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ABSTRACT 

 Piecewise affine (PWA) systems provide good flexibility and traceability for modeling 

a variety of nonlinear systems. The stability of PWA systems is an important but 

challenging problem since the stability of the sub-systems does not directly imply the 

stability of the global system. Meanwhile, time delays and uncertainty exist in many 

practical systems in engineering and introduce various complex behaviors such as 

oscillation, instability and poor performance. Accommodating time delay and uncertainty 

in the PWA framework is essential for applicability of the method to real systems. To 

ensure the stability of the control systems developed via the PWA system framework, the 

stability of uncertain PWA time-delay systems is investigated. In addition, a quantitative 

description of asymptotic behavior for time-delay systems is also studied since it 

characterizes the transient response of these systems and can be used for the dwell-time 

control for switched time-delay systems.  

 First, the stability problem for uncertain piecewise affine time-delay systems is 

investigated. It is assumed that there exists a constant time delay in the system and the 

uncertainly is norm-bounded. Sufficient conditions for the stability of nominal systems 

and the stability of systems subject to uncertainty are derived using the Lyapunov-

Krasovskii functional with a triple integration term. This approach handles switching 

based on the delayed states (in addition to the states) for a PWA time-delay system, 

considers structured as well as unstructured uncertainty, and reduces the conservativeness 

of previous approaches. The effectiveness of the proposed approach is demonstrated by 



 xi 

comparison with existing methods through numerical examples. 

 Second, an application of the PWA system framework to the modeling and control of 

an automotive all wheel drive clutch system is presented. The open-loop system is 

modeled as a PWA system, followed by the design of a piecewise linear feedback  

controller. The stability of the closed-loop system is examined using linear matrix 

inequalities based on Lyapunov theory. The response of the closed-loop system under 

step and sine reference signals and temperature disturbances are simulated to illustrate the 

effectiveness of the design.  

Finally, a new Lambert W function based approach for estimation of the decay function 

for time-delay systems is presented. This new approach is able to provide a closed-form 

solution for time-delay systems in terms of an infinite series. Using this solution form, a 

decay function estimate, which is less conservative than existing methods, is obtained. 

The method is illustrated with several examples, and the results compare favorably to 

existing methods for decay function estimation.  

 In summary, this research work is dedicated to developing stability methods that can 

work effectively and efficiently for a wide range of practical PWA time-delay systems 

with uncertainty. An approach based on the Lambert W function is also developed to 

obtain accurate estimates of transient characteristics of time-delay systems, which can be 

used for the dwell-time control of switched time-delay systems. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

As the customer demand for safety, reliability and environmental friendliness 

increases, modern engineering systems become more complex and integrated. Benefiting 

from the advances in manufacturing technology, products with sophisticated structures 

and complex dynamics can be built to provide diversified functionalities. Further, the 

components of a system, together with embedded sensors, actuators and controllers, 

usually interact with one another and lead to an integrated system with highly nonlinear 

dynamics. In addition, in many applications, the dynamics of the system/subsystem 

changes with the external environment and input conditions. For example, inputs in 

automotive and aircraft engine systems undergo significant and unpredictable variations, 

and the system behavior varies significantly with such changing inputs. Because of these 

factors, many engineered systems exhibit highly nonlinear behavior. 

In order to monitor and control these complex engineering systems, obtaining 

accurate models that represent the system dynamics over a wide range of inputs and 

environments is necessary and important, but challenging. Many systems show multi-

modal behavior in the sense that their dynamics may depend on inputs and environmental 

factors. Using a single model to represent these systems may be inadequate and 

ultimately not successful. An alternative for modeling nonlinear dynamic systems is the 
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“divide and conquer" approach, which is based on the idea of dividing the entire system 

operating space into small regions and modeling the local dynamics individually within 

each region. Since the modeling task for a small region of the system behavior becomes 

easier to address than modeling the system as a whole, this approach can reduce the 

difficulty of the modeling procedure. A variety of frameworks for multiple model 

systems have been proposed in the past for modeling general nonlinear dynamic systems. 

Takagi-Sugeno (TS) Fuzzy Model (1985) provides smoothed connections between 

regions. Identifying the TS fuzzy model structure (e.g., finding optimal premise variables 

and their associated fuzzy partitions) is a difficult problem and often tackled with offline 

or trial-and-error approaches. Johansen and Foss (1993) proposed to use simple local 

models to describe the system dynamics within each region and then to interpolate among 

these models to form a global model. Instead of dividing each individual premise, or 

input variable, into different value ranges, vector quantization techniques, such as Self-

Organizing Maps (SOM) (Kohonen, 1995), have been proposed in (Barreto & Araujo, 

2004) to directly partition the operating space. 

The switching between sub-models can rely solely on inputs, solely on states or be 

based upon both inputs and states. If the states are included in the partition vector and 

only one local model is activated at a time, this type of multi-model system is called a 

Piecewise-Affine (PWA) system. PWA systems are defined by partitioning the state and 

input space in a finite number of polyhedral regions and associating with each region a 

local linear differential equation: 

 
( ) ( ) ( )

( ) ( ) ( )

i i i i

i i i i

t t t

t t t

  

  

x = A x B u a δ

y = C x D u c ρ
 ,  

( )

( )
i

t

t


 
  
 

x

u
 (1.1) 
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where i is the region index, 
n n

i

A  , 
n r

i

B , 
p n

i

C  and 
p r

i

D  are constant 

coefficient matrices, 
1n

i

a  and 
1p

i

c are constant affine terms which offer 

additional flexibility in the model, and 
1n

i

δ
 
and

 iρ
1n are model uncertainties. 

The set 1{ }s

i i   is the polyhedral partition of the input-state space, 

 ( ) ( ) .
T

T Tspan t t  x u
 
The partition of the space is defined as:  

 
( )

( ) ( ) 0,  
( )

i ui i i

t
t t

t


 
     

 

x
E x E u e

u
  (1.2) 

where iE , iuE  and ie
 
are constant matrices with compatible dimension. Note that the 

switching, ( )i t , of the PWA system is based on the states and the inputs and cannot be 

arbitrarily changed.  

 For rigorous analysis, uncertainties, iδ  
and

 iρ , are considered in the model and can be 

either modeled as structured uncertainty or left unstructured. A detailed discussion about 

modeling of the uncertainly is provided in Chapter 2. A primary source of model 

uncertainty is the fact that the nonlinear system being considered has been represented as 

a PWA system. A refinement of the partition can help to reduce the approximation error 

but may make subsequent analysis and design difficult due to the increase of model 

complexity. Thus, a reasonable trade-off between approximation error and model 

complexity should be considered during partitioning. Uncertainty in system parameters, 

such as calibration error, may also lead to an increase of the overall uncertainty level, but 

cannot be reduced by partition refinement. 

 PWA systems provide a flexible framework to represent a rich class of hybrid 

systems, such as discrete-time hybrid systems in mixed logic dynamical form (Schutter 
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and Moor, 1999), systems with interconnections of linear systems and finite automata 

(Sontag, 1996), and systems with saturation or deadzones (Dai et al., 2009a). This 

approach has been utilized in various applications, such as automotive systems (Baotic et 

al., 2003), biosystems (Azuma et al., 2003) and network systems (Dumas & Rondepierre, 

2003; Drulhe et al., 2006).  

 Besides the flexibility for modeling, the PWA system framework is also useful in 

investigating structural properties of switched systems such as observability and 

reachability (Bemporad et al., 1999; Rodrigues et al.,2003), limit cycles (Branicky, 

1998), multiple equilibrium points, chaos (Li et al., 2007), etc. An exact analysis of these 

systems is difficult. For a nonlinear system, stability analysis is important since having a 

stable system, or keeping it operating in a safe region, is always the first priority. 

Furthermore stability analysis can serve as the basis for control system design. For PWA 

systems, switching among regions may cause instability problems even if all sub-region 

models are stable (Branicky, 1998). One needs to find a common Lyapunov function (Hu 

et al., 2002) or a piecewise Lyapunov function (Johansson & Rantze, 1997; Mignone et 

al., 2000; Rodrigues & Boyd, 2005) to show global stability. 

 In many real engineering control systems, delays commonly exist and affect the 

characteristics of these systems (Niculescu, 2001). Such delays may be inherent in the 

processes of these systems, or arise in the implementation of control (e.g., delays in 

sensors, controllers or actuators). Delays may introduce various complex behaviors such 

as oscillation, instability and poor performance. For stability of linear time-delay systems, 

the problem has been studied over the past several decades for many applications, such as 

highway transportation systems (Orosz et al., 2010), machine tool chatter problem (Yi et 
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al., 2007b), teleoperation systems (Anderson & Spong, 1989), networked control systems 

(Murray, 2003), HIV pathogenesis (Yi et al., 2008a) and automotive engine control 

systems (Cook & Powell, 1988). Fruitful results for stability criteria for linear time-delay 

systems have been analytically derived (Gu & Niculescu, 2003; Richard, 2003). 

Lyapunov-Krasovskii functional based approaches (Nieulescu et al., 1998; Moon et al., 

2001; Xu & Lam 2005; He et al. 2005) and Lyapunov-Razumikhin function based 

approaches (Hou & Qian, 1998, Jankovic, 2001) are the two major ways to construct 

Lyapunov functions for time delay systems. Infinite cluster approaches (Sipahi & Olgac, 

2003), Hopf bifurcation theorem based approaches (Kalmar-Nagy et al., 2001; Forde & 

Nelson, 2004), pseudospectral approaches (Michiels et. al., 2006) and Lambert W 

function approaches (Yi et al., 2007b) have also been proposed. 

 To consider time delays in practical systems, it is valuable to incorporate it in the 

model of PWA systems.  

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i i

i i i i i

t t t t

t t t t




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( )
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( )
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t

t

t
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 
 
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 
  

x

x
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 (1.3) 

where 
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i

C , 
p n

i


d

C  and  
p r

i

D  are 

constant coefficient matrices, 
1n

i

a  and 
1p

i

c are constant affine terms which offer 

additional flexibility in the model, 
1n

i

δ
 
and

 iρ
1n  are uncertainties in the model, 

1( ) nt x  is the state vector, 
1( ) nt   x  is the delayed state, 

1( ) pt y  is the output 

vector, and 
1( ) rt u  are the external inputs. The set 1{ }s

i i   is the polyhedral partition 
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of the input-state space,  ( ) ( ) ( )
T

T T Tspan t t t  x x u . The partition of the space is 

defined as:  

 

( ) ( )

( ) 0,  ( )

( ) ( )

i i i i i

t t

t t

t t

  

   
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      

d u

x x
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u u
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where ( )= ( ) 1
T

T

i it t  x x , ( )= ( ) 1
T

T

i it t    x x
 
and  i i iE = E e ,

 

 di di diE E e .  

Note that iE , idE , iuE , ie
 
and die  are constant matrices with compatible dimension.  

 For PWA time-delay systems, available methods for stability analysis are very limited. 

The stability problem for PWA time-delay systems has been investigated in (Kulkarni et 

al. 2004). In (Moezzi et al., 2009), an approach based on the work of (Rodrigues & How, 

2003) has been proposed to address the robust stability problem for PWA time-delay 

systems with unstructured uncertainty. There are several challenges in applying these 

approaches to practical systems. First, due to the inherent conservativeness of the 

Lyapunov approaches, these methods can become inconclusive. Although piecewise 

Lyapunov functions and Lyapunov-Krasovskii functionals are proposed to accommodate 

the switching mechanism and the infinite spectrum introduced by time delay, the 

conservativeness of these methods is still significant. Second, the computational 

complexity of these methods grows dramatically with the increase of system order and 

number of regions for PWA systems. Such high computational complexity may prevent 

these approaches from being effective implemented in real systems. Third, the existing 

methods consider only unstructured uncertainty in the model. When the structure of the 

uncertainty is identifiable, using structured uncertainty form in the analysis may lead to 

much less conservative results. Fourth, controller delays commonly exist in many 
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engineering systems. Such controller delays may retard the switching in the controller 

and may render the switching of the closed-loop system dependent on delayed states as 

well as states. This case is not properly considered in the existing work. Furthermore, 

although a few examples can be found for applying the PWA system framework to model 

physical systems, such as automotive electric throttle system (Baotic et al., 2003) and 

highway transportation system (Kulkarni, 2003), applications with subsequent control 

system design with stability analysis are hard to find. Such an application would be 

valuable for demonstrating the feasibility of this framework in practical engineering 

systems. 

The switching of PWA time-delay systems depends on the states and/or the delayed 

states and cannot be arbitrarily changed. For more general switched time-delay systems, 

the switching signal, ( )i t , may be directly controllable. Thus, instead of manipulating the 

input ( )tu , one can design a switching supervisory control signal, ( )i t , such that the 

switched system has guaranteed stability by following the switching sequence. It is well 

known that a switched system will be stable if all the sub-systems are stable and the 

switching is sufficiently slow (Liberzon, 2003). Finding the lower bound for the 

frequency of the switching signal that stabilizes such systems is referred as dwell-time 

control. This dwell-time control for switched time-delay systems has been studied in 

(Chiou, 2005; S. Kim et al., 2006; Yan & Ozbay, 2008) with applications in power 

systems (Meyer et al., 2004) and networked control systems (Kim et al., 2004; Dai et al., 

2009b). This type of control relies on the estimate of the asymptotic behavior of time-

delay systems. More specifically, one needs to estimate the dominant decay rate and the 
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maximum energy rise during switching. Less conservative estimates of the decay 

function will lead to lower bounds on dwell time for these applications. 

1.2 Research Objectives 

The objectives of this research are to develop analysis methods that are 

computationally efficient, capable of tolerating model uncertainty, work for a wide range 

of practical problems, and produce guaranteed results for the stability analysis of PWA 

time-delay systems. We also want to develop an effective approach to obtain accurate 

estimates of transient characteristics of time-delay systems, and use these estimates for 

the dwell-time control of switched time-delay systems. Therefore, to further investigate 

the stability problem for PWA time-delay systems and switched time-delay systems, the 

related problems described in the following paragraphs have been considered in this 

research. 

 For the Lyapunov approach to PWA system stability, a major focus is on reducing the 

inherent conservativeness, but keeping the problem computationally tractable. Less 

conservativeness implies more accurate description of the system and less chance for the 

method to be inconclusive. Furthermore, the case of switching based on delayed states 

will be investigated for extending the results to more practical systems, such as systems 

with input delay. For robust stability analysis, systems with structured uncertainty will be 

considered to further reduce conservativeness when the structure of the uncertainty is 

known.  

 To demonstrate the effectiveness of the proposed approach, an application to the 

modeling and control of a nonlinear automotive clutch system will be considered. The 
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PWA framework will be applied to model the nonlinear clutch system first. Then, a 

control system will be designed based on the obtained PWA model to achieve reference 

tracking with consistent performance under different conditions for the closed-loop 

system. The stability of the control system in the presence of uncertainty and time delay 

will be verified using the proposed method.  

 For the estimation of the decay function for time-delay systems, we expect to develop 

a new approach, based on the closed-form solutions from the Lambert W function 

approach, to overcome the inherent conservativeness of matrix measure/norm or 

Lyapunov approaches and obtain a less conservative estimate of the decay function.  

1.3 Organization of the Dissertation 

In Chapter 1, the mathematical descriptions of uncertain PWA systems, and PWA 

time-delay systems, have been introduced. The literature on the stability problem for 

PWA systems and time-delay systems has been briefly reviewed. The challenges and 

objectives of the research have been stated.   

In Chapter 2, a new approach for analyzing the stability of uncertain PWA time-delay 

systems is introduced. Sufficient conditions for the stability of nominal systems and 

systems subject to structured or unstructured uncertainty are derived using the Lyapunov-

Krasovskii functional. The effectiveness of the approach is demonstrated in various 

numerical examples. This chapter is based on the work described in (Duan et al., 2011b, 

2011c). 

In Chapter 3, the application of the PWA system framework to the modeling and 

control of a nonlinear clutch system is demonstrated. The plant system is approximated 
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by a PWA model, followed by subsequent control design and stability analysis. Model 

uncertainty and time delay are included in the model to illustrate the robustness of the 

design. This chapter is based on the work described in (Duan et al., 2011d, 2011e). 

In Chapter 4, the estimation of the decay function for time-delay systems is 

investigated. A new Lambert W function based approach for estimation of the decay 

function for time-delay systems is presented. The method is illustrated with several 

examples, and results are shown to compare favorably with existing methods. This 

chapter is based on the work described in (Duan et al., 2010, 2011a). 

 Finally Chapter 5 summarizes the contributions of the work and discusses possible 

topics for future research work. 
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CHAPTER 2 

AN LMI-BASED APPROACH FOR STABILITY ANALYSIS OF 

PIECEWISE AFFINE TIME-DELAY SYSTEMS WITH 

UNCERTAINTY 

2.1 Introduction 

 Piecewise affine (PWA) systems are defined by partitioning the state-space into a 

finite number of polyhedral regions and associating with each region a local linear 

differential equation. PWA systems can be used to model a variety of hybrid systems. 

The equivalence between PWA systems and interconnections of linear systems and finite 

automata has been demonstrated in (Sontag, 1996). Schutter and Moor (1999) have 

shown that PWA systems and discrete-time hybrid systems in mixed logic dynamical 

form can be mutually transformed into each other. PWA systems have been applied to 

model various systems showing piecewise characteristics such as systems with saturation 

or deadzones (Dai et al., 2009a) and logic control systems. PWA systems also provide 

nice traceability and flexibility to model a rich class of nonlinear systems where 

nonlinearities can be approximated using piecewise affine functions through linearization 

around different operating points.  

 Time delays exist in many systems of interest in engineering, biology, chemistry, 

physics and ecology (Niculescu, 2001). Such delays may be inherent in the components 

or the process of these systems, or arise from the deliberate introduction of time-delays 
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for control purposes. Practical systems are usually subject to various kinds of 

uncertainties, which may come from estimation errors, approximation errors or modeling 

errors. Delays and uncertainties can cause various problems such as oscillation, 

instability, inaccuracy, which may lead to poor performance or even system failure. To 

consider these effects in practical systems, it is valuable to incorporate time delays and 

uncertainties in the model of PWA systems. An application example of such system can 

be found in (Kulkarni, 2003), where the combined vehicle-driver behavior is described 

via a PWA time-delay system. Moezzi (2009) demonstrated some simple numerical 

examples such as the modelling of a nonlinear water tank control system and a pendulum 

control system. The nonlinear plants are approximated by PWA systems and the closed-

loop systems are modeled as PWA time-delay systems with uncertainty after the input 

delays and approximation errors are considered. The author has also studied the control 

of a clutch for an all wheel drive vehicle as a PWA time-delay system with uncertainty 

(Duan et al., 2011d), as discussed in Chapter 3. 

