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CHAPTER I

Introduction

1.1 Background

Brain imaging allows scientists and doctors to view and monitor areas of the

brain. In the past decade, brain imaging has played a prominent role in advanc-

ing our understanding of brain diseases and improving treatment management for

patients. In MRI’s infancy, information was largely anatomical, in the sense that

relatively large structures would be observed. As MRI technology evolves, the imag-

ing techniques are becoming more accurate with a finer resolution and more reliable

with reproducible results. And imaging can move from a process of picture-taking,

where reports are made on the basis of unusually bright, dark, small or large objects,

to a process of quantitative measurements where a whole range of quantities can be

tested to see whether they lie in a normal range, and whether they have changed

from the time of a previous examination. The benefits of quantification are that

fundamental research about biological changes in disease, and their response to po-

tential treatments, can proceed in a more satisfactory way. We can also substantially

reduce the problems of bias, reproducibility and interpretation.

In this dissertation, we focus on studying quantitative Magnetic Resonance Imag-

ing (qMRI). Magnetic Resonance Imaging (MRI) is a type of non-invasive visu-

1



2

alization tool of the inside of living organisms, compared to other neuroimaging

technologies (e.g. CAT, PET) that all require exposure to radiation, and are consid-

ered ethically problematic in children, particularly healthy children (Mason (2006)).

Quantitative MRI measures the quantitative changes caused by the disease. It is

increasingly used by scientists to study brain diseases and to measure treatment ef-

ficacy. In this dissertation, we studied three types of MRI: diffusion MRI, perfusion

MRI and T1-weighted MRI. Diffusion and perfusion MRIs are two of the most com-

monly used quantitative MRI techniques and are evolving rapidly, with applications

ranging from diagnosis of disease to the study of microvascular changes associated

with functional cerebral activation (Galbán et al. (2009), Basser and Jones (2002)

and Rao et al. (2007)). Diffusion MRI is based on the measurement of Brownian

motion of water molecules. This technique can characterize water diffusion prop-

erties at each pixel/voxel of an image. Perfusion MRI provides a measurement of

the parameters of cerebral micro-vascularisation. The main quantitative parameters

measured are blood volume and blood flow. Both of these MRI techniques measure

quantities that have direct physiological relevance. T1-weighted MRI produces an

image with greater signal intensity from fat-containing tissue and can provide good

gray matter/white matter contrast. It is mostly used to demonstrate pathological or

other physiological alterations in the brain. In our study, we focus on the quantitative

intensity measurements of this kind of MRI.

1.2 Bayesian Joint Model

There is a large body of research on medical image analysis, in particular func-

tional MRI (fMRI). The analysis of qMRI is still an open research area. In this

dissertation, we proposed three models for predicting specific clinical outcomes by
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jointly modeling qMRI data and outcomes using Bayesian statistical methods.

Bayesian methods have proved to be particularly useful in analyzing high-dimen-

sional data: (1). By constructing a suitable prior, Bayesian models assign a natural

penalty against complex models and in favor of simple models. This is called Occam’s

razor (Denison et al. (2002)). Therefore, Bayesian methods are especially suitable

for problems of dimension reduction or variable selection. (2). Instead of modeling

the huge covariance structure of the images directly in the frequentist framework,

spatial correlations in the images can be naturally accounted for by constructing an

appropriate prior (e.g. the pairwise difference prior proposed by Besag (1993)). (3).

It is straightforward to obtain inference for the parameters of interest, especially when

the variances for those parameters are very difficult to derive or have no closed form.

(4). Bayesian models will yield many final models instead of only one single model

usually obtained in the frequentist framework. By using Bayesian model averaging,

we account for model uncertainty. (5). Treating all the parameters in the system

as random variables greatly clarifies the methods of analysis. It forms the basis on

which our joint models can be clearly specified.

To formulate the general form of our joint models, we begin by specifying notation.

In one study, let Y denote all the image data and let Z denote a patient’s survival

time or clinical outcome such as disease status. All of our joint models are divided

into two stages with stage I focusing on modeling the image data and stage II aiming

to build connections between the image data and the clinical/survival outcome; in

other words, using image data to predict the outcome. We use the notation Ω1 to

denote the set of model parameters in stage I and Ω2 in stage II. Let Ω = Ω1 ∪Ω2

denote the set of all model parameters. Then the model in stage I is formulated as:

π(Y | Ω1) with prior π(Ω1) and the model in stage II as: π(Z | Ω1,Ω2) with prior



4

π(Ω2). Then the posterior distribution can be factored as:

π(Ω | Y ,Z) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2)π(Ω2).

Based on Bayes’ theorem, we can obtain posterior draws for Ω1 and Ω2 iteratively

from the full conditional distributions:

π(Ω1|Y ,Z,Ω2) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2),

π(Ω2|Z,Ω1) ∝ π(Z | Ω1,Ω2)π(Ω2).

1.3 Statistical Challenges in Imaging Analysis

Brain imaging has many characteristics of typical problems facing modern statis-

tics. Here we discuss three problems with image analyses that we have encountered

in this dissertation.

Large Volume: One key issue in the prediction models with images as the

predictors is how to appropriately reduce the image dimension and select the most

relevant information from the images. The image data usually has a huge volume. A

single slice from an MRI scan usually consists of 256× 256 pixels (short for “picture

elements”), and MRI images of size 512 × 512 are not uncommon. A whole-brain

quantitative MRI scan usually has 20 to 36 such slices. Hence, there are millions

of voxels, which is much larger than the number of subjects in the study. It is

obviously a “large p and small n” problem. Here we review three main ways of

dimension reduction and feature extraction in image analysis.

1.3.1 Region of Interest (ROI) Analysis

This type of analysis focuses on a particular part or parts of the brain, such as

visible tumor or large volumes of normal-appearing white matter, where intensities

are to be measured. In ROI-based comparisons of intensity changes across groups,
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anatomical regions are first defined on each individuals unwarped images. These may

be defined, for example, by manually circumscribing the boundary of the structure

on the anatomical images, and upon these ROIs are superimposed the summary of

intensity changes of the images at each voxel.

In a ROI analysis, we may need multiple MR images of different types, for example

conventional structural MRI (showing tumor or lesions) and diffusion MRI (with the

intensity values to be measured and tested). The appearance of tumors or lesions

may be different on the two types of MRIs. The ROIs should ideally be defined

on the conventional MR images, then transferred to the diffusion MRI. If the ROIs

were defined directly on the diffusion MRI, the image intensity would influence where

the ROI boundary was placed. Thus any conclusions about the intensity values in

the region would be biased since those values are used to define which pixels/voxels

would be included in the region.

To transfer ROIs between images in this way requires that the various images are

all spatially registered. However, spatial registration will bring in other sources of

bias as subject movement may be larger than the spatial resolution in the image.

1.3.2 Histogram Analysis

A solution to the problem of ROI placement, and possible bias arising from this

process, is to test the whole brain. This is particularly appropriate for diseases

where the biological effects are diffuse and widespread. The histogram is a frequency

distribution showing the number of voxels with a particular range of MRI parameter

values. Histogram analysis avoids any bias or pre-judgement about which parts of

the brain may be affected by disease. It also avoids the need to place ROIs on the

images.

Histograms do have the disadvantage that localization information is lost, and if
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the disease only affects part of the brain, sensitivity will be reduced by pooling data

from the entire brain. Moreover, histogram analysis ignores the inherent correlation

between the pixels/voxels, which may significantly bias results.

To extract information from the images, histogram features (i.e. summary pa-

rameters) are calculated to reduce the information in the histogram down to a few

parameters that are intended to contain important information in the histogram.

The features can then be used to look for differences between groups of subjects.

1.3.3 Voxel-Based Analysis

The voxel-based approach compares signal changes across groups on a voxel by

voxel basis. This is done after “warping” each individual brain onto a similar vol-

ume, shape, and spatial orientation, and then superimposing these brains on top of

one another. Corresponding pixels/voxels in the images from each person are then

assumed to represent the same region of tissue across the brains of individual sub-

jects. A statistical model is built at each voxel for all individuals in the study. Every

voxel therefore is associated with a population of signal changes for each diagnostic

group in the study. These populations of signal change are then compared with one

another using any number of standard parametric or nonparametric statistics, one

test for each pixel/voxel in the image.

The greatest limitation of the voxel-based approach is the assumption that the

anatomy and corresponding localization of function is the same across individuals,

across ages, and across diagnostic groups, an assumption that anatomical imaging

studies of normal and patient groups have been demonstrated to be false and is easily

violated if misregistration of images is present. The ROI-based approach, in contrast,

is not particularly vulnerable to this kind of artifact because it defines boundaries of

the ROI based on the relevant anatomy and anatomical landmarks of each individual



7

in the study.

In every study, there is no correct or definite answer to the choice of feature

extraction approach. However, one approach may be more suitable than an other

under certain data settings and study designs. In Chapters II and III, we study

malignant gliomas, which are a kind of solid tumor. Changes in MRI intensity

in the tumor region are highly heterogeneous. Thus, the approach that we used to

extract information from the images is a ROI based method combined with histogram

analysis . While in Chapter IV, we focus on white matter changes which are highly

heterogenous and differ in size and location. Histogram analysis is employed in this

case.

Spatial Correlation: Another feature in image analysis is the intrinsic local cor-

relation (the spatial structure) among the image units (pixel for 2D image and voxel

for 3D image). Pixels/voxels located near each other can be expected to behave in

a similar fashion because of communication leading to connections between different

parts of the brain and also the temporal correlation due to the repeated imaging of

the brain over time. Data are sometimes collected as images of the brain over the

time course of an experiment, resulting in a large amount of available information

on the timing and location of neuronal activity, the analysis of which is made more

complicated by the presence of both spatial and temporal correlations. In Chapter

II and III of our dissertation, we employ a pairwise difference prior model (Besag

(1993)) to account for the spatial and temporal correlations in and between the im-

ages. In Chapter IV, we apply the discrete wavelet transformation to de-correlate

the image data.

Noise: Furthermore, there is also a high level of noise in the images coming from

sources as variable as the equipment used to perform the scans, the movement of
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the subject within the scanner, and the effects of respiration and heartbeat. There

are two ways of dealing with this noise – one is to try to remove the source of the

noise; the other is to model it statistically. Both approaches are essential and should

be pursued in brain imaging analysis. In our dissertation, we use two different

statistical methods to reduce the noise in the images. In Chapter II and III, the

pairwise difference prior model is utilized to smooth the images. The Bayesian Lasso

is employed to de-noise the images in Chapter IV.

1.4 Dissertation Outline

In this dissertation, we focus on the predictive applications of brain images to two

important brain diseases: gliomas and Alzheimer’s disease. We propose three joint

models.

In Chapter II, we propose a Bayesian joint classification model to predict treat-

ment efficacy based on brain image data for patients diagnosed with malignant

gliomas. The prognosis for patients with high-grade gliomas is poor, with a me-

dian survival of one year. Treatment efficacy assessment is typically unavailable

until 5–6 months post diagnosis. Investigators hypothesize that quantitative MRI

(qMRI) can assess treatment efficacy three weeks after therapy starts, thereby al-

lowing salvage treatments to begin earlier. The purpose of the project in Chapter

II is to build a predictive model of treatment efficacy using qMRI data and to as-

sess its performance. The outcome is one-year survival status. We propose a joint

two-stage Bayesian model. In stage I, we smooth the image data with a multivari-

ate spatio-temporal pairwise difference prior. We propose four summary statistics

that are functionals of posterior parameters from the first stage model. In stage II,

these statistics enter a generalized non-linear model (GNLM) as predictors of sur-
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vival status. We use the probit link and a multivariate adaptive regression spline

basis. Metropolis-within-Gibbs algorithm and reversible jump MCMC are applied

iteratively between the two stages to estimate the posterior distribution. Through

both simulation studies and model performance comparisons we find that we are able

to achieve higher correct classification rates by accounting for the spatio-temporal

correlation in the images and by allowing for a more complex and flexible decision

boundary provided by the GNLM.

In Chapter III, to assess therapy efficacy more efficiently, we extend the model in

Chapter II. Instead of dichotomizing patients’ survival time based on whether they

survive beyond one year, we propose a Bayesian joint survival model for the patients’

survival time with censoring. In stage I, we smooth the qMRI using a spatio-temporal

multivariate pairwise difference prior and derive summary statistics. In stage II, we

propose a Bayesian first hitting time (FHT) survival model for patients’ survival time

with censoring. We model patients’ health statuses with a latent stochastic Wiener

process. Patients’ survival times are modeled as the FHT to an absorbing state

(i.e. death). We link the summary statistics derived in stage I to the distribution

parameters of the FHT via a Bayesian hierarchical model. Through both simulation

and real data analyses, we find that our model can provide an early assessment of

therapy efficacy that may aid in personalized therapy.

In Chapter IV, we propose a Bayesian joint classification model with wavelets to

aid in the diagnosis of Alzheimer’s disease. This study is motivated by the chal-

lenges of using MRI to diagnose Alzheimer’s disease. In a MRI study of Alzheimers

patients, white matter changes are highly heterogenous and differ in size and loca-

tion making it difficult to use MRI as an accurate diagnostic tool. In our study,

we propose to jointly model MRI data and polychotomous disease status (normal,
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mild cognitive impairment or Alzheimers disease) using wavelets, which can mitigate

these problems. In stage I, we apply a 3-D discrete wavelet transformation on the

MRI data. A Bayesian Lasso is employed to denoise the wavelet transformed images.

Summary statistics are then derived based on the images and included as covariates

into the model in stage II. In stage II, we build a cumulative probit regression model

to predict the polychotomous disease status. The selection of covariates is achieved

by reversible jump MCMC.



CHAPTER II

Predicting Treatment Efficacy via Quantitative MRI: A
Bayesian Joint Model

2.1 Introduction

Our work is motivated by a need to appropriately analyze data collected from

quantitative magnetic resonance imaging (qMRI) studies, and to determine whether

qMRI can be used as an early predictor of treatment efficacy as measured by sur-

vival for patients with malignant gliomas. The data come from a pilot study of 53

high-grade glioma patients (Hamstra et al. (2005)). The prognosis for patients with

high-grade gliomas is poor. The mortality rate, at the time of data collection, is

high with a median survival of one year after diagnosis (Laws et al. (2003)). Treat-

ment is a combined approach of surgery (if possible), radiation therapy followed by

chemotherapy. Assessment of treatment efficacy is based on radiological response

approximately 8–10 weeks post therapy, or approximately five to six months after

diagnosis (Moffat et al. (2005) and Hamstra et al. (2008)). Radiological response is

determined by the change in tumor size from baseline as measured on anatomical

MR images. For those with progressive disease, salvage therapy is given. However, it

is typically too late for the salvage therapy to have any effect in prolonging survival

(Moffat et al. (2005)). If treatment efficacy can be assessed earlier, salvage therapies

can begin earlier or therapy can be modified.

11
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In the pilot study, two different qMRI studies (diffusion and perfusion) and stan-

dard anatomical MRI studies were conducted at each of two time points: baseline

(one week before therapy) and three weeks after therapy begins. All four quantitative

images were registered to the pre-treatment anatomical MRI via a mutual informa-

tion algorithm (Meyer et al. (1997), i.e., an affine translation and rotation). Full

imaging data was available on 47 of the 53 patients, therefore we analyze the data

from these 47 patients. Tumors were identified on contrast-enhanced T1-weighted

MR images at both time points and segmented (outlined) by a radiologist. We use

the intersection of the segmented tumors as the region of interest (Hamstra et al.

(2005), Moffat et al. (2005) and Hamstra et al. (2008)). Using the intersection of

the segmented tumors, as opposed to the union, avoids the potential comparison of

tumor in one image with healthy tissue or edema in the other image that may occur

in the symmetric difference of the segmented tumors due to small changes in tumor

volume, swelling of tissue caused by therapy, and errors in segmentation.

The apparent diffusion coefficient (ADC) is a measure of the magnitude of Brow-

nian motion of water molecules in the extracellular space of tissue (Hamstra et al.

(2005), Moffat et al. (2005) and Hamstra et al. (2008)). Diffusion in biological sys-

tems is a complex phenomenon, influenced directly by tissue microstructure. Its

measurement can provide information about the organization of this structure in

normal and diseased tissue (Basser and Jones (2002)). As tumor cells lyse, the ra-

tio of extracellular to intracellular fluid increases thus causing a temporary increase

in ADC (Moffat et al. (2005) and Moffat et al. (2006)). Perfusion is a measure

of tissue-specific blood flow and blood volume and reflects the delivery of essential

nutrients to tissue (Galbán et al. (2009)). It is hypothesized that effective ther-

apy will disrupt tumor blood supply by damaging tumor neovascularity, resulting in
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decreased tumor perfusion. Furthermore, recent studies have suggested that qMRI

can be used for early prediction of therapeutic efficacy. Early changes detected in

mean tumor ADC values were first found to be correlated with treatment response

in rodent tumor models (Ross et al. (1994), Zhao et al. (1996) and Chinnaiyan et al.

(2000)). Previous studies investigating perfusion MRI for tumor diagnosis and re-

sponse monitoring, relied on the whole-tumor mean value as the summary statistic

of the perfusion maps for quantification of hemodynamic parameters, with varying

success (Young et al. (2007) and Law et al. (2007)). The functional diffusion map

(fDM), a voxel-by-voxel approach, was recently reported as an early, quantitative

biomarker for clinical brain tumor treatment outcome (Hamstra et al. (2005), Mof-

fat et al. (2005) and Hamstra et al. (2008)). Galbán et al. (2009) have also shown

that the functional perfusion map (fPM) based on perfusion MRI (obtained in the

same way as fDM) is predictive of overall survival. However, both the fDM and fPM

treat voxels as independent observations thus ignoring spatial structure in the im-

ages. Treating the data as independent observations may lead to incorrect variance

estimates and invalid inference. Our work is motivated by all of these studies and

aims to build a statistically robust and predictive model for treatment efficacy based

on both the ADC and rCBF (relative cerebral blood flow, a measure of perfusion,

Galbán et al. (2009)) images. An axial slice of a registered ADC image, a rCBF and

a T1-weighted, contrast enhanced MR image are shown in Figure 2.1.

We propose a joint, two-stage Bayesian predictive model. In the first stage, we

smooth the images (two images at each of two time points) using a multivariate

pairwise difference prior (mPWDP) that models the spatio-temporal correlation in

the images. The pairwise difference prior (PWDP) was first introduced by Besag

(1993). It is a member of the class of pairwise interaction Markov random field mod-
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els and captures general and local characteristics of the image. A priori, it assumes

that the mean values of neighboring voxels are positively correlated. We extend the

PWDP to the multivariate setting. We then propose four summary statistics that

are functionals of the parameters in stage I. The statistics enter the second stage

model as predictors of one-year survival status. The second stage model is a general-

ized nonlinear model (GNLM) proposed by Holmes and Denison (2003). The GNLM

uses a probit link, for computational efficiency, and a Bayesian multivariate adaptive

regression spline (BMARS) basis. The MARS model was introduced by Friedman

(1991). The BMARS basis allows the predictors to enter the GNLM model nonlin-

early; thus allowing for a very flexible decision boundary. The two models are fitted

jointly and the model is validated via cross-validated prediction. Algorithmically,

the models are joined by iterating between the two stages in a generalized Markov

chain Monte Carlo simulation (Metropolis-within-Gibbs updates in stage I and an

hybrid reversible jump Markov chain Monte Carlo (RJMCMC, MCMC) and Gibbs

updates of hyperparameters in stage II).

Compared to current methods, our joint model has several new features and im-

provements. In the first stage, our model: 1) accounts for spatio-temporal correlation

in the images, as well as the correlation between the ADC and rCBF images; 2) in-

creases the signal to noise ratio by smoothing the images; and 3) reduces the data

dimension via subject level summary statistics. In the second stage, our model al-

lows for a more flexible classification boundary than that allowed by the standard

linear systematic component of a GLM. The joint model we proposed propagates

the sampling error from stage I into stage II. We adopt the Bayesian paradigm for

estimating and predicting outcomes. Furthermore, model uncertainty is captured by

model averaging.
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This chapter is organized as follows. In Section 2.2, we first outline, at a high level,

our joint model, then specify the two stages of the model and propose our model

evaluation strategy that we have adopted. The pilot study data are then analyzed

in Section 2.3. We show our model outperforms simpler models in Section 2.4. The

paper concludes with a discussion, summarizing the strengths and limitations of

our approach. We include the detailed mathematical derivations of the posterior

distributions, algorithm details and pseudo code in the appendix in Section 2.6.

2.2 Bayesian Joint Model

To begin, we briefly describe the joint model. Let Y denote the set of all images

for all subjects and let Z denote the 1-year survival status (1-dead,0-alive) vector.

Let Ω = Ω1 ∪ Ω2 denote the set of all model parameters where Ω1 is the set of

stage I model parameters and predictive values and Ω2 is the set of stage II model

parameters. We further note that the set (over all subjects) of all summary statistics,

X , calculated in stage I is a functional vector of Ω1 and that Z depends on Ω1 only

through X = F (Ω1). The posterior distribution can be factored as follows:

(2.1) π(Ω | Y ,Z) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2)π(Ω2).

We will use π(Z | Ω1,Ω2), π(Z | Ω) and π(Z | X ,Ω2) interchangeably depending

on the context. We draw from the posterior (2.1) via Markov chain Monte Carlo

(MCMC) simulation by iteratively drawing between the full conditional distribution

of Ω1:

π(Ω1|Y ,Z,Ω2) ∝ π(Y | Ω1)π(Ω1)π(Z | Ω1,Ω2)(2.2)

and the full conditional distribution of Ω2:

(2.3) π(Ω2|Z,Ω1) ∝ π(Z | Ω1,Ω2)π(Ω2).
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The full conditionals in (2.2) and (2.3) are easily derived from (2.1) and repeated

use of Bayes’ theorem.

The remainder of this section is broken up into four subsections. In Subsection

2.2.1 we define the mPWDP model, in Subsection 2.2.2 we define the GNLM and then

in Subsection 2.2.3 we give an overview of how we sample from the joint posterior

distribution specified in (2.1). The last subsection, 2.2.4, we describe how we evaluate

our model.

2.2.1 Stage I

In this subsection, patient subscripts are suppressed to reduce notational burden.

Tumor voxels (short for volume element—a cube) are indexed by i = 1, 2, . . . , n,

where the tumor size n (i.e. the size of the tumor ROI defined in the introduc-

tion section) ranges from 770 to 20380 voxels with a mean of 6143 and standard

deviation of 4721. Two voxels, i and i′, that share a common face are called neigh-

bors, denoted by i ∼ i′. Let Ni = {i′ : i′ ∼ i} denote the set of neighbors of

voxel i with |Ni| denoting the number of neighbors. Let Yith represent the image

intensity at voxel i, time t = 1, 2 (baseline and week 3, respectively) and image

type h (h = 1—diffusion, h = 2—perfusion). The vector of image intensities at

voxel i is Yi = (Yi11, Yi12, Yi21, Yi22)T. We split Yi into two sub-vectors by time:

Yit = (Yit1, Yit2)T. Furthermore, let Y = (YT
1 , . . . ,Y

T
n )T. Each Yith is measured

with error with mean µith. Let µi = (µi11, µi12, µi21, µi22)T with corresponding sub-

vectors µit = (µit1, µit2)T. Let µ = (µT
1 , . . . ,µ

T
n )T. Note that the components in Yi

are correlated with covariance Σ.

We extend Besag’s (Besag (1993)) PWDP model to the multivariate setting. First,

[Y | µ,Σ∗] ∼ N(µ,Σ∗),
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where Σ∗ = diag(Σ)—a block diagonal matrix with Σ along the main diagonal. The

prior distribution of the mean vector µ is

π(µ | Ψ) ∝ exp

{
−0.5

∑
i∼i′

(µi − µi′)TΨ−1(µi − µi′)

}
.

Spatial correlation in the image is modeled through the diagonal elements of the

4 × 4 covariance matrix Ψ. The off diagonal elements of Ψ account for temporal

correlation within an image type, correlation between image types at a particular

time and correlation over time and across image types. The covariance matrix Σ

accounts for residual covariances.

A priori, Σ and Ψ are assigned inverse Wishart distributions: W−1 (I4, 5). The

scale matrix I4 is the 4 × 4 identity matrix and the degrees of freedom is 5. The

degrees of freedom can be regarded as the a priori sample size. Given the large n,

this results in a rather weak prior.

Predicting tumor response under the “null”: Ideally we would compare the

observed tumor response to its counterfactual: tumor response given no treatment.

Given that this is impossible, our summary statistics will be based on comparing

the observed tumor response to the predicted tumor response in the contralateral

hemisphere of the brain under the assumption that the change in ADC/rCBF values

in healthy tissue in the contralateral brain and those of tumor in the contralateral

brain, if they could be observed, are similar. In the contralateral brain the healthy

tissue receives a low dose of radiation and little damage from chemotherapy due

to the blood-brain barrier which blocks large chemotherapy molecules. Thus, the

healthy tissue in the contralateral brain is protected from therapy and diffusion and

perfusion are stable over the short time period between imaging sessions. We define a

healthy tissue region of interest (ROI) in the contralateral brain. The healthy tissue

ROI is obtained by reflecting the tumor ROI, approximately about the midline of the
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brain, to the contralateral hemisphere. We then ensure, visually, that the healthy

tissue ROI lies within the gray matter of the brain (some white matter is fine). If

the healthy tissue ROI intersects the ventricles, meninges or skull, we manually shift

the ROI, to avoid this overlap (details can be found in the Section 2.6). We now

describe how we predict tumor response in the healthy tissue ROI, which we refer to

as the null response.

First we build a mPWDP model for the healthy tissue data in the healthy tissue

ROI. The model is identical to that described above with the following notational

changes. For healthy tissue, in the healthy tissue ROI, let Wi denote the image

intensities for voxel i with mean vector νi. The covariance of the Wi will be denoted

∆ and the covariance of the mean vector νi will be denoted Ω. The number of voxels

in the healthy tissue ROI is also n. Denote the set of voxels in the healthy ROI by

H. We extend the healthy tissue ROI by a one-voxel thick shell and denote the set

of voxels in this shell by S. Without this extension, Ỹi2 and µ̃i2 are not identifiable

(see equations (2.4) and (2.5) below and Section 2.6). Let ns denote the number

of voxels in the shell and let ne = n + ns be the number in the extended ROI. Let

N e
i = {i′ : i′ ∼ i} denote the set of neighbors of voxel i in the extended ROI and

|N e
i | denote the number in this set.

