j+1/2(x) =


2

h j+h j+1
, x j ≤ x≤ x j+1

0 , otherwise ,

(4.15b)

and for j = J,

gJ+1/2(x) =


2
hJ

, xJ ≤ x≤ xJ+1/2

0 , otherwise .

(4.15c)

122



We now use either definition of g j+1/2(x) to define flux quantities:

Φg0(x j+1/2) =
∫ X

0
g j+1/2(x)φg0(x)dx . (4.16)

With Eq. (4.14), Φg0(x j+1/2) is a cell-edge flux at x j+1/2. With Eqs. (4.15), Φg0(x j+1/2) is a

cell-averaged flux between the midpoints of the jth and ( j+1)st cells. With either definition,

Φg0(x j+1/2) can be used to define the nonlinear functionals:

Eg(x j+1/2) =

∫ 1
−1 µ2ψg(x j+1/2,µ)dµ

Φg0(x j+1/2)
0≤ j ≤ J , 1≤ g≤ G , (4.17a)

F−g (x j+1/2) =

∫ x j+1/2
x j−1/2 f−j+1/2(x)φg0(x)dx

Φg0(x j+1/2)
1≤ j ≤ J , 1≤ g≤ G , (4.17b)

F+
g (x j+1/2) =

∫ x j+3/2
x j+1/2 f +

j+1/2(x)φg0(x)dx

Φg0(x j+1/2)
0≤ j ≤ J−1 , 1≤ g≤ G . (4.17c)

We use these functionals to rewrite the interior Eq. (4.13) as:

−
G

∑
g′=1

Dg′g, j

h j
Eg′(x j−1/2)Φg′0(x j−1/2)+

G

∑
g′=1

[
Dg′g, j

h j
+

Dg′g, j+1

h j+1

]
Eg′(x j+1/2)Φg′0(x j+1/2)

−
G

∑
g′=1

Dg′g, j+1

h j+1
Eg′(x j+3/2)Φg′0(x j+3/2)+

[
Σtg, jF−g (x j+1/2)+Σtg, j+1F+

g (x j+1/2)
]

Φg0(x j+1/2)

=
G

∑
g′=1

[
Σs0,g′g, jF

−
g′ (x j+1/2)+Σs0,g′g, j+1F+

g′ (x j+1/2)
]

Φg′0(x j+1/2)

+
χg

k

G

∑
g′=1

[
νΣ f g′, jF

−
g′ (x j+1/2)+νΣ f g′, j+1F+

g′ (x j+1/2)
]

Φg′0(x j+1/2) . (4.18)

It remains to develop similar equations at the boundaries. Similarly, we define the

boundary Eddington factors:

Eb
g(x1/2) =

∫ 1
−1 |µ|ψg(x1/2,µ)dµ

Φg0(x1/2)
, 1≤ g≤ G (4.19a)
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Eb
g(xJ+1/2) =

∫ 1
−1 |µ|ψg(xJ+1/2,µ)dµ

Φg0(xJ+1/2)
, 1≤ g≤ G . (4.19b)

We may rewrite Eqs. (4.10b) and (4.10c) as:

G

∑
g′=1

Dg′g(0)
dφg′2(0)

dx
= Eb

g(0)Φg0(0) , (4.20a)

G

∑
g′=1

Dg′g(X)
dφg′2(X)

dx
= Eb

g(X)Φg0(X) . (4.20b)

For the left boundary ( j = 0), we introduce f1/2(x) = f +
1/2(x) (Eq. (2.22)) into Eq. (4.10a).

Using Eq. (4.17a) and Eq. (4.20a), the leakage term becomes:

−
∫ X

0
f (x)

d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−
∫ x3/2

x1/2

f +
1/2(x)

d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−

[
f +
1/2(x)

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

∣∣∣x3/2

x1/2
−
∫ x3/2

x1/2

d f +
1/2(x)

dx

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

]

=
G

∑
g′=1

Dg′g(x1/2)
dφg′2(x1/2)

dx
+
∫ x3/2

x1/2

(− 1
h1

)
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

= Eb
g(x1/2)Φg0(x1/2)−

G

∑
g′=1

Dg′g,1

h1
[φg′2(x3/2)−φg′2(x1/2)]

= Eb
g(x1/2)Φg0(x1/2)−

G

∑
g′=1

Dg′g,1

h1
[Eg′(x3/2)Φg′0(x3/2)−Eg′(x1/2)Φg′0(x1/2)] . (4.21)

Then Eq. (4.10a) yields the following result:

Eb
g(x1/2)Φg0(x1/2)−

G

∑
g′=1

Dg′g,1

h1
[Eg′(x3/2)Φg′0(x3/2)−Eg′(x1/2)Φg′0(x1/2)]

+Σtg,1F+
g (x1/2)Φg0(x1/2)

=
G

∑
g′=1

Σs0,g′g,1F+
g′ (x1/2)Φg′0(x1/2)+

χg

k

G

∑
g′=1

νΣ f g′,1F+
g′ (x1/2)Φg′0(x1/2) . (4.22)
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For the right boundary j = J, we introduce fJ+1/2(x) = f−J+1/2(x) into Eq. (4.10a). Using

Eq. (4.17b) and Eq. (4.20b), the leakage term becomes:

−
∫ X

0
f (x)

d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−
∫ xJ+1/2

xJ−1/2

f−J+1/2(x)
d
dx

[
G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

]
dx

=−

[
f−J+1/2(x)

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx

∣∣∣xJ+1/2

xJ−1/2
−
∫ xJ+1/2

xJ−1/2

d f−J+1/2(x)

dx

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

]

=
G

∑
g′=1

Dg′g(xJ+1/2)
dφg′2(xJ+1/2)

dx
+
∫ xJ+1/2

xJ−1/2

1
hJ

G

∑
g′=1

Dg′g(x)
dφg′2(x)

dx
dx

= Eb
g(xJ+1/2)Φg0(xJ+1/2)+

G

∑
g′=1

Dg′g,J

hJ
[φg′2(xJ+1/2)−φg′2(xJ−1/2)]

= Eb
g(xJ+1/2)Φg0(xJ+1/2)+

G

∑
g′=1

Dg′g,J

hJ
[Eg′(xJ+1/2)Φg′0(xJ+1/2)−Eg′(xJ−1/2)Φg′0(xJ−1/2)] .

(4.23)

Then Eq. (4.10a) yields the following result:

Eb
g(xJ+1/2)Φg0(xJ+1/2)+

G

∑
g′=1

Dg′g,J

hJ
[Eg′(xJ+1/2)Φg′0(xJ+1/2)−Eg′(xJ−1/2)Φg′0(xJ−1/2)]

+Σtg,JF−g (xJ+1/2)Φg0(xJ+1/2)

=
G

∑
g′=1

Σs0,g′g,JF−g′ (xJ+1/2)Φg′0(xJ+1/2)+
χg

k

G

∑
g′=1

νΣ f g′,JF−g′ (xJ+1/2)Φg′0(xJ+1/2) .

(4.24)

Eqs. (4.18), (4.22) and (4.24) are exactly satisfied by the solution to the original k-eigenvalue

problem. No approximations have been introduced, even though the introduction and use of

a spatial grid may suggest otherwise.

In the FMC method, we use the foregoing equations in the following way:

1. We run a standard Monte Carlo simulation of Eqs. (4.1). The standard Monte Carlo
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estimate of k is obtained by averaging the k for each cycle over all active cycles. We

also tally standard Monte Carlo estimates of the eigenfunctions φg0 for each energy

group.

2. During this standard Monte Carlo run, we also estimate the integrals used in Eqs.

(4.17) and Eqs. (4.19) for each cycle. At the end of each active cycle, the estimated

values of the integrals so obtained are used to estimate the functionals Eg(x j+1/2),

F−g (x j+1/2), F+
g (x j+1/2), Eb

g(x1/2), and Eb
g(xJ+1/2). These values are introduced into

Eqs. (4.18), (4.22) and (4.24), which are then solved to obtain estimates of k and the

space-angle moments of the eigenfunctions Φg0(x j+1/2). [We note that if the values

of the nonlinear functionals are free of statistical errors, the resulting values of k and

Φg0(x j+1/2) will be exact.] The FMC estimate of k is obtained by averaging the k

values from Eqs. (4.18), (4.22) and (4.24) for each cycle over all active cycles.

We note that the basic procedure employed in this chapter is a straightforward general-

ization of the procedure developed previously in Chapter 2 for one-group problems.

4.2 Numerical Results

We consider a homogeneous slab of thickness X = 100 cm surrounded by 5.0-cm

reflectors. We specified four energy groups. The probability that a fission neutron will

be born in energy groups 1 to 4 is taken to be 0.5,0.2,0.2,0.1, respectively. We assume

P3 anisotropic scattering, with both up scattering and down scattering. The differential

scattering cross sections are defined as follows: for each 1 ≤ g,g′ ≤ 4: Σs0,g′→g = 0.21,

Σs1,g′→g = Σs2,g′→g = Σs3,g′→g = 0.03. Other data are listed in Table 4.1.

The Monte Carlo simulation starts with a flat fission source. This problem was run for

410 cycles, using 100,000 histories/cycle. The FMC calculations employed a grid with

h = 0.5 cm. The estimated values of k, with their estimated standard deviations over 5

different ranges of 10 cycles, are given in Table 4.2 for the standard Monte Carlo and the
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Table 4.1 Data for Multi-Group Problem.

Region Location Σt1 Σt2 Σt3 Σt4 Σ f g
1 0 < x < 5 1.05 1.25 1.50 1.75 0
2 5 < x < 105 1.05 1.25 1.50 1.75 0.187
3 105 < x < 110 1.05 1.25 1.50 1.75 0

FMC methods. The fine-mesh (h = 0.05 cm) SN eigenvalue estimate is k = 0.996713.

Also, the eigenfunction estimates for each energy group, averaged over cycles 11-20,

101-110, 201-210,301-310, and 401-410, for the standard Monte Carlo and FMC methods

are shown in Figures 4.1-4.5. For comparison, the SN results are plotted as well.

Table 4.2 Estimates of k and its Relative Standard Deviation for Multi-Group Problem.

Cycles Standard MC FMC Edge FMC Average
11 to 20 0.995486 0.996711 0.996710

(0.0008962) (0.0000009) (0.0000003)
101 to 110 0.996010 0.996709 0.996712

(0.0009095) (0.0000006) (0.0000006)
201 to 210 0.996137 0.996709 0.996711

(0.0012731) (0.0000009) (0.0000006)
301 to 310 0.996661 0.996711 0.996710

(0.0011447) (0.0000006) (0.0000003)
401 to 410 0.996562 0.996710 0.996710

(0.0012978) (0.0000006) (0.0000006)

Figures 4.1-4.5 show that the standard Monte Carlo estimates of φg, averaged over

cycles 11-20, 101-110, 201-210,301-310, and 401-410, are noisier and less accurate than the

corresponding FMC estimates. Overall, the standard Monte Carlo method shows a very slow

“convergence” of the fission source. In fact, the FMC eigenfunction is essentially converged

after only 10 cycles, while the standard Monte Carlo estimate of the eigenfunction shows

evidence of not being converged even after 400 cycles. Moreover, the standard Monte Carlo

flux estimates never fully converge to the exact smooth nearly cosine-shape; these estimates

always “wobble” in a noisy way around this estimate.

The reason for the more rapid and less noisy convergence of the FMC solution is that the
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nonlinear functionals depend only weakly on the estimated eigenfunctions. (However, the

Monte Carlo-estimated surface fluxes exhibit more fluctuation than the cell averaged fluxes,

so the estimates of φg using the FMC “edge” method are slightly noisier than estimates

using the FMC “average” method.)

Table 4.2 shows that the errors in k obtained with the FMC methods are much smaller

than the errors in the standard Monte Carlo estimate of k. The standard Monte Carlo es-

timates are only accurate to the first two digits, while both FMC edge and FMC average

results are accurate to five digits.

We did not pursue the development and testing of the FMC method for multigroup

problems, for following reasons.

1. Although the resulting FMC solutions have no spatial or angular truncation errors, they

have energy-truncation errors resulting from the multigroup approximation. (These

solutions also of course have statistical errors.) It seemed inappropriate to invest effort

into developing a method free of spatial and angular truncation errors, but not free of

energy truncation errors.

2. As can be seen from the results described in this chapter, the FMC method adapted to

multigroup problems is a reasonably straightforward extension of the monoenergetic

FMC method.

For these reasons, we decided instead to generalize the FMC method to continuous-energy

problems in such a way that the resulting solution would have either no or exceedingly small

energy truncation errors. This work is described next.
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Figure 4.1 Estimates of the k-eigenfunction for cycles 11-20.
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Figure 4.2 Estimates of the k-eigenfunction for cycles 101-110.
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Figure 4.3 Estimates of the k-eigenfunction for cycles 201-210.
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Figure 4.4 Estimates of the k-eigenfunction for cycles 301-310.
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Figure 4.5 Estimates of the k-eigenfunction for cycles 401-410.
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Chapter 5

The FMC method for 1-D Continuous
Energy k-Eigenvalue Problems

In this chapter, we extend the FMC method to continuous-energy k-eigenvalue problems.

This is an important step, because energy-varying cross-sections are much more realistic for

practical applications. The continuous-energy approach has several noticeable differences

compared with the monoenergetic and multigroup approaches. The low-order equations that

we derive here are in two forms: (1) the low-order equations are energy-independent, and the

eigenfunction is an energy-integrated scalar flux; (2) the low-order equations are multigroup

in form with two or more groups. Specifically, (a) energy group nonlinear functionals are

estimated using standard Monte Carlo with continuous-energy cross-sections; (b) these

functionals are then used in low-order multigroup equations to estimate the eigenvalue and

the multigroup fluxes. As in the previously-discussed monoenergetic and multigroup cases,

the resulting FMC estimates of the eigenvalue and energy-integrated or multigroup fluxes

have (i) no spatial or angular truncation errors, and (ii) very small energy truncation errors

and statistical errors.

We begin by deriving the low-order energy-integrated equations and discussing a proce-

dure to evaluate the U(x,E) function. We then formulate the low-order multigroup equations,

and accordingly we discuss a procedure to evaluate the multigroup Ug(x,E) function intro-

duced in our method of solution. Finally, a procedure to generate low-order equations with

any number of material discontinuities of cross sections within a spatial cell is presented.
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5.1 Procedure to Generate Low-Order Energy-Integrated
Equations

We consider a general planar-geometry, continuous energy k-eigenvalue problem with

vacuum boundaries

µ
∂ψ

∂x
(x,µ,E)+Σt(x,E)ψ(x,µ,E) =

∫ ∫
Σs(x,µ,µ

′,E ′→ E)ψ(x,µ
′,E ′)dµ

′dE ′

+
χ(x,E)

2k

∫ ∫
νΣ f (x,E ′)ψ(x,µ

′,E ′)dµ
′dE ′, 0 < x < X , (5.1a)

ψ(0,µ,E) = 0 , 0 < µ ≤ 1 , (5.1b)

ψ(X ,µ,E) = 0 , −1≤ µ < 0 , (5.1c)

and with elastic neutron scattering:

Σs(x,µ,µ
′,E ′→ E) =

∞

∑
n=0

2n+1
2

Σsn(x,E ′→ E)Pn(µ)Pn(µ
′) , (5.1d)

Σt(x,E) = Σγ(x,E)+Σ f (x,E)+Σs(x,E) , (5.1e)

Σs(x,E) =
∫

∞

0
Σs0(x,E→ E ′)dE ′ , (5.1f)∫

∞

0
χ(x,E)dE = 1 , (5.1g)

where

Σsn(x,E ′→ E) = 2π

∫ 1

−1
Pn(µ0)Σs(x,µ0,E ′→ E)dµ0

= 2π

∫ 1

−1
Pn(µ0)Σs(x,E ′)P(E ′→ E)

δ (µ0− µ̂0)
2π

dµ0

= Σs(x,E ′)P(E ′→ E)Pn(µ̂0) ,

µ̂0(E ′→ E) =
(

A+1
2

)√
E
E ′
−
(

A−1
2

)√
E ′

E
,

P(E ′→ E) =


1

(1−α)E ′ αE ′ < E < E ′

0 otherwise .
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Our procedure to solve Eqs. (5.1) consists of two principal parts. The first part follows

closely the three-step procedure used earlier to determine and solve the monoenergetic

low-order FMC equations in Section 2.2. However, we now must introduce a function

U(x,E) into these equations to accommodate the continuous-energy feature. The second

part is to show how the function U(x,E) is determined with very small energy truncation

errors. These two parts are presented in Sections 5.1.1 and 5.1.2, respectively.

