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ABSTRACT

Three Essays in Environmental Economics and Applied Econometrics

by

Erik Paul Johnson

Co-Chairs: Paul N. Courant and Ryan M. Kellogg

In the first chapter of this dissertation, I estimate the long-run price elasticity of sup-

ply of renewable electricity generating capacity using the variation in state mandates

for renewable electricity production. These mandates require electricity providers

to purchase a predetermined fraction of their electricity from renewable sources and

typically increase annually in each state. Using the variation that these mandates in-

duce in generating capacity, I use an instrumental variables strategy to estimate the

price elasticity of supply. My estimate of 2.7 translates into a cost of carbon dioxide

abatement of at least $12 per ton of carbon dioxide. This cost of abatement is six

times more expensive than the cost of carbon dioxide abatement from the Regional

Greenhouse Gas Initiative.

The second chapter, written jointly with Paul Courant, David Mendez, and Ken-

neth Warner, conducts a benefit-cost analysis on the Environmental Protection Agency’s

guidelines for residential radon remediation. We use an agent based approach that

adds important dimensions of heterogeneity to the analysis. This allows us to es-

timate the likely capitalization of the capital cost of remediation technology into

housing prices. We find that most households are better off by not paying the annual

x



cost of remediation and that only the least mobile households with smokers in high

radon concentration houses would undertake the capital cost of remediation. Since

only a small fraction of the population values radon remediation, our model suggests

that approximately 10% of the capital cost is capitalized into the resale value of the

house.

The third chapter examines the finite sample and distributional properties of the

nested fixed point algorithm. Starting from the basic setup described in John Rust’s

1987 paper, I simulate data sets with varying sizes and distributional assumptions

on the unobserved component of the model. I find that even in sample sizes of up

to 8,000 observations, the nested fixed point algorithm can display finite sample bias

and variances substantially larger than the theoretical asymptotic variance. This is

also true with departures from distributional assumptions, with the mean square error

increasing by a factor of 10 for some distributions of unobserved variables.
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CHAPTER I

The Price Elasticity of Supply of Renewable

Electricity Generation: Evidence from State

Renewable Portfolio Standards

1.1 Introduction

Renewable energy has become a prominent policy issue at both the state and

federal levels. Many states have adopted policies aimed at promoting the growth of

renewable electricity within their state to decrease carbon dioxide (CO2) emissions,

most prominently through a renewable portfolio standard (RPS). An RPS is a man-

date that retail electricity providers purchase a specified fraction of their electricity

sales from renewable sources. A typical RPS is passed by a state legislature a few

years before the first year retail providers are required to meet the standard to allow

new renewable capacity to be built. RPSs usually begin with a requirement that

approximately one percent of electricity be produced by renewable sources and in-

crementally increases over a 15-25 year period. For example, Massachusetts’s RPS

requires retail providers to demonstrate initially that one percent of their electricity

sales come from renewable generation with the amount of required renewable elec-

tricity increasing by between one-half and one percentage points in every subsequent

year. The end goal for Massachusetts’s RPS occurs in 2020, when 15% of electricity

1



sales must come from renewable sources. (See Figure 1.1 for example timelines.) If

a retail provider fails to meet its requirement in a given year, it must pay a penalty

proportional to the the difference between the target and the amount of renewable

electricity it purchased.

In 1997, three states had renewable portfolio standards (Iowa, Massachusetts,

and Nevada) whereas by the end of 2009, 35 states had passed an RPS into law.

(Figure 1.2 displays the number of states adopting RPSs in a given year and Figure

1.3 displays which states have passed RPSs.) Since the electricity sector accounts

for 42% of CO2 emissions nationally, RPSs may have the ability to substantially

decrease CO2 emissions. However, there has been little quantitative examination of

the effectiveness or the cost of CO2 abatement from RPSs, particularly accounting

for heterogeneity in state policies.

This paper estimates the long-run price elasticity of supply of renewable generation

capacity by using state RPS implementation schedules as an instrument for changes

in the price received by renewable electricity generators. The price elasticity is an

important parameter for policy makers since many states have introduced aggressive

RPSs to increase the share of renewable electricity sold in their state, but policy

makers are unlikely to have empirically based estimates of the cost of these policies.1

I find that the price elasticity of renewable electricity capacity is approximately 2.7.

Using my estimates of the long-run supply price elasticity, I calculate the cost of

exclusively using an RPS to decrease the carbon dioxide emissions in the northeastern

US. This elasticity suggests that the cost of abating an equivalent amount of CO2

from an RPS in the northeastern US is between six and fourteen times larger than

the costs of CO2 abatement under a regional cap-and-trade program (the Regional

Greenhouse Gas Initiative). I estimate the marginal cost of abatement for a 1%

1There are some cost estimates of a federal RPS in the literature, for instance see Palmer and
Burtraw [32], but these estimates come from simulation models of the electricity sector rather than
empirically estimating the response to policies.

2



reduction in CO2 emissions to be between $12 and $35 per ton of CO2 compared with

a price near $2 for the cap-and-trade program.

To identify the long-run supply price elasticity of renewable generating capacity,

I use variation from the prespecified RPS implementation schedules. The incremen-

tal changes in demand for renewable generation from the implementation schedules

create an exogenous change in the demand for renewable electricity. These changes

provide me with an instrument for the price renewable generators receive for electric-

ity, allowing me to consistently estimate the elasticity of supply.

In order to correctly measure the changes in demand for renewable capacity due

to RPSs, I develop a measure of the strength of the incentives created by a particular

state’s RPS. This measure is different than what has been used in most previous

work on RPSs. Menz and Vachon [24] and Adelaja and Hailu [4] use cross-sectional

data to examine the effectiveness of RPSs in promoting the development of wind

generators.2 However, both of these papers treat all RPSs the same by estimating

the effect of RPSs on new capacity using a simple indicator for a state having an

RPS. Both papers find that RPSs are correlated with a greater presence of wind

generators in that state, but they cannot establish any causal link due to their cross-

sectional approaches. In fact, Lyon and Yin [23] suggest that a large wind potential

in a state increases the probability of that state passing an RPS, which suggests the

causality may go the other direction. Powers and Yin [33] do account for much of the

heterogeneity in policies and adopt a measure of the RPS requirement similar to this

paper’s measure. By using their preferred method of incorporating this heterogeneity,

they find a significant impact of RPSs on the share of renewable generation. In another

related paper, Kneifel [20] uses panel data on state renewable capacity and attempts

2There are also a few qualitative assessments of RPS policies. Wiser, Porter and Grace [43]
examine many of the policy design issues associated with RPSs and identify broad principles that
could be considered best practices. Langniss and Wiser [22] also do a qualitative assessment of the
Texas RPS and suggest that it has likely been an effective driver of renewable generation development
in Texas.
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to discern which of the variety of renewable electricity policies are most effective at

increasing in-state renewable electricity capacity.

The papers mentioned above, with the exception of Powers and Yin, assume that

all RPSs create identical incentives for wind generators regardless of how difficult the

policies are to meet. This is clearly not a valid assumption, given the heterogeneity in

the difference between the state RPS statutory requirements and the amount of new

renewable capacity needed to met the RPS. For instance, the first year that Pennsyl-

vania’s RPS was implemented, the state had more than enough renewable capacity to

meet the requirement; whereas the first year that Delaware’s RPS was implemented

enough new renewable generation had to be built to power approximately 2% of the

state’s electricity demand. The difference between the statutory RPS requirement

and incentives for new renewable generating capacity can be seen in Figure 1.1. The

light blue bars display the statutory requirement, and the dark red bars show the

percent of electricity that must be generated by new sources due to the the RPS.

Importantly, and in contrast to previous work, I aggregate each state RPS to the

regional level weighted by the state’s consumption, since this is the level at which

most RPSs create incentives for wholesale generators. RPSs create incentives for all

renewable generators in the region since RPSs can be met with renewable capacity

anywhere in the wholesale market. The requirement effectively makes each state’s

RPS policy an incremental increase in the region’s RPS requirements. Without ac-

knowledging that state RPSs are actually regional policies, the previous estimates

of the impact of RPSs on renewable generation are biased toward zero since the ef-

fective control group in the differences-in-differences estimation is contaminated by

neighboring states’ policies.

My price elasticity estimates help to inform estimates of the excess burden of

CO2 reductions from RPSs since they are not a first-best policy. In a recent paper,

Holland, Hughes, and Knittel [17] show under general conditions that policies that

4



govern the rate of pollution, rather than the level (CO2 emissions per megawatt hour

rather than total CO2 emissions) cannot be efficient. An efficient (first-best) policy

can be described where the price is equal to the marginal cost plus the marginal

damages from the externality, as in the case of a Pigouvian tax or a cap-and-trade

program.

However, one reason state politicians may prefer an RPS to a cap-and-trade pro-

gram, even though it is not a first-best policy, is that it is harder for firms to avoid the

requirements of an RPS than a cap-and-trade program. RPSs are a regulation that

is hard for firms to avoid since they apply to the electricity sold, not produced, in a

particular location.3 There is a large literature examining the extent to which firms

avoid environmental regulation by moving production to other jurisdictions, typically

called leakage. (See Fowlie [14] for a discussion of these issues.) Since leakage is

unlikely to be a problem for an RPS but may be under a cap-and-trade program, my

estimates of the excess burden from an RPS can be interpreted as the excess cost to

avoid leakage.

The remainder of the paper is organized as follows. In the next section I discuss

the details of RPSs, electricity markets, and the dimensions on which there is het-

erogeneity in RPS policies. In Section 1.3 I develop a model to ground our thinking

about renewable generating capacity investment. In Section 1.4, I discuss the empir-

ical methodology I use and the key variables. Section 1.5 describes the data I use to

to examine RPSs. Section 1.6 discusses my results which is followed by a discussion

of the policy implications of my estimates in Section 1.7. Section 1.8 concludes.

3To the extent that renewable electricity increase electricity prices and residents and business
locate in a state based on electricity prices, there will be some leakage in these policies. However,
for all but the most electricity intensive industries this is likely not to be a problem.
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1.2 RPS Policy Background

Renewable portfolio standards have become increasingly common over the past

twenty years. The first law resembling an RPS was passed in Iowa in 1983. The

Iowa law required the state’s two investor-owned utilities to install a combined 105

megawatts (MW) of new renewable generating capacity. After this law, very little

legislation was passed at the state level relating to the fuel mix of electricity generators

until 1997 when Massachusetts passed its RPS. This was done as part of the electric

utility restructuring legislation whereby electric generating capacity was separated

from retail operations of electric utilities.4

The RPS requires retail providers to purchase an increasing fraction of their elec-

tricity from renewable generators beginning in 2003. After Massachusetts, many other

New England and Mid-Atlantic states followed suit.5 By December 2009, 35 states

had passed an RPS. Figures 1.2 and 1.3 show the number of states that passed and

RPS in a given year and the spatial distribution of when RPSs were passed.

Among the 35 states that have passed RPSs in 2009 some of those states do not

have a restructured electricity market. In states that do not have a restructured elec-

tricity market, the state public utility commission tends to have substantial influence

over the fuel mix of the vertically integrated utilities it regulates since new capacity

projects must be approved by the public utility commission and utilities are guaran-

teed rate of return on their new capacity. This may make a state’s RPS superfluous

if the state has vertically integrated utilities. This is one reason I will focus only on

states that have restructured electricity markets in this paper.

Though all RPSs are passed by state legislatures, nearly every RPS is actually a

regional policy since most states simply require that the renewable electricity used

4In a restructured electricity market electricity generators are owned by separate firms from retail
providers that sell electricity to end users. This model is in contrast to a vertically integrated utilities
that both sell to consumers and produce electricity from generators they own. Section 1.2.1 will
discuss this in more detail.

5This was usually done as part of restructuring legislation or shortly afterwards.
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to meet the requirement be generated within the wholesale market and wholesale

electricity markets contain multiple states. Figure 1.4 shows the New England, PJM

and New York wholesale markets.6,7 Therefore I will aggregate all of the state RPSs

in a region into a single regional requirement. I restrict my attention in this paper

to states with a restructured electricity market and a transparent RPS compliance

mechanism. This restriction allows me to observe the price renewable generators

receive for their electricity. The rest of this section will discuss restructured electricity

markets and important dimensions of variation and then how RPSs work in practice.

1.2.1 Restructured Electricity Markets and Renewable Energy Credits

States with restructured electricity markets have three main types of market ac-

tors: wholesale electricity generators, retail electricity providers, and end consumers.

In restructured electricity markets, firms typically can only be a wholesale generator

(and therefore own generating capacity) or a retail provider. This is in contrast to

the market structure that was common prior to the 1990’s where retail electricity

providers were vertically integrated with wholesale generators, thus owning generat-

ing capacity and selling electricity to consumers.

The restructuring process broke up these vertically integrated firms into retail

providers and wholesale generators and created a wholesale electricity market where

generators and retail providers submit bids to sell and buy electricity. These markets

are operated by a regional independent system operator that makes sure supply and

demand in the electricity market balance in real time.

In addition to selling electricity into the wholesale market, generators that use

6The only states that require the renewable generation be located in the state are states that are
a wholesale electricity market unto themselves, including Texas, California, New York, and Hawaii.
Texas and Hawaii have their own electricity grids, while New York and California have their own
Independent System Operators, thus making the state the natural unit of observation.

7The regions I will examine in this paper are the New England ISO, comprised of Connecti-
cut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont; the PJM control region,
which includes Delaware, Maryland, New Jersey, Pennsylvania, Virginia, West Virginia, and parts
of Illinois, Indiana, Michigan, and Ohio; and the Electric Reliability Council of Texas (ERCOT).
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renewable sources also create a renewable energy credit with every megawatt hour

(MWh) of electricity produced. Renewable energy credits (RECs) are a pure financial

product (in most markets) that retail electricity providers are required to purchase

to show compliance with a state’s renewable portfolio standard.8 Typically a REC

describes the attributes of the electricity that was produced such as the location of

the generator, the fuel that was used, and the date that the electricity was produced.

Using this information, retail providers can purchase RECs that qualify to meet a

particular state’s RPS. At the end of the year, retail providers retire the RECs that

they have purchased to meet the RPS to the state regulator.

In order to ensure that retail providers comply with RPS requirements, nearly

all states have set up a system of fines for retail providers that are short of their

required number of RECs. These fines, generally called alternative compliance pay-

ments, effectively set a price ceiling in the market for RECs. If a retail provider has

not purchased their required number of RECs, the alternative compliance payment

specifies a dollar amount per megawatt hour that the retail provider must pay to the

state. The level of the alternative compliance payment is usually determined by the

state’s public utility commission and is generally above the market price for RECs,

giving retail providers an incentive to purchase RECs instead. Some states explicitly

link the alternative compliance payment to a multiple of the market REC price, while

others such as Massachusetts re-evaluate the penalty every few years to make sure

the price is still above the market price for RECs. In many states, retail providers

end up paying relatively few fines. For instance, in 2003, Massachusetts collected less

than 1% of the RPS requirements through alternative compliance payments.

These RECs provide a second stream of revenue for renewable generators. Since

8California requires retail providers to enter into long term contracts with renewable electricity
producers to purchase both the electricity and RECs to fulfill the state’s RPS obligation. This
requirement was lifted by the California Public Utility Commission in March 2010. California retail
providers may purchase unbundled RECs to fulfill the RPS requirement in a limited amount in 2010
and 2011, with the market becoming completely unrestricted in 2012.
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the average cost of renewable generation tends to be higher than that of fossil gener-

ation, the revenue from selling RECs encourages new renewable generating capacity

to be built. The total price renewable generators receive for each megawatt hour of

electricity is the price of the electricity plus the price of the REC.

1.2.2 Variation in State RPSs

Most states’ RPSs have a final goal for their RPS by 2020 or 2025, usually between

10 and 30 percent of electricity sales, but the RPS is phased in over time. For instance,

Massachusetts’ end goal is for 15% of electricity sales to come from renewable sources

by 2020, but interim requirements begin in 2003 at 1% of sales and increase by 0.5% or

1% every year until 2020. Other states have more aggressive schedules by increasing

their renewable requirement by a larger amount every year while other states have

large jumps in their requirements, such as California which has a requirement of

20 percent in 2019, and 33 percent in 2020. The light bars in Figure 1.1 shows

a representative sample of RPS implementation schedules. These implementation

schedules provide the variation across time that will allow estimation of the supply

elasticity.

Another important dimension along which state polices differ is the treatment of

how retail providers are required to comply with the policy mandate. In nearly all

states, all retail electricity providers comply with an RPS policy by retiring renewable

energy certificates (RECs). Some states require that the renewable electricity used

to meet the RPS be produced within the state,9 while most other states just require

that the generator that produced the electricity be part of the regional transmission

organization so that, in theory, the electrons from the renewable electricity were in

the same system. These geographic requirements attempt to get around the problem

9The states that require RPS generation to be within their borders are Hawaii, Iowa, North
Carolina, New York, and Texas.
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of creating a simple reshuffling of electricity purchases. 10

State RPSs also vary as to which fuels that each state considers eligible to meet

the RPS. While they generally include generation from sources such as wind turbines,

solar (both photovoltaic cells and solar thermal sources), biomass (such as wood or

wood waste), landfill gas, and small hydroelectric generation, some states also consider

fuels such as municipal solid waste as renewable. In order to encourage specific types

of fuels or to encourage a larger set of fuels, some states have created multi-tiered

RPSs. Table 1.1 shows the fraction of states with an RPS that include each fuel type

in the first tier of its RPS, the average carbon emissions per unit of heat input from

using that fuel, and the average size of generators for each fuel. I will focus only on

the first tier of each state’s RPS since they provide stronger incentives to renewable

generators (through higher prices for the RECs).