Now to predict tumor null response translate the tumor baseline values Yi1 to

the healthy tissue ROI, using the same reflection and shift that created the healthy

tissue ROI. We partition the 4 × 4 covariance matrices into 4, 2 × 2 matrices. The

mPWDP for prediction is

(2.4)


Yi1

Ỹi2

 |
µi1
µ̃i2

 ,

∆11 ∆12

∆21 ∆22


 ∼ N


µi1
µ̃i2

 ,

∆11 ∆12

∆21 ∆22




where Ỹi2 =
(
Ỹi21, Ỹi22

)T

is the predicted null response at time point 2 and µ̃i2 is its
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mean. The µi1 are obtained from the posterior distribution of the tumor mPWDP

model and the covariances from the healthy tissue mPWDP models. Let

(2.5)

 µ∗i1

µ̃∗i2

 = |N e
i |−1

 ∑
i′∈Ne

i ∩S

 νi′1

νi′2

+
∑

i′∈Ne
i ∩H

 µi′1

µ̃i′2


 .

The prior for the mean vector in (2.4) is

(2.6)


µi1
µ̃i2

 |
µ∗i1
µ̃∗i2

 ,

Ω11 Ω12

Ω21 Ωi22


 ∼ N


µ∗i1
µ̃∗i2

 , |N e
i |−1

Ω11 Ω12

Ω21 Ω22




where the covariances are obtained from the posterior of the healthy tissue mPWDP

model. The covariances taken from the posterior of the healthy tissue mPWDP model

describe the spatio-temporal relationship between the baseline tumor ADC/rCBF

values and the predicted values under our assumption that tumor changes would be

similar to healthy tissue changes in the environment of the contralateral hemisphere.

We need to ensure that Σ11 and ∆11 are similar as well as Ψ11 and Ω11 as these

describe the baseline residual covariances and spatial covariances. If they are much

different, the inequality in the baseline covariances may result in biased predictions.

One may be tempted to replace ∆11 with Σ11 in (2.4) and Ω11 with Ψ11 in (2.6), how-

ever, there is no guarantee that the resulting covariance matrices would be positive

definite. After fitting our model to the data we investigated whether these assump-

tions hold by comparing the posterior expected values of these leading sub-matrices.

To compare them, we computed the relative root mean squared difference between

the three unique elements in the leading 2× 2 sub-matrices, where the mean is com-

puted over draws from the posterior (see details in the Section 2.6). The relative

root mean squared difference between the leading 2 × 2 sub-matrices of ∆ and Σ

(relative to ∆) is 0.038 (sd = 0.029) and that between the leading sub-matrices of Ω

and Ψ (relative to Ω) is 0.039 (sd = 0.018)—both small relative differences—hence
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we feel that this assumption is justified in our model.

Now we explicitly define the stage I parameter set Ω1 and, at the same time, add

a subject specific index, j. Gather all parameters and predictive values into a set

of parameters for subject j: Ω1j = {{µi,j}
nj

i=1, {νi,j}
ne
j

i=1, Σj ,Ψj ,Ωj, ∆j, {Ỹi2,j}
nj

i=1,

{µ̃i2j}
nj

i=1} . Then Ω1 = ∪jΩ1j.

Summary Statistics: The summary statistics are based on comparing the ob-

served tumor response with the predicted tumor response under the null. Previous

work suggests that the mean change in tumor ADC values is not predictive of treat-

ment efficacy in humans (Chenevert et al. (2000) and Moffat et al. (2005)). Empir-

ically, however, the baseline tumor ADC (rCBF) histogram and the week 3 tumor

ADC (rCBF) histogram are notably different. This gave us the idea to investigate

whether the Kullback-Leibler divergence (Kullback and Leibler (1951)) between the

posterior and predictive draws of µi2h and µ̃i2h, h = 1, 2, respectively, would be good

predictors of treatment efficacy. Specifically, we draw µi2h from its full conditional

posterior for all i in the tumor ROI and create a histogram and draw µ̃i2h from its full

conditional posterior for all i, create a histogram and then compute the Kullback-

Leibler divergence between these two histograms (See details in Section 2.6).

Hamstra et al. (2005), Moffat et al. (2005) and Hamstra et al. (2008) have demon-

strated that fDM, a statistical approach for segmenting tumors into regions of re-

sponse and non-response, based on a defined upper threshold of ADC change follow-

ing therapy, is a good biomarker for predicting early tumor response to therapy (this

threshold is basically an upper prediction limit of the regression slope of the week

3 tumor ADC values regressed on the baseline ADC values). The fDM approach is

based on the rationale that early ADC changes due to therapy are heterogeneous

within the tumor. Parts of the tumor respond to therapy and show an increase in
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ADC, while other regions show no change or even a decrease in ADC. However, suc-

cessful therapy should result in tumor cells lysing with a corresponding increase in

ADC, thus the rationale for defining an upper threshold. Furthermore, a success-

ful treatment should result in a decrease in rCBF, as discussed in the Introduction.

However, again, tumor response is heterogeneous and the mean change is minimal,

whereas changes in the tails of the distribution are more pronounced. Inspired by

fDM, we sought statistics that summarize the proportion of extreme expected values,

µi2, in the tumor response relative to the conditional distribution (Section 2.6) of

means of predicted null tumor voxel responses. We propose two additional summary

statistics: the conditional diffusion statistic (cDS) and the conditional perfusion

statistic (cPS). The first, cDS, is defined as the proportion of tumor voxels that have

a mean response that is greater than the 0.975 quantile of the conditional distribution

of the same voxel under the null assumption: cDS = n−1
∑n

i=1 I [µi21 > q0.975 (µ̃i21)],

where I[·] is the indicator function and q0.975 (µ̃i21) is the 0.975 quantile of the condi-

tional posterior distribution of µ̃i21. The summary measure cPS is similarly defined:

cPS = n−1
∑n

i=1 I [µi22 < q0.025 (µ̃i22)], where q0.025 (µ̃i22) is the 0.025 quantile of the

conditional posterior distribution of µ̃i22.

2.2.2 Stage II

For stage II, we borrow the generalized non-linear model with a Bayesian MARS

basis (GNLM-BMARS) proposed by Holmes and Denison (2003) to predict patients’

one-year survival status. For patient j, let Xj = (Xj1, . . . , Xj4)T denote the vector

of the summary statistics obtained in stage I. Hence X = ∪j{Xj}j. Let Zj index the

survival status of patient j, with Zj = 1, representing the death of patient j within

one year, and Zj = 0 otherwise, for j = 1, . . . ,M . Set Z = (Z1, . . . , ZM). The set

of all GNLM-BMARS parameters, Ω2, will now be subscripted by K, the number
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of BMARS bases, as the number of basis is treated as a parameter to be estimated

and the number of parameters in Ω2K depends on K. All parameters in Ω2K will be

defined shortly. The GNLM-BMARS model with K basis functions is:

π(Zj = 1 | Xj,Ω2K) = g(ηjK), ηjK =
K∑
k=0

βkBk(Xj),

Bk(Xj) =


1, k = 0,∏Lk

l=1[slk(Xjwlk
− tlk)]+ , k = 1, 2, . . . , K.

The link function g could be the cumulative distribution function (CDF) from

any of the commonly used distributions for modeling binary data such as the logistic,

normal or extreme value distributions. Due to the flexibility in the decision boundary

afforded by the BMARS basis, we argue that the choice of link function is not crucial.

Thus, for computational efficiency and simplicity, we use the probit link function,

g(·) = Φ(·), where Φ is the standard normal CDF. The function [ · ]+ = max (0 , · ).

K is the number of basis functions in the model. Lk is the degree of interaction in

basis function Bk ( · ). For our application, we set the highest order of interaction

to 2. Thus, only main effects and two-way interactions are allowed to enter the

model. Estimating higher order interactions with any certainty would require a

larger amount of data due to the curse of dimensionality (Denison et al. (2002)).

The variable slk is a sign indicator, taking values in {−1, 1}, tlk is the location of the

spline knot associated with the covariate indexed by wlk ∈ {1, 2, 3, 4}. Further tlk is

restricted to the set of covariate values {X1wlk
, . . . , XMwlk

} and all wlk are distinct

for each k (that is, each basis function is at most linear in any one variable). Consult

Holmes and Denison (2003) and Denison et al. (2002), Chapter 4 or the Section

2.6 for further details. Let βK = (β0, . . . , βK)T where β0 is the model intercept.

Also, let LK = {L1, . . . , LK}, sK = {s11, . . . , sLKK}, wK = {w11, . . . , wLKK}, tK =
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{t11, . . . , tLKK} and ΘK = {K, sK ,wK , tK ,LK} . Then Ω2K = ΘK ∪ {βK}.

We specify non-informative prior distributions for all parameters

π(Lk = 1) = π(Lk = 2) = 1/2

π (w1k = w | LK = 1) = 1/4, w = 1, 2, 3, 4

π [(w1k, w2k) = (w,w′) | LK = 2] = 1/6

where (w,w′) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

π(tlk = Xjwlk
| wlk) = 1/M, j = 1, . . . ,M

π(slk = −1) = π(slk = 1) = 1/2

[βK | v,K] ∼ N(0, vIK+1),
[
v−1
]
∼ Gamma(0.001, 0.001),

with one exception: [K | λ] ∼ Poisson(λ) and [λ] ∼ Gamma(1, 0.2). We assess the

impact of this prior on classification results in the Section 2.6.

2.2.3 Sampling from the joint posterior

Now we outline how we sample from the joint posterior given in (2.1). For more

details and derivations, please consult Section 2.6.

We begin with the sampling of stage I parameters. We sample parameters µi,j,

νi,j, µ̃i2,j, Σj, Ψj, ∆j and Ωj for i = 1, . . . , nj and j = 1, . . . ,M from their full

conditional distributions via a hybrid Metropolis-within-Gibbs algorithm. Both, Ψj

and Σj are drawn directly from their full conditionals (inverse Wishart distributions).

The remaining parameters are drawn from their full conditionals via Metropolis-

Hastings updates (Hastings (1970)). Full details are provided in Section 2.6. We

note here that all parameters in a stand-alone MPWDP model can be updated by

a Gibbs algorithm. However, due to the joint nature of our full model, all stage

1 parameters other than Ψj and Σj are linked to stage II through the summary



24

statistics and thus require Metropolis-within-Gibbs updates as the full conditionals

no longer have a nice distributional form.

Now we outline our posterior sampling algorithm for stage II parameters. In Pro-

bit regression models, the posterior distribution can be simulated by a Metropolis-

Hastings algorithm. However, to simplify computation, Albert and Chib (1993)

derived a data augmentation scheme which relies on the latent variable model rep-

resentation of a binary variable. This approach greatly simplifies sampling from the

posterior distribution as the model is transformed from a Probit regression model

into an equivalent linear model, thus the parameter vector βK can be drawn from

its full conditional as opposed to the Metropolis-Hastings algorithm.

We introduce a continuous latent vector d = (d1, . . . , dM)T. Define the conditional

distribution of Zj given dj by

(2.7) π(Zj = 1 | dj) = 1 if dj > 0, and = 0 if dj ≤ 0.

The full conditional distribution of dj is straightforward to derive (Section 2.6 and

Holmes and Denison (2003)) and is

(2.8) [dj | Zj = zj,Xj,Ω2K ] ∼

 N(ηjK , 1) truncated at the left by 0 if zj = 1

N(ηjK , 1) truncated at the right by 0 if zj = 0.

We draw dj, j = 1, . . . ,M from (2.8). We then draw βK from its full conditional

distribution: [βK | d, v,ΘK ,X ] ∼ N (m∗K , V
∗
K), where V ∗K = [(vIK+1)−1 + BT

KBK ]−1

and m∗K = V ∗KBT
Kd. Standard conjugacy results state that the full conditional dis-

tribution of v−1 is [v−1 | βK , K] ∼ Gamma[0.001 + 0.5(K + 1), 0.001 + 0.5βT
KβK ].

All parameters contained in ΘK , are updated via the reversible jump MCMC

algorithm (Green (1995)). Since K is random, the dimension of ΘK varies as well as

the column dimension of the matrix of BMARS bases, BK , and the dimension of the
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vector βK . At each iteration of the algorithm, we randomly (with equal probability)

choose to add a new basis function (birth step) or to remove one of the existing

basis functions (death step). Thus, covariates (summary statistics) and any two-way

interactions enter the model via these birth and death steps. Details of the RJMCMC

algorithm and pseudo code for sampling from the posterior distribution of our joint

model are given in Section 2.6.

2.2.4 Model Evaluation

The traditional way to evaluate classification models is by randomly partitioning

the data into a training set for model building and a test set for model evaluation.

However, due to the small sample size in our data set, we evaluate our proposed

joint model via cross-validation. To implement cross-validation, a straightforward,

but computationally expensive, approach is to run the algorithm multiple times

with one observation left out each time. Instead, we adopt the importance sampling

approach proposed by Gelfand et al. (1992) whereby one need only estimate the

posterior distribution of the parameters given the full dataset and then by importance

sampling compute the predictive probability that Zj = 1 given Z{−j} and Y for

subject j where Z{−j} denotes all observations except that of subject j. Let Ω
(t)
2

denote the value of Ω2K from the tth draw from the posterior and that of Ω1 by

Ω
(t)
1 . The cross-validated posterior predictive probability is estimated by MCMC

output (see the Section 2.6) and is given by:

π
(
Zj = 1 | Z{−j},Y

)
(2.9)

=

∑T
t=1 π

(
Zj = 1 | Ω(t)

1j ,Ω
(t)
2

)
/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

)
∑T

t=1 1/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

) ,

where zj is the observed value of Zj. We assume that the losses incurred by a false

negative and a false positive prediction are equal. Thus, if π
(
Zj = 1 | Z{−j},Y

)
≥
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0.5, then the cross-validated prediction of Zj is equal to one and zero otherwise.

Although not part of model evaluation, here is a good place to discuss the pre-

dictive decision boundary. Theoretically, one could use the predictive distribution,

π(Znew = 1 | Ynew,Z,Y), to define the decision boundary by varying Ynew over the

space of all images. Obviously this is too daunting a task. Instead we will define the

conditional predictive decision boundary in terms of the summary statistics. This

decision boundary is a hypersurface in R4—the covariate space. It is defined as all

solutions, Xnew, to the posterior predictive probability

1/2 = π(Znew = 1 | Z,Xnew) =

∫
π(Znew = 1 | Xnew,Ω2K)π(Ω2K | Z,Ω1)dΩ2K .

We are not able to visualize this decision boundary either as the dimension is four.

Therefore, to visualize the decision boundary, we will marginalize over pairs of covari-

ates and plot the marginal predictive probability map as a function of the remaining

pair of covariates by discretizing the marginal covariate space into a grid of values.

The marginal decision boundary, then, is a curve in 2-dimensional space (see Figure

2.2).

We note here, that at each iteration the number of BMARS basis may change, thus

implicit in the estimation of the cross-validated predictive probability and in building

the marginal probability maps we average over all potential BMARS models. By

doing so, we account for model uncertainty in our results along with the uncertainty

in the model parameters, and thus inductively, the uncertainty in the covariates X

(Raftery et al. (1996)).

2.3 Results

Stage I is computationally much more expensive than stage II due to the large

number of voxels, n, in each patient’s tumor. We run the algorithm (stage I and stage
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II combined) for 100,000 iterations. In each iteration, we over-sample (10:1) draws

from the posterior of the stage II parameters. Stage I takes around 20 hours for all

47 patients, whereas stage II takes 5 minutes. The algorithm is programmed in C

and implemented on a 3.0 GHz Mac Xserve. The first 50,000 draws are discarded as

burn-in. By visual inspection of the trace plots of the (fixed dimension) parameters,

the burn-in is sufficient and the chain is sampling from the posterior (stationary)

distribution.

We calculate the cross-validated correct classification rate, CCRcv—the propor-

tion of correctly predicted survival statuses. The positive predictive value, PPVcv—

the probability of death within one year conditional on prediction of death within

one year. And, the negative predictive value, NPVcv—the probability of survival

greater than one year given a prediction of survival greater than one year. The re-

sults are: CCRcv = 0.787 (37/47); PPVcv = 0.813 (13/16); and NPVcv = 0.774

(24/31) (Table 2.1, row 1). Investigators are interested in therapy intervention or

modification if the model accurately predicts death within one year. Therefore, the

PPVcv is of greater interest than the NPVcv.

In Figure 2.2 we display the six bivariate marginal predictive probability maps.

On each map is the marginal decision boundary separating the space of covariates

into two regions based on whether π(Znew = 1 | Z,Xnew) > 0.5. Also shown in the

figure are the posterior means of the covariates for all 47 subjects. The triangles rep-

resent those subjects who died before one year, and the circles represent those who

lived greater than one year. The probabilities in the maps are π(Znew = 1 | Z,Xnew)

marginalized over the six combinations of pairs of covariates. It is evident that

the marginal decision boundaries are quite complex. From Figure 2.2 we see that,

marginally, small values of dKLD and cDS are associated with poor survival and
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that large values of pKLD are also associated with poor survival. There are also

substantial interactions between cPS and dKLD, between dKLD and cDS and be-

tween pKLD and dKLD. In general, the overall gross pattern of increases in the

dKLD and cDS statistics are predictive of longer survival—consonant with what our

colleagues hypothesized. However, the overall gross pattern of decreases in the pKLD

and cPS statistics are predictive of shorter survival—dissonant with that hypothe-

sized. One plausible explanation provided by our colleagues is that a reduction in

rCBF creates an hypoxic environment within the tumor and hypoxia is known to be

protective against radiation damage. However, we caution that the exact mechanism

is unknown and that it warrants further investigation (Galbán et al. (2009)).

The baseline prognostic factors age, surgery type, Karnofsky performance score,

pathology grade and tumor size were also included in stage II as covariates. However,

their inclusion did not increase the overall correct classification rate and each was

included in the model less than 20% of the time (either as main effects or in an

interaction term).

Each of the four summary statistics were included in the joint model as either

a main effect or as an interaction term a high percentage of the MCMC draws

(dKLD, 95.9%; pKLD, 90.5%; cDS, 81.1% and cPS, 84.3%). This indicates their

importance in predicting survival. Both dKLD and pKLD appear to be slightly

stronger predictors than either cDS or cPS based on the amount of time spent in the

model.

2.4 Model Assessment

Comparison with simpler models: Our first comparison is with two separate

models (i.e. not modeled jointly). The image data are fitted with our mPWDP
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model. The posterior means of the summary statistics are treated as fixed, known

values and used as covariates in our GNLM-BMARS model. Thus the only difference

between this procedure and our joint model is that our joint model accounts for the

uncertainty in the summary statistics. Using point estimates, such as the posterior

means, of the summary statistics as covariates in stage II results in overly optimistic

prediction errors (see, e.g. Little and Rubin (2002)). Ignoring the sampling variabil-

ity in stage I, two additional patients are correctly classified (Table 2.1, row 2). The

posterior means of the summary statistics for these patients are near the decision

boundary and happened to fall on the correct side, while the maximum a posteriori

probability (MAP) estimate was on the other side. Accounting for the variability in

these random statistics, therefore, is necessary for robust prediction.

Our second comparison is again with two separate models. We estimate the poste-

rior means of the summary statistics from our mPWDP model. These point estimates

are then treated as fixed, known covariates and put into a standard Probit regression

model (Table 2.1, row 3). Both main effects and interaction terms are allowed in the

Probit regression model. BIC is used for model selection. Correct prediction from

our joint model is much higher even though uncertainty in the covariates is ignored,

as well as model uncertainty, in the separate mPWDP + Probit regression model.

The extra flexibility afforded by the BMARS basis has a large effect on prediction.

Our final comparison illustrates the benefits of the spatio-temporal modeling in

stage I by comparing our results to those based on the observed images. Since the cDS

and cPS statistics rely on the conditional distribution of tumor response under the

null, it is not possible to derive these summary statistics on the observed images as

we have no model to use to predict tumor null response. Thus, this comparison uses

only dKLD and pKLD. We estimate dKLD and pKLD using the observed images
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by calculating the KL divergence between observed tumor response and observed

healthy tissue response (in the contralateral hemisphere) at week 3 and plugging

these statistics into our GNLM-BMARS model as fixed covariates. Cross-validation

results are shown in the bottom half of Table 2.1, rows 4 and 5. Spatio-temporal

modeling results in higher CCRcv, PPVcv and NPVcv.

Our overall conclusion from these comparisons is that joint modeling of the spatio-

temporal structure in the images and the complexity in the decision boundary af-

forded by the covariates entering the GNLM model non-linearly and interacting in a

complex manner is warranted for this data set. The images have complex structure

and there is a complex relationship between the image based summary statistics

and one-year survival. Furthermore, accounting for the uncertainty in the summary

statistics and model averaging are necessary for robust prediction.

Results from simulation studies and sensitivity analyses can be found in Section

2.6.

2.5 Discussion

In this chapter, we propose a Bayesian joint model to predict early treatment

efficacy based on qMRI data from patients with high-grade gliomas. In stage I,

we model the spatio-temporal structure in the qMRI data via a mPWDP model

and derive summary statistics as functionals of the parameters in the posterior. In

stage II, a GNLM is used to classify each patient’s one-year survival status with

the summary statistics derived in stage I as random predictors. The final predictive

power is evaluated by cross-validation. Compared to previous work, our proposed

joint model integrates many of the ideas that have been previously discussed. First,

we extend the idea of the PWDP model to a multivariate setting, and, in fact,
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use it in a full spatio-temporal setting. The mPWDP model accounts for spatio-

temporal correlation in the images as well as the correlation between the diffusion and

perfusion images. This results in an increase in the signal to noise ratio. Furthermore,

data dimension reduction is realized by defining subject level summary statistics.

Second, by utilizing the BMARS basis, we allow a flexible and complex classification

model that can achieve high predictive power. Finally, our model accounts for the

uncertainty in stage II covariates and for the uncertainty in model selection, resulting

in more robust predictions.

In our analysis, we dichotomize each patient’s survival status at one year. How-

ever, there may not be any substantial difference between a patient who dies 11

months after diagnosis and a patient who dies at 13 months. Moreover, the cen-

soring rate in the data is about 30% with a median follow-up of 23.1 months and

all censored observations are greater than one year. Censoring may also play a role

in the evaluation of tumor treatment efficacy and dichotomizing survival may lead

to inefficient estimation. We are currently building a joint imaging/survival model,

where, in stage II, we model the censored survival times explicitly.

We note here that we propose four summary statistics that capture information

about the early changes in ADC and rCBF due to treatment. Results show that

they perform well in terms of good prediction. We do not claim that these summary

statistics capture the most, or even the best, information. Information is always

lost in data reduction. Much more research is needed to determine how much data

reduction is tolerable. Reduction to four summary statistics does a good job, but

perhaps five or six would be better. We did not attempt to use more than four

summary statistics due to the limited sample size in the pilot study. With larger

samples size, less data reduction may be beneficial.
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Our results show that early changes in diffusion and perfusion appear to be valu-

able biomarkers for the early assessment of treatment efficacy. These result are

promising, albeit preliminary. The ability to predict treatment response during ther-

apy, as opposed to waiting to assess traditional radiologic response, has the potential

to facilitate patient management and may allow second line or salvage therapies to

begin earlier than current practice dictates. Lastly, our model and sampling algo-

rithm are easily extendable to more than 2 image types at more than 2 times points

with more than four summary statistics.
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Table 2.1:
Model Comparisons. Upper part: comparisons based on all four statistics. First row:
our proposed joint model. Second row: separate two-stage model (not joint). The
second stage model (GNLM-BMARS) fits conditional on the posterior expectations of
the summary statistics from stage 1. Third row: separate two-stage model. The second
stage model is a standard Probit regression model. Summary covariates are fixed at their
posterior expectations from stage I. Bottom part: comparisons using only the two KLD
statistics. Fourth row: our proposed model. Fifth row: Summary statistics computed
on observed data. GNLM-BMARS fits conditional on “observed” dKLD and pKLD.

Model 1CCRcv
2PPVcv

3NPVcv
Bayesian joint model 0.787 (37/47) 0.813 (13/16) 0.774 (24/31)
Separate models (two-stage model) 0.830 (39/47) 0.853 (15/18) 0.827 (24/29)
Separate models (stage I + Probit) 0.617 (29/47) 0.572 (11/20) 0.667 (18/27)

Bayesian joint model 0.723 (34/47) 0.733 (11/15) 0.719 (23/32)
Single model (stage II only) 0.638 (30/47) 0.600 (9/15) 0.656 (21/32)

1 Correct cross-validated (CV) classification rate.
2 Cross-validated positive predictive value.
3 Cross-validated negative predictive value.
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Figure 2.1:
A single axial slice of pre-treatment MRI data. Upper left image: diffusion MRI; Upper
right: perfusion MRI; Lower left: T1-weighted contrast enhanced MRI. The tumor is
visible in all three images. It is located roughly at voxel (100,80) just below the left
ventricle.
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Figure 2.2:
Marginal predictive probability maps from the glioma data. Each probability map is
obtained by marginalizing over the two summary statistics not appearing in the x and
y labels of the images. The darker gray indicates smaller probability of patients’ death
before one year (i.e. π(Zj = 1 | Z(−j),Y(−j),Yj)). The curved lines demarcate the
marginal decision boundary (i.e. π(Zj = 1 | Z(−j),Y(−j),Yj) = 0.5)—if π(Zj = 1 |
Z(−j),Y(−j),Yj) > 0.5 we predict death of that patient before one year. The symbols
are located at the marginal posterior means of the statistics. The circles and triangles
represent the true one year survival status for each patient. A circle indicates that the
patient actually lived longer than one year. A triangle indicates that the patient died
before one year.
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2.6 Appendix

Throughout this appendix, we will rely on the notation set out in the main part

this chapter.