5.1.1 Low-Order Energy-Integrated Equations (Part 1)

For continuous energy problems, the FMC equations are obtained by calculating certain

space-angle-energy moments of Eqs. (5.1). Following the first step used in the monoen-

ergetic case, we begin by operating on Eq. (5.1a) with
∫ 1
−1 µn(·)dµ for n = 0 and 1. We

define

Φn(x,E) =
∫ 1

−1
µ

n
ψ(x,µ,E)dµ , n = 0,1,2 . (5.2)

For n = 0, we obtain

∂

∂x
Φ1(x,E)+Σt(x,E)Φ0(x,E) =∫

∞

0
Σs0(x,E ′→ E)Φ0(x,E ′)dE ′+

χ(x,E)
k

∫
∞

0
νΣ f (x,E ′)Φ0(x,E ′)dE ′ ; (5.3)

and for n = 1, we obtain

∂

∂x
Φ2(x,E)+Σt(x,E)Φ1(x,E) =

∫
∞

0
Σs1(x,E ′→ E)Φ1(x,E ′)dE ′ . (5.4)

Eqs. (5.3) and (5.4) are two exact equations satisfied by the angular flux moments

Φ0(x,E), Φ1(x,E), and Φ2(x,E). To derive the most efficient low-order equations for the

FMC method, we found it beneficial to eliminate Φ1(x,E) from these equations. Eliminating

Φ1 can be done by introducing a new function U(x,E), which satisfies an infinite-medium ad-

joint transport equation, and which can be determined to arbitrary accuracy at the beginning
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of an FMC calculation. Next, we derive the equation defining U(x,E).

We subtract a term u(x,E)Φ1(x,E) from both side of Eq. (5.4). [The definition of u(x,E)

will be stated below. ]

∂

∂x
Φ2(x,E)+[Σt(x,E)−u(x,E)]Φ1(x,E)=

∫
∞

0
Σs1(x,E ′→E)Φ1(x,E ′)dE ′−u(x,E)Φ1(x,E) .

From the preceding equation, we obtain

Φ1(x,E) =− 1
Σt(x,E)−u(x,E)

∂

∂x
Φ2(x,E)

+
1

Σt(x,E)−u(x,E)

[∫
∞

0
Σs1(x,E ′→ E)Φ1(x,E ′)dE ′−u(x,E)Φ1(x,E)

]
.

(5.5)

Now we define the energy integrals

φn(x) =
∫

∞

0
Φn(x,E)dE , n = 0,1 .

Then, operating on Eq. (5.3) by
∫

∞

0 (·)dE, we get:

d
dx

φ1(x)+
∫

∞

0
Σt(x,E)Φ0(x,E)dE =

∫
∞

0
Σs(x,E ′)Φ0(x,E ′)dE ′

+
1
k

∫
∞

0
νΣ f (x,E ′)Φ0(x,E ′)dE ′ . (5.6)

However,

Σt(x,E) = Σs(x,E)+Σγ(x,E)+Σ f (x,E)

= Σs(x,E)+Σa(x,E) , (5.7)
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so Eq. (5.6) simplifies to

d
dx

φ1(x)+
∫

∞

0
Σa(x,E)Φ0(x,E)dE =

1
k

∫
∞

0
νΣ f (x,E)Φ0(x,E)dE . (5.8)

Also, operating on Eq. (5.5) by
∫

∞

0 (·)dE, we get

φ1(x) =−
∫

∞

0

1
Σt(x,E)−u(x,E)

∂

∂x
Φ2(x,E)dE

+
∫

∞

0

1
Σt(x,E)−u(x,E)

[∫
∞

0
Σs1(x,E ′→ E)Φ1(x,E ′)dE ′−u(x,E)Φ1(x,E)

]
dE .

Interchanging the dummy variables E and E ′, we find

φ1(x) =−
∫

∞

0

1
Σt(x,E)−u(x,E)

∂

∂x
Φ2(x,E)dE

+
∫

∞

0

[∫
∞

0

Σs1(x,E→ E ′)
Σt(x,E ′)−u(x,E ′)

dE ′
]

Φ1(x,E)dE

−
∫

∞

0

u(x,E)
Σt(x,E)−u(x,E)

Φ1(x,E)dE

=−
∫

∞

0

1
Σt(x,E)−u(x,E)

∂

∂x
Φ2(x,E)dE

+
∫

∞

0

[∫
∞

0

Σs1(x,E→ E ′)
Σt(x,E ′)−u(x,E ′)

dE ′− u(x,E)
Σt(x,E)−u(x,E)

]
︸ ︷︷ ︸Φ1(x,E)dE .

Set this term = 0. (5.9)

Now we specify that u(x,E) be chosen to eliminate the Φ1(x,E) term, yielding

∫
∞

0

Σs1(x,E→ E ′)
Σt(x,E ′)−u(x,E ′)

dE ′− u(x,E)
Σt(x,E)−u(x,E)

= 0 ;

or
Σt(x,E)

Σt(x,E)−u(x,E)
−1 =

∫
∞

0

Σs1(x,E→ E ′)
Σt(x,E ′)−u(x,E ′)

dE ′. (5.10)

Defining

U(x,E) =
1

Σt(x,E)−u(x,E)
,
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then Eq. (5.10) can be rewritten as the linear equation

Σt(x,E)U(x,E)−1 =
∫

∞

0
Σs1(x,E→ E ′)U(x,E ′)dE ′ , (5.11)

where U(x,E) satisfies U(x,E) > 0.

In Section 5.1.2, the function U(x,E) is determined so as to satisfy Eq. (5.11). [Note

that if scattering is isotropic, then U(x,E) = Σ
−1
t (x,E) .] Then Eq. (5.9) for φ1(x) becomes

φ1(x) =−
∫

∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE . (5.12)

Substituting Eq. (5.12) for φ1(x) into Eq. (5.8) then gives:

− ∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE +

∫
∞

0
Σa(x,E)Φ0(x,E)dE =

1
k

∫
∞

0
νΣ f (x,E)Φ0(x,E)dE .

(5.13)

Eq. (5.13) for Φ0(x,E) and Φ2(x,E) has been derived from Eqs. (5.3) and (5.4) using

the function U(x,E), which satisfies the infinite-medium adjoint Eq. (5.11). The important

features of Eq. (5.13) are:

1. This equation contains Φ0(x,E) and Φ2(x,E) but not Φ1(x,E). (We have found

that eliminating Φ1 is an important aspect of reducing the statistical errors in FMC

simulations.)

2. The function U(x,E) can be calculated for each material region at the beginning of a

simulation, by applying a very fine energy grid to Eq. (5.11). This calculation only

needs to be done once, and it can be made as accurate as desired by refining the energy

grid.

Eq. (5.13) completes the first step in the method to solve Eq. (5.1).

In step 2, we perform the spatial integrations Eq. (5.13) using the same tent functions

f (x) as were used for monoenergetic problems. Thus, for each j, we perform the operation
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∫ X
0 f j+1/2(x)(·)dx on Eq. (5.13). For j = 0 we obtain

−
∫ x3/2

x1/2

f1/2(x)
∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dEdx+

∫ x3/2

x1/2

f1/2(x)
∫

∞

0
Σa(x,E)Φ0(x,E)dEdx

=
1
k

∫ x3/2

x1/2

f1/2(x)
∫

∞

0
νΣ f (x,E)Φ0(x,E)dEdx . (5.14)

Integrating the first term by parts gives

−
∫ x3/2

x1/2

f1/2(x)
∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE dx

=− f1/2(x)
∫

∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE|x3/2

x1/2−
1
h1

∫ x3/2

x1/2

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

=
∫

∞

0
U(x1/2,E)

∂

∂x
Φ2(x1/2,E)dE− 1

h1

∫ x3/2

x1/2

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

=−φ1(x1/2)−
1
h1

∫
∞

0
U1(E)[Φ2(x3/2,E)−Φ2(x1/2,E)]dE . (5.15)

In Eq. (5.15), we assumed that each spatial cell [x j−1/2,x j+1/2] consists of a single material.

Therefore in the jth cell, U(x,E) = U j(E) independent of x.

From the vacuum boundary condition, we have

φ1(x1/2) =
∫

∞

0

∫ 1

−1
µψ(0,µ,E)dµdE

=
∫

∞

0

[∫ 1

0
µψ(0,µ,E)dµ +

∫ 0

−1
µψ(0,µ,E)dµ

]
dE

=
∫

∞

0

∫ 0

−1
µψ(0,µ,E)dµdE

=−
∫

∞

0

∫ 0

−1
|µ|ψ(0,µ,E)dµdE . (5.16)

Substituting Eq. (5.16) into Eq. (5.15), the first term in Eq. (5.14) can be written

−
∫ x3/2

x1/2

f1/2(x)
∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE dx

=
∫

∞

0

∫ 0

−1
|µ|ψ(0,µ,E)dµdE− 1

h1

∫
∞

0
U1(E)[Φ2(x3/2,E)−Φ2(x1/2,E)]dE . (5.17)
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Thus, for j = 0, Eq. (5.14) becomes

∫
∞

0

∫ 0

−1
|µ|ψ(0,µ,E)dµdE− 1

h1

∫
∞

0
U1(E)[Φ2(x3/2,E)−Φ2(x1/2,E)]dE

+
∫ x3/2

x1/2

f1/2(x)
∫

∞

0
Σa(x,E)Φ0(x,E)dEdx

=
1
k

∫ x3/2

x1/2

f1/2(x)
∫

∞

0
νΣ f (x,E)Φ0(x,E)dEdx . (5.18)

We emphasize that this equation is exact; no approximations were introduced to derive it.

For the interior j’s, i.e. for 1≤ j ≤ J−1, we find

−
∫ x j+3/2

x j−1/2

f j+1/2(x)
∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dEdx

+
∫ x j+3/2

x j−1/2

f j+1/2(x)
∫

∞

0
Σa(x,E)Φ0(x,E)dEdx

=
1
k

∫ x j+3/2

x j−1/2

f j+1/2(x)
∫

∞

0
νΣ f (x,E)Φ0(x,E)dEdx . (5.19)

Integrating the first term of Eq. (5.19) by parts, we get

−
∫ x j+3/2

x j−1/2

f j+1/2(x)
[

∂

∂x

∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

]
dx

=
∫ x j+3/2

x j−1/2

d
dx

f j+1/2(x)
[∫

∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

]
dx

=
∫ x j+1/2

x j−1/2

1
h j

[∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

]
dx

−
∫ x j+3/2

x j+1/2

1
h j+1

[∫
∞

0
U(x,E)

∂

∂x
Φ2(x,E)dE

]
dx

=
1
h j

∫
∞

0
U j(E)

[
Φ2(x j+1/2,E)−Φ2(x j−1/2,E)

]
dE

− 1
h j+1

∫
∞

0
U j+1(E)

[
Φ2(x j+3/2,E)−Φ2(x j+1/2,E)

]
dE . (5.20)
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Substituting Eq. (5.20) into Eq. (5.19) then leads to

1
h j

∫
∞

0
U j(E)

[
Φ2(x j+1/2,E)−Φ2(x j−1/2,E)

]
dE

− 1
h j+1

∫
∞

0
U j+1(E)

[
Φ2(x j+3/2,E)−Φ2(x j+1/2,E)

]
dE

+
∫ x j+3/2

x j−1/2

f j+1/2(x)
∫

∞

0
Σa(x,E)Φ0(x,E)dEdx

=
1
k

∫ x j+3/2

x j−1/2

f j+1/2(x)
∫

∞

0
νΣ f (x,E)Φ0(x,E)dEdx . (5.21)

These equations also are exact.

For j = J, following similar steps as for j = 0, we obtain another exact equation:

∫
∞

0

∫ 1

0
µψ(xJ+1/2,µ,E)dµdE

+
1
hJ

∫
∞

0
UJ(E)[Φ2(xJ+1/2,E)−Φ2(xJ−1/2,E)]dE

+
∫ xJ+1/2

xJ−1/2

fJ+1/2(x)
∫

∞

0
Σa(x,E)Φ0(x,E)dEdx

=
1
k

∫ xJ+1/2

xJ−1/2

fJ+1/2(x)
∫

∞

0
νΣ f (x,E)Φ0(x,E)dEdx . (5.22)

We have now obtained a system of J +1 discrete equations, Eqs. (5.18), (5.21) and (5.22),

which are exactly satisfied by the solution ψ(x,µ,E) and k of Eqs. (5.1). This completes

the second step in the method to solve Eqs. (5.1).

In the third step, we use Eqs. (5.18), (5.21) and (5.22) to define energy-integrated

nonlinear functionals. [These functionals are then used in energy-independent low-order

equations derived from Eqs. (5.18), (5.21) and (5.22) to estimate the eigenvalue and the

energy-integrated flux.]

We first define volume-averaged fluxes as in the monoenergetic case [15]

φ̄(x j+1/2) =
∫ x j+3/2

x j−1/2

g j+1/2(x)φ0(x)dx . (5.23)
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Next, we multiply and divide each term in Eqs. (5.18), (5.21), and (5.22) by a suitable

volume-averaged flux defined by Eq. (5.23). This gives the following equivalent set of J +1

equations:

[( ∫
∞

0
∫ 0
−1 |µ|ψ(0,µ,E)dµdE∫

∞

0
∫ x3/2

x1/2 g1/2(x)Φ0(x,E)dxdE

)
+

(∫ x3/2
x1/2 f1/2(x)

∫
∞

0 Σa(x,E)Φ0(x,E)dEdx∫
∞

0
∫ x3/2

x1/2 g1/2(x)Φ0(x,E)dxdE

)

+
1
h1

( ∫
∞

0 U1(E)Φ2(x1/2,E)dE∫
∞

0
∫ x3/2

x1/2 g1/2(x)Φ0(x,E)dxdE

)]
φ̄(x1/2)−

1
h1

( ∫
∞

0 U1(E)Φ2(x3/2,E)dE∫
∞

0
∫ x5/2

x1/2 g3/2(x)Φ0(x,E)dxdE

)
φ̄(x3/2)

=
1
k

(∫ x3/2
x1/2 f1/2(x)

∫
∞

0 νΣ f (x,E)Φ0(x,E)dEdx∫
∞

0
∫ x3/2

x1/2 g1/2(x)Φ0(x,E)dxdE

)
φ̄(x1/2) , (5.24a)

− 1
h j

( ∫
∞

0 U j(E)Φ2(x j−1/2,E)dE∫
∞

0
∫ x j+1/2

x j−3/2 g j−1/2(x)Φ0(x,E)dx dE

)
φ̄(x j−1/2)

+

[
1
h j

( ∫
∞

0 U j(E)Φ2(x j+1/2,E)dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE

)
+

1
h j+1

( ∫
∞

0 U j+1(E)Φ2(x j+1/2,E)dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2Φ0(x,E)dx dE

)

+

(∫ x j+3/2
x j−1/2 f j+1/2(x)

∫
∞

0 Σa(x,E)Φ0(x,E)dx dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE

)]
φ̄(x j+1/2)

− 1
h j+1

( ∫
∞

0 U j+1(E)Φ2(x j+3/2,E)dE∫
∞

0
∫ x j+5/2

x j+1/2 g j+3/2Φ0(x,E)dx dE

)
φ̄(x j+3/2)

=
1
k

(∫ x j+3/2
x j−1/2 f j+1/2(x)

∫
∞

0 νΣ f (x,E)Φ0(x,E)dx dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE

)
φ̄(x j+1/2), 1≤ j ≤ J−1 ,

(5.24b)
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− 1
hJ

( ∫
∞

0 UJ(E)Φ2(xJ−1/2,E)dE∫
∞

0
∫ xJ+1/2

xJ−3/2 gJ−1/2(x)Φ0(x,E)dxdE

)
φ̄(xJ−1/2)[( ∫

∞

0
∫ 1

0 µψ(xJ+1/2,µ,E)dµdE∫
∞

0
∫ xJ+1/2

xJ−1/2 gJ+1/2(x)Φ0(x,E)dxdE

)
+

(∫ xJ+1/2
xJ−1/2 fJ+1/2(x)

∫
∞

0 Σa(x,E)Φ0(x,E)dEdx∫
∞

0
∫ xJ+1/2

xJ−1/2 gJ+1/2(x)Φ0(x,E)dxdE

)

+
1
hJ

( ∫
∞

0 UJ(E)Φ2(xJ+1/2,E)dE∫
∞

0
∫ xJ+1/2

xJ−1/2 gJ+1/2(x)Φ0(x,E)dxdE

)]
φ̄(xJ+1/2)

=
1
k

(∫ xJ+1/2
xJ−1/2 fJ+1/2(x)

∫
∞

0 νΣ f (x,E)Φ0(x,E)dEdx∫
∞

0
∫ xJ+1/2

xJ−1/2 gJ+1/2(x)Φ0(x,E)dxdE

)
φ̄(xJ+1/2) . (5.24c)

We simplify the foregoing equations by defining the following energy-integrated nonlinear

functionals:

B1/2 =
∫

∞

0
∫ 0
−1 |µ|ψ(0,µ,E)dµdE∫

∞

0
∫ x3/2

x1/2 g1/2(x)Φ0(x,E)dxdE
, (5.25a)

BJ+1/2 =

∫
∞

0
∫ 1

0 µψ(xJ+1/2,µ,E)dµdE∫
∞

0
∫ xJ+1/2

xJ−1/2 gJ+1/2(x)Φ0(x,E)dxdE
, (5.25b)

Fj+1/2 =

∫ x j+3/2
x j−1/2 f j+1/2(x)

∫
∞

0 νΣ f (x,E)Φ0(x,E)dE dx∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE
, (5.25c)

A j+1/2 =

∫ x j+3/2
x j−1/2 f j+1/2(x)

∫
∞

0 Σa(x,E)Φ0(x,E)dx dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dE dx
, (5.25d)

UL
j+1/2 =

∫
∞

0 U j+1(E)Φ2(x j+1/2,E)dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE
, (5.25e)

UR
j+1/2 =

∫
∞

0 U j(E)Φ2(x j+1/2,E)dE∫
∞

0
∫ x j+3/2

x j−1/2 g j+1/2(x)Φ0(x,E)dx dE
. (5.25f)

Then, in terms of the functionals in Eq. (5.25), Eqs. (5.24) may be written:

[
B1/2 +A1/2 +

1
h1

UL
1/2

]
φ̄(x1/2)−

1
h1

UR
3/2φ̄(x3/2) =

1
k

F1/2φ̄(x1/2) , (5.26a)
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− 1
h j

UL
j−1/2φ̄(x j−1/2)+

[
1
h j

UR
j+1/2 +

1
h j+1

UL
j+1/2 +A j+1/2

]
φ̄(x j+1/2)

− 1
h j+1

UR
j+3/2φ̄(x j+3/2) =

1
k

Fj+1/2φ̄(x j+1/2), 1≤ j ≤ J−1 ,

(5.26b)

− 1
hJ

UL
J−1/2φ̄(xJ−1/2)+

[
BJ+1/2 +AJ+1/2 +

1
hJ

UR
J+1/2

]
φ̄(xJ+1/2) =

1
k

FJ+1/2φ̄(xJ+1/2) .