Each state must decide how to treat the renewable electricity generating capacity

that exists when the RPS law is passed. Many states allow all existing renewable

capacity for wind and solar generators to produce RECs that qualify to meet the

state’s RPS, but treat generators that use other fuels such as landfill gas, municipal

solid waste, and especially hydroelectric facilities differently depending on when they

were built and/or last modified in a substantive way. Most states consider hydropower

installations that are smaller than 30 MW to qualify for the RPS. However, sometimes

incremental additions to larger installations will not qualify for the RPS. Also, some

10Bushnell, Peterman, and Wolfram [9] show that local, consumer-based policies can be circum-
vented by a simple reshuffling of buying/selling pairs. For instance, consider an example where there
are just two states with a common wholesale electricity market: state A has passed a 10% RPS and
state B does not have an RPS. Moreover, assume that state B has enough renewable capacity to
meet state A’s RPS requirement, while state A does not have any renewable generating capacity.
Before the RPS was enacted in state A, both states’ retail electricity providers purchased all of their
electricity from within their respective states. (Since there is a common wholesale electricity market,
the electricity prices are equalized across states.) However, after the RPS is enacted, the retail elec-
tricity providers in state A switch to purchasing electricity from the renewable generators in state
B and retail providers in state B switch to purchasing electricity from non-renewable generators in
state A. Thus, state A’s RPS has only resulted in reshuffling the buying/selling pairs and failed to
increase the fraction of renewable generating capacity as a whole. As this example illustrates, this
may be a major drawback of state level policies such as RPSs that interact with a interstate market.
However, geographic requirements restrict the amount of reshuffling that is possible under an RPS.
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states allow existing generators to meet only a fraction of the RPS requirement while

new generators must meet the rest.

I have incorporated all of these important dimensions of heterogeneity into my

empirical work and ensured that all of the facilities in my data that are eligible to

meet an RPS requirement are actually eligible under the RPS rules of at least one

state in the region. The next section will introduce a basic model of investment

electricity generating capacity which will guide my empirical work.

1.3 Model

In this section I develop a model of investment in electricity generating capacity to

illustrate the effect an RPS has on the incentives of electricity producers. The model

provides the basic intuition of how policy can affect generating capacity decisions and

motivates my empirical specifications.

Consider a representative firm deciding whether to invest in new generating ca-

pacity. For the power plant to be profitable, the revenue the generator produces over

its lifetime must exceed its capital and operating costs:

T∑
t=0

βt E[ptqt] ≥ K0 +
T∑
t=0

βt
(
mt + E[ftqt]

)
(1.1)

where pt is the price of electricity at time t, qt is the quantity of electricity the

generator provides at time t, K0 is the initial capital cost of the generator, mt is the

variable operating and maintenance costs associated with the generator at time t, ft,

is the fuel cost at time t, T is the number of years of the useful life of the new capacity,

and β is a discount factor.11 In equilibrium this condition holds with equality. This

11This profitability condition abstracts away from any payments that generators receive for par-
ticipating in ancillary service markets where generators may be paid to be on standby, ready to
produce electricity if called upon by the market operator. Typically renewable generators are not
eligible to participate in these markets due to the unpredictability of wind and solar generation.
However, an increase in the amount of wind and solar generators participating in the electricity
market will cause an increase in demand for standby capacity services from fossil generators.
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equilibrium is graphically depicted in Figure 1.6, with the long-run supply curve for

renewable generation (right axis) separated from the long-run supply curve for fossil

generation (left axis). When demand is perfectly inelastic I can show these supply

curves on the same figure with the length of the horizontal axis showing the total

quantity of electricity demanded (inelastically).12 The vertical line shows the fraction

of demand that is met with fossil generating capacity versus renewable generating

capacity. Since retail providers have no preference over the fuel used for electricity,

the equilibrium fraction must be at a point where the price is equalized across types

of generators.

A new generator will enter the market when there is sufficient excess quantity

demanded over the life of the generator such that inequality 1.1 holds. (This is

depicted graphically by lengthening the horizontal axis, necessarily increasing the

market clearing price.) Two ways to induce generators to enter the market are to

decrease the cost of the capital investment or to increase the price the generator will

receive for its electricity over the new capacity’s life span. These two levers have

been used by the federal government to induce more renewable generators to enter

the market in the form of the Investment Tax Credit and the Production Tax Credit,

respectively.

Renewable portfolio standards also induce renewable generators to enter the mar-

ket by shifting the fraction of demand that is met with renewable sources to the left

within the figure. This is not a change in the total electricity demand but a change in

the composition of production. This change causes a wedge in the price for electricity

since renewable generators must receive a higher price for their electricity to build

capacity. The price wedge resulting from the RPS is shown in Figure 1.7. The price

renewable generators need to receive for their electricity to enter the market is pr,

but the equilibrium price given the number of generators in the market is pe, so the

12This assumption is for convenience in the depiction of the wholesale market. The model does
not need this assumption and is relaxed in the empirical work in the rest of the paper.
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difference is made up by the price of the REC:

pREC = pr − pe (1.2)

Expanding equation 1.2 to show the total electricity price, the profitability con-

dition in equation 1.1 becomes:

T∑
t=0

βt E[(pet + pRECt )qt] ≥ K0 +
T∑
t=0

βt
(
mt + E[ftqt]

)
(1.3)

for renewable generators. Renewable generators consider the price path of both the

price of electricity and the price of RECs when considering entry decisions. So long

as the price of RECs is expected to be greater than zero, renewable generators have

an additional incentive to enter the market. Notice also that entry decisions depend

on the flow of revenue to the generator over the life of the generator, not just the

contemporaneous revenue.

The profitability condition implies that each generator has a critical (total) price at

which it will enter the market. Therefore, as contemporaneous prices and expectations

about future prices change we see generators entering the market consistent with the

profitability condition.

We can derive a supply curve for renewable generators by aggregating each firm’s

decision about whether to enter the market. Each generator enters the market if their

profitability condition holds. Thus, the total new generating capacity in the market

at time t is:

Qt =
∑
i

I
[ T∑
t=0

βt E[(pet + pRECt )qt] ≥ Ki +
T∑
t=0

βt
(
E[mit + ftqit]

)]
(1.4)

where i indexes generators.13 Notice that there is a generator-specific capital cost,

13Note that the same condition holds for fossil generators, except their expectations over the price
of RECs do not enter their profitability condition.
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and each generator can expect a different amount of output. These two terms ra-

tionalize why we observe some renewable generators in existence in areas without a

binding RPS. Consider a wind developer looking at potential locations to install a

wind turbine. Not all locations are of equal value to the developer due to the fact

that the wind blows at different speeds and different times at each location. Sites

where the wind blows more frequently, all else equal, will be worth more to the devel-

oper since the turbine will create more electricity and has a marginal cost near zero.

Thus, the best locations will be developed first with each subsequent wind turbine

being placed in marginally inferior location, necessitating a marginally higher price

for the electricity generated by that turbine to make it profitable. This suggests that

existing renewable capacity satisfies the profitability condition in equation 1.3, but

that as demand for renewable capacity increases, renewable generators will need to

receive a higher price for their electricity. Thus, the upward slope of the supply curve

is driven by heterogeneity in the value of locations and capital costs.

In order to aggregate across generators, I need to make several assumptions. The

main assumption in the aggregation is that all generators have the same expectations

over the trajectory of prices (electricity and RECs) over the life of each generator.

With this assumption, I can rewrite the equation 1.4 as

Qt = f(pet , p
e
t+1, ..., p

e
t+T , p

REC
t , pRECt+1 , ..., pRECt+T ) + δXt (1.5)

where Xt is a set of variables capturing the other factors that effect a generator’s

entry decisions such as fuel costs.

This equation suggests that I can estimate the price elasticity of supply of re-

newable generation using the familiar log-log specification by regressing the log of

quantity of new renewable capacity on the log of price and other factors that affect

entry decisions. However, this presents the traditional problem of simultaneous equa-
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tions bias since price and quantity are determined by the intersection of supply and

demand. Since, price is an endogenous regressor, I need an instrument for the price

that renewable generators receive to consistently estimate this equation.

1.4 Empirical Strategy

In order to estimate the long-run price elasticity of supply of renewable capacity,

I use the implementation schedules of state RPSs as an instrument for the price that

renewable generators receive for their electricity and then use the predicted change

in price in a second-stage regression to estimate the price elasticity of renewable

generation. RPS implementation schedules provide me with an exogenous change in

the demand for renewable generating capacity that can instrument for the changes in

price that renewable generators receive. RPS implementation schedules are typically

written into the original RPS legislation and increase the RPS requirement each year

that the RPS is in effect until the end goal is met. Because these schedules are

incremental changes in demand that are not determined at the same time as the

price, and therefore are not correlated with unobserved supply shocks, they are a

good instrument for the total price that renewable electricity generators receive for

their electricity.

This leads to a way to estimate the the long-run price elasticity of supply for the

renewable generators. Each new RPS requirement increases the demand for RECs,

increasing the wedge between the price that renewable and fossil generators receive

for electricity. Importantly, the change in demand that I observe in the REC mar-

ket comes from the RPS legislation, making the variation more plausibly exogenous.

Thus, I can separate the change in total electricity price renewable electricity gener-

ators receive due to the RPS from other market forces to trace out the supply curve

of renewable generating capacity and estimate the price elasticity of supply.
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1.4.1 Estimating Equations

My model suggests two natural estimating equations to estimate the long-run

price elasticity of supply. The first-stage equation estimates the price response to

an exogenous change in the demand for RECs. The demand for RECs change in a

predictable way due to the implementation schedule of each state’s RPS. As derived

in section 1.3, new renewable generating capacity should respond to the entire flow

of payments over the life of the generator. To capture this variation I use a measure

of changes in RPSs’ stringency averaged over the next five years.14 This leads to a

first stage equation of the following form:

log(ptotalit ) = βlog(RPS Requirementit,t+5 years) + δXit + αi + γt + εit (1.6)

where the αi’s are region fixed effects, the γt’s are year and month fixed effects, and

Xit’s are a set of controls for other policy variables that may effect the incentives of

renewable generators. The region level fixed effects absorb time invariant differences

across regions such as differential renewable generating potential, as Lyon and Yin

[23] suggest may be important in the decision to adopt an RPS. The year and month

fixed effects absorb differences across time that are constant across region. These are

important since over our period of examination various federal tax incentives have

taken effect (and occasionally not been renewed immediately) such as the Investment

Tax Credit and the Production Tax credit that affect the financial desirability of

building renewable generation. For a discussion of the history of these policies and

their consequences see Metcalf [25], Wiser et al. [41], and the Joint Committee on

Taxation [3]. I also include a group of other policy variables in both estimating

14I will discuss how this variable is constructed in Section 1.4.3. The results are not sensitive to
the choice of a five year average. The results are similar for averages up to 10 years of the RPS
requirement, though are noisier the longer the time period that is averaged. All of the specifications
have also been estimated using the future requirements instead of an average. The results are
identical in these specifications too.
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equations, Xit, to control for other policies that affect the incentives for renewable

electricity providers unrelated to RPSs. These variables allow for a more isolated

estimate of the effect of only the RPS.15

As discussed in Section 1.3, generators should be making entry decisions based on

the time path of prices, not just contemporaneous prices. In order for the identifi-

cation strategy to identify the long-run price elasticity, generators must also forecast

that today’s REC prices will persist into the future, and therefore that the RPS, as

written, will persist into the future.

It is likely that these conditions are met for a number of reasons. Firstly, all states

allow RECs to be saved for use in future compliance periods. Typically, RECs can only

be saved for between two and five years, but so long as there is not a large oversupply

of RECs for a sustained period of time older dated RECs can be retired for compliance

while the newer dated RECs are re-banked. Because of this banking feature of RECs,

the contemporaneous price should contain all information and expectations at the

future prices of RECs. Therefore we should observe generators responding to the

contemporaneous price since it is also a signal about future prices.

The second stage equation that will give us an estimate of the price elasticity of

supply takes the following form:

log(RenewableCapit) = β ̂log(ptotalit ) + δXit + αi + γt + εit (1.7)

where the αi’s are region fixed effects, the γt’s are year and month fixed effects, and

Xit’s are a set of controls for other policy variables as in the first stage.

1.4.2 Which States get RPSs?

In order for the instrument of RPS stringency to be valid, it must not enter the

supply equation except by entering through the demand equation. The implementa-

15These other policy variables are discussed in detail in Section 1.5.4.
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tion schedule may indeed enter the supply equation if, for instance, states that have

more renewable generating potential choose to adopt RPSs. This would cause me

to overestimate the effects of RPSs since those states are also likely to develop more

renewable generation capacity than other states even in the absence of an RPS.

Upon casual observation of the dates at which various states adopted their RPS

policies, this doesn’t seem to be a particularly large problem. (See Figure 1.3 for

a description of when each state passed their RPS.) Some of the states with the

largest renewable potential from both wind and solar are in the Plains states and the

Southwest. While many of the states in the Southwest do indeed have RPSs they are

not uniformly early policy adopters. Conversely, most of New England and the North

Atlantic states have adopted RPS policies, some being among the first adopters but

do not have a large renewable generating potential.

Moreover, many of the first adopters of RPS policies adopted their RPS as part

of the electricity restructuring legislation. The electricity restructuring legislation

in many of these states was a major piece of legislation that separated the retail

and wholesale electricity markets, making the latter market a “deregulated” market,

usually with plans to make the retail electricity market a competitive, unregulated

market in the future. Most of the deregulation of the electricity markets were moti-

vated by high retail electricity prices in the state and generally a group of states in

a region deregulated the wholesale electricity market at similar times. There is very

little reason to believe that the deregulation legislation is correlated with unobserved

covariates that affect renewable electricity capacity.

Lyon and Yin [23] empirically examine which states get RPSs. Their findings

suggest that wind potential in the state increases the probability of RPS adoption

(though not potential in other fuels that are typically included in RPSs such as solar

or biomass). This will not be a problem for me since I will be controlling for this

variation through my region level fixed effects.
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Lyon and Yin also find that high local pollution levels, as measured by the fraction

of the population living in counties that are designated as “nonattainment” under

the Clean Air Act, increase the probability of adoption of an RPS as well as some

evidence that organized renewable energy lobbying groups increase the probability

of adoption. In contrast to Rabe’s [34], [35] qualitative examination, they also find

that a state’s unemployment rate decreases the likelihood that a state will adopt

an RPS. Rabe [35] finds that states often emphasize the potential economic benefits

of RPSs such as creating “green” jobs or gaining a competitive advantage as a first

mover in renewable energy technology, but this does not seem to be a driving factor

empirically as measured by the unemployment rate. These papers give me confidence

that RPS adoption is likely to be uncorrelated with many of the unobservables that

would invalidate the instrument. Moreover, since RPS policies affect neighboring

states as well as the states in which they are passed, they are even less likely to be

correlated with in-region unobservables.

Since my instrument for changes in demand for renewable capacity is not just

the beginning of an RPS in the region, but also the implementation schedule that

each RPS follows, the implementation schedule must be uncorrelated with in-region

unobservable characteristics. Two main concerns come to mind when considering the

exogeneity of the RPS implementation schedules. First, states that are early adopters

of RPSs may have particularly aggressive implementation schedules, either due to a

strong desire to promote renewable electricity generation or because they have a lot

of renewable resources that can be exploited.

A second concern about the exogeneity of RPS implementation schedules is that

states that have a lot of renewable generating capacity at the time the RPS is passed

will have more aggressive implementation schedules. Since more aggressive implemen-

tation schedules likely lead to higher REC prices sooner, existing renewable generators

clearly have a lot to gain by lobbying state legislatures for more stringent require-
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ments. This lobbying may happen since more stringent requirements will lead to

higher REC prices and this is a windfall profit for generators that find it profitable

to operate in the absence of selling their RECs.

Both of these concerns can be addressed empirically by examining the state imple-

mentation schedules. Since most RPSs follow a nearly linear implementation schedule,

I estimate the slope of the implementation schedule by regressing each schedule on a

time trend. I then examine the correlation between these slopes and variables that

address the concerns raised above about the endogeneity of implementation schedules.

To address the first concern that early adopter states have more aggressive imple-

mentation schedules, I regress the slope of the implementation schedule requirements

(in MW of required new capacity) on the year that each state’s RPS went into effect.

The coefficient on the year the RPS went into effect is not statistically different from

zero with a coefficient of -7.7 and a standard error of 17.7. The point estimate sug-

gests that early adopters require an extra 8 MW of renewable capacity each year of

an RPS but is clearly not statistically different from zero (p = 0.67). Moreover, an

additional requirement of 8 MW per year is a relatively small difference given that

the average increase in RPS requirements is 166 MW per year.

To address the second concern that states with a larger renewable sector before

RPS passage will have a more aggressive implementation schedule, I regress the slope

of the implementation schedule on the renewable capacity in that state at the time of

RPS passage. The coefficient is not statistically different from zero with a coefficient

of 0.18 and a standard error of 0.11. This suggests that the implementation schedules

are not a function of the renewable interests already established in a particular state.

This may be because many states choose “round” numbers for both their end goal,

such as “20% renewable electricity by 2020,” and a linear implementation schedule.

Likely, these end goals are less amenable to manipulation by pressure groups and

since the intervening years’ requirements are essentially a linear interpolation back
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through time, the implementation schedule is not changed much by pressure groups.