2.6.1 Model and Algorithm Details

Joint Model:

Let Ci,j = {{µi′1,j}i′∈Ni,j
, {µ̃i′2,j}i′∈Ni,j

, {νi′2,j}i′∈Ne
i,j∩Sj}. We denote the jth co-

variate vector using notation Xj(µ2,j, µ̃2,j) to emphasize its dependence on the pa-

rameters µ2,j and µ̃2,j. The joint distribution of all the data and parameters is

M∏
j=1

nj∏
i=1

π(Yi,j | µi,j,Σj)π(Σj)π(µi,j | {µi′j}i′∈Ni,j
,Ψj)π(Ψj)(2.10)

×
M∏
j=1

ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)

×
M∏
j=1

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×
M∏
j=1

π(dj | Xj(µ2,j, µ̃2,j),Ω2K)π(Ω2K),

where

[
Yi,j | µi,j,Σj

]
∼ N(µi,j,Σj), [Wi,j | νi,j,∆j] ∼ N(νi,j,∆j),(2.11)

[Σj] ∼W−1(I4, 5), [∆j] ∼W−1(I4, 5),(2.12) [
µi,j | {µi′j}i′∈Ni,j

,Ψj

]
∼ N

[
µ∗i,j, |Ni,j|−1Ψj

]
,(2.13) [

νi,j | {νi,j}i′∈Ne
i,j
,Ωj

]
∼ N

(
ν∗i,j, |N e

i,j|−1Ωj

]
,(2.14)

[Ψj] ∼W−1(I4, 5), [Ωj] ∼W−1(I4, 5),(2.15)
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and

[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
∼ N

(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j
)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
,[

µ̃i2,j | µi1,j, Ci,j,Ωj

]
∼ N

(
µ̃∗i2,j + Ω21,j(Ω11,j)

−1(µi1,j − µ∗i1,j), |N e
i,j|−1(Ω22,j − Ω21,j(Ω11,j)

−1Ω12,j)
)
,[

dj | Xj(µ2,j, µ̃2,j),Ω2K

]
∼ N(ηjK , 1),

where ηjK is defined in (2.48), and

(2.16) µ∗i,j = |Ni,j|−1
∑
i′∈Ni,j

µi′,j , ν
∗
i,j = |N e

i,j|−1
∑
i′∈Ne

i,j

νi′,j,

(2.17)

 µ∗i1,j

µ̃∗i2,j

 = |N e
i,j|−1

 ∑
i′∈Ne

i,j∩Sj

 0

νi′2,j

+
∑

i′∈Ne
i,j∩Hj

 µi′1,j

µ̃i′2,j


 .

Stage I:

For stage I parameters, some of the full conditional distributions have nice dis-

tributional forms from which we can directly sample, others require a Metropolis-

Hastings update. The algorithm we use to draw stage I parameters is thus an hybrid

Metropolis-within-Gibbs algorithm.

Stage I – Updating Σj:

By conjugacy, it is straightforward to derive the full conditional for the covariance

matrix Σj for subject j. A priori, Σj ∼ W−1 (I4, 5). Combining this prior with the
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data distribution (first distribution in (2.11)), we obtain

π
(
Σj |

{
µi,j
}nj

i=1
, {Yi,j}nj

i=1

)
∝

nj∏
i=1

π(Yi,j | µi,j,Σj)π(Σj)

∝ |Σj|−nj/2 exp

{
−0.5

nj∑
i=1

(Yi,j − µi,j)TΣ−1
j (Yi,j − µi,j)

}
×

|Σj|−
5+4+1

2 exp
{
−0.5 tr(Σ−1

j )
}

= |Σj|−(nj+10)/2 exp

{
−0.5 tr

(
Σj
−1

[
nj∑
i=1

(Yi,j − µi,j)(Yi,j − µi,j)T + I4

])}
,

which is the kernel of an inverse Wishart distribution. Let

S1,j =

nj∑
i=1

(
Yi,j − µi,j

) (
Yi,j − µi,j

)T
.

Then,

(2.18)
[
Σj |

{
µi,j
}nj

i=1
, {Yi,j}nj

i=1

]
∼W−1 (S1,j + I4, nj + 5) .

Stage I – Updating Ψj:

Given the prior Ψj ∼W−1(I4, 5) we can easily derive its full conditional:

π
(
Ψj |

{
µi,j
}nj

i=1

)
∝

nj∏
i=1

π(µi,j | Ψj, {µi′,j}i′∈Ni,j
)π(Ψj) = π

({
µi,j
}nj

i=1
| Ψj

)
π(Ψj)

∝ |Ψj|−nj/2 exp

{
−0.25

∑
i∼i′

(µi,j − µi′,j)TΨj
−1(µi,j − µi′,j)

}
×

|Ψj|−10/2 exp
{
−0.5 tr(Ψ−1

j )
}

= |Ψj|−(nj+10)/2 exp

{
−0.5 tr

(
Ψ−1
j

[
0.5
∑
i∼i′

(µi,j − µi′,j)(µi,j − µi′,j)T + I4

])}

where we have generalized results from Higdon et al. (1997) to obtain

π
({
µi,j
}nj

i=1
| Ψj

)
∝ |Ψj|−nj/2 exp

{
−0.25

∑
i∼i′

(µi,j − µi′,j)TΨj
−1(µi,j − µi′,j)

}
.
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Let S2,j = 0.5
∑

i∼i′
(
µi,j − µi′,j

) (
µi,j − µi′,j

)T
. Then,

(2.19)
[
Ψj |

{
µi,j
}nj

i=1

]
∼W−1 (S2,j + I4, nj + 5) .

Stage I – Updating µi,j:

Recall that the summary statistic vector, Xj, depends on Ω1j only through

{µi2,j}
nj

i=1 and {µ̃i2,j}
nj

i=1. The full conditional of µi,j is

π(µi,j | {µi′,j}i′∈Ni,j
,Yi,j,Σj,Ψj, dj, µ̃i2,j,Ω2K)(2.20)

∝ π(Yi,j | µi,j,Σj)π(µi,j | {µi′,j}i′∈Ni,j
,Ψj)

×π(dj | Xj(µ2,j, µ̃2,j),Ω2K)π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)

×π(µ̃i2,j | µi1,j, Ci,j,Ωj)
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj)

∝ π
(
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

)
π(dj | Xj(µ2,j, µ̃2,j),Ω2K)(2.21)

×π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj),

which does not have a nice distributional form from which we can easily sample and

so we resort to a Metropolis-Hastings update. Note that the first term in (2.21) does

have a nice distribution form:

π
(
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

)
∝ π(Yi,j | µi,j,Σj)π(µi,j | Ψj, {µi′,j}i′∈Ni,j

)

∝ exp
{
−0.5(Yi,j − µi,j)TΣj

−1(Yi,j − µi,j)
}
×

exp
{
−0.5|Ni,j|(µi,j − µ∗i,j)TΨ−1

j (µi,j − µ∗i,j)
}

= exp
{
−0.5

[
µT
i,j(Σ

−1
j + |Ni,j|Ψ−1

j )µi,j

−2µT
i,j

(
Σ−1
j Yi,j + |Ni,j|Ψ−1

j µ
∗
i,j

)]}
,
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which is the kernel of a normal distribution. Thus

[
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

]
∼

N
[
V
(
|Ni,j|Ψj

−1µ∗i,j + Σj
−1Yi,j

)
,V
]
,(2.22)

where V =
(
|Ni,j|Ψj

−1 + Σj
−1
)−1

. Therefore, we propose a new value of µi,j, called

it µpropi,j from (2.22), which simplifies the acceptance probability and results in a high

acceptance rate. The acceptance probability is given by

αµ = min {1,R} ,(2.23)

where the superscript prop represents a new proposed sample and current represents

the current sample and

R =
π(dj | Xj(µ{−i}2,j,µ

prop
i2,j , µ̃2,j),Ω2K)π(Ỹi2,j | Yi1,j,µ

prop
i1,j , µ̃i2,j,∆j)

π(dj | Xj(µ{−i}2,j,µ
current
i2,j , µ̃2,j),Ω2K)π(Ỹi2,j | Yi1,j,µcurrenti1,j , µ̃i2,j,∆j)

×
π(µ̃i2,j | µ

prop
i1,j , Ci,j,Ωj)

∏
i′∈Ni,j

π(µ̃i′2,j | µi′1,j, C
prop
i′,j ,Ωj)

π(µ̃i2,j | µcurrenti1,j , Ci,j,Ωj)
∏

i′∈Ni,j
π(µ̃i′2,j | µi′1,j, Ccurrent

i′,j ,Ωj)
,

where Cprop
i′,j = {{µpropi1,j ,µk1,j}k∈Ni′,j

, {µ̃k2,j}k∈Ni′,j
, {νk2,j}k∈Ne

i′,j∩Sj
}.

Stage I – Updating νi,j:

For healthy tissue voxels, analogous to (2.22), the full conditional of νi,j for a

voxel i ∈ N e
i′,j ∩Hj, is:

[
νi,j | Ωj,∆j,Wi,j, {νi′,j}i′∈Ne

i,j

]
∼

N
[(
|N e

i,j|Ω−1
j + ∆j

−1
)−1 (|N e

i,j|Ω−1
j ν

∗
i,j + ∆−1

j Wi,j

)
,
(
|N e

i,j|Ω−1
j + ∆−1

j

)−1
]
.(2.24)
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While for a voxel i ∈ N e
i′,j ∩ Sj, we have that the full conditional of νi,j is

π(νi,j | {νi′,j}i′∈Ne
i,j
,Wi,j,∆j,Ωj, {µ̃i2,j}i′∈Ni

, µ̃i2,j, {µi′1,j}i′∈Ni
,µi1,j)(2.25)

∝ π(Wi,j | νi,j,∆j)π(νi,j | {νi′,j}i′∈Ne
i,j
,Ωj)

×
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj)

∝ π
(
νi,j | ∆j,Ωj,Wi,j, {νi′,j}i′∈Ne

i,j

) ∏
i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj),(2.26)

which does not have a nice distributional form. However, the first term in (2.26) has

distribution (2.24). Thus, we propose a new value νpropi,j , i ∈ N e
i′,j ∩ Sj from (2.24)

and accept it with probability:

αν = min

1,
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, C
prop
i′,j ,Ωj)

π(µ̃i′2,j | µi′1,j, Ccurrent
i′,j ,Ωj)

 ,(2.27)

where Cprop
i′,j = {{µk1,j}k∈Ni′,j

, {µ̃k2,j}k∈Ni′,j
, {νpropi2,j ,νk2,j}k∈Ne

i′,j∩Sj
}.

Stage I – Updating ∆j:

The full conditional distribution of the covariance matrix ∆j for subject j is

π(∆j | {Wi,j}
ne
j

i=1, {νi,j}
ne
j

i=1, {Ỹi2,j}
nj

i=1, {Yi1,j}
nj

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1)(2.28)

∝
ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)

∝ π(∆j | {Wi,j}
ne
j

i=1, {νi,j}
ne
j

i=1)

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j),(2.29)

which does not have a nice distributional form from which to draw. However, the

first term in (2.29) has an inverse Wishart distribution:[
∆j | {Wi,j}

ne
j

i=1, {νi,j}
ne
j

i=1

]
∼ W−1

(
S3,j + I4, n

e
j + 5

)
,(2.30)

where S3,j =
∑ne

j

i=1 (Wi,j − νi,j) (Wi,j − νi,j)T for all i ∈ H ∪ S. Therefore, we

propose a new value ∆prop
j from (2.30) and accept this value with probability

α∆ = min

{
1,

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
prop
j )

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
current
j )

}
.(2.31)
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Stage I – Updating Ωj:

From (2.10), we have

π(Ωj | {νi,j}
ne
j

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1, {νi′2}i′∈Ne
i ∩Sj)(2.32)

∝
ne
j∏

i=1

π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)

nj∏
i=1

π(µ̃i2,j | µi1,j, Ci,j,Ωj)

∝ π(Ωj | {νi,j}
ne
j

i=1)

nj∏
i=1

π(µ̃i2,j | µi1,j, Ci,j,Ωj).(2.33)

The first term in (2.33) has an inverse Wishart distribution:

(2.34)
[
Ωj | {νi,j}n

e

i=1

]
∼W−1

(
S4,j + I4, n

e
j + 5

)
,

Thus we propose a new value Ωprop
j from (2.34) and accept this value as a draw from

the full conditional with probability

αΩ = min

{
1,

nj∏
i=1

π(µ̃i2,j | µi1,j, Ci,j,Ω
prop
j )

π(µ̃i2,j | µi1,j, Ci,j,Ωcurrent
j )

}
.(2.35)

Stage I – Updating Ỹi2,j and µ̃i2,j:

Now we derive the conditional predictive distribution of Ỹi2,j and the posterior

distribution of µ̃i2,j. Since under the null, we define the joint distribution of Yi1,j

and Ỹi2,j by

(2.36)


Yi1,j

Ỹi2,j

 |
µi1,j
µ̃i2,j

 ,

∆11,j ∆12,j

∆21,j ∆22,j


 ∼ N


µi1,j
µ̃i2,j

 ,

∆11,j ∆12,j

∆21,j ∆22,j


 ,

where Yi1,j = (Yi11,j, Yi12,j)
T represents the baseline diffusion and perfusion intensi-

ties at voxel i, while Ỹi2,j =
(
Ỹi21,j, Ỹi22,j

)T

is the predicted null response at time

point 2. Let

(2.37)

 µ∗i1,j

µ̃∗i2,j

 = |N e
i,j|−1

 ∑
i′∈Ne

i,j∩Sj

 0

νi′2,j

+
∑

i′∈Ne
i,j∩Hj

 µi′1,j

µ̃i′2,j


 .
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The prior for the mean vector in (2.36) is
µi1,j
µ̃i2,j

 |
µ∗i1,j
µ̃∗i2,j

 ,

Ω11,j Ω12,j

Ω21,j Ω22,j


(2.38)

∼ N


µ∗i1,j
µ̃∗i2,j

 , |N e
i,j|−1

Ω11,j Ω12,j

Ω21,j Ω22,j


 .

The conditional distribution of Ỹi2,j given Yi1,j and model parameters has a nice

distributional form from which we can directly sample. It is a normal distribution

(Rao (1973), Chapter 8):[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
∼(2.39)

N
(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j
)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
.

The posterior distribution of µ̃i2,j is

π(µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj, dj,Xj(µ2,j, µ̃2,j),Ω2K)(2.40)

∝ π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×π(dj | Xj(µ2,j, µ̃2,j),Ω2K)

∝ π(µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj)(2.41)

×π(dj | Xj(µ2,j, µ̃2,j),Ω2K).

We propose a new value µ̃propi2,j from the first term in (2.41) which has a normal

distribution:[
µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj

]
∼(2.42)

N
(
θi2,j + Λi21,j

(
Λi11,j

)−1 (
µi1,j − θi1,j

)
, Λi22,j − Λi21,j

(
Λi11,j

)−1
Λi12,j

)
where

Λi,j =

 Λi11,j Λi12,j

Λi21,j Λi22,j

 =

|N e
i,j|

 Ω11,j Ω12,j

Ω21,j Ω22,j


−1

+

 ∆11,j ∆12,j

∆21,j ∆22,j


−1

−1
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and

θi,j =

 θi1,j

θi2,j



= Λi,j

|N e
i,j|

 Ω11,j Ω12,j

Ω21,j Ω22,j


−1 µ∗i1,j

µ̃∗i2,j

+

 ∆11,j ∆12,j

∆21,j ∆22,j


−1 Yi1,j

Ỹi2,j


 .

We then accept this proposed value with probability

αµ̃ = min

{
1,

π(dj | Xj(µ2,j, µ̃{−i}2,j, µ̃
prop
i2,j ),Ω2K)

π(dj | Xj(µ2,j, µ̃{−i}2,j, µ̃
current
i2,j ),Ω2K)

}
.(2.43)

Checking Covariance Structures:

Next we check whether the covariance structures are similar (see section 2.2.1).

Note that all calculations in this part are for each subject j. We suppress the subject

subscript j to simplify notation.

To investigate whether Σ11 and ∆11 are similar as well as Ψ11 and Ω11, as these

describe the baseline residual covariances and spatial covariances, we compare the

posterior expected values of these leading sub-matrices after fitting our model to the

data. Assume

Σ
(t)
11 =

 σ
(t)
11 σ

(t)
12

σ
(t)
21 σ

(t)
22

 , ∆
(t)
11 =

 δ
(t)
11 δ

(t)
12

δ
(t)
21 δ

(t)
22

 ,

Ψ
(t)
11 =

 ψ
(t)
11 ψ

(t)
12

ψ
(t)
21 ψ

(t)
22

 , Ω
(t)
11 =

 ω
(t)
11 ω

(t)
12

ω
(t)
21 ω

(t)
22

 ,

where σ
(t)
12 = σ

(t)
21 , δ

(t)
12 = δ

(t)
21 ,ω

(t)
12 = ω

(t)
21 , ψ

(t)
12 = ψ

(t)
21 , and (t) indicates the tth posterior

draw.

We computed the root mean squared relative difference between the three unique

elements in the leading 2× 2 sub-matrices, where the mean is computed over draws
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from the posterior. The relative root mean squared difference between the leading

2× 2 sub-matrices of ∆ and Σ (relative to ∆) is calculated as:

rms1 =

√√√√ 1

3T

T∑
t=1

2∑
j≥i

2∑
i=1

(
σ

(t)
ij − δ

(t)
ij

δ
(t)
ij

)2

,

and the relative root mean squared difference between the leading 2×2 sub-matrices

of Ω and Ψ (relative to Ω) is calculated as:

rms2 =

√√√√ 1

3T

T∑
t=1

2∑
j≥i

2∑
i=1

(
ψ

(t)
ij − ω

(t)
ij

ω
(t)
ij

)2

.

Summary Statistics:

To compute the Kullback-Leibler divergence, we create two histograms with the

posterior draws of µi2h and µ̃i2h; one for diffusion, h = 1 and one for perfusion,

h = 2. The bin width used is b = 3.5σ/n1/3 (Scott (1979)) where σ is the stan-

dard deviation of all draws of µi2h and µ̃i2h and n is number of tumor voxels.

Let (µmin2h , µmax2h ) denote the range of the histogram corresponding to image type h,

where µmin2h = min({µ̃i2h}ni=1, {µi2h}ni=1) and µmax2h = max({µ̃i2h}ni=1, {µi2h}ni=1). The

Kullback-Leibler divergence for image type h is approximated by
∑

` P`h ln (P`h/Q`h),

where the summation is over all bins and P`h is the proportion of the {µ̃i2h}ni=1 that

fall in bin ` and Q`h is the proportion of the {µi2h}ni=1 that fall in bin `. If P`h = 0, we

set P`h ln(P`h/Q`h) to zero and if Q`h = 0, we set Q`h = 1.0e−5 so that the divergence

is well-defined. Thus:

dKLD =
∑
`

P`1 ln(P`1/Q`1)(2.44)

pKLD =
∑
`

P`2 ln(P`2/Q`2).(2.45)
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The conditional diffusion and perfusion statistics are straightforward to calculate:

cDS = n−1

n∑
i=1

I [µi21 > q0.975 (µ̃i21)](2.46)

cPS = n−1

n∑
i=1

I [µi22 < q0.025 (µ̃i22)] .(2.47)

Stage II:

The GNLM-BMARS model with K bases functions is:

π(Zj = 1 | Xj,Ω2K) = g(ηjK), ηjK =
K∑
k=0

βkBk(Xj),(2.48)

Bk(Xj) =


1, k = 0,∏Lk

l=1[slk(Xjwlk
− tlk)]+ , k = 1, 2, . . . , K.

Updating the latent vector d

Introduce a continuous latent variable, dj, such that [dj | Xj,Ω2K ] ∼ N (ηjK , 1)

for each j. Let d = (d1, . . . , dM). Define the conditional distribution of Zj given dj

by

(2.49) π(Zj = 1 | dj) = 1 if dj > 0, and = 0 if dj ≤ 0.

Marginalizing (2.49) over dj is equivalent to π(Zj = 1 | Xj,Ω2K) in (2.48):

π(Zj = 1 | Xj,Ω2K) =

∫ ∞
−∞

π(Zj = 1 | dj)π(dj | Xj,Ω2K)ddj = Φ(ηjK).

It is equally easy to show that

π(dj | Zj = 1,Xj,Ω2K) = π(dj | Xj,Ω2K)I(dj > 0)/

∫ ∞
0

π(dj | Xj,Ω2K)ddj

and

π(dj | Zj = 0,Xj,Ω2K) = π(dj | Xj,Ω2K)I(dj ≤ 0)/

∫ 0

−∞
π(dj | Xj,Ω2K)ddj
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which are densities of truncated normal distributions. That is,

[dj | Zj = zj,Xj,Ω2K ](2.50)

∼

 N(ηjK , 1) truncated at the left by 0 if zj = 1

N(ηjK , 1) truncated at the right by 0 if zj = 0

.

Stage II – Updating βK , ν and λ:

A priori, [βK | v,K] ∼ N(0, vIK+1). By definition, [dj | Xj,Ω2K ] ∼ N(ηjK , 1), in-

dependently, so that the distribution of the latent vector [d | X ,Ω2K ] ∼ N(BKβK , IM).

Therefore,

π(βK |d, v,ΘK ,X ) ∝ π(βK | v,K)π(d | X ,Ω2K)

∝ exp
{
−0.5

[
v−1βK

TβK + (d− BKβK)T(d− BKβK)
]}

∝ exp
{
−0.5(βK −m∗K)T(V ∗K)−1(βK −m∗K)

}
(2.51)

where

V ∗K = [(vIK+1)−1 + BT
KBK ]−1,(2.52)

m∗K = V ∗KBT
Kd.(2.53)

Thus,

(2.54) [βK | d, v,ΘK ,X ] ∼ N(m∗K , V
∗
K).

Equation (2.51) follows from the identity

v−1βK
TβK + (d− BKβK)T(d− BKβK) =

(βK −m∗K)T(V ∗K)−1(βK −m∗K) + dTd− (m∗K)T(V ∗K)−1m∗K .(2.55)

Standard conjugacy results state that the full conditional distribution of v−1 is

gamma:

(2.56) [v−1 | βK , K] ∼ Gamma[0.001 + 0.5(K + 1), 0.001 + 0.5βT
KβK ],
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and that

(2.57) [λ | K] ∼ Gamma(1 +K, 0.2 + 1).

Stage II –RJMCMC moves:

Now we derive the acceptance probabilities for the birth and death moves in

the RJMCMC algorithm. The general form of the acceptance probability for the

reversible jump algorithm is given in Green (1995). All parameters vectors in ΘK

change dimension as well as βK . At each iteration we randomly (with probability

0.5) choose to increase the number of BMARS bases by 1 (a birth move) or decrease

it by 1 (a death move).

We begin by defining the acceptance probability of a birth move. The number of

bases K, is allowed to increase by one to K+1. Thus, the dimension of the parameter

space Ω2K changes by 2 + 3LK+1: βK and LK increase in dimension by 1 while wK ,

sK and tK increase in dimension by LK+1. However, as we show below, βK and

βK+1 will be integrated out of the respective posterior distributions and thus we do

not need to propose a new βK+1 in the birth step. If the birth proposal is accepted, a

new vector βK+1 is drawn from it full conditional (2.54). Thus the dimension of the

parameter space increases by 1 + 3LK+1 in the birth step. The RJMCMC algorithm

relies on what Green (1995) calls dimension matching. We propose a random vector,

say U, of length 1 + 3LK+1 and append it to ΘK . A bijective transformation, T, is

then contrived between ΘK ∪U and ΘK+1. The rate of acceptance crucially depends

on this transformation and finding a good transformation can be the most difficult

aspect of the RJMCMC algorithm. The transformation should be easy to compute,

its Jacobian should be readily accessible and the acceptance rates of the moves should

be high. The Jacobian of this transformation is multiplied into the acceptance ratio
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of the proposal to account for the transformation. However, as will become evident

in the next paragraph, T is the identity transformation and thus the Jacobian is

1. Integrating out βK and βK+1 from the posterior distribution is key to achieving

a high acceptance rate (Denison et al. (1998), Denison et al. (2002), Holmes and

Denison (2003) and Mallick et al. (1999)).

Suppose there are K bases in the BMARS model. We first describe how we draw

the augmentation vector U. Each basis can consist of either a main effect or an

interaction. We first draw an interaction level, LK+1 ∈ {1, 2} for the K + 1 basis

with

(2.58) π(LK+1 = 1) = π(LK+1 = 2) = 1/2.

Next, we draw LK+1 elements, {w1,K+1, . . . , wLK+1,K+1}, from the set {1, 2, 3, 4} with-

out replacement. These are the covariate elements from the vectors Xj, j = 1, . . . ,M .

Each subset of size LK+1 from {1, 2, 3, 4} is drawn with equal probability
(

4
LK+1

)−1
.

Thus,

π(w1,K+1 = w | LK+1 = 1) = 1/4 for w = 1, 2, 3, 4.(2.59)

π[(w1,K+1, w2,K+1) = (w,w′) | LK+1 = 2] = 1/6(2.60)

for(w,w′) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

Next, we draw knot locations: draw tl,K+1, at random, from {X1wl,K+1
, . . . , XMwl,K+1

}

for l = 1, . . . , LK+1. That is,

(2.61) π(tl,K+1 = Xjwl,K+1
| wl,K+1) = 1/M for l = 1, . . . , LK+1.

Finally, we draw sl,K+1 ∈ {−1, 1} with the following probabilities:

(2.62) π(sl,K+1 = −1) = π(sl,K+1 = 1) = 1/2 for l = 1, . . . , LK+1.
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Set U = (LK+1, w1,K+1, . . . , wLK+1,K+1, t1,K+1, . . . , tLK+1,K+1, s1,K+1, . . . , sLK+1,K+1).

Let q(U) denote the proposal probability of the set of parameters U. Then

q(U) = π(LK+1)π[(w1,K+1, . . . , wLK+1,K+1) | LK+1]

LK+1∏
l=1

π(tl,K+1 | wl,K+1)π(sl,K+1).

The acceptance probability of the birth of a new BMARS basis can now be written

as

(2.63)

α = min

{
1,
π(d | X ,Ω2,K+1)π(ΘK+1 | λ)π(βK+1 | v,K + 1)π(v−1)π(λ)πdeath

π(d | X ,Ω2K)π(ΘK | λ)π(βK | v,K)π(v−1)π(λ)q(U)πbirth

}
.

Now πdeath = 0.5 is the probability of a proposing a death and πbirth = 0.5 is the

probability of a proposing a birth. Furthermore, it is easy to show that

π(ΘK+1 | λ)πdeath

π(ΘK | λ)q(U)πbirth

= λ/(K + 1),

so that the acceptance probability reduces to

(2.64) α = min

{
1,
π(d | X ,Ω2,K+1)π(βK+1 | v,K + 1)λ

π(d | X ,Ω2K)π(βK | v,K)(K + 1)

}
.

Also, it is straightforward to show that

π(d | X ,Ω2K)π(βK | v,K)(2.65)

∝ (v)−(K+1)/2 exp
{
−0.5

[
v−1βT

KβK + (d− BKβK)T(d− BKβK)
]}

= (v)−(K+1)/2 exp
{
−0.5(βK −m∗K)T(V ∗K)−1(βK −m∗K)

}
×

exp
{
−0.5

[
2dTd− (m∗K)T(V ∗K)−1m∗K

]}
,

where the equality follows from (2.55). Now integrating out βK+1 and βK from their

respective joint full conditionals (2.65) the acceptance probability simplifies to:

αbirth = min

{
1,

π(d | X ,Ω2,K+1, v)λ

π(d | X ,Ω2K , v)(K + 1)

}
= min

{
1,
|V ∗K+1|1/2 exp(aK − aK+1)λ

v1/2|V ∗K |1/2(K + 1)

}
(2.66)
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where aK = (dTd−m∗TK (V ∗K)−1m∗K)/2.