(5.26c)

The functionals in these equations can be evaluated using the standard Monte Carlo method.

Once they are obtained, Eqs. (5.24) then become energy-independent, low-order equations

which can be used to estimate the k-eigenvalue and the energy-integrated volume-averaged

scalar fluxes φ̄ j+1/2. This concludes the step 3 of Part 1 of our method to solve Eqs. (5.1).

Remark: At this point, we wish to point out that other approaches are possible in

deriving low-order FMC equations from Eqs. (5.3) and (5.4). For example, one can write

Eq. (5.4) as

∂

∂x
Φ2(x,E)+Σtr(x,E)Φ1(x,E) =

∫
∞

0
Σs1(x,E ′→ E)Φ1(x,E ′)dE ′−Σs1(x,E)Φ1(x,E)

≡ LΦ1(x,E) .

This gives:

Φ1(x,E) =− 1
Σtr(x,E)

[
∂

∂x
Φ2(x,E)−LΦ1(x,E)

]
.

Introducing this result into Eq. (5.3), we obtain

− ∂

∂x
1

Σtr(x,E)
∂

∂x
Φ2(x,E)+Σt(x,E)Φ0(x,E) =

∫
∞

0
Σs0(x,E ′→ E)Φ0(x,E ′)dE ′

+
χ(x,E)

k

∫
∞

0
νΣ f (x,E ′)Φ0(x,E ′)dE ′− ∂

∂x
1

Σtr(x,E)
LΦ1(x,E) . (5.27)

We attempted to develop an FMC method for Eq. (5.27), by using the same techniques

described above for Eq. (5.13). Unfortunately, numerical tests showed that this approach
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was not as efficient as the approach described in detail in Eqs. (5.14)- (5.26). Our experience

has indicated that eliminating Φ1(x,E) by using the U-function is an important step in

developing an efficient FMC method.

It remains to determine U(x,E) [Part 2 of our procedure to solve Eqs. (5.1)]. A numerical

procedure to accomplish this is described next.

5.1.2 Procedure for Evaluating U(x,E) (Part 2)

We recall from Section 5.1.1, Eq. (5.11), that U(x,E) satisfies the following adjoint

equation:

Σt(x,E)U(x,E)−
∫

∞

0
Σs1(x,E→ E ′)U(x,E ′)dE ′ = 1 . (5.28)

We introduce the scattering ratio

C(x,E) =
Σs(x,E)
Σt(x,E)

,

and note that

Σs1(x,E→ E ′) = Σs(x,E)P(E→ E ′)µ̂(E→ E ′) .

Thus, Eq. (5.28) can be rewritten as

U(x,E)−C(x,E)
∫

∞

0
P(E→ E ′)µ̂(E→ E ′)U(x,E ′)dE ′ =

1
Σt(x,E)

. (5.29)

Eq. (5.29) cannot be solved analytically, so we proceed to solve it numerically. To do

this, we take account of down-scattering only. Energy grids 1≤ l ≤ L can be specified at

arbitrary intervals as shown in Figure 5.1. For simplicity, we assume that the edges of the

energy grid satisfy the condition El+m+1 = αEl , which means that a neutron with energy El

can scatter into its own energy group and the following m neighboring energy groups.
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E2 E1 = EmaxEl+1 ElEL-1Emin = EL

(l    energy group)th

{

Figure 5.1 The energy grid.

For each energy El , Eq. (5.29) can be written as

U(x,El)−C(x,El)
∫ El

αEl

P(El → E ′)µ̂(El → E ′)U(x,E ′)dE ′ =
1

Σt(x,El)
. (5.30)

Substituting the following expression for µ̂0(El → E ′) and P(El → E ′):

µ̂0(El → E ′) =
(

A+1
2

)√
E ′

El
−
(

A−1
2

)√
El

E ′
,

P(El → E ′) =


1

(1−α)El
αEl < E < El

0 otherwise ,

Eq. (5.30) becomes

U(x,El)−C(x,El)
∫ El

αEl

1
(1−α)El

[
A+1

2

√
E ′

El
− A−1

2

√
El

E ′

]
U(x,E ′)dE ′ =

1
Σt(x,El)

,

or

U(x,El)−
C(x,El)

(1−α)El

[
A+1
2
√

El

∫ El

αEl

√
E ′U(x,E ′)dE ′

−(A−1)
√

El

2

∫ El

αEl

1√
E ′

U(x,E ′)dE ′
]

=
1

Σt(x,El)
. (5.31)

Here we make an approximation. We assume that for El+1 ≤ E ≤ El , U(x,E) is a linear
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interpolation of U(x,El) and U(x,El+1), i.e.

U(E)∼=
Ul−Ul+1

El−El+1
E +

Ul+1El−UlEl+1

El−El+1

=
Ul−Ul+1

∆El
E +

Ul+1El−UlEl+1

∆El
, (5.32)

where for simplicity, we denote U(x,El) = Ul . This linear interpolation will generate a small

truncation error in U(x,E). Using Eq. (5.32), we evaluate the two energy integrals in Eq.

(5.31) as:

∫ El

αEl

√
E ′U(x,E ′)dE ′ =

∫ El

El+m+1

√
E ′U(x,E ′)dE ′

=
l+m

∑
l′=l

∫ El′

El′+1

√
E ′
[

Ul′−Ul′+1

∆El′
E ′+

Ul′+1El′−Ul′El′+1

∆El′

]
dE ′

=
l+m

∑
l′=l

{[
2

5∆El′
(E

5
2
l′ −E

5
2
l′+1)−

2El′+1

3∆El′
(E

3
2
l′ −E

3
2
l′+1)

]
Ul′

+
[
− 2

5∆El′
(E

5
2
l′ −E

5
2
l′+1)+

2El′

3∆El′
(E

3
2
l′ −E

3
2
l′+1)

]
Ul′+1

}
=

l+m+1

∑
l′=l

Rl′Ul′ , (5.33)

where

Rl =
2

5∆El
(E

5
2
l −E

5
2
l+1)−

2El+1

3∆El
(E

3
2
l −E

3
2
l+1) ,

Rl+i = − 2
5∆El+i−1

(E
5
2
l+i−1−E

5
2
l+i)+

2El+i−1

3∆El+i−1
(E

3
2
l+i−1−E

3
2
l+i)

+
2

5∆El+i
(E

5
2
l+i−E

5
2
l+i+1)−

2El+i+1

3∆El+i
(E

3
2
l+i−E

3
2
l+i+1) , 1≤ i≤ m

Rl+m+1 = − 2
5∆El+m

(E
5
2
l+m−E

5
2
l+m+1)+

2El+m

3∆El+m
(E

3
2
l+m−E

3
2
l+m+1) ,
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and

∫ El

αEl

1√
E ′

U(x,E ′)dE ′ =
∫ El

El+m+1

1√
E ′

U(x,E ′)dE ′

=
l+m

∑
l′=l

∫ El′

El′+1

1√
E ′

[
Ul′−Ul′+1

∆El′
E ′+

Ul′+1El′−Ul′El′+1

∆El′

]
dE ′

=
l+m

∑
l′=l

{[
2

3∆El′
(E

3
2
l′ −E

3
2
l′+1)−

2El′+1

∆El′
(E

1
2
l′ −E

1
2
l′+1)

]
Ul′

+
[
− 2

3∆El′
(E

3
2
l′ −E

3
2
l′+1)+

2El′

∆El′
(E

1
2
l′ −E

1
2
l′+1)

]
Ul′+1

}
=

l+m+1

∑
l′=l

Sl′Ul′ , (5.34)

where

Sl =
2

3∆El
(E

3
2
l −E

3
2
l+1)−

2El+1

∆El
(E

1
2
l −E

1
2
l+1) ,

Sl+i = − 2
3∆El+i−1

(E
3
2
l+i−1−E

3
2
l+i)+

2El+i−1

∆El+i−1
(E

1
2
l+i−1−E

1
2
l+i)

+
2

3∆El+i
(E

3
2
l+i−E

3
2
l+i+1)−

2El+i+1

∆El+i
(E

1
2
l+i−E

1
2
l+i+1) , 1≤ i≤ m

Sl+m+1 = − 2
3∆El+m

(E
3
2
l+m−E

3
2
l+m+1)+

2El+m

∆El+m
(E

1
2
l+m−E

1
2
l+m+1) .

Next,we rewrite Eq. ( 5.31) as

Ul−
Cl(A+1)

2(1−α)E
3
2
l︸ ︷︷ ︸

Hl

∫ El

αEl

√
E ′U(x,E ′)dE ′+

Cl(A−1)
2(1−α)

√
El︸ ︷︷ ︸

Il

∫ El

αEl

1√
E ′

U(x,E ′)dE ′

=
1

Σt(x,El)
.

Using the indicated definitions of Hl and Il , and substituting the integral expressions Eqs.
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(5.33) and (5.34), we find

Ul−Hl
[ l+m+1

∑
l′=l

Rl′Ul′
]
+ Il
[ l+m+1

∑
l′=l

Sl′Ul′
]
=

1
Σt(x,El)

,

or

[1−HlRl + IlSl]Ul +
l+m

∑
l′=l

[−H ′l Rl′+1 + I′l Sl′+1]Ul′+1 =
1

Σt(x,El)
, (5.35)

where:

Hl =
Cl(A+1)

2(1−α)E
3
2
l

=
(A+1)

2(1−α)E
3
2
l

Σs(x,El)
Σt(x,El)

,

Il =
Cl(A−1)

2(1−α)E
1
2
l

=
(A−1)

2(1−α)E
1
2
l

Σs(x,El)
Σt(x,El)

.

Using the expressions stated for the coefficients, we now solve the set of linear Eqs.

(5.35) for values of U(x,El) over the entire energy grid. For this purpose, we assume the

first m + 1 values U(x,EL), U(x,EL−1), · · · ,U(x,EL−m) to be equal to one another. The

value of U(x,El) so obtained can then be used to generate, by linear interpolation, all values

of U(x,E) required to solve Eq. (5.26).

The calculation of U(x,E) only needs to be done once, in each material region, at the

start of calculation. Also, U(x,E) can be calculated as accurately as desired by taking the

energy grid sufficiently fine. We assume that U(x,E) has been calculated to an accuracy

comparable to the accuracy of Σs(Ω′ ·Ω,E ′→ E).

5.2 Procedure to Generate Low-Order Multigroup Equa-
tions

For many problems encountered in practical nuclear reactor design, the energy-

integrated scalar flux is not adequate; multigroup fluxes are more desirable. In this section,

we extend the FMC method in the following ways: (a) Energy group nonlinear functionals
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are estimated using standard Monte Carlo with continuous-energy cross-sections; (b) These

functionals are then used in low-order multigroup equations to estimate the eigenvalue and

the multigroup fluxes. As in the case of energy-integrated flux, the resulting FMC estimates

of eigenvalue and multigroup fluxes have very small energy truncation errors and statistical

errors. Furthermore, the FMC method has no spatial or angular truncation errors.

5.2.1 Low-Order Multigroup Equations

The procedure to obtain the low-order multigroup equations from Eq. (5.1) follows

closely the three-step procedure used earlier to solve the energy-integrated low-order FMC

equations in Section 5.1.1. These three steps are presented as follows.

In the first step, we take the zeroth and first angular moments of Eq. (5.1) by operating

on Eq. (5.1a) with
∫ 1
−1 µn(·)dµ for n = 0 and 1. We define

Φn(x,E) =
∫ 1

−1
µ

n
ψ(x,µ,E)dµ , n = 0,1,2 .

For n = 0, we obtain

∂

∂x
Φ1(x,E)+Σt(x,E)Φ0(x,E) =∫

∞

0
Σs0(x,E ′→ E)Φ0(x,E ′)dE ′+

χ(x,E)
k

∫
∞

0
νΣ f (x,E ′)Φ0(x,E ′)dE ′ ; (5.36)

and for n = 1, we have

∂

∂x
Φ2(x,E)+Σt(x,E)Φ1(x,E) =

∫
∞

0
Σs1(x,E ′→ E)Φ1(x,E ′)dE ′ . (5.37)

To obtain the multigroup fluxes, we first define an energy group structure as shown in Figure

5.2:

[Note that this energy grid is not necessarily related to the energy grid described previously

for calculating U(x,E); see Figure 5.1.]
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E1 E0 = EmaxEg Eg-1EG-1Emin = EG

(g    energy group)th

{

Figure 5.2 The energy group structure.

Next, we define the “characteristic” functions χ̂g(E) for each gth energy group as:

χ̂g(E) =


1 Eg < E < Eg−1

0 otherwise ,

(5.38)

and we define multigroup functions Ug(x,E) that satisfy the following adjoint equations:

Σt(x,E)Ug(x,E)−
∫

∞

0
Σs1(x,E→ E ′)Ug(x,E ′)dE ′ = χ̂g(E), 0 < E < ∞ . (5.39)

The multigroup functions Ug(x,E) are used to eliminate the first-order moment Φ1(x,E) in

Eqs.(5.36) and (5.37). Eq.(5.39) for Ug(x,E) cannot be solved analytically. A small energy

truncation error in Ug(x,E) will be generated when we solve it numerically in the following

Section 5.2.2.

To proceed, we operate on Eq.(5.36) by

∫
∞

0
χ̂g(E)(·)dE =

∫ Eg−1

Eg

(·)dE ,
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and get

∂

∂x

∫ Eg−1

Eg

φ1(x,E)dE +
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dE =∫
∞

0

[∫ Eg−1

Eg

Σs0(x,E ′→ E)dE
]

φ0(x,E ′)dE ′

+
χg(x)

k

∫
∞

0
νΣ f (x,E ′)φ0(x,E ′)dE ′ , (5.40)

where χg(x) =
∫ Eg−1

Eg
χ(x,E)dE. Next, we operate on Eq.(5.37) by

∫
∞

0 Ug(x,E)(·)dE, and

get

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dE

=
∫

∞

0
Ug(x,E)

[∫
∞

0
Σs1(x,E ′→ E)φ1(x,E ′)dE ′−Σt(x,E)φ1(x,E)

]
dE

=
∫

∞

0

[∫
∞

0
Σs1(x,E→ E ′)Ug(x,E ′)dE ′

]
φ1(x,E)dE−

∫
∞

0
Ug(x,E)Σt(x,E)φ1(x,E)dE

=
∫

∞

0

[∫
∞

0
Σs1(x,E→ E ′)Ug(x,E ′)dE ′−Σt(x,E)Ug(x,E)

]
φ1(x,E)dE

=−
∫

∞

0
χ̂g(E)φ1(x,E)dE = −

∫ Eg−1

Eg

φ1(x,E)dE . (5.41)

Substituting Eq.(5.41) into Eq.(5.40) then gives the following identities, which are exactly

satisfied by the solution of Eq.(5.1):

− ∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dE +

∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dE

=
G

∑
g′=1

∫ Eg′−1

Eg′

[∫ Eg−1

Eg

Σs0(x,E ′→ E)dE
]

φ0(x,E ′)dE ′

+
χg(x)

k

G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′ , 1≤ g≤ G . (5.42)

To proceed, we consider elastic down-scattering only. Thus, the integral in square brackets

in Eq.(5.42) may be evaluated explicitly as shown below.
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For elastic scattering, we have Σs0(x,E ′→ E) = Σs0(x,E ′)p(E ′→ E), where

p(E ′→ E) =


1

(1−α)E ′ αE ′ < E < E ′

0 otherwise .