Another concern about my approach is that the RPS policies may spill over into

other regions that do not have RPSs or less stringent RPSs. However, there are likely

only very small spillover effects in my setup since the unit of observation is a regional

electricity market. Many states publish a list of all of the approved generation facilities

that are eligible to produce RECs that meet the state RPS. While occasionally there

are power generators located in states not included in the wholesale power market, a

vast majority of the approved generation facilities are indeed located in states in the

wholesale power market.

1.4.3 Key Variables

The primary variable of interest in the first stage regression is a variable con-

structed to measure the stringency of a particular state’s RPS. Most states, with the

exception of Iowa and Texas, set their RPS goals out as a percentage of electricity

sales, measured in megawatt hours (MWh). For instance, Michigan’s RPS, passed in

2008 calls for 10% of each retail provider’s electricity sales to come from renewable

sources by the end of 2015 with a phase-in period beginning in 2012. The first chal-

lenge we face is converting an RPS goal stated in MWh16 to our capacity data in MW.

One megawatt hour of electricity is created simply by a 1 MW facility producing at

full capacity for one hour. This means, in theory any facility’s nameplate capacity (in

MW) can be converted into a yearly capacity in MWh by multiplying the nameplate

capacity by 8760(= 24× 365) hours.

However, generators do not run the entire year since they must be shut down for

maintenance and may choose not to operate for any number of reasons, including

bidding in a price that is higher than the market clearing price in a particular hour.

Plants that are almost always producing are usually large coal and nuclear plants that

16RPS goals are usually stated as a fraction of electricity sales, measured in MWh. Thus, it is
simple to convert percentage goals into MWh.
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operate between 85%-90% of the time (capacity factor of 85%-90%). Other plants

are built to only operate a small fraction (as little as 1% or less) of the time, when

the demand (and hence price) for electricity is at its peak. These generators tend

to use natural gas since they can bring themselves up to full capacity quickly. Wind

generators typically have a capacity factor near 35% [45] since wind is an intermittent

resource. For the purposes of our main analysis, I assume that all new plants have a

capacity factor of 40% since most of the needed capacity to meet RPSs is expected

to be wind but some of it will be met with fuels that can have a significantly higher

capacity factor [42].17

In order to correctly measure the incentives of these policies I first need to con-

struct a variable to measure the eligible megawatt hours of renewable generation for

state i at time t.

RPSCapMWhit =
∑
f∈F

RPSCapMWitf × 8760× AvgCFf (1.8)

where f is a particular fuel and F is the set of all eligible fuels. RPSCapMWitf is

the sum of nameplate capacities of all generators in state i at time t for fuel f , and

AvgCFf is the average capacity factor for fuel f .18 I set AvgCF, the average potential

capacity factor for a particular fuel, equal to 0.4 for wind and solar generators and

0.8 for all other generators.

Returning to the Michigan example, in order to figure out how hard this goal

is to reach, I must consider how much eligible renewable capacity already exists in

Michigan to meet the RPS. Some states have RPS implementation schedules such

that during the first few years of the RPS, the whole requirement can be met with

existing generating capacity.19 As mentioned above, each state treats existing capacity

17Figure 1.5 shows that it is indeed the case that most of the change in generating capacity over
the last few years has been in wind capacity.

18Capacity factor is the fraction of hours in a year that a generator is producing electricity.
19This means it is possible for an RPS to create zero incentive in some or all years. For instance,
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differently. Since Michigan allows existing renewable capacity to be eligible to meet

the RPS, to compute the incentives created by the RPS, I subtract the eligible capacity

at the time the RPS was passed from each year’s RPS requirement.

Using the amount of renewable generating capacity at the time the RPS was

passed, I calculate the RPS stringency measure in megawatts as,

Stringencyit =
RPS Req.it × ConsumpMWhit − RPSCapMWhi0

8760
× 1

AvgCF
(1.9)

This stringency measure will be our key independent variable as it capture much of

the heterogeneity across state policies and I expect the coefficient on it to be positive

and significant.

After computing these variables on the state level, they are aggregated up to

the regional level by weighting them by each state’s electricity consumption share in

the region.20 Moreover, since I am using price data in the second stage, I need to

limit my sample to regions that have a robust wholesale electricity market and REC

market. Thus, I will be focusing on three regions of the country: New England, the

Mid-Atlantic states in PJM, and Texas.21

The final I need to construct is the complete price that renewable generators

receive for the electricity they produce. As mentioned above, there are two revenue

streams for renewable generators under an RPS: the revenue from each megawatt

Maine passed an RPS in September 1999 that had a final goal that was less than the existing eligible
capacity within the state. Subsequently, in 2006 Maine passed another RPS that only new renewable
facilities were eligible to meet the requirement. This is the RPS we consider for Maine in this paper.

20The weights are computed using a state’s consumption share in 2003 to keep them across time.
Changing the weights to the contemporaneous consumption share in each region does not change
the results.

21I exclude California from the analysis because until recently, there was not a market for RECs
since the California Public Utility Commission required retail providers to purchase both renewable
electricity and its attributes (essentially RECs) together via bilateral (private) contracts. Therefore,
there is not a market price for RECs to use in the second stage. I exclude Midwest states since there
is not a developed market for RECs. I also exclude New York since the New York State Energy
Research and Development Authority (NYSERDA) centrally procures the RECs for the entire state’s
commitment through an annual bidding process. It is not clear that this processes elicits the same
price due to possible market power on behalf of the NYSERDA.
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hour of electricity they sell into the electricity market and the revenue they receive

from each REC associated with each megawatt hour of electricity that retail providers

retire at the end of each year to comply with the RPS. This means that the complete

price for renewable generators is

ptotalt = pelectricityt + pRECt . (1.10)

1.5 Data

To estimate the empirical models, I use data on all existing electricity generators

and production from the Energy Information Administration (EIA). I collect data

on REC prices from public utility commission reports and electricity price data from

independent system operators of wholesale electricity markets. Data on central policy

variables are aggregated from the North Carolina State University’s Database of State

Incentives for Renewables & Efficiency.

1.5.1 Generation Capacity Data

The Energy Information Administration annually surveys all electricity genera-

tors to collect basic data for each electric generating unit in the United States. All

generators that have a potential capacity of at least 1 megawatt, are connected to the

electric power grid, and are able to deliver power are required to fill out form EIA-

860. The data files include information about each generator including its capacity,

all fuels used during that year, the year and month the generator began operation,

the year and month of retirement, the city and state that the plant is located in, and

basic information about the owner.

Though these data are reported annually to the EIA, they can be translated into

monthly data on total generating capacity since the data report the first month of

operation for each plant. I use the data reported in these surveys from 1999-2007.
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In these data, each generator provides detailed data on the type of fuel used during

that year for electricity generation, including up to six or more fuels that were used.

I consider the first fuel listed as the generator’s primary fuel.22 For the purposes

of this paper, I aggregate these fuels into 17 categories. Most of the fuels that are

lumped into the same category are different types of coal, petroleum products, and

various waste products. None of these fuels are considered to be renewable in any of

the RPSs and therefore this aggregation should not affect the results.

1.5.2 Electricity Sales and Production Data

In order to translate a RPS requirement that is usually in terms of percent of

sales of electricity and to create each state’s weight in the region I use data from

the Energy Information Administration’s state historical tables on electricity sales.

These data report the total megawatt hours sold in the entire electric industry for a

given state in a given year. I also use data on electricity generation aggregated to the

state×year level by the EIA. These aggregate data are based on another survey the

EIA conducts, EIA-906.

1.5.3 Price Data

Data on the wholesale price of electricity were collected from each Independent

System Operator’s (ISO) web site. ISOs publish data on the market clearing price

of electricity for many locations in each region for every hour of the day. Where

available, I use the published regional weighted average price for each hour and then

average the price over each calendar month. Some ISOs do not publish a regional

electricity price, instead only publishing data for each location in the ISO. Where this

is the case, I take a simple arithmetic mean of the prices across all locations to form

22Only one-third of plants report using two fuels, and less than 5 percent report using more than
two fuels. Of the plants that list using two fuels, only 6 percent of generators that are categorized as
using a renewable fuel list a non-renewable fuel as their second fuel, concentrated among generators
that are categorized as biomass, landfill gas, and municipal solid waste.
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an hourly regional price and then average this mean over the entire calendar month.

In order to compute the complete price that renewable electricity generators re-

ceive for their electricity, I need to add the price of renewable energy credits (RECs)

to the price of the electricity. I have collected average annual prices for RECs in every

state that allows RECs to be purchased separately from electricity. These prices are

gathered from public utility commission documents or other agencies administering

a state’s RPS.

The raw price data for REC prices can be seen in Figure 1.8. The state REC prices

exhibit distinctly regional variation confirming that the market for RECs is indeed

regional. Much of the within-region variation is due to some temporary state-level

policy uncertainty and small variations in eligible fuels, as well as small variations in

which generators are certified in which state.

1.5.4 Policy Variables

The policy variables are constructed from information compiled at North Carolina

State’s Database of State Incentives for Renewables & Efficiency (DSIRE). DSIRE

has cataloged all state incentives for renewable energy including the date they were

enacted, when and if they were modified, as well as many details about each policy.

Where necessary, this information was supplemented by consulting the actual state

statutes.

The variables that were constructed include the date that a particular renewable

energy policy was passed by the legislature, when the policy began to bind (if differ-

ent), and the implementation schedules for RPSs. In addition, information for each

RPS regarding what fuels are eligible to meet the requirements, and in some cases

maximum capacities for eligible facilities, were taken from this database.

In addition to collecting data on state RPSs from DSIRE, I collect data about

other policies that have been implemented in some states that could change the
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incentives for renewable electricity generators. These policies include:

• Net metering: This type of legislation requires that electricity meters “run

backward.” If a customer has installed generation equipment on site (usually

a photovoltaic solar panel) that produces more electricity than a customer is

currently consuming, the excess electricity is fed back onto the grid and the

customer’s electricity bill is credited the retail electricity rate for each kilowatt

hour. (See Borenstein [8] for an analysis of these policies.) This net metering

may provide an additional incentive for electricity customers to invest in their

own generating capacity and then sell the RECs from this generation.

• Public Benefits Fund: In many states with competitive wholesale electricity

markets, retail electricity providers are required to levy a surcharge on all rate

payers to remit to the state government. This money is often used for energy

efficiency programs, to help finance renewable energy projects including trans-

mission and distribution projects, and to assist low-income rate payers. Since

these funds partly subsidize renewable generation, they are controlled for in the

regressions.

• Government Purchases of Green Electricity: Some state governments

have committed themselves to purchasing a share of their electricity from re-

newable sources. Since governments are large customers, this may (and is pre-

sumably hoped to) affect the amount of renewable capacity. Though both gov-

ernment purchases of green electricity and RPSs require retail providers to retire

RECs in the amount of the green purchases, the RECs retired are not counted

toward a retail provider’s RPS requirement.

• Mandatory Green Power Option: Some states have passed legislation that

requires retail electricity providers to offer their customers an option to purchase

green electricity. Retail providers are allowed to charge extra for providing this

electricity. These customer purchases generally are explicitly forbidden from
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counting toward the RPS requirement. These policies may, however, increase

renewable capacity if a sufficient number of customers sign up for these pro-

grams.

Table 1.2 displays summary statistics for the policy variables listed above. The

top panel displays summary statistics after aggregating state policies to the region

level, and the bottom panel displays the RPS requirements during my sample period

for individual states. These bottom statistics correspond to the values of the light

blue bars in Figure 1.1.

Just over half of the region-months in my sample have an active RPS in the region,

with a mean renewable requirement of 0.6% renewable generation and a maximum of

2.5%. The mean RPS requirement, conditional on an RPS being enforced, is just over

1% of electricity consumption coming from renewable generation. Taking a look at

the state-level data, I observe just 20% of state-months in our sample with an active

RPS, with an average requirement of 1.7% renewable generation, conditional on an

operational RPS.

1.5.5 Data Restrictions

As discussed before, there are many dimensions of heterogeneity across state RPSs.

In order to simplify my analysis, I will only consider the first tier of each state’s RPS.

Typically, if a state has multiple tiers to its RPS, the second, third, and fourth tiers

allow a greater degree of flexibility for fuels that have higher carbon emissions per

unit of heat input. Tiers two and below tend to include fuels such as municipal solid

waste or large, existing hydroelectric facilities. (Some states with a single tiered RPS

include these fuel types in the RPS.)

If a particular fuel counts for both tier one and tier two in a state, I attribute all

of the capacity from facilities using that fuel to fulfilling the first tier of the RPS.

Compliance RECs for the first tier are uniformly more expensive than compliance
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RECs for other tiers (with the exception of states with a solar photovoltaic tier), so

this assumption is likely consistent with firm incentives [44]. To the extent that not

considering these other tiers of RPSs biases my results, the results should bias the

elasticity toward zero. This is because I may be excluding some renewable facilities

that may have been built in response to an RPS.

I also do not examine the solar photovoltaic (PV) tiers of state RPSs. Usually

if a state has a specific tier for PV, it is the only fuel in that tier. These tiers

usually have small requirements, since PV is an expensive way to produce electricity.

Moreover, most PV installations are excluded from my data since only generators

over 1 megawatt are required to report to the EIA. PV installations tend to be less

than 0.1 megawatts, since many of these installations are on the roofs of residential

or commercial buildings.

1.5.6 Aggregation

Aggregating state policies to a regional policy is relatively straightforward. Each

state’s RPS requirement is weighted by the fraction of electricity consumption that

the state accounts for in the region. Thus, if a region consists of three states, state A

consumes 50% of the electricity in the region and states B and C each consume 25%

of regional electricity. If state A passes an RPS that requires 2% of the electricity sold

in that state, the region then is assigned an RPS requirement of 1% (= 2%×50%). In

the following year, state A’s requirement increases to 3% and state B introduces a 1%

requirement so the region’s RPS requirement is then 1.75% (= 3%×50% + 1%×25%).

The other state level policy variables (public benefits funds, green power options,

etc.) are aggregated in a similar fashion to this, except each variable is simply an

indicator for each state, so the variables take on the cumulative fraction of electricity

consumption in the region covered by those policies.23

23For simplicity, the weights used are calculated as the state’s fraction of consumption in the
region during 2003. This keeps the policy and RPS variables weakly monotonic across time. It is
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1.6 Results

The results from the first stage regression are displayed in Table 1.3. Column 1

begins by simply regressing the logarithm of the total price for renewable electricity

(electricity price + REC price) on the logarithm of the average effective RPS re-

quirement for renewable capacity in that region over the following five years.24 As

mentioned above, the average requirement is used since it is correlated with future

stream of payments over the lifetime of the generator.

We see that the measure of the stringency of an RPS is statistically and econom-

ically significant. Column 2 allows each type of control policy to have a one-off effect

in the region once any state adopts it. Column 3 instead adds control variables that

can take values between zero and one depending on the fraction of electricity con-

sumption in the region that is covered by one of the policies. Column 4 allows for both

a one-off effect in the region and an increasing effect over time as more states in the

region adopt these policies. This flexible specification makes sense intuitively, since

I would expect that the more expansive these policies are, the larger in magnitude

the effect should be. The point estimates for the excluded instrument, the average

stringency of the RPS over the next five years, are relatively stable across columns.

Examining the other coefficients in Column 4, the coefficients match my intuition

about the direction of the effect. I expect a positive effect on REC prices from gov-

ernment purchases of green power since this increases the demand for green power

without decreasing the demand for RECs. Most states do not allow green power

purchased through government purchases, to count toward retail providers’ REC ful-

fillment obligations; instead these purchases simply add buyers into the green elec-

tricity / REC market. I also see that public benefits funds tend to reduce the price

unlikely that generators can accurately predict the small variations in electricity consumption across
regions for them to take these fluctuations into account. Changing the year used for the weights or
using contemporaneous weights do not change the results.

24All specifications are robust to the number of years over which the effective requirement variable
is averaged.
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of RECs. Again, this matches our intuition since often the money collected in public

benefits funds is used to subsidize the construction of renewable generating facilities,

thus reducing the price needed to make the facilities profitable.

The last row of each column shows the F-statistic of a test that the excluded

instrument in the regression is zero. All four columns reject the null that both coeffi-

cients are zero at all usual levels of confidence. This gives confidence moving forward

that the instruments are indeed relevant.

All standard errors in this table and the second stage regressions are estimated us-

ing Newey-West heteroskedasticity and auto-correlation robust standard errors. The

number of lags included in the auto-correlation estimation was chosen using the pro-

cedure suggested by Newey and West [29].

Table 1.4 displays the results from the second stage regression that estimates the

price elasticity of supply for renewable electricity generators. The variable of interest

in this set of regressions is the first row, ̂Log(Total Price). This is the predicted price

of RECs in the region given the shift in demand induced by the stringency of the

state RPS estimated in the first stage. Though the elasticity estimates vary across

specifications, the preferred estimate in Column 4 is between the other estimates,

which allows the other policies to enter in multiple ways.

Column 1 shows a baseline specification without any additional controls, with

Columns 2-4 progressing to a full set of flexible controls for other policies aimed at

renewable generators. The preferred estimate in column 4 of the price elasticity is

2.714. Thus, for every 1% increase in the price of RECs, there will approximately

a 2.7% increase in renewable generating capacity. In the next section I will use this

estimate to bound the cost of focusing on reducing greenhouse gas emissions through

only an RPS-style policy.

31



1.7 Policy Implications for RPSs as a CO2 Abatement Tool

In this section, I use my estimates of the long-run supply elasticity of renewable

generating capacity to estimate the cost of decreasing carbon dioxide emissions in

states covered by the Regional Greenhouse Gas Initiative by pursuing carbon dioxide

reductions exclusively through an RPS.