For a death move suppose there are K BMARS basis excluding the intercept

term. We randomly draw one of the current K BMARS bases to delete each with

probability 1/K. The acceptance probability of this death step is

(2.67) αdeath = min

{
1,

v1/2|V ∗K−1|1/2K
|V ∗K |1/2 exp(aK−1 − aK)λ

}
.

Stage II –Updating Knot Locations:

The final step in the algorithm for stage II is to propose a move of a knot loca-

tion. To move a knot we first draw a basis at random each with probability 1/K.

Suppose the chosen basis has index k. Given this basis we draw a factor, `, from

the set {1, . . . , Lk} with equal probability (if there is a single factor (Lk = 1), ` = 1

with probability 1, if there are two factors (Lk = 2), ` = 1 with probability 0.5).

Propose to move knot tlk from its current position by sampling a new position from

{X1wlk
, . . . , XMwlk

} each with probability 1/M (note that there is probability of 1/M

that the knot will not move from its current position. The current knot location is

tlk. Call the proposed position tproplk . Update column k of BK and call the proposed

matrix Bprop

K . Compute the proposed vector m∗,propK and matrix V ∗,propK from (2.53)

and (2.52) using Bprop

K . Compute aprop

K = (dTd − m∗,propK
T

(V ∗,propK )−1m∗,propK )/2. The

acceptance probability of this move is

(2.68) αmove = min

{
1,
|V ∗,propK |1/2 exp(aK − aprop

K )

|V ∗K |1/2

}
.
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2.6.2 Cross-validated Prediction:

Cross-validated prediction was introduced by Gelfand et al. (1992). The predictive

probability that Zj = 1 given Z{−j} and Y is

π(Zj = 1 | Z{−j},Y) =(2.69) ∫ ∫
π(Zj = 1 | Ω1j,Ω2)π(Ω1,Ω2 | Z{−j} = z{−j},Y)dΩ1dΩ2.

Note that after marginalizing over the hyperprior parameters v and λ, we have

π(Ω1,Ω2 | Z = z,Y) ∝
M∏
j=1

π(Zj = zj,Yj | Ω1j,Ω2)π(Ω1j)π(Ω2)

π(Ω1,Ω2 | Z{−j} = z{−j},Y) ∝
M∏

i=1;i 6=j

π(Zi = zi,Yi | Ω1i,Ω2)π(Ω1i)π(Ω2)×

π(Yj | Ω1j)π(Ω1j)

and

π(Ω1,Ω2 | Z = z,Y)

π(Ω1,Ω2 | Z{−j} = z{−j},Y)
(2.70)

=
π(Zj = zj,Yj | Ω1j,Ω2)

π(Yj | Ω1j)
= π(Zj = zj | Ω1j,Ω2).

Now rewrite (2.69) using (2.70):

π(Zj = 1 | Z{−j},Y)

=

∫ ∫
π(Zj = 1 | Ω1j,Ω2)

[
π(Ω1,Ω2|Z{−j}=z{−j},Y)

π(Ω1,Ω2|Z=z,Y)

]
π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2∫ ∫ [π(Ω1,Ω2|Z{−j}=z{−j},Y)

π(Ω1,Ω2|Z=z,Y)

]
π(Ω1,Ω2 | Z = z,Y)dΩ1,Ω2

=

∫ ∫
π(Zj = 1 | Ω1j,Ω2) [1/π(Zj = zj | Ω1j,Ω2)] π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2∫ ∫

[1/π(Zj = zj | Ω1j,Ω2)]π(Ω1,Ω2 | Z = z,Y)dΩ1dΩ2

We note that π(Zj = 1 | Z{−j},Y) only depends on the posterior distribution of the

parameters given the entire data after some derivations. We can calculate π(Zj =

1 | Z{−j},Y) using MCMC draws from the posterior distribution of the parameters
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given the full data:

π(Zj = 1 | Z{−j},Y)(2.71)

≈
1
T

∑T
t=1 π

(
Zj = 1 | Ω(t)

1j ,Ω
(t)
2

)
/π
(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

)
1
T

∑T
t=1 1/π

(
Zj = zj | Ω(t)

1j ,Ω
(t)
2

) .

Thus, we only need to run the algorithm once, on the entire data set, and estimate

the cross-validated predictive probability for each subject j using (2.71).

2.6.3 Pseudocode:

Initialize parameters

Stage I:

For each subject

1. Set µi = Yi, i = 1, . . . , n.

2. Set νi = Wi i = 1, . . . , ne.

3. Set Σ = Ψ = ∆ = Ω = I4.

End for each subject

Stage II:

1. Set K = 0 (intercept term only).

2. Set v = 1.

3. Set λ = 5.

4. Set dj = 1 if Zj = 1 an dj = −1 if Zj = 0, for j = 1, . . . ,M .

5. Draw β from distribution (2.54) (β = β0 when K = 0 and B0 =

B0(Xj) = (1, . . . , 1)T, a vector of ones of length M).

Iterate For t = 1 to 100, 000 discarding the first 50, 000 as burn-in.

Stage I:
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Iterate over all subjects, j = 1, . . . ,M . (Each subject has her/his own set of

parameters. The subject index, j, is suppressed to be consistent with

the main part of this chapter).

1. For tumor ROI:

(a) For each voxel i = 1, . . . , n, propose µpropi from (2.22).

Accept µpropi with the probability (2.23).

(b) Draw [Σ | {µi}
n
i=1 , {Yi}ni=1] from (2.18).

(c) Draw [Ψ | {µi}
n
i=1] from (2.19).

2. For healthy tissue ROI:

(a) Draw
[
νi | Ω,∆,Wi, {νi′}i′∈Ne

i

]
, i ∈ N e

i′ ∩H, from (2.24).

(b) For each i ∈ N e
i′ ∩ S, propose νpropi from (2.24).

Accept νpropi with probability (2.27).

(c) Propose Ωprop from (2.34).

Accept Ωprop with probability (2.35).

(d) Propose ∆propfrom (2.30).

Accept ∆ with probability (2.31).

3. Predict tumor response under null:

(a) Draw
[
Ỹi2 | ·

]
, i = 1, . . . , n, from (2.39).

(b) For i = 1, . . . , n, propose µ̃propi2 from (2.42).

Accept µ̃propi2 with probability (2.43).

4. Calculate the summary statistics for each subject j (covariate vector

Xj):

(a) Calculate dKLD using equation (2.44) and pKLD using equation

(2.45).
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(b) Calculate cDS using equation (2.46) and cPS using equation (2.47).

End iterate over subjects.

Stage II: Assume there are currently K basis functions.

Iterate 10 times (oversample) q = 1 to 10.

1. Attempt a Move step by altering a spline basis function if K > 0,

else go to 2:

(a) Draw a BMARS basis, k, at random, with equal probability 1/K,

from the set of bases {1, . . . , K}.

(b) Draw a factor, l, at random, with equal probability 1/Lk, from the

set of factors {1, . . . , Lk}.

(c) Draw a knot location, tlk, at random, with equal probability 1/M ,

from {X1wlk
, . . . , XMwlk

}.

(d) If move (new knot location) accepted with probability αmove (2.68).

i. Draw latent variables [dj | Zj = zj,Xj,Ω2K ], j = 1, . . . ,M , from

(2.50).

ii. Draw [v−1 | βK , K] from (2.56).

iii. Draw [βK | d, v,ΘK ,X ] from (2.54).

iv. Draw [λ | K] from (2.57).

else, keep current knot location.

2. RJMCMC: Draw U ∼ Bernoulli(0.5) if K > 0 otherwise set U = 0.

(a) if U = 0 Birth step.

i. Draw LK+1 according to (2.58).

ii. If LK+1 = 1, draw w1,K+1 | LK+1 from the set {1, 2, 3, 4} with

equal prob. 1/4, see (2.59).
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else draw (w1,K+1, w2,K+1) | LK+1, with equal prob., from the set

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, see (2.60).

iii. Draw the knot point(s) tl,K+1, l = 1, . . . , LK+1, see (2.61).

iv. Draw sl,K+1, l = 1, . . . , LK+1, see (2.62).

v. Accept the birth with probability αbirth (2.66).

(b) if U = 1 Death step.

i. Remove kth basis from the model with probability 1/K.

ii. Accept the death with probability αdeath (2.67).

3. Draw latent variables [dj | Zj = zj,Xj,Ω2K ], j = 1, . . . ,M , from

(2.50).

4. Draw [v−1 | βK , K] from (2.56).

5. Draw [βK | d, v,ΘK ,X ] from (2.54).

end oversample

End Iterate

2.6.4 Image Processing:

All the MR images for each subject are spatially co-registered by using the pre-

treatment anatomical image as the reference data set. This step allows all images

from a given patient to be viewed and analyzed from a fixed frame of reference.

The co-registration was performed by using the “mutual information for automatic

multi-modality image fusion” (MIAMI FUSE) program (Meyer et al. (1997)). Af-

ter co-registration, tumors were manually segmented by a neuroradiologist. Only

the intersection of the segmented tumors at the two time points were retained as

our tumor ROI. To define the healthy tissue ROI, we reflected the tumor ROI to

the contralateral hemisphere of the brain where the axis of reflection is determined
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on axial slices of the brain (Figure 2.3). The axial midline of the brain is not per-

fectly aligned with the vertical axis. Therefore, after reflection, we visually inspected

whether the healthy tissue ROI intersected any non-brain tissue regions such as the

ventricles, meninges or the skull. If it intersected any of these structures, we trans-

lated the ROI a small amount, but as large as necessary, to remove the intersection.

Translations of 3 to 10 voxels was all that was required for our data set. Seventeen of

the 47 subjects required healthy tissue ROI translations. A sensitivity analysis was

conducted where the healthy tissue ROIs were translated by varying amounts (up to

20 voxels), while ensuring that the ROIs were completely within brain tissue. The

distribution of healthy tissue intensities were similar and the varying translations did

not substantively affect the posterior distributions of the summary statistics.

2.6.5 Identifying Ỹi2 and µ̃i2:

There is an issue of identifiability when simultaneously predicting Ỹi2 and esti-

mating µ̃i2 (tumor response under the “null”) in the healthy tissue ROI. To see this,

note that

π
[
Ỹi2, µ̃i2 | Yi1,µi1, ·

]
∝ π


 Yi1

Ỹi2

 ,

 µi1

µ̃i2

 | ·


= π


 Yi1

Ỹi2

 |
 µi1

µ̃i2

 , ·

 π

 µi1

µ̃i2

 | ·
 .

Now, 
 Yi1

Ỹi2

 |
 µi1

µ̃i2

 , P−1

 ∼ N


 µi1

µ̃i2

 , P−1



 µi1

µ̃i2

 |
 µ∗i1

µ̃∗i2

 , Q−1

 ∼ N


 µ∗i1

µ̃∗i2

 , Q−1

 ,
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where P and Q are the inverses of the covariances in (2.36) and (2.38). Let

(2.72)

 µ∗i1

µ̃∗i2

 = |N e
i ∩H|−1

∑
i′∈Ne

i ∩H

 µi′1

µ̃i′2

 .

Then

π
[
Ỹi2, µ̃i2 | Yi1,µi1, ·

]
∝ exp

−0.5

 Yi1 − µi1

Ỹi2 − µ̃i2


T

P

 Yi1 − µi1

Ỹi2 − µ̃i2


×

exp

−0.5

 µi1 − µ∗i1

µ̃i2 − µ̃
∗
i2


T

Q

 µi1 − µ∗i1

µ̃i2 − µ̃
∗
i2


 ,(2.73)

for all i ∈ H. Now it is obvious that the density (2.73) is invariant when an arbitrary

constant vector δ is added to Ỹi2 and µ̃i2 for all i ∈ H. Hence, Ỹi2 and µ̃i2 are not

identifiable.

To solve this identifiability problem, we expand the healthy tissue ROI by a one

voxel thick shell and estimate the posterior distribution of the parameters for the

healthy tissue expanded ROI. In (2.73), further condition on the νi, i ∈ S so that

(2.72) becomes

(2.74)

 µ∗i1

µ̃∗i2

 = |N e
i |−1

 ∑
i′∈Ne

i ∩S

 0

νi′2

+
∑

i′∈Ne
i ∩H

 µi′1

µ̃i′2


 .

We can no longer add a constant δ to Ỹi2 and µ̃i2 for all i ∈ H without changing the

density (2.73). To see this, consider a voxel i inH such that N e
i ∩S is non-empty. For

this voxel, µ̃∗i2 depends on some νi, i ∈ S, on which we have conditioned, therefore,

the second exponential in (2.73) is no longer invariant to the addition of an arbitrary

constant to all the µ̃i2, i ∈ H. Furthermore, this lack of invariance propagates to all

µ̃i2, i ∈ H. In fact, in the PWDP or mPWDP model, the joint prior distribution

of the means is not a proper distribution (Besag (1993)) and the means are not, a
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priori, identifiable. However, the posterior is a proper distribution (Besag (1993))

and the means are a posteriori identifiable. The difference here in the predictive

setting is that some of the data, the Ỹi2, are not observed.

2.6.6 Simulation Studies and Sensitivity Analyses:

Simulation Studies: We perform a series of simulation studies to assess the

mPWDP model performance. To simplify the simulations, we only consider the

Kullback-Leibler divergence statistics. The cDS and cPS are completely dependent

on the mPWDP model and are extremely complicated to generate, if at all possible

(we do not see a way), in a proper simulation study. Under each simulation scenario,

we generate N = 1000 simulated data sets and compute the average relative mean

squared error (rMSE) and relative bias (rBias) of the KLD statistics:

rMSE = N−1

N∑
i=1

[(
KLDi −KLDtrue

i

)
/KLDtrue

i

]2
rBias = N−1

N∑
i=1

(
KLDi −KLDtrue

i

)
/KLDtrue

i ,

where KLDi is the posterior mean and KLDtrue
i is the true KLD from the ith simu-

lation. We also calculate the percentage of time that the 95% HPD (Highest Proba-

bility Density) interval covers the truth.

Without loss of generality, we assume that there is only one image type. Rather

than construct ROIs, we randomly select ROIs from the glioma data. Given a simu-

lation scenario, we generate 1000 simulated image pairs—baseline and week 3 images

(full brain images). For each simulated image pair, one tumor/healthy tissue ROI

pair is selected with equal probability from the set of observed ROIs from the glioma

data set. These ROIs are then placed within the brain template. To simulate a base-

line image, we first assume that the baseline mean intensities of all tumor voxels,

µi1, and healthy tissue voxels, νi1, are independently and identically distributed as
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N(1, 3). We then generate week 3 mean images assuming different location shifts be-

tween the underlying distributions of all voxels in the healthy tissue and tumor ROIs:

µi2 = µi1+φi, where φi ∼ N (θ, σ2); νi2 = νi1+ϕi, where ϕi ∼ N (0.05, σ2). Next, spa-

tial correlation is induced in the images by smoothing each image using an isotropic

Gaussian kernel at three levels of smoothing: FWHM = 3, 5 and 7mm. FWHM is

an acronym for full width at half maximum. For isotropic normally distributed data

with a common variance σ2 it is defined by FWHM = 2
√

2 ln 2σ. We consider these

smoothed images as the truth. The voxel means of the smoothed images are distin-

guished from the voxel means of the unsmoothed images by the superscript ∗. The

true KL divergence statistic is then calculated as the marginal distribution difference

between tumor ROI voxels µ∗i2 and healthy ROI voxels ν∗i2, i = 1, . . . , n.

To obtain the final simulated images, we add random noise to the smoothed

images: Wi1 = ν∗i1 + εi1, Wi2 = ν∗i2 + εi2, Yi1 = µ∗i1 + εi1 and Yi2 = µ∗i2 + εi2, where

εi1 ∼ N (0, 0.03), εi2 ∼ N (0, 0.04), εi1 ∼ N (0, 0.05) and εi2 ∼ N (0, 0.06). The values

of all the parameters in the simulation study are determined based on the posterior

parameter estimates given the glioma data. We then apply our mPWDP model on

the simulated data sets with different combinations of location and scale shifts, θ, σ2,

as well as the three levels of smoothing (Table 2.2). When θ = 0.05 and σ2 = 0.01 the

simulated data follow the null response. From Table 2.2 (mPWDP model), we can

see that the relative MSE and bias are relatively small, and decrease as the location

shift θ increases. Moreover, the 95% HPD interval coverage is close to the nominal

95% level.

Next, we compare the mPWDP model with a simpler model that ignores spatial

correlation. This simpler model is [Yi2 | Yi1] ∼ N(Yi1 + η1, σ
2
1) and [Wi2 | Wi1] ∼

N(Wi1 + η2, σ
2
2), independently. We predict tumor response, [Ỹi2 | Yi1] ∼ N(Yi1 +
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η̂2, σ̂
2
2), under the “null” by using the MLE estimates η̂2 and σ̂2

2 of η2 and σ2
2,

respectively. The KL divergence is then estimated between the marginal distributions

of the observed tumor ROI voxels and the predicted (under the null) tumor ROI

voxels. The relative MSE and bias are tabulated in the last two columns of Table

2.2. Ignoring the spatial correlation in the data results in rMSE and rBias that

are an order of magnitude larger than when spatial correlation is accounted for,

demonstrating the importance of accounting for this correlation.

Sensitivity Analysis: In stage II, the only informative prior is that on K,

the number of BMARS basis: [K | λ] ∼ Poisson(λ), λ ∼ Gamma(α, β) where we

set α = 1, β = 0.2. Given the small sample size, 47 patients, we believe that a

parsimonious model is in order. A prior on K that favors a large number of basis

functions may result in over-fitting of the data and a potential decrease in predictive

power (Denison et al. (2002), Chapter 2). Thus, we choose to place an informative

prior on K with a small mean. We do note, however, that marginalizing the joint

distribution of [K,λ] over λ results in a negative binomial distribution forK. Further,

we estimate λ as well. Hierarchically modeling K and λ in this fashion removes some

of the dependence of λ, and hence of K, on the prior and places more weight on the

data.

We perform a sensitivity analysis on our choice of prior for λ, and hence, marginally,

on K. We change the values of α and β as well as the distribution of λ to a uniform

prior distribution on [0, 10]. Correct classification results are tabulated in Table 2.3.

The overall classification rate is not very sensitive to these changes in the prior dis-

tribution of λ. For this sensitivity analysis, at most one extra subject is misclassified.

We also assess prediction sensitivity to the thresholds used to derive cDS and cPS.

Recall the thresholds used are the 97.5th and the 2.5th percentile, respectively, of the
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conditional distribution of the means of the predicted tumor response at week 3 under

the null. We change these thresholds to the 99.5th/0.5th and to the 95.0th/5.0th

percentile. The CCRcv is reduces to 0.74 for both sets of thresholds—two more

subjects are misclassified. Nevertheless, this is still an acceptable classification rate

and is higher than all other (simpler) models considered in the main part of this

chapter.

In stage I, we assign inverse Wishart distributions with identity scale matrix and

5 degrees of freedom to the the covariance matrices in our model. We argue that

these priors have little influence on the posterior due to the large number of tumor

voxels. We now provide support in favor of our argument via a sensitivity analysis.

We assess the change in the marginal posterior distributions of the four summary

statistics as we vary the a priori degrees of freedom of the covariance matrices. We

set the degrees of freedom to four values: 0, 5, 10 and 15. In Figures 2.4 and 2.5

we graph the marginal posterior densities of the four summary statistics for two

subjects. In Figure 2.4 we show them for the subject with the smallest tumor and

in Figure 2.5 we show them for a randomly selected subject. The marginal posterior

distributions of the four statistics are minimally affected, and this is true for all 47

patients.
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Table 2.2:
Simulation studies — rMSE and rBias of KLD in stage I of the mPWDP model vs. a
spatial independence model.

FWHM1 θ σ2 mPWDP model Independence model
rMSE (SD)2 rBias (SD)3 Coverage4 rMSE (SD)5 rBias (SD)6

3 mm

0.05 0.01 1.41(2.59) 4.60(9.01) 95.0 65.2(20.5) 74.5(19.2)
0.05 0.05 1.48(2.65) 4.66(9.09) 95.1 66.1(20.7) 75.0(20.3)
0.05 0.10 1.53(2.67) 4.73(9.15) 95.3 66.6(21.4) 75.7(20.5)
0.10 0.01 1.27(2.43) 4.47(8.67) 95.2 56.1(18.9) 70.2(15.6)
0.10 0.05 1.31(2.50) 4.51(8.83) 95.4 57.9(19.1) 70.7(16.3)
0.10 0.10 1.33(2.52) 4.58(8.99) 94.3 59.2(19.5) 72.1(17.1)
0.50 0.01 1.08(2.30) −4.13(6.79) 95.1 37.8(28.3) −36.4(36.6)
0.50 0.05 1.15(2.31) −4.17(6.98) 95.5 38.1(28.9) −38.3(37.5)
0.50 0.10 1.19(2.33) −4.25(7.23) 95.3 39.3(29.5) −38.1(38.3)

5 mm

0.05 0.01 1.67(2.60) 4.71(9.67) 95.3 70.3(21.2) 81.2(19.9)
0.05 0.05 1.78(2.71) 4.81(9.77) 95.6 71.2(21.7) 81.9(20.6)
0.05 0.10 1.75(2.67) 4.78(9.72) 95.4 72.0(22.4) 82.3(21.1)
0.10 0.01 1.45(2.51) 4.63(9.27) 95.3 57.9(20.1) 75.6(16.0)
0.10 0.05 1.59(2.47) 4.69(9.61) 95.7 59.3(20.5) 76.0(17.5)
0.10 0.10 1.62(2.58) 4.75(9.93) 94.4 61.5(21.0) 77.1(18.0)
0.50 0.01 1.13(2.32) −4.21(7.65) 95.3 38.7(29.3) −39.6(37.1)
0.50 0.05 1.19(2.36) −4.30(8.01) 95.5 39.5(31.5) −40.5(38.0)
0.50 0.10 1.24(2.41) −4.36(8.36) 95.4 40.1(33.3) −41.6(38.5)

7 mm

0.05 0.01 2.17(2.95) 5.10(10.3) 94.4 74.4(23.5) 85.3(20.8)
0.05 0.05 2.25(3.01) 5.18(10.7) 94.5 74.9(24.0) 86.1(21.3)
0.05 0.10 2.24(3.02) 5.19(10.9) 95.8 75.5(24.6) 86.5(21.6)
0.10 0.01 1.99(2.80) 4.93(9.77) 94.6 61.7(21.0) 83.8(17.9)
0.10 0.05 2.06(2.81) 5.05(9.82) 94.4 62.5(22.3) 84.1(18.4)
0.10 0.10 2.13(2.87) 4.08(9.91) 94.7 63.8(23.1) 85.0(19.6)
0.50 0.01 1.42(2.60) −4.56(8.93) 95.7 44.7(31.3) −48.5(41.8)
0.50 0.05 1.51(2.71) −4.67(9.09) 95.4 45.6(32.0) −49.7(42.7)
0.50 0.10 1.73(2.75) −4.73(9.15) 94.3 47.8(33.1) −50.6(44.0)

1full width at half-maximum. In the imaging literature, this a a common way to describe the variability of an
isotropic gaussian. If the common variance is σ, then FWHM = 2

√
2 ln 2σ.

2,3,5,6×10−2. That is, all numbers are to be multiplied by .01
4Percentage of time that the 95% HPD interval of the posterior draws of KLD covers the truth.
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Table 2.3:
Sensitivity analysis of different hyperprior distributions for λ in the proposed model.
CCRcv denotes the leave-one-out cross-validated classification rate. Mean and variance
are calculated for different prior distributions.

Prior of λ Prior mean Prior variance CCRcv
Gamma(0.6, 0.2) 3.0 15.0 0.766
Gamma(0.8, 0.2) 4.0 20.0 0.787
Gamma(1.0, 0.2) 5.0 25.0 0.787
Gamma(1.2, 0.2) 6.0 30.0 0.787
Gamma(1.4, 0.2) 7.0 35.0 0.787
Gamma(1.8, 0.2) 8.0 45.0 0.766
Gamma(0.5, 0.1) 5.0 50.0 0.787
Gamma(2, 0.2) 10.0 50.0 0.766
Gamma(2, 0.4) 5.0 12.5 0.787
U [0, 10] 5.0 8.3 0.766
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Figure 2.3:
Obtaining the healthy tissue ROI. Left image: original T1-weighted contrast enhanced
MRI; Middle image: overlay the original MRI with tumor mask to obtain the tumor
region of interest; Right image: mirror the tumor mask to the contralateral hemisphere
of the brain to get the healthy tissue region of interest.
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Figure 2.4:
Sensitivity of the summary statistics to the prior number of degrees of freedom for
the covariance matrices Σ, Ψ, Ω and ∆ for the subject with the smallest tumor. The
statistics are robust to changes in the degrees of freedom due to the large number of
voxels in the tumors.
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Figure 2.5:
Sensitivity of the summary statistics to the prior number of degrees of freedom for the
covariance matrices Σ, Ψ, Ω and ∆ for a randomly selected subject. The statistics are
robust to changes in the degrees of freedom due to the large number of voxels in the
tumors.



CHAPTER III

A Bayesian Joint Survival Model for Assessing Treatment
Efficacy via Quantitative MRI

3.1 Introduction

In Chapter II, in order to determine whether qMRI data can be used as an early

predictor for treatment efficacy for patients with malignant gliomas, we dichotomize

patients survival time and build a Bayesian joint classification model. However,

this may lead to inefficient estimation due to a loss of information. A survival

model is required to more efficiently assess the early predictive role of qMRI for

predicting treatment efficacy. With this goal in mind, we propose a Bayesian joint

survival model in this chapter. In the first stage, the qMRI data are smoothed

using the multivariate pairwise difference prior (mPWDP) as detailed in Chapter II.

We then derive summary statistics as described in Chapter II. In the second stage,

we propose a Bayesian first hitting time survival model for patients’ survival time

with censoring. Patients’ health status is modeled by a stochastic process and the

survival time by the first passage time of the process sample path to a threshold.

Parameters of the process and threshold are related to summary statistics by fitting

a Bayesian hierarchical model with multivariate adaptive regression spline (MARS)

basis functions (Friedman (1991)).