(5.43)

Then we define for each energy group:

Σs0,g(x,E ′) =
∫ Eg−1

Eg

Σs0(x,E ′→ E)dE

=
∫ Eg−1

Eg

Σs0(x,E ′)p(E ′→ E)dE

= Σs0(x,E ′)
∫ Eg−1

Eg

p(E ′→ E)dE ,

which leads to

Σs0,g(x,E ′) =
Σs(x,E ′)
(1−α)E ′

Qg(E ′), (5.44)

where

Qg(E ′) =



0 Eg−1 < αE ′ (Case A)

Eg−1−αE ′ Eg < αE ′ < Eg−1 < E ′ (Case B)

Eg−1−Eg αE ′ < Eg < Eg−1 < E ′ (Case C)

E ′−αE ′ Eg < αE ′ < E ′ < Eg−1 (Case D)

E ′−Eg αE ′ < Eg < E ′ < Eg−1 (Case E)

0 E ′ < Eg (Case F) .
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Eq.(5.44) then gives for these cases:

For Case =



(A), Σs0,g(x,E ′) = 0

(B), Σs0,g(x,E ′) = Σs(E ′)
(1−α)E ′ (Eg−1−αE ′)

(C), Σs0,g(x,E ′) = Σs(E ′)
(1−α)E ′ (Eg−1−Eg)

(D), Σs0,g(x,E ′) = Σs(E ′)
(1−α)E ′ (E

′−αE ′) = Σs(E ′)

(E), Σs0,g(x,E ′) = Σs(E ′)
(1−α)E ′ (E

′−Eg)

(F), Σs0,g(x,E ′) = 0

Substituting Eq.(5.44) into Eq.(5.42), we get:

− ∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dE +

∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dE

=
G

∑
g′=1

∫ Eg′−1

Eg′

Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dE ′

+
χg(x)

k

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
,1≤ g≤ G . (5.45)

If Ug(x,E) is exact, then Eq.(5.45) is satisfied exactly by the solution ψ(x,µ,E) of the

continuous-energy transport equation (5.1a). Eq.(5.45) completes the first step.

Steps 2 and 3 follow closely the derivation in Section 5.1.1. In the following, we only

give highlights from these steps.

We define a spatial grid 0 = x1/2 < x3/2 . . . < xJ+1/2 = X . For each grid point x j+1/2,

we define the same tent functions f j+1/2(x) as were used in the energy-integrated flux case.

For each j we now perform the operation
∫ X

0 f j+1/2(x)(·)dx on Eq. (5.45).
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For j = 0 we obtain:

−
∫ x3/2

x1/2

f1/2(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

+
∫ x3/2

x1/2

f1/2(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x3/2

x1/2

f1/2(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x3/2

x1/2

f1/2(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.46)

Following the exact same steps as in the energy-integrated flux case, Eq.(5.46) becomes

∫ Eg−1

Eg

∫ 0

−1
|µ|ψ(0,µ,E)dµ dE +

1
h1

∫
∞

0
Ug(x1,E)φ2(x1/2,E)dE

− 1
h1

∫
∞

0
Ug(x1,E)φ2(x3/2,E)dE +

∫ x3/2

x1/2

f1/2(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dE dx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x3/2

x1/2

f1/2(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x3/2

x1/2

f1/2(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.47)

Next, we define cell-averaged fluxes as in the monoenergetic case:

φ̄g(x j+1/2) =
∫ Eg−1

Eg

∫ x j+3/2

x j−1/2

g j+1/2(x)φ0(x,E)dxdE .

We multiply and divide each term in Eq.(5.47) by a suitable cell-averaged flux. The j = 0

case may be written
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 ∫ Eg−1
Eg

∫ 0
−1 |µ|ψ(0,µ,E)dµ dE∫ Eg−1

Eg

∫ x3/2
x1/2 g1/2(x)φ0(x,E)dxdE

+
1
h1

 ∫
∞

0 Ug(x1,E)φ2(x1/2,E)dE∫ Eg−1
Eg

∫ x3/2
x1/2 g1/2(x)φ0(x,E)dxdE


+

∫ x3/2
x1/2 f1/2(x)

∫ Eg−1
Eg

Σt(x,E)φ0(x,E)dE dx∫ Eg−1
Eg

∫ x3/2
x1/2 g1/2(x)φ0(x,E)dxdE

 φ̄g(x1/2)

− 1
h1

 ∫
∞

0 Ug(x1,E)φ2(x3/2,E)dE∫ Eg−1
Eg

∫ x3/2
x1/2 g1/2(x)φ0(x,E)dxdE

 φ̄g(x3/2)

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ x3/2
x1/2 f1/2(x)

Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ x3/2
x1/2 g1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(x1/2)


+

1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ x3/2
x1/2 f1/2(x)χg(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ x3/2
x1/2 g1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(x1/2)

 . (5.48)

Similarly, for 1 ≤ j ≤ J− 1, we get Eq.(5.49), and for the right boundary j = J , we get

Eq.(5.50).
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− 1
h j

 ∫
∞

0 Ug, j(E)φ2(x j−1/2,E)dE∫ Eg−1
Eg

∫ x j−1/2
x j−3/2 g j−1/2(x)φ0(x,E)dxdE

 φ̄g(x j−1/2)

+

 1
h j

 ∫
∞

0 Ug, j(E)φ2(x j+1/2,E)dE∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE


+

1
h j+1

 ∫
∞

0 Ug, j+1(E)φ2(x j+1/2,E)dE∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE


+

∫ x j+3/2
x j−1/2 f j+1/2(x)

∫ Eg−1
Eg

Σt(x,E)φ0(x,E)dE dx∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

 φ̄g(x j+1/2)

− 1
h j+1

 ∫
∞

0 Ug, j+1(E)φ2(x j+3/2,E)dE∫ Eg−1
Eg

∫ x j+5/2
x j+1/2 g j+3/2(x)φ0(x,E)dxdE

 φ̄g(x j+3/2)

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ x j+3/2
x j−1/2 f j+1/2(x)

Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(x j+1/2) (5.49)

+
1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ x j+3/2
x j−1/2 f j+1/2(x)χg(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(x j+1/2) .
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− 1
hJ

 ∫
∞

0 Ug,J(E)φ2(xJ−1/2,E)dE∫ Eg−1
Eg

∫ xJ+1/2
xJ−3/2 gJ−1/2(x)φ0(x,E)dxdE

 φ̄g(xJ−1/2)

+

 ∫ Eg−1
Eg

∫ 1
0 µψ(xJ+1/2,µ,E)dµ dE∫ Eg−1

Eg

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E)dxdE


+

1
hJ

 ∫
∞

0 Ug,J(E)φ2(xJ+1/2,E)dE∫ Eg−1
Eg

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E)dxdE


+

∫ xJ+1/2
xJ−1/2 fJ+1/2(x)

∫ Eg−1
Eg

Σt(x,E)φ0(x,E)dE dx∫ Eg−1
Eg

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E)dxdE

 φ̄g(xJ+1/2)

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ xJ+1/2
xJ−1/2 fJ+1/2(x)

Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(xJ+1/2) (5.50)

+
1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ xJ+1/2
xJ−1/2 fJ+1/2(x)χJ(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ Eg′−1

Eg′

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E ′)dxdE ′

 φ̄g′(xJ+1/2) .

159



To simply the notation, we define the following energy group nonlinear functionals:

Bg,1/2 =

∫ Eg−1
Eg

∫ 0
−1 |µ|ψ(0,µ,E)dµ dE∫ Eg−1

Eg

∫ x3/2
x1/2 g1/2(x)φ0(x,E)dxdE

Bg,J+1/2 =

∫ Eg−1
Eg

∫ 1
0 µψ(xJ+1/2,µ,E)dµ dE∫ Eg−1

Eg

∫ xJ+1/2
xJ−1/2 gJ+1/2(x)φ0(x,E)dxdE

Fg,g′, j+1/2 =

∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 f j+1/2(x)χg′(x)νΣ f (x,E)φ0(x,E)dxdE∫ Eg−1

Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

UR
g, j+1/2 =

h j+1
∫

∞

0 Ug, j+1(E)φ2(x j+1/2,E)dE∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

UL
g, j+1/2 =

h j
∫

∞

0 Ug, j(E)φ2(x j+1/2,E)dE∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

Σ̃s,g→g′, j+1/2 =

∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 f j+1/2(x)

Σs(x,E)
(1−α)E Qg′(E)φ0(x,E)dxdE∫ Eg−1

Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

Σ̃t,g, j+1/2 =

∫ x j+3/2
x j−1/2 f j+1/2(x)

∫ Eg−1
Eg

Σt(x,E)φ0(x,E)dE dx∫ Eg−1
Eg

∫ x j+3/2
x j−1/2 g j+1/2(x)φ0(x,E)dxdE

. (5.51)

Then in terms of these functionals in Eq.(5.51), Eqs.(5.48), (5.49), and (5.50) can be written

more concisely as:[
Bg,1/2 +

1
h2

1
UR

g,1/2 + Σ̃t,g,1/2

]
φ̄g(x1/2)−

1
h2

1
UL

g,3/2 φ̄g(x3/2)

=
G

∑
g′=1

Σ̃s,g′→g,1/2 φ̄g′(x1/2)+
1
k

G

∑
g′=1

Fg′,g,1/2 φ̄g′(x1/2) , (5.52a)

− 1
h2

j
UR

g, j−1/2 φ̄g(x j−1/2)+

[
1
h2

j
UL

g, j+1/2 +
1

h2
j+1

UR
g, j+1/2 + Σ̃t,g, j+1/2

]
φ̄g(x j+1/2)

− 1
h2

j+1
UL

g, j+3/2 φ̄g(x j+3/2) =
G

∑
g′=1

Σ̃s,g′→g, j+1/2 φ̄g′(x j+1/2)+
1
k

G

∑
g′=1

Fg′,g, j+1/2 φ̄g′(x j+1/2),

1≤ j ≤ J−1 , (5.52b)
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− 1
h2

J
UR

g,J−1/2 φ̄g(xJ−1/2)+
[

Bg,J+1/2 +
1
h2

J
UL

g,J+1/2 + Σ̃t,g,J+1/2

]
φ̄g(xJ+1/2)

=
G

∑
g′=1

Σ̃s,g′→g,J+1/2 φ̄g′(xJ+1/2)+
1
k

G

∑
g′=1

Fg′,g,J+1/2 φ̄g′(xJ+1/2) . (5.52c)

The energy group nonlinear functionals in Eq.(5.51) can be evaluated using the stan-

dard Monte Carlo method. Once these functionals are obtained, Eqs.(5.52) then become

low-order multigroup equations, which can be solved to estimate the k-eigenvalue and the

multigroup fluxes φ̄g(x j+1/2).

In this section, the multigroup flux φ̄g(x j+1/2) is defined on a “staggered” grid rather

then on the original spatial grid of the problem as shown in Figure 5.3.

Original spatial grid

Staggered grid

1 2 3 4

1/2 3/2 5/2 7/2 9/2

Figure 5.3 Original spatial grid and the staggered grid.

In Section 5.3, we are going to generalize the method to: (1) obtain fluxes on the original

spatial gird; and (2) accommodate “a fine grid” with many material discontinuities inside

each coarse cell.
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5.2.2 Procedure for Evaluating Ug(x,E)

We recall from Section 5.2.1, Eq. (5.39), that Ug(x,E) satisfies the following adjoint

equation:

Σt(x,E)Ug(x,E)−
∫

∞

0
Σs1(x,E→ E ′)Ug(x,E ′)dE ′ = χ̂g(E), 0 < E < ∞ , (5.53)

where for each gth energy group, the characteristic functions χ̂g(E) are defined as:

χ̂g(E) =


1 Eg < E < Eg−1 ,

0 otherwise .

Eq. (5.53) for the multigroup functions Ug(x,E) cannot be solved analytically. To solve

it numerically, we discretize Eq. (5.53) following the same procedure for the one-group

functions U(x,E) as described in Section 5.1.2, which yields:

[1−HlRl + IlSl]Ug,l +
l+m

∑
l′=l

[−Hl′Rl′+1 + Il′Sl′+1]Ug,l′+1 =
χ̂g(El)

Σt(x,El)
, (5.54)
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where:

Hl =
Cl(A+1)

2(1−α)E
3
2
l

=
(A+1)

2(1−α)E
3
2
l

Σs(x,El)
Σt(x,El)

,

Il =
Cl(A−1)

2(1−α)E
1
2
l

=
(A−1)

2(1−α)E
1
2
l

Σs(x,El)
Σt(x,El)

,

Rl =
2

5∆El
(E

5
2
l −E

5
2
l+1)−

2El+1

3∆El
(E

3
2
l −E

3
2
l+1) ,

Rl+i = − 2
5∆El+i−1

(E
5
2
l+i−1−E

5
2
l+i)+

2El+i−1

3∆El+i−1
(E

3
2
l+i−1−E

3
2
l+i)

+
2

5∆El+i
(E

5
2
l+i−E

5
2
l+i+1)−

2El+i+1

3∆El+i
(E

3
2
l+i−E

3
2
l+i+1) , 1≤ i≤ m

Rl+m+1 = − 2
5∆El+m

(E
5
2
l+m−E

5
2
l+m+1)+

2El+m

3∆El+m
(E

3
2
l+m−E

3
2
l+m+1) ,

Sl =
2

3∆El
(E

3
2
l −E

3
2
l+1)−

2El+1

∆El
(E

1
2
l −E

1
2
l+1) ,

Sl+i = − 2
3∆El+i−1

(E
3
2
l+i−1−E

3
2
l+i)+

2El+i−1

∆El+i−1
(E

1
2
l+i−1−E

1
2
l+i)

+
2

3∆El+i
(E

3
2
l+i−E

3
2
l+i+1)−

2El+i+1

∆El+i
(E

1
2
l+i−E

1
2
l+i+1) , 1≤ i≤ m

Sl+m+1 = − 2
3∆El+m

(E
3
2
l+m−E

3
2
l+m+1)+

2El+m

∆El+m
(E

1
2
l+m−E

1
2
l+m+1) .

For clarification, the integer g represents the energy group used in generating the low-order

multigroup FMC equations. Ug,l = Ug(x,El) represents the value of the multigroup function

Ug(x,E) evaluated at the energy grid point l. The integer l is an energy grid point index

used in discretizing Eq. (5.53), where 1≤ l ≤ L. Figure 5.4 shows the multigroup structure

and the energy grid adopted for evaluating Ug(x,E) .
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E3 E1 = EmaxEl+1 ElEL-1Emin = EL

(l    energy group)th {

E2

EgEg+1EG E0

Figure 5.4 Multigroup structure and the energy grid adopted for evaluating Ug(x,E)

Eq. (5.54) is a discretized multigroup adjoint equation. For each energy group g,

we solve the set of linear Eq. (5.54) for the value of Ug(x,El) over the entire en-

ergy gird point l. Again, we start with the assumption that the first m + 1 values

Ug(x,EL) , Ug(x,EL−1) , · · · , Ug(x,EL−m) are equal to one another. Because χ̂g(E) is

nonzero only within the energy group [Eg Eg−1], the numerical values for Ug(x,E) will

change dramatically at the energy group boundaries. However, operating on Eq. (5.54) by

∑
G
g=1(·), we get

[1−HlRl + IlSl]
G

∑
g=1

Ug,l +
l+m

∑
l′=l

[−Hl′Rl′+1 + Il′Sl′+1]
G

∑
g=1

Ug,l′+1 =
∑

G
g=1 χ̂g(El)
Σt(x,El)

,

or

[1−HlRl + IlSl]
G

∑
g=1

Ug,l +
l+m

∑
l′=l

[−Hl′Rl′+1 + Il′Sl′+1]
G

∑
g=1

Ug,l′+1 =
1

Σt(x,El)
. (5.55)

Comparing Eq. (5.55) with Eq. (5.35), we have

Ul =
G

∑
g=1

Ug,l . (5.56)

In the numerical results presented in Chapter 6, we assume that the edges of the energy

grid for evaluating Ug(x,E) function satisfy the condition El+21 = αEl , which means that a

neutron with energy El can scatter into its own fine energy group and the following 20 fine

energy groups indicated in Figure 5.4.