 The stability of PWA systems has been a problem of recurring interest over the past 

several decades. Stability is, of course, critically important and usually implies safety in 

practice. Efficient schemes for stability analysis benefit control design for PWA systems 

(Grieder et al. 2004). However, even without time delay, the stability of PWA systems is 

a challenging problem since the stability of the sub-systems does not directly imply the 

stability of the global system (Branicky, 1998). Blondel and Tsitsiklis (1999) showed 

that, in general, this problem is either NP-complete or undecidable. Although there are 

various tools in the time-domain and frequency-domain for the stability of time-delay 

systems (Gu & Niculescu, 2003), accommodating the switching between sub-systems for 
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a PWA system is very difficult. The Lyapunov approach is still the dominant technique 

for studying PWA system stability. For time-delay systems, the Krasovskii-type approach 

(Krasovskii, 1963; Nieulescu et al., 1998; Richard, 1998; Park, 1999; Moon et al., 2001; 

Fridman & Shaked, 2002; Wu, et al., 2004; Xu & Lam 2005; He et al. 2005; Park 2007; 

Sun et al., 2009) and the Razumikhin-type approach (Razumikin , 1956; Hale, 1993; Li, 

et al., 1997; Jankovic, 2001) are two of the best known ways to construct these candidate 

Lyapunov functions. For PWA systems, the first approach to solve this stability problem 

is to seek a common Lyapunov function (e.g., Hu et al., 2002; Sun et al., 2006) for all of 

the sub-regions. To provide better flexibility for accommodating the structure of PWA 

systems, piecewise Lyapunov functions (Johansson & Rantze, 1997; Hassibi & Boyd, 

1998; Pettersson, 1999; Mignone et al., 2000; Rodrigues & How, 2003; Prajna & 

Papachristodoulou, 2003; Rodrigues & Boyd, 2005) have been introduced. Although 

some conditions for the existence of common Lyapunov function have been derived 

using Lie algebra (Liberzon & Morse, 1999), the existence of piecewise Lyapunov 

function is still an open problem. For PWA time-delay systems, available methods for 

stability analysis are very limited. The stability problem of PWA time-delay systems has 

first been investigated in (Kulkarni et al. 2004) following the approach of Johansson 

(2003).  In (Moezzi et al., 2009), an approach based on the work of (Rodrigues & How, 

2003) has been proposed to address the robust stability problem for PWA time-delay 

systems with unstructured uncertainty. Although sufficient conditions have been 

obtained, these results are significantly conservative. Another important problem not 

considered in these existing work is the switching of the PWA time-delay systems based 

on not only on the states, but also on the delayed states. This situation commonly arises 
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for systems with controller delays (including sensor and actuator delays), which leads to 

the switching in the controller and the switching in the plant not being synchronized.   

 A major focus of these Lyapunov approaches is reducing the inherent 

conservativeness, but keeping the problem easily computable. Less conservativeness 

leads to not only a more accurate description of the system, but also more efficient 

control schemes (e.g., the cost of H-∞ control of PWA systems can be lower if a less 

conservative scheme is used). Computational complexity is also an important issue for 

PWA systems since the cost grows dramatically with the increase of the model 

complexity. In this work, we derive less conservative conditions for the stability of PWA 

time-delay systems compared to the existing methods (Kulkarni et al., 2004; Moezzi et 

al., 2009) without dramatic increase of computational complexity. Inspired by the bilinear 

matrix inequality (BMI) based approach for time-delay systems in (Sun & Liu, 2009), we 

introduce a piecewise Lyapunov-Krasovskii functional candidate with an additional triple 

integration term and formulate linear matrix inequality (LMI) based conditions for the 

stability of PWA time-delay systems. There are four major improvements over the 

current method of (Moezzi et al., 2009). First, the conservativeness of the approach is 

further reduced with the additional relaxations from the triple integration term. Second, 

the case of switching based on delayed states is considered in our method but not for the 

method in (Moezzi et al., 2009). Third, the computational complexity of the method in 

(Moezzi et al., 2009) increases quadratically with the increase in the number of regions, 

while the complexity of our approach increases only proportionally. Last, our approach 

also considers the structured uncertainty case, which is not included in (Moezzi et al., 

2009). 
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 The organization of this chapter can be summarized as follows. In Section 2.2, the 

system is defined and the problem is introduced. In Section 2.3, the approach for nominal 

systems (i.e., PWA time-delay systems without uncertainty) is proposed, followed by the 

robust stability analysis in Section 2.4 for unstructured uncertainty case, and in Section 

2.5 for structured uncertainty case. Numerical examples are provided for a comparison 

between the proposed approach and existing ones in Section 2.6. A summary and 

concluding remarks are in Section 2.7. 

2.2 Problem Statement 

 Consider the PWA time-delay system with unstructured norm-bounded uncertainty: 

 

( ) ( ) ( )

( )
 ,

( )

i di i i

i

t t t

t
i I

t






    

 
    

x A x A x a δ

x

x

 (2.1) 

where ,  n n

i di

A A  are the coefficient matrices, 
1n

i

a are the affine terms, 1nx  

is the state vector, t is time and    is a constant time delay. The set 1{ }s

i i   is the 

polyhedral partition of the state space and I  is the set of region indices. The partition of 

the state space is defined as:  

 

( ) ( )
0,  ,  

( ) ( )
i di i

t t
i I

t t


 

   
              

x x
E E

x x
 (2.2) 

where ( )= ( ) 1
T

T

i it t  x x , ( )= ( ) 1
T

T

i it t    x x  and  i i iE = E e ,

 

 di di diE E e  

are the region bounding matrices. The continuity matrices  i i iF = F f
 
and  

 i di didF = F f , satisfying  
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( ) ( ) ( )

,   ,  ,
( ) ( ) ( )

i di j dj i j

t t t
i j I

t t t
 

  

     
                      

x x x
F F F F

x x x
 (2.3) 

can be constructed from iE  and

  
d iE  by following the procedure in (Johansson, 2003). 

The set of regions that contain the point 
( )

0
( )

t

t 

 
 

 

x

x
 is denoted 0I . The set of regions 

that contains ( )=0tx  but ( ) 0t  x  anywhere inside is denoted 1I  . The set of regions 

that contains ( )=0t x  but ( ) 0t x  anywhere inside is denoted 2I . The region with 

( ) 0t x  and ( ) 0t  x  anywhere inside is denoted 3I . Correspondingly, we will have: 

0i di e e , 0i di f f , 00,  i i I  a ; ie =0, 0i f , 0di e and 10,  di i I  f ; 0e , 

0i f , 0di e  and 20,  di i I  f ; 0e , 0di e , 0i f and 30,  di i I  f . A detailed 

discussion on the construction of the region bounding matrices, iE
 
and diE , and the 

continuity matrices, iF  and 
 diF , can be found in (Johansson, 2003). The switching can be 

based on both ( )tx  and ( )t x , or can be solely based on either of them. If the system 

switches on ( )t x  only, one will have 0i E , 0i e , 0i f  and  
T

i F I 0 . 

Similarly, if the switching is based on ( )tx  only, one will have  0di E , 0di e , 0di f  

and  
T

di F 0 I . 

 For rigorous analysis, the uncertainty, 
1n

i

δ , is considered in the model and is 

assumed to be norm-bounded. The uncertainty can either be modeled as structured 

uncertainty or left unstructured. For the first case, assume that it is of the form 

 ) ( )i i di it t     δ A x( A x a  (2.4) 

where  
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   1 2 3i di i i i i i i

T

i i

   



A A a G Δ H H H

Δ Δ I
 

and iG , iΔ , 1iH , 2iH , 3iH  are constant matrices with compatible dimension describing 

how the uncertainty enters the parameter matrices. If the uncertainty is admissible, these 

matrices can be identified. Note that 0i Δa and 3 0i H , 0i I  . If the uncertainty is 

not admissible, one may use the unstructured uncertainty form 

 ( ) ( )  i i di ait t      δ x x  (2.5) 

where i , di , ai   are the factors of the bound with 00,  ai i I     and   is the 2-

norm. 

 The switching in (2.1) is based on ( )t x  as well as ( )tx . To illustrate the importance 

of including ( )t x  in the partition, an example is provided here. Consider the PWA 

with piecewise state feedback control: 

 ( ) ( ) ( ) ,  ( ) ( ) ,  ( )i i i i i it t t t x t t       x A x B u a u K k x  (2.6) 

If a delay exists in the controller, or the sensor or actuator, which is a common 

occurrence in many engineering systems, one has 

 ( ) ( ) ,  ( )j j jt t t         u K x k x  (2.7) 

where j  is the delayed switching signal and is determined by the delayed state, ( )t x . 

Such a controller delay will not only postpone the control input but also retard the 

switching in the controller. Thus, the closed-loop system becomes a PWA time-delay 

system where switching depends on both ( )tx  and ( )t x : 

( )
( ) ( ) ( ) ,  

( )

i

i i j i j i

j

t
t t t

t






  
           

x
x A x B K x B k a

x
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This problem has not been correctly considered in any of the existing work for PWA 

time-delay systems. Thus, its mathematical treatment here represents a major contribution.  

 The objective of this work is to find sufficient conditions such that the system in (1) is 

asymptotically stable. First, the stability of the nominal system (i.e., 0i δ ) is 

investigated. Then, the results are extended to the systems with structured uncertainty and 

the systems with unstructured uncertainty for robust stability analysis. 

2.3 Analysis of Nominal PWA Time-Delay Systems 

Consider the nominal PWA time-delay system, i.e., the system in (1) with 0i δ : 

 
( ) ( ) ( )

,

i di i

i

t t t

i I





   

  

x A x A x a

x
 (2.8) 

In this section, sufficient conditions for the stability of the nominal system will be 

derived.  To facilitate the analysis, define the following augmented matrices: 

 
0 0

i i

i

 
  
 

A a
A , 

0

0 0

di

di

 
  
 

A
A , 

( )
( )

1

t
t

 
  
 

x
x , 

( )
( )

0

t
t

 
  
 

x
x  (2.9) 

Thus, the system in (2.8) can be written as  

 
0

1 2 3

( ) ( ) ( ),   

( ) ( ) ( ),   ,  ,  

i di

i di

t x t t i I

t x t t i I I I





    

    

x A A x

x A A x
 (2.10) 

Using the formulation in (2.10), the results for 1 2 3,  ,  i I I I   will be analogous to the 

results for 0i I  by combining iA  and ia  into iA .  

Theorem 2.1: Consider symmetric matrices T , Ji , Ki such that Ji , Ki  have non-negative 

entries while 
11 12

12 22

T T
i i i i i di

T T T
i i di i di di

  
   

   

P P F TF F TF

P P F TF F TF
, for 0i I , and 11 12

12 22

i i

T

i i

 
 

 

P P

P P
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T T

i i i di

T T

di i di di

 
 
 

F TF F TF

F TF F TF
, for 1 2 3{ ,  ,  }i I I I , such that the LMIs in (2.11) , (2.12) and (2.13) are 

satisfied for every region:   

For 0 i I  ,  

 

2

11 12 12

22 12 22

11 12

22

22

2

1

2

* 0 0

* * 0 0
0;

* * * 0

* * * * 0

1
* * * * *

2

0;   0

T

i

T

i

T

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di
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 



 
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 
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  
 

  
 
 
 
  
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R
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;
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T T

   
    

   

Q Q Z Z

Q Q Z Z

 (2.11) 

For 1 2 3 ,  ,  i I I I  ,  
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2

11 12 1 12

22 12 22

11 12 121

22

22

2

22 22

1

2

* 0 0
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1
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 (2.12) 

and  additionally,  

10;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
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F TF F TF E J E E J E

F TF F TF E J E E J E
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20;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
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30;  

T T T T

i i i di i i i i i di

T T T T
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i I
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where 

Y, W, U, 11Q , 12Q , 22Q , 11Z , 12Z , 22Z , R n n , Y , W
( 1) ( 1)n n   , 1U ( 1)n n  , 
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Then every piecewise continuous trajectory of the system in (2.8) tends to zero 

asymptotically in the absence of attractive sliding modes.  

Proof:  For 0i I , consider the following Lyapunov-Krasovskii functional candidate: 

 1 2 3 4   V V V V V  (2.14) 

where 

 
11 12

1

12 22

( ) ( )

( ) ( )

T

i i
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 (2.15) 
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0 0

4 ( ) ( )
t

T

t
s s dsd d

  
 

 
   V x Rx  (2.18) 

From the Newton- Leibniz formula, we have 

 ( ) ( ) ( )
t

t
t t s ds





   x x x  (2.19) 

and 

  
0 0

( ) ( ) ( ) ( ) ( )
t t

t t
s dsd t t d t s ds

   
   

   
       x x x x x  (2.20) 

Taking the time derivative of (2.15)-(2.18) along the trajectory of (2.8) and considering 

(2.19)-(2.20) gives 
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(2.24) 

Using the lemma in (Wang, 1992), it can be shown that  
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hold for any symmetric matrices 0R . Combining  (2.21)-(2.25) yields 
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Applying the Schur complement completes the proof for 0i I .  

 For  1i I  , since 0i f  and  ( ) 0 ( )i it tFx F x , define 
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 (2.30) 

Note that 2 2( , , ) ( , , )t t V x V x , 3 3( , , ) ( , , )t t V x V x , 4 4( , , ) ( , , )t t V x V x  always 

hold. The continuity of 1V  and 1V  along the boundaries is guaranteed by using the 

continuity matrices iF  and diF  (Johansson, 2003). Thus, the Lyapunov function in (2.14) 

is continuous over the entire space not matter what  121Q , 221Q , 222Q , 121Z , 221Z , 222Z , 

12R , 22R  are chosen. Meanwhile, 22Q , 22Z , R  may still have full rank without 

affecting the feasibility of (2.12). One can follow the same procedure as above for 0i I
 

to complete the proof for 1i I . An analogous procedure can be applied for 2i I  and  

3i I . 

Remark 1: Since the Lyapunov functional candidate in (2.14) is continuous but not 

continuously differentiable at every point of the state space, Theorem 2.1 is valid when 

there is no attractive sliding modes along the region boundaries. The well-known sliding 

mode concepts are due to (Filippov, 1998). For PWA systems, the sliding modes may 
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occur between two or more regions on the common boundary and can lead to instability 

even if a piecewise Lyapunov function in (2.14) is found.  Thus, it is important to check 

the existence of the attractive sliding modes on region boundaries for PWA systems. A 

discussion of detecting such sliding mode based on the Filippov solution is available in 

(Johansson, 2003).  

Remark 2: The conditions in (2.11) and (2.12) are LMI based and are expected to have 

reduced conservativeness by introduction of an additional triple integration term (2.18) in 

the Lyapunov-Krasovskii functional candidate compared with other approaches not 

including this term. LMIs are much preferred over BMIs since LMIs are convex and can 

be efficiently solved using existing techniques (Boyd, 1999).  

Remark 3: Note that when 0  U R , Theorem 2.1 reverts to one equivalent to (Xu & 

Lam, 2005), which is then a special case of Theorem 2.1. Thus, Theorem 2.1 yields 

better, or at least equivalent, results compared to (Xu & Lam, 2005) when the time-delay 

system (i.e., single region case) is considered. Although such a comparison is for time-

delay systems, which is a special scenario (i.e., one region case) of PWA time-delay 

systems, the use of the triple integration term is expected to offer similar advantages 

when the approach is applied to PWA time-delay systems.  

Remark 4: In (Xu & Lam, 2007), the authors have proven that the LMI-based 

approaches in (Fridman et al., 2002; Lee, Wu et al., 2004; Xu & Lam, 2005) are 

equivalent while the approach from (Xu & Lam, 2005) has the lowest computational cost. 

Using a similar scheme as (Xu & Lam, 2005), we intend to minimize the 

conservativeness and complexity of our approach under the current structure.  
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Remark 5: The continuity problem for 2V / 2V , 3V / 3V  on region boundaries has not been 

properly addressed in (Kulkarni et al., 2004), where 2 ( ) ( )
t

T

t
s s ds


 V x Qx , 0Q , 

0i I  ,
 
and 2 ( ) ( )

t
T

t
s s ds


 V x Qx , 0Q , 1i I  , are considered. However, 2V  and 

2V  will not be equal on the region boundaries. In (Moezz et al., 2009), 

2 ( ) ( )
t

T

t
s s ds


 V x Qx  is defined for 0i I   but it renders 2 (0) 0V . In our results, 

following the formulations in (2.28)-(2.30), the continuity are guaranteed.  

Remark 6: In (Moezzi et al., 2009), the Newton- Leibniz formula in (2.19) is further 

expanded as ( ) ( ) ( ) = ( ) ( ) ( )
t t

j dj
t t

t t s ds t s t ds
 

 
 

      x x x x A x A x , where j is the 

region index at time s and can be different from the current region index i. The method in 

(Moezzi et al., 2009) needs to check for any possible combination of i and j. Thus, the 

computational complexity increases quadratically with the growth of the number of 

regions. In our approach, the expansion of ( )sx  is avoided by keeping it as a state of the 

LMI in (2.26), whose computational complexity is only proportional to the number of 

regions.  

Remark 7: To accommodate the switching based on ( )t x , first the boundary matrices 

diE , die  and the corresponding continuity matrices
 diF , dif

 
are introduced to include 

( )t x  in the partitioning vector. Then, the Lyapunov function 1V  is expanded to 

include 2 ( ) ( )T T

i dit t x F TF x
 
and ( ) ( )T T

di dit t  x F TF x , which represents the energy 

change with ( )t x  and increases the flexibility of the Lyapunov function. Finally, 

additional relaxation matrices, 2 ( ) ( ),T T

i i dit t x E J E x  ( ) ( ),T T

di i dit t  x E J E x
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2 ( ) ( )T T

i i dit t x E K E x  and ( ) ( ),T T

di i dit t  x E K E x  are added to further relax the 

constraints for each region.        

Remark 8: Note that, for 1i I , the last row and last column of 11iP  and 
T

i i iE K E  in 11Λ  

will be all zeros and result in reduced freedom. This will be accommodated by matrices 

Y , W  and  
T

i i id d
E K E  in 11 12

12 22

T

 
 
 

Λ Λ

Λ Λ
, which ensures that (2.12) will still be feasible. 

This is analogous  for 2i I . 