The most well-known and widely used model in survival analysis is the Cox pro-

68



69

portional hazards model. It is a semi-parametric model with an unspecified baseline

hazard function comprising the nonparametric component and the regression coef-

ficients comprising the parametric component. However, the simplicity of the Cox

model imposes unrealistic assumptions on the data. Most significantly, the model

assumes the proportionality of the hazard functions, and in many contexts, this is

unacceptable. For example, in a study of patients’ survival after surgery, age is a

more important predictor of risk immediately after surgery, than some time after the

surgery (after initial recovery). In our study, the summary statistics derived based

on smoothed images in the first stage reflect the treatment effects on tumors only 3

weeks after the treatment starts. It is unreasonable to assume a proportional hazard

assumption for patients with similar treatment effects, since the risk of death can

change as treatment progresses. In other words, the hazard function will depend on

whether the treatment is effective, but also for how long the treatment lasts. Fur-

thermore, there may be other risk factors or competing risks that we do not consider

in this study, which may also affect the hazard function.

In the second stage of our study, we propose a Bayesian first hitting time sur-

vival model, with summary statistics derived from the mPWDP model included as

covariates. Previous research in several fields dealing with time-to-event data has

considered models in which an event occurs when the sample path of a stochastic

process first satisfies a specified condition. The time until this occurrence is the first

hitting time. Lee and Whitmore (2006) proposed to model patients’ health status

as a latent stochastic process. Death occurs if the stochastic process reaches a cer-

tain threshold (i.e. hits level zero), so that the survival time of each patient can

be modeled as the first hitting time (FHT) of the latent stochastic process. There

are several advantages of the FHT model: (1) it is practical as the mechanism of
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disease progression and death can be well described by the stochastic process; (2)

it is flexible as different types of subject level covariates can be can accommodated

in the model; (3) it is simple and easy to understand; (4) and most importantly,

the FHT model does not require the validity of the proportional hazard assumption,

which is a necessary assumption for the Cox proportional hazards model.

In the second stage of our joint survival model, we choose a Wiener diffusion

process to model the latent health status process. One important reason to choose

this kind of process is that the bidirectional movement of the Wiener process can

capture the fluctuations of health status. The stochastic properties of the Wiener

process makes it a suitable model for many physical processes that exhibit random

variation over time. Moreover, there are many applications of the Wiener process to

model survival and time-to-event data. Whitmore (1975) modeled hospital stay for

mental illness using this process, Doksum and Hóyland (1992) applied this model to

equipment degradation. Lu and Meeker (1993) considered longitudinal degradation

and censored survival data in modeling equipment failure. Lee et al. (2004) assessed

lung cancer risk in railroad workers with this model.

The parameters of the Wiener process are connected to the covariates via a

Bayesian hierarchical model using multivariate adaptive regression splines (MARS)

as basis functions. MARS basis functions allow us to build a more flexible and

complex regression curve and can better explain the inherent dispersion of the data

(Denison et al. (1998) and Holmes and Denison (2003)). In the Bayesian hierarchical

model, hyper-prior distributions are placed on the parameters of Wiener process.

The current research builds on previous work by 1) accounting for spatio-temporal

correlation in the images via the multivariate pairwise difference prior; 2) extending

the first hitting time model into the Bayesian framework and introducing a Bayesian
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hierarchical model; 3) incorporating the multivariate adaptive regression spline basis

into the regression structure; 4) proposing a Bayesian joint survival model which

allows us to draw inference directly on glioma patients’ survival data with censor-

ing. Our proposed survival model in the second stage is particularly suited to the

prediction of the survival functions of censored data because it is easy to obtain

the predictive estimates for the survival function from the posterior draws. The

Bayesian paradigm allows a stochastic search over the model space which can im-

prove the predictions made from models derived deterministically. This is commonly

done by sampling from the posterior distributions of the model given the data.

This chapter is organized as follows. In Section 3.2, we introduce the notation

and specify the joint model. In Section 3.3, we discuss posterior simulation. In

Section 3.4, we check our proposed model through model diagnostic methods. In

Section 3.5, we present results of simulation studies. Results from the motivating

study are presented in Section 3.6. We conclude by summarizing the strengths and

limitations of our approach, and discuss future work in Section 3.7. We include

detailed mathematical derivations of the posterior distributions, algorithm details

and pseudo code in the Appendix in Section 3.8.

3.2 Model

3.2.1 Bayesian FHT Regression Model

In our Bayesian FHT regression model, the fluctuations in patients’ health status

are described by a stochastic process. We denote this stochastic process in time

as {X(t), t ≥ 0} with an absorbing set B in the state space of the process. The

first hitting time is the random variable T defined as: T = {t : X(t) ∈ B}. In

other words, the first hitting time is the time until the stochastic process first enters

or hits set B. With censoring survival data, the stochastic process X(t) is latent



72

(unobservable) and the absorbing state is level 0: the death of the patient.

We use a Wiener diffusion process to model the latent health status process. The

essential structure of the FHT model of a Wiener process is illustrated in Figure

3.1. The Wiener process is well defined by three subject-level parameters: the initial

process value X(0), the mean parameter η and the variance parameter σ2. These

three parameters describe the trajectory of the latent health status sample path. The

parameter X(0) defines the initial health status with larger values of X(0) indicating

a better initial health of the subject with respect to the disease. The mean parameter

η denotes the rate at which a subject’s health status decreases to the threshold (i.e.

zero). The parameter σ2 represents the inherent variability of the process. In our

model, we set the threshold to zero (where death occurs) (Figure 3.1) and the latent

health status has an arbitrary unit. Therefore, we can rescale the trajectory based

on the value of σ2. Without loss of generality, we fix the interval of the health status

scale by setting σ2 to one. We assume that these parameters depend on covariates

that vary across individuals and are connected to the covariates through suitable

regression link functions.

The FHT, T , for a Wiener process has an inverse Gaussian distribution (Medhi

(1994)) given by:

(3.1) π (T |X(0), η, σ) =
(
2πσ2T 3

)−1/2
X(0) exp

{
−
(
2σ2T

)−1
(X(0)− ηT )2

}
where η > 0 and X(0) > 0.

We denote the observed time for the jth patient as Tj and the failure indicator as

δj with a value of one indicating that the observed Tj is a FHT. In other words, we

have Tj = Tj if δj = 1 and Tj > Tj if δj = 0 for j = 1, . . . ,M . The covariate vector

for the jth patient is denoted by Zj. The parameter ηj and Xj(0) of the Wiener
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process are linked to relevant covariates by:

(3.2) log ηj = B1 (Zj)α+ εj,

(3.3) log (Xj(0)) = B2 (Zj)β + ε′j

where Bi (·), i = 1, 2, is a row vector of basis functions (defined later in this section),

εj ∼ N (0, ω2), ε′j ∼ N (0, ω′2). The regression coefficient vectors β = {β0, . . . , βK}

and α = {α0, . . . , αK} where β0 and α0 are model intercepts. By introducing random

errors into formula (3.2) and (3.3), we transform the fixed effects models into random

effects models.

In the Bayesian framework, the random effects model is equivalent to a Bayesian

hierarchical model. We assign priors to the coefficient parameters α, β and to the

precisions and rewrite formula (3.2) and (3.3) as:

[ηj|B1 (Zj) ,α, ω] ∼ log-Norm
(
B1 (Zj)α, ω

2
)
,(3.4)

[α|κ] ∼ N (0, κIK+1) ,

[Xj(0)|B2 (Zj) ,β, ω
′] ∼ log-Norm

(
B2 (Zj)β, ω

′2) ,(3.5)

[β|λ] ∼ N (0, λIK+1) ,

where log-Norm represents the log normal distribution. We assign diffuse prior dis-

tributions, Gamma (0.001, 0.001), to the precision parameters: ω−2, κ−1, ω′−2 and

λ−1.

We use the multivariate adaptive regression splines (MARS, Friedman (1991),

Denison et al. (1998) and Holmes and Denison (2003)) as the basis functions, defined

by:

Bk(Zj) =


1, k = 0,∏Lk

l=1[slk(Zjwlk
− tlk)]+ , k = 1, 2, . . . , K.
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where the function [ · ]+ = max (0 , · ). The parameter K denotes the number of

basis functions in the model. Lk is the degree of interaction in the basis Bk ( · )

and the maximum number of interactions in any basis function is 2. The wlk are

the predictor indices corresponding to the knots tlk. All wlk are constrained to be

distinct so that each predictor only appears once in each interaction term to maintain

the linear nature of the basis functions. The tlk is restricted to the set of predictor

values {Z1wlk
, . . . , ZMwlk

}. We use Bi, i = 1, 2 to denote the matrix of BMARS basis

functions with (j, k)th element Bi,k(Zj). Let Bi (Zj) denote the jth row vector of

the matrix Bi, i = 1, 2, in distributions (3.4) and (3.5).

We place priors on the MARS parameters. We assume that the number of basis

functions, K, is unknown and we assign it a Poisson prior with parameter τ , where

τ follows Gamma(1, 0.2). The impact of this informative prior on the results of

our model is later assessed in the sensitivity analysis (Section 3.8). For the other

parameters in the MARS basis, we specify non-informative priors – discrete uniform

priors over the possible values of parameters (i.e. over {−1, 1} for slk, over {1, 2} for

Lk, over {Z1wlk
, . . . , ZMwlk

} for tlk and over all predictor indices for wlk).

3.2.2 Multivariate Pairwise Difference Prior Model and the Derivation of Summary
Statistics

We now describe how we derive the covariate vector Zj for each patient j from the

mPWDP model based on the image data. We begin by introducing some notation

in the mPWDP model. In the image data, the smallest unit is called a voxel. For

each patient j, tumor voxels are indexed by i = 1, 2, . . . , nj, where nj ranges from

770 to 20380 with a mean of 6143 and standard error of 4721. We define two voxels

to be neighbors if they share a common face, denoted by i ∼ i′. The set of neighbors

for voxel i is then denoted by Ni = {i′ : i′ ∼ i}, so for patient j, this set is denoted
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by Ni,j. The number of neighbors is then defined by |Ni,j|. The image intensity at

voxel i for patient j, is denoted by Yith,j with t indexing time (1 at baseline and 2

week three into therapy) and h indexing image type (1 for diffusion MRI and 2 for

perfusion MRI). Therefore, for each voxel i, we can write Yi,j = (Yi1,j,Yi2,j)
T =

(Yi11,j, Yi12,j, Yi21,j, Yi22,j)
T with the subvector Yit,j = (Yit1,j, Yit2,j)

T for t = 1, 2.

We assume that all the Yi,j are conditionally independent given the means and

covariance matrix:
[
Yi,j | µi,j,Σj

]
∼N

(
µi,j,Σj

)
, with µi,j =

(
µi1,j,µi2,j

)T
= (µi11,j,

µi12,j, µi21,j, µi22,j)
T and µit,j = (µit1,j, µit2,j)

T. We employ a multivariate pairwise dif-

ference prior (mPWDP) on µi,j:
[
µi,j|{µi′,j}i′∈Ni,j

,Ψj

]
∼ N

(
µ∗i,j, |Ni,j|−1Ψj

)
, where

µ∗i,j = |Ni,j|−1
∑

i′∈Ni,j
µi′,j. We assign conjugate priors to Σj and Ψj: the inverse

Wishart distribution: W−1 (I4, 5) with degrees of freedom of 5 and a 4 × 4 identity

scale matrix I4.

To evaluate treatment efficacy, we would like to compare the observed tumor re-

sponse to its counterfactual: tumor response given no treatment in an ideal situation.

However, all the patients have received the treatment in our study. Therefore, our

summary statistics are derived based on comparing the observed tumor response

under treatment to the predicted tumor response in the contralateral hemisphere of

the brain under the “null” scenario. We assume that under the “null” scenario, the

changes in diffusion/perfusion of the tumor, if they could be observed, and those

of healthy tissue in the contralateral brain are similar. The healthy tissue in the

contralateral hemisphere of the brain receives relatively low radiation as the treat-

ment focuses on destroying diseased tissue and sparing healthy tissue. The treatment

should have minimal effect to that region. We define the healthy tissue region of in-

terest (ROI) by reflecting the tumor ROI, approximately about the midline of the

brain, to the contralateral hemisphere of the brain (non-brain tissue structures are



76

excluded, details can be found in the Section 3.8 of Chapter II). Let µ̃i2h,j denote the

predicted tumor response under the null for voxel i at time point 2 for image type h

(h = 1, 2) for patient j. Conditional on µi1h,j, we estimate µ̃i2h,j from the posterior

predictive distribution of the healthy tissue obtained by fitting the mPWDP model

separately for voxels in the healthy tissue ROI (details can be found in Section 3.8 of

Chapter II). Then we derive summary statistics by comparing the predicted tumor

null response (µ̃i2h,j) with the observed tumor response (µi2h,j) for h = 1, 2.

We hypothesize that the distributional difference should be noticeable between

the posterior draws of µ̃i2h,j and µi2h,j, if the treatment is effective. Previous work

(Hamstra et al. (2005), Moffat et al. (2005) and Hamstra et al. (2008)) has found that

tumor response is highly heterogeneous and the mean change in tumor ADC values

is not as predictive of tumor response as other distributional changes. Therefore,

we propose to use the Kullback-Leibler divergence (Kullback and Leibler (1951))

statistic to measure the distributional differences between µ̃i2h,j and µi2h,j over all

tumor voxels and denote it as dKLDj for diffusion images and pKLDj for perfu-

sion images for patient j. Moreover, we also notice that the changes in the tails

of the distributions are more pronounced. As successful therapy should result in

tumor cells lysing with a corresponding increase in ADC, but a decrease in rCBF,

as discussed in the introduction, we propose the conditional diffusion statistic (cDS)

and the conditional perfusion statistic (cPS). The first, cDS, is defined as the pro-

portion of tumor voxels that have a mean response (µi21,j) that is greater than

the 0.975 quantile of the conditional distribution of the tumor response under the

“null”: cDSj = n−1
j

∑nj

i=1 I (µi21,j > q0.975 (µ̃i21,j)) for patient j (Section 3.8 of Chap-

ter II). I(·) is the indicator function and q0.975 (µ̃i21,j) is the 0.975 quantile of the

conditional posterior distribution of µ̃i21,j. The summary measure cPS is similarly
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defined: cPSj = n−1
j

∑nj

i=1 I (µi22,j < q0.025 (µ̃i22,j)), where q0.025 (µ̃i22,j) is the 0.025

quantile of the conditional posterior distribution of µ̃i22,j for patient j. The four

summary statistics are then included as covariates into the Bayesian FHT regression

model.

3.2.3 Joint Modeling

Typically covariates in the FHT model will be assumed to be measured without

error. In our case the covariates in the FHT model are functionals of the mPWDP

model parameters. Let Zj = {Zj1, Zj2, Zj3, Zj4}, representing the four summary

measures: dKLDj, pKLDj, cDSj and cPSj derived in the mPWDP model for patient

j. Since these summary measures are not observed, taking a point estimate of the

covariates from the mPWDP model and treating them as fixed and known in the

Bayesian FHT regression model will result in biased variance estimation. Therefore,

we specify the full joint posterior of all model parameters in a full Bayesian model.

We use notation Ω1 to denote the set of all parameters in the mPWDP model

and Ω2 to denote the set of all parameters in the Bayesian FHT regression model.

We denote Ω = Ω1 ∪ Ω2. The set Ω1 = ∪Mj=1Ω1j. The summary statistics Zj for

patient j is then a functional vector of Ω1j: Zj = F (Ω1j). Thus, in the Bayesian

FHT model, π(T j, δj | Zj,Ω2) = π(T j, δj | Ω1j,Ω2).

Let Y denote the set of all images for all subjects, let T denote the vector of

the observed survival times and let δ denote the vector of censoring indicators. The

posterior distribution can be factored as follows:

π(Ω1,Ω2 | Y ,T , δ) ∝ π(Y | Ω1)π(Ω1)π(T , δ | Ω1,Ω2)π(Ω2).(3.6)

In the mPWDP model, we obtain estimates for Ω1 from the conditional posterior
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distribution [Ω1|Y ,T , δ]:

π(Ω1|Y ,T , δ)(3.7)

∝ π(Y | Ω1)π(Ω1)π(T , δ | Ω1,Ω2) ∝ π(Ω1 | Y)π(T , δ | Ω1,Ω2).

Similarly, we obtain estimates for Ω2 from

(3.8) π(Ω2|T , δ,Ω1) ∝ π(T , δ | Ω1,Ω2)π(Ω2).

3.3 Implementation

3.3.1 Sampling from the Posterior

Below, we outline our sampling algorithm. Details and pseudo-code can be found

in the Section 3.8.

As we fix σ2 = 1, we rewrite the likelihood of the FHT for each individual as:

(3.9) π (Tj|Xj(0), ηj) =
(
2πT 3

j

)−1/2
Xj(0) exp

{
− (2Tj)−1 (Xj(0)− ηjTj)2} .

If δj = 1, Tj = Tj. Otherwise, we impute the failure time from the truncated inverse

Gaussian distribution with density (3.9) given Tj > Tj.

Given T , we update MARS parameters, FHT parameters η,X(0), regression

coefficients β,α and precisions ω−2, ω′−2, κ−2, λ−2. Since the parameter ηj follows

the log normal distribution with density:

π (ηj|B1(Zj)α, ω) =
1

ηjω
√

2π
exp

{
−(log ηj −B1(Zj)α)2

2ω2

}
,

the posterior distribution of the parameter ηj is:

[ηj| · ] ∝ π (Tj|Xj(0), ηj)π (ηj|B1(Zj)α, ω)

∝ exp

{
− log ηj −

η2
jT 2

j − 2Xj(0)ηjTj
2Tj

− (log ηj)
2 − 2B1(Zj)α ln ηj

2ω2

}
.(3.10)
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The distribution (3.10) does not have a nice form from which we can directly sam-

ple and is not a log-concave function, therefore, we apply the adaptive rejection

Metropolis sampling algorithm (ARMS, Gilks et al. (1995)) to simulate draws from

the posterior.

Once we obtain draws of ηj for j = 1, . . . ,M , the model can be viewed as a linear

regression (formula (3.2), (3.3)). Assume ζj = log ηj and ζ = {ζ1, . . . , ζM}, then:

π(ζ|α,B1, ω) = (2πω2)−M/2 exp

{
−(ζ −B1α)T(ζ −B1α)

2ω2

}
.(3.11)

The posterior distribution of [α|ζ, κ, ω,B1] is N(m?,V?ω2) where V? = [
(
κ
ω2 IK+1

)−1
+

BT
1 B1]−1 and m? = V?BT

1 ζ.

We assign a diffuse conjugate hyper-prior, Gamma(0.001, 0.001), to the parame-

ters κ−1 and ω−2. Thus we update κ−1 from its full conditional: Gamma(0.001 +

(K + 1)/2, 0.001 +αTα/2) and ω−2 from its full conditional: Gamma(0.001 +M/2,

0.001 +
∑M

j=1 [ζj −B1(Zj)α]2/2). Moreover, we assume that the number of basis

functions, K, is unknown a priori and assign a prior distribution: [K|τ ] ∼ Poisson(τ)

and [τ ] ∼ Gamma(1, 0.2). The posterior of τ is Gamma(1 +K, 0.2 + 1).

For the MARS parameters in B1, we let L = {L1, . . . , LK}, s = {s11, . . . , sLKK},

w = {w11, . . . , wLKK}, t = {t11, . . . , tLKK} and Θ1 = {K, s,w, t,L}. The dimension

of Θ1 is allowed to vary at each iteration as K changes. Hence, the column dimension

of B1 varies as does the dimension of α. At each iteration of the algorithm, we

randomly (with equal probability) choose to add a new basis function (birth step) or

to remove one of the existing basis functions (death step). Thus, covariates (summary

statistics) and any two-way interactions enter the model via these birth and death

steps and are carried out via reversible jump MCMC (RJMCMC) (Green (1995)).

Details of the RJMCMC algorithm and pseudo code for sampling from the posterior

distribution of our joint model are given in Section 3.8.
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Similarly, the parameter Xj(0) follows a log normal distribution with mean and

variance: B2(Zj)β and ω′2 respectively. The posterior distribution of Xj(0) for each

subject is:

[Xj(0)| · ] ∝(3.12)

exp

{
−Xj(0)2 − 2Xj(0)ηjTj

2Tj
− (lnXj(0))2 − 2B2(Zj)β lnXj(0)

2ω′2

}
.

The distribution (3.12) is not a log-concave function, therefore, we apply the adaptive

rejection Metropolis sampling algorithm (ARMS) to simulate draws from the full

conditional.

We define the set of MARS parameters in B2 as Θ2. The posterior draws of β

and all the parameters in Θ2 can be derived in the same way as the procedure of

obtaining α and those in Θ1. Similarly, updating Θ2 can be achieved using the same

procedure as described for Θ1 (see details in the Section 3.8).

The summary statistics are obtained by the posterior draws of µ̃i2h,j and µi2h,j for

h = 1, 2. We sample the parameters in the mPWDP model from their posterior full

conditional distributions. However, the full conditional distributions for µi,j, µ̃i2,j

for i = 1, . . . , nj and j = 1, . . . ,M in the tumor ROI and the parameters in healthy

tissue ROI do not have closed forms, hence we use the Metropolis-Hasting algorithm

to sample from their full conditionals (details can be found in the Section 3.8).

3.3.2 Model Inference

We predict the survival functions for patients who are censored by obtaining

predictive estimates for the survival function from the posterior draws. The survival

function is denoted by S(T ) and is:

(3.13) S(T |X(0), η) = Φ

[
(−ηT +X(0))

T 1/2

]
− exp {2X(0)η}Φ

[
−ηT −X(0)

T 1/2

]
.
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By Bayesian model averaging, we approximate formula (3.13) using MCMC draws

of X(0) and η by
∑D

d=1 S(T |X(d)(0), η(d))/D, where superscript (d) indicates the

value at iteration d.

3.4 Model Evaluation

We evaluate our proposed joint model via a leave-one-out cross-validation ap-

proach. We denote T = {T1, . . . , TM}. We denote the remaining data by T {−j} when

the jth observation is left out and we want to calculate S(Tj|Y ,T {−j}, δ{−j}), which

is the predicted survival curve. By using the importance sampling method proposed

by Gelfand et al. (1992) and Bayesian model averaging, we only need to estimate the

posterior distribution of the full data once and then estimate S(Tj|Y ,T {−j}, δ{−j}).

The cross-validated predicted survival function is given by:

If δj = 1, ̂S(Tj|Y ,T {−j}, δ{−j}) =

∑D
d=1 S(Tj|Ω(d))/f(Tj, δj, |Ω(d))∑D

d=1 1/f(Tj, δj, |Ω(d))
,

If δj = 0, ̂S(Tj|Y ,T {−j}, δ{−j}) =

∑D
d=1 S(Tj|Ω(d))/Pr(Tj > Tj, δj|Ω(d))∑D

d=1 1/Pr(Tj > Tj, δj|Ω(d))
.

We further check the fit of our model to data by simulating values of a discrepancy

measure from the posterior predictive distribution and compare these samples to the

sample from the observed data. We adopt the model checking method proposed by

Gelman et al. (1996). Assume we observe the failure time T for all the subjects

and H is our proposed model. To avoid confusion with the observed data, T , define

T rep as the replicated data that is drawn from the posterior predictive distribution

given model H: f(T rep|T , H) =
∫
f(T rep|Ω, H)π(Ω|T , H)dΩ.

Then we calculate the posterior predictive tail probability as:

(3.14) p = Pr
[
D(T rep; Ω) ≥ D(T ; Ω)|H,T

]
.
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We adopt the χ2 discrepancy as mentioned in Gelman, Meng and Stern (1996):

χ2(T ; Ω) =
M∑
j=1

(Tj − E(Tj|Ω))2

Var(Tj|Ω)
.

If all the T are observed, then the calculation of p in (3.14) is straightforward. In

our study, some of the subjects’ survival times are censored and not observed. In this

case, the definition of p must be slightly modified. We “impute” each right censored

observation by sampling from the truncated posterior predictive distribution, where

the truncation is taken to be larger than the observed censoring time Tj.

With the MC estimates Ω(d) for d = 1, . . . , D, we can calculate χ2(T ; Ω(d)) and

χ2(T rep; Ω(d)). We can then draw a scatter plot to make a graphical assessment,

and estimate p by the proportion of the D pairs for which χ2(T rep; Ω(d)) exceeds

χ2(T ; Ω(d)).

3.5 Simulation Studies

We describe several sets of simulation studies to evaluate the performance of our

proposed Bayesian survival model. For each set, we generate N = 1000 simulations

and compute the average relative bias (rBias) and average relative Mean Squared

Error (rMSE) of the prediction of failure time for censored patients:

rBias(T ) = N−1n−1
cg

N∑
g=1

ncg∑
j=1

(
T jg − T Truejg

)
/T Truejg ,

rMSE(T ) = N−1n−1
cg

N∑
g=1

ncg∑
j=1

(
T jg − T Truejg

)2
/
(
T Truejg

)2

where T jg is the posterior mean and T Truejg is the true failure time for jth censored

patient of the gth simulation. We also calculate the 95% HPD (Highest Probability

Density) interval of rBias. ncg is the number of censoring subjects in each simulation

g.
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In the first set of simulations, we generate a covariate vector Zj = {Z1j, j =

1, . . . , 300} independently from N(2, 0.1). The first 200 observations are used as

training data, while the remaining 100 observations are used as testing data. We

fix the regression coefficients β0 = 0.5, β1 = 1, α0 = 1.5 and α1 = −4. Assume

Xj(0)True = exp {β0 + β1(Z1j − t1)+} and ηTruej = exp {α0 + α1(Z1j − t′1)+}, where

the two distinct knots t1 and t′1 are uniformly selected from Z1 without replacement.

We then generate patients’ failure times by simulating Tj from an inverse Gaussian

distribution with parameters ηTruej and Xj(0)True. The censoring time Cj is simulated

independently from different uniform distributions so that the we can control the

censoring rate at 10%, 30%, 50% and 70%. The results are compared in Table 3.1.

As the censoring rate increases, rBias and rMSE also increase. This is reasonable

as there are fewer observations to build the model. In all cases, the 95% credible

intervals of rBias cover the null value 0.