The Regional Greenhouse Gas Initiative (RGGI) is a cap-and-trade program es-

tablished in the northeastern United States to reduce greenhouse gas emissions from

electric power plants to 10 percent below (approximately) 2005 levels by 2018. There

are currently ten states participating in RGGI, including all of the states in the New

England wholesale electricity market, New York, and parts of the PJM wholesale

electricity market.25 In these states, RGGI regulates all fossil fuel fired electricity

generators in the 10 states that have a capacity of 25 megawatts or more. Each

quarter, new emissions permits are auctioned with approximately 70% of the auction

proceeds being invested in energy efficiency and renewable generation projects.

The states in RGGI had a total of 184 million tons of carbon dioxide emissions

from the electricity sector in 200526 [1]. Beginning in 2009 and continuing through

2014, carbon dioxide emissions are capped at the baseline level of 188 million tons.

Beginning in 2015, the carbon dioxide cap is reduced by 2.5% annually until the final

goal is met after 2018 when carbon dioxide emissions are reduced by 10% from the

original cap. Under the RGGI cap-and-trade program, emission reductions are most

likely to come from using a different mix of fuel to produce electricity (more natural

gas and renewable sources, less coal) and energy efficiency investments. This suggests

that the carbon price in the RGGI market provides a good cost estimate of reducing

25The ten states currently participating in RGGI are: Connecticut, Delaware, Massachusetts,
Maryland, Main, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. The ma-
jor states in the PJM wholesale electricity market that are not participating in RGGI are Ohio,
Pennsylvania, Virginia, and West Virginia.

26The baseline level of carbon dioxide emissions that the RGGI reductions are based on is 188
million tons of CO2.
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greenhouse gas emissions in the electricity sector through ways that differ from an

RPS’s exclusive reliance on switching production to renewable sources.

It is important to note when comparing the cost of CO2 abatement from these

two policy instruments that the each cost includes slightly different components.

Firstly, because RGGI is taking place in states that already have renewable portfolio

standards, the cost of carbon abatement from RGGI does not include the cost of CO2

abatement from any emissions reductions that take place because of the RPSs. Thus,

we would expect the cost of RGGI permits to be slightly lower than they would in a

world where there is only a cap-and-trade program.

Secondly, the source of the CO2 reductions is different under and RPS and RGGI.

Since most of the emission reductions in RGGI come from switching fuel, they are only

as permanent as RGGI is. In contrast, since RPSs create new generating capacity,

the CO2 reduction benefits will continue to accrue without an RPS in place so long as

the operating costs of the generators are lower than the price for which the electricity

is sold. For instance if all RPSs were repealed today, generators would likely suffer a

large loss on their capital investment but would still find it profitable to operate if they

have a low marginal cost of electricity production (and the capital has a sufficiently

low scrap value.)

I will examine two different levels of carbon reduction produced by a northeastern

RPS, a 2.5% reduction of 2005 CO2 levels and a 10% reduction of 2005 CO2 levels, to

compare to the cost of carbon dioxide abatement through RGGI. In order to estimate

the cost of carbon dioxide abatement under an RPS, in addition to knowing the price

elasticity of supply or renewable generation that I estimated in the previous section,

I need to make a few assumptions. Whenever possible, I will make assumptions that

will make an RPS look as favorable (lowest cost of carbon dioxide abatement) as

possible so my estimates will be a lower bound on the cost of CO2 abatement under

an RPS.

33



First, I need to make an assumption about what fossil fuel the new renewable

capacity will be displacing. As can be seen in Table 1.1, coal is the fuel that emits

the most amount of CO2 per unit of heat input at 215 pounds of CO2 per million

British Thermal Units (MMBTU). Therefore, to make an RPS look as attractive as

possible, I will assume that each megawatt hour of renewable generation produces

no carbon dioxide and replaces a megawatt hour of coal production.27 To the extent

that renewable generation produces carbon dioxide or displaces generation other than

coal, an RPS would have a higher cost of carbon abatement than I estimate.

Secondly, I need to assume a capacity factor (the fraction of the year that a

generator produces electricity) for the new renewable generation built to meet the

RPS. As discussed above, a capacity factor of 85% is in the upper range for fossil

generation and 35% is relatively high for wind generation. I assume a capacity factor

of 40% for all new renewable generation that is built for the RPS. This acknowledges

that most of the renewable generation being built in response to RPSs are wind

turbines, but some is likely to be from other sources with a higher potential capacity

factor such as biomass and landfill gas generation.28

Finally, I need to assume something about how the demand for electricity changes

in the future. I will assume that electricity consumption does not change from the

amount consumed in 2005. Likely, electricity consumption will grow between now

and 2015 (the first year that the RGGI CO2 cap is decreased).29

In 2005, the total renewable generating capacity in RGGI states was 2,932 megawatts.

27For renewable resources, such as wind, that are not completely predictable, there is some carbon
emissions from using these sources since more generators need to be on standby in case the electrical
output is less than expected. Compounding this, usually these standby generators need to ramp up
their output quickly which creates higher than average emissions per MMBTU consumed. I abstract
from both of these issues.

28Another renewable source that is included in nearly all RPSs is solar photovoltaics (solar cells).
However, these typically have a capacity factor near 15% and are currently too expensive to be
deployed on a large enough scale to make a significant contribution to renewable capacity.

29Electricity consumption has grown by approximately 2.75 million megawatt hours annually in
the northeast between 1990 and 2008. Electricity consumption in the northeast in 2005 was 278
million megawatt hours.
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If every megawatt hour of renewable generating capacity displaces a megawatt hour of

coal generation, a 40 percent increase in renewable generating capacity would achieve

a 2.5% decrease in CO2 emissions in RGGI. Using my preferred elasticity estimate of

2.7, this means renewable generators would need a price increase of 15% in order to

be profitable. Since the total price of electricity for renewable generators (electricity

price plus REC price) averaged $82 per megawatt hour, a 15% increase implies that

renewable generators would need to receive approximately $94 per megawatt hour to

be profitable. This implies a marginal cost of CO2 abatement of over $12.

A more reasonable assumption is that each megawatt hour of renewable electric-

ity produced replaces the carbon emissions of an “average” megawatt hour,30 which

requires a 68% increase in renewable generating capacity. The preferred elasticity

estimate tells us that renewable generators would need a 25% increase in price to

enter the market. This implies a marginal cost of CO2 abatement of $35 per ton of

CO2.

The final goal of RGGI is to reduce CO2 emissions by 10 percent from their 2005

levels. In order to achieve a reduction of this size from an RPS, there would need to

be a 163% increase in the renewable generating capacity in RGGI states. In order for

my estimate of the cost of CO2 abatement to be correct, the price elasticity has to be

correct for the entire supply curve. While I am comfortable making the assumption

that my price elasticity estimate is nearly correct for the smaller changes above, I am

hesitant to believe my estimate is correct for this large of an increase in renewable

capacity.

With this caveat in mind, I proceed to extrapolate the cost of CO2 abatement

from an RPS that reduces CO2 emissions by 10% from their 2005 levels. In order to

move that far up the long-run supply curve for renewable generation, the total price

renewable generators would need to receive for their electricity is $132, implying

30Average is defined as the total tons of CO2 produced by the electricity industry divided by the
number of megawatt hours consumed in a year.
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a marginal cost of CO2 abatement of $50. If instead of replacing coal generation,

renewable capacity replaced the “average” megawatt hour of generation, the marginal

cost of CO2 abatement to decrease emissions by 10% is $140. A summary of these

results can be found in Table 1.5.

These estimates of the marginal cost of CO2 abatement, ranging from $10 to $140

depending on how much carbon is abated and what fuel the renewable generation

replaces, are substantially higher than the expected cost of carbon abatement under

the RGGI cap-and-trade system. Currently the RGGI CO2 emissions permits being

traded and auctioned are for the years when CO2 emissions are capped at a level just

over 2005 CO2 emissions. However, since these permits can be banked indefinitely into

the future, they give us a window into the expected marginal cost of CO2 abatement

in the future. Currently the price of emissions permits are at approximately $2

per ton of CO2, and permits were trading at approximately $3 per ton of CO2 in

early 2009 with an average price of $2.50 per ton of CO2 over two years of trading.

Since permits purchased today can be used to comply with RGGI indefinitely into

the future, the current price is indicative of future CO2 abatement costs. Moreover,

the price of contracts for CO2 emissions permits in 2012 (the furthest ahead future

contracts are traded at the moment) is similar to the current price of CO2 permits

further suggesting that prices are not expected to increase.31

These results suggest that within the electricity sector, an RPS is an expensive way

to decrease carbon dioxide emissions, costing between six and seventeen times more to

reduce CO2 emissions by 2.5% than from a cap-and-trade program. Moreover, since

both RGGI and an RPS focus just on the electricity sector, the marginal cost of CO2

31RGGI has two mechanisms built into its structure to curb potential price volatility. If the
average price of CO2 permits is above $7 for a 12-month period, more permits are released and
generators are allowed to meet more of their obligations through offsets. If the average price of CO2

permits is above $10 for a 12-month period, a second mechanism is triggered and even more offsets
can be used to meet CO2 obligations. It is widely expected that neither of these trigger events will
happen, suggesting that it is unlikely that the the marginal cost of CO2 abatement is below $10 in
the electricity sector in the states in RGGI.

36



abatement in the economy as a whole is likely lower than either of these estimates

since there may be cheaper ways to decrease CO2 emissions in other sectors of the

economy.

1.8 Conclusion

This paper estimates the long-run supply elasticity of renewable electricity gen-

erating capacity. The price elasticity is an important parameter for policy makers

to know since many states have introduced aggressive RPSs to increase the share of

renewable electricity sold in their states. Also, the US Congress has considered leg-

islation on multiple occasions that would introduce a federal RPS. Since RPSs’ main

goal are to reduce carbon dioxide emissions, it is important to know the cost of the

carbon abatement from these policies relative to other ways that could reduce carbon

dioxide emissions.

In order to estimate this parameter, I use the policy variation in the the imple-

mentation schedule of renewable portfolio standards across states that have restruc-

tured electricity markets. Since most state RPSs can be met by renewable generation

located anywhere in the wholesale electricity market, I aggregate individual state

policies into region-level renewable portfolio standards. Each year, each state’s RPS

increases in its stringency, creating the variation that I use to estimate the the long-run

supply elasticity. In my preferred specification, I estimate that a 1 percent increase

in the total price received for renewable electricity (price of electricity plus the price

of the renewable energy credit) results in a 2.7% increase in the supply of renewable

generation.

Politicians appear to prefer using RPS policies to those of broader policies such

as cap and trade or a carbon tax. Part of the attraction is likely that the costs of this

method of carbon dioxide abatement are less transparent to voters. However, these

policies still come with a cost. My estimates suggest that the cost of abating the last
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ton of carbon dioxide from an RPS in the northeastern US to reduce emissions by

10 percent from their 2005 levels (approximately equal to a 6 percent RPS) would

cost between $50 and $140 per ton of carbon dioxide, depending on the type of fossil

generation that the renewable generation was replacing. My estimate for the cost

of CO2 abatement is more than 5 times more expensive than the maximum price of

CO2 under the regional cap-and-trade program for the electricity sector. Therefore,

residents would be paying a extremely high premium for carbon dioxide abatement

under RPSs, even though they appear to be more politically palatable policies.
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Table 1.3: First Stage Regression Estimates

Dependent Variable: Log(Total Renewable Electricity Price)
(1) (2) (3) (4)

Log(Average Stringencyt,t+5 years) 0.184∗∗ 0.268∗∗ 0.254∗∗ 0.298∗∗
(0.047) (0.062) (0.058) (0.068)

I(Green Power Option) 0.074 0.162∗
(0.061) (0.071)

I(Gov’t Power Purchase) 0.181∗ 0.108
(0.082) (0.097)

I(Public Benefits Fund) 0.192∗ 0.844∗
(0.086) (0.317)

Gov’t Power Purchase (Frac. of Consumption) 0.121∗ 0.103
(0.053) (0.066)

Public Benefits Fund (Frac. of Consumption) −0.081 −0.118
(0.075) (0.076)

Net Metering (Frac. of Consumption) 0.010 −0.031
(0.035) (0.038)

Observations 293 293 293 293
R2 0.57 0.59 0.58 0.59
F-test that excluded instrument equal to zero 15.61 18.64 19.05 19.36

OLS estimates. Estimates include region, year, and month fixed effects
as well as region specific trends. Standard errors robust to heteroskedas-
ticity and autocorrelation using the Newey-West method. * p<0.05, **
p<0.01
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Table 1.4: Second Stage Regression Estimates

Dependent Variable: Log(Renewable Generating Capacity)
(1) (2) (3) (4)

̂Log(Total Price) 1.810∗∗ 3.810∗∗ 1.732∗∗ 2.714∗∗
(0.520) (0.872) (0.412) (0.611)

I(Green Power Option) −0.269 −0.452
(0.257) (0.234)

I(Gov’t Power Purchase) 0.616∗ 0.763∗
(0.232) (0.238)

I(Public Benefits Fund) 0.072 −3.824∗∗
(0.383) (0.816)

Gov’t Power Purchase (Frac. of Consumption) 0.450∗∗−0.144
(0.090) (0.195)

Public Benefits Fund (Frac. of Consumption) 0.815∗∗ 0.750∗∗
(0.141) (0.202)

Net Metering (Frac. of Consumption) 0.424∗∗ 0.344∗∗
(0.070) (0.097)

Observations 293 293 293 293
First Stage F-statistic 15.61 18.64 19.05 19.36

OLS estimates. Estimates include region, year, and month fixed effects
as well as region specific trends. Standard errors robust to heteroskedas-
ticity and autocorrelation using the Newey-West method. * p<0.05, **
p<0.01

Table 1.5: Cost of CO2 Abatement From an RPS

Replace Replace
Coal Average Fuel

2.5% Reduction in CO2 Levels
Percent Increase in Renewable Capacity 41% 68%
Cost of CO2 Abatement $12.46 $34.82

10% Reduction in CO2 Levels
Percent Increase in Renewable Capacity 163% 273%
Cost of CO2 Abatement $49.86 $139.28

All CO2 reductions are measured from the 2005 baseline
levels, similarly to the Regional Greenhouse Gas Initia-
tive
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Figures

Figure 1.1: Statutory Renewable Requirements for Selected States
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Figure 1.2: Timing of Renewable Portfolio Standard Adoption
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Figure 1.4: Selected Wholesale Electricity Markets
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Figure 1.5: Capacity for Renewable Generation by Fuel
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Figure 1.6: Electricity Capacity Market without RPS
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Figure 1.7: Electricity Capacity Market with RPS
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CHAPTER II

Cost Effectiveness of Residential Radon

Remediation with Household Mobility

2.1 Introduction

The Environmental Protection Agency (EPA) has termed exposure to residential

radon ”probably the biggest public health problem we have,” causing from 7,000 to

30,000 lung cancer deaths per year [2]. Since 1986 the EPA has waged a series of

publicity campaigns, urging all householders to test for the presence of radon and to

reduce ambient levels of radon when airborne radiation from radon decay products

exceeds 4 picoCuries/liter (pCi/l). [13]. If universally adopted, such a program would

reduce exposure levels in about 5.7 percent of housing units, occupied by almost 5

percent of the population. The EPA has provided extensive technical analysis of and

support for their recommended course of action, including cost-effectiveness analysis

[2].

We re-examine the EPA’s recommendations using a model that incorporates much

of the important heterogeneity in the population. We find universal remediation of

all houses with ambient exposure above 4pCi/l (and, possibly, lower levels) would

pass a social benefit-cost test. However, we can imagine no conceivable set of circum-

stances under which there would be anything like general compliance with any action
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level other than an extremely high one, assuming that people truly understand their

individual risk and behave rationally. At 20 pCi/l, for example, an exposure level

that is five times the recommended level for remediation, found in less than 0.01 per-

cent of homes, there would not be universal compliance on the part of well-informed

households.

The failure of the voluntary action-level approach arises due to the interaction of

two phenomena, either one of which would cause difficulty. First, the remediation

technology of choice has both a capital component (sealing, plugging, and installing

fans) and an operating component (running and maintaining the fans). Households

that do not expect to be in their houses very long generally will not be able to recoup

the requisite capital investment unless it is capitalized into the price of the housing

unit. (For reasons that we discuss below, we expect capitalization to be much less

than 100 percent of the cost.) We estimate that with normal mobility, between 5 and

15% of the initial investment will be capitalized into the house price.

Second, even if operational fans were available in every house that had exposure

above any plausible action level, many well-informed households would choose not to

operate the fans, reflecting enormous variation in the benefits gained from doing so.

The variation in benefits derives from variation in four important characteristics of

households: the age, size, and smoking behavior of their members, and their subjective

valuation of expected life-years saved. Large households with young smokers will

derive relatively large benefits from turning on the fans; small households of elderly

nonsmokers will derive essentially no benefit. Because the remediation technology

requires that residents operate the system, only the most inconceivably draconian of

regulations (someone checking to see that the fans are on) could assure widespread

compliance with any action level.

The implication of our analysis is that policy (and the analysis of policy) must be

designed to take into account residential mobility, the heterogeneity of the population,
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and the consequences of radon-remediation technology for individual behavior.

Considering these factors, we conclude that the only way in which general instal-

lation of radon-reduction equipment will be undertaken is via government provision

or mandatory regulation. We also conclude that, depending on the action level and

on the distribution of willingness-to-pay per life-year-saved, a nontrivial fraction of

the radon-remediation equipment will not be operated in a given year. Assuming

that households are well informed about the risks, however, allowing them to choose

whether or not to operate the equipment increases, rather than reduces, the efficiency

of policies to deal with the health effects of residential radon.