2.4 Analysis of PWA Time-Delay Systems with Unstructured Uncertainty 

 Now consider the PWA time-delay system with the unstructured norm-bounded 

uncertainty in (2.5). One can show that the system in (2.1) with the uncertainty in (2.5) is 

equivalent to the system in (2.31)  
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 (2.31) 

 

by defining  

 
0

i

i


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 

,   i i ai   ,  di di   (2.32) 

and considering 
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Theorem 2.2: Consider symmetric matrices T , Ji , Ki such that Ji , Ki  have non-negative 

entries while 
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T T T T

di i di di di i i di i di

T T

T T T

i i i i i

T T T T

i di di di

m


 




   
    

   

   
     

   

     

  

F TF F TF E J E E J E

F TF F TF E J E E J E

Q Q Z Z
R

Q Q Z Z

P Q A Q Z A Z A R I

P A Q A Z A R
2

2 22 22 3;  ;
2

i im m


   I Q Z R I

 (2.34) 

For 1 2 3 ,  ,  i I I I  ,  

 

2

11 12 1 12 1 2 3

22 12 22

11 12

22

22

2

1

2

3

2

* 0 0 0 0 0

ˆ* * 0 0 0 0 0

* * * 0 0 0 0

* * * * 0 0 0 0

* * * * * 0 0 0
2

* * * * * * 0 0

* * * * * * * 0

* * * * * * * *

T

i di i i i i di

T

T

i

i

i

m m m

l

l

l


     



 

 



 
     

 
     
 

  
 

  
 
 
 
 



 


 

U
Λ Λ U Y P V I I I

Λ W Q P V

Z Z

Z V

Q

R

I

I

I

0;









 

 

22 22

2

11 12 22 12 22 1

2 2

12 22 22 2 22 22 3

0;   0;    0;

;
2

;  ;
2 2

T T T

i i i i i

T T T T

i di di di i i

m

m m


 

 
 

  

     

      

Q Z R

P Q A Q Z A Z A R I

P A Q A Z A R I Q Z R I

 (2.35) 

and  additionally,  

10;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
 

20;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
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30;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
 (2.36) 

where 

 

 

2

11 11 1 3

2

11 11 1 3

12 12 12 12

2

22 22 1 2 3 2 3

2

22 22 1 2 3 2 3

12 12 121

 is the Identity Matrix,

2 ,

2 ,

,  ,

2 ,

2 ,

ˆ

i i i i

i i i i

i i i i di i di

i i i i di i di

m m

m m

l l l m m

l l l m m

 

 

 

 

   

   

  

      

      



I

Λ Λ I I

Λ Λ I I

Λ Λ Λ Λ

Λ Λ I I I I I

Λ Λ I I I I I

Z Z Z

 (2.37) 

Then every piecewise continuous trajectory of the system in (2.31) tends to zero 

asymptotically in the absence of attractive sliding modes.  

 

Proof: Consider the same Lyapunov-Krasovskii functional candidate defined in (2.14) : 

 1 2 3 4 1 2 3 4
           V V V V V V V V V  (2.38) 

 The time derivative of the Lyapunov function along the trajectory of (2.1) becomes 

 1 1 11 122 ( ) 2 ( )T T

i i i it t      T
V V x P δ x P δ  (2.39) 

 2 2 12 22 22 222 ( ) 2 ( ) 2 ( )T T T T T T

i i i di i i it t t       V V x Q δ x A Q δ x A Q δ δ Q δ  (2.40) 

 3 3 12 22 22 22= 2 ( ) 2 ( ) 2 ( )T T T T T T

i i i di i i it t t         V V x Z δ x A Z δ x A Z δ δ Z δ  (2.41) 

 
2

4 4 2 ( ) 2 ( )
2

T T T T T

i i di i i it t


       V V x A Rδ x A Rδ δ Rδ  (2.42) 

Note that 
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2

11 12 22 12 22

2

11 12 22 12 22

2

1 1

2 2 1

1 1 1 1

2 ( ) ( )
2

    2 ( )
2

    2 ( ) 2 ( ) ( )

    2 ( ) ( ) ( ) ( ) ( ) ( )

T T T T

i i i i i

T T T

i i i i i

i i i di

T T T

i i di i i i

t

t

m t m t t

m t t m l t t l t t


 


 

  

   

    

       

  

    

x P Q A Q Z A Z A R δ

x P Q A Q Z A Z A R δ

x x x

x x x x x x

 (2.43) 

 

2

12 22 22

2

12 22 22

2

2 2

2 2 1

2 2 2 2

2 ( ) ( )
2

    2 ( )
2

    2 ( ) ( ) 2 ( )

    ( ) ( ) ( ) ( ) 2 ( ) ( )

T T T T T

i di di di i

T T T T

i di di di i

i i i di

T T T

i i i i i di

t

t

m t t m t

m l t t l t t m t t


 


 

   

     

   

      

    

      

x P A Q A Z A R δ

x P A Q A Z A R δ

x x x

x x x x x x

 (2.44) 

 

2 2
2

22 22 22 22

2 22 2

3 3 3

2 1 2 2 2

3 3 3

2

3 3

( )
2 2

    ( ) 2 ( ) ( ) ( )

    ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( )

T

i i i

i i i i di i di

T T

i i i i i di

T T

i i di

m t m t t m t

m t t l m t t

l t t m t t

 
 

     

  

    



    

    

 

     

δ Q Z R δ Q Z R δ

x x x x

x x x x

x x x x

 (2.45) 

Substituting (2.39) - (2.45) into (2.38) yields 

 

2

1 3

2

1 1 2 3 2 3

2 2 1 2 2 1 1 2 2 2

1 1 2 2 3 3

( ) (2 ) ( )

        ( ) ( 2 ) ( )

        ( ) ( ) ( )

T

i i i i

T

i i i i i di i di

T

di i i i i i i i i di

t m m t

l t l l l m m t

t m l m l l m t

 

   

     

   

      

  

V V x I I x

x I I I I I x

x I I I x

 (2.46) 

Applying the Schur complement completes the proof of Theorem 2.2.  

2.5 Analysis of PWA Time-Delay Systems with Structured Uncertainty 

 In this section, we will consider the PWA time-delay system with the structured norm-

bounded uncertainty in (2.4): 
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0

1 2 3

( ) ( ) ) ( ) ( ),    

( ) ( ) ) ( ) ( ),    { , , }

i i di di

i i di di

t t t i I

t t t i I I I





      

      

x A A x( A A x

x A A x( A A x
 (2.47) 

where  

 
   1 2 0

1 2 1 2 3

,   ,   

,   ,   { , , }

T

i di i i i i i i

T

i di i i i i i i

i I

i I I I

     

          

A A G Δ H H Δ Δ I

A A G Δ H H Δ Δ I
 (2.48) 

with 
0 0

i i

i

  
   

 

A a
A , 

0

0 0

di

di

 
   

 

A
A , 

0

i

i

 
  
 

G
G ,  1 1 3i i iH H H , and 

 2 2 0i iH H
 
for 1 2 3{ , , }i I I I . Note that 0i a  and 0i a  for 0i I . 

 

Theorem 2.3: Consider symmetric matrices T , Ji , Ki such that Ji , Ki  have non-negative 

entries while 
11 12

12 22

T T
i i i i i di

T T T
i i di i di di

  
   

   

P P F TF F TF

P P F TF F TF
, for 0i I , and 11 12

12 22

i i

T

i i

 
 

 

P P

P P

T T

i i i di

T T

di i di di

 
 
 

F TF F TF

F TF F TF
, for 1 2 3{ ,  ,  }i I I I , and scalars ie , ie >0, such that the LMIs in (2.49), 

(2.50) and (2.51) are satisfied for every region:   

For 0 i I  ,  

 

11 12 13

11 12 11 12* *

22 23

12 22 12 22

* 0;  0;  0;  0;

* *

0; 

i i i

T

i i i i i T T

i

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

e

e

 
             
   

  

   
    

   

Φ Φ Φ
Q Q Z Z

Φ Φ H H R
Q Q Z Z

I

F TF F TF E J E E J E

F TF F TF E J E E J E

 (2.49) 

For 1 2 3 ,  ,  i I I I  ,  

 

11 12 13

* *

22 23 22 22* 0;   0;   0;   0;

* *

i i i

T

i i i i i

i

e

e

 
 

     
  

Φ Φ Φ

Φ Φ H H Q Z R

I

 (2.50) 

and  additionally,  
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10;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
 

20;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
 

 
30;  

T T T T

i i i di i i i i i di

T T T T

di i di di di i i di i di

i I
   

      
   

F TF F TF E J E E J E

F TF F TF E J E E J E
 (2.51) 

where 

* * 2

11 12 12

*

22 12 22

11 12

11

22

22

2

1

2

* 0 0

* * 0 0

* * * 0

* * * * 0

1
* * * * *

2

T

i

T

i

T

  



 

 



 
   

 
    

  
 

  
 
 
 

  

Λ Λ U Y P V U

Λ W Q P V

Z Z
Φ

Z V

Q

R

, 

 

 

* * 2

11 11 1 12

*

11 12 22

11 12 121

11

22

22

2

1

2

* 0 0

* * 0 0

* * * 0

* * * * 0

1
* * * * *

2

T

T

T

  



 

 



 
   

 
    

  
 

  
 
 
 

  

Λ Λ U Y P V U

Λ W Q P V

Z Z Z
Φ

Z V

Q

R

, 

 
2

22 22

2

22 22

12

2

2

0

0

0

0

T T T

i i i

T T T

di di di







 
  

 
 

  
 
 
 
 
 
 
 

A Q A Z A R

A Q A Z A R

Φ , 

11 12

12

13

( )

0

0

0

0

i i

T

i i

  
 
 
 

  
 
 
 
 

12
P Q Z G

P G

Φ , 
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2

22 22

2

22 22

12

2

2

0

0

0

0

T T T

i i i

T T T

di di di







 
  

 
 

  
 
 
 
 
 
 
 

A Q A Z A R

A Q A Z A R

Φ , 

11 12

12

13

( )

0

0

0

0

i i

T

i i

  
 
 
 

  
 
 
 
  

12
P Q Z G

P G

Φ , 

2

22 22 22
2


   Φ Q Z R , 

2

22 22 22
2


   Φ Q Z R , 

2

23 22 22
2

i i i


  Φ Q G Z G RG , 

2

23 22 22
2

i i i


  Φ Q G Z G RG ,

 *

11 11 22 22

*

11 11 22 22

*

12 12 22 22

*

12 12 22 22

*

22 22 22 22

1
,

2

1
,

2

1
,

2

1
,

2

1

2

T T T T

i i i i i i

T T T T

i i ii i i

T T T

i di i di i di

T T T

i di i di i di

T T

di di di di

 

 

 

 

 

   

   

   

   

   

2

2

2

2

2

Λ Λ A Q A A Z A A RA

Λ Λ A Q A A Z A A RA

Λ Λ A Q A A Z A A RA

Λ Λ A Q A A Z A A RA

Λ Λ A Q A A Z A

*

22 22 22 22 2

,

1
,

2

T

di di

T T T

di di di di di di     2

A RA

Λ Λ A Q A A Z A A RA

 

 *

1 2 0 0 0 0 0 0 0i i iH H H , 

*

1 2 0 0 0 0 0 0 0i i i
   H H H .

 

Then every piecewise continuous trajectory of the system in (2.47) tends to zero 

asymptotically in the absence of attractive sliding modes.  

Proof: First, one can show that the first set of the LMIs in (2.11) is equivalent to  

 
1

11 12 22 12 0T Φ Φ Φ Φ  (2.52) 

which is further equivalent to: 
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 11 12

12 22

0
T

 
 

 

Φ Φ

Φ Φ
 (2.53) 

Replacing iA  and diA  in (2.53) with 1i i i iA HΔG  and 2di i i iA HΔG  respectively, the 

condition in (2.53) is equivalent to the following condition 

 * * * *11 12

12 22

0T T T

i i i i i iT

 
     

 

Φ Φ
G H H G

Φ Φ
 (2.54) 

where 

2
*

11 12 12 22 22( ) 0 0 0 0 ( )
2

T

T T T T

i i i i i i


 

 
     
 

12G G P Q Z G P G Z Q R

 

Using the Lemma in (Xie, 1996), one can obtain a sufficient condition for (2.54): 

 2 * * * *11 12

12 22

0T T

i i i iT
 
 

   
 

Φ Φ
G G H H

Φ Φ
 (2.55) 

Applying the Schur complement completes the proof of Theorem 2.3.   

Remark 9:  The existing work of (Kulkarni et al., 2004; Moezzi et al., 2009) is not 

applicable to the structured uncertainty case in (2.47). Our work considers not only the 

structure of the uncertainty, but also the switching based on ( )t x  as well as ( )tx , 

which has not been previously considered. 

2.6 Numerical Examples 

 In this section the proposed approach will be compared with existing ones, where 

applicable, for several examples to demonstrate the performance improvement.  

Example 2.1: Consider the time-delay system in (Fridman, 2001)  
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( ) ( ) ( )

1 0.5 2 2
,  

0.5 1 2 2

d

d

t t t   

    
    

      

x Ax A x

A A
 (2.56) 

This example is for a single region, and is a special case of the PWA systems in (2.1). 

The upper bound on the delay (UBD), a commonly used indicator for conservativeness, is 

obtained by increasing the time delay value until the approach fails to prove stability. The 

UBDs obtained from different methods are compared in Table 2.1 for Example 2.1.  

Table  2.1 Comparison of UBDs for Example 2.1 

 

Methods UBD 

Li & Souza (1997) 0.268 

Kulkarni et al. (2004) * 0.268 

Moezzi et al. (2009) * 0.268 

Fridman (2001) 0.271 

Wu et al. (2004) 0.344 

Xu and Lam (2005) 0.344 

He et al. (2005) 0.344 

Theorem 2.1* 0.349 

Sun & Liu (2009)  0.353 

 * Methods applicable to PWA time-delay systems  

 Note that the method proposed in (Sun & Liu, 2009) is a BMI based approach and its 

performance depends on the selection of a preset coefficient matrix. The improvement 

using our approach (Theorem 2.1) over the other LMI-based approaches is incremental, 

but still remarkable, toward the theoretical UBD value of 0.364, which can be verified via 

simulation. Although Example 2.1 is for a time-delay system, which is a special one 

region case of PWA time-delay systems, it provides a comparison between our proposed 

approach with (Kulkarni et al., 2004; Moezzi et al., 2009) in the special one region case. 
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Also note that the result from our approach (i.e., Theorem 2.1) is better than the results of 

the other LMI-based approaches for time-delay systems, since Theorem 2.1 is an 

extension of (Xu & Lam, 2005).   

Example 2.2: Consider the uncertain time-delay system in (Wu et. al, 2004) 

 
   1 2

( ) ( ) ) ( ) ( )

,  

d d

T

d

t t t       

   

x A A x( A A x

A A GΔ H H Δ Δ I
 (2.57) 

with coefficients 

1 2

0.5 2 0.5 1 0.2 0 0.2 0
,  ,  ,  ,  

1 1 0 0.6 0 0.2 0 0.2
d

          
                  

A A G I H H

 
Table  2.2 Comparison of UBDs for Example 2.2 

 

Methods UBD 

Fridman and Shake (2002) 0.6812 

Wu  et al. (2004) 0.8435 

Theorem 2.3 0.92 

 

The upper bounds on time delay obtained from Theorem 2.3 is compared with other 

approaches in Table 2.2 showing noticeable improvement. 

Example 2.3: Consider the piecewise time-delay system in (Kulkarni et al., 2004) 

 ( ) ( ) ( )i dit x t x t   x A A  (2.58) 

with coefficients 

1 3 2 4

1 3 2 4

0.1 0 0.1 0
,   

0 0.1 0 0.1

0 5 0 1
,   

1 0 5 0
d d d d

    
          

   
          

A A A A

A A A A

 

and partition  
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1 3 2 4

1 1 1 1
,   

1 1 1 1

    
            

E E E E

 

Table  2.3 Comparison of UBDs for Example 2.3 

 

Methods UBD 

Kulkarni  et al. (2004) 0.0142 

Moezzi  et al. (2009) 0.0142 

Theorem 2.1 0.0168 

 

 It has been verified in (Kulkarni et al., 2004) that the PWA system becomes unstable 

with time delay between 0.020 and 0.021. It can been seen from Table 2.3 that the 

proposed approach yields less conservative results compared to current existing ones 

(Kulkarni, 2004; Moezzi, 2009) for this example.  

Example 2.4: Consider the piecewise time-delay system in (Moezzi, 2009) 

 
( ) ( ) ( )

( ) ( )

i di i

i i di

t x t x t

x t x t

 



   

  

x A A

δ ε ε
 (2.59) 

with coefficients 

1 3 2 4

1 3 2 4

1 0 0.9 0
,   

0 1 0 0.9

0.1 5 1 5
,   

5 0.1 5 1
d d d d

    
          

   
           

A A A A

A A A A

 

and partition  

1 3 2 4

1 1 1 1
,   

1 1 1 1

    
            

E E E E

 

and bounds on uncertainty 

0.1,  1,...,4i di i     
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Table  2.4 Comparison of UBDs for Example 2.4 

 

Methods UBD for Nominal 

System 

UBD for System with 

Uncertainty 

Kulkarni  et al. (2004) 0.0299 n/a 

Moezzi  et al. (2009) 0.0264 (0.0299*) 0.024 (0.026*) 

Theorems 2.1&2.2 0.0367 0.0323 

* The value inside the bracket is what we obtained when we tried to confirm their results, 

while the value outside is reported in (Moezzi, 2009).  

 For the nominal system (i.e., 0,  1,...,4i di i    ), the UBDs obtained from the 

proposed approach, from (Kulkarni et al., 2004) and from (Moezzi et al., 2009) are 

compared. For the system with uncertainty (i.e., 0.1,  1,...,4i di i    ), since the 

method in (Kulkarni et al., 2004) cannot tolerate uncertainty, only the results from the 

proposed approach and  from (Moezzi et al., 2009) are provided.  

 The simulation results using the Matlab function dde23 are given in Fig.2.1 and show 

that the nominal system is stable with τ = 0.052 but becomes unstable when τ = 0.053, 

which implies that the theoretical UBD is between 0.052 and 0.053. As shown in Table 

2.4, our proposed approach is able to achieve less conservative estimates of the UBDs for 

both the nominal system and the system subject to uncertainty compared to existing ones 

(Kulkarni et al., 2004; Moezzi et al., 2009) for this example.  
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Fig. 2.1 The trajectory of the nominal piecewise affine time-delay system in Example 2.4 

with τ = 0.052 and τ = 0.053 

 

Example 2.5: Consider the equation of motion of a simple pendulum as follows 

(Franklin, et al, 2002): 

 
2( ) sin( ( )) ( )T t h mgl t ml t     (2.60) 

where l=9.8m is the length of the pendulum, g is gravitational acceleration, m=1kg is the 

pendulum mass and T is the input torque. A constant delay, h, between the sensor and the 
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controller is considered in the model. It is desired to keep the pendulum at 

45 (0.7854 )rad  .   