In the second set of simulations, we check the performance of our model if the

true distribution of subject’s survival time is mis-specified. First, we assume the true

underlying stochastic process of patients’ health status is not a Wiener process, but

a Gamma process. A Gamma process has monotonic (nondecreasing) sample paths,

hence it is widely used to model the cumulative hazard function. Singpurwalla

(1995) and Park and Padgett (2005) consider the Gamma process as a model for

degradation. If the latent health status of each subject follows a Gamma process,

the failure time (FHT) will follow the inverse Gamma distribution. We simulate

the covariate vector Z1 in the same way as described before. We fix the regression

coefficients β0 = 2.25, β1 = 1, α0 = 1.6 and α1 = −0.6. Assume Xj(0)True =

exp {β0 + β1(Z1j − t1)+} and ηTruej = exp {α0 + α1(Z1j − t′1)+}. We then generate

patients’ failure times by simulating Tj from the inverse gamma distribution with



84

scale parameter ηTruej and shape parameter Xj(0)True. We simulate the censoring

time Cj from Unif [0, 2.5], which controls the censoring rate at approximately 30%.

The results are shown in the second row of Table 3.2. We can see that the rBias and

rMSE are very close to those if the true underlying distribution is correctly specified

as an inverse Gaussian distribution (the first row of Table 3.2).

We also consider two other commonly used distributions in survival analysis:

the Weibull and the log-normal distributions. In one case, we fix the regression

coefficients β0 = 1, β1 = 0.5, α0 = 0.09 and α1 = −0.1 and sample Tj from a Weibull

distribution with shape parameter Xj(0)True and scale parameter ηTruej . Cj follows

Unif [0, 3]. Similarly, in the other case, we fix the regression coefficients β0 = 0.05,

β1 = 0.1, α0 = −1 and α1 = −0.1 and sample Tj from a log-normal distribution

with mean Xj(0)True and variance ηTruej . Cj follows Unif [0, 8]. In both cases, the

censoring rates are controlled at 30%. The results are shown in the third and fourth

rows of Table 3.2. We can see that in both cases, the rBias and rMSE do not differ

much from those by assuming an inverse Gaussian distribution for T .

In Figure 3.2, we plot the predicted survival curve and its 95% credible interval

from one simulation for a randomly selected patient by using Bayesian model aver-

aging. The true survival curve for that patient is also plotted for comparison. From

the figures, in all cases when the true underlying distributions are mis-specified, the

predicted survival curves are very close to the true survival curves and the 95%

credible intervals all cover the true survival curves. Therefore, our proposed model

provides robust prediction even when the true underlying distribution of survival

time is mis-specified.

In the last set of simulations, we construct two more complicated MARS bases

for parameter Xj(0)True and ηTruej by introducing more covariates and an interac-
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tion term. We simulate 3 sets of covariate variables: Z1 from N(2, 0.1), Z2 from

N(−1, 0.05) and Z3 from N(0.5, 0.01), and fix the regression coefficients β0 = 0.5,

β1 = 1, β2 = 1.2, α0 = 1.5, α1 = −4 and α2 = −1. Assume

Xj(0)True = exp {β0 + β1(Z1j − t1)+ + β2(Z2j − t2)+}

ηTruej = exp {α0 + α1(Z1j − t′1)+ + α2(Z2j − t′2)+(Z3j − t′3)+}.

We simulate Tj from an inverse Gaussian distribution and also control the censoring

rate at 30% by sampling Cj from Unif [0, 8]. We refer to this model as Model 2.

The simple model (with 30% censoring rate) described in the first set of simulations

is denoted by Model 1. The rBias and rMSE are shown in Table 3.3. The results

are not affected by introducing more covariates and an interaction term, even if we

include an irrelevant variable (referred as noise, follows Unif(0, 1). In Table 3.4, we

calculate the percentage of iterations that each covariate is included in the model

as either a main effect term or an interaction term. We can see that covariates Z1

and Z2 are predictive of variable X(0) and are selected more than 95% of the time

by the model, while Z3 is only selected around 20% of time. Similar results can

be observed with parameter η. The irrelevant noise is included into the model less

than 20% of time. We conclude that our model can also correctly select the most

predictive covariates.

3.6 Real Data Application

We iteratively sample from the posterior distributions between the two stages.

Stage I is computationally much more expensive than stage II due to the large

number of voxels per subject. We run the algorithm for 100,000 iterations and we

over-sample draws (10:1) in stage II. It takes around 28 hours for all 47 patients.

The algorithms are programmed in C and implemented on a 3.0 GHz Mac Xserve.
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The first 50,000 draws are discarded as burn-in. The burn-in period is chosen by

examining plots of all the parameters, which have converged by this point.

Among 47 patients, 32 died and 15 were censored. The censoring rate of the

gliomas data is around 30%. By using the posterior draws of η and X(0), we estimate

the survival curve and its 95% credible interval for each patient (Figures 3.3 and

Section 3.8). We also calculate the median survival time: T0.5 : S(T0.5) = 0.5, as

well as its corresponding 95% credible interval for each patient. Of the 32 patients

that died, 28 patients have a 95% credible interval that covers the truth (Section

3.8). For the 15 patients who were censored, we predict their survival curves and the

95% credible intervals conditional on that they survive beyond the censoring time:

Tj > Tj (Figures 3.3 and Section 3.8). Our model provides investigators with an

estimated survival curve for each patient (observed or censored), which may better

help investigators manage and personalize treatment.

In Table 3.6, we calculate the percentages of iterations that our four summary

statistics are included in either hierarchical model for parameter η or X(0). All

four statistics are included more than 80% of time and the KLD statistics for both

the diffusion and perfusion MRI are included more often than the conditional dif-

fusion/perfusion statistics in both hierarchical models. Therefore all four summary

statistics derived based on qMRI appear to affect both levels of the sample path (as

set by its initial starting point) and its rate of change over time. Several baseline

prognostic factors (e.g. age, surgery type, Karnofsky performance score, Pathology

grade, tumor size) were also included in stage II as covariates. However, none of them

appeared to be strong predictors of patients’ survival time. They were included in

the model around 20%− 30% of the time.

We further check the fit of our model to data using the methods described in
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Section 3.4. For the realized discrepancy, Figure 3.4 shows a scatterplot of the

realized discrepancy, χ2(T ; Ω) and the predictive discrepancy, χ2(T rep; Ω), in which

each point corresponds to a different value of (T rep; Ω) drawn from the posterior

distribution. We also calculate the tail-area probability of the realized discrepancy

as the probability that the realized discrepancy exceeds the predictive discrepancy,

which, in this case, equals 35.5%, the proportion of points above the 45◦ line in the

figure (ideally, 50% is the best fit). Therefore, we conclude that our model fits the

data well.

As argued in the Introduction, the Cox model is not a suitable model for this data

set because the proportional hazard assumption is violated. Further proof is given

in Table 3.5. The posterior means of the four summary statistics: dKLD, pKLD,

cDS and cPS, derived in stage I are included into a Cox Model. The proportionality

assumption is checked by incorporating a time dependent term: dKLD× log(T ),

cDS× log(T ) and cPS× log(T ) (Chow and Liu (2004)). From the table, we can see

that the coefficients of the dKLD× log(T ) and cDS× log(T ) are significant, which

indicates that the proportional hazard assumption is not valid here.

3.7 Discussion

In this chapter, we proposed a Bayesian joint survival model to assess early treat-

ment efficacy based on qMRI data from patients with malignant gliomas. In stage

I, we smooth the qMRI data via a spatio-temporal multivariate pairwise difference

prior model and derive summary statistics. In stage II, we propose a Bayesian FHT

regression model for patients’ survival time with censoring and link the summary

statistics derived in stage I to the distribution parameters of the FHT via a Bayesian

hierarchical model. By accounting for the spatio-temporal correlation in the images,
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we increase the signal to noise ratio. We reduce the data dimension by deriving sum-

mary statistics based on the posterior distributions of the smoothed images. The

Bayesian FHT model that we propose in the second stage is computationally easy

to implement and provides a rich, plausible and flexible modeling structure for the

data. The Bayesian paradigm allows us to explore the parameter space randomly

while average over all the visited models via Bayesian model averaging which ac-

counts for model uncertainty. Moreover, in the Bayesian framework, it is easy to

obtain predictive estimates for the survival function based on the posterior distribu-

tion.

Lee and Whitmore (2006) and Lee et al. (2004) introduced the concept of oper-

ational time into the FHT model to distinguish from calendar time. Calendar time

measures time in months and years, while operational time measures the cumulative

exposure of a system to aggregate physical effects that cause its deterioration, such

as the wear-out of a car which is related more to usage than the simple passage

of time. And the aggregate effects may relate to multiple causes of death, such as

different working exposures (Lee et al. (2004)). In our study, since the patients with

gliomas have a high mortality rate and very short median survival time, their will

be the main cause of the death. For the sake of model simplicity and interpretation,

we assumed a linear monotonic relationship between operational time and calendar

time.
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Table 3.1:
Average rMSE , rBias of predictions and the 95% HPD interval of bias for different
censoring rates.

Censoring Rate rMSE ± SD (10−2) rBias ± SD (10−2) 95% HPD Interval of Bias
10% 0.40± 0.29 2.40± 5.90 (−0.114, 0.102)
30% 0.53± 0.44 3.91± 6.21 (−0.101, 0.117)
50% 0.89± 0.65 6.87± 6.52 (−0.092, 0.144)
70% 1.89± 1.41 11.8± 7.09 (−0.087, 0.173)



90

Table 3.2:
Average rMSE , rBias of predictions and the 95% HPD interval of bias for different true
distributions, censoring rate is controlled at 30%.

True Distribution rMSE ± SD (10−2) rBias ± SD (10−2) 95% HPD Interval of Bias
Inverse Gaussian 0.53± 0.44 3.91± 6.21 (−0.101, 0.117)
Inverse Gamma 0.56± 0.59 4.10± 6.31 (−0.092, 0.115)
log-Normal 0.56± 0.54 4.12± 6.32 (−0.091, 0.121)
Weibull 0.64± 0.61 5.02± 6.28 (−0.109, 0.126)
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Table 3.3:
Average rMSE , rBias of predictions and the 95% HPD interval of bias for different
models, censoring rates are controlled at 30%.

Model rMSE ± SD (10−2) rBias ± SD (10−2) 95% HPD Interval of Bias
Model 1 0.39± 0.30 2.87± 5.62 (−0.093, 0.098)
Model 2 0.36± 0.32 2.93± 5.23 (−0.090, 0.101)
Model 2 with noise 0.41± 0.31 3.01± 5.70 (−0.085, 0.103)
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Table 3.4:
Percentage of iterations that the predictors are selected by different models, censoring
rates are controlled at 30%.

Predictor Model 2 (%) Model 2 with noise (%)
X0 η X0 η

Z1 96.2 97.7 95.5 97.1
Z2 98.7 96.5 97.9 96.2
Z3 21.0 95.4 15.6 95.8

noise − − 13.7 18.4
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Table 3.5:
Posterior means of summary statistics: dKLD, pKLD, cDS and cPS are included into
a Cox Model. The proportionality assumption is checked via incorporating the time
dependent term: dKLD× log(T ), cDS× log(T ) and cPS× log(T ).

Parameter Coefficients SD P-value
dKLD −1.15 0.55 0.12
pKLD 0.82 0.29 0.005
cDS −0.92 0.34 < 0.001
cPS 1.24 0.56 0.11
dKLD× log(T ) −1.63 1.30 0.009
cDS× log(T ) −0.37 0.28 < 0.001
cPS× log(T ) 0.78 0.57 0.08
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Table 3.6: Percentage of iterations that the predictors are included in the model.

Predictor X(0) η
dKLD 94.8 96.1
pKLD 92.3 91.7
cDS 87.4 88.2
cPS 84.9 82.6
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Figure 3.1: Two survival sample paths of health status starting from initial level X0 until failure
time S (path 2) or end of follow-up at time L (path 1).
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Figure 3.2:
The survival curve for one patient from one simulation. The predicted survival curve
and its corresponding 95% credible interval are estimated by Bayesian model averaging.
The true survival curve is plotted for comparison.
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Figure 3.3:
Upper figure: Predicted survival curve for one patient who failed at 3.4 months; Lower
figure: Conditional predicted survival curve for one patient who was censored at 34.3
months, conditional on the patient survived after 34.4 months.
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3.8 Appendix

Throughout this appendix, we will rely on the notation set out in the main part

of this chapter.

3.8.1 Model and Algorithm Details

In this section, we derive the posterior distribution for parameters in our proposed

model. We begin by giving a detailed derivation of the Bayesian FHT regression

model and then describe briefly how we sample parameters in the mPWDP model

and derive the summary statistics.

Bayesian FHT Regression Model:

Since the parameter ηj follows the log normal distribution with density:

f (ηj|B1(Zj)α, ω) =
1

ηjω
√

2π
exp

{
−(log ηj −B1(Zj)α)2

2ω2

}
,

the posterior distribution of the parameter ηj for each subject is given by:

[ηj| · ] ∝ f (Tj|Xj(0), ηj) f (ηj|B1(Zj)α, ω)

∝ exp

{
− log ηj −

η2
jT 2

j − 2Xj(0)ηjTj
2Tj

− (log ηj)
2 − 2B1(Zj)α ln ηj

2ω2

}
.(3.15)

The distribution (3.15) is not a log-concave function, therefore, we apply the adaptive

rejection Metropolis sampling algorithm (ARMS, Gilks et al. (1995)) to simulate the

posterior.

Once we obtained the draws of ηj for j = 1, 2, . . . ,M , we assume ζj = log ηj and

ζ = {ζ1, . . . , ζM}, therefore, we have:

p(ζ|α,B1, ω) = (2πω2)−M/2 exp

{
−(ζ −B1α)T(ζ −B1α)

2ω2

}
.(3.16)

A priori, [α|κ] ∼ N (0, κIK+1). We can write out the posterior distribution α given

ζ, ω, κ and the basis matrix, which is proportional to the product of formula (3.16)
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and the prior distribution for α given κ:

p(α|ζ, κ, ω,B1) ∝ π(α|κ)π(ζ|α, ω,B1)

∝ exp

{
−(α−m?)T(V?)−1(α−m?)

2ω2

}
where V? =

[(
κ
ω2I
)−1

+ BT
1 B1

]−1

and m? = V?BT
1 ζ. Therefore, the full posterior

for α is:

[α|ζ, ω, κ] ∼ N(m?,V?ω2).(3.17)

Standard conjugacy results state that the full conditional distributions of κ−1,

ω−2 and τ are Gamma distributions:

[
κ−1|α, K

]
∼ Gamma

(
0.001 +

K + 1

2
, 0.001 +

αTα

2

)
,(3.18)

[
ω−2|α, ζj,B1(Zj)

]
(3.19)

∼ Gamma

(
0.001 +

M

2
, 0.001 +

∑
j [ζj −B1(Zj)α]2

2

)
and

(3.20) [τ | K] ∼ Gamma(1 +K, 0.2 + 1).

The acceptance probabilities for the birth and death moves in the RJMCMC

algorithm can be derived as described in Chapter II. Here we briefly summarize the

sampling formula and algorithm.

For a birth move suppose there are K bases in the BMARS model. We propose

to draw an interaction level, LK+1 ∈ {1, 2} for the K + 1 basis with

(3.21) π(LK+1 = 1) = π(LK+1 = 2) = 1/2.

We then draw LK+1 elements, {w1,K+1, . . . , wLK+1,K+1} with

π(w1,K+1 = w | LK+1 = 1) = 1/4 for w = 1, 2, 3, 4.(3.22)
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π[(w1,K+1, w2,K+1) = (w,w′) | LK+1 = 2] = 1/6(3.23)

for(w,w′) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

The knot point tl,K+1 is draw at random from {Z1wl,K+1
, . . . , ZMwl,K+1

} with

(3.24) π(tl,K+1 = Zjwl,K+1
| wl,K+1) = 1/M for l = 1, . . . , LK+1,

and sl,K+1 is drawn with equal probability from the set {−1, 1}:

(3.25) π(sl,K+1 = −1) = π(sl,K+1 = 1) = 1/2 for l = 1, . . . , LK+1.

Then the acceptance rate of a birth step is:

γbirth = min

{
1,
|V∗K+1|1/2 exp(aK − aK+1)τ

(κ/ω2)1/2|V∗K |1/2(K + 1)

}
(3.26)

where aK = (ζTζ −m∗TK (V∗K)−1m∗K)/2.

For a death move suppose there are K BMARS bases excluding the intercept

term. We randomly draw one of the current K BMARS bases to delete, each with

probability 1/K. The acceptance probability of this death step is

(3.27) γdeath = min

{
1,

(κ/ω2)1/2|V∗K−1|1/2K
|V∗K |1/2 exp(aK−1 − aK)τ

}
.

For a move step, we choose a basis k with probability 1/K among the K existing

bases, and then we propose to move the knot location in the main effect basis (Lk = 1)

or in a term in an interaction basis (Lk = 2, the term is chosen with probability 0.5)

(Holmes and Denison (2003), Denison et al. (2002)). The acceptance probability of

this move is then

(3.28) γmove = min

{
1,
|V∗,propK |1/2 exp(aK − aprop

K )

|V∗K |1/2

}
where “prop” the proposed value of aK .
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Similarly, since the parameter Xj(0) follows the log normal distribution, the pos-

terior distribution of Xj(0) for each subject is:

[Xj(0)| · ] ∝(3.29)

exp

{
−Xj(0)2 − 2Xj(0)ηjTj

2Tj
− (lnXj(0))2 − 2B2(Zj)β lnXj(0)

2ω′2

}
.

The distribution (3.29) is also not a log-concave function, therefore, we apply the

ARMS to draw from the full conditional.

The posterior draws of β and all the parameters in Θ2 can be derived in the same

way as the procedure for α and those in Θ1. Similarly, updating Θ2 can be achieved

using the same procedure as described for updating Θ1.

mPWDP Model and Derivation of Summary Statistics:

To derive the posterior distribution for parameters in the mPWDP model, we

need to write out the joint distribution of all the data and parameters in both stage

I and stage II.

Joint Model:

Let Ci,j = {{µi′1,j}i′∈Ni,j
, {µ̃i′2,j}i′∈Ni,j

, {νi′2,j}i′∈Ne
i,j∩Sj

}. We denote the jth co-

variate vector, which is a functional of the parameters µ2,j, µ̃2,j, by Zj(µ2,j, µ̃2,j).

The joint distribution of all the data and parameters is
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M∏
j=1

nj∏
i=1

π(Yi,j | µi,j,Σj)π(Σj)π(µi,j | {µi′j}i′∈Ni,j
,Ψj)π(Ψj)(3.30)

×
M∏
j=1

ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)

×
M∏
j=1

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×
M∏
j=1

π(Xj(0) | Zj(µ2,j, µ̃2,j),Θ2)π(ηj | Zj(µ2,j, µ̃2,j),Θ1)

×
M∏
j=1

π(Tj|Xj(0), ηj)π(Θ1)π(Θ2).

We use the same notation as in Chapter II to define the parameters in the mPWDP

model. In brief, let Wi,j denote the image intensities for voxel i with mean vector

νi,j in the healthy tissue ROI for patient j. The covariance of Wi,j will be denoted

∆j and the covariance of the mean vector νi,j will be denoted Ωj. Denote the set of

voxels in the healthy ROI by Hj. The number of voxels in the healthy tissue ROI

is also nj. Ỹi2,j =
(
Ỹi21,j, Ỹi22,j

)T

is the predicted tumor response at time point

2 under the “null” and µ̃i2,j is its mean. We extend the healthy tissue ROI by a

one-voxel thick shell and denote the set of voxels in this shell by Sj to mitigate the

identifiability issue that arises when drawing Ỹi2,j and µ̃i2,j simultaneously. Let nsj

denote the number of voxels in the shell and let nej = nj + nsj be the number in

the extended ROI. Let N e
i,j = {i′ : i′ ∼ i} denote the set of neighbors of voxel i

in the extended ROI and |N e
i,j| denote the number in this set for patient j. We

build a separate mPWDP model for the image data in the healthy tissue ROI and

predict tumor response under the null: µ̃i2,j (Details can be found in the Chapter
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II). Therefore, we have

[
Yi,j | µi,j,Σj

]
∼ N(µi,j,Σj), [Wi,j | νi,j,∆j] ∼ N(νi,j,∆j),(3.31)

[Σj] ∼W−1(I4, 5), [∆j] ∼W−1(I4, 5),(3.32) [
µi,j | {µi′j}i′∈Ni,j

,Ψj

]
∼ N

[
µ∗i,j, |Ni,j|−1Ψj

]
,(3.33) [

νi,j | {νi,j}i′∈Ne
i,j
,Ωj

]
∼ N

(
ν∗i,j, |N e

i,j|−1Ωj

]
,(3.34)

[Ψj] ∼W−1(I4, 5), [Ωj] ∼W−1(I4, 5),(3.35)

and

[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
∼ N

(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j
)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
,[

µ̃i2,j | µi1,j, Ci,j,Ωj

]
∼ N

(
µ̃∗i2,j + Ω21,j(Ω11,j)

−1(µi1,j − µ∗i1,j), |N e
i,j|−1(Ω22,j − Ω21,j(Ω11,j)

−1Ω12,j)
)
,[

ηj | Zj(µ2,j, µ̃2,j),Ω2

]
∼ log-Norm

(
B1(Zj)αj, ω

2
j

)
,[

Xj(0) | Zj(µ2,j, µ̃2,j),Ω2

]
∼ log-Norm

(
B2(Zj)βj, ω

′2
j

)
,

where

(3.36) µ∗i,j = |Ni,j|−1
∑
i′∈Ni,j

µi′,j , ν
∗
i,j = |N e

i,j|−1
∑
i′∈Ne

i,j

νi′,j,

and  µ∗i1,j

µ̃∗i2,j

 = |N e
i,j|−1

 ∑
i′∈Ne

i,j∩Sj

 0

νi′2,j

+
∑

i′∈Ne
i,j∩Hj

 µi′1,j

µ̃i′2,j


 .

Stage I – mPWDP Model:

In stage I, we fit the mPWDP model and derive summary statistics. The full con-

ditional posterior sampling distributions for the parameters in the mPWDP model
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are derived analogously to those in Chapter II. We employ an hybrid Metropolis-

within-Gibbs algorithm to sample from the full conditionals. We use the Gibbs

sampler to sample from those full conditional distributions with nice distributional

forms, while we apply the Metropolis-Hastings algorithm to sample from full condi-

tionals of the remaining parameters.

The full conditional for the covariance matrix Σj for subject j is:

(3.37)
[
Σj |

{
µi,j
}nj

i=1
, {Yi,j}nj

i=1

]
∼W−1 (S1,j + I4, nj + 5) ,

where S1,j =
∑nj

i=1

(
Yi,j − µi,j

) (
Yi,j − µi,j

)T
.

Given the prior Ψj ∼W−1(I4, 5), its full conditional is:

(3.38)
[
Ψj |

{
µi,j
}nj

i=1

]
∼W−1 (S2,j + I4, nj + 5) ,

where S2,j = 0.5
∑

i∼i′
(
µi,j − µi′,j

) (
µi,j − µi′,j

)T
.

To update µi,j, recall that the summary statistics, Zj, depends on {µi2,j}
nj

i=1 and

{µ̃i2,j}
nj

i=1. For voxel i, µi,j has full conditional given by

π(µi,j | {µi′,j}i′∈Ni,j
,Yi,j,Σj,Ψj, µ̃i2,j,Θ1,Θ2, Xj(0), ηj)(3.39)

∝ π(Yi,j | µi,j,Σj)π(µi,j | {µi′,j}i′∈Ni,j
,Ψj)

×π(Xj(0) | Zj(µ2,j, µ̃2,j),Θ2)π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)

×π(ηj | Zj(µ2,j, µ̃2,j),Θ1)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj),

which does not have a nice distributional form from which we can easily sample and

so we use a Metropolis-Hastings update. We propose a new value of µi,j, call it µpropi,j

from:

[
µi,j | Σj,Ψj,Yi,j, {µi′,j}i′∈Ni,j

]
∼

N
[
V
(
|Ni,j|Ψj

−1µ∗i,j + Σj
−1Yi,j

)
,V
]
.(3.40)
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where V =
(
|Ni,j|Ψj

−1 + Σj
−1
)−1

. So the acceptance ratio can be simplified to

achieve a high acceptance rate. The acceptance probability is given by

αµ = min {1,R}(3.41)

where R =
π(ηj | Zj(µ{−i}2,j,µ

prop
i2,j , µ̃2,j),Θ1)π(Ỹi2,j | Yi1,j,µ

prop
i1,j , µ̃i2,j,∆j)

π(ηj | Zj(µ{−i}2,j,µ
current
i2,j , µ̃2,j),Θ1)π(Ỹi2,j | Yi1,j,µcurrenti1,j , µ̃i2,j,∆j)

×
π(Xj(0) | Zj(µ{−i}2,j,µ

prop
i2,j , µ̃2,j),Θ2)

π(Xj(0) | Zj(µ{−i}2,j,µ
current
i2,j , µ̃2,j),Θ2)

×
π(µ̃i2,j | µ

prop
i1,j , Ci,j,Ωj)

∏
i′∈Ni,j

π(µ̃i′2,j | µi′1,j, C
prop
i′,j ,Ωj)

π(µ̃i2,j | µcurrenti1,j , Ci,j,Ωj)
∏

i′∈Ni,j
π(µ̃i′2,j | µi′1,j, Ccurrent

i′,j ,Ωj)
,

with Cprop
i′,j = {{µpropi1,j ,µk1,j}k∈Ni′,j

, {µ̃k2,j}k∈Ni′,j
, {νk2,j}k∈Ne

i′,j∩Sj
} and superscript

prop represents a new proposed sample and current represents the current sample.