This paper also adds to the economic literature on willingness to pay for pollu-

tion abatement and the capitalization of environmental amenities in housing values.

A large literature use housing market transactions to examine how various pollu-

tion abatement policies such as the Clean Air Act [12] and Superfund clean-ups [15].

Generally these studies tend to find small changes in housing values after a rela-

tively large change in environmental quality. In fact, Greenstone and Gallagher find

that Superfund clean-ups “are associated with economically small and statistically

indistinguishable from zero local changes in residential property values [and] prop-

erty rental rates.” [15]. However, our model suggests that this result may not be

particularly surprising if there is a high degree of residential mobility surrounding the

clean-up site. Their results may simply reflect a belief on the nearby residents that

the health risk from the polluted areas was sufficiently low if the exposure time was

sufficiently short. Thus, after the clean-up we would expect to see a change in the

rate of housing sales and likely a change in the distribution of ages surrounding a

clean-up site.

In the next section we describe the public health and economic models we use

to analyze the costs and effects of reducing residential radon exposure. In section

2.3 we describe the data we use to calibrate our models to estimate the behavior
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of households. In section 2.4 we discuss the results and intuition of our simulations

and in section 2.5 we discuss how varying our assumptions affect the outcomes of the

model. Finally, section 2.6 concludes.

2.2 Model

To evaluate radon-reduction policies we construct a model of individual decisions

about radon remediation and mobility. We use an agent based approach where each

individual has full information about the health effects of the current level of radon

in their house, their complete history of residential radon exposure levels, and their

(exogenous) probability of moving out of their current house. Furthermore, we assume

at the beginning of the simulation that each agent has done nothing in the past

to remediate residential radon in their homes. This is likely similar to the radon

exposure history for most of the US population since there has not been a large scale

program to encourage households to test their houses for radon and to encourage

radon remediation.1,2 In the rest of this section we will discuss the model we use

to estimate the health effects of radon exposure, then discuss the options that are

available to homeowners who want to reduce their radon exposure, and then the

economic model of agents’ behavior.

2.2.1 Effect of Radon on Health

Epidemiological studies of underground miners have documented that exposure

to high levels of radioactive radon gas can cause lung cancer. The risk of lung cancer

from radon can be calculated as a function of cumulative exposure over a person’s

lifetime. Being exposed to a higher concentration of radon in any year increases that

1If some households have installed remediation equipment and then moved, the new occupants
would also have to make the active decision to turn the installed fans on.

2If this assumption fails, it only affects each household’s exposure history of exposure which is
not the driving force in the model.
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person’s chance of developing radon induced lung cancer, though the effect from a

radon exposure in a particular year eventually fades over time.

There are strong interactions between radon induced lung cancer and smoking

induced lung cancer. People who are current smokers not only are 22 times as likely

to develop lung cancer from smoking than non-smokers, they are also approximately

six times more likely than non-smokers to develop lung cancer from equivalent levels

of radon exposure.

Exposure to residential radon is translated into lung-cancer mortality risk accord-

ing to the model described by the Commission on the Biological Effects of Ionizing

Radiation of the National Academy of Sciences [27]. This model is commonly referred

to as BEIR VI.

The BEIR VI model estimates the relative risk that an individual faces for radon

exposure based lung cancer as a function of their cumulative radon exposure, age,

and if they have ever smoked. The exact model is specified as:

RR = 1 + (Ψs=1s+ Ψs=0(1− s))(γ1w5−14 + γ2w15−24 + γ3w25+)

where RR is the relative risk of lung cancer from radon, s is an indicator equal to 1

for people who were ever smokers, wx1−x2 =
∑t−x1

t−x2 wt for radon levels w measured in

pCi/l, Ψ is an age and smoking status specific constant and γ1, γ2 and γ3 are weights

used to signify the decreased risk of radon induced lung cancer as the exposure date

fades into a person’s radon exposure history. Table 2.1 shows the numeric values for

the constants.3

3There are a few variants of this model described in the BEIR VI report. We use the same
coefficient values as the EPA so as to make the analysis comparable.
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2.2.2 Remediation Technology

The most prevalent method of remediating residential radon and therefore the only

type of radon remediation we consider in this analysis is Active Slab Depressurization

(ASD). ASD involves two steps. First, fans are installed in order to ventilate the

radon trapped in the area below the foundation slab to the outdoors, while holes in

the walls and floors are plugged and sealed. Second, the fans must be turned on,

maintained, and occasionally repaired. Running the fans uses electricity and also

increases the costs of heating a house [2]. Henschel [16] suggests that over 90 percent

of all residential radon remediations use ASD. Initial installation of ASD systems,

including testing, plugging and sealing, involves an average cost of $1200 with a

range of $800-$2,500.

Running the fans costs an average of about $125 per year for electricity and

increased heating costs.4 Annualized maintenance and testing costs, assuming testing

every five years, come to another $24. EPA assumes that the whole system lasts for 74

years, at which time it would have to be replaced. Over the 74-year life of the system,

total costs come to $5010 discounted at 3%. Note that for any plausible discount rate,

the up front costs are small compared to the present value of the operating, testing,

and maintenance costs.5

Provided that the fans are operating properly, ASD generally reduces radon expo-

sure to an average of 2pCi/l or less, regardless of the initial level of exposure.6 (With

4The EPA estimates a range between $75 and $175. [2]
5The EPA’s Technical Support Document [2] has somewhat higher costs, averaging $1684 in

upfront costs and annual costs of $150.75. However, $38.77 of their annual costs is annual radon
testing, which we find highly implausible, and many of the more expensive technologies that are
averaged into the initial costs are economically dominated by ASD. Moreover, other work [16] doc-
uments that ASD almost always provides high radon reductions, and is almost always the method
of choice. Thus, we conduct our analysis under the simplifying assumption that all remediation is
done via ASD.

62pCi/l is the average assumed by the EPA in the Technical Support Document [2] and the
amount used in this paper as the average exposure for remediated housing units. The ”or less”
reflects Henschel’s remark that ASD ”techniques provide high radon reductions, as high as 98 to
99+ percent.” [16] Except for a very few houses, such reductions would imply post-remediation levels
well below 2pCi/l. For our purposes, we accept EPA’s estimate of remediation to 2 pCi/l.
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only a few exceptions, this is true of all of the remediation strategies discussed by

the EPA [2] and by Henschel [16]). To some extent, the post-remediation level of

exposure depends on the characteristics of the house, but only slightly or not at all

on the pre-remediation level of exposure.7 The implication for cost-effectiveness is

straightforward: cost is approximately independent of the level of initial exposure, as

is post-remediation exposure. This implies that effectiveness increases almost linearly

with the initial level of exposure, so that cost-effectiveness will generally be greater

the greater is the initial level of exposure. A given reduction in exposure has the same

effect on health no matter what the initial level of exposure, but the higher the initial

level, the more reduction can by obtained at a given cost. Note that this does not

imply that only high-radon homes are worth remediating. It merely implies that the

net payoff to remediation is highest in homes with the highest initial levels of radon.

In the following analyses, we adapt the EPA’s conclusion that remediation will

reduce exposure to an average of 2 pCi/l to the more analytically tractable assumption

that all remediated housing units have exposure levels of exactly 2 pCi/l.

2.2.3 Behavioral Model

In this section we describe the economic model we use for a household’s decision

about whether to take action to remediate the ambient radon concentration in their

house. Our model allows households to be forward looking about their remediation

decisions and allows households to completely understand the health consequences of

their decisions.

Since all residents of a particular household are necessarily exposed to the same

radon concentrations, our model takes households as the relevant level of analysis.

7See Exhibit F-2 of the EPA’s Technical Support Document [2]. The Exhibit shows that the cost
of ASD generally varies with technical characteristics of the building foundation, but for all action
levels below 20 pCi/l cost does not vary with action level. Above 20 pCi/l, only ”Hard to Fix”
houses with basements, accounting for 16.5 percent of houses above 20 pCi/l (about 0.6 percent of
houses that would be remediated at an action level of 4 pCi/l) cost more than other houses that use
ASD, and the difference is $221.54 of initial cost.
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Therefore, we assume that the household maximizes over all members and that the

utility of the household is additive across periods. Thus, a household of two people

incur twice the health costs of a household with one individual. More restrictively,

we assume that the household has a particular smoking history instead of individuals

within the household having a particular smoking history. This means that all adults

in a household are current smokers, former smokers, or have never smoked. Moreover,

we assume that all households have two adult members, both of whom are the same

age. In addition to two adults, households contain between 0 and 5 children according

to the frequency of households with children in the US population.

We model household behavior assuming that agents have full information about

the health effects of radon exposure according to BEIR VI, the distribution of radon

in the current housing stock, the radon level in their current house, and their complete

radon history. Households are forward looking with respect to their probabilities of

leaving their current house and the likelihood of dying before next period.

At the beginning of each period, a household observes whether or not its current

house already has remediation equipment installed, the radon level in their current

house, as well as their age, smoking status (current smoker, former smoker, or never

smoker), the number of children living in the house, and everyone’s radon exposure

history (assumed to be the same for each member of the household).

After observing all of this, the household can choose whether or not to install

radon remediation equipment in the house and pay the cost of the installation, k,

or choose not to remediate the radon. If a household chooses in install remediation

equipment or the house already has remediation equipment installed, the agent then

chooses whether or not to use the remediation equipment. If the household uses the

remediation equipment and pays the associated cost, c, its radon exposure for that

period is assumed to be 2 pCi/l. If it chooses not to use the remediation equipment,

its radon exposure for that period is the ambient radon concentration in the house.
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See Figure 2.1 for a decision tree representing the choices.

The household will move in the next period with probability, δ. We assume that

a household’s decision to move is independent of its previous choices of purchasing

radon remediation equipment and the concentration of radon in their house. However,

if moving is endogenous to a household’s decision to remediate the radon in the house,

any investment that has already been made in remediation equipment is a sunk cost

and should not influence its decision to move or not in the current period.

We allow our model to take on different values for the probability of moving, δ,

and dying, λ, for different types of people. We define types of people, θ, by their age,

radon exposure history, number of children, and smoking status.

This model leads to two Bellman equations of the form:

V R
θ (r, a, z) = max{operate remediation fans, do not operate remediation fans} (2.1)

and

V NR
θ (r, a, z) = max{install remediation, do not install remediation} (2.2)

where V R
θ (·) is the value function for people who already have radon remediation

equipment installed in their house and V NR
θ (·) is the value function for people who

do not already have remediation equipment installed.

In order to specify what V R
θ (·) and V NR

θ (·) look like, we will first need to introduce

some more notation. Each period (assumed to be a year) households get flow utility,

u, from their house and discount the future using a 3% discount rate. Both adult

residents of each household are the same age, a, have between zero and five children

who are all 10 years old, and have the same smoking histories, s, (current, former,

never smokers). We assume that no one begins smoking before age 18 and that the

distribution of current, former, and never smokers are the population average for that

category at each age. Together age, number of children, and smoking status define a
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type, θ. Each household type, θ, has an exogenous probability of moving each year,

δθ, and a probability of dying during the year, λθ.

Each household knows the radon concentration of their current house, r, measured

in picoCurries per liter (pCi/l), as well as the distribution of radon in the housing

stock, f(r).8 We then define each household’s radon exposure history as a 25×1

column vector, w = wa, wa−1, wa−t, . . . , wa−25, where each entry is the cumulative

sum of radon exposure up to time a − t. This vector of radon exposure history, w,

along with current radon exposure, smoking status, and age determine the increased

probability of lung cancer from radon exposure, h(r, s, a, w), from the BEIR VI model

described above. Once we multiply the probability of lung cancer by the value of a

life-year, we can monetize the risk to the household. This monetized value allows

us to calculate if that household finds it worthwhile to install and/or operate radon

remediation equipment in its house.9

We assume that radon remediation equipment has a capital and installation cost,

k, and a yearly cost of running the fans and extra heating costs, c. We then define the

indicator variable, f = 1 if the household chooses to run the remediation fans. With

positive probability, p, if a household changes houses, that house will already have

remediation equipment installed in the house. In equilibrium, p will be higher for

homes with a higher initial radon concentration, but this doesn’t affect households’

behavior since we assume households’ choose a house independently of the radon

concentration.

This is identical to assuming that households do not sort into houses based on the

radon concentration. We think this is a plausible assumption for two reasons. First,

to the extent that searching for a house is costly (in terms of time and/or money)

8The density of radon concentrations (before remediation) in the housing stock can be ap-
proximated with a log-normal density, with mean 1.25 and geometric standard deviation, 3.11;
r ∼ logN(−0.42, 1.13). [28]

9Our central case for the value of a life-year is $300,000. We do a sensitivity analysis by using
life-year values between $100,000 and $500,000.
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households are unlikely to find a house that matches their preferences across all of

the search parameters. Therefore households will need to choose which variables in a

house are most important to them and weight each appropriately. Secondly, even in

a scenario where search is costless, the housing market in any particular geographic

region is unlikely to be thick enough in order for all households to be able to optimize

their housing choices with respect to all of their choice variables, again necessitating

a weighting of different housing attributes. We believe that it is unlikely that the

ambient radon concentration is likely to receive much weight in a household’s utility

function, particularly given that remediation costs are relatively low compared to

the purchase price of the house. This lack of perfect matching creates a situation

in which radon remediation equipment will be partially capitalized into the house

price.10 Figure 2.2 shows the probability, in equilibrium, that a house of a particular

radon concentration will have remediation equipment installed.

Households that have remediation equipment installed will be able to recoup part

of their capital expenditures on the remediation equipment through an elevated resale

value of the house. One of the important features of our model is that we can

estimate both the capitalization of remediation equipment into the housing value, π,

and the probability that a house will have remediation installed, p in an internally

consistent manner so that households make remediation decisions in part based on

these parameters. We will describe how we solve for these parameters in Section

10If however, households perfectly sorted into houses based on radon concentrations, we would not
expect to see any capitalization of radon remediation equipment, nor see any remediation equipment
installed. The intuition for this is that only those households that have a low cost of radon exposure
will move into high radon houses. Some households will have a low cost of radon either because
the household is old and will not experience the full effect of the current radon exposure before
they die, because it is a non-smoking household and therefore have a smaller health effect of radon
exposure, or because it is a young household that is likely to move again soon. If these three
groups of households with a low cost of radon exposure are not big enough to inhabit all of the
high radon houses we would see some capitalization of remediation equipment. However, the size of
the population that falls into one of these three groups far outweighs the number of houses with a
high radon concentration. Because we are assuming household are choosing houses independently
of radon concentrations, we will overestimate the capitalization of remediation equipment and the
fraction of houses that are remediated.
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2.2.3.2.

Given this notation, we can define V R
θ (·), the value function for households that

already have remediation equipment installed as:

V R
θ (r, a, w) = max

f∈{0,1}
u−

(
h(r, s, a, w,E[r′, w′])(1− f)︸ ︷︷ ︸

health cost of not running fans

−

h(2, s, a, w,E[r′, w′])f︸ ︷︷ ︸
health cost of running fans

)
−

cf︸︷︷︸
cost of running fans

+ λθ(1− δθ)βV R
θ (r, a′, w′)︸ ︷︷ ︸

value of staying in the same house

+

λθδθβpEr[V
R
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house with remediation

+

λθδθβ(1− p)Er[V NR
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house without remediation

+

(1− λθ)(0)︸ ︷︷ ︸
value of dying

(2.3)

and V NR
θ (·), the value function for households that do not already have remediation

equipment installed (either because the household has installed it in a previous period
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or moved into a house that already had it installed) as:

V NR
θ (r, a, w) = max

{(
u− h(r, s, a, w,E[r′, w′]) + λθ(1− δθ)βV NR

θ (r, a′, w′)︸ ︷︷ ︸
value of staying in the same house

+

λθδθβpEr[V
R
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house with remediation

+

λθδθβ(1− p)Er[V NR
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house without remediation

+ (1− λθ)(0)︸ ︷︷ ︸
value of dying

)
,

(
max
f∈{0,1}

uθ −
(
h(r, s, a, w,E[r′, w′])(1− f)−

h(2, s, a, w,E[r′, w′])f
)
− cf − πk + λθ(1− δθ)βV R

θ (r, a′, w′)︸ ︷︷ ︸
value of staying in the same house

+

λθδθβpEr[V
R
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house with remediation

+

λθδθβ(1− p)Er[V NR
θ (r′, a′, w′)]︸ ︷︷ ︸

value of moving to a house without remediation

+ (1− λθ)(0)︸ ︷︷ ︸
value of dying

)}
(2.4)

Note that for any variable x, x′ is next period’s realization of x. The age and smoking

specific probabilities of moving, δ, and dying, λ, can be found in Table 2.2 and Figure

2.3 respectively. Using value function iteration we can solve the system of equations

and then find each household’s optimal remediation policy function.

2.2.3.1 Types of Agents

Our model has three dimensions that define each type of agent without considering

the number of children in the household: age (between 20 and 110, inclusive), smoking

status (current, former, and never smokers), and radon exposure history11 (including

current period unremediated ambient radon level for a total of 26 dimensions). This

gives us a total of 28 state variables to integrate over to solve the model for each

household size.

11We use a 50 point grid of evenly spaced radon levels between 0 and 20 pCi/l. We have ex-
perimented with increasing the number of grid points to 100 which has very little effect on our
results.
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In order to solve our model we need to give each of our agents a history of radon

exposure. We first assign an agent to each radon×age×smoking status cells. (This

gives us a complete array of types in the r × a × s dimensions.) We then impute

a history, wx, for each of these agents conditional on finding the agent in that cell,

using age specific probabilities of having moved in the past and the level of radon in

the agent’s current house.