 

Fig. 2.2 Pendulum system 

 

The feedback control is designed to be  eT T T  , where  sin( )e eT mgl  . The closed-

loop system becomes 

 
2 ( ) sin( ( ) ) sin ( )e eml t mgl t mgl T t h           (2.61) 

where  ( ) ( ) et t    . The nonlinear model in (2.61) is approximated via a piecewise 

affine system:  

 
1 2

0 1 0
( )( )

( ),0.825 1
0 ( )( )

0.7854 ( ) 0

tt
T t hg

tt
l ml

t








   
                    

   

  

 (2.62) 

 
2 2

0 1 0
( )( )

( )0.4875 1
0 ( )( )

 0 ( ) 0.7854

tt
T t hg

tt
l ml

t








   
                    

   

  

 (2.63) 
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with uncertainty 1 0.175   and  2 0.3  , which is illustrated in Fig.2.3. Assume a 

state feedback control retarded by delay   

 
2 2( ) ( ) ( ),  0.7854 ( ) 0T t ml t ml t t                  (2.64) 

 
2 2( ) 5 ( ) 5 ( ),  0 ( ) 0.7854T t ml t ml t t                  (2.65) 

Note that the switching in the controller is also delayed and depends on ( )t  , while 

the plant model in (2.62) and (2.63) switches on ( )t . Thus, the closed-loop system 

with input delay becomes a PWA time-delay system switching on both ( )t  and 

( )t    

1

1

1

( ) ( )0 1( ) 0 0 ( )
,  ,

0.825 0 1 1 ( )( ) ( )( )

( ) ( )0 1( ) 0 0

0.825 0 5 5( ) (( )

t t ht t

t ht t ht

t t ht

t t ht

  


 

 

 

          
             

                

      
                   
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( )
,  ,

( ))

t

t h






   
    

  

 

 

3

2

2

( ) ( )0 1( ) 0 0 ( )
,  ,

0.4875 0 5 5 ( )( ) ( )( )

( ) ( )0 1( ) 0 0

0.4875 0 5 5( ) (( )

t t ht t

t ht t ht
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  

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 

 

          
             

                

      
                  

4

( )
,  ,

( ))

t

t hh






   
    

   

  

(2.66) 

with partition 

1

2

3

4

{[ ( ) ( )] | 0.7854 ( ) 0 and 0.7854 ( ) 0};

{[ ( ) ( )] | 0.7854 ( ) 0 and 0 ( ) 0.7854};

{[ ( ) ( )] | 0 ( ) 0.7854 and 0.7854 ( ) 0};

{[ ( ) ( )] | 0 (

T

T

T

T

t t h t t

t t h t t

t t h t t

t t h

     

     

     

   

        

       

       

   ) 0.7854 and 0 ( ) 0.7854};t t    

 

and 1 0.175   and  2 0.3  . Using Theorem 2.1 and Theorem 2.3, one can obtain 

that UBD = 0.161s for the nominal system (i.e., 1 2 0    ) and UBD = 0.15s for the 
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uncertain system. The method in (Moezzi et al, 2009) cannot deal with the system in this 

example since the switching depends on the delayed states as well as the states. 

Remark 10: For systems with uncertainty, the theoretical UBD value cannot be obtained 

via simulation because of the infinite number of possible conditions. Thus, the theoretical 

values of UBD are not provided in those examples. 

 

Fig. 2.3 PWA approximation with norm-bounded error 

2.7 Concluding Remarks 

 In this chapter, sufficient conditions for the stability of PWA time-delay systems with 

and without norm-bounded uncertainty, which can be either structured or unstructured, 

are derived in the form of LMIs. With the addition of a triple integration term in the 

Lyapunov-Krasovskii functional, the proposed approach yields less conservative results, 

at least for the examples considered, over existing methods. Furthermore, compared with 

existing methods for uncertain PWA time-delay systems, the proposed approach requires 
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much less computational power especially for PWA systems with many regions. More 

significantly, this work addresses for the first time the problem of switching based on 

delayed states as well as states. Such situation exists in many cases of practical 

engineering interest such as systems with controller, sensor or actuator delay.  
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CHAPTER 3 

MODELING AND CONTROL OF AN AUTOMOTIVE ALL WHEEL 

DRIVE CLUTCH AS A PIECEWISE AFFINE SYSTEM 

3.1 Introduction 

 Piecewise affine (PWA) systems are defined by dividing the state-space into a finite 

number of polyhedral regions where the dynamics within the region is described via a 

local linear model. The switching between these local models may depend upon both 

inputs and states or may depend upon states only. This structure provides a flexible and 

traceable framework to model a large class of nonlinear systems as well as a suitable 

platform for rigorous analysis and design. PWA systems coincide with many other types 

of hybrid systems such as interconnections of linear systems, finite automata (Sontag, 

1996) and mixed logic dynamical systems (Schutter and Moor, 1999). 

 The PWA system framework has been demonstrated for several simple engineering 

applications. An application of the PWA system framework to the modeling of combined 

vehicle-driver behaviour on highways can be found in (Kulkarni, 2003). The modelling 

of systems with saturation or deadzone as PWA systems is discussed in (Dai et al., 

2009a). Problems of casting linear hybrid dynamic systems and T-S fuzzy systems into 

the PWA system framework are discussed in (Johansson, 2003). In (Moezzi, 2009), the 

modeling and control of a nonlinear pendulum system and a nonlinear water tank system 

are illustrated using the PWA system framework.  
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 Besides the flexibilities for modeling, the PWA system framework also provides a 

nice platform for analysis and design. For example, the observability and reachability of 

PWA systems can be examined using the methods in (Bemporad et al., 2000; Rodrigues 

et al.,2003; Habets et al, 2006). A critically important but challenging problem for PWA 

systems is stability. Switching among regions may cause instability even if all sub-region 

models are stable (Branicky, 1998). One needs to find a common Lyapunov function, or a 

piecewise Lyapunov function (Johansson, 2003), to show global stability. Although one 

can apply the extensive theory for linear systems to design controllers region by region to 

achieve optimized local performance, the global stability of closed-loop systems must 

still be guaranteed (Rodrigues, 2005). Further, time delays exist in many practical 

systems, where delays can be inherent in the process or can arise due to control (e.g., 

delays in sensing, control or actuation). Excessive delays in control systems can 

deteriorate and destabilize the closed-loop system. Thus, accommodating potential time 

delays in the analysis is important for guaranteed closed-loop performance.  

 In this work, the application of the PWA system framework to the modeling and 

control of a nonlinear automotive all wheel drive (AWD) clutch system is presented. The 

nonlinear clutch system is formulated into the PWA system framework first, 

subsequently a switched control system is designed to ensure the closed-loop stability in 

the presence of uncertainties and delays through Lyapunov stability analysis. The results 

show significant improvements in performance over current designs, as well as 

demonstrating the trade-off among performance, robustness to modeling uncertainty, and 

time delays. 
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 The organization of this chapter can be summarized as follows. In Section 3.2, the 

PWA system framework is introduced. In Section 3.3, an application of this framework to 

control design for an automatic AWD clutch system is demonstrated. The dynamics of 

the clutch system is first modeled as a PWA system, followed by the design of a 

piecewise controller and then the stability analysis of the closed-loop system. Simulation 

results and discussion are provided in Section 3.4 to demonstrate the effectiveness of the 

design. A summary and concluding remarks are given in Section 3.5. 

3.2 PWA System Framework 

3.2.1 PWA Systems 

 Consider a nonlinear time-invariant dynamic time-delay system described as 

 
( ) ( ), ( ), ( )

( ) ( ), ( ), ( )

t t t t

t t t t









x = f(x x u )

y = g(x x u )
 ,  

( )

( )

( )

i

t

t

t

 

 
 

  
 
  

x

x

u

 (3.1) 

where t is time,   is a constant time delay, 
1n f( )  and 

1p g( )  are nonlinear 

functions, 
1( ) nt x  is the state vector, 

1( ) nt   x  is the delayed state, 
1( ) pt y  is 

the output vector, and 
1( ) rt u  are the external inputs. Assume that  f( )  and g( )  are 

piecewise differentiable, the linearization of the system in (3.1) about selected fixed 

operating points will result in a series of interconnected linear affine models, which 

together form a PWA time-delay system: 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i i
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t t t t
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 
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 
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 (3.2) 
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where 
n n

i

A ,
n n

i


d

A , 
n r

i

B , 
p n

i

C , 
p n

i


d

C  and  
p r

i

D  are 

constant coefficient matrices, and 
1n

i

a  and 
1p

i

c are constant affine terms which 

offer additional flexibility in the model. The set 1{ }s

i i   is the polyhedral partition of the 

input-state space,  ( ) ( ) ( )
T

T T Tspan t t t  x x u . The partition of the space is defined 

as:  

 

( ) ( )

( ) 0,  ( )

( ) ( )

i i i i i

t t

t t

t t

  

   
              
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d u

x x

E E E x x
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 (3.3) 

where ( )= ( ) 1
T

T

i it t  x x , ( )= ( ) 1
T

T

i it t    x x
 
and  i i iE = E e ,

 

 di di diE E e .  

Note that iE , idE , iuE , ie
 
and die  are constant matrices with compatible dimension. With 

a sufficiently fine partition, the PWA time-delay system in (3.2) is able to provide a good 

approximation of the original nonlinear system in (3.1) over the entire space. Although 

introducing more regions in the space can help to lower the approximation errors, the 

increase of model complexity may make subsequent analysis and design difficult. A good 

choice of the partition size should achieve a reasonable trade-off between approximation 

error and model complexity. Clearly, the partitioning of the input-state space influences 

the level of modeling uncertainty. 

3.2.2  Stability Analysis 

 Since the stability of the sub-systems does not directly imply the stability of the global 

system for PWA systems, an examination of the global stability for PWA systems is 

necessary and important. One needs to construct a Lyapunov function to show that the 

energy of the system approaches zero over time, in spite of switching, to prove global 
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stability. Note that 0u  when Lyapunov stability is considered and the system in (3.2) 

simplifies to: 
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( ) ( ) ( ) ,  
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The set 1{ }s

i i   is the polyhedral partition of the space,  ( ) ( )
T

T Tspan t t   x x . For 

rigorous analysis, the uncertainty, 
1n

i

δ , is considered in the model and is assumed to 

be norm-bounded. A primary source of model uncertainty is the fact that the nonlinear 

system being considered has been represented as a PWA system. The uncertainty can 

either be modeled as structured uncertainty or left unstructured. For the first case, assume 

that it is of the form 

 ) ( )i i di it t     δ A x( A x a   (3.6) 

where  

 
   1 2 3i di i i i i i i

T

i i

   



A A a G Δ H H H

Δ Δ I
  

and iG , 1iH , 2iH , 3iH  are constant matrices with compatible dimension describing how 

the uncertainty enters the parameter matrices. If the uncertainty is admissible, the 

coefficient matrices iG , 1iH , 2iH and 3iH  can be identified. If the uncertainty is not 

admissible, one may use the unstructured uncertainty form 

 ( ) ( )  i i di ait t      δ x x  (3.7) 
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where i , di , ai   are the factors of the bound and   is the 2-norm.  

 For stability analysis of the system in (3.4), some methods based on the Lyapunov 

method have been developed. The stability problem of nominal PWA time-delay systems 

(i.e., the system in (3.4) with 0i δ ) has been studied in (Kulkarni et al. 2004), which 

follows the work of Johansson (2003). An extension of the work in (Rodrigues & How, 

2003) has been proposed in (Moezzi et al., 2009) to address the robust stability problem 

for PWA time-delay systems with unstructured uncertainty. To address the problem of 

switching based on delayed state as well as state, an approach based on the work of 

(Johansson, 2003) and (Xu & Lam, 2005) is proposed in (Duan et al., 2011). This work 

also further reduces the conservativeness and computational complexity of the approach 

and considers both the structured and unstructured uncertainty case. In the chapter, this 

method will be applied to an AWD clutch control system. 

3.3 Application to an Automotive Clutch Control System 

3.3.1 Introduction 

 A clutch works like a valve, controlling the energy flow from the engine to the 

transmission. By engaging and disengaging the clutch, it transmits power from the engine 

to the output shaft. The conventional clutch is known as a compressed clutch and consists 

of two basic components, the clutch cover and disc. The clutch cover is an outer shell that 

contains the friction plate and drive block. The friction plate is a cast piece that provides 

the pivot point for the diaphragm as well as a friction surface for the steel plate and 

mounting surface for the drive block. The drive block, driven by a hydraulic system or a 

magnetic coil system, translates and provides pressure between the steel plate and friction 
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plate. The clutch housing protects the clutch components and also works as a heat sink 

for the coolant which helps heat dissipation during operation. 

 
Fig. 3.1 Structure of a clutch system 

http://img528.imageshack.us/img528/575/25838775lk1.jpg 

 

 Clutch systems for various vehicles are different in functionality and capacity. In this 

chapter, a clutch system for an automatic all wheel drive (AWD) vehicle is studied. 

Automatic AWD (Hallowell, 2005), which is also called “active AWD” or “smart 

AWD”, is essentially a complex 2WD system. The torque from the engine is not 

transferred to all four wheels all the time, but on demand. The primary shaft (can be front 

or rear shaft) is always engaged with the engine shaft while the secondary shaft is 

engaged through an AWD clutch system when necessary, thus switching the power train 

system from 2WD mode to 4WD mode. For example, when slippage occurs on the 

primary wheels, the clutch system will engage and power the secondary shaft to enable 

the car to move smoothly. Some other situations such as turning, climbing or accelerating 

also require traction on the secondary wheels for improved vehicle dynamics. The 
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automatic AWD has been widely implemented in many types of vehicles (e.g., Honda 

CRV, Toyota RAV4, LandRover Freelander, Isuze Trooper, Jeep Grand Cherokee).  

 

Fig. 3.2 An automatic AWD system 

(http://www.autopressnews.com/2006/m03/suzuki/sx4_iawd_system.jpg) 

 The clutch in automatic AWD systems provides more sophisticated functionalities 

compared with the ones in 2WD systems (see Fig.3.2). The control of the clutch takes 

into consideration not only the impact and friction mechanism during engagement, but 

also the delivery of a certain amount of torque to the secondary shaft to achieve a proper 

torque distribution all the time. The clutch control system in automatic AWD systems can 

be further divided into two parts. The first part calculates the desired torque distribution 

and the desired output torque on the secondary shaft based on vehicle dynamics and 

current vehicle status (e.g., longitudinal velocity, yaw rate, lateral acceleration). The 

second part calculates the control effort for the actuator to compress the plate and transfer 

the requested torque under the current state of the clutch. In this work, we focus on the 

design of the second part of the control for a particular type of AWD clutch (see Fig.3.3). 

This wet-friction type of clutch does not have an active pump system for cooling. Instead, 
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two thirds of the clutch plate is immersed in the oil, where the heat from the plate is 

dissipated. A coil system is used as an actuator and generates electro-magnetic forces to 

provide a compressive force between plates.  

 

Fig. 3.3 An AWD clutch system 

(http://www.awdwiki.com/images/hyundai-tuscon-electromagnetic-clutch.jpg) 

 The objective of the control is to achieve fast and accurate tracking of the reference 

torque signal under different operating conditions and to protect clutch components from 

overheating and failure. However, there are several challenges for designing an effective 

control for the clutch system. The dynamics of the system changes with different input 

and operating conditions, especially the temperature states of the components and 

exhibits a highly nonlinear behavior. During engagement, the friction between the steel 

plate and friction plate generates a large amount of heat and may raise the temperature of 

the components up to 180°C under typical operations. Such a large temperature change 

can significantly change many mechanical properties of the components, such as the 

friction coefficient between plate and the coil resistance of actuator, and result in a 

noticeable fluctuation in the output torque. Furthermore, even without temperature 
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variation, the mapping between the input (coil voltage) and the output torque is nonlinear. 

Thus, designing a control that can achieve consistent performance under different 

conditions is challenging for such a nonlinear system.  

 The existing design for the clutch control system is an open-loop feed forward 

proportional control with an open-loop observer (see Fig.3.4). The controller estimates 

the error between the reference torque and the output torque using an open-loop observer 

and computes the control for driving the plant to yield the desired output. There are 

several major drawbacks of the current design. First, due to the lack of feedback, it is 

hard to achieve satisfactory performance with an open-loop observer since uncertainty in 

the system will lead to poor state estimates. Second, the setting of improper initial 

conditions affects the system performance for a long period because of the slow 

dynamics of the thermal system. Third, the proportional control is not able to achieve 

zero steady-state error. Fourth, a single controller will not be able to offer consistent 

performance for different operating conditions. Fifth, there is no analytical basis for 

selecting the gain of the controller, which is tuned by trial and error. Last, the stability of 

the system, the effects of model uncertainty, and the effects of the potential time delay in 

the controller have not been investigated.    

 In this chapter, we will design a more effective control for the clutch system via the 

PWA system framework. Based on that framework, a piecewise control is proposed to 

achieve consistent performance under different operating conditions. The gains of the 

controller are analytically selected and the stability of the closed-loop system with the 

presence of uncertainty and controller delay is guaranteed by analyzing the global 

stability of the system.  
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Fig. 3.4 Current control design (open-loop observer + feed forward P control) 

3.3.2 Model Development 

 Since temperature fluctuation introduces significant disturbances to the clutch system 

and may lead to premature degradation of the components, the estimation of the 

temperature states is necessary for temperature compensation and failure prevention. A 

model is developed to estimate the temperature states of the clutch components. Three 

first order differential equations are obtained for the thermal system: 
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( ) ( ) ( )

( )

o o i

a

y t t t

T t

  
  
 

 is the disturbance input vector, ( ) ( )T cy t T t  is the temperature 

system output. Also, aT  is the ambient temperature, 
oy  is the output torque, i  is the 

input shaft speed, o
1  is the output shaft speed, and pT , oT , cT  are the temperature 

states of the clutch plate, oil and coil, respectively, pC , oC , cC  are the constant scalars 

representing corresponding thermal capacities, poR , paR , pcR , oaR , ocR , caR  are the 

constant thermal resistances between the three components. The mechanical power, mechP , 

generated by friction, is estimated as the product between absolute slip speed and output 

torque. The inputs, aT , i  and o , are measured in the current design. The coefficients 

for thermal capacitance and thermal resistance will be identified using experimental data. 

This temperature model will be used in the design of a temperature disturbance observer 

and for feed forward control.   

 The resistor-inductor circuit system generates magnetic compressive force to engage 

the clutch. To identify the mapping between the control input (coil voltage) and the 

output torque, first, a first-order differential equation is used to describe the relationship 

between the coil voltage and the coil current 

 ( ) ( ) ( ) ( )c qc c c q

d
i t A T i t B u t

dt
   (3.9) 

where   

 0 0 0( ( ) )
( ) ( ) c c c c

qc c q q c

c c

T t T
A T A A T

L L

  
      (3.10) 

1
q

c

B
L

 , ( ) ( )cu t V t  is the coil voltage input, ( )ci t  is the coil current, cL is the coil 
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inductance,   is the temperature coefficient of the coil resistance, 0c  is the nominal 

coil resistance and 0cT  is the nominal coil temperature.  