We have also tested the one group U(x,E) function and the two group Ug(x,E) function
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with a finer energy gird, where the edges of the energy grid satisfy the condition El+41 = αEl .

This means that a neutron with energy El can scatter into its own fine energy group and the

following 40 fine energy groups.

For the one group U(x,E) function, the results show that the eigenvalues obtained from

the low order energy-integrated FMC equations are essentially the same for the 20 fine

group and 40 fine group cases. This is because the one group U(x,E) function is smooth

with respect to energy E.

For the two group Ug(x,E) function, the results show that the eigenvalue obtained from

the low order multigroup FMC equations with 40 fine groups is slightly more accurate than

the eigenvalue with the 20 fine groups. This is because the two group Ug(x,E) function

has a discontinuity at the energy group boundary. Thus, a finer energy grid for evaluating

Ug(x,E) function is recommended for the multigroup case.

5.3 Procedure to Generate Multigroup Low-Order Equa-
tions with Material Discontinuities within a Coarse
Cell

In Section 5.1 and Section 5.2, we assumed that a cell only contains one kind of cross

section. This assumption will limit the application of the FMC method to more realistic

multi-dimensional problems. Realistic reactor core structures contain many fuel assemblies,

and each assembly contains a number of different pin cells. Thus, for practical use, it is

necessary to introduce the assumption that a cell can contain any number of fine mesh cells

with different cross sections. The goal of this section is to apply the FMC method to generate

mutligroup low-order equations with any number of material discontinuities within a cell

(coarse cell). In doing this, we shall also obtain the flux average over a spatial coarse cell.

We prescribe a spatial coarse grid, consisting of J +1 points x j+1/2 satisfying 0 = x1/2 <

x3/2 < · · ·< x j−1/2 < x j+1/2 < · · ·< xJ−1/2 < xJ+1/2 = X . The jth spatial cell consists of
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the interval x j−1/2 < x < x j+1/2; the width of this cell is h j = x j+1/2− x j−1/2.

For the interval x j−1/2 < x < x j+1/2, the “fine grid” and “coarse grid” are related in the

following Figure 5.5:

  
x j+1/ 2

 
  

xj-1/ 2 }   

  xk-1/2
~

  xk+1/2
~

  xk
~

  hk
~

hj

Figure 5.5 Detailed structure of the fine grid within a coarse grid.

To obtain the multigroup flux average over a spatial cell:

Φg, j =
1

x j+1/2− x j−1/2

∫ x j+1/2

x j−1/2

∫ Eg−1

Eg

φ(x,E)dEdx

=
1
h j

∫ x j+1/2

x j−1/2

∫ Eg−1

Eg

φ(x,E)dEdx 1≤ j ≤ J , (5.57)

we introduce a staggered grid point x j such that x j−1/2 < x j < x j+1/2 for 2≤ j ≤ J−1. x j

is chosen near to the center of the jth coarse cell, and x j is the edge of a fine mesh cell. Let

hL
j = x j− x j−1/2, and hR

j = x j+1/2− x j. Clearly the width of the jth cell h j = hL
j +hR

j .

We also make use of the notation:

∑
k∈ j+1/2

fk = Sum over all fine cells k that lie between x j and x j+1 .

For 1≤ j ≤ J, we define tent functions f j(x) on the staggered grid.
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For j = 1:

f1(x) =


1

h1+hL
2
(x2− x) , 0 = x1 < x < x2

0 , otherwise .

(5.58a)

For 2≤ j ≤ J−1:

f j(x) =



1
hR

j−1+hL
j
(x− x j−1) , x j−1 < x < x j

1
hR

j +hL
j+1

(x j+1− x) , x j < x < x j+1

0 , otherwise .

(5.58b)

And for j = J:

fJ(x) =


1

hR
J−1+hJ

(x− xJ−1) , xJ−1 < x < xJ = X

0 , otherwise .

(5.58c)

The tent functions defined on a staggered grid are displayed in Figure 5.6, while the detailed

structure surrounding a staggered grid point x j is shown in Figure 5.7. We note that the

number of tent functions is equal to the number of coarse cells.

1.0

  0 = x1/ 2   x5/ 2   
x j−3/ 2   

x j+1/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1(x)   
f j (x)

  fJ (x)

  xJ −3/ 2  
x j+3/ 2  

x j−1/ 2  x3/ 2

x1 x2

  f2(x)

xj-1 xj xj+1

  fJ-1(x)

xJxJ-1

Figure 5.6 The tent functions defined on a coarse staggered grid.

We begin by deriving the multigroup low-order FMC equations. We multiply Eq. (5.45) by
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1.0

  xj-3/2   
x j+1/ 2

  
f
j (x)

 x
  

xj-1/ 2}

h   j-1

} } }   
xj+3/ 2  

x j+1  
x j  

x j-1

R h   j
R h   j+1

Lh   j
L

  xk-1/2
~

  xk+1/2
~

  xk
~

  hk
~

Figure 5.7 Detailed structure surrounding a staggered grid point x j.

f j(x) and integrate over 0≤ x≤ X . For 2≤ j ≤ J−1, we obtain:

−
∫ x j+1

x j−1

f j(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

+
∫ x j+1

x j−1

f j(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x j+1

x j−1

f j(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x j+1

x j−1

f j(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.59)

We expand the first term of Eq. (5.59) using integration by parts, which yields:

−
∫ x j+1

x j−1

f j(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
∫ x j+1

x j−1

d f j

dx
(x)
∫

∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
1

hR
j−1 +hL

j

∫ x j

x j−1

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

− 1
hR

j +hL
j+1

∫ x j+1

x j

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx . (5.60)

The two terms on the right hand side of Eq. (5.60) are similar. We evaluate the last term by
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introducing the coarse grid Ug, j+1/2(E) function as follows:

− 1
hR

j +hL
j+1

∫ x j+1

x j

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=− 1
hR

j +hL
j+1

∑
k∈ j+1/2

∫ x̃k+1/2

x̃k−1/2

∫
∞

0
Ũg,k(E)

∂

∂x
φ2(x,E)dEdx

=− 1
hR

j +hL
j+1

∑
k∈ j+1/2

∫
∞

0
Ũg,k(E)

[
φ2(x̃k+1/2,E)−φ2(x̃k−1/2,E)

]
dE

=− 1
hR

j +hL
j+1

∫
∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE

− 1
hR

j +hL
j+1

{
∑

k∈ j+1/2

∫
∞

0
Ũg,k(E)

[
φ2(x̃k+1/2,E)−φ2(x̃k−1/2,E)

]
dE

−
∫

∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE
}

. (5.61)

We now specify that the coarse grid Ug, j+1/2(E) be chosen so that the expression in curly

brackets { } in Eq. (5.61) vanishes under the condition that φ2(x,E) = f (E)+ xg(E) is a

linear function of x. This requirement leads to

0 = ∑
k∈ j+1/2

∫
∞

0
Ũg,k(E)

h̃k︷ ︸︸ ︷
(x̃k+1/2− x̃k−1/2)g(E)dE−

∫
∞

0
Ug, j+1/2(E)(x j+1− x j)g(E)dE

=
∫

∞

0

[
∑

k∈ j+1/2
Ũg,k(E)h̃k−Ug, j+1/2(E)(x j+1− x j)

]
g(E)dE .

The above quantity in square brackets is then set equal to zero, yielding the following

definition for the coarse grid Ug, j+1/2(E) function:

Ug, j+1/2(E) =
∑k∈ j+1/2Ũg,k(E)h̃k

∑k∈ j+1/2 h̃k
. (5.62)

The coarse grid Ug, j+1/2(E) function is seen to be a weighted sum of fine grid Ũg,k(E)

functions. The fine grid Ũg,k(E) functions satisfy the adjoint equation which was shown

earlier.
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In addition, let us define a correction term

Wg, j+1/2 =− 1
hR

j +hL
j+1

{
∑

k∈ j+1/2

∫
∞

0
Ũg,k(E)

[
φ2(x̃k+1/2,E)−φ2(x̃k−1/2,E)

]
dE

−
∫

∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE
}

; (5.63)

then Eq. (5.61) can be written as

− 1
hR

j +hL
j+1

∫ x j+1

x j

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=− 1
hR

j +hL
j+1

∫
∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE +Wg, j+1/2 . (5.64)

Using Eq. (5.64), the first term in Eq. (5.59) becomes:

−
∫ x j+1

x j−1

f j(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
1

hR
j−1 +hL

j

∫ x j

x j−1

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

− 1
hR

j +hL
j+1

∫ x j+1

x j

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
1

hR
j−1 +hL

j

∫
∞

0
Ug, j−1/2(E)

[
φ2(x j,E)−φ2(x j−1,E)

]
dE−Wg, j−1/2

− 1
hR

j +hL
j+1

∫
∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE +Wg, j+1/2 . (5.65)
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Incorporating the result in Eq. (5.65) into Eq. (5.59), for 2≤ j ≤ J−1, we have:

1
hR

j−1 +hL
j

∫
∞

0
Ug, j−1/2(E)

[
φ2(x j,E)−φ2(x j−1,E)

]
dE−Wg, j−1/2

− 1
hR

j +hL
j+1

∫
∞

0
Ug, j+1/2(E)

[
φ2(x j+1,E)−φ2(x j,E)

]
dE +Wg, j+1/2

+
∫ x j+1

x j−1

f j(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x j+1

x j−1

f j(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x j+1

x j−1

f j(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.66)

Similarly, we multiply Eq. (5.45) by f1(x) and integrate, for j = 1 (Figure 5.8), we have

−
∫ x2

x1

f1(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

+
∫ x2

x1

f1(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x2

x1

f1(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x2

x1

f1(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.67)

1.0

  0 = x1/ 2   x5/ 2

  f1(x)

  x3/ 2

x1
x2} } }

h 2
Rh2

Lh1

  x3/2
~

  x5/2
~x1/2

~

Figure 5.8 Detailed structure at the left boundary for a coarse grid.
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Integrating the first term of Eq. (5.67) by parts, we get:

−
∫ x2

x1

f1(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
∫ Eg−1

Eg

∫ 0

−1
|µ|ψ(0,µ,E)dµ dE− 1

h1 +hL
2

∫ x2

x1

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
∫ Eg−1

Eg

∫ 0

−1
|µ|ψ(0,µ,E)dµ dE

− 1
h1 +hL

2

∫
∞

0
Ug,3/2(E) [φ2(x2,E)−φ2(x1,E)]dE +Wg,3/2 . (5.68)

Thus, substituting Eq. (5.68) into Eq. (5.67), for j = 1 yields:

∫ Eg−1

Eg

∫ 0

−1
|µ|ψ(0,µ,E)dµ dE− 1

h1 +hL
2

∫
∞

0
Ug,3/2(E) [φ2(x2,E)−φ2(x1,E)]dE +Wg,3/2

+
∫ x2

x1

f1(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ x2

x1

f1(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ x2

x1

f1(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.69)

For j = J (Figure 5.9), we follow similar steps as for j = 1, multiplying Eq. (5.45) with

fJ(x) and integrating. This yields

−
∫ xJ

xJ−1

fJ(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

+
∫ xJ

xJ−1

fJ(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ xJ

xJ−1

fJ(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ xJ

xJ−1

fJ(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.70)
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  xJ +1/ 2 = X

  fJ(x)

  xJ-1/ 2

xJ
xJ-1} } }

hJhJ-1
RhJ-1

L

  xJ-3/ 2

  xK+1/2
~

  xK-1/2
~

Figure 5.9 Detailed structure at the right boundary for a coarse grid.

Integrating the first term of Eq. (5.70) by parts, we get:

−
∫ xJ

xJ−1

fJ(x)
∂

∂x

∫
∞

0
Ug(x,E)

∂

∂x
φ2(x,E)dEdx

=
∫ Eg−1

Eg

∫ 1

−1
|µ|ψ(X ,µ,E)dµ dE

+
1

hR
J−1 +hJ

∫
∞

0
Ug,J−1/2(E) [φ2(xJ,E)−φ2(xJ−1,E)]dE−Wg,J−1/2 . (5.71)

Thus, substituting Eq. (5.71) into Eq. (5.70), for j = J yields:

∫ Eg−1

Eg

∫ 1

−1
|µ|ψ(X ,µ,E)dµ dE

+
1

hR
J−1 +hJ

∫
∞

0
Ug,J−1/2(E) [φ2(xJ,E)−φ2(xJ−1,E)]dE−Wg,J−1/2

+
∫ xJ

xJ−1

fJ(x)
∫ Eg−1

Eg

Σt(x,E)φ0(x,E)dEdx

=
G

∑
g′=1

∫ Eg′−1

Eg′

∫ xJ

xJ−1

fJ(x)
Σs(x,E ′)
(1−α)E ′

Qg(E ′)φ0(x,E ′)dxdE ′

+
1
k

∫ xJ

xJ−1

fJ(x)χg(x)

(
G

∑
g′=1

∫ Eg′−1

Eg′
νΣ f (x,E ′)φ0(x,E ′)dE ′

)
dx . (5.72)
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Next, for 1≤ j ≤ J, we introduce functions g j(x) that satisfy:

g j(x) =


1
h j

x j−1/2 < x < x j+1/2

0 , otherwise .

For 1≤ j ≤ J, we define:

Φg, j =
∫ x j+1

x j−1

∫ Eg−1

Eg

g j(x)φ(x,E)dEdx , (5.73)

where x0 = x1/2 = x1 = 0, and xJ+1 = xJ+1/2 = xJ = X . The quantities Φg, j are the multi-

group flux average over spatial coarse cells, which are also unknowns for the low-order

FMC equations as indicated in Figure 5.10. We note that Eq. (5.73) is equivalent to the Eq.

(5.57).

1.0

  0 = x1/ 2   x5/ 2   
x j−3/ 2   

x j+1/ 2   xJ −1/ 2   xJ +1/ 2 = X

  f1(x)   
f j (x)

  fJ (x)

  xJ −3/ 2  
x j+3/ 2  

x j−1/ 2  x3/ 2

x
1

x2
xj-1 xj xj+1 xJxJ-1

Figure 5.10 The heavy line (spatial coarse cell) intervals indicate the regions where Φg, j are
averaged using tent functions defined on a staggered grid.

We multiply and divide each term in Eq. (5.69) by a suitable Φg, j and rearrange the terms.