For instance, consider a 46 year old smoker who is currently living in a house with

a radon level of 10 pCi/l. With probability 0.907 they were exposed to that level of

radon when they were 45 (and with probability 0.093 had a randomly drawn other

radon level). When the agent was 44 they were exposed to a radon level of 10 pCi/l

with probability 0.773 (=0.907×0.852) from being in the same house, with probability

0.079 (=0.093×0.852) were exposed to the radon level from the house they may have

moved into when they were 45, with probability 0.134 (=0.907×0.148) received a new,

random radon draw when they were 44 because they moved that period, and with

probability 0.014 received a new, random radon draw when they were both 45 and 44

by moving two years in a row. The number of possible histories grows exponentially

with the number of lagged state variables (dimension of w). This gives us a total

possible number of types of agents of (dim(w))(grid size) × dim(age) × dim(smoking

status) ' 8× 1044 for each sized household. This is not a computable problem given

current computing technology.

The typical solution to this problem is to reduce the number of state variables in

the model. However, due to the fact that the BEIR VI model attenuates the effect

of cumulative past radon exposure over 25 years and our assumption of persistence

of radon concentrations in a household’s history, we are not able to condense the

number of state variables for the history of radon exposure concentrations, dim(w).

In order to get around this problem, we sample for the possible histories available

in the population and integrate over our subsample of histories (instead of integrating
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over all possible histories).12 We have run the simulation with a number of historical

types13 between 100 and 1,00014 and have found that the results do not seem to

be terribly sensitive to the number of historical types. We report the results of the

simulations with 1,000 historical types. Moreover, if people do not actually know their

complete radon exposure history, our simulation is capturing much of the important

variation by simply having a high likelihood of the previous few periods of radon

exposure correct since most of the 8× 1044 variations come from the exposure “tree”

splitting further in the past.15

2.2.3.2 Calculation of the Capitalization Value of Remediation Equip-

ment

In our economic model of households’ behavior, both the capitalization of re-

mediation equipment and the probability that an agent moves into a house with

remediation equipment already installed are determined endogenously.16 In order to

make these parameters endogenous, after each step in the value function iteration,

we calculate the proportion of houses that will have remediation and the probability

that each agent will move into that house next period. We assume that agents do not

choose houses based on either the ambient radon level or the existence of remediation

equipment at a particular house. We do not believe this is a particularly restrictive

assumption because the value of other amenities from a particular house are likely to

be far greater than the costs of installing remediation fans. Therefore, in the next step

12We assume that none of our agents engaged in any radon remediation behavior until the date
that the simulation started. Thus our distribution of radon concentrations across agents histories
reflect the distribution of radon in an unremediated housing stock.

13A historical type is a particular moving history for each type (radon×age×smoking
status×history×number of kids). Therefore, for each historical type we are actually solving the
dynamic programming problem for 50×91×3×6=81,900 types.

14We stop increasing the number of historical types at 1,000 due to computational size since the
matrices needed to be held in memory by the computer reach 1.1Gb.

15Table ?? lists all of the behavioral model parameters with a brief summary of each.
16In order to ensure that our value function iteration converged in under 1,000 iterations, we

rounded the capitalization percent to the third decimal place.
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of the value function iteration agents have the correct beliefs about these parameters

and make their decisions accordingly until we find the fixed point.

2.3 Data

In order to make our model operational, we use data on age specific death rates,

baseline lung cancer rates for current smokers, former smokers, and people who have

never smoked.

We also use data from the U.S. Census Bureau on age specific probabilities of

moving to inform our model [10]. From the age of 20 until 84, the probability of

moving decreases for each age group, from a maximum of 35.5% of 20-24 year olds

moving every year to a minimum of 4.3% of 65-84 year olds moving every year, with

just a slight increase in the probability of moving for people 85 years old and over.

All of the probabilities can be seen in Table 2.2.

We calibrate our model to match the age distribution in the US by using data

from the 2006-2008 American Community Survey [11]. A density plot of this data is

shown in Table 2.4.

2.4 Results

In this section we present the results in two separate sections. The first section

describes the results of our simulations while varying the value of a life year between

$100,000 and $500,000. Throughout section 2.4.1 we maintain the assumption that

each household is comprised only of two adults (and no children). In section 2.4.2, we

present the results of our simulations after relaxing the assumption that each house-

hold contains only 2 adults and no children. We present our results for simulations

that consider households to have between zero and five children in proportion to the

US population distribution of household size. However, throughout section 2.4.2 we
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fix the value of a life year at $300,000.

2.4.1 Simulations without Children

We present the results of our simulations in Tables 2.4 and 2.5. The first line

of Table 2.4 shows the capitalization percentage for each of our simulations, varying

both the value of a life-year and the number of household radon exposure histories

we consider. As mentioned above, our preferred estimate is from the simulation

with 1,000 household radon exposure histories. Within this row, the capitalization

values vary between 5% and 15% depending on the assumed value of a life-year. The

literature typically considers a life-year to be worth approximately $300,000. Under

this assumption the capitalization value of remediation equipment is 9.5% with 0.3%

of houses having remediation equipment installed in them. To add some context,

if houses with the highest 0.3% of radon concentrations had remediation equipment

installed, houses with ambient radon concentrations of 13.4 pCi/l and above would

have remediation equipment installed.17

However, as displayed in Figure 2.6 we can see there is significant variation in

household’s remediation decisions based on their age and smoking status. Figure 2.6

shows a contour plot of the policy functions for a set of agents with the same radon

exposure history. Each point on the plot represents an agent with a particular age and

current radon exposure, while holding the agent’s smoking status and radon exposure

history constant. The stalactite-shaped area protruding from the top of the each of

the graphs is the boundary between where an agent chooses to install and/or run

remediation equipment and fans in their house or not.18 The top row of contour plots

show the policy functions for agents who live in houses with remediation equipment

17A full 7% of the housing stock has a radon concentration above the current EPA recommended
action level of 4 pCi/l.

18We also allow for the possibility that an agent would want to install remediation equipment in
their house but not pay the variable cost involved with running the fans. Our simulations suggest
that this is never an optimal choice for an agent.
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already installed, either because they have installed it in a previous period or because

the house they live in had it installed when they moved in. The bottom row of contour

plots show the policy functions for agents who live in houses that do not already have

remediation equipment installed.

We first turn our attention to the bottom row of the contour plots. This row

of contour plots show the policy functions for households who live in houses that

do not have radon remediation equipment already installed. Thus, if the household

wants to influence the concentration of radon in their house they will need to install

the remediation equipment at a cost of $1,200 and then also pay the annual cost of

running the fans of approximately $125.

The stalactite in the two right-most figures delineates the age×radon concentra-

tion combinations where households find it worthwhile to install radon remediation

equipment and operate it. The size of the stalactite increases as we move from the left

picture in the figure to right picture of the figure. This shows that never smokers are

least likely to install remediation equipment and/or run the fans and current smokers

are the most likely to remediate the radon concentrations in their house. This fits

the fact that the largest health benefits of remediation accrue to current and former

smokers.19

We also see that the very young and very old people tolerate substantially higher

radon levels before purchasing or operating radon remediation equipment. These re-

sults come from two different sources of variation. The oldest people in our simulation

do not install or use radon remediation equipment because there is no health benefit

that accrues to them to offset the cost of installation or use. BEIR VI models radon

exposure as having no negative health implications until 5 years after the year of

exposure. Thus, in the limiting case, 105-110 year olds will never have any adverse

19Though the BEIR VI model does not distinguish between current smokers and former smok-
ers, these two groups have different baseline levels of lung cancer. These baseline levels drive the
difference in actions between the two groups.
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health effects of radon exposure during those years of their life since all of our agents

are projected to die before they reach 111 years old. This effect attenuates rather

rapidly as we examine the optimal policies of agents younger than 105. However, this

is the effect that is driving the steep slope of the boundary between the two policies

on that side of the contour plot.

On the left side of all of the graphs we see that young people tolerate substantially

higher radon levels before purchasing or operating radon remediation equipment. This

is due to the fact that young people move frequently and therefore will reap very few

benefits from installing remediation equipment. A young person (age 20-24) living in

a high radon house has a 1
3

chance of moving next year whereby they will be living

in a house that has an expected radon level of 1.25 pCi/l. Thus, in expectation, they

are likely to have a one or two year spike in their radon exposure which will be less

detrimental to their health than if they were exposed to that concentration of radon

for the next 10 years. However, since the probability of moving falls by over 300%

between the ages of 29 and 45, we also see that the incentive to install and/or operate

remediation equipment increases dramatically with age.

Tables 2.4 and 2.5 display the trough point for each of contour plots (averaged

across all radon history types). We see that the trough generally occurs near the

age of 50 with an action level greater than 5 pCi/l depending on the smoking status

of the household. These households are the most likely to directly benefit the most

from their investment in remediation equipment since they only have a 1 in 10 or 1

in 15 chance of moving in an particular year. Thus, the capitalization value of the

remediation equipment plays a substantially smaller role for these households than

the younger households. Moreover, these households are likely to live long enough to

capture the most of the health benefits of reducing their radon exposure.

We now turn our attention to the top row of contour plots in Figure 2.6. This row

shows the contour plot of the policy functions for households who live in houses that
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already have remediation equipment installed. This means that in order to decrease

the radon concentration in their house, these households only need to pay the cost

of operating the fans, approximately $125. Unsurprisingly, younger households with

houses that have lower concentrations of radon operate their fans than if they also

needed to install them. In fact, we see that never smokers between the ages of 40 and

60 who have houses with extremely high concentrations of radon find it worthwhile to

operate the remediation equipment in contrast to never smokers without equipment

already installed.

These simulations all assume that there is no sorting on radon concentrations in

the housing market. To the extent that the housing market is efficient at sorting

people such that those with the lowest willingness-to-pay for radon reduction (in the

extreme, mobile, nonsmoking elderly) tend to find the highest-exposure houses, there

would be essentially no capitalization, even at high levels of exposure. Perfect sorting

of this kind would also obviate radon exposure as a policy problem, because exposure

would do relatively little damage. Even imperfect sorting, which we would expect

to see in the housing market, would further reduce capitalization, thereby weakening

the incentives for households to install remediation equipment.

2.4.2 Simulations with Children

We now turn our attention to our simulations where we consider the more realis-

tic scenario where both children and adults in the same household. Table 2.6 shows

the capitalization of the remediation equipment into housing prices and the fraction

of houses that have remediation equipment installed. There are two complementary

forces that make these simulations different from those without children in the house-

hold. First, since the cost of remediation does not depend on the number of people

in a household, the net benefits of remediation increase for each adult age for a given

radon concentration. Therefore, the threshold radon concentration for each age will
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decrease. Because these higher net benefits create a larger demand for remediation

equipment to be installed, the capitalization of the remediation equipment increases

causing the threshold radon concentration to fall even more.

Comparing these numbers to the above results we see that accounting for the

benefits from remediation that accrue to the children in a house increases both the

capitalization percentage, from 9.5% to 10.9%, and the fraction of houses that have

remediation equipment installed. This is an intuitive result since the cost of remedi-

ation does not change with the number of people in the household but the benefits

increase at an approximately proportionally to the number of people in the house.

Table 2.7 shows the trough points for each of the contour plots for households

with varying numbers of children. In general, these trough points occur at a lower

radon concentration than the previous simulations. Again, this pattern is intuitive

since there are more people in the household who are accruing the benefits of the re-

mediation, making the decision to remediate beneficial at lower radon concentrations.

Examining the policy functions in the contour plots displayed in Figures 2.7 -

2.12 we see that households of all ages find it beneficial to remediate at lower radon

concentrations the more children they have. Noticeably, even households who are

105 years or older find it beneficial to run the remediation equipment with as few

as two children living in the house, though the adults receive no benefit from the

remediation. We can see the threshold radon level decrease in each of these policy

functions as the number of children in each household increases until there are 5

children in the household and the threshold radon concentration is approximately 10

pCi/l.

2.5 Discussion of Policy Implications

We have identified two reasons why, if people are well-informed and behave ratio-

nally, an EPA-style policy is unworkable. Only one if these – the positive externality
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associated with installing remediation equipment – is realistically amenable to policy

intervention. The second reason is that many households will choose not to operate

a remediation system. If people are rational and well-informed as in our model, how-

ever, this is not really a policy problem at all, provided that households who would

derive net benefits from operating radon remediation equipment live in residences that

have remediation installed. The reason for this is straightforward: if well-informed

households choose not to operate remediation systems, there is no market failure; we

can infer that operating the systems would not be cost-beneficial.

There is no public (and virtually no private) health problem if a household con-

sisting of elderly nonsmokers chooses not to operate the fans. Given any household’s

value of a life-year, if cost per life year saved in that household exceeds its value, eco-

nomic efficiency is enhanced when the (well-informed) household chooses not to run

the fan. The marginal savings exceed the marginal benefit. Thus the public health

problem presented by residential radon involves inducing the installation (and repair)

of ASD systems, not the operation of such systems.

Of course, if households are in some combination irrational or ill-informed, this

straightforward theorem from revealed preference is not applicable. We speculate on

these possibilities later in this section, but retain for now the assumption that homo

economicus is deciding whether or not to turn on the fans.

The positive externality from installation of radon remediation equipment can be

dealt with through a regulatory strategy, through public provision of radon reme-

diation equipment, or by providing monetary incentives for private provision. Pub-

lic provision of remediation equipment or providing monetary incentives essentially

changes the capitalization value of the equipment in our model. Public provision of

remediation equipment would correspond to a 100% subsidy with partial monetary

incentives resulting in an increased capitalization percentage. At an action level of 4

pCi/l (the EPA’s guideline), public provision of remediation equipment to 6,000,000
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eligible housing units at a cost of $1,200 each would cost approximately $7.2 billion.

It seems unlikely, in the current political climate, that such expenditure would be

undertaken publicly. Private monetary incentives would also involve budget costs.

Such incentives would also be very ineffective in the short run, given our estimate

that over four-fifths of eligible households at any given time would obtain no surplus

from having access to a remediation system - that is, they would not even turn on

the fans.

Notice that even if the remediation equipment is completely paid for by the govern-

ment, many households with radon concentrations above 4 pCi/l would not operate

the equipment. This can be observed since a complete subsidy is identical (in our

model) to all households already having remediation equipment installed (These pol-

icy functions are displayed in the top row of Figure 2.6). Never smokers rarely operate

the fans and even many former smokers do not find it worthwhile to operate the fans.

Our simulations suggests that the only subpopulation that is likely to operate the

fans at the EPA’s guideline of 4 pCi/l are middle aged smokers.

2.5.1 Alternative Scenarios

Up to this point we have only considered models where all households had com-

plete information about the health effects of radon exposure, the capitalization of

an investment in remediation equipment, and their probability of moving. We now

consider two variants of the models.

The first variant of our model we consider is a situation where investment in re-

mediation equipment is not capitalized into the housing value at all. If our model

is incorrect to assume that every one has full information about the health effects of

radon (as it likely is), we are also likely to misestimate the capitalization of remedia-

tion. If the population systemically underestimates their risk of radon induced lung

cancer, our capitalization estimates will be too high. In the limiting case, where the
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population either assumes the have no risk of radon induced radon lung cancer or

have no knowledge of the risks (and therefore assumes there is none) there will not be

any capitalization of remediation equipment. Figure 2.13 show the policy functions

of a household without any children in this scenario.

These policy functions look quite similar to those from the baseline scenario where

there is full information about the radon health costs.20 The stalactites are slightly

smaller than the baseline scenario but there is little difference. This is a result of the

fact that capitalization in the baseline scenario is approximately 10%, so even when

fully informed, households are already bearing most of the capital cost of remediation.

The second variant of our model we consider is a situation where our households

never move from the house they currently occupy. While this situation is clearly not

something that would occur, most cost benefit analyses assume that all of the benefits

of remediation equipment accrue to the current homeowner. In this situation, the

externality associated with the installation of remediation equipment is internalized

because the household will not move and receives all of the benefit of the remediation

equipment. In this model we assume that households have moved at the average

probabilities before the simulation begins, but then once made aware of the risk of

radon, never move again.

The policy functions shown in Figure 2.14 come from this model, again for a

household without any children.21 We can see that more households choose to install

remediation equipment, particularly among younger cohorts. The substantial increase

in installation among younger cohorts is due to the fact that they have a shorter radon

exposure history and have the most to gain if they do not move in the future. We also

see that, even at high levels of radon a substantial proportion of the population will

20Clearly, only the decision of installing remediation equipment is affected by forcing the capital-
ization of the investment to be zero. If there are already remediation equipment in the house, the
households decision does not change.

21Again, this change to the model will not have any effect on households decisions to operate the
fans once they are installed, so the top row of contour plots do not change.
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not install remediation equipment, notably all households that have never smoked.

2.5.2 Information Requirements

To be effective, the ”realistic” policy approach discussed in this section requires

that householders be well-informed about the radon-related risks that they face and

about the effectiveness of radon remediation systems in reducing that risk. A regula-

tion requiring that remediation systems be installed will have no health benefits unless

households turn on the fans. Our analysis assumes that households have sufficient

information to make that decision.