 Then, a model is developed to estimate the output torque, which is determined by both 

the coil current and the plate temperature:  

 ( ) ( ) ( )o p q cy t T C i  (3.11) 

where ( )oy t  is the output torque, ( )pT  is a scalar function and represents the effects of 

plate temperature, pT , on the   factor (i.e., plate friction coefficient) and ( )q cC i  is the 

nominal output torque under nominal plate temperature 0pT . Assuming ( )pT  and ( )q cC i  

are independent and can be approximated by the polynomial functions in (3.12) and  

(3.13), respectively : 
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 (3.13) 

where 0pT  is the nominal plate temperature and jl , kp  are the coefficients which will be 

identified later empirically. Note that when a negative current is applied, the clutch will 

be disengaged and no output torque will be transferred (i.e., ( )q cC i  saturates at zero when 

0ci  ). The temperature effects introduce nonlinearities in (3.10) and (3.12).  

3.3.3 Control Design and Stability Analysis 

 The proposed controller, as shown in Fig.3.5, contains three parts: an observer that 

estimates the unmeasured temperature states, a feed forward control that compensates for 



 58 

the disturbances (temperature variation) and a piecewise proportional plus integral (PI) 

control that realizes torque feedback control : 

 ( ) ( ) ( ) ( )ff fbu t u t u t r t    (3.14) 

 

Fig. 3.5 Proposed feedback control design (disturbance observer + feed forward control + 

piecewise PI feedback control) 

 

 Several steps are required to develop the controller. First, an observer is designed 

based on the temperature model in (3.8) to estimate the temperature disturbance. Then, a 

feed forward controller is designed to remove the temperature effects in (3.10) and (3.12), 

making the dynamics of the nominal plant system (i.e., the plant plus feed forward 

system) independent of temperature states. Last, approximating the nonlinearity in (3.13) 

via a piecewise linear function leads to a PWA model for the nominal plant system. 

Based on the PWA model, a piecewise PI feedback control is developed. Compared to 

the original controller in Fig.3.4, three additional sensors, i.e., coil current sensor, output 

torque sensor and coil temperature sensor, are proposed to be implemented to realize this 

new design. The coil temperature sensor provides temperature measurements and helps 

the temperature estimates of the observer converge to the actual states. The torque sensor 

and current sensor provide feedback signals to realize the piecewise PI feedback control.   
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 A Luenberger type observer is designed to estimate the plate temperature and oil 

temperature, which are not directly measured: 
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y  is the output of the observer. The temperature estimates will be used as 

inputs to the feed forward controller and the failure prevention system, which shuts down 

the clutch system when the temperature states exceed preset thresholds. 

 A feed forward compensator, ( ) ( ) ( )ff ffc ffpu t u t u t  ,  is designed to approximately 

cancel the nonlinear terms arising due to the temperature effects in (3.10) and (3.12) :   

 0( ) ( )( ( ) )ffc c c cu t i t T t T   (3.16) 
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After the feed forward controller is implemented, the system becomes 
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where 
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and 1 , 2  are the model uncertainties  
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Note that in (3.18), the equivalent coil current, ( )ci t , is used as the state variable after the 

feed forward controller is implemented. Since the estimated plate temperature ˆ ( )pT t  is 

used in the feed forward controller, the plate temperature error will introduce uncertainty 

in the model. Further, the design of the feed forward control in (3.17) is based on the dc-

gain of the system, the neglect of the system dynamics will also introduce error. These 

errors are included as the uncertainties in (3.20). Since the plate temperature usually 

changes very slowly (typically less than 10 / secC ), 1( )t
 
is usually very small (less than 

0.01 ( )ci t ). Therefore, it is neglected from this point forward.  

 Based on the nonlinearity of ( )q oC x , the space of ox  can be divided into multiple 

regions, where a linear affine model is used to approximate ( )q oC x  locally.  

 
3( ) ( ) , q o oi o oi o iC x C x t c x       (3.21) 

where 3  represents the approximation error, oiC , oic  are the coefficient for each region 

and i  is the partition of the space and will be determined based on the nonlinearity of 

(3.13). 

 As a result, a PWA system is obtained for the compensated plant system 
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where oi qA A , oi qB B . Assume 2  and 3  are norm-bounded, i.e., there exist    

such that 

 2 3( ) ( ) ( ),  ct t i t        (3.23) 

Based on the PWA model in (3.22) of the nominal plant system, a feedback piecewise 



 61 

generalized proportional plus integral (PI) controller is proposed, as it provides flexibility 

in each region to achieve consistent performance under different operating conditions. 

Note that the output of the system saturates when 0ox  , thus, the integral term of the PI 

control will accumulate a significant error when the system stays in the saturation zone, 

drifting the state to very large value. Thus, to avoid integrator windup, an anti-windup 

control is designed for the saturation region. The piecewise PI feedback  plus anti-windup 

control is: 
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where IiK , PiK , ZK  are the gains for the i
th

 region, ( )r t  is the reference torque and sI  

denotes the set of regions in the saturation zone. When the system enters the saturation 

zone, the integral control will be disconnected and its state will be brought back to zero. 

The region ID, i, is determined by the plant state ( )ci t  for the controller.  

 Finally, the entire closed-loop system can be described as a PWA system: 
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Further, if a time delay exists in the output torque measurements, i.e,  

 ( ) ( ) ( ),   ( )o j j j jy t t t t            C x c C x x  (3.27) 

the torque feedback signal will be delayed. For the controller, choose to delay the 

switching of the feedback gains PiK  and IiK  to synchronize with the switching in (3.27). 

To do this, one can use a look-up table to estimate ( )ci t   from ( )oy t  . Then use 

( )ci t 
 
to estimate the delayed switching signal ( )j t . The closed-loop system will 

become a PWA time-delay system: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( )

j j j j j

j j j

j

t t t r t t

y t t t

t

 

  

 

       

      

  

d d
x A x A x B a A x

C x c C x

x

 (3.28) 
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Note that due to the delay, the switching of the closed-loop system now depends on 

( )t x . One may also choose not to delay the switching of the feedback gains and the 

resulting system will switch based on both ( )tx  and ( )t x . Here we choose to delay the 

switching in the feedback control to reduce model complexity. 
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 The Lyapunov stability of the closed-loop system in (3.28) will be examined using the 

LMI criteria in Lemma 1. The upper bounds on delay (UBDs) for the system with 

uncertainty will be calculated.   

3.3.4 Experiments 

 In order to calibrate the parameters of the clutch model, experimental tests are 

conducted. The clutch is mounted on a test-bed where different operating conditions are 

simulated. The outside shell of the clutch is fixed on the body of the test bed while the 

input shaft and output shaft are connected to two motors, whose speed can be arbitrarily 

changed. Applying a voltage in the clutch coil generates a magnetic force and engages 

the clutch. Torque sensors and angular velocity sensors are placed on the motors for 

monitoring the input/output speed and torque. Several thermistors are placed on the 

clutch for measuring the temperature of the plate, oil and coil. The measurements in these 

calibration experiments are pT , oT , cT , aT , i , o , ci , cV  and Q .  

 A test profile shown in Fig.3.6 is used for calibrating the temperature model. It 

consists of a series of input and slip speeds, with a sequence of constant-power torque 

steps at each combination. Coil current is periodically applied to generate frictional 

energy into the system. The temperature of the components increases when there is an 

energy input and decreases when no energy is supplied. Therefore, the temperature 

curves take on a zigzag pattern.  Input speeds range from 125 rpm to 3500 rpm. At each 

input speed, the slip speed starts at 150 rpm and is reduced by steps. The sampling rates 

for all the data are 10 Hz. 

 The parameters of the circuit model can be obtained from the tests. To calibrate the 

torque model, two experiments with a similar setup are conducted to identify the 
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functions ( )pT  and ( )q cC i  respectively. A constant current input is used in the first 

experiment to investigate the relationship between the plate temperature and the   

factor. For the second experiment, different coil currents are applied sequentially with 

sufficient cooling time in between to characterize the relationship between the coil 

current and the output torque under nominal plate temperature. 

 

Fig. 3.6 Test profile for clutch thermal system modeling 

3.4 Results 

3.4.1 Open-Loop System 

 Using the experimental data collected and the system identification toolbox from 

Matlab, the model parameters are obtained as: 
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0c  =  2.00 Ohm, cL = 0.121H,  = 0.004 1c . 

6 2( ) 1 0.0014( 40) 6.8 10 ( 40)p p pT T T      

 

2 3 451.2585 218.6445 56.9184 4.4563 ,    0
( )

0,    0

c c c c c

o c

c

i i i i if i
y i

if i

    
 


 

The polynomial model for Mu factor is calibrated using the experimental data shown in 

Fig. 3.7. Based on the nonlinearity of oy , a piecewise affine function with the partition in 

Table 3.1 is used to approximate oy
 
as shown in Fig.3.8.  

  

Fig. 3.7 Mu factor vs. plate temperature 
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For these types of clutch systems, the error in the plate temperature estimates are 

typically within 15 C . Thus, the bounds for the uncertainty in the model can be 

estimated as  

2 3( ) 15 ( ) ,  ( ) 10 ( ) ,  =15 10 25c ct i t t i t       

 The step response and sine input response of the open-loop system, under the 

temperature disturbance in Fig.3.9, are shown in Fig.3.10 and Fig.3.11. Note that the 

variation of the temperature states results in significant fluctuation and drop of the output 

torque for the open-loop system.  

 

 

Fig. 3.8 Nonlinear torque model vs. piecewise affine approximation   
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Fig. 3.9 Simulated temperature fluctuation 

 

  

Fig. 3.10 Step response of the open-loop system 
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Fig. 3.11 Open-loop system responses under a sine input signal 

3.4.2 Closed-Loop System 

 The feed forward controller is calibrated using the parameters listed in Section 3.4.1. 

For the feedback controller, the gains PiK  and IiK  are selected to place the eigenvalues 

of each region of the closed-loop system at 21.21 21.21i  (i.e., 30n   , 0.707  ) 

except for region 1 (saturation region), where the anti-windup control is applied and PiK
 

is designed separately in the absence of IiK .   

Table  3.2 Controller Gains for Each Region 
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 The step response and sine input responses of the closed-loop system, under the same 

temperature disturbance in Fig.3.9, are provided in Fig.3.12 and Fig.3.13. As shown in 

these figures, the nonlinear model and the PWA model show good agreement for both 

cases. The feedback PI control and feed forward control help the system yield desired 

output and achieve fast tracking of the reference signals. The comparison between the 

proposed design and the current design is provided in Fig. 3.14, where the current design 

leads to a significant steady state error even if a large gain is used ( 0.1PK   here).  

 

Fig. 3.12 Step response of the closed-loop system 
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Fig. 3.13 Closed-loop system responses under a sine input signal 

 

 

 

Fig. 3.14 Comparison between current design and proposed design 
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 The feedback system is designed assuming no delays. The responses of the closed-

loop system with the proposed design and different level of output delay are shown  in 

Fig.3.15. As shown in the figure, the increase of the delay will lead to more oscillations 

and worse performance. Because of the delay, the rightmost eigenvalue of the system will 

no longer be at the original place ( 21.21 21.21i  ). If the change of system dynamics is 

significant, instead of placing eigenvalues for the nominal ODE system in (3.26), one 

may directly assign the rightmost eigenvalues for the DDE system in (3.28) using 

existing methods (e.g., the LambertW function approach in (Yi. et al., 2010a)). 

  

Fig. 3.15 Step responses of closed-loop systems with proposed control design and 

different level of delays 
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less than 1Hz) is typically much lower than the dynamics of the clutch system, the 

reference signal tracking can be treated as the shift in different steady state operating 

points (equilibrium points). Thus, the stability of the system about different equilibrium 

points is examined. Here, stability analysis is conducted for the equilibrium points 

{0,  0.5,  1.5,  3.3 ,4.2}cei  (see Appendix A), which represents the cases of at rest and in 

operation with different level torque requests. The final results are the lower bound of the 

results from these cases as shown in Table 3.3. 

 The stability of the nominal closed-loop system (i.e., no time delay and uncertainty in 

the PWA model) is verified using the criterion in Theorem 2.3. A feasible solution is 

obtained using the LMI toolbox in Matlab showing that the system is stable.  

 When uncertainty is considered in the model, the upper bound for   is 93 from 

Theorem 2.3 and is larger than the actual value of 25 for this system. Thus, the stability 

of the PWA system with uncertainty is also verified.  

 When time delay in the output measurements is considered, the upper bound on delay 

(UBD) is found to be 0.0169s from Theorem 2.3, implying the PWA time-delay system 

has guaranteed stability with time delay smaller than this UBD. Further, for the system 

subject to both time delay and uncertainty, the UBD becomes 0.0144s for 25  . 

 The trade-off among delay, uncertainty and performance (location of the closed-loop 

eigenvalues) is provided in Fig.3.16. The bottom left area is the feasible design region 

with guaranteed stability. As shown in this figure, the increase in delay will reduce the 

maximum tolerable uncertainty for a particular control design. A larger control gain will 

improve the speed of the system but will make the system less robust against uncertainty 
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and delay. Such a map can help the selection of controller parameters to obtain a 

sufficiently robust system with satisfactory performance in the presence of delay. 

Table  3.3 UBDs for Different Equilibrium Points  

 

cei  0 0.5 1.5 3.3 4.2 

0   16.9ms 16.9ms 16.9ms 17.3ms 18.5ms 

25   (14%) 15.5ms 14.4ms 14.5ms 15.5ms 14.8ms 

 

 

Fig. 3.16 Map of feasible design region showing the trade-off between speed of response, 

uncertainty and delay 
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automotive clutch system. A feed forward plus piecewise PI control design based on the 

PWA framework is proposed to realize reference torque tracking and temperature 

disturbance rejection. The stability of the closed-loop PWA system is examined, with the 

presence of model uncertainty and time delay. Finally, simulation results for the system 

are provided to illustrate the effectiveness of the design.  

 Compared with the existing industrial design, the proposed control not only improves 

the output torque accuracy during reference torque tracking, but also achieves more 

consistent performance under different operating conditions and temperature variation. In 

addition, using the PWA system framework, the stability of the system is analytically 

studied, with consideration of uncertainty and time delay in the model, to obtain rigorous 

design guarantees. A feasibility map for design illustrates the trade-off among speed of 

response, robustness of the system, and time delay. Such a map can provide a useful 

guideline for practical design of the AWD clutch control system.   
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CHAPTER 4 

DECAY FUNCTION ESTIMATION FOR LINEAR TIME-DELAY 

SYSTEMS VIA THE LAMBERT W FUNCTION 

4.1 Introduction 

 The stability of time-delay systems has been a problem of recurring interest over the 

past several decades. Time delays exist in many practical systems in engineering, 

biology, chemistry, physics and ecology and can lead to effects such as oscillation, 

instability or inaccuracy. For highway transportation systems (Orosz et al., 2010), delays 

from human reactions and vehicle systems are critical for analyzing traffic flow stability 

and designing safe flow control algorithms. In machine tool chatter problem (Nagy et al., 

2001; Yi et al., 2007b), inherent delays in the milling process may lead to instability and 

further deteriorate surface finish. The effects of time-delay systems are also studied for 

teleoperation systems (Anderson & Spong, 1989), networked control systems (Murray, 

2003), HIV pathogenesis (Yi et al., 2008) and automotive engine control systems (Cook 

& Powell, 1988). Besides these applications, fruitful results for stability criteria for time-

delay systems have been analytically derived. Detailed reviews of these techniques can 

be found in (Gu & Niculescu, 2003; Richard, 2003). 

 In addition to stability criteria, a quantitative description of asymptotic behavior for 

time-delay systems is also valuable since it characterizes the transient response of these 

systems. Considerable work has been done toward deriving exponential bounds of the 
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form tKe   (see Eq. (4.2)) for the solution of time-delay systems for completely 

characterizing their exponential time response. Examples of such decay functions are 

shown in Fig.4.1, where the normed state trajectory of a second order time-delay system 

is bounded by the two exponential envelope functions (dotted and dash-dot line) after the 

system is excited by the preshape function [1,0]
T
 over the time interval 0h t    (delay 

h=1 in this example). As shown in the figure, decay function 1 with better estimates of α 

and K yields a closer bound to the actual trajectory than decay function 2, which is more 

conservative. A less conservative estimate of the decay function gives a more accurate 

description of the system transient behavior. 

 Although most existing literature focuses on the estimation of decay rate, α, the 

estimation of K is also important. With an estimate of K, the exact value of the bound 

over time can be determined, which could be useful in engineering practice. For example, 

the decay function can be used for dwell-time control for switched time-delay systems 

(Chiou, 2005; S. Kim et al., 2006; Zhang et al., 2007; Yan & Ozbay, 2008), where the 

factor K represents the maximum energy rise during switching and α represents the 

energy decay rate. An application to a distributed cart pendulum control system with 

delay is given in (Chen & Zhang, 2010) showing that the system can still be stable if the 

control loop is opened with low frequency and small time period. Some applications to 

engineering systems can be found in power systems (Meyer et al., 2004) and networked 

control systems (Kim et al., 2004; Dai et al., 2009b). Less conservative estimate of the 

decay function will lead to more effective control design  (e.g., lower bound on dwell 

time) for these applications. 
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Fig. 4.1 An example of decay functions for a second order time-delay system 

 ( ) ( ) ( ) 0t t t h   dx Ax A x  with A = [0 1;-1.25 -1], Ad=[-0.1 0.6;0.2 0], h=1 and g(t)=[0 

1]
T
 for t≤0 
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Olgac, 2003), a method based on examining one infinite cluster of roots at a time has 

been developed. Methods using pseudospectral and operator approximation techniques 

are proposed in (Bred, et al., 2005; Michiels et. al., 2006).  

 Although fruitful results for α-stability of time-delay systems have been obtained, the 

methods for a complete estimation of the decay function are limited. The estimation of K  

requires knowledge of the system trajectory over time, since such an exponential function 

needs to bound the states for any t>0. Although it is feasible to approximate the optimal 

decay rate, i.e., the optimal  , using some frequency domain approaches (e.g., finite 

dimensional approximation or bifurcation), these cannot provide an estimate of K. One 

needs the information in the time domain to determine both  and K simultaneously. 

 However, current time domain approaches, such as the aforementioned matrix 

measure/norm approaches and Lyapunov approaches, have inherent conservativeness, 

which limits their performance in obtaining optimal estimate. For example, the estimates 

of  from these approaches can never reach the optimal value. The estimate of K is also 

difficult to optimize in the Lyapunov approaches.  