174



The j = 1 case may be written

∫ Eg−1
Eg

∫ 0
−1 |µ|ψ(0,µ,E)dµ dE∫ x2

x1

∫ Eg−1
Eg

g1(x)φ(x,E)dEdx

+
1

h1 +hL
2

 ∫
∞

0 Ug,3/2(E)φ2(x1,E)dE∫ x2
x1

∫ Eg−1
Eg

g1(x)φ(x,E)dEdx


+

 Wg,3/2∫ x2
x1

∫ Eg−1
Eg

g1(x)φ(x,E)dEdx+
∫ x3

x1

∫ Eg−1
Eg

g2(x)φ(x,E)dEdx


+

∫ x2
x1

f1(x)
∫ Eg−1

Eg
Σt(x,E)φ0(x,E)dEdx∫ x2

x1

∫ Eg−1
Eg

g1(x)φ(x,E)dEdx

Φg,1

−

 1
h1 +hL

2

 ∫
∞

0 Ug,3/2(E)φ2(x2,E)dE∫ x3
x1

∫ Eg−1
Eg

g2(x)φ(x,E)dEdx


−

 Wg,3/2∫ x2
x1

∫ Eg−1
Eg

g1(x)φ(x,E)dEdx+
∫ x3

x1

∫ Eg−1
Eg

g2(x)φ(x,E)dEdx

Φg,2

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ x2
x1

f1(x)
Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ x2

x1

∫ Eg′−1
Eg′

g1(x)φ(x,E ′)dE ′dx

Φg′,1


+

1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ x2
x1

f1(x)χg(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ x2
x1

∫ Eg′−1
Eg′

g1(x)φ(x,E ′)dE ′dx

Φg′,1

 . (5.74)

Similarly, for 2≤ j ≤ J−1 we get Eq. (5.75) and for j = J we get Eq. (5.76).
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−

 1
hR

j−1 +hL
j

 ∫
∞

0 Ug, j−1/2(E)φ2(x j−1,E)dE∫ x j
x j−2

∫ Eg−1
Eg

g j−1(x)φ(x,E)dEdx


+

 Wg, j−1/2∫ x j
x j−2

∫ Eg−1
Eg

g j−1(x)φ(x,E)dEdx+
∫ x j+1

x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx

Φg, j−1

+

 1
hR

j−1 +hL
j

 ∫
∞

0 Ug, j−1/2(E)φ2(x j,E)dE∫ x j+1
x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx


+

1
hR

j +hL
j+1

 ∫
∞

0 Ug, j+1/2(E)φ2(x j,E)dE∫ x j+1
x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx


−

 Wg, j−1/2∫ x j
x j−2

∫ Eg−1
Eg

g j−1(x)φ(x,E)dEdx+
∫ x j+1

x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx


+

 Wg, j+1/2∫ x j+1
x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx+
∫ x j+2

x j

∫ Eg−1
Eg

g j+1(x)φ(x,E)dEdx


+

∫ x j+1
x j−1

f j(x)
∫ Eg−1

Eg
Σt(x,E)φ0(x,E)dEdx∫ x j+1

x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx

Φg, j

−

 1
hR

j +hL
j+1

 ∫
∞

0 Ug, j+1/2(E)φ2(x j+1,E)E∫ x j+2
x j

∫ Eg−1
Eg

g j+1(x)φ(x,E)dEdx


−

 Wg, j+1/2∫ x j+1
x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx+
∫ x j+2

x j

∫ Eg−1
Eg

g j+1(x)φ(x,E)dEdx

Φg, j+1

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ x j+1
x j−1

f j(x)
Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ x j+1

x j−1

∫ Eg′−1
Eg′

g j(x)φ(x,E ′)dE ′dx

Φg′, j


+

1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ x j+1
x j−1

f j(x)χg(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ x j+1
x j−1

∫ Eg′−1
Eg′

g j(x)φ(x,E ′)dE ′dx

Φg′, j

 . (5.75)
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−

 1
hR

J−1 +hJ

 ∫
∞

0 Ug,J−1/2(E)φ2(xJ−1,E)dE∫ xJ
xJ−2

∫ Eg−1
Eg

gJ−1(x)φ(x,E)dEdx


+

 Wg,J−1/2∫ xJ
xJ−2

∫ Eg−1
Eg

gJ−1(x)φ(x,E)dEdx+
∫ xJ

xJ−1

∫ Eg−1
Eg

gJ(x)φ(x,E)dEdx

Φg,J−1

+

∫ Eg−1
Eg

∫ 1
−1 |µ|ψ(X ,µ,E)dµ dE∫ xJ

xJ−1

∫ Eg−1
Eg

gJ(x)φ(x,E)dEdx

+
1

hR
J−1 +hJ

 ∫
∞

0 Ug,J−1/2(E)φ2(xJ,E)dE∫ xJ
xJ−1

∫ Eg−1
Eg

gJ(x)φ(x,E)dEdx


−

 Wg,J−1/2∫ xJ
xJ−2

∫ Eg−1
Eg

gJ−1(x)φ(x,E)dEdx+
∫ xJ

xJ−1

∫ Eg−1
Eg

gJ(x)φ(x,E)dEdx


+

∫ xJ
xJ−1

fJ(x)
∫ Eg−1

Eg
Σt(x,E)φ0(x,E)dEdx∫ xJ

xJ−1

∫ Eg−1
Eg

gJ(x)φ(x,E)dEdx

Φg,J

=
G

∑
g′=1

∫ Eg′−1
Eg′

∫ xJ
xJ−1

fJ(x)
Σs(x,E ′)
(1−α)E ′Qg(E ′)φ0(x,E ′)dxdE ′∫ xJ

xJ−1

∫ Eg′−1
Eg′

gJ(x)φ(x,E ′)dE ′dx

Φg′,J


+

1
k

G

∑
g′=1

∫ Eg′−1
Eg′

∫ xJ
xJ−1

fJ(x)χg(x)νΣ f (x,E ′)φ0(x,E ′)dxdE ′∫ xJ
xJ−1

∫ Eg′−1
Eg′

gJ(x)φ(x,E ′)dE ′dx

Φg′,J

 . (5.76)
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We define the nonlinear functionals as follows:

Bg,1 =

∫ Eg−1
Eg

∫ 0
−1 |µ|ψ(0,µ,E)dµ dE∫ Eg−1

Eg

∫ x2
x1

g1(x)φ(x,E)dxdE

Bg,J =

∫ Eg−1
Eg

∫ 1
−1 |µ|ψ(xJ,µ,E)dµ dE∫ Eg−1

Eg

∫ xJ
xJ−1

gJ(x)φ(x,E)dxdE

Fg,g′, j =

∫ Eg−1
Eg

∫ x j+1
x j−1

f j(x)χg′(x)νΣ f (x,E)φ0(x,E)dxdE∫ Eg−1
Eg

∫ x j+1
x j−1

g j(x)φ(x,E)dxdE

UR
g, j+1/2 =

∫
∞

0 Ug, j+1/2(E)φ2(x j+1,E)dE∫ Eg−1
Eg

∫ x j+2
x j

g j+1(x)φ(x,E)dxdE

UL
g, j+1/2 =

∫
∞

0 Ug, j+1/2(E)φ2(x j,E)dE∫ Eg−1
Eg

∫ x j+1
x j−1

g j(x)φ(x,E)dxdE

Σ̃s,g→g′, j =

∫ Eg−1
Eg

∫ x j+1
x j−1

f j(x)
Σs(x,E)
(1−α)E Qg′(E)φ(x,E)dxdE∫ Eg−1

Eg

∫ x j+1
x j−1

g j(x)φ(x,E)dxdE

Σ̃t,g, j =

∫ x j+1
x j−1

f j(x)
∫ Eg−1

Eg
Σt(x,E)φ(x,E)dE dx∫ Eg−1

Eg

∫ x j+1
x j−1

g j(x)φ(x,E)dxdE

W̃g, j−1/2 =
Wg, j−1/2∫ x j

x j−2

∫ Eg−1
Eg

g j−1(x)φ(x,E)dEdx+
∫ x j+1

x j−1

∫ Eg−1
Eg

g j(x)φ(x,E)dEdx
. (5.77)

In terms of the nonlinear functionals, Eqs. (5.74), (5.75), and (5.76) can be written as:

[
Bg,1 +

1
h1 +hL

2
UL

g,3/2 +W̃g,3/2 + Σ̃t,g,1

]
Φg,1−

[
1

h1 +hL
2

UR
g,3/2−W̃g,3/2

]
Φg,2

=
G

∑
g′=1

Σ̃s,g′→g,1 Φg′,1 +
1
k

G

∑
g′=1

Fg′,g,1 Φg′,1 , (5.78a)
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−

[
1

hR
j−1 +hL

j
UL

g, j−1/2 +W̃g, j−1/2

]
Φg, j−1 +

[
1

hR
j−1 +hL

j
UR

g, j−1/2 +
1

hR
j +hL

j+1
UL

g, j+1/2

−W̃g, j−1/2 +W̃g, j+1/2 + Σ̃t,g, j
]

Φg, j−

[
1

hR
j +hL

j+1
UR

g, j+1/2−W̃g, j+1/2

]
Φg, j+1

=
G

∑
g′=1

Σ̃s,g′→g, j Φg′, j +
1
k

G

∑
g′=1

Fg′,g, j Φg′, j, 2≤ j ≤ J−1 , (5.78b)

−

[
1

hR
J−1 +hJ

UL
g,J−1/2 +W̃g,J−1/2

]
Φg,J−1

+

[
Bg,J +

1
hR

J−1 +hJ
UR

g,J−1/2−W̃g,J−1/2 + Σ̃t,g,J

]
Φg,J

=
G

∑
g′=1

Σ̃s,g′→g,J Φg′,J +
1
k

G

∑
g′=1

Fg′,g,J+1/2 Φg′,J . (5.78c)

Eqs. (5.78) are the FMC multigroup low-order equations on a coarse grid. In Section 5.2, we

also derived the FMC multigroup low-order equations Eqs. (5.52). The differences are that

Eqs. (5.52) are limited to one kind of material in each cell, and the FMC tent functions are

defined on a spatial grid. The FMC eigenfunctions are obtained on a staggered grid. On the

other hand, Eqs. (5.78) can contain any number of material discontinuities within a coarse

cell. The tent functions here are defined on a staggered grid, and the FMC eigenfunctions

are averaged over spatial coarse cells. These FMC eigenfunctions averaged over spatial

coarse cells can then be used in the FMC feedback calculation.
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Chapter 6

Continuous Energy k-Eigenvalue
Problems: Numerical Results

In this Chapter, we present two different types of problem for the FMC method as

applied to the continuous energy method that we derived in Chapter 5.

6.1 Continuous Energy Problem 1: Large Homogeneous
Fissile Slab Problem

In this section, we apply both the one-group and the two-group FMC method to a

homogeneous fissile slab problem with continuous energy.

We consider a homogeneous fissile region of thickness X = 300 cm surrounded by two

5.0 cm non-fissile regions. The two energy groups are used in the low-order FMC equations

as shown:

E2 = 0.0 E1 = 1.0 E0 = 2.0

︸ ︷︷ ︸
2nd group

︸ ︷︷ ︸
1st group

Fission neutrons are born uniformly within the energy range 1.0 MeV - 2.0 MeV. The
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model fission spectrum is :

χ(E) =


1.0 Mev−1 , 1 Mev < E < 2 Mev ,

0 , otherwise .

(6.1)

The Monte Carlo simulation starts with a spatially flat fission source. The fissile material

consists of atomic mass number 56, while the non-fissile material consists of atomic mass

number 27. The relevant model cross sections are taken to be inversely proportional to the

square root of energy, given by

Σs(x,E) = Σ
0
s (x)+Σ

1
s (x)

√
E0

E
, (6.2a)

Σγ(x,E) = Σγ(x)

√
E0

E
, (6.2b)

Σ f (x,E) = Σ f (x)

√
E0

E
. (6.2c)

The various cross section coefficients in Eqs. (6.2) are presented in Table 6.1, where x

has units of cm and Σ has units of cm−1.

Table 6.1 Cross Section Coefficients for a Homogeneous Fissile Slab Problem 1.

Region Location Σ0
s (x) Σ1

s (x) Σγ(x) Σ f (x)
1 0 < x < 5 0.856 0.01 0.01 0
2 5 < x < 305 0.856 0.01 0.01 0.0071
3 305 < x < 310 0.856 0.01 0.01 0

6.1.1 The One-Group U(x,E) and Two-Group Ug(x,E) Calculations

The procedure for evaluating the one-group U(x,E) function is given in Section 5.12,

while the procedure for evaluating the two-group Ug(x,E) function is given in Section 5.22.

We assume that the edges of the energy grid satisfy the condition El+20 = αEl , which means

that a neutron with energy El can scatter into its own energy group and the following 19
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neighboring energy groups. The calculation of the U function only needs to be done once,

for each material, at the beginning of the calculation.

Figure 6.1 shows the one-group U(x,E) and two-group Ug(x,E) functions for the

material consisting of mass number 56. Figure 6.2 shows the one-group U(x,E) and

two-group Ug(x,E) functions for the material consisting of mass number 27. From Fig-

ures 6.1 and 6.2, we note that the numerical values for the two-group functions U1(x,E)

and U2(x,E) fluctuate significantly near the energy group boundary 1MeV . On the other

hand, the one-group U(x,E) is a very smooth function. Furthermore, we notice that

U(x,E) = U1(x,E)+U2(x,E).

6.1.2 FMC Coarse Mesh (5cm Grid) without FMC Feedback

We now present the results of Problem 1 for a flat initial fission source guess, and

without FMC feedback. This problem was run for 1000 cycles, using 100,000 histories/cycle.

The FMC calculation employs a coarse grid with h = 5.0 cm and a fine grid 1.0 cm .

In Figures 6.3-6.5 we compare results for one-group fluxes and two-group fluxes, aver-

aged over 100 cycle intervals (from a 1000-cycle sequence), i.e. cycles 101-200, 201-300,

301-400, 401-500, 501-600, 601-700,701-800,801-900, and 901-1000. Results are com-

pared for (a) standard Monte Carlo simulations and (b) the hybrid FMC calculations. For

both the one-group and two-group cases, the FMC results are seen to converge almost

immediately and to remain stable in all 100-cycle averages of the run. The standard Monte

Carlo results do not achieve equilibrium at any point during the 1000 cycle test run because

of undersampling of the fission source.

Figure 6.6 shows the one-group estimates of the eigenfunction, averaged over the last

500 cycles (501-1000), and the estimated apparent relative standard deviations and true

relative standard deviations in the Monte Carlo and FMC eigenfunctions over the cycles.

Figure 6.7 shows the two-group estimates of the eigenfunction, averaged over the last 500

cycles, and the estimated apparent relative standard deviations and true relative standard
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Figure 6.1 The one-group U(x,E) and the two-group Ug(x,E) functions for the material with mass
number 56.
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Figure 6.2 The one-group U(x,E) and the two-group Ug(x,E) functions for the material with mass
number 27.
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deviations. The apparent relative standard deviations are obtained from a single 1000-cycle

(500 inactive cycles, and 500 active cycles) run, while the true relative standard deviations

are obtained from 25 independent 1000-cycle runs.

Figures 6.6-6.7 show that, even though it is averaged over a large number of cycles, both

the one-group and two-group MC estimates of the eigenfunction are inaccurate and “tilted.”

The estimated relative standard deviations (both apparent and true) in the FMC one-group

and two-group eigenfunctions are smaller than those of the MC eigenfunctions, and the FMC

eigenfunction estimates are clearly much more accurate. A detailed comparison between the

apparent relative standard deviation and the true relative standard deviation in the MC, FMC

eigenfunction estimates for the two-group energy case are given in Figure 6.8 and Figure

6.9. Figure 6.8 shows that the true relative standard deviations are more than a factor of 10

greater than the apparent relative standard deviations in the MC eigenfunction estimates.

This is because of correlations in the fission source between one cycle and the next. Figure

6.9 shows that the true relative standard deviations in the FMC eigenfunction estimates are

approximately the same as the apparent relative standard deviations.

The estimated values of k and their estimated relative standard deviations over 100

different ranges of 1000 cycles each are compared for the one-group eigenfunction case and

the two-group eigenfunction case in Table 6.2.

Table 6.2 shows that the errors in k obtained with the FMC method are much smaller

than the errors in the standard Monte Carlo estimates of k. In this homogenous problem,

the estimates of k from the one-group FMC method and the two-group FMC method agree,

as they should. (Apart from statistical differences, the FMC estimates of k should not be

affected by the choice of spatial or energy grid.)
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Figure 6.3 Continuous energy Problem 1 one-group and two-group eigenfunction estimates during
cycles 101-400 without FMC feedback (5cm Grid).
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Figure 6.4 Continuous energy Problem 1 one-group and two-group eigenfunction estimates during
cycles 401-700 without FMC feedback (5cm Grid).
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Figure 6.5 Continuous energy Problem 1 one-group and two-group eigenfunction estimates during
cycles 701-1000 without FMC feedback (5cm Grid).
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Figure 6.6 Continuous energy Problem 1 one-group averaged eigenfunctions and their RSDs over
501-1000 Cycles without feedback (5cm Grid).
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Figure 6.7 Continuous energy Problem 1 two-group averaged eigenfunctions and their RSDs over
501-1000 Cycles without feedback (5cm Grid).
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Figure 6.8 Comparison for continuous energy Problem 1 of apparent RSDs and true RSDs in
two-group MC eigenfunction estimates (5cm Grid).
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Figure 6.9 Comparison for continuous energy Problem 1 of apparent RSDs and true RSDs in
two-group FMC eigenfunction estimates (5cm Grid).

192



Table 6.2 Estimates of k and its Relative Standard Deviation for Continuous Energy Problem 1
(5cm Grid).

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 100 0.993626 0.995227 0.995227

(0.0005722) (0.0000004) (0.0000004)
101 to 200 0.994973 0.995227 0.995227

(0.0003738) (0.0000004) (0.0000004)
201 to 300 0.994574 0.995228 0.995228

(0.0003649) (0.0000004) (0.0000003)
301 to 400 0.995646 0.995228 0.995228

(0.0003614) (0.0000003) (0.0000003)
401 to 500 0.995841 0.995228 0.995228

(0.0004063) (0.0000003) (0.0000003)
501 to 600 0.995330 0.995228 0.995228

(0.0003679) (0.0000004) (0.0000004)
601 to 700 0.995400 0.995228 0.995228

(0.0004416) (0.0000004) (0.0000003)
701 to 800 0.995075 0.995228 0.995228

(0.0003765) (0.0000003) (0.0000003)
801 to 900 0.995485 0.995227 0.995227

(0.0003580) (0.0000003) (0.0000003)
901 to 1000 0.995647 0.995227 0.995227

(0.0003895) (0.0000003) (0.0000003)

6.1.3 FMC Coarse Mesh (5cm Grid) with FMC Feedback

Figure 6.10 shows the one-group and two-group estimates of the eigenfunction with

FMC feedback for the standard MC method and the FMC method. These figures are ob-

tained by averaging the Monte Carlo estimates of the eigenfunction over 100-cycle spans,

i.e. cycles 1-100, 101-200, and 201-300. Examining Figure 6.10 we see that the Monte

Carlo estimates of the eigenfunction with FMC feedback converge within the first 100-cycle

average.