Making such information generally available will surely require a costly public

information campaign. Implicitly, the analysis that we have conducted here supposes

that such a campaign would be inexpensive relative to the costs of remediation them-

selves (a reasonable assumption) and effective (an assumption that may or may not be

reasonable). Thus, before pursuing any policy of public provision or subsidization of

remediation equipment we would propose extensive test-marketing and experimenta-

tion of advertising protocols. The object would be to see what fraction of households,

at what costs, would become well-informed about the costs and consequences of oper-

ating radon remediation systems. Note that if households systematically believe that

such systems are substantially less effective than they are, a policy that promotes

general availability of such systems will fail to meet a benefit-cost test. Thus the

marketing research that we call for here is a fundamental prerequisite of a successful

remediation policy.

Subsequent to such a study, it would be possible to reliably predict who would

operate the systems were they available, and thus to reliably evaluate the policy

of ”remediate on transfer” that looks so promising based on the rational-behavior

analysis we have reported here.
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2.6 Conclusions

Because of mobility, remediation of residential radon exposure has all the earmarks

of a classic public health problem: the benefit to the community of installing remedi-

ation equipment considerably exceeds the benefit derived directly by those members

of the community undertaking the requisite action. Our results suggest that mobil-

ity could be a very significant barrier to reducing residential radon exposure because

much of the initial investment in remediation equipment is not likely to be capitalized

into housing prices. Our simulations suggest that in the case that everyone is well

informed about the healths risks of radon exposure, approximately 11% of the initial

investment will be reflected in the resale price of the house, and only about 0.4% of

houses would have remediation equipment installed.

Assuming that households are well-informed about the health risks associated

with radon exposure, our simulations suggest that very few households will find it in

their best interest to follow the EPA’s guideline to install remediation equipment at

a concentration of 4 pCi/l or above. However, if the remediation costs are heavily

or completely subsidized, an action level between 4 and 6 pCi/l is justified for both

current and former smokers and households with many children, though households

who have never smoked and have few children are unlikely to find it worthwhile to

operate remediation equipment even if capital costs are fully subsidized.

In the absence of a capital subsidy, very few households will find it worthwhile

to install and operate remediation equipment. Our simulations suggest that among

childless, former smokers only households between the ages of 40 and 60 in houses with

a radon concentration above 12 pCi/l will install remediation equipment. The among

childless, current smokers, the age range approximately doubles to 30-85 years old

and the required radon concentration falls to approximately 8 pCi/l. Most strikingly,

childless households who have never smoked will never find it worthwhile to install

radon remediation equipment at any concentration of radon less than 20 pCi/l or age.
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These ranges age ranges increase and threshold radon concentrations decrease as

the number of children living in a household increase. Our simulations suggest that

in households of former smokers with two children, households between the ages of 30

and 70 in houses with a radon concentration above 10 pCi/l will install remediation

equipment. Households with two children of people who have never smoked between

the ages of 45 and 55 find it worthwhile to install remediation equipment only at

radon concentrations above 17 pCi/l.

Our simulations suggest that there is important dimensions of heterogeneity both

across ages, smoking histories, and household size to consider when designing a policy

toward residential radon. While previous studies have examined the aggregate costs

and benefits of a homogeneous policy our results suggest that a targeting of policy at

subpopulations, particularly smokers and large households, would increase the benefit

cost ratio substantially.
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Tables

Table 2.1: Constants used in the BEIR VI model of radon related lung cancer mor-
tality

γ1 1.00
γ2 0.78
γ3 0.51
Ψs=0 if age< 55 0.1536
Ψs=0 if 56 <age< 65 0.0876
Ψs=0 if 66 <age< 75 0.0446
Ψs=0 if 76 <age 0.0138
Ψs=1 if age< 55 0.06912
Ψs=1 if 56 <age< 65 0.03942
Ψs=1 if 66 <age< 75 0.02007
Ψs=1 if 76 <age 0.00621

Table 2.2: Percent of Population that Moved Residences by Age

Age Percent Moved
20-24 35.2
25-29 32.4
30-34 22.0
35-44 14.8
45-54 9.3
55-64 7.0
65-84 4.3
85+ 4.7

Source: US Census Bureau
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Table 2.4: Capitalization and Prevalence of Remediation Equipment
Value of a Life Year

$100,000 $200,000 $300,000 $400,000 $500,000
Capitalization (Percent) 4.0 7.9 9.5 12.3 12.7
Percent of Housing Stock with Remediation 0.0 0.1 0.3 0.4 0.6
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Table 2.6: Capitalization and Prevalence of Remediation Equipment when some
Households have Children

Value of a Life Year
$300,000

Capitalization (Percent) 10.9
Percent of Housing Stock with Remediation 0.4
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Figures

Figure 2.1: Decision Tree for Households
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Figure 2.2: Probability of Remediation Equipment Being Installed in a House
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Figure 2.3: Probability of Dying before reaching the next age
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Figure 2.4: Density of Ages in the United States, 2006-2008
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Figure 2.5: Density of Radon Concentrations in an Unremediated Housing Stock
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Figure 2.6: Policy Function for a Typical Household’s Remediation Decision with a
Life-Year Valuation of $300,000
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Figure 2.7: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with No Children
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Figure 2.8: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with 1 Child
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Figure 2.9: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with 2 Children
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Figure 2.10: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with 3 Children
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Figure 2.11: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with 4 Children
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Figure 2.12: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 with 5 Children

95



Figure 2.13: Typical Policy Function for a Household’s Remediation Decision with a
Life-Year Valuation of $300,000 if There is No Capitalization of Reme-
diation Equipment
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Figure 2.14: Policy Function for a Household’s Remediation Decision with a Life-Year
Valuation of $300,000 if the Household Will Never Move
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CHAPTER III

Monte Carlo Simulations of the Nested

Fixed-Point Algorithm

3.1 Introduction

Structural estimation of dynamic programming problems has become a promi-

nent tool in many economists’ toolbox since the publication of John Rust’s ”The

Optimal Replacement of GMC Bus Engines” [36], particularly in the context of dy-

namic discrete choice models1. Papers that use structural estimation are generally

characterized by a complete, explicit, usually dynamic, mathematical model of agents’

behavior, then estimate the parameters of the model either through maximum likeli-

hood or method of moments. However, these models often rely on assumptions about

the distributions of unobservables and functional forms to make them tractable to

estimate. Even with these assumptions, they usually result in highly nonlinear ob-

jective functions that present a challenge to estimate. There is a growing literature

that examines the how numerical methods such as choice of optimization routines and

starting points affect estimates. For example, Knittel and Metaxoglou [21] investi-

gate how researchers’ decisions about maximization algorithms and different starting

points for each algorithm can lead to different answers. They find a very wide array

1For a survey of the dynamic discrete choice literature see Rust [38], Pakes [31], Miller [26], and
Mira [6].
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of estimates can be obtained depending on the choices a researcher makes about the

maximization algorithm and starting points. However, there are no papers to my

knowledge that examine how distributional assumptions affect parameter estimates.

This paper attempts to begin to fill this hole by examining a very simple dynamic

structural model.

This paper uses the optimal stopping model from Rust [36] of GMC bus engine

replacement as a starting point to evaluate how distributional assumptions affect the

performance of the nested fixed point algorithm (NFXP). Rust develops a dynamic

discrete choice model of bus engine replacement for the supervisor of the Madison

Metro Bus Company, Harold Zurcher. In each period Mr. Zurcher observes the

mileage that the bus has accumulated and has a discrete choice to make: replace the

engine in the bus or use the current engine for another month. Rust then poses a

functional form for Mr. Zurcher’s utility function over bus engine replacements and

assumes that Mr. Zurcher is a forward looking agent who dynamically maximizes

this utility function. Rust then solves Mr. Zurcher’s dynamic problem and finds

parameter values that maximize the likelihood of the data. This involves solving the

entire dynamic maximization problem for every set of parameter values. This is done

through the nested fixed point algorithm. The nested fixed point algorithm is an

inner loop that solves a dynamic programming problem for a given set of parameter

values and an outer loop that uses a routine to to maximize the likelihood function

over the parameter space.

Since Rust developed this framework for solving dynamic discrete choice problems,

there have been many algorithms proposed to solve similar problems. Hotz and Miller

[18] showed that it is not necessary to solve the dynamic problem at every step like

the nested fixed point algorithm requires. Instead, since there is a one to one mapping

between conditional choice probabilities and normalized value functions, the condi-

tional probabilities can be inverted into estimates of the value functions which in turn
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allow the econometrician to update the conditional probabilities. Aguirregabiria and

Mira [5] show that the nested fixed point algorithm and Hotz and Miller’s conditional

choice probabilities estimator are two extreme cases of a general class of estimators.

There has generally been seen to be a tradeoff between efficiency (from the nested

fixed point algorithm) and computation time (reduced by using the Hotz and Miller

[18] routine). I have chosen to use the NFXP from Rust [36] as a starting point for

this paper for two reasons. Firstly, since this was one of the first papers to employ

a structural approach to a dynamic problem it has become one of the standards in

evaluating new methods. This is partly because the algorithm is particularly easy

to implement. For instance, Hotz et. al [19] perform Monte Carlo simulations to

compare their conditional choice simulation estimator to the NFXP and examine the

NFXP for sample sizes of 10,000 and more. Secondly, because the NFXP solves the

dynamic programming problem at every step I expect that it would be more robust

to specification error.

This paper contributes to the literature on structural estimation in two ways.

First, it extends the range of sample sizes for which there is Monte Carlo evidence

for the validity of the nested fixed point algorithm and similar algorithms. In this

paper I simulate the NFXP for datasets with as few as 500 observations and as many

as 11,800. (Previously, the literature had only examined sample sizes as small as

10,000 [19].) Given that many papers that use structural estimation of a dynamic

programming problem rely on sample sizes less than 10,000 I feel this is the relevant

range of observations. Second, I examine how distributional assumptions on the

unobserved state variable effect the estimates of the structural parameters. While

this is obviously a context specific effect it is still important to have a sense of how

important these assumptions may be in parameter estimates.

The remainder of this paper is organized as follows. Section 2 describes in detail

Rust’s model of bus engine replacement. Section 3 describes the data that is used in
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Rust [36]. Section 4 discusses Rust’s results and my replication of his results. Section

5 discusses asymptotic results for the estimation procedure and how I simulate the

data. Section 6 discusses the simulation results and Section 7 concludes.

3.2 Rust’s Model

Rust provides two versions of his model. The first model, which I name the simple

model, imposes strict functional form assumptions on the transition probabilities and

assumes that there are no unobserved state variables. The second model, which

I call the relaxed model, relaxes the functional form assumption on the transition

probabilities and introduces an unobserved (to the econometrician) state variable, εt,

that Rust assumes has very specific properties.

3.2.1 The Simple Model

John Rust [36] models the behavior of the superintendent of the Madison Wis-

consin Metropolitan Bus Company, Harold Zurcher, when deciding whether or not

to replace the engine in one of the company’s buses. The model takes the form of a

regenerative optimal stopping problem. Each month, Mr. Zurcher must choose either

to (i) leave the bus in service for another month, while doing ”normal maintenance”

and incur operating costs c(xt, θ1) or (ii) take the bus out of service for the month

and completely replace the engine for a cost of P̄ and sell the old engine for scrap for

a price of P. (Let the replacement cost of the engine, RC = P̄ − P.) Mr. Zurcher

is assumed to be a rational actor who minimizes the expected discounted costs of

maintaining the fleet of buses. It is assumed that a bus with a newly replaced engine

is just as good as a new bus in terms of the future decisions of whether or not to

replace the engine. Therefore, the optimal stopping problem takes the form:
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Vθ(xt) = sup
Π

E

{ ∞∑
j=t

βj−tu(xj, fj, θ1)

∣∣∣∣xt} (3.1)

where

u(xt, it, θ1) =

{
−c(xt, θ1) if it = 0

−(RC + c(0, θ1)) if it = 1
(3.2)

where Π is an infinite sequence of decision rules Π = ft, ft+1, . . . where each ft specifies

Mr. Zurcher replacement decision at time t as a function of the entire history of the

process, it = f(xt, it−1, xt−1, it−2, . . . ) and the expectation is taken with respect to

the controlled stochastic process, {xt} whose probability distribution is defined from

Π and the transition probability p(xt+1|xt, it, θ2). If an exponential distribution is

assumed for p(xt+1|xt, it, θ2) then the transition probabilities take the form,

p(xt+1|xt, it, θ2) =

{
θ2 exp[−θ2(xt+1 − xt)] if it = 0 and xt+1 ≥ xt

θ2 exp[−θ2(xt+1)] if it = 1 and xt+1 ≥ 0
(3.3)

Therefore, if the current engine is kept (it = 0) the next period’s mileage is given by

a draw from the exponential distribution 1 − exp[−θ2(xt+1 − xt)], but if the engine

is replaced (it = 1) then xt regenerates to 0 and the next period’s mileage is drawn

from the exponential distribution 1− exp[−θ2(xt+1 − 0)].

I can write the Bellman’s equation to this system as:

Vθ(xt) = max
it∈{0,1}

[u(xt, it, θ1) + βEVθ(xt+1, it+1)] (3.4)

This should imply a deterministic cut-off rule such that

it = f(xt, θ) =

{
1 if xt > γ(θ1, θ2)

0 if xt ≤ γ(θ1, θ2)
(3.5)

for some function γ(·).
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However since in the data, we do not observe this type of deterministic cut-off rule,

we assume that there is an unobserved state variable, εt, that Mr. Zurcher observes

but the econometrician does not observe.

3.2.2 The Relaxed Model

Rust now adds two parts to the model. We add the unobserved state variable, εt,

which is assumed to be additively separable from the rest of the utility function. Also,

he relaxes the assumption the the mileage is drawn from an exponential distribution

with parameter θ2 and allow the mileage process to have an arbitrary density and

define the difference between this month’s mileage and last month’s mileage to have

arbitrary density g(·). These new assumptions lead to the Bellman’s equation:

Vθ(xt, εt) = max
it∈{0,1}

[u(xt, it, θ1) + εt(i) + βEVθ(xt+1, εt+1)] (3.6)

which has the solution

f(xt, εt, θ) = arg max
it∈{0,1}

[u(xt, i, θ1) + εt(i) + βEVθ(xt+1, εt+1)] (3.7)

Because the unobserved state variable, εt, enters non-linearly into the unknown

function, EVθ Rust makes a ”Conditional Independence” assumption to circumvent

this problem. The conditional independence assumption can be stated as:

Assumption III.1. Conditional Independence: The transition density of the con-
trolled process {xt, εt} factors as

p(xt+1, εt+1|xt, εt, i, θ2, θ3) = q(εt+1|xt+1, θ2)p(xt+1|xt, i, θ3)

This assumption introduces two restrictions. First it requires that xt+1 is a sufficient

statistic for εt+1, which means that any dependence between εt and εt+1 is transmitted

through xt+1. Secondly, it requires that the probability density of xt+1 depends only
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on xt and not εt.
2

If we further impose that q(ε|y, θ2) is given by a type 1 extreme value distribution

then we can state the formula for the choice probability, P (i|x, θ) as follows:

P (i|x, θ) =
exp[u(x, i, θ1) + βEVθ(x, i)]∑

j∈{0,1} exp[u(x, j, θ1) + βEVθ(x, j)
(3.8)

which is the familiar multinomial logit formula.

This allows us to estimate the structural parameters, θ ≡ {RC, θ1, θ3}, of the

controlled process {it, xt} through maximum likelihood as shown in Rust [37]. The

likelihood function `f take the form

`f (x1, . . . , xT , i1, . . . , iT |x0, i0, θ) =
T∏
t=1

P (it|xt, θ)p(xt|xt−1, it−1, θ3) (3.9)

This likelihood function can be estimated in three stages. The first stage is to estimate

`1(x1, . . . , xT , i1, . . . , iT |x0, i0, θ) =
T∏
t=1

p(xt|xt−1, it−1, θ3) (3.10)

which is the transition probabilities between mileage bins. The second stage is to
estimate

`2(x1, . . . , xT , i1, . . . , iT |x0, i0, θ) =
T∏
t=1

P (it|xt, θ) (3.11)

which requires the computation of the fixed point to get estimates of θ1 and RC, the

variable cost parameter and the replacement cost of the engine respectively. Since

estimating both `1 and `2 give consistent estimates of the parameters, I can then

use these consistent estimates to estimate `f and get efficient estimates of all of the

structural parameters.

2For proofs of these results see Rust [37].
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3.3 Data

I have obtained the relevant parts of Rust’s original data from the Madison

Metropolitan Bus Company that contains monthly maintenance records for every

bus in the Madison bus fleet from December, 1974 to May, 1985.3 The observations

consist of odometer readings on each bus and an indicator specifying if the engine was

replaced that month. In addition to the original data that I have obtained, Rust’s

original data also consisted of a maintenance diary that records all repairs that were

made on a bus such as replacing brakes, oil changes, etc. Rust considers all events

that are not a complete engine replacement ”normal maintenance” and disregards

that information for the sake of his exercise. I proceed likewise.

The data that I have from Rust contains the mileage for each bus at the end of

every month, an indicator if the bus’ engine was replaced in that month, and the

model of the bus. There are eight types of buses in the Madison Metro fleet over the

covered time period. See Tables 1a and 1b for summary statistics of the data.

In order to compute the value function in the dynamic programming problem, I

will need to do a grid search. This means that I will need to discretize our mileage

data into bins. I discretize the continuous mileage variable into 90 bins of 5,000 miles

each.4 This gives bins up to 450,000 miles to allow for that value function to be

estimated for mileages above what I observe in the data (the maximum mileage I

observe is 387,300) and allows for the possibility that it may be optimal to replace

the engine at a mileage level large than I observe.