 In (Yi et al., 2007a), a closed-form solution for the system of delay differential 

equations (DDEs) in (1) has been derived in terms of an infinite series based on the 

Lambert W function. These results have recently been extended to solve eigenvalue 

assignment (Yi et al., 2010a, 2010b) and stability problem (Yi et al., 2007b) for time-

delay systems. Using this solution form, the trajectory of systems of DDEs can be 

explicitly determined in terms of system parameters and preshape functions via the 

Lambert W function. Following these results, an optimal estimate of the decay rate  can 

be obtained. The estimation of a corresponding K associated with this optimal  can be 
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derived analytically by numerically evaluating the infinite series, which may be more 

efficient than solving the optimization problems in Lyapunov approaches.  

 A novel approach, based on the Lambert W function, to estimate the decay function 

for characterizing the exponential nature of the solution of time-delay systems is 

presented.  An optimal estimate of the decay rate,  , and an estimate of the associated 

factor, K, are derived. In Section 4.2, the problem is formulated. In Section 4.3, the 

method based on the Lambert W function is presented, followed by numerical examples 

in Section 4.4. A summary and concluding remarks are provided in Section 4.5. 

4.2 Problem Formulation 

 Consider the continuous linear time invariant (LTI) homogeneous time-delay system 

(TDS):  

 
0

( ) ( ) ( ) 0,   0

(0) ,   ( ) ( )  for [ ,0)

t t t h t

t t t h

    

   

dx Ax A x

x x x g
 (4.1)  

where A and dA
 
are n n  coefficient matrices, ( )tx  is an 1n  state vector, ( )tg is an 

1n  preshape function, t is time, and h  is a constant scalar time delay. A discontinuity is 

permitted at t = 0 when 0(0 ) (0)  g x x . The goal is to find an upper bound for the 

decay rate, which is referred to as  -stability, as well as an upper bound for the factor K , 

such that the norm of the states is bounded: 

 ( ) ( )tt K he x  (4.2) 

where 
0

( ) sup { ( ) }
h t

h t
  

  x  and  denotes the 2-norm. The conditions for the existence of 

K and   have been discussed in (Hale et al., 1993).  
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 It is important to point out that K and α are paired and cannot be estimated separately. 

Although there exist some frequency domain approaches to approximate the optimal α, 

an estimate of the corresponding K is not provided in those approaches. For a given α, it 

is not feasible to obtain the K using simulations since the preshape function g(t) and the 

initial condition x0  cannot be uniquely determined knowing only the bound of ( )tx  for 

[ ,0]t h  . The difficulty is to find an envelope function that bounds the norm of the 

states for any time t>0 and for any possible preshape functions and initial conditions.   

 When 0,h  one has 0dA  and the delay differential equation (DDE) in (1) reduces 

to an ordinary differential equation (ODE), whose decay function is 

 ( )( ) (0)tt e A
x x  (4.3) 

where 
0

1
( ) lim








 


I A
A  is the matrix measure (Hale et al., 1993).  

 In the presence of time delay, the problem becomes much more complex since the 

trajectory of time-delay systems depends not only on the initial states 0x , but also on the 

preshape function ( )tg . Existing approaches lead to an estimate of the decay function 

with significant conservativeness. For example, the result from the matrix norm approach 

(Hale et al., 1993) yields the estimates 

 1 ,  K h    d dA A A  (4.4) 

where the estimate of  can only be positive. For the matrix measure approaches 

(Lehman & Shujaee, 1994; Niculescu et al., 1998), K is fixed to be 1, which renders the 

estimation of   very conservative. For example, consider the trajectory of the system 

shown in Fig.4.1. If K equals 1, the decay function has a value of 1 at t=0. Then  must 
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be positive for the decay function to bound the peak of the normed state trajectory at 

t=2s. However, the optimal  is obviously a negative number.  

 Alternatively, one can apply Lyapunov approaches to solve the problem 

computationally. Using the classical Lyapunov-Krasovskii methods, the estimates of K 

and  can be obtained as 

 2
3

1

,  
c

K c
c

    (4.5) 

assuming the existence of positive constant scalars c1 , c2 , c3 such that  

 
2 2

1 2( ) ( )t tc t V c x x x  (4.6) 

and  

 
2

3( ) 2 ( )tV c t x x  (4.7) 

where tx denotes the segment of  { ( ) [ ,0]}t h   x  and ( )V   is a Lyapunov-

Krasovskii functional. Because of the inherent conservativeness of the Lyapunov 

approaches, the decay rate estimate, c3, will not be able to reach the optimal value. The 

estimate of  K, i.e., 2

1

c

c
, is also difficult to optimize. 

 From the solution form in (Yi, Nelson & Ulsoy, 2007a), the relationship between the 

trajectory of the system in (1) and the preshape function as well as initial conditions can 

be analytically determined in terms of an infinite Lambert W function series. We intend 

to overcome, or reduce, the inherent conservativeness in matrix measure/norm 

approaches and Lyapunov approaches and investigate the decay function estimation 
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problem from a new and different point of view by applying the Lambert W function 

approach.  

4.3 Main Results 

 Consider the homogenous matrix DDE in (4.1). The solution of (4.1) can be written as 

(Yi et al., 2006), 

 ( ) kt I

k

k

x t e




 
S

C  (4.8) 

where 

 
1

( )k k kh
h

  dS W A Q A  (4.9) 

and kQ  is solved by the following condition  

 
( )

( )
h hke

k kh e h
 

  
W A Q AdA

d d
W A Q A  (4.10) 

Here kS and kQ  are n n  matrices. 
I

kC  are 1n  vectors and are determined by the 

preshape function ( )tg and 0x , by using either one of two different approaches (Yi et al., 

2006, 2007b). The matrix Lambert W function, ( )k W , is a complex valued function with 

a complex matrix argument z  and an infinite number of branches denoted by k, where 

,..., 1,0,1,...,k      and satisfies 
( )

( ) k

k e 
W z

W z z  for all branches. Note that kW can 

readily be evaluated using functions available in standard software packages such as 

Matlab or Mathematica. The conditions for the existence and uniqueness of the solution 

in (4.9) are discussed in (Bellman & Cooke, 1963). 

 The results in (Yi et al., 2006) are extended here to derive a general solution (see 

Appendix B) to show that the solution of (4.1) can be written as, 
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1 2

0

1 1

( ) ( ) ( ( ))k k

n n
t tI I I I

kj kj kj kj kj

k j k j

P P

t e e 
 
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   
    

   
   

S S

dx T L x T L A G  (4.11) 

where   

 ( ),   1,2,...,kj keig j n  S  (4.12) 

 
0

( ) ( )kj
h

kj e h d
 

  


 G g  (4.13) 
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1 2 ... ( )I I I I I I I

k k k kn k k k
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 (4.16) 

Note that 
I

k


R  is the 2n n  Moore-Penrose Generalized Inverse, 

*I

kR  is the 2n n  

conjugate transpose of 
I

kR  and 
I

kjT is the j
th 

 square block of 
I

k


R . 

Theorem 4.1: If there exist scalars α, K1, K2, K3 and K4 such that  

 0max{Re( ( )),...,Re( ( )),...,Re( ( ))}m meig eig eig  S S S  (4.17) 

 
( )

1
0

sup t

t h

K e  

 

 A I
 (4.18) 

 
( )

2

1

lim sup k

N n
t I I

kj kj
N t h k N j

K e


   

   
    

   
 

S I
T L  (4.19) 

 
( )

3
00

sup
t

t

t h

K e d    

 

 
A I A

d
A  (4.20) 
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( )

4
0

1

lim sup ( )k ki

N nh
t I I

kj kj
N t h k N j

K e e d
   

   

   
    

   
 

S I

d
T L A  (4.21) 

where nullity( )m 
d

A  and ( )ieig S  are the eigenvalues of iS . Then, the trajectories of 

(4.1) are bounded by the exponential function ( ) ( )
t

t K he x  for any time t>0, where 

0

( ) sup { ( ) }
h t

h t
  

  x  and K = max(K1, K2) + max( K3, K4). 

Proof of Theorem 4.1 

Estimation of Decay Rate α 

 For the scalar case of (4.1), the rightmost eigenvalue can be determined by the 

principal branch, i.e., k = 0, of the scalar Lambert W function. Such a proof can readily 

be extended to the matrix case when A and d
A  in (4.1) commute (Jarlebring & Damm, 

2007). No such proof is currently available for the general case of matrix DDEs. 

However, in all the examples considered in the literature, it has been observed that the 

rightmost eigenvalue is obtained using the first m branches, where m is the nullity of d
A

(Yi et al., 2010c). We state this here as a conjecture: 

  0max{Re( ( )),...,Re( ( )),...,Re( ( ))} max Re( ( )) ,  m m ieig eig eig eig i  S S S S  (4.22) 

where ( )m Nullity
d

A  and ( )ieig S  are the eigenvalues of iS . Thus, based on the above 

conjecture, the optimal decay rate for matrix DDEs can be calculated as (4.17). 

Estimation of Factor K  

 Having determined  using (4.17), one must then determine the factor K  such that 

( ) tx t Ke  , where 
0

sup ( )
h t

x t
  

  . Taking the norm of both sides of (4.11) yields 
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 1 2( ) ( ) ( )t t t x P P  (4.23) 

where 1( )tP  and 2 ( )tP have been defined in (4.11). The use of the inequality in (4.23) 

will introduce conservativeness in our results. Since the envelope function should bound 

any possible trajectory, one must separate 0x  and ( )g  out from the infinite series but 

without affecting convergence.  

 First, note that for [0, )t h , the state ( )t hx in matrix DDEs is solely determined by 

the preshape function. Thus, for this period, the homogeneous matrix DDE function can 

be treated as a matrix ODE with an input from the preshape function: 

 ( ) ( ) ( )t t t h   dx Ax A g  (4.24) 

Therefore, for (0, )t h , 1( )tP  equals the free response of (4.24) with 0(0) x x  and 

2 ( )tP can be treated as the forced response of (4.24) with the input ( )t hg . Thus, for this 

period, the bounds for ( )t1P  and 2 ( )tP  can be obtained as, 

 
( )

0 1( ) ,  [0, )t t t
Kt e e e t h      A I

1P x  (4.25) 
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d

P A g
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 (4.26) 

where K1 and K3 are defined in (4.18) and (4.20) respectively. 

 For [ , )t h  , the Lambert  W function method is applied. Note that,  
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   

 
  

 

   
     

   

 

 

S I

S I

P T L x

T L x

 (4.27) 
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Thus, if K2 in (4.19) exists, 1 2( ) tt K e P  for [ , )t h   will be satisfied since 

0

sup ( )
h t

t
  

  x  (0) x . Similarly,   
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0
1

( ) lim ( ( ) )

         lim ( ) ( ) ,   [ , )
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kj kj
N

k N j

t e e h d

e e h d e t h
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  

 

   
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S I

d

S I

d

P T L A g

T L A g

 (4.28) 

Switch the sequence of integration and obtaining the norm, and move ( )t hg outside of 

the integration: 

 ( )

2
0

1

( ) lim sup ( ) ( )k ki

N nh
t I I

kj kj
N t h k N j

t e e d h
    

   

  
    

 
 

S I

d
P T L A g  (4.29) 

Thus, if K4 in (4.21) exists, then 2 4( ) tt K e P for [ , )t h  will hold since 

0

sup ( )
h t

t
  

  x ( )t h g  for [0, )t h .  

Hence the proof. 

Remark 1: The Lambert W function approach provides a solution in terms of infinite 

series. The feasibility of the approach depends on the convergence of the series. The 

proof for the convergence of such a Lambert W function series is currently not available. 

However, one can still evaluate the series numerically to obtain the estimate of K. The 

procedure is demonstrated in the numerical examples in Section 4.  

Remark 2: It has been observed that, although the Lambert W function series may 

converge slowly at 0t  , the convergence speed increases quickly when t becomes 

larger. Since the DDE can be treated as an ODE for [0, )t h , the Lambert W function 

approach is applied for t h  to achieve better convergence.  
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Remark 3: Since the envelope function needs to bound any possible trajectories, one 

must separate 0x  and ( )g  out from the infinite series but without affecting 

convergence. Thus, in (4.29) the sequence of integration and obtaining the norm is 

switched before moving ( )t hg outside of the integration.   

Remark 4: Note that the estimates of K1, K2, K3 and K4 are obtained directly based on the 

solution of the system and no conservativeness is introduced following the proposed 

procedure. However, the use of the solution form in (4.11) accommodates the 

discontinuity at t = 0 (i.e., 0(0 ) (0)  g x x  ) but introduces conservativeness when the 

triangle inequality (4.23) is applied. When such a discontinuity is considered, the 

estimate of K from our approach is the optimal. 

 Theorem 4.1 gives the result for general systems of DDEs. For the scalar case, the 

results can be further simplified. Consider the scalar version of  (4.1): 

 
0

( ) ( ) ( ) 0, 0

( ) ( ),   [ ,0);   (0) ,   0

dx t ax t a x t h t

x t g t t h x x t

    

    
 (4.30) 

where a , da , h  are all scalar constants, t  is time, and ( )x t , ( )g t  are scalar functions.  

Corollary 4.1: If there exist scalar α, K1, K2, K3 and K4 such that  

 0 ( )
Re d

ahW a he
a

h


 
  
  

 (4.31) 
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3
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Then, the trajectories of (4.30) are bounded by the exponential function ( ) ( )tx t Ke h
   

for any time t>0, where 
0

( ) sup { ( ) }
h t

h x t
  

  . 

Proof of Corollary 4.1 

 The solution of (4.30) can be written in terms of the Lambert W function, kW (Asl & 

Ulsoy, 2003), as:  
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Following the Laplace transformation based method in (Yi et al., 2006) for determining 

I

kC  in (4.36) gives 
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Note that the free response ( )x t , using (4.36) and (4.37), can be separated into two parts:  

 

1 2

0 0

( ) ( )

( )
( )

1 1

k
k

k

k k

h
S

S t
d S t

S h S h
k kd d

P t P t

a e g h dx e
x t e

a he a he

  
 

 
 


 

 


   (4.38) 

One can then follow a similar procedure as for the proof of Theorem 4.1 to complete the 

proof for the scalar case. 
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4.4 Numerical Examples 

 In this section, one scalar example and one matrix example are provided to 

demonstrate the effectiveness of the proposed approach. 

Example 4.1 (Scalar DDE): Consider the scalar DDE in (4.30) with 1da a h   (Yi et 

al., 2006): 

 ( ) ( ) ( 1) 0,   0x t x t x t t      (4.39) 

Note that the exact value of ( )g t  and 0x  is not needed here but their supremum is known 

as 
0

( ) sup { ( ) }
h t

h x t
  

  . The obtained decay function applies to any ( )g t  and 0x  for the 

system.  

 From (4.31), the rightmost pole is found to be:  

 0( )
Re 0.605d

ahW a he
a

h


 
    
  

 (4.40) 

Thus, the decay rate 0.605    is obtained. Next, (4.32), (4.33), (4.34) and (4.35) are 

used to calculate 1K , 2K , 3K  and 4K  respectively. To facilitate the process, define 
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and note that
1 1

0

sup ( )
t h

K J t
 

 ,  2 2lim sup ( , )
N t h

K J N t
 

 , 
3 3

0

sup ( )
t h

K J t
 

  and 

 4 4lim sup ( , )
N t h

K J N t
 

 . For this example, 1 1(0) 1K J   and  3 3( ) 1.1576K J h   are 

obtained.  To estimate 2K , 2 ( , )J N t  in (4.42) must be evaluated for t h  with a 

sufficiently large N. First, note that 2 ( , )J N t  approaches a constant amplitude for large t  

since max{Re( )} 0k  S  holds for any branch. Thus, it is always sufficient to examine 

the first several periods (e.g., 0 5t h   here) to obtain its maximum value. Second, it 

has been observed that the convergence of 2 ( , )J N t  w.r.t. N is much faster when t 

becomes larger. For example, here when t>1.5, 2 ( , )J N t is very close to the final 

trajectory for 10N  . It is favorable to find the location of the peak with a large N (e.g., 

N=10 is sufficient here) first and then evaluate of 2 ( , )J N t  at this specific location with 

increased N for a better accuracy, if necessary.  

 Due to limited space, only the convergence for the worst case (i.e., t=h=1) is provided 

here in Fig.4.2. Here, we take 50N   and obtain 2 0.9K   from Fig.4.3. Also note that 

2 ( , )J N t  with N=50, t=h is very close to 1( )J t  with t h , showing good consistency of 

the two estimates.   

 The convergence of 4 ( , )J N t  at t = 1 is shown in Fig.4.4. 4K  is selected by picking 

the maximum value along the trajectory of 4 ( , )J N t  with a sufficiently large number of 

branches N (e.g., N = 50  here) in Fig.4.5.  It can been seen that 4 ( , )J N t  with N=50, 

t=h also coincides with 3( )J t  with t h . 
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Fig. 4.2 Convergence of 2 ( , )J N t  at t=h=1 for Example 4.1 

 

 

Fig. 4.3 The functions 1( )J t  and 2 ( , )J N t  with N=50 for Example 4.1 
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1 2 3 41,   0.9,   1.1576,   1.16K K K K     

and the K factor is then estimated as 

1 2 3 4max( , ) max( , ) 2.16K K K K K  
 

The decay function parameters, obtained by the methods in (Hale, 1993), in (Mondié & 

Kharitonov, 2005), and by using the proposed method are compared in Table 4.1. The 

decay rate,  , is significantly improved over the methods in (Hale et al., 1993) and 

(Mondié & Kharitonov, 2005). For estimating the factor, K, the proposed approach 

reaches a more conservative result in this example because we use the triangle inequality 

to separate 1P  and 2P when taking the norm. Also note that the singularity at t = 0 (i.e., if 

0(0)g x ) is considered in our approach. Such a singularity cannot be tolerated by the 

Lyapunov function based approaches, e.g. (Mondié & Kharitonov, 2005), since it renders 

the Lyapunov functions not continuously differentiable at 0t  . Although the estimate 

of K using the Lambert W function approach is larger, the exponential decay function 

using this new approach gives a better estimate when t becomes larger as the function 

decays exponentially. 

Table  4.1 Comparison of Results for Example 4.1 

 Factor, 

K 

Decay Rate,
  

Matrix Measure Approach (Hale, 

1993) 

2 2 

Lyapunov Approach (Mondié, 

2005) 

1.414 -0.42 

Corollary 4.1 2.16 -0.605 

  

 

http://en.wikipedia.org/wiki/Triangle_inequality
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Fig. 4.4 Convergence of 4 ( , )J N t  at t=h=1 for Example 4.1 

 

 

Fig. 4.5 The functions 3( )J t  and 4 ( , )J N t  with N = 50 for Example 4.1 
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Remark 5: The decay rate obtained in our proposed method is the optimal, which cannot 

be obtained using Lyapunov approaches and matrix measure approaches due to their 

conservativeness. Although only selected other approaches are compared here, the 

conservativeness is inherent in Lyapunov approaches and matrix measure approaches. 