For healthy tissue voxels, we then derive the full conditional posterior distribution

of νi,j. Analogous to (3.40), the full conditional of νi,j for voxel i ∈ N e
i′,j ∩Hj, is

[
νi,j | Ωj,∆j,Wi,j, {νi′,j}i′∈Ne

i,j

]
∼

N
[(
|N e

i,j|Ω−1
j + ∆j

−1
)−1 (|N e

i,j|Ω−1
j ν

∗
i,j + ∆−1

j Wi,j

)
,
(
|N e

i,j|Ω−1
j + ∆−1

j

)−1
]
.(3.42)

While for voxel i ∈ N e
i′,j ∩ Sj, we have the full conditional of νi,j given by

π(νi,j | {νi′,j}i′∈Ne
i,j
,Wi,j,∆j,Ωj, {µ̃i2,j}i′∈Ni

, µ̃i2,j, {µi′1,j}i′∈Ni
,µi1,j)

∝ π(Wi,j | νi,j,∆j)π(νi,j | {νi′,j}i′∈Ne
i,j
,Ωj)

∏
i′∈Ni,j

π(µ̃i′2,j | µi′1,j, Ci′,j,Ωj),

which does not have a closed form. Thus, we propose a new value νpropi,j , i ∈ N e
i′,j ∩Sj

from (3.42) and accept with probability:

αν = min

1,
∏

i′∈Ni,j

π(µ̃i′2,j | µi′1,j, C
prop
i′,j ,Ωj)

π(µ̃i′2,j | µi′1,j, Ccurrent
i′,j ,Ωj)

(3.43)

where Cprop
i′,j = {{µk1,j}k∈Ni′,j

, {µ̃k2,j}k∈Ni′,j
, {νpropi2,j ,νk2,j}k∈Ne

i′,j∩Sj
}.
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The full conditional distribution of the covariance matrix ∆j for subject j is

π(∆j | {Wi,j}
ne
j

i=1, {νi,j}
ne
j

i=1, {Ỹi2,j}
nj

i=1, {Yi1,j}
nj

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1)(3.44)

∝
ne
j∏

i=1

π(Wi,j | νi,j,∆j)π(∆j)

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j),

which does not have a nice distributional form. To simulate from the posterior, we

propose a new value ∆prop
j from

[
∆j | {Wi,j}

ne
j

i=1, {νi,j}
ne
j

i=1

]
∼ W−1

(
S3,j + I4, n

e
j + 5

)
,(3.45)

where S3,j =
∑ne

j

i=1 (Wi,j − νi,j) (Wi,j − νi,j)T for all i ∈ Hj ∪ Sj. We then accept

this value with probability

α∆ = min

{
1,

nj∏
i=1

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
prop
j )

π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆
current
j )

}
.(3.46)

We then propose an update to Ωj. From (3.30), we have

π(Ωj | {νi,j}
ne
j

i=1, {µi1,j}
nj

i=1, {µ̃i2,j}
nj

i=1, {νi′2}i′∈Ne
i ∩Sj)(3.47)

∝
ne
j∏

i=1

π(νi,j | {νi,j}i′∈Ne
i,j
,Ωj)π(Ωj)

nj∏
i=1

π(µ̃i2,j | µi1,j, Ci,j,Ωj).

from which the posterior draws of Ωj can not be directly obtained. We propose a

new value Ωprop
j from

(3.48)
[
Ωj | {νi,j}n

e

i=1

]
∼W−1

(
S4,j + I4, n

e
j + 5

)
,

with probability

αΩ = min

{
1,

nj∏
i=1

π(µ̃i2,j | µi1,j, Ci,j,Ω
prop
j )

π(µ̃i2,j | µi1,j, Ci,j,Ωcurrent
j )

}
.(3.49)

Similarly as illustrated in Section 3.8 of Chapter II, we can easily derive the

conditional predictive distribution of Ỹi2,j and the posterior distribution of µ̃i2,j.
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The conditional distribution of Ỹi2,j given Yi1,j and model parameters is given by

[
Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j

]
∼(3.50)

N
(
µ̃i2,j + ∆21,j (∆11,j)

−1 (Yi1,j − µi1,j
)
, ∆22,j −∆21,j(∆11,j)

−1∆12,j

)
.

The posterior distribution of µ̃i2,j is

π(µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj,Zj(µ2,j, µ̃2,j),Ω2, Xj(0), ηj)(3.51)

∝ π(Ỹi2,j | Yi1,j,µi1,j, µ̃i2,j,∆j)π(µ̃i2,j | µi1,j, Ci,j,Ωj)

×π(Xj(0) | Zj(µ2,j, µ̃2,j),Θ2)π(ηj | Zj(µ2,j, µ̃2,j),Θ1),

We propose a new value µ̃propi2,j from

[
µ̃i2,j | Ỹi2,j,Yi1,j,µi1,j, µ̃i2,j, Ci,j,∆j,Ωj

]
∼(3.52)

N
(
θi2,j + Λi21,j

(
Λi11,j

)−1 (
µi1,j − θi1,j

)
, Λi22,j − Λi21,j

(
Λi11,j

)−1
Λi12,j

)
where

Λi,j =

 Λi11,j Λi12,j

Λi21,j Λi22,j

 =

|N e
i,j|

 Ω11,j Ω12,j

Ω21,j Ω22,j


−1

+

 ∆11,j ∆12,j

∆21,j ∆22,j


−1

−1

and

θi,j =

 θi1,j

θi2,j

 =

Λi,j

|N e
i,j|

 Ω11,j Ω12,j

Ω21,j Ω22,j


−1 µ∗i1,j

µ̃∗i2,j

+

 ∆11,j ∆12,j

∆21,j ∆22,j


−1 Yi1,j

Ỹi2,j


 .

We then accept draws with probability

αµ̃ = min {1,LRµ̃}(3.53)
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where

LRµ̃ =

π(ηj | Zj(µ2,j, µ̃{−i}2,j, µ̃
prop
i2,j ),Θ1)π(Xj(0) | Zj(µ2,j, µ̃{−i}2,j, µ̃

prop
i2,j ),Θ2)

π(ηj | Zj(µ2,j, µ̃{−i}2,j, µ̃
current
i2,j ),Θ1)π(Xj(0) | Zj(µ2,j, µ̃{−i}2,j, µ̃

current
i2,j ),Θ2)

.

3.8.2 Pseudocode

Initialize parameters

Stage I:

For each subject

1. Set µi,j = Yi,j, i = 1, . . . , nj.

2. Set νi,j = Wi,j i = 1, . . . , nej .

3. Set Σj = Ψj = ∆j = Ωj = I4.

End for each subject

Stage II:

For parameters in Θ1:

1. Set K = 0 (intercept term only).

2. Set κ = 1, ω2 = 1.

3. Set τ = 5.

4. Set Xj(0) = 6 and ηj = 6, for j = 1, . . . ,M .

5. Impute the death time for patients who are censored, by drawing Tj

from the truncated inverse Gaussian distribution with Tj > Tj, where

Tj is the observed censoring time.

6. Draw α from distribution (3.17) (α = α0 when K = 0 and B1 =

B1(Zj) = (1, . . . , 1)T, a vector of ones of length M).
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7. Initialize the parameters in Θ2, ω′2, λ, and β the same way as described

above.

Iterate For d = 1 to 100, 000 discarding the first 50, 000 as burn-in.

Stage I:

Iterate over all subjects, j = 1, . . . ,M .

(Each subject has her/his own set of parameters. The subject index j

is suppressed to be consistent with the main part of this chapter).

1. For tumor ROI:

(a) For each voxel i = 1, . . . , nj, propose µpropi,j from (3.40).

Accept µpropi,j with the probability (3.41).

(b) Draw
[
Σj |

{
µi,j
}nj

i=1
, {Yi,j}nj

i=1

]
from (3.37).

(c) Draw
[
Ψj |

{
µi,j
}nj

i=1

]
from (3.38).

2. For healthy tissue ROI:

(a) Draw
[
νi,j | Ωj,∆j,Wi,j, {νi′,j}i′∈Ne

i,j

]
, i ∈ N e

i′,j ∩Hj, from (3.42).

(b) For each i ∈ N e
i′,j ∩ Sj, propose νpropi,j from (3.42).

Accept νpropi,j with probability (3.43).

(c) Propose Ωprop
j from (3.48).

Accept Ωprop
j with probability (3.49).

(d) Propose ∆prop
j from (3.45).

Accept ∆j with probability (3.46).

3. Predict tumor response under null:

(a) Draw
[
Ỹi2,j | ·

]
, i = 1, . . . , nj, from (3.50).

(b) For i = 1, . . . , nj, propose µ̃propi2,j from (3.52).
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Accept µ̃propi2,j with probability (3.53).

4. Calculate the summary statistics for each subject j (covariate vector

Zj):

(a) Calculate dKLD, pKLD, cDS and cPS.

End iterate over subjects.

Stage II:

Iterate 10 times (oversample) q = 1 to 10.

I. Assume there are currently K basis functions in Θ1.

1. Attempt a Move step by altering a spline basis function if K > 0,

else go to 2:

(a) Draw a BMARS basis, k, at random, with equal probability 1/K,

from the set of bases {1, . . . , K}.

(b) Draw a factor, l, at random, with equal probability 1/Lk, from the

set of factors {1, . . . , Lk}.

(c) Draw a knot location, tlk, at random, with equal probability 1/M ,

from {Z1wlk
, . . . , ZMwlk

}.

(d) If move (new knot location) accepted with probability γmove (3.28).

i. Draw [ηj | ·], j = 1, . . . ,M , from (3.15) using ARMS.

ii. Draw [κ−1 | ·] from (3.18).

iii. Draw [ω−2 | ·] from (3.20).

iv. Draw [α | ·] from (3.17).

v. Draw [τ | K] from (3.20).

else, keep current knot location.

2. RJMCMC: Draw U ∼ Bernoulli(0.5) if K > 0 otherwise set U = 0.
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(a) if U = 0 Birth step.

i. Draw LK+1 according to (3.21).

ii. If LK+1 = 1, draw w1,K+1 | LK+1 from the set {1, 2, 3, 4} with

equal probability 1/4, see (3.22).

else draw (w1,K+1, w2,K+1) | LK+1, with equal probability, from

the set {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}, see (3.23).

iii. Draw the knot point(s) tl,K+1, l = 1, . . . , LK+1, see (3.24).

iv. Draw sl,K+1, l = 1, . . . , LK+1, see (3.25).

v. Accept the birth with probability γbirth (3.26).

(b) if U = 1 Death step.

i. Remove kth basis from the model with probability 1/K.

ii. Accept the death with probability γdeath (3.27).

3. Draw [ηj | ·], j = 1, . . . ,M , from (3.15) using ARMS.

4. Draw [κ−1 | ·] from (3.18).

5. Draw [ω−2 | ·] from (3.20).

6. Draw [α | ·] from (3.17).

II. Update the parameters in Θ2 and β the same way as those in Θ1 and

α.

III. Impute the death time for patients who are censored, by drawing Tj

from the truncated inverse Gaussian distribution with Tj > Tj, where

Tj is the observed censoring time.

end oversample

End Iterate



113

3.8.3 Sensitivity Analyses

In the Bayesian FHT regression model, we assign an informative prior to K,

the number of BMARS basis: [K | τ ] ∼ Poisson(τ), τ ∼ Gamma(a, b) where we set

a = 1, b = 0.2, when updating parameters in both Θ1 and Θ2. Given the small sample

size, 47 patients in our study, we believe that a parsimonious model is warrated. A

prior on K that favors a large number of basis functions may result in over-fitting of

the data and a potential decrease in predictive power ((Denison et al. 2002, Chapter

2)). Thus, we choose to place an informative prior on K with a small mean. We

perform a sensitivity analysis on our choice of prior for τ , and hence, marginally, on

K. We change the values of a and b as well as the distribution of τ to a uniform prior

distribution on [0, 10]. Percentages of the HPD interval for the median survival time:

T0.5 covering the observed T are shown in the last column of Table 3.7. The results

from our model are not very sensitive to these changes in the prior distribution of τ .

To derive the summary statistics cDS/cPS, we used thresholds 97.5th and 2.5th

percentile, respectively, of the conditional distribution of the means of the predicted

tumor response 3 weeks post therapy initiation under the null. To assess the pre-

diction sensitivity to those thresholds, we use the 99.5th/0.5th and the 95.0th/5.0th

percentile as new thresholds to derive cDS/cPS. We found that at most one more

subject has an HPD interval for T0.5 not covering the observed T .
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Table 3.7:
Sensitivity analysis for different hyperprior distributions of τ in the proposed model.
Percentages of the HPD interval of median survival time T0.5 covering the observed
T are shown in the last column. Mean and variance are calculated for different prior
distributions.

Prior of τ Prior mean Prior variance T0.5 Coverage %
Gamma(0.6, 0.2) 3.0 15.0 84.4
Gamma(0.8, 0.2) 4.0 20.0 87.5
Gamma(1.0, 0.2) 5.0 25.0 87.5
Gamma(1.8, 0.2) 8.0 45.0 87.5
Gamma(0.5, 0.1) 5.0 50.0 87.5
Gamma(2, 0.2) 10.0 50.0 84.4
Gamma(2, 0.4) 5.0 12.5 87.5
U [0, 10] 5.0 8.3 84.4
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Figure 3.5: Predicted survival curves for patients who died



116

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 6.6 Months

T0.5 (95% Credible Interval): 6.3 (5.8, 6.9)

Average Predicted Survival Curve
95% Credible Interval

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 17.4 Months

T0.5 (95% Credible Interval): 16.2 (14.8, 18.0)

Average Predicted Survival Curve
95% Credible Interval

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 5.1 Months

T0.5 (95% Credible Interval): 4.7 (4.4, 5.2)

Average Predicted Survival Curve
95% Credible Interval

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 7.0 Months

T0.5 (95% Credible Interval): 6.8 (6.1, 7.5)

Average Predicted Survival Curve
95% Credible Interval

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 2.1 Months

T0.5 (95% Credible Interval): 2.0 (1.8, 2.2)

Average Predicted Survival Curve
95% Credible Interval

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T: Month

P
re

di
ct

iv
e 

S
ur

vi
va

l C
ur

ve
: S

(T
)

Predictive Survival Curve for A Patient That Died at 10.9 Months

T0.5 (95% Credible Interval): 12.1 (11.1, 13.4)

Average Predicted Survival Curve
95% Credible Interval

Figure 3.6: Predicted survival curves for patients who died
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Figure 3.7: Predicted survival curves for patients who died
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Figure 3.8: Predicted survival curves for patients who died
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Figure 3.9: Predicted survival curves for patients who died
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Figure 3.10: Predicted survival curves for patients who died
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Figure 3.11:
Conditional predicted survival curves for patients who censored, conditional on Tj > Tj
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Figure 3.12:
Conditional predicted survival curves for patients who censored, conditional on Tj > Tj
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Figure 3.13:
Conditional predicted survival curves for patients who censored, conditional on Tj > Tj



CHAPTER IV

Joint Modeling of MRI and Polychotomous Disease Status
Using Wavelets: An Application to Alzheimer’s Disease

4.1 Introduction

Our work is motivated by a large-scale project: the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) (adni.loni.ucla.edu). The project is primarily concerned

with developing imaging measures and biomarkers for incipient Alzheimer’s Disease

(AD) and Mild Cognitive Impairment (MCI). AD is an irreversible neurodegener-

ative disease which results in a loss of mental function due to the deterioration of

brain tissue. It is the most common cause of dementia among people over the age

of 65, affecting over 24 million people worldwide and 5 million in the U.S. (Leow

et al. (2009)). As the disease progresses, it gradually destroys a person’s memory

and ability to learn and carry out daily activities, and eventually, overall mental and

physical function leading to death. Alzheimer’s disease develops slowly over time.

The symptoms begin to appear so gradually that it is often mistaken for normal

aging. The transitional stage between normal aging and dementia is MCI. MCI dif-

fers from both AD and normal age-related memory change. People with MCI have

ongoing memory problems but not to the point where their impairment interferes

significantly with daily activities. Unfortunately, there is no cure for Alzheimer’s

disease and there is no way to predict how fast someone will progress through the
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stages of the disease. However, early Alzheimer’s (i.e. especially in the stage of

MCI) diagnosis and treatment can slow the progression of Alzheimer’s symptoms.

Therefore, our study aims to build a predictive model that can aid in the diagnosis

of AD and MCI, using MRI data.

Alzheimer’s disease is conventionally considered a gray matter disease as its most

prominent consequence is severe memory loss. Because neurons in the gray matter

are vital to cognitive activity, scientists have generally assumed that Alzheimer’s

disease – with its memory loss and other cognitive debilitations – must begin in the

gray matter. The overwhelming majority of Alzheimer’s research has focused on gray

matter, despite the fact that white matter makes up about 50 percent of total brain

tissue and is substantially altered during Alzheimer’s progression (De Leeuw et al.

(2005)). Some researchers in recent MRI studies have found that the white matter

changes (WMC) (e.g. white matter lesions) are associated with the cognitive decline

in early-onset Alzheimer’s disease (Kavcic et al. (2004), Bronge and Wahlund (2007),

Kavcic et al. (2008), Anderson (2009)). However, none of the previous studies on

WMC have developed statistically robust and efficient methods to classify AD and

MCI patients from healthy controls. Moreover, the WMC may occur in different

brain regions that may vary in size (Braccoa et al. (2005)). The heterogeneity of

WMC also makes it difficult to use MRI as an accurate diagnostic tool.

In our study, we apply a three dimensional discrete wavelet transformation (DWT)

on MRI data for each patient in stage I. The properties of the wavelet transforma-

tion can mitigate the inherent problems of WMC in MRI and allow us to separate

the signal of WMC and the noise in the wavelet domain. We then employ Bayesian

Lasso (Park and Casella (2008)) to denoise the wavelet transformed images. Sum-

mary statistics are derived based on the smoothed wavelet coefficients and are then
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included in a Bayesian cumulative probit regression model with the patient’s disease

status (i.e. AD, MCI and normal) as the outcome. Here the MRI data and the

categorical outcome variable are modeled jointly.

Wavelets are useful spectral image analysis tools capable of exploiting significant

spatial correlations between voxels and have been used with great success in many

areas, especially in imaging analysis. Wavelets have a number of advantages over

Fourier analysis, as demonstrated in the literature, including the ability to represent

finite and discrete signals and the ability to natively and easily accommodate multi-

resolution analysis (Vidakovic (1999), Bullmore et al. (2004)).

MRI data usually have poor signal-to-noise ratio (SNR), arising from intrinsic

biological heterogeneity and scanner-induced noise. The direct statistical analysis of

these data in the spatial domain is problematic because of a poor SNR, the large

number of voxels and strong spatial correlation among them. Wavelets are efficient

for the representation of a wide variety of signals. If the signal to be detected is

spatially localized, it can be represented by a small number of strong local coefficients,

while the power of white noise is uniformly spread throughout the wavelet space.

These are due to the three major features of the wavelet transformation: 1) wavelets

allow an easy separation of the data by filtering the data with different supports; 2)

wavelets disbalance energy in the data as the signal is represented by a small number

of components in the wavelet domain; 3) wavelets whiten data as the orthogonal

wavelets decorrelate the data in the wavelet domain. Another important advantage of

using the wavelet transformation is the ability to perform shrinkage of the parameters

to gain a better signal to noise ratio. This is also due to the multi-resolution nature

of the transform in that the signal tends to be concentrated in a few coefficients while

the noise is spread through all coefficients.
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We adopt the Bayesian Lasso proposed by Park and Casella (2008) to further

shrink the wavelet coefficients to denoise the images. By placing a Laplacian distri-

bution as the prior for the expected value of the wavelet coefficients, we can shrink

most of the non-important wavelet coefficients to zero. The Bayesian Lasso pulls the

more weakly related parameters to 0 faster than ridge regression does, indicating a

potential advantage of the Laplacian prior over a Gaussian (or a Student t) prior.

The summary statistics are derived on the smoothed wavelet transformed images and

are then included into a cumulative probit regression model in stage II. Reversible

jump MCMC is utilized to select the variables.

In our data, there are 42 AD patients, 85 MCI subjects at high risk for conversion

to AD, and 59 age matched controls. MRI scans at 3 Tesla are performed on all

subjects at baseline. All MRI data are obtained from the ADNI project and have

gone through image correction: gradwarping for correction of geometric distortion

due to gradient non-linearity (Jovicich et al. (2006)); “B1-correction” to adjust for

image intensity inhomogeneity due to B1 non uniformity using calibration scans

(Jack Jr et al. (2008)); “N3” bias field correction, for reducing residual intensity

inhomogeneity (Sled et al. (1998)); and also have been scaled for gradient drift using

phantom data (Jack Jr et al. (2008)).

The 3-D images for all the subjects are first segmented into white matter (WM),

gray matter (GM) and cerebrospinal fluid (CSF) using SPM8 (Wellcome Trust

Centre for Neuroimaging, Institute of Neurology, UCL, London UK) in Matlab

(www.mathworks.com/products/matlab/). To adjust for global differences in brain

positioning and scale across individuals, the WM, GM and CSF segments are then

further normalized to the tissue probability maps defined by the International Con-

sortium for Brain Mapping (ICBM-53) (Mazziotta et al. (2001)) with a 9-parameter
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transformation (3 translations, 3 rotations, 3 scales). Modulation is carried out to

compensate for the effect of spatial normalization (Ashburner and Friston (2000)).

Moreover, to adjust for intensity inhomogeneities across patients, we further carry

out intensity standardization by using the dynamic programming method proposed

by Cox et al. (1995). The images after segmentation, are of size 91 × 109 × 91. To

make the computation more efficient, we re-sliced the images to a size of 64×64×64.

This chapter is organized as follows. In Section 4.2, we introduce notation and

specify the model. In Section 4.3, we discuss posterior simulation. Results from the

simulation studies and the real data analysis are shown in Sections 4.4 and 4.5. In

Section 4.6, we discuss some challenges and future work.

4.2 Model

4.2.1 The Wavelet Transformation

The wavelet transform (WT) has been found to be particularly useful for analyz-

ing signals which can best be described as aperiodic, noisy, intermittent, transient

and so on. Its ability to examine the signal simultaneously in both time and space

in a distinctly different way from the traditional short time Fourier transform has

spawned a number of sophisticated wavelet-based methods for signal manipulation

and interrogation. Mathematically speaking, the wavelet transform is just the con-

volution of the wavelet function with the signal. The WT can be done in a smooth

continuous fashion for continuous wavelet transform (CWT) or in discrete steps for

discrete wavelet transform (DWT). Our method focuses on the DWT for the brain

image data.

For simplicity of the exposition, the 1-D case is considered first, which can be

easily extended to multiple dimensions. An orthogonal wavelet transform is char-

acterized by two continuously-defined functions: 1) the scaling function φ(x), and
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2) its associated wavelet ψ(x) =
√

2
∑

k∈Z g(k)φ(2x − k), where g(k) is a suitable

weighting sequence. The scaling function φ is the solution of a two-scale equation

(4.1) φ(x) =
√

2
∑
k∈Z

h(k)φ(2x− k).

The sequence h(k) is the so-called refinement filter. The wavelet basis functions are

constructed by dyadic dilation (index j) and translation (index k) of the mother

wavelet

(4.2) ψj,k = 2−j/2ψ(x/2−j − k).

The sequences h and g – or, equivalently φ and ψ – can be selected such that

{ψj,k}(j,k)∈Z2 constitutes an orthonormal basis of L2, the space of finite energy func-

tions. This orthogonality permits the wavelet coefficients di(k) and approximate

coefficients cj(k) for any function f(x) ∈ L2 to be obtained by the inner product

with the corresponding basis functions

(4.3) dj(k) = 〈f, ψj,k〉, cj(k) = 〈f, φj,k〉,

where 〈f, g〉 =
∫
f(x)g(x)dx is the conventional L2-inner product. In practice, the

decomposition is only carried out over a finite number of scales J . The wavelet

transform with a depth J is then given by

(4.4) f(x) =
J∑
j=1

∑
k∈Z

dj(k)ψj,k +
∑
k∈Z

cJ(k)φJ,k,

where dj(k) and cj(k) are defined in (4.3)

Although the synthesis and expansion formulas (4.3) and (4.4) are usually given for

continuous signals, equivalent expressions also exit for a purely discrete framework.

In the discrete case, these formulas can be rewritten in the following matrix form:

f = W Td,(4.5)

d = Wf ,(4.6)
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where f = (. . . , f(k), . . . ) is the signal (or image) vector, W the orthogonal wavelet

transformation matrix, and d = (. . . , d1(k), . . . , dJ(k), . . . , cJ(k), . . . ) the wavelet

coefficient vector. The wavelet transform (4.6) is therefore an orthonormal transfor-

mation of the signal vector f .

Rather than defining the transform matrix W explicitly, it is much easier to

describe the underlying decomposition algorithm, which uses the two complementary

filters h and g. In the orthogonal case, the low-pass filter h satisfies the so-called

quadrature mirror filter (QMF) conditions

H(z)H(z−1) +H(−z)H(−z−1) = 2,(4.7)

H(1) =
√

2, H(−1) = 0,(4.8)

where H(z) is the transfer function (z-transform) of h. The high-pass filter g is the

modulated version of h given by

(4.9) G(z) = z ·H(−z−1).

The lowpass filter lets through low signal frequencies and hence a smoothed version

of the signal, while the highpass filter lets through the high frequencies corresponding

to the signal details.

The wavelet decomposition is implemented iteratively by successive filtering and

decimation using the QMF filterband. The iterative definition of W enables imple-

mentation of (4.5) and (4.6) for a signal vector of length N0 by O(N0) operations,

rather than O(N2
0 ). This makes the computation of the wavelet transform slightly

more efficient than that of the standard fast Fourier Transform (FFT), which has

complexity of O(N0logN0) (Bullmore et al. (2004)).

The decomposition (4.3) is easily extended to two-dimensional (2-D) or three-

dimensional (3-D) signals by using tensor product basis functions, which amounts to
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applying the 1-D decomposition algorithm successively along the separate dimensions

of the data. The effect of one iteration of this splitting process is illustrated in Figure

4.1 for the 2-D case. In this way, one generates 2q different types of basis functions in q

dimensions. The corresponding q-D separable scaling functions with x = (x1, . . . , xq)

are given by

(4.10) φj,k(x) =

q∏
i=1

φj,ki(xi),

where we use the vector integer index k = (k1, . . . , kq). The other 2q − 1 types of

wavelet basis functions are obtained in a similar fashion by replacing one or several

factors in (4.10) by a wavelet term of the form ψj,ki(xi). Let b = {b1, . . . , bq} denote

a binary vector with bi = 1 if φj,ki is replaced by ψj,ki , otherwise bi = 0. By defining

ϕj,ki =


ψj,ki , if bi = 1

φj,ki , otherwise,

the mixed tensor product wavelets are then

wmj,k(x) =

q∏
i=1

ϕj,ki(xi) m = 1, . . . , 2q − 1(4.11)

with m =

q∑
i=1

bi2
i−1.(4.12)

Since φ is a low pass filter and ψ is a high pass filter, the mixed tensor product

wavelets will typically have a preferential spatial orientation along one (or several if

q > 2) of the spatial directions. In this view, m assumes the role of a spatial direction

indicator.

In our study, we will use a 3-D Daubechies (Daubechies (1992)) wavelet transform.

The Daubechies wavelets are a family of orthogonal wavelets defining a discrete

wavelet transform and characterized by compact support and a maximal number of
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vanishing moments for any given smoothness. These properties allow an effective

and parsimonious representation of images with local behavior. Daubechies wavelets

are extensively used in applications. For the following write-up, we use DWT to

denote the 3-D Daubechies wavelet transform with 4 vanishing moments.