Now that I have discretized the mileage process, I can rewrite the transition density

as the difference between last month’s bin and this month’s bin, giving density

3The data used in the original paper is available at http://gemini.econ.umd.edu/jrust/nfxp.html
4Rust [36] does some sensitivity analysis by increasing the number of mileage bins and finds

results similar to those with 90 bins.
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p(xt+1|xt, it, θ3) =

{
g(xt+1 − xt, θ3) if it = 0

g(xt+1 − 0, θ3) if it = 1
(3.12)

In the data I only have buses where (xt+1 − xt) ∈ {0, 1, 2}, thus I define θ30 as

the probability that you stay in the same mileage bin as you were last month, θ31,

as the probability that you move to the next mileage bin, and θ32 as the probability

that you move up two mileage bins. This reduces to a multinomial distribution with

parameters θ30, θ31 (and θ32 = 1− θ30 − θ31).

In order to use the nested fixed point algorithm I need to assume that there is

no heterogeneity in our data between the different types of buses. Rust tests the

hypothesis that the mileage process is different for various groupings of bus types and

cannot reject the null that bus types 1-4 have the same mileage process, while you

can reject the null that bus types 1-4 have a different mileage process from types 5-8.5

Therefore, I proceed with the exercise only using bus types 1-4.

Next, I need to specify a functional form for the cost function. Rust did not

find one particular functional form to fit the data statistically better than any other

that he tried and therefore used a linear cost function6 with one unknown parameter

defined as c(x, θ1) = .001θ11x.

Following Rust, I choose to fix β instead of estimating it since it is highly collinear

with the fixed cost of replacement, RC. This collinearity becomes obvious by exam-

ining the value function since a lower discount factor will weight the present higher,

which has the same effect as raising RC. Following Rust, for the rest of the paper I

fix β = 0.9999.

5See Rust [36] for a detailed analysis and results.
6A square root cost function, c(x, θ1) = θ11

√
x was also used, but results not reported.
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3.4 Rust’s Results and Replication

Using the exact data that Rust [36] uses, I proceed with the replication using

Rust’s methods, detailed in Rust [39]7. Rust [36] uses the nested fixed point algorithm

to solve Mr. Zurcher’s dynamic discrete control problem. This algorithm consists of

two loops. The inside loop uses a combination of two methods to compute the fixed

point. The first method used is the commonly used is value function contraction

iterations. Value function iteration defines a fixed point as EVθ = Tθ(EVθ) where

Tθ(W ) is defined as

Tθ(W )(x) =

∞∫
0

log[ exp{−c(x+ y), θ) + βW (x+ y)}+

exp{−RC − c(0, θ) + βW (0)}]g(dy|θ)

This method begins with an arbitrary guess for EVθ (usually equal to zero) and

evaluates the value function given parameters θ and iterates the process k times. The

kth iteration can be written as EVk = T kθ (EV0) and as k → ∞ it can be shown that

EVk → EVθ.

Value function iteration converges at a linear rate to EVθ. An alternative method,

known as Newton-Kantorovich iteration uses an alternate method of iteration that

converges at a quadratic rate when in the neighborhood of EVθ. Thus, I use Werner’s

method [40] which uses value function iteration for the first few contraction steps

and then switches to the Newton-Kantorovich method. Werner [40] showed that this

produces a faster rate of convergence than either method alone.

Once the value function has converged, I evaluate the log-likelihood function using

the assumed parameters θ11, θ30, θ31, RC. To get a new guess for the structural pa-

rameter, I use the outer hill climbing algorithm to find the parameters that maximize

7The replication was done using similar GAUSS code to that available through John Rust’s
website (http://gemini.econ.umd.edu/jrust/nfxp.html)
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the likelihood function. Following Rust, I use the BHHH algorithm, which is similar

to the Gauss-Newton and Newton-Raphson algorithms.

The results are presented in Table 2. As can be seen, my estimates of the transition

probabilities are nearly identical, though the estimates of the cost function parameter,

θ11, and the replacement cost, RC, differ somewhat. It seems likely that I have found

a slightly different local maximum than the original paper. Ideally, I would start

the NFXP routine at many starting values and compare the value of the likelihood

function at all maximum that the algorithm converges to in order to choose the global

maximum. However, since for this paper it is only important that the routine always

find ”the same” maximum I will always initialize the algorithm to the same starting

values so that it will likely head to the same local maximum.

3.5 Asymptotic Results and Simulation Procedure

Rust [37] shows that parameters estimated using the nested fixed-point maximum

likelihood(NFXP) algorithm, θ̂, converges to the true value, θ∗ with probability 1

as either N , the number of observations, or T , the number of periods, approaches

infinity. He also shows that
√
N(θ̂ − θ∗)

d−→ N(0,−H(θ∗)−1) where −H(θ∗)−1 is

the negative inverse of the Hessian for θ∗. The main assumptions needed to make

this result hold is that the model is correctly specified, the Conditional Independence

assumption:

p(xt+1, εt+1|xt, εt, i, θ2, θ3) = q(εt+1|xt+1, θ2)p(xt+1|xt, i, θ3),

and some regularity conditions8.

Having validated the results reported in Rust [36], I examine the finite sample

properties of the maximum likelihood estimator using the nested fixed point algo-

8For a complete proof and set of assumptions see Theorem 4.3 of Rust [37].
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rithm. To do this, I simulate 1,000 datasets that are generated assuming that the

model posed by Rust is correct and use the values that I estimated in the replication

section as the ”true” values of the model.

In order to simulate bus replacement data, there are two levels of randomness that

need to be incorporated. First, the mileage bin that a bus falls into in a given month

is a random variable that I model with a multinomial distribution, the parameters

of the distribution, {θ30, θ31} are random variables. Secondly, the model assumes

an unobserved state variable, ε, that enters additively into the utility function and

is independent across time and choices that is drawn from a Type I extreme value

distribution.

In order to perform the actual simulation I need to proceed in a chronological

order for each bus. Each bus is assumed to have an odometer reading of zero at the

beginning of the simulation. In the first period the each bus receives a draw from the

multinomial distribution for which mileage bin it will end that period in.

Once I know which mileage bin each bus ended the period in, I then evaluate the

solution to the Bellman’s equation, given parameters, θ.

f(xt, εt, θ) = arg max
it∈{0,1}

[u(xt, i, θ1) + εt(i) + βEVθ(xt+1, εt+1)] (3.13)

where

u(xt, i, θ1) =

{
−[0.001θ11xt + εt(0)] if it = 0

−[RC + 0.001θ11x0 + εt(1)] if it = 1
(3.14)

and εt(·) is drawn from a Type I extreme value distribution with mean 0 and variance

π2

6
. If the value of replacement is larger than the value of not replacing the engine,

then it = 1 and the bus starts over at mileage bin zero the next period. Once I have

done this simulation for one month, I repeat the process for each of the 110 buses in

each dataset for 118 months9. This leaves each dataset with approximately 13,000

9I chose 118 months since this is the maximum duration of data that is used for estimation in
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bus-month observations.

3.6 Simulation Results

I first report the results from the simulations using datasets with relatively small

sample sizes and then will discuss the results from simulations where the data gen-

erating process (DGP) is not the assumed DGP in the model. I find two largely

consistent themes across all of the simulations. First, the estimator is biased in all

samples examined, for all 4 parameters, though the bias decreases as I get closer to

the assumptions of the model (unobservables become closer in distribution to the as-

sumed EV1 unobservables). Second, the asymptotic variance is substantially smaller

than the observed variance of the distribution of parameters.

3.6.1 ”Small” Sample Results

Using the procedure described above, I produced datasets with 1,000, 2,000, 4,000,

and 8,000 bus-month observations. Knittel and Metaxoglou [21] have shown that

the choice of starting values can create very different results in highly non-linear

environments. Therefore, in all of the simulations I use the same starting value,

which is within 0.1 of the true value.

As can bee seen in Figures 3.1-3.2 two of the four parameters that I estimate

appear to have distributions close to their theoretical asymptotic distributions (show

in the red dotted line). However, in all of these simulations we get a biased estimated

and in general a slightly larger variance. Examining the two multinomial transition

probability parameters, θ30 and θ31, we see that the both have a relatively large bias

and a substantially larger variance than they should. This pattern also holds when

the sample size increases to 13,000.

The mean and standard deviation of these distributions are shown in Table 3.4.

Rust [36].
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We can see that the mean squared error decreases proportionally to the increase in

sample size for the smallest sample sizes, with only a marginal decrease in the mean

squared error between the 8,000 observation sample and 13,000 observation sample.

3.6.2 Distributional Results

Using the procedure described above, I produced simulated datasets, each con-

taining 13,000 bus-month observations and used the nested fixed-point algorithm to

estimate {RC, θ11, θ30, θ31}. Knittel and Metaxoglou [21] have shown that the choice

of starting values can create very different results in highly non-linear environments.

Therefore, in all of the simulations I use the same starting value, which is within 0.1

of the true value.

In order to explore the sensitivity of of the nested fixed point algorithm to the as-

sumption that the errors are distributed Type I extreme value, I will generate datasets

with errors from three different distributions: Type I extreme value, Gaussian, and

a Student’s T with 3 degrees of freedom. I choose these distributions since they all

have unbounded support. The Gaussian distribution is useful since it is similar in

shape to the Type I extreme value. Meanwhile the Student’s T3 simulation will allow

me to examine the behavior of the NFXP when I have many ”large” errors.

3.6.2.1 Extreme Value Unobservables

Of the 3,000 datasets that were created, 1,148 datasets produced results that

converged using our criterion that when the gradient times the direction is less than

1× 10−8. The remaining datasets produced parameter estimates where the gradient

was ∞ or −∞. While there are many different ways that the algorithm may be

modified to get these datasets to converge, I will simply throw out these datasets

from the analysis to focus on this particular procedure.

The means and standard deviations of these parameters can be seen in Table 3.5.
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Table 3.5 suggests that the nested fixed-point algorithm does not provide unbiased

estimates of the true parameters in our sample. Two possible explanations for this

naturally present themselves. First, by only using 100 buses each for 118 months,

I may not have gotten close enough to ∞ to have a consistent estimate of the pa-

rameters. Secondly, my results may be biased because of the datasets that did not

converge. It seems likely that these datasets may be different in some systematic way.

I reject the null hypothesis that the mean of the parameters from the simulations

is equal to true mean.10 Figures 3.5-3.8 display the full distribution of parameters

from the simulations. All of the parameters appear to be distributed approximately

Gaussian as the theory suggests, however formal tests, such as the Shapiro Wilk tests

reject the null hypothesis that the data are Gaussian.

3.6.2.2 Gaussian Unobservables

Qualitatively, the simulation results from datasets that have Gaussian distur-

bances are similar to those with Extreme Value disturbances. There were 1,163

datasets that converged using the same convergence criterion, while the rest pro-

duced parameter estimates where the gradient was ∞ or −∞.

The second panel of Table 3.5 shows descriptive statistics of these parameter.

Note that the mean squared error from these results is approximately 1.5 times larger

than that from the simulations with extreme value disturbances. The mean squared

error for the parameters of the multinomial distribution does not change much in

relative terms across any of the simulations, suggesting that the likelihood function

is relatively well behaved in these dimensions.

The full distribution of parameters is displayed in Figures 3.5-3.8 with an overlaid

Gaussian distribution. Again, using formal tests of normality I reject the null that

10I have not taken into account that the observations are estimated and therefore the standard
errors should be larger. However, in my opinion, it is unlikely that this would change the results
substantively.
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the estimates are distributed Gaussian.

3.6.2.3 Student’s T3 Unobservables

The simulation results from datasets that have Student’s T3 disturbances are quite

different from the other two simulations. The center of the parameter estimates is

biased substantially downward, with a mean square error of 10,000 times that from

the extreme value disturbances for one parameter and 200 times larger for another

parameter. These results are shown in the bottom panel of Table 3.5 with the full

distribution of parameters displayed in Figures 3.5-3.8. Since the Student’s T3 dis-

tribution has has a higher probability of getting extreme values for the disturbance

term, particularly extreme negative values, it makes sense that I end up with results

that are biased substantially downward.

3.7 Conclusion

Empirical applications of highly nonlinear estimators has grown extensively re-

cently. Naturally, these studies rely on asymptotic properties derived in the litera-

ture. However, there has been little examination of how these estimators perform in

finite samples.

This paper adds to the growing literature that explores the numerical and finite

sample behavior of nonlinear structural estimators. This study asks the question of

how much data is ”enough” to use asymptotic results for inference about the estimated

structural parameters. By simulating datasets produced knowing that the model is

correctly specified, I examine the marginal distributions of parameter estimates and

find them to be non-Gaussian.

The results suggest that the NFXP performs relatively poorly for samples sizes

smaller than 13,000. However, there appears to be substantial gains in terms of

mean squared error up to at least 8,000 observations, at which point we see the mean
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square error decreasing less rapidly than moving between smaller sample sizes. I

can reject the null hypothesis that the empirical distribution is Gaussian for all of

the parameter × sample sizes in this paper, with the distributions of the transition

probabilities performing the most poorly.

One reason that the estimates may appear non-Gaussian is that the simulated

datasets do not have enough observations (results are proved as either T → ∞ or

N →∞). However, each of these datasets contain at least 13,000 observations, which

is more than many structural models have at their disposal.11 Therefore, we should be

cautious about inference that we draw from finite samples smaller than our simulation

sample size.

This paper has also explored to what extent one particular estimator, the nested

fixed point algorithm, depend upon distributional assumptions. Though the NFXP

is rarely used due to the computational burden of computing a fixed point at ev-

ery iteration, it is part of a larger class of nested-pseudo likelihood estimators that

depend on distributional assumptions. We have found that when the distributional

assumptions are met, the estimator performs similarly to the theory. However, as we

move away from the assumed distribution, we get worse parameter estimates with a

mean square error of up to 10,000 times larger than the mean square error when the

assumptions are met.

11Rust [36] estimates his model on 8,156 observations and Berry, Levinsohn, and Pakes [7] use
2,271 model/year observations in their seminal paper. Berry et. al do not use the nested fixed-point
algorithm though their objective function is also highly nonlinear.
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Table 3.3: Structural Estimates from Rust 1987 Fixed Point Dimension = 90, β =
0.9999

Rust Replication
Parameter Estimate Estimate

RC 9.7558 8.5075
θ11 2.6275 0.7571
θ30 0.3489 0.3491
θ31 0.6394 0.6396

Log-Likelihood -6055.25 -6053.55
Observations 8,156 8,156

Source: Rust [36] and author’s calculations.
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Table 3.4: Summary Statistics of Parameter Estimates Model Assumptions Satisfied

True Standard Mean Squared
Observations Parameter Mean Mean Deviation Error (×103)

1, 000 RC 8.50 8.940 4.772 22962.9
θ1 0.76 0.862 0.561 326.2
θ30 0.35 0.334 0.023 0.7
θ31 0.64 0.614 0.038 2.1

2, 000 RC 8.50 8.999 1.706 3149.7
θ1 0.76 0.880 0.360 144.8
θ30 0.35 0.335 0.020 0.6
θ31 0.64 0.617 0.033 1.6

4, 000 RC 8.50 8.906 1.176 1541.9
θ1 0.76 0.846 0.263 76.9
θ30 0.35 0.336 0.018 0.5
θ31 0.64 0.617 0.032 1.5

8, 000 RC 8.50 8.962 0.906 1025.7
θ1 0.76 0.847 0.202 49.1
θ30 0.35 0.336 0.017 0.5
θ31 0.64 0.618 0.031 1.4
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Table 3.5: Summary Statistics of Parameter Estimates 13,000 Observations

True Standard Mean Squared
Parameter Mean Mean Deviation Error (×103)

EV1 RC 8.50 8.903 0.725 682.0
θ1 0.76 0.835 0.159 31.4
θ30 0.35 0.336 0.016 0.4
θ31 0.64 0.617 0.029 1.3

Gaussian RC 8.50 9.008 0.812 908.3
θ1 0.76 0.882 0.170 44.4
θ30 0.35 0.335 0.016 0.5
θ31 0.64 0.616 0.030 1.5

T3 RC 8.50 5.875 0.286 7016.1
θ1 0.76 0.510 0.095 70.0
θ30 0.35 0.341 0.021 0.5
θ31 0.64 0.627 0.038 1.6
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Figures

Figure 3.1: Simulations of ”Small” Data Sets: Replacement Cost Parameter

1,000 Observations 2,000 Observations

4,000 Observations 8,000 Observations
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Figure 3.2: Simulations of ”Small” Data Sets: Cost Function Parameter

1,000 Observations 2,000 Observations

4,000 Observations 8,000 Observations
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Figure 3.3: Simulations of ”Small” Data Sets: P (xt+1 − xt = 0)

1,000 Observations 2,000 Observations

4,000 Observations 8,000 Observations
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Figure 3.4: Simulations from ”Small” Data Sets: P (xt+1 − xt = 1)

1,000 Observations 2,000 Observations

4,000 Observations 8,000 Observations
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Figure 3.5: Simulations from Different Unobservable Distributions: Replacement
Cost Parameter

EV1 Unobservables Gaussian Unobservables

T3 Unobservables
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Figure 3.6: Simulations from Different Unobservable Distributions: Cost Function
Parameter

EV1 Unobservables Gaussian Unobservables

T3 Unobservables

125



Figure 3.7: Simulations from Different Unobservable Distributions: P (xt+1 − xt = 0)

EV1 Unobservables Gaussian Unobservables

T3 Unobservables
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Figure 3.8: Simulations from Different Unobservable Distributions: P (xt+1 − xt = 1)

EV1 Unobservables Gaussian Unobservables

T3 Unobservables
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