Example 4.2 (Matrix DDEs): Consider the example (Yi et al., 2006): 

 

( ) ( ) ( ) 0,   0

1 3 1.66 0.697
;  ;  1

2 5 0.93 0.33

t t t h t

h

    

   
     
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d

d

x Ax A x

A A
 (4.45) 

  First, the Lambert W approach proposed in (Yi et al., 2006) is used to analyze the 

spectrum of this matrix system and locate the rightmost pole. For this example, 

( ) 0dm Nullity A  and the right most eigenvalue of the system can be obtained from 

the principal ( 0k  ) branch. Thus,  

  0 0 0

1
max Re( ( )) max Re( ( ( ) )) 1.0119deig eig h

h


 
      

 
S W A Q A  (4.46) 

After the decay rate is obtained, the right-hand side of  (4.18), (4.19), (4.20) and (4.21) 

are evaluated numerically to calculate 1K , 2K , 3K  and 4K  respectively. Similarly, define 
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Note that 
1 1

0

sup ( )
t h

K J t
 

 ,  2 2lim sup ( , )
N t h

K J N t
 

 , 
3 3

0

sup ( )
t h

K J t
 

  and 

 4 4lim sup ( , )
N t h

K J N t
 

 . 

 As in the scalar case, 2 ( , )J N t in (4.48) also converges to a certain trajectory as N  

increases for the matrix case, as shown in Fig.4.6. Thus, 1K  is obtained by evaluating 

1( )J t  for 0 t h   and 2K  is obtained by taking the maximum value of 2 ( , )J N t  for 

 t h  with a sufficiently large number of branches N  (i.e., N = 50 here) as shown in 

Fig.4.7. 

 

Fig. 4.6 Convergence of 2 ( , )J N t  at t=h=1 for Example 4.2 
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Fig. 4.7 The functions 1( )J t  and 2 ( , )J N t  with N=50 for Example 4.2 

 

A similar procedure can be applied to obtain 3K  and 4K  as illustrated in Fig.4.8 and 

Fig.4.9. As a result, one obtains 
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and the factor, K , is determined as  

1 2 3 4max( , ) max( , ) 3.8K K K K K    

Again, the decay function estimated by the methods in (Mondié & Kharitonov, 2005) and 
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Fig. 4.8 The convergence of 4 ( , )J N t  at t=h=1 for Example 4.2 

 

 

Fig. 4.9: The functions 3( )J t  and 4 ( , )J N t  with N = 50 for Example 4.2 
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Table  4.2 Comparison of Results for Example 4.2 

 

 Factor, 

K 

Decay Rate,
  

Matrix Measure Approach (Hale, 1993) 8.0192 3.0525 

Lyapunov Approach (Mondié, 2005) 9.33 -0.9071 

Theorem 4.1 3.8 -1.0119 

 

 In Example 2, the decay rate obtained using the proposed method is the optimal value 

of   and shows significant improvement over the other time domain methods. The result 

for the factor K from our approach is also significantly less conservative than the other 

methods considered. For Lyapunov approaches, the increase of system order leads to a 

dramatic increase in the dimension of the corresponding optimization problem, which 

results in more conservativeness. Further, the estimate of K is not typically optimized in 

Lyapunov function approaches. For the Lambert W function approach, the problem is 

tackled by evaluating the explicit series, not formulating it as an optimization problem.   

4.5 Concluding Remarks 

 A Lambert W function based approach for the estimation of the decay function for 

linear time-delay systems is presented. From the proposed approach, the optimal estimate 

of decay rate,  , can be determined analytically. The constant factor K is obtained using 

an infinite Lambert W function series and is typically less conservative compared to other 

approaches for matrix DDEs. Less conservative estimate of the decay function leads to 

not only more accurate description of the exponential behavior of time-delay systems, but 

also to more effective control designs based on those results. The results from our 

approach are explicitly expressed in terms of Lambert W function series. Convergence 
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properties of the Lambert W function remains an important topic for future research. A 

general proof for determining the rightmost poles of time-delay systems with a finite 

(few) number of terms from the infinite series is also of future interest. An emerging field 

of interest for this work is time-periodic delay systems (Insperger et al., 2002, 2010), 

where the delay and the time-periodic system parameter together makes the decay 

function estimation challenging.  
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CHAPTER 5 

CONCLUSIONS, CONTRIBUTIONS AND FUTURE WORK  

5.1 Conclusions 

 This doctoral research is focused on developing effective and efficient methods for the 

stability analysis of PWA time-delay systems with or without uncertainty. The 

effectiveness of the approach is demonstrated using numerical examples as well as 

through an application to an automotive clutch system. A method based on the Lambert 

W function approach is also developed to obtain a more accurate decay function estimate 

for time-delay systems.  

  First, delay-dependent stability criteria for nominal and uncertain PWA time-delay 

systems are derived in the form of LMIs. The proposed approach is able to achieve less 

conservative results compared with existing methods by including an additional triple 

integration term in the Lyapunov-Krasovskii functional. The computational complexity 

of the method is also less than the existing method for uncertain PWA time-delay 

systems. One of the major contributions of this approach lies in the accommodation of 

the switching based on delayed states as well as states of the model.  

 Second, the proposed method is applied to the modeling and control of a nonlinear 

automotive clutch system. A feed forward plus piecewise PI control is designed based on 

the PWA model of the open-loop system to realize reference torque tracking with 

consistent performance under different operating conditions and temperature state 
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variation. In addition, using the PWA system framework, the stability of the closed-loop 

system is analytically studied, with consideration of uncertainty and time delay in the 

model, to obtain rigorous design guarantees. A design feasibility map, illustrating the 

trade-off among speed of response, robustness of the system, and time delay, is also 

provided.  

 Finally, a Lambert W function based approach for the estimation of the decay function 

for linear time-delay systems is developed. From the proposed approach, the optimal 

estimate of decay rate,  , and a corresponding factor K can be obtained. The constant 

factor K is obtained using an infinite Lambert W function series and is typically less 

conservative compared to other approaches for matrix DDEs. Less conservative estimate 

of the decay function can lead to not only more accurate description of the exponential 

behavior of time-delay systems, but also to more effective control designs based on those 

results.  

  



 102 

 

5.2 Contributions 

 The main contributions of this dissertation are summarized as follows: 

 A method based on the Lyapunov-Krasovskii approach is presented for the stability 

analysis of PWA time-delay systems with structured or unstructured uncertainty. 

Besides the reduced conservativeness through the use of a triple integration term in 

the Lyapunov-Krasovskii functional, the proposed approach considers the case of 

switching based on delayed states (as well as states) in the model, which extends the 

applicability of the approach to a wider range of practical systems, especially to 

systems subject to controller delays. The computational load of this approach is also 

less than the existing method for analysis of uncertainty PWA time-delay systems. 

 The application of the PWA system framework to the modeling and control of a 

nonlinear clutch system is presented. This application not only shows the flexibility 

of the framework for modeling, but also provides a rigorous stability analysis of the 

closed-loop system in the presence of uncertainty and time delays. 

 A new Lambert W function based approach for the estimation of the decay function 

for linear time-delay systems is proposed. From this approach, the optimal estimate 

of decay rate,  , can be determined in terms of the system parameters. The constant 

factor K is analytically derived in the form of an infinite Lambert W function series 

and is typically less conservative compared to existing methods for matrix DDEs. 

Reduced conservativeness in these estimates can help design more efficient dwell-

time control for switched time-delay systems. 
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5.3 Future Work 

 A number of future research topics are suggested following the studies in this 

dissertation: 

 For the stability analysis of PWA time-delay systems, a common single constant 

time delay is assumed in each region of the model. However, for more general cases, 

time delay can be different from region to region and can be time-varying. An 

extension of the proposed method to include these cases could be valuable in 

practice.  

 Lyapunov stability is studied for PWA time-delay systems in this work. The 

investigation of other types of stability, such as input-output stability with L2 gain 

analysis and input-to-state stability, will also be helpful to explore the properties of 

PWA time-delay systems and be valuable in practice.  

 PWA systems provide a flexible framework to model a variety of nonlinear systems, 

especially systems with saturation, dead zone, hysteresis and chaos. An application 

of the PWA system framework, especially the stability analysis, to systems with 

different types of nonlinearities would be of interest.  

 In the current design procedure, the control design and stability test are conducted 

sequentially. Controllers are designed first, then the stability of closed-loop systems 

is examined using the proposed stability criterion. If no feasible solution is found, 

controllers will be redesigned. An extension to control synthesis (Habets, 2006), 

where Lypapunov function and control gains are searched for simultaneously, can 
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help to facilitate the procedure. However, the computational complexity will become 

much more challenging since the problem is usually formulated as BMIs in such 

synthesises. 

 Convergence properties of the Lambert W function remain an important topic for 

future research and can be useful to evaluate those results expressed in term of the 

infinite Lambert W function series such as decay function estimate, controllability 

and observability (Yi et al., 2008b) of time-delay systems 

 A general proof for determining the rightmost poles of time-delay systems with a 

finite (few) number of terms from the infinite Lambert W function series is also of 

future interest.  

 Incorporating the decay function into the control design for switching time-delay 

systems is also an interesting topic. By tuning the control parameters,  the resulting 

time-delay systems may smaller factor K and faster decay rate, which lead to shorter 

dwell time and more efficiently control.  

 An emerging field of interest for this work is time-periodic delay systems, which can 

be found in many applications such as machine tool vibration, parametric control of 

robotic systems (Insperger & Stepan, 2000) and neural networks (Hagan, 1996). For 

time-periodic delay systems, the delay and the time-periodic system parameter 

together makes the decay function estimation challenging. Although the method can 

be readily extended to scalar time-periodic delay system, for the matrix case, the 

problem remains open.  
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APPENDICES 

Appendix A: LMI stability test for clutch application 

 Consider the closed-loop clutch system in (3.28) represented in the form of a PWA 

time-delay system with structured uncertainty. Since the switching of the system solely 

depends on the delayed state, ( )t x , the regions are divided into the sets defined in 

Chapter 2.  When the equilibrium point at ( ) 0cei t 
 
is considered, the sets are obtained as:  

0 {region 1, region 2}I  , 1 {region 3, region 4}I  , 2I null , 3I null  

Based on the partition in Table 3.1 and the procedure in (Johansson, 2003), the boundary 

matrices can be obtained as: 

 1 2 4 2 E E 0 ,  3 4 4 3 E E 0 , 

1

0 0

0 0

0 0

0 0

d

 
 
 
 
 
 

E , 2

0 0

0 0

0 0

0 0

d

 
 
 
 
 
 

E , 3

0 0 0

0 0 0

1 0 0.8

1 0 3.3

d

 
 
 
 
 
 

E , 4

0 0 0

0 0 0

1 0 3.3

0 0 1

d

 
 
 
 
 
 

E . 

Correspondingly, the continuity matrices can be formulated as 

2 2

1 2

5 2





 
   

 

I
F F

0
, 

2 2 2 1

3 4

5 2 5 1

 

 

 
   

 

I 0
F F

0 0
, 
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1

0 0

0 0

0 0

0 0

0 0

1 0

0 1

d

 
 
 
 
 


 
 
 
 
  

F , 
2

0 0

0 0

0 0

0 0

0 0

1 0

0 1

d
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 
 
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 


 
 
 
 
  

F , 
3

0 0 0

0 0 0

1 0 0

1 0 0.8

0 0 0

1 0 0

0 1 0

d

 
 
 
 
 

  
 
 
 
 
 

F , 
4

0 0 0

0 0 0

1 0 0

1 0 0.8

1 0 3.3

1 0 0

0 1 0

d

 
 
 
 
 

  
 
 
 
 
 

F  

The coefficient matrices for each region are  

1

42 0

0 30

 
  

 
A , 1

0 0

0 0
d

 
  
 

A , 1

0

0

 
  
 

a , 2

17.2727 8.7581

0 0

 
  
 

A , 

2

25.1473 0

102.7623 0
d

 
  

 
A , 2

0

0

 
  
 

a ; 3

17.2727 3.6064

0 0

 
  
 

A , 3

25.1473 0

249.5547 0
d

 
  

 
A , 

3

11.8337

117.4340

 
  
 

a ; 4

17.2727 8.9100

0 0

 
  
 

A , 4

25.1473 0

101.0097 0
d

 
  

 
A , 4

92.8031

372.7647

 
  

 
a   

One can use the above coefficients to set the LMIs in Theorem 2.3 then utilize the Matlab 

LMITOOL toolbox to solve the LMI problem. An analogous procedure can be applied to 

check the stability for other equilibrium points.  
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Appendix B: Solution for matrix DDEs 

 Consider the linear time invariant matrix DDE in (4.1). As shown in (Yi et al., 2006), 

one way to determine the 
I

kC  is to Laplace transform the matrix DDE in (4.1): 

 0( ) ( ) ( ) ( ) 0shs s s e s s    d dIX x AX A X A G   (B.1) 

Note that, 

 
0 0

( )

0 0

( ) ( ) ( )

  ( ) ( ) ( ) ( )

h
st st st

h

h
st s t h sh

e t h dt e t h dt e t h dt

e t h dt e t dt s e s

 
  


   

    

    

  

 

X X X

g X G X

  (B.2) 

Therefore, 

 
1

0( ) ( ) ( ( ))shs s e s    d dX I A A x A G    (B.3) 

The solution in (4.8) can also be Laplace transformed to obtain 

 
1( ) ( ) I

k k

k

s s






 X I S C   (B.4) 

Equating the expressions in (B.3) and (B.4) yields 

 
1

0

( )
( ( )) ( )

det( )

sh
I

k ksh
k

adj s e
s s

s e

 





 
  

 
d

d

d

I A A
x A G I S C

I A A
  (B.5) 

where adj(·) denotes the adjugate matrix.  

 Determining the 
I

kC  in (B.5) is analogous to determining the residue in a typical 

partial fraction expansion. To calculate 
I

kC  for a particular branch k q , i.e., to obtain 
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I

qC , both sides of (B.5) are multiplied by the expression 
1

( )
n

qi

i

s 


 and the resulting 

expression is evaluated at , 1,2,...,qjs j n  , where ( )qj qeig  S . Thus, 
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 
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
 C

I S
  (B.6) 

 Therefore, substitution of qj for s will make 1

( )

0

n

qi

i

k

s

s











I S
 except for k q  since 

( )qj qeig  S . However, on the left side of the equation, one obtains the indeterminate 

form 

 1

lim ( )
0

lim det( ) 0

qj

qj
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

d
I A A

 (B.7) 

 This can be resolved by applying L‟ Hospital‟s rule. Assume, any two eigenvalues 

from different branches are distinct: 

 , , 1,2,...,mj nj where m n j n      (B.8) 

On the right-hand side of (B.6), 
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qj qj
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qI Ii
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lim ( )

qj

I

q k
s

adj s


 I S C  (B.9) 

Thus, one can then rewrite (B.6) as 
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dx A G I S C               

  (B.10) 

and define 
I

qjL and
I

qjR as in (4.14) and (4.15). Then (B.10) can be simplified as,   

 0( ( ))I I I

qj qj qj q dL x A G R C ,for 1,...,j n         (B.11) 

 When qS has distinct eigenvalues, or repeated eigenvalues with geometric multiplicity 

of one, one can show that 

 
( ) 1qj qrank n   I S  for  1,...,i n          (B.12) 

When ( ) 1qj qrank n   I S , which means some states associated with the repeated 

eigenvalues are decoupled, one can separate these states in to independent new DDEs and 

solve the problems individually.  

Also, one can show that (Bernstein, 2005): 

 
( ) 1  (adj( )) 1 qj q qj qrank n rank      I S I S   (B.13) 

which means that each equation in (B.11) has only one linearly independent row among n 

rows. However, n equations from (B.11) will provide n linearly independent rows, 

making the solution of 
I

qC unique.  

 Grouping (i.e., stacking) all n equations in (B.11) into a single matrix equation: 

 
I I I

q q qL R C   (B.14) 

where    
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The 
I

qC  can be calculated by using the Moore-Penrose Generalized Inverse: 
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  (B.16) 

where 
I

qjT , 
I

q


R  and is defined in (4.15).  

 Note that ( )I

qrank nR  (full column rank), thus the 
I

qC   obtained from (B.16) using 

the generalized pseudo inverse will be unique. Therefore, the solution of (4.1), in (4.8), 

can be expressed as: 

 
0

1 1

( ) ( ) ( ( ))k k

n n
t tI I I I

kj kj kj kj kj

k j k j

t e e 
 

   

   
    

   
   

S S

dx T L x T L A G     (B.17)  

 

 



 111 

BIBLIOGRAPHY 

Anderson , R.J., and Spong , M.W. (1989). Bilateral control of teleoperators with time 

delay.  IEEE Trans. Autom. Control, 34, 494-501. 

Asl, F. M., and Ulsoy, A. G. (2003). Analysis of a system of linear delay differential 

equations.  ASME J. Dyn. Syst. Meas. Control, 125,  215-223. 

Azuma, S., Yanagisawa, E. and Imura, J. (2008). Controllability analysis of biosystems 

based on piecewise-affine systems approach. IEEE Trans. Autom. Control, vol.53, 

pp.139-152. 

Baotic, M.; Vasak, M.; Morari, M.; Peric, N. (2003). Hybrid system theory based optimal 

control of an electronic throttle. American Control Conference, Proceedings of the 

2003, vol.6, no., pp. 5209- 5214 vol.6, 4-6. 

Barreto, G.A., and Araujo., A.F.R.(2004). Identification and control of dynamical 

systems using the self-organizing map. IEEE Transactions On Neural Networks, 15(5), 

1244-1259. 

Bellman, R. E., and Cooke, K. L. (1963).  Differential-Difference Equations, New York: 

Academic Press. 

Bemporad, A., Ferrari-Trecate, G., and Morari, M. (1999). Observability and 

Controllability of Piecewise Affine and Hybrid Systems. Proceedings of the Conference 

on Decision and Control. 



 112 

Berstain, D. (2005). Matrix Mathematics:Theory, Facts, and Formulas with Application 

to Linear Systems Theory, Princeton University Press. 

Blondel , V.D., and Tsitsiklis, J.N. (1999). Complexity of stability and controllability of 

elementary hybrid systems. Automatica, 35(3):479-490. 

Bourlès, H. (1987). α-stability and robustness of large scale interconnected systems. Int. 

J. Control,45, 2221–2232. 

Branicky, M.S.(1998). Multiple Lyapunov functions and other analysis tools for switched 

and hybrid systems. IEEE Trans. Automation and Control, 43(4):475-482. 