Figure 6.11 shows the one-group estimates of the eigenfunction, averaged over the last

500 cycles (501-1000), and the estimated apparent relative standard deviations and true

relative standard deviations in the Monte Carlo and FMC eigenfunctions over the cycles

193



 

 

 

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 50 100 150 200 250 300

cm

MC(1-100)
FMC(1-100)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 50 100 150 200 250 300

cm

MC(101-200)

FMC(101-200)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 50 100 150 200 250 300

cm

MC(201-300)

FMC(201-300)

 

 

 

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200 250 300

cm

MC(GP 1, 1-100) FMC(GP 1, 1-100)
MC(GP 2, 1-100) FMC(GP 2, 1-100)

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200 250 300

cm

MC(GP 1, 101-200) FMC(GP 1, 101-200)
MC(GP 2, 101-200) FMC(GP 2, 101-200)

0.0

0.3

0.6

0.9

1.2

0 50 100 150 200 250 300

cm

MC(GP 1, 201-300) FMC(GP 1, 201-300)
MC(GP 2, 201-300) FMC(GP 2, 201-300)

Figure 6.10 Continuous energy Problem 1 one-group and two-group eigenfunction estimates
during cycles 1-300 with FMC feedback (5cm Grid).

with FMC feedback. Accordingly, Figure 6.12 shows the two-group estimates of the eigen-

function, averaged over the last 500 cycles, and the estimated apparent relative standard

deviations and true relative standard deviations with FMC feedback. The apparent relative

standard deviations are obtained from a single 1000-cycle (500 inactive cycles, and 500

active cycles) run with feedback, while the true relative standard deviations are obtained

from 25 independent 1000-cycle runs with feedback.

Figures 6.11-6.12 show that the true relative standard deviation in MC with FMC feed-
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Figure 6.11 Continuous energy Problem 1 one-group averaged eigenfunctions and their RSDs over
501-1000 Cycles with FMC feedback (5cm Grid).
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Figure 6.12 Continuous energy Problem 1 two-group averaged eigenfunctions and their RSDs
over 501-1000 Cycles with FMC feedback (5cm Grid).
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back is greatly reduced compared to the true relative standard deviation without FMC

feedback. Meanwhile, the true relative standard deviation in MC with FMC feedback is

still marginally bigger then the true relative standard deviation in FMC. The true relative

standard deviations in FMC do not change with FMC feedback or without FMC feedback.

A detailed comparison between the apparent relative standard deviation and the true relative

standard deviation in the MC, FMC eigenfunction estimates with FMC feedback for the

two-group energy case are given in Figure 6.13 and Figure 6.14. Figures 6.13-6.14 show

that the true relative standard deviations in the MC and FMC eigenfunction estimates are

approximately the same as the apparent relative standard deviations.

The Shannon entropy behavior of the fission source for Problem 1 without FMC feed-

back is shown in Figure 6.15, while the Shannon entropy behavior of the fission source for

Problem 1 with FMC feedback is shown in Figure 6.16. As expected, Figure 6.16 shows

that the Monte Carlo estimates of the eigenfunction with FMC feedback converge almost

immediately.

With FMC feedback, the estimates of the Problem 1 eigenvalue with their estimated

relative standard deviations over ten 100-cycle spans are given in Table 6.3 for the standard

Monte Carlo and FMC one-group and two-group methods. We note that with FMC feedback

(Table 6.3) or without FMC feedback (Table 6.2), the eigenvalue estimates agree to the 6th

digit for the FMC average, and the eigenvalue estimates agree within statistical errors for

the standard Monte Carlo.
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Figure 6.13 Comparison for continuous energy Problem 1 of apparent RSDs and true RSDs in
two-group MC eigenfunction estimates with FMC feedback (5cm Grid).
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Figure 6.14 Comparison for continuous energy Problem 1 of apparent RSDs and true RSDs in
two-group FMC eigenfunction estimates with FMC feedback (5cm Grid).
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Figure 6.15 Shannon entropy behavior of the fission source for continuous energy Problem 1
without FMC feedback (5cm Grid).
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Figure 6.16 Shannon entropy behavior of the fission source for continuous energy Problem 1 with
FMC feedback (5cm Grid).
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Table 6.3 Estimates of k and its relative standard deviation for continuous energy Problem 1 with
FMC feedback (5cm Grid).

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 100 0.995210 0.995227 0.995227

(0.0005763) (0.0000004) (0.0000003)
101 to 200 0.995459 0.995227 0.995227

(0.0003445) (0.0000003) (0.0000003)
201 to 300 0.994690 0.995227 0.995227

(0.0003614) (0.0000003) (0.0000003)
301 to 400 0.995495 0.995228 0.995228

(0.0003390) (0.0000003) (0.0000003)
401 to 500 0.995938 0.995228 0.995228

(0.0003995) (0.0000003) (0.0000003)
501 to 600 0.995195 0.995228 0.995227

(0.0003910) (0.0000003) (0.0000003)
601 to 700 0.995547 0.995227 0.995228

(0.0004257) (0.0000003) (0.0000003)
701 to 800 0.995483 0.995227 0.995227

(0.0003572) (0.0000004) (0.0000003)
801 to 900 0.995079 0.995227 0.995228

(0.0003774) (0.0000003) (0.0000003)
901 to 1000 0.995628 0.995228 0.995228

(0.0003739) (0.0000003) (0.0000003)

6.1.4 FMC Coarse Mesh (10cm Grid) with and without FMC Feed-
back

The one-group FMC method is insensitive to the choice of mesh grid. The choice of

mesh grid has some impact on the two-group FMC method. To illustrate this point, we reran

problem 1 with h = 10.0 cm grid, using the same 100,000 histories/cycle.

Figure 6.17 shows the one-group estimates of the eigenfunction, averaged over the last

500 cycles (501-1000), and the estimated apparent relative standard deviations in the Monte

Carlo and FMC eigenfunctions for h = 10.0 cm grid case. Comparing Figure 6.17 (10 cm

grid) and Figure 6.6 (5 cm grid), we see no obvious change in the apparent relative standard

deviations in the Monte Carlo and FMC eigenfunctions.
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Figure 6.18 shows the two-group estimates of the eigenfunction, averaged over the last

500 cycles, and the estimated apparent relative standard deviations for h = 10.0 cm grid

case. Comparing Figure 6.18 (10 cm grid) and Figure 6.7 (5 cm grid), we see there are slight

increases in the relative standard deviations in the FMC eigenfunction at both edges of the

system. This is due to the fact that the low-order equations are two-group equations. The

two-group nonlinear functionals require more MC particles to obtain comparable accuracy

to the one-group nonlinear functionals.

Figures 6.19-6.20 show the results for one-group and two-group fluxes and the estimated

apparent relative standard deviations with FMC feedback. Comparing Figure 6.19 (10 cm

grid) to Figure 6.11 (5 cm grid) for the one-group case, we see only slight changes in the

apparent relative standard deviations. Comparing Figure 6.20 (10 cm grid) to Figure 6.12 (5

cm grid) for the two-group case, we see small increases in the apparent relative standard

deviations for FMC at the edge of the system.

Table 6.4 shows the estimated k and its relative standard deviations for continuous

energy Problem 1 with coarse mesh 10cm grid without FMC feedback. Table 6.5 shows the

estimated k and its relative standard deviations for continuous energy Problem 1 with coarse

mesh 10cm grid with FMC feedback. Comparing Table 6.4 (10 cm grid) with Table 6.2 (5

cm grid), and comparing Table 6.5 (10 cm grid) with Table 6.3 (5 cm grid), we see basically

no change in k and its relative standard deviation for the one-group case for both with FMC

feedback and without FMC feedback. Therefore, in general when applying the FMC method

to a system, we may be able to use a relatively coarse grid but still maintain the accuracy.

Figures 6.21-6.23 show the results for one-group and two-group fluxes, averaged over

100 cycle intervals without FMC feedback. Figure 6.24 shows the results for one-group and

two-group fluxes, averaged over the first three 100 cycle intervals with feedback, i.e. cycles

1-100, 101-200, and 201-300. As in the coarse mesh 5cm grid case, for both the one-group

and two-group cases without FMC feedback, the FMC results are seen to converge almost

immediately and to remain stable in all 100-cycle averages of the run. The standard Monte
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Carlo results do not achieve equilibrium at any point during the 1000 cycle test run. However,

with FMC feedback, the Monte Carlo estimates of the eigenfunction converge within the

first 100-cycle average.

The Shannon entropy behavior of the fission source for Problem 1 for the coarse mesh

10cm grid case without FMC feedback is shown in Figure 6.25, while the Shannon entropy

behavior of the fission source for Problem 1 with FMC feedback is shown in Figure 6.26.

The Shannon entropy of Problem 1 for the coarse mesh 10cm grid case has the same behavior

as for the coarse mesh 5cm grid case. The only difference is the magnitude of the Shannon

entropy. This is caused by the difference in the total number of coarse mesh grid points for

the 10cm case and 5cm case. Again, as expected, Figure 6.26 shows that the Monte Carlo

estimates of the eigenfunction with FMC feedback converge almost immediately.
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Figure 6.17 Continuous energy Problem 1 one-group averaged eigenfunctions and their RSDs over
501-1000 Cycles without feedback (10cm Grid).
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Figure 6.18 Continuous energy Problem 1 two-group averaged eigenfunctions and their RSDs
over 501-1000 Cycles without feedback (10cm Grid).
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Figure 6.19 Continuous energy Problem 1 one-group averaged eigenfunctions and their RSDs over
501-1000 Cycles with FMC feedback (10cm Grid).
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Figure 6.20 Continuous energy Problem 1 two-group averaged eigenfunctions and their RSDs
over 501-1000 Cycles with FMC feedback (10cm Grid).
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Figure 6.21 Continuous energy Problem 1 one-group and two-group eigenfunction estimates
during cycles 101-400 without FMC feedback (10cm Grid).
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Figure 6.22 Continuous energy Problem 1 one-group and two-group eigenfunction estimates
during cycles 401-700 without FMC feedback (10cm Grid).
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Figure 6.23 Continuous energy Problem 1 one-group and two-group eigenfunction estimates
during cycles 701-1000 without FMC feedback (10cm Grid).
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Figure 6.24 Continuous energy Problem 1 one-group and two-group eigenfunction estimates
during cycles 1-300 with FMC feedback (10cm Grid).
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Figure 6.25 Shannon entropy behavior of the fission source for continuous energy Problem 1
without FMC feedback (10cm Grid).
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Figure 6.26 Shannon entropy behavior of the fission source for continuous energy Problem 1 with
FMC feedback (10cm Grid).
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Table 6.4 Estimates of k and its Relative Standard Deviation for Continuous Energy Problem 1
without FMC feedback (10cm Grid).

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 100 0.993626 0.995228 0.995254

(0.0005722) (0.0000007) (0.0000019)
101 to 200 0.994973 0.995228 0.995257

(0.0003738) (0.0000006) (0.0000019)
201 to 300 0.994574 0.995228 0.995259

(0.0003649) (0.0000006) (0.0000019)
301 to 400 0.995646 0.995228 0.995260

(0.0003614) (0.0000006) (0.0000022)
401 to 500 0.995841 0.995228 0.995258

(0.0004063) (0.0000006) (0.0000020)
501 to 600 0.995330 0.995230 0.995262

(0.0003679) (0.0000006) (0.0000023)
601 to 700 0.995400 0.995229 0.995262

(0.0004416) (0.0000006) (0.0000022)
701 to 800 0.995075 0.995228 0.995258

(0.0003765) (0.0000005) (0.0000020)
801 to 900 0.995485 0.995227 0.995262

(0.0003580) (0.0000005) (0.0000023)
901 to 1000 0.995647 0.995228 0.995261

(0.0003895) (0.0000006) (0.0000028)
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Table 6.5 Estimates of k and its Relative Standard Deviation for Continuous Energy Problem 1
with FMC feedback (10cm Grid).

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 100 0.995225 0.995227 0.995258

(0.0005648) (0.0000006) (0.0000025)
101 to 200 0.995396 0.995228 0.995263

(0.0003711) (0.0000007) (0.0000021)
201 to 300 0.994758 0.995228 0.995264

(0.0003123) (0.0000006) (0.0000020)
301 to 400 0.995545 0.995229 0.995263

(0.0003404) (0.0000006) (0.0000022)
401 to 500 0.995944 0.995228 0.995255

(0.0003934) (0.0000006) (0.0000020)
501 to 600 0.995214 0.995229 0.995262

(0.0003705) (0.0000006) (0.0000025)
601 to 700 0.995513 0.995227 0.995257

(0.0003984) (0.0000006) (0.0000025)
701 to 800 0.995398 0.995228 0.995259

(0.0003634) (0.0000006) (0.0000024)
801 to 900 0.995087 0.995227 0.995264

(0.0003513) (0.0000006) (0.0000024)
901 to 1000 0.995795 0.995227 0.995259

(0.0003800) (0.0000006) (0.0000021)

6.2 Continuous Energy Problem 2: Heterogeneous 1-D
Slab Problem

In this section, we apply the FMC method to a heterogeneous 1-D slab problem with

continuous energy. We consider nine identical fissile (F) regions, each of thickness 10.0 cm,

enclosed by ten 11.0 cm non-fissile (NF) regions. The detailed configuration is shown in

Figure 6.27.

NF F NF NF NFNF NFF F F F F NF NFNF NFF F F

Figure 6.27 Continuous energy problem 2 configuration.
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As for Problem 1, the coarse-grid problem has two energy groups:

E2 = 0.0 E1 = 0.5 E0 = 2.0

︸ ︷︷ ︸
2nd group

︸ ︷︷ ︸
1st group

Fission neutrons are born uniformly within the energy range 0.5 MeV - 2.0 MeV. The

model fission spectrum is :

χ(E) =


2
3 Mev−1 , 0.5 Mev < E < 2 Mev ,

0 , otherwise .

(6.3)

The Monte Carlo simulation starts with a spatially flat fission source. The fissile material

consists of atomic mass number 238, while the non-fissile material has atomic mass number

27. The model continuous-energy capture cross section and fission cross section are taken

to be inversely proportional to the square root of energy:

Σs(x,E) = Σ
0
s (x) , (6.4a)

Σγ(x,E) = Σγ(x)

√
E0

E
, (6.4b)

Σ f (x,E) = Σ f (x)

√
E0

E
. (6.4c)

The various cross section coefficients from Eqs. (6.4) used for this case are presented in

Table 6.6, where x has units of cm and Σ has units of cm−1.

Table 6.6 Cross Section Coefficients for Problem 2: A Heterogeneous 1-D Slab Problem.

Material Description Σ0
s (x) Σγ(x) Σ f (x)

m1 NF 0.856 0.01 0
m2 F 0.856 0.01 0.01272

This problem was run for 200 cycles (generations), using 1,000,000 histories/cycle. The
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FMC calculation employed a coarse grid with h = 2.0 cm. We compare results for the

one-group fluxes, averaged over 20 cycle intervals (from the 200-cycle sequence). Results

are compared for (a) standard Monte Carlo simulations, and (b) the hybrid FMC calculations,

averaged over 20 cycle intervals (Figures 6.28-6.29). We also compare results for the two-

group fluxes, averaged over 20 cycle intervals in Figures 6.30-6.32. For both the one-group

and the two-group cases, the FMC results are seen to converge almost immediately and to

remain stable in all 20-cycle averages of the run. The standard Monte Carlo results do not

achieve equilibrium at any point during the 200 cycle test run.

Figures 6.33-6.34 show the one-group and the two-group estimates of the eigenfunction

with FMC feedback for the standard MC method and the FMC method. These figures

are obtained by skipping 1 inactive cycle and averaging the Monte Carlo estimates of the

eigenfunction over 10-cycle spans. Examining Figures 6.33-6.34, we see that the Monte

Carlo estimates of the eigenfunction with FMC feedback converge within the first 10 active

cycle averages.

The Shannon entropy behavior of the fission source for Problem 2 without FMC feedback

is shown in Figure 6.35. The Shannon entropy behavior of Problem 2 with FMC feedback is

shown in Figure 6.36. With FMC feedback, the MC Shannon entropy has the same character

as that of the FMC Shannon entropy.