4.2.2 Joint Modeling MRI and Polychotomous Disease Outcome

Let (Yi, Zi) for i = 1, . . . , n indicate the observed data, with the vector Yi de-

noting the 3-D MRI data, written as a 643 × 1 vector, for either GM or WM. Since

we will analyze the segmented GM and WM images using the same model sepa-

rately, we do not use different notation to distinguish two images in order to ease

the notational burden. Variable Zi is the categorical ordinal outcome with value 0

representing normal controls, value 1 MCI and value 2 AD patients.

From Mallat (1989), it is straightforward to calculate the wavelet basis matrix,

W3. Let W3 contain all the bases of 3 dimensional DWT. For each subject i, we

can write out the first model in regression form:

(4.13) Yi = W3βi + εi

where βi and εi are vectors of the same length (643 × 1) as Yi. εi is the error term,

of which every element is assumed to be independent and identically distributed as

N(0, σ2
i ). W3βi represents the 3-D Inverse DWT on βi. Tibshirani (1996) suggests

that an independent and identical Laplacian prior for the regression coefficients can

be viewed as a Bayesian Lasso method. Park and Casella (2008) represent the Lapla-

cian prior as a scale mixture of normals. Hence, we assign a prior distribution for

each element of βi: [βil|σ2
i , τ

2
il] ∼ N(0, σ2

i τ
2
il) where all the elements are indepen-

dent from each other. The hyper-prior distributions for the variance σ2
i and the τ 2

il,
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l = 1, . . . ,m, where m = 64× 64× 64, are

π(σ2
i ) ∝ 1/σ2

i(4.14)

π(τ 2
il) = 0.5λ2

i e
−λ2i τ2il/2(4.15)

The parameter λ2
i controls the degree of shrinkage for all the wavelet coefficients.

In our model, we employ the empirical Bayes method proposed by Park and Casella

(2008) to estimate the value of λ2
i . In our model, we have more parameters than the

sample size, therefore, it may lead to an identifiability issue when calculating λ using

the marginal maximum likelihood estimate. To solve this problem, we first apply

the wavelet transformation directly on the data. Then 5% of the wavelet coefficients

which are closest to zero are set to zero. By doing so, we force the number of

parameters to be less than the sample size of the data. Then at each iteration, λ2
i

is calculated from the sample of the previous iteration by using the EM algorithm.

Specifically, iteration k uses the Gibbs sampler with the value of λ(k−1) from the

iteration k − 1:

(4.16) λ(k) =

√
2(m−m0)∑(m−m0)

j=1 Eλ(k−1) [τ 2
j |Y]

where m0 is the number of wavelet coefficients that are set to zero. The subscript j

in τ 2
j indexes the voxels without βj set to zero.

The summary statistics are derived based on the smoothed wavelet coefficients.

From exploratory analyses, we notice that the wavelet transformation allows differ-

ences among the three groups of subjects to be represented by a small number of

wavelet coefficients, while the noise is uniformly spread through the wavelet space

(Figure 4.2 and 4.3). It inspires us to use the wavelet coefficients with large absolute

magnitudes. We calculate the 97.5th and 2.5th percentile of the smoothed wavelet

coefficients for the GM and WM respectively. We denote the 97.5th percentile as
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UpGM for GM, UpWM for WM, and 2.5th percentile as LowGM for GM, LowWM

for WM. These percentiles are included into the model in stage II as the covariates,

denoted as X i for the ith subject.

For classification purposes, we use a cumulative probit regression for the ordered

outcome in stage II. Albert and Chib (1993) proposed a Bayesian approach that uses

data augmentation and introduces latent variables into the model. Observed ordinal

outcome variable Z = {Z1, . . . , Zn} are coded as 0, 1, 2, for 3 classes. Let Gi be a

latent variable for each Zi. Assume the latent variable Gi follows a normal distribu-

tion with mean B (X i)α and variance 1. Here B (X i) is the vector of multivariate

adaptive regression spline basis functions (MARS, Friedman (1991), Denison et al.

(1998) and Holmes and Denison (2003)) as defined in Chapters II and III of this

dissertation. Regression coefficients are α = {α0, . . . , αK} where K represents the

total number of basis functions and α0 is the model intercept. We observe Zi, where

Zi = j − 1 if γj−1 < Gi ≤ γj for j = 1, 2, 3 and we define γ0 = −∞ and γ3 =∞. To

ensure that the parameters are identifiable, it is necessary to impose one restriction

on the bin boundary, without loss of generality, we take γ1 = 0. This transforms the

generalized linear regression problem into a linear regression problem. We denote the

model in this stage as the GNLM-BMARS, standing for the Generalized Non-Linear

Model with Bayesian MARS bases.
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4.3 Implementation and Evaluation

By utilizing the orthonormality property of the wavelet basis, it is straightforward

to derive the posterior distributions for σ2
i and τ−2

il :

[
σ2
i | ·

]
∼ Inv-Gamma

(
m,

∑m
l=1 (Yli − [W3βi]l)

2

2
+

∑m
l=1 β

2
il

2τ 2
il

)
,(4.17)

[
τ−2
il | ·

]
∼ Inv-Gaussian

(√
λ2
iσ

2
i

β2
il

, λ2
i

)
l = 1, . . . ,m(4.18)

where W3βi denotes the inverse 3-D DWT on βi, and is the predictive value of the

image denoted by Ŷi. [W3βi]l represents the lth voxel of the image Ŷi. Inv-Gamma

stands for the inverse Gamma distribution. Inv-Gaussian is the inverse Gaussian

distribution (µ′, λ′) with density:

f(x) =

√
λ′

2π
x−3/2 exp

{
−λ

′(x− µ′)2

2(µ′)2x

}
, x > 0.

To derive the full conditional posterior distribution of βil, we note that

π(βil| · ) ∝ π(βil|Yi, σ
2
i , τ

2
il)π(Gi|X i(βil, · ),Ω2)(4.19)

where Ω2 denotes all the parameters in stage II. And with the orthonormality prop-

erty of the wavelet basis, the distribution of π(βil| Yi, σ
2
i , τ

2
il ) is:

[βil| Yi, σ
2
i , τ

2
il ] ∼ N

(
Y w
li

τ−2
il + 1

,
σ2
i

τ−2
il + 1

)
l = 1, . . . ,m(4.20)

where Y w
li indicates the transformed value of Yli in the wavelet domain. Therefore,

we propose a new value βpropil from (4.20), and accept this draw with probability:

αβ = min

{
1,

π(Gi | Xi(β
prop
il , · ),Ω2)

π(Gi | Xi(βcurrentil , · ),Ω2)

}
(4.21)

where superscript prop represents a new proposed sample and current represents the

current sample.
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In stage II, we place priors over the MARS parameters in the same way as de-

scribed in Chapters II and III. We assign prior distributions to regression parameters

α and ν

[α|ν] ∼ N(0, νIK+1),(4.22) [
ν−1
]
∼ Gamma(0.001, 0.001).(4.23)

It is straightforward to derive the posterior distributions:

[α| · ] ∼ N(m,V),(4.24)

[Gi| · ] ∼ N(B (X i)
Tα, 1)I(Zi = j − 1),(4.25)

if γj−1 < Gi ≤ γj j = 1, 2, 3,

[γj| · ] ∼ Unif [Lj, Uj] j = 2,(4.26) [
ν−1| ·

]
∼ G

(
0.001 +

K + 1

2
, 0.001 +αTα

)
j = 1, 2(4.27)

where V =
(
BTB + (νIK+1)−1

)−1
, α̂ = VBTG, B is the matrix of MARS ba-

sis functions defined in Chapters II and III with the ith row vector B (X i), Lj

= max{max {Gi : Zi = j − 1}, γj−1}, Uj = min {min {Gi : Zi = j} , γj+1} and I

is the indicator function. For the MARS parameters, we specify the same prior

distributions as described in Chapters II and III.

We use a varying dimensional reversible jump sampler (Green (1995)) to sample

appropriate models by adding or removing basis functions. This can be referred to

as a “variable selection” approach. Details of the RJMCMC algorithm are given in

the appendices of Chapters II and III.

To evaluate the model, we adopt a a leave-one-out cross-validation approach pro-

posed by Gelfand et al. (1992). Their method uses the idea of importance sampling.

Details of their method can also be found in the Appendix of Chapter II.
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4.4 Simulation Studies

We perform a series of simulation studies to assess the performance of the model

in stage I. We firstly construct a smoothed image in the wavelet domain of size

16×16×16 and regard this image as the truth. The intensity of voxel l in the image

is indexed as βTruel . We generate βTruel , l = 1, . . . ,m = 163 from a Gaussian random

field with mean 2 and covariance function specified by a variance of 0.25, a nugget

of 1 and a scale of 10. To introduce sparsity into the image, we assume that 80% of

the voxels in the smoothed images are 0. Therefore, we randomly sample 0.8(163)

number of voxels from the image and set them to 0. We calculate the 97.5th percentile

of βTrue and denote it as QTrue. The observed image denoted by Y is constructed

from formula (4.13) with εl ∼ N(0, σ2). We apply the Wavelet transformation with

Bayesian Lasso to the simulated data Y and calculate the 97.5th percentile of β and

denote it by QLasso. We vary the value of σ2 and compare QLasso with QTrue. Under

each simulation scenario, we generate N = 500 simulated data sets and compute the

average mean squared relative error (rMSE) and relative bias (rBias) of the statistics:

rMSE = N−1

N∑
i=1

[(
Q
Lasso

i −QTrue
i

)
/QTrue

i

]2

,

rBias = N−1

N∑
i=1

(
Q
Lasso

i −QTrue
i

)
/QTrue

i

where Q
Lasso

i is the posterior mean from the ith simulation.

To illustrate the benefits of the Bayesian Lasso shrinkage, we calculate the 97.5th

percentile of the maximum likelihood estimate of βl, which is the wavelet coefficient

Yw
l . We denote the percentile as QMLE and compute the rMSE and rBias of QMLE.

The results are shown in Table 4.1. We find that by using the Bayesian Lasso as

the prior for the wavelet transformation, we can attain much lower rMSE and rBias
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than those obtained by the MLE of β. As σ2 increases, our method performs better.

These indicate that the shrinkage by using Bayesian Lasso can improve the precision

and bias of the results.

4.5 Results

We iteratively sample from the posterior distributions between the two stages.

Stage I is computationally much more expensive than stage II due to the large

sample size of the imaging data. We run the algorithm for 60,000 iterations and

we over-sample draws (10:1) in stage II. It takes around 3 days for all 186 subjects.

The algorithms are programmed in C and implemented on a 3.0 GHz Mac XServe.

The first 30,000 draws are discarded as burn-in. The burn-in period is chosen by

examining plots of all the parameters, which have converged by this point.

The results of the ADNI data are shown in Table 4.2. We calculated the overall

cross-validated correct classification rate, CCRcv, and the proportions of the pre-

dicted counts of each disease group among the the total observed counts of that

group (i.e. total number of truths). Our proposed model yields an overall CCRcv

of 62.4%(116/186). From Table 4.2, we can see that our model can correctly classify

69.0% of the AD patients, 75.3% of the MCI patients and only 39.0% of the normal

controls. Among 59 normal controls, our model mis-classifies 54.2% of subjects as

MCI. It suggests the our model can not discriminate normal controls from MCI.

We then apply our proposed model to subsets of the ADNI data: the sub-data

containing only two categories of the disease status (i.e. AD vs. NORM, AD vs.

MCI and MCI vs. NORM). We compute the positive predictive value, PPVcv,

which is defined as the probability of being in group A conditional on a prediction of

A when comparing group A vs. group B. And, the negative predictive value, NPVcv
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is defined as the probability of being in group B given a prediction of B. From Table

4.6, we can see that our proposed model gives a CCRcv of 71.3% when comparing AD

vs. NORM, with PPVcv of 67.6% and NPVcv of 73.4%. The CCRcv of comparing

AD vs. MCI and comparing MCI vs. NORM are 66.9% and 55.6% respectively.

Therefore, we can see that the classification rate is poor when comparing MCI with

the normal controls, which is consistent with what we have found by applying our

model to the entire data set.

To check the performance of our proposed model, we compare the results with

those obtained from three simpler models. In one model, we include the wavelet

coefficients directly into the GNLM-BMARS model in stage II and we denote this

model as Wavelet-BMARS. The results obtained from this model are shown in Table

4.3. This model yields an overall CCRcv of 58.1%(108/186). Comparing with the

results in Table 4.2, we can see that our proposed model can give us better overall

classification results by shrinking the wavelet coefficients using the Bayesian Lasso.

We also compare our results with results from a second model, in which we include

the wavelet coefficients into a cumulative probit regression in stage II. This model

is denoted as Wavelet-GLM and it yields an overall CCRcv of 47.3%(88/186). In

Table 4.4, we can see that this model performs poorly in classifying the three disease

statuses. Comparing the results in Table 4.2, 4.4 and 4.3, we find that BMARS can

provide extra flexibility to the model and improve prediction. In the third model, we

calculate the summary statistics directly on the raw image data and then include the

statistics as covariates into the cumulative probit regression model in stage II. We

found that this model, denoted as Raw-GLM, gives the worst classification results

with an overall CCRcv of 43.0%(88/186) (Table 4.5). Therefore, we conclude that

the wavelet transformation can also contribute to better classification results by
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separating the signal from noise.

We also compute the CCRcv, PPVcv and NPVcv after analyzing the subset of

the ADNI data using the three simple models described in the previous paragraph:

Wavelet-BMARS, Wavelet-GLM and Raw-GLM. The results are shown in Table 4.6.

By comparing all four models, we find again that our joint model outperforms the

simple models in terms of prediction.

4.6 Discussion

In this chapter, we propose a Bayesian joint classification model with discrete

wavelet transformation to aid in the diagnosis of Alzheimer’s Disease and the transi-

tional stage: MCI. In stage I, we apply the DWT on the image data to de-correlate

the voxels and to separate the signal from noise. We further shrink the wavelet

coefficients by using the Bayesian Lasso to denoise the images. The summary statis-

tics are derived based on the wavelet coefficients after shrinkage and are included

as covariates into the model in stage II. In stage II, we build a cumulative probit

regression model for the polychotomous outcome – disease status with three levels:

AD, MCI and normal controls. We employ the BMARS basis functions to introduce

more flexibility into the model. Through both simulation studies and model perfor-

mance comparisons, we find that we can improve classification results by de-noising

the images in the wavelet domain using the Bayesian Lasso and by allowing for a

more complex and flexible decision boundary provided by the GNLM with MARS.

From our study, we find that the our method does not perform well in classifying

the transitional stage MCI from the AD and especially from the normal control group.

Compared with the large body of information about Alzheimers disease, research

about MCI is at a relatively early stage. Scientists are still answering basic questions
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about this disorder and there are significant inconsistencies in definitions of MCI.

For example, some definitions involve problems with aspects of thinking other than

memory. The different findings also point to the need for long-term studies that follow

the progression of symptoms in people with differently defined MCI. Therefore, more

work is needed on the biological changes associated with normal aging, MCI, and

Alzheimers disease and other dementias. Moreover, in our study, we only consider

MRI as a predictor for disease status. Clinical characteristics obtained from the

cognitive assessments and physical examination can also be included in our model.

In the ADNI project, besides the image and clinical data, there is also substantial

genetic data available. Thus more genetics studies about Alzheimer’s disease are also

in great demand, in order to better understand the disease.

Our proposed model could also be applied to classify Multiple Sclerosis (MS)

patients from normal subjects. MS is an inflammatory, chronic, degenerative disorder

that affects nerves in the brain and spinal cord. Predominantly, it is a disease of the

“white matter” tissue. In people affected by MS, patches of damage called plaques

or lesions appear in seemingly random areas of the CNS white matter. MS plaques

appear as irregular, sharply demarcated, gray areas randomly distributed in the white

matter. There is no known cure for MS. Treatments attempt to return function after

an attack, prevent new attacks, and prevent disability. Moreover, the prognosis of

MS is difficult to predict. It has been shown that MRI is a sensitive biomarker for

MS (Paty et al. (1988)). Old plaques are hyperintense on T2-weighted and FLAIR

studies. The plaques in MRI are of different sizes, shapes, locations and are highly

heterogeneous. Therefore, our proposed method should also be applicable to MS.
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Figure 4.1:
(a) One iteration of the separable wavelet transform in 2-D. First, the basic 1-D algo-
rithm is applied in the x-direction, which splits the columns of the data into two halves.
Second, it is applied in the y-direction with (a) as input, splitting the rows into two
halves. (b) The basis functions for each quadrant are obtained from the product of the
corresponding basis functions in x and y. The procedure is then iterated on the upper
left quadrant in (b).
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Table 4.1: Average rMSE , rBias comparing QLasso and QTrue and QMLE and QTrue

QMLE QLasso

σ2 rMSE (SD)1 rBias (SD)2 rMSE (SD)1 rBias (SD)2

1.0 12.9(6.0) 11.0(2.71) 0.94(1.36) 1.78(2.52)
0.9 4.68(3.26) 6.36(2.53) 0.66(1.03) 1.36(2.20)
0.8 1.49(2.11) 2.70(2.78) 0.56(0.97) 0.99(2.18)
0.5 0.56(0.84) −0.65(2.32) 0.55(0.84) −0.61(2.31)

1×10−3. That is, all numbers are to be multiplied by .001
2×10−2. That is, all numbers are to be multiplied by .01
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Figure 4.2:
The figures in the left panel represent log-histograms of the raw segmented gray matter
of AD, MCI and normal subjects, while in the right panel, the figures represent the
log-histograms of the segmented gray matter in the wavelet domain for AD, MCI and
normal subjects.



145

AD: WM

Voxel Intensity

lo
g(

fr
eq

ue
nc

y)

0 50 100 150 200 250

0
2

4
6

8
10

12

Wavelet AD: WM

Wavelet Coefficients

lo
g(

fr
eq

ue
nc

y)

−500 0 500 1000 1500

0
2

4
6

8
10

12

MCI: WM

Voxel Intensity

lo
g(

fr
eq

ue
nc

y)

0 50 100 150 200 250

0
2

4
6

8
10

12

Wavelet MCI: WM

Wavelet Coefficients

lo
g(

fr
eq

ue
nc

y)

−500 0 500 1000 1500

0
2

4
6

8
10

12

NORM: WM

Voxel Intensity

lo
g(

fr
eq

ue
nc

y)

0 50 100 150 200 250

0
2

4
6

8
10

12

Wavelet NORM: WM

Wavelet Coefficients

lo
g(

fr
eq

ue
nc

y)

−500 0 500 1000 1500

0
2

4
6

8
10

12

Figure 4.3:
The figures in the left panel represent log-histograms of the raw segmented white matter
of AD, MCI and normal subjects, while in the right panel, the figures represent the log-
histograms of the segmented white matter in the wavelet domain for AD, MCI and
normal subjects.
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Table 4.2: Overall classification results obtained by our proposed method.

Truth Prediction: Counts Prediction: Proportion∗ %

AD MCI NORM AD MCI NORM
AD 29 12 1 69.0 28.6 2.38
MCI 9 64 12 10.6 75.3 14.1

NORM 4 32 23 6.78 54.2 39.0
∗The proportion is calculated as the proportion of the predicted counts of certain group among the the total observed
counts of that group (i.e. total number of truths).
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Table 4.3:
Overall classification results obtained by using wavelet transformation without shrinkage
via Bayesian Lasso in a GNLM with BMARS.

Truth Prediction: Counts Prediction: Proportion∗ %

AD MCI NORM AD MCI NORM
AD 27 15 0 64.3 35.7 0
MCI 8 67 10 9.41 78.8 11.8

NORM 4 41 14 6.78 69.5 23.7
∗The proportion is calculated as the proportion of the predicted counts of certain group among the the total observed
counts of that group (i.e. total number of truths).
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Table 4.4:
Overall classification results obtained by using wavelet transformation without shrinkage
via Bayesian Lasso in a cumulative probit regression model.

Truth Prediction: Counts Prediction: Proportion∗ %

AD MCI NORM AD MCI NORM
AD 12 28 2 28.6 66.7 4.76
MCI 4 66 15 4.71 77.6 17.6

NORM 2 47 10 3.39 79.7 16.9
∗The proportion is calculated as the proportion of the predicted counts of certain group among the the total observed
counts of that group (i.e. total number of truths).
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Table 4.5:
Overall classification results obtained by including summary statistics derived directly
from the raw image data in a cumulative probit regression model.

Truth Prediction: Counts Prediction: Proportion∗ %

AD MCI NORM AD MCI NORM
AD 2 38 2 4.76 90.5 4.76
MCI 4 77 4 4.71 90.6 4.71

NORM 2 56 1 3.39 94.9 1.69
∗The proportion is calculated as the proportion of the predicted counts of certain group among the the total observed
counts of that group (i.e. total number of truths).
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Table 4.6:
Model comparisons based on subsets of ADNI data. WLasso-BMARS represents our
proposed joint model with the wavelet coefficients after shrinkage using Bayesian Lasso,
included into the GNLM with BMARS; WNLasso-BMARS represents the model with
the wavelet coefficients directly included into the GNLM with BMARS; Wavelet-GLM
represents the model with the wavelet coefficients included into a cumulative probit
regression. Raw-GLM represents the model with the summary statistics derived directly
from the raw image data and then included into a cumulative probit regression model.

Model 1CCRcv
2PPVcv

3NPVcv

WLasso-BMARS
AD vs. NORM 0.713 (72/101) 0.676 (25/37) 0.734 (47/64)
AD vs. MCI 0.669 (85/127) 0.500 (13/26) 0.713 (72/101)
MCI vs. NORM 0.556 (80/144) 0.584 (73/125) 0.368 (7/19)

Wavelet-BMARS
AD vs. NORM 0.683 (69/101) 0.632 (24/38) 0.714 (45/63)
AD vs. MCI 0.630 (80/127) 0.414 (12/29) 0.694 (68/98)
MCI vs. NORM 0.535 (77/144) 0.574 (70/122) 0.318 (7/22)

Wavelet-GLM
AD vs. NORM 0.614 (62/101) 0.538 (21/39) 0.661 (41/62)
AD vs. MCI 0.567 (72/127) 0.303 (10/33) 0.659 (62/94)
MCI vs. NORM 0.424 (61/144) 0.510 (50/98) 0.239 (11/46)

Raw-GLM
AD vs. NORM 0.584 (59/101) 0.500 (6/12) 0.596 (53/89)
AD vs. MCI 0.551 (70/127) 0.200 (5/25) 0.637 (65/102)
MCI vs. NORM 0.451 (65/144) 0.526 (61/116) 0.143 (4/28)

1 Correct cross-validated (CV) classification rate.
2 Cross-validated positive predictive value.
3 Cross-validated negative predictive value.



CHAPTER V

Conclusion & Future Work

In this dissertation, we present three Bayesian joint models to predict survival or

clinical outcomes based on high-dimensional brain imaging data. In Chapter I, we

first smooth the images by using a multivariate pairwise difference prior which ac-

counts for the spatio-temporal correlation in and between the images. We reduce the

data dimension by proposing four novel summary statistics based on the smoothed

images. A Bayesian generalized non-linear model (GNLM) with multivariate adap-

tive regression spline (MARS, Holmes and Denison (2003)) is adopted to predict

patients’ one year survival status. In Chapter II, we extend the joint model in Chap-

ter I and we propose a Bayesian survival model in stage II by assuming that the

health status of patients follows a latent Wiener process. In both chapters, the infor-

mation of the image data are summarized by four novel summary statistics, which are

then included in either the GNLM or survival model as predictors. In Chapter IV, we

apply the three dimensional discrete wavelet transformation to decorrelate the image

data. Bayesian Lasso is used to denoise the wavelet transformed images. Summary

statistics are derived based on the wavelet images and included as covariates into a

cumulative probit regression model in stage II with BMARS basis functions.

In Chapters II and III, we extracted information from the three dimensional image

151
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data by proposing four summary statistics. From the results of our model, the four

summary statistics capture information about the early changes in ADC and rCBF

due to treatment and appear to be strong predictors for treatment efficacy. The four

statistics may not capture the most, or even the best, information and information is

always lost in data reduction. Therefore, better methods of data dimension reduction

may be studied and pursued. Moreover, in our study, due to small sample size, we

did not consider more than four statistics. A larger sample size would be necessary

for better dimension reduction.

In Chapter III, we extend the FHT model proposed by Lee and Whitmore (2006)

and Lee et al. (2004) into the Bayesian framework. In their original paper, they

introduced the concept of operational time into the FHT model to distinguish from

calendar time. The calendar time measures time in months and years, while the

operational time measures the cumulative exposure of a system to aggregate physical

effects that cause its deterioration, such as the wearout of a car, which is related

more to usage than simple passage of time. And the aggregate effects may relate

to multiple causes of death, such as different working exposures (Lee et al. (2004)).

In our Bayesian FHT model, for the sake of model simplicity and interpretation, we

assume a linear monotonic relationship between operational time and calendar time.

More research may be conducted to see if results can be improved by modeling the

operational time in our Bayesian FHT model.

Moreover, in the gliomas study, patients were actually imaged at more than two

time points. Therefore, to study the changes of the intensities in qMRI data, a

longitudinal model is required. Lee and Whitmore (2006) discussed the possibilities

of extending the FHT model to a longitudinal analysis. However, not much has been

done in this area and it remains an open topic for future research.
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In Chapter IV, we only considered T1-weighted MRI. There are also T2-weighted

MRI and proton density MRI data available in the ADNI project, both of which are

shown to be better MRI methods for viewing white matter lesions. However, both

the T2-weighted MRI and proton density MRI are raw images, which require several

image correction steps before they can be analyzed. Therefore, more research can

be done by investigating the quantitative differences among AD, MCI and normal

controls in the T2-weighted MRI and proton density MRI.

Our proposed model in Chapter IV can also be applied to classify Multiple Scle-

rosis (MS) patients from normal subjects. Multiple sclerosis (MS) is a disease that

affects the brain and spinal cord resulting in loss of muscle control, vision, balance,

and sensation (such as numbness). MS is predominantly a disease of white matter

in the central nervous system. White matter tracts are affected, including those of

the cerebral hemispheres, infratentorium, and spinal cord. MS lesions, known as

plaques, may form in CNS white matter in any location; thus, clinical presentations

may be diverse. There is an important role for MRI in the diagnosis of MS. MRI is

sensitive to the white matter lesions that characterize multiple sclerosis, since MRI

can show multiple lesions as high intensity signals in the images (Paty et al. (1988)).

The white matter lesions in MRI are also highly heterogeneous and differ in sizes,

shapes, locations. Therefore, our proposed method could also be applicable to MS.
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