Breda, D., Maset, S., and Vermiglio, R. (2005). Pseudospectral differencing methods for 

characteristic roots of delay differential equations. SIAM J. Sci. Comput., Vol. 27 (2), 

482-495. 

Chen, W. H., and Zhang, W. X. (2010). Delay-independent minimum dwell-time for 

exponential stability of uncertain switched delay systems, IEEE Trans. Autom. Control, 

55, 2406 - 2413. 

Chiou, J. S. (2006). Stability analysis for a class of switched large-scale time-delay 

systems via time-switched method. IEE Proc.-Control Theory Appl., Vol. 153, No. 6. 

Cook, J. A. and Powell, B. K. (1988). Modeling of an internal combustion engine for 

control analysis. IEEE Control Syst. Mag., pp. 20–25. 

Dai, D., Hu, T., Teel, A.R., Zaccarian, L. (2009a). Piecewise-quadratic Lyapunov 

functions for systems with deadzones or saturations. Systems & Control Letters. Vol 58, 

pp., 365-3. 



 113 

Dai, S., Lin, H., and Ge, S. (2009b). Robust stability of discrete-time switched delay 

systems and its application to network-based reliable control. In Proc. 2009 conference 

on American Control Conference, Piscataway, NJ, USA, 2367-2372. 

Dumas, J. G., and Rondepierre, A. (2003). Modeling the Electrical Activity of a Neuron 

by a Continuous and Piecewise Affine Hybrid System. Hybrid Systems: Computation 

and Control. Vol 2623, 156-171. 

Drulhe, S., Ferrari-Trecate, de Jong, G., and Viari, H. (2006). A. reconstruction of 

switching thresholds in piecewise-affine models of genetic regulatory networks. Hybrid 

Systems: Computation and Control. Vol 3927, 184-199. 

Duan, S., Ni, J. and Ulsoy, A. G. (2010). A Lambert W function approach for decay 

function estimation in linear time-delay systems. IEEE Cont. and Decision Conf.. 4972-

4977. 

Duan, S., Ni, J. and Ulsoy, A. G. (2011a). Decay function estimation for linear time-

delay systems via the Lambert W function. Journal of Vibration and Control, in press.  

Duan, S., Ni, J. and Ulsoy, A. G. (2011b). A delay-dependant stability criterion for 

uncertain piecewise affine time-delay systems. American Control Conference. (In 

preparation). 

Duan, S., Ni, J. and Ulsoy, A. G. (2011c). An improved LMI-based approach for stability 

of piecewise affine time-delay systems with uncertainty. Int. J. Control (Submitted). 

Duan, S., Ni, J. and Ulsoy, A. G. (2011d). Control design for a nonlinear clutch thermal 

system via piecewise affine system framework. American Control Conference. (In 

preparation). 



 114 

Duan, S., Ni, J. and Ulsoy, A. G. (2011e). Modeling and control of an automotive all-

wheel drive clutch as a piecewise affine system. ASME J. Dyn. Syst. Meas.& Cont. 

(Submitted). 

Engelborghs, K., Luzyanina, T., and Samaey, G. (2001). DDE-BIFTOOL v.2.00: A 

Matlab package for bifurcation analysis of delay differential equation. Dept. Comp. Sci., 

K.U. Leuven, Leuven, Belgium, T. W. Rep. 330. 

Filippov, A. F. (1998). Differential Equations with Discontinuous Right-hand Sides, 

Kluwer Academic Publications. 

Fofana, M. S. (2003). Delay dynamical systems and applications to nonlinear machine-

tool chatter. Chaos, Solitons and Fractals, 17, 731-47. 

Forde, J., and Nelson, P. W. (2004). Application of sturm sequences to bifurcation 

analysis of delay differential equation models.  J Math Anal Appl, 300,  273-84. 

Fridman, E., and Shaked, U. (2002). An improved stabilization method for linear time-

delay systems.  IEEE Trans. Autom. Control, 47, no.2, pp. 253-270. 

Fridman, E., and Shaked, U. (2002). A descriptor system approach to H∞ control of time-

delay systems.  IEEE Trans. Autom. Control, 47, no.11, pp. 1931–1937. 

Gu, K., and  Niculescu, S. I. (2003). Survey on Recent Results in the Stability and 

Control of Time-Delay Systems, J. Dyn. Sys., Meas., Control, Vol.125, pp158, 

DOI:10.1115/1.1569950. 

Habets, L.C.G.J.M.; Collins, P.J.; van Schuppen, J.H. (2006). Reachability and control 

synthesis for piecewise-affine hybrid systems on simplices. IEEE Trans. Autom. 

Control, vol.51, no.6, pp. 938- 948. 



 115 

Hagan, M. T., Demuth, H. B., and Beale, M.(1996). Neural Network Design. PWS: 

Boston.  

Hale, J. K., and Verduyn-Lunel, S. M. (1993).  Introduction to functional differential 

equations. Applied Mathematical Sciences, 99,  New York:Springer. 

Hallowell, S.J. (2005). Torque distribution systems and methods for wheeled vehicles. 

US Patent 6, 909-959. 

Hassibi, A. and Boyd, S. P. (1998). Quadratic stabilization and control of piecewise- 

linear systems. In Proceedings of the American Control Conference, pp. 3659–3664. 

He, Y., Wang, Q.-G., Xie, L., and Lin, C.(2007). Furtherimprovement of free-weighting 

matrices technique for systems with time-varying delay. IEEE Trans. Autom. Control, 

Vol. 52, No. 2, pp. 293–299. 

Hou, C., and Qian, J. (1998). On an estimate of the decay rate for applications of 

Razumikhin-type theorems. IEEE Trans. Autom. Control, 43, No. 7,  958-960. 

Hmamed. A. (1996). Comments on „On an estimate of the decay rate for stable linear 

delay systems‟.  Int. J. Contro, 42, 539–540. 

Hu, B., Zhai, G., Anthony, N. M. (2002). Common quadratic Lyapunov-like functions 

with associated switching regions for two unstable second-order LTI systems. Int. J. 

Control, Volume 75, Issue 14, pages 1127-1135. 

Insperger, T., and Stepan, G. (2000). Remote control of periodic robot motion. 

Proceedings of the 13th CISM-IFTOMM Symposium, Zakopane, Poland.  

Insperger, T., and Stepan, G. (2002). Stability chart for the delayed Mathieu equation, 

Proceedings of the Royal Society London A, 458, 1989-1998 

http://www.google.com/patents?hl=en&lr=&vid=USPATAPP10384157&id=_cSWAAAAEBAJ&oi=fnd&printsec=abstract


 116 

Insperger, T., Wahi, P., Colombo, A., Stepan, G., Bernardo, Di, M., and Hogan, SJ 

(2010). Full characterization of act-and-wait control for first-order unstable lag 

processes. Journal of Vibration and Control, 16, 1209-1233. 

Jankovic, M. (2001). Control Lyapunov–Razumikhin functions and robust stabilization of 

time-delay systems. IEEE Trans. Autom. Control, 46, 1048–1060. 

Jarlebring, E., and Damm, T. (2007). The Lambert W function and the spectrum of some 

multidimensional time-delay systems. Automatica, 43, 2124 – 2128. 

Johansson, M., and Rantzer, A. (1997). Computation of piecewise quadratic Lyapunov 

functions for hybrid systems. Proc. European Control Conf., Brussels, Belgium. 

Johansson, M. (2003). Piecewise Linear Control Systems. Springer-Verlag, ISBN: 

3540441247. 

Johansen, T.A. , and Foss, B.A.(1993). Constructing narmax models using armax models. 

International Journal Of Control, 58(5):1125-53. 

Kacem, W., Chaabane, M., Mehdi, D., and Kamoun, M. (2009). On α-stability criteria of  

linear systems with  multiple time delay.  Journal of Mathematical Sciences, 161, No. 

2. 

Kalmar-Nagy, T., Stepan, G., and Moon, F. C. (2001). Subcritical hopf bifurcation in the 

delay equation model for machine tool vibrations.  Nonlinear Dynamics, 26, 121-42. 

Kim, D. K., Park, P. G., and Ko, J. W. (2004). Output-feedback H-infinite control of 

systems over communication networks using a deterministic switching system approach. 

Automatica, 40, 1205–1212. 

Kim, S., Campbell, S.A., and Liu, X. (2006). Stability of a class of linear switching 



 117 

systems with time delay. IEEE Trans. Circuits and Systems I, 53, 384-393. 

Krasovskii, N. N. (1963). Stability of motion. Stanford University Press, Stanford CA, 

USA, (translation by J. Brenner). 

Kulkarni, V. (2003). Optimal mode changes for highway transportation safety. IEEE 

International Conference on Systems, Man and Cybernetics., vol.2, pp. 1235-1240. 

Kulkarni, V, Jun, M., and Hespanha, J. (2004). Piecewise quadratic Lyapunov functions 

for piecewise affine time-delay systems. Proceedings of the 2004 American Control 

Conference, vol.5, no.30, pp. 3885- 3889.  

Lehman, B. and Shujaee, K. (1994). Delay independent stability conditions and decay 

estimates for time-varying functional differential equations. IEEE Trans. Autom. 

Control, 39, 1673–1676. 

Li, C., Chen, G., and Liao, X. (2007). Stability of piecewise affine systems with 

application to chaos stabilization. Chaos, Volume 17, Issue 2, pp. 023123-023123-12. 

Li, X., and de Souza, C. E. (1997). Criteria for robust stability and stabilization of 

uncertain linear systems with state-delay.  Automatica, Vol. 33, pp.1657–1662. 

Liberzon D. and Morse A. S. (1999). Basic problems in stability and design of switched 

systems.  IEEE Control Systems Magazine, vol. 19 no 5. 

Liberzon, D. (2003). Switching in Systems and Control. Spinger. ISBN:0-8176-4297-8. 

Liu, P.-L. (2003). Exponential stability for linear time-delay systems with delay 

dependence.  J. Franklin Inst, 340, 481–488. 



 118 

Meyer, C., Schroder, S., and De Doncker, R. W. (2004). Solid-state circuit breakers and 

current limiters for medium-voltage systems having distributed power systems. IEEE 

Trans. Power Electronics, 19,1333–1340. 

Michiels, W., Green, K., Wagenknecht, T., and Niculescu, S.-I. (2006). Pseudospectra 

and stability radii for analytic matrix functions with application to time-delay systems.  

Linear Algebra and its Applications, 418, 315-335.  

Moezzi, K., Rodrigues, L., and Aghdam, A. (2009). Stability of Uncertain Piecewise 

Affine Systems with Time Delay: Delay Dependent Lyapunov Approach. Int. J. 

Control, 82 (8), pp. 1423-1434.  

Mignone, D., Ferrari-Trecate, G., Morari, M. (2000). Stability and Stabilization of 

Piecewise Affine and Hybrid Systems: An LMI Approach. Proceedings of the 39
th

  

IEEE Conference on Decision and Control, Sydney, Australia.  

Mondié, S., and Kharitonov, V. L. (2005) . Exponential estimates for retarded time-delay 

systems: an LMI approach.  IEEE Trans. Autom. Control, 50,  No. 2. 

Moon, Y. S., Park, P., Kwon, W. H., and Lee, Y. S. (2001). Delay-dependent robust 

stabilization of uncertain state-delayed systems. Int. J. Control, vol. 74, pp. 1447–1455. 

Mori, T., Fukuma, N., and Kuwahara, M. (1982). On an estimate of the decay rate for 

stable linear delay systems.  Int. J. Control, 36, 95–97. 



 119 

Mori, T., and Kokame, H. (1989). Stability of ( ) ( ) ( )x t Ax t Bx t    . IEEE Trans. 

Automat. Contr, 34., 460-462. 

Murray, R. M. (2003). Control in an information rich world: report of the panel on future 

directions in control, dynamics and systems. Philadelphia, PA: SIAM 2003. 

Nayfeh, A., Chin, C., and Pratt, J. (1997).  Application of perturbation methods to tool 

chatter dynamics.  Dynamics and Chaos in Manufacturing Processes, F. C. Moon (ed), 

Wiley, New York, 193-213. 

Niculescu, S. I., Souza, C. E. de, Dion, J. M., Dugard, L (1998). Robust exponential 

stability of uncertain systems with time varying delays.  IEEE Trans. Autom. Control, 

43, 743–748. 

Niculescu, S. I. (2001). Delay Effects on Stability: a Robust Control Approach (Springer, 

New York). 

Orosz, G., Wilson, E., and Stepan, G. (2010).  Traffic jams: dynamics and control. 

Philos. Trans. R. Soc. A, 368, 4455-4672. 

Park, P. (1999). A delay-dependent stability criterion for systems with uncertain time-

invariant delays.  IEEE Trans. Autom. Control, Vol. 44, pp. 876–877. 

Pettersson, S. (1999). Analysis and Design of Hybrid Systems. PhD Thesis, Chalmers 

University, Goteborg, Sweden. 

Phat, V. N., and Niamsup, P. (2006). Stability of linear time-varying delay systems and 

applications to control problems. J. Comput. Appl. Math.,194, 343–356. 



 120 

Razumikin, B. S. (1956). On the stability of systems with a delay.  Prikladnava 

Matematika i Mekhanika, 20, 500–512 (in Russian). 

Richard, J. P. (1998). Some trends and tools for the study of time-delay systems.  Second 

conference IMACS-IEEE CESA’98, Computational Engineering in Systems 

Applications, Tunisia, Plenary lecture (pp. 27–43). 

Richard, J. P. (2003). Time-delay systems: an overview of some recent advances and 

open problems.  Automatica, 39, 1667-1964. 

Rodrigues, L., and How, J.P. (2003). Observer-based Control of Piecewise-affine System. 

Int. J. Control, 76, 459–477. 

Rodrigues, L., and Boyd, S.P. (2005). Piecewise-affine State Feedback for Piecewise-

affine Slab Systems using Convex Optimisation.  Systems & Control Letters, 54, 835–

583. 

Prajna, S. and A. Papachristodoulou (2003). Analysis of switched and hybrid systems - 

beyond piecewise quadratic methods. In: American Control Conference. Denver, 

Colorado, USA.  

Richard, J. P. (1998). Some trends and tools for the study of time-delay systems.  Second 

conference IMACS-IEEE CESA’98, Computational Engineering in Systems 

Applications, Tunisia, Plenary lecture (pp. 27–43). 

Richard, J. P. (2003). Time-delay systems: an overview of some recent advances and 

open problems.  Automatica, 39, 1667-1964. 

Schutter, B. D. and Moor, B. D. (1999). The extended linear complementarity problem 

and the modeling and analysis of hybrid systems”. In Antsaklis, P., Kohn, W., Lemmon, 



 121 

M., Nerode, A., and Sastry, S., editors, Hybrid Systems Verification and Control: 

Lecture Notes in Computer Science, volume 1567, pp. 70–85.Springer-Verlag. 

Shinozaki, H., and Mori, T. (2006). Robust stability analysis of linear time-delay systems 

by Lambert W function: Some extreme point results.  Automatica, 42, 1791-99. 

Shorten, R., Wirth, F., Mason, O, Wulff, K., and King, C. (2007). Stability criteria for 

switched and hybrid systems. SIAM , Rev. 49, 4, 545-592. 

Sipahi, R., and Olgac, N. (2003). Degenerate cases in using the Direct Method. ASME  J. 

Dyn. Syst. Meas. Cont., 125, 194-201. 

Sontag, E.D. (1996). Interconnected automata and linear systems: A theoretical 

framework in discrete-time. In R. Alur, T.A. Henzinger, and E.D. Sontag, editors, 

Hybrid Systems III- Verification and Control, number 1066 in Lecture Notes in 

Computer Science, pages 436-448. Springer-Verlag, 1996. 

Sun, H. J., and Hsieh, J. G. (1998). On α-stability criteria of nonlinear systems with 

multiple delays.  J. Franklin Inst, 335, 695–705.S. Xu, J. Lam, and M. Zhong (2006). 

New exponential estimates for time-delay systems. IEEE Trans. Autom. Control, 51, 

No. 9.  

Takagi, T., and Sugeno, M (1985). Fuzzy identification of systems and its applications to 

modeling and control. IEEE Transactions On Systems, Man And Cybernetics, 

SMC,15(1):116-132. 

Wu, M., He, Y., She, J.-H., and Liu, G.-P. (2004). Delay-dependent criteria for robust 

stability of time-varying delay systems.  Automatica, vol. 40, pp. 1435–1439. 

Xie, L. (1996). Output feedback H∞ control of systems with parameter uncertainty. 



 122 

International Journal of Control, 63, 741–750.  

Xu, S., and Lam, J. (2005). Improved delay-dependent stability criteria for time-delay 

systems. IEEE Trans. Autom. Control,50, 384–387. 

Yi, S., Ulsoy, A. G. and Nelson, P. W. (2006). Solution of systems of linear delay 

differential equations via Laplace transformation. In Proc. 45th IEEE Conf. on 

Decision and Control, San Diego, CA, 2535-2540. 

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2007a). Survey on analysis of time delayed 

systems via the Lambert W function.  Dynamics of Continuous, Discrete and Impulsive 

Systems (Series A), 14, 296 - 301.  

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2007b). Delay differential equations via the 

matrix Lambert W function and bifurcation analysis: Application to machine tool 

chatter.  Mathematical Biosciences and Engineering, 14, 355-368. 

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2008a). Eigenvalue and sensitivity analysis for a 

model of HIV-1 pathogenesis with an intracellular delay. Proc. ASME Dynamic 

Systems and Control Conf., Ann Arbor, MI 2008, pp 573-581. 

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2008b). Controllability and observability of 

systems of linear delay differential equations via the matrix Lambert W function. IEEE 

Trans. Aut. Cont. vol. 53, pp. 854-860.  

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2010a). Feedback control via eigenvalue 

assignment for time delayed systems using the Lambert W function. Journal of 

Vibration and Control,16, 961-982..  



 123 

Yi, S., Nelson, P. W., and Ulsoy, A. G. (2010b).  Robust control and time-domain 

specifications for systems of delay differential equations via eigenvalue assignment. 

ASME  J. Dyn. Syst. Meas. Cont , 132(2). 

Yi, S., Ulsoy, A. G. and Nelson, P. W. (2010c). Design of observer-based feedback 

control for time-delay systems with application to automotive powertrain control. 

Journal of the Franklin Institute, 347 (1), 358-376. 

Yan, P., and Ozbay, H. (2008). Stability analysis of switched time-delay systems. SIAM 

Journal on Control and Optimizations, 47, 936–949. 

Zhang, Y., Liu, X., and Shen, X. (2007). Stability of switched systems with time delay. 

Nonlinear Analysis: Hybrid Systems, (1) pp. 44-58. 

 