Without FMC feedback, the estimated values of k and their estimated relative standard

deviations over 10 different ranges of 200 cycles each are compared for the standard Monte

Carlo, FMC one-group and two-group cases in Table 6.7. With FMC feedback, the estimated

values of k and their estimated relative standard deviations are given in Table 6.8.
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Figure 6.28 Continuous energy Problem 2 one-group eigenfunction estimates during cycles 1-120
without FMC feedback.
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Figure 6.29 Continuous energy Problem 2 one-group eigenfunction estimates during cycles 121-
200 without FMC feedback.
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Figure 6.30 Continuous energy Problem 2 two-group eigenfunction estimates during cycles 1-60
without FMC feedback.
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Figure 6.31 Continuous energy Problem 2 two-group eigenfunction estimates during cycles 61-120
without FMC feedback.
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Figure 6.32 Continuous energy Problem 2 two-group eigenfunction estimates during cycles 141-
200 without FMC feedback.
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Figure 6.33 Continuous energy Problem 2 one-group eigenfunction estimates during active cycles
1-40 (1 inactive cycle) with FMC feedback.
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Figure 6.34 Continuous energy Problem 2 two-group eigenfunction estimates during active cycles
1-30 (1 inactive cycle) with FMC feedback.
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Figure 6.35 Coarse mesh Shannon entropy behavior of the fission source for continuous energy
Problem 2 without FMC feedback.
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Figure 6.36 Coarse mesh Shannon entropy behavior of the fission source for continuous energy
Problem 2 with FMC feedback.
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Table 6.7 Estimates of k and its Relative Standard Deviation for Continuous Energy Problem 2
without FMC feedback.

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 20 0.975435 0.993884 0.993192

(0.0152102) (0.0006118) (0.0001252)
21 to 40 0.992383 0.993262 0.993519

(0.0002770) (0.0000452) (0.0000628)
41 to 60 0.992291 0.993260 0.993498

(0.0002587) (0.0000378) (0.0000778)
61 to 80 0.992935 0.993234 0.993561

(0.0002820) (0.0000311) (0.0000648)
81 to 100 0.993177 0.993201 0.993544

(0.0002791) (0.0000420) (0.0000765)
101 to 120 0.992901 0.993276 0.993545

(0.0002900) (0.0000326) (0.0000845)
121 to 140 0.993393 0.993265 0.993504

(0.0002665) (0.0000443) (0.0000758)
141 to 160 0.993081 0.993231 0.993589

(0.0002636) (0.0000436) (0.0000691)
161 to 180 0.992692 0.993252 0.993584

(0.0002876) (0.0000398) (0.0000595)
181 to 200 0.993328 0.993330 0.993570

(0.0002965) (0.0000407) (0.0000588)
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Table 6.8 Estimates of k and its Relative Standard Deviation for Continuous Energy Problem 2
with FMC feedback.

FMC
Cycles Standard MC One-Group Two-Group

eigenvalue eigenvalue
1 to 20 0.977879 0.993904 0.993397

(0.0153202) (0.0006080) (0.0001442)
21 to 40 0.993050 0.993309 0.993651

(0.0002706) (0.0000322) (0.0000590)
41 to 60 0.992968 0.993275 0.993505

(0.0002958) (0.0000371) (0.0000660)
61 to 80 0.993078 0.993291 0.993673

(0.0001521) (0.0000293) (0.0000626)
81 to 100 0.993456 0.993285 0.993569

(0.0002952) (0.0000324) (0.0000633)
101 to 120 0.993003 0.993291 0.993453

(0.0002261) (0.0000411) (0.0000579)
121 to 140 0.993710 0.993293 0.993709

(0.0002482) (0.0000479) (0.0000997)
141 to 160 0.992803 0.993193 0.993538

(0.0002699) (0.0000371) (0.0000686)
161 to 180 0.993110 0.993319 0.993637

(0.0002026) (0.0000326) (0.0000809)
181 to 200 0.993362 0.993314 0.993655

(0.0002583) (0.0000418) (0.0000917)

6.3 Summary of the Continuous Energy Numerical Re-
sults

In this Chapter, we first solved the U-function for both the one-group case and the two-group

case. We then tested the FMC method on two continuous energy problems in which the

following questions were examined:

1. Accuracy in the estimates of eigenvalue and eigenfunction.

2. Source convergence with a flat initial source guess.

3. Sensitivity to the coarse mesh size.

4. Inter-cycle correlation before and after FMC feedback.
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As in the monoenergetic case, estimates of the eigenvalue and eigenfunction with the

FMC method were more accurate and more rapidly convergent. For the large, homogeneous

fissile region problem, we increased the coarse mesh size from 5cm to 10cm. The resulting

FMC estimates of the eigenvalue and energy-integrated eigenfunction and their apparent

relative standard deviations were about the same. There was only a slight increase in the

apparent relative standard deviations in the two-group eigenfunction estimates. This is due to

the fact that more MC particles are needed to get better estimates of the nonlinear functionals,

which are associated with the two-group, low-order equations. In the homogeneous test

problem, the apparent relative standard deviations are more than a factor of 10 less than the

true relative standard deviations for the MC method without FMC feedback. With FMC

feedback, the apparent relative standard deviations are about the same as the true relative

standard deviations for the MC method. We then applied the FMC method to a heterogenous

1-D slab problem with nine identical fissile regions, enclosed by ten non-fissile regions. The

one-group and two-group FMC fluxes are seen to converge almost immediately, while the

standard Monte Carlo results did not converge after a 200 cycle run. With FMC feedback,

the Monte Carlo estimates of the eigenfunction converge within the first 10-cycle average (1

inactive cycle). To summarize: the FMC feedback dramatically improves the performance

of the Monte Carlo method in all the test problems we have run.
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Chapter 7

Conclusions

In this thesis, we have developed and tested a new hybrid deterministic and Monte

Carlo method, called the Functional Monte Carlo (FMC) method, to solve slowly converging

k-eigenvalue problems. The FMC method is different from any previous hybrid method.

It does not directly estimate the eigenfunction and eigenvalue via Monte Carlo particle

simulation. Instead, it uses MC techniques to directly estimate certain nonlinear functionals.

These estimated functionals are then used in the low-order FMC equations to calculate

the k-eigenfunction and eigenvalue. The resulting estimates of the k-eigenfunction and

eigenvalue have no spatial or angular truncation errors, and are generally more accurate and

have less statistical noise than estimates obtained using conventional Monte Carlo methods.

The FMC method is based on two assumptions:

1. The functionals depend weakly on the angular flux and can be evaluated with Monte

Carlo more accurately than direct Monte Carlo estimates of the angular flux or scalar

flux.

2. If the low-order FMC equations are solved with small errors in the functionals, the

resulting errors in the eigenfunction and eigenvalue will be small.

In this work, we have developed the FMC method for monoenergetic, multigroup, and

continuous energy k-eigenvalue problems in 1-D planar geometry.
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7.1 The FMC method for 1-D Monoenergetic k-Eigenvalue
Problems

First, we considered a steady-state, planar-geometry k-eigenvalue problem with

anisotropic scattering and vacuum boundaries. The “low-order” FMC equations were

derived in the following three steps: (1) We first construct the zero-th and first angular mo-

ments of the Boltzmann transport equation. (2) Next, we define tent functions. Using these,

we construct certain spatial moments of the angularly-integrated equations obtained in Step

1. (3) Introducing no approximations, we manipulate the spatially- and angularly-integrated

equations to obtain a discrete system of “low-order” FMC equations. Because the low-order

FMC equations are derived without approximation from the high-order Boltzmann equation,

the FMC method has no angular, spatial, or energy truncation errors. The only error is

the statistical error that is introduced from the Monte Carlo estimates of the nonlinear

functionals.

Initially, the eigenfunctions obtained from the low order FMC equations were defined

either “at” the cell edges or averaged on a “staggered” grid. We then developed a procedure

to generate low-order equations with material discontinuities within a cell. This allowed us

to accurately estimate the scalar flux over the spatial cells. The FMC results can then be

used to improve the Monte Carlo fission source distribution.

We tested the FMC method on four problems (including a simplified 1-D full PWR reac-

tor core) in which standard MC estimates of the eigenfunction “wobble.” (These problems

have high dominance ratios.) The results show that the FMC method has the following

advantages compared to standard Monte Carlo.

1. The FMC estimates of the eigenvalue and eigenfunction are much more accurate than

standard Monte Carlo estimates. For a large, homogeneous fissile region problem,

the FMC estimates of k are three orders of magnitude more accurate than the MC

estimates.

2. The fission source distribution converged much faster using the FMC approach than
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the MC approach.

3. Inter-cycle correlation is very weak for the FMC method. The true relative errors are

about the same as the apparent relative errors for the FMC method. The apparent

relative errors are more than a factor of 10 less than the true relative errors for the MC

method in these four test problems.

4. With FMC feedback, the MC estimates of the eigenfunction converged at the same

speed as the FMC estimates.

7.2 The FMC method for 1-D Multigroup k-Eigenvalue
Problems

The multigroup FMC method is a straightforward extension of the monoenergetic

FMC method, although there is additional complexity because of the occurrence of between-

group scattering. As in the monoenergetic case, the resulting multigroup FMC estimates

of eigenvalues and eigenfunctions have only statistical errors. The FMC method has no

spatial, angular, or energy truncation errors, beyond the errors associated with the multigroup

approximation. This method was implemented and successfully tested.

7.3 The FMC method for 1-D Continuous Energy
k-Eigenvalue Problems

We also extended the FMC method to continuous-energy k-eigenvalue problems. The

continuous-energy approach has several noticeable differences compared with the monoen-

ergetic and multigroup approaches. The low-order equations that we derived in this thesis

are in two forms: (1) the low-order equations are energy-independent, and the eigenfunction

is an energy-integrated scalar flux; (2) the low-order equations are multigroup in form. The

resulting FMC estimates of the eigenvalue and energy-integrated or multigroup fluxes have

(i) no spatial or angular truncation errors, and (ii) very small energy truncation errors and
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statistical errors. We also developed a procedure to generate FMC multigroup low-order

equations with any number of material discontinuities within a coarse cell. This makes it

possible to improve the Monte Carlo fission source with FMC feedback.

We tested the FMC method on two continuous energy problems. Compared to the

standard MC approach, the results show that the FMC approach in the continuous energy

case has the same advantages as in the monoenergetic case. The results also showed that

the FMC approach is not sensitive to the size of the coarse mesh. Here we emphasize that

although the low-order FMC equations do not produce highly accurate fine-mesh solutions,

the FMC estimates of the coarse-mesh averaged fluxes are consistently more accurate than

the standard Monte Carlo estimates. With FMC feedback (using FMC coarse-mesh infor-

mation and MC fine-mesh information), the performance of the Monte Carlo method was

dramatically improved in all the test problems we ran.

Overall, in this thesis we have demonstrated that the FMC method offers significant

advantages in solving slowly converging k-eigenvalue problems with high dominance ratios.

We would like to emphasize that the FMC method can be understood as a “global” Monte

Carlo approach in which estimates of the solution are obtained that span across the entire

physical system. The FMC method yields “global” information about a physical problem

through Monte Carlo techniques.

The “FMC Method” is not really a single method, but is a general approach – and there

are many different ways to implement it. The FMC hybrid technique developed in this thesis

is algebraically more complicated than the standard Monte Carlo method and most other

hybrid techniques, such as CMFD. However, the FMC method has noticeable advantages.

The nonlinear functionals defined in the FMC method are ratios of the even-order angular

moments of the flux; thus, they are inherently more stable with less statistical noise than

functionals containing the ratios of odd-order angular moments. Before we settled on the

approach of eliminating the current J(x,E) from the equations, we tried other approaches

that included the current term, but these did not work so well. The CMFD method and
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its variations, studied by Professor Han Gyu Joo, Ming-Jae Lee, and Emily Wolters, is

a type of FMC method in which the current term is not eliminated from the equations.

Preliminary work by Lee showed that the FMC method is more efficient than CMFD, but

these comparisons have been very limited. Also, CMFD is simpler to implement, and in his

work, Lee has gone in the direction of 2-D multigroup rather than 1-D continuous energy, so

comparisons between FMC and CMFD have really not been made except for simple 1-D,

1-group problems.

7.4 Future work

We should continue testing and improving the FMC method performance in the following

ways:

1. A more extensive examination and comparison of the different FMC and CMFD meth-

ods in 1-D should be done, first for energy-independent problems, then for multigroup

problems, and finally, for continuous-energy problems. In addition to comparing the

results for very difficult problems with high dominance ratios, we should also compare

the FMC and CMFD methods with standard Monte Carlo for simpler problems, with

dominance ratios that are not close to unity to see if they are similar in accuracy. From

the test problems we ran, the FMC method gives more accurate values of k even for

simpler problems with low dominance ratios.

2. The continuous-energy FMC approach in this thesis has assumed for simplicity that

the cross sections for each material are inversely proportional to the square root of

energy, and each material region contains only one kind of element. These assump-

tions can be easily removed. In this thesis, the FMC approach considers the elastic

scattering only. For other types of scattering, such as inelastic scattering with tabulated

data structure, we may use the multigroup approach with a very find grid. For neutron

thermal scattering in analog format, we may treat it in a similar manner as we treat
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the elastic scattering in the thesis. In future work, the continuous-energy problems

should be upgraded to include realistic cross sections.

3. The 1-D FMC method has shown significant improvement in solving the slow conver-

gence of Monte Carlo k-eigenvalue problems. This method should be extended to 2-D

and then to 3-D.

4. The algebraic complexity of the FMC method in this thesis is a concern. We are

certain that the work done in 1-D can be extended to 2-D and 3-D, but it will not

be simple. The treatment of problems in which each coarse cell contains spatial

heterogeneities is not “simple”. It would be beneficial to improve the current FMC

approach by simplifying it in a way that does not impede performance.

5. The current FMC and CMFD methods have been implemented without the use of

conventional variance-reduction techniques, such as weight windows. However, there

is no doubt that the Monte Carlo part of the FMC or CMFD methods could be run,

for example, with weight windows. Doing this would add computational cost. Would

this extra cost be offset by a sufficient decrease in variance in the FMC solution? This

would be an interesting topic for future research.

6. Currently, there exists little solid theory to guide researchers with the development of

new FMC-like methods. For deterministic methods, a Fourier analysis has proved to

be reliable and accurate. Unfortunately, no such ”stability” theory exists at this time

for Monte Carlo FMC or CMFD methods. It would be very beneficial if such a theory

could be developed.
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Appendix

List of Nomenclature

~r = (x,y,z) = spatial variable

~Ω = (Ωx,Ωy,Ωz) = direction, or angular variable

E = energy

t = time

Σs(~r,~Ω′ ·~Ω,E ′→ E) = differential macroscopic scattering cross section

Σt(~r,E) = total macroscopic cross section

Σγ(~r,E) = macroscopic capture cross section

Σs(~r,E) = macroscopic scattering cross section

Σ f (~r,E) = macroscopic fission cross section

Q(~r,~Ω,E, t) = external source

k = eigenvalue = effective multiplication factor

ψ(~r,~Ω,E) = angular flux, fundamental mode eigenfunction

P(E ′→ E) = scattering probability distribution for elastic scattering

µ̂0(E ′→ E) = scattering cosine from energy E ′ to E

A = mass number of nucleus

DR = dominance ratio

RSD = relative standard deviation of the sample mean
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apparent RSD = apparent relative standard deviation of the sample mean

true RSD = true relative standard deviation of the sample mean

ψ(x,µ,E) = 1-D angular flux, fundamental mode eigenfunction

Φ(x,E) = scalar flux, zeroth order moment of the angular flux

Φ1(x,E) = first order moment of the angular flux

Φ2(x,E) = second order moment of the angular flux

Φg, j = multigroup flux averaged over jth spatial (coarse) cell

f j+1/2 = tent function defined on the spatial grid

f j = tent function defined on the staggered grid

g j+1/2 = histogram function defined on the staggered grid

g j = histogram function defined on the spatial grid

U(x,E) = U function which satisfies an infinite medium adjoint equation

Ug(x,E) = multigroup U function

χ̂g(E) = characteristic function which is used to define FMC multigroup adjoint equations

B1/2,BJ+1/2,E j+1/2,A j+1/2,Fj+1/2

= monoenergetic nonlinear functionals defined on the staggered grid

B1,BJ,E j,A j,Fj

= monoenergetic nonlinear functionals defined on the spatial grid

B1/2,BJ+1/2,A j+1/2,Fj+1/2,U
L
j+1/2,U

R
j+1/2

= one group continuous energy nonlinear functionals defined on the staggered grid

Bg,1/2,Bg,J+1/2,Fg,g′, j+1/2,U
R
g, j+1/2,U

L
g, j+1/2, Σ̃s,g→g′, j+1/2, Σ̃t,g, j+1/2

= two group continuous energy nonlinear functionals defined on the staggered grid

Bg,1,Bg,J,Fg,g′, j,U
R
g, j+1/2,U

L
g, j+1/2, Σ̃s,g→g′, j, Σ̃t,g, j,W̃g, j−1/2

= two group continuous energy nonlinear functionals defined on the spatial grid
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