Method Development for the Palladium-Catalyzed Synthesis of Nitrogen Heterocycles and Mechanistic Analysis of Migratory Alkene Insertion into Pd-N Bonds

by
Joshua D. Neukom

A dissertation submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
(Chemistry)
in The University of Michigan
2011

Doctoral Committee:

Associate Professor John P. Wolfe, Chair
Professor Masato Koreeda
Professor Yoichi Osawa
Professor Melanie S. Sanford
© Joshua D. Neukom 2011

DEDICATION

To family and friends who have supported me along the way.

ACKNOWLEDGEMENTS

It is difficult to know exactly what to acknowledge in accomplishing a Ph.D. in Organic Chemistry at The University of Michigan. Some people acknowledge God and some people acknowledge other things such as their advisor or The University that provides the resources necessary for a student to perform all kinds of simple and complex tasks needed to accomplish anything academically. It is humbling to know that without The University of Michigan, NIH, NSF, ACS Publications, and the U.S. Department of Education none of this work would have been possible. Additionally GlaxoSmithKline, Amgen, 3M, Pfizer and Eli Lilly are acknowledged for unrestricted funding of this research.

First of all I would like to acknowledge the good fortune of having mostly good health during my time in Michigan. Although my physical and mental health has worn down lately (for whatever reasons), The University of Michigan has helped provide reinforcement, coping strategies, and medications for how to prevent that from happening again in the future. I have learned a lot especially over the last couple of months in that regard thanks to the University of Michigan Health System and Counseling and Psychological Services.

Also, firstly I would like to acknowledge my family for accepting me and helping me regardless of what I did, either "good" or "bad." Although I believe I learned right
from wrong at an early age, practicing this has been difficult at times under the stresses of graduate school. I would like to especially acknowledge my mother, who while working and going to school part time was able to raise two children mostly as a single parent. My mom will never get enough credit for the sacrifices she made for me, but she is stuck with me as a consolation prize and I will never take her unconditional love lightly. Life is no cake walk and my mom has done great with the life circumstances she was given. My dad always told me I could do anything I put my mind to; that this document even exists seems to be proof somehow.

I would also like to thank my little brother Jason for providing constant sibling rivalry during our younger years. More recently, I am even more grateful that my brother has become a hard-working, honorable young man. It has not always been easy being the older brother (me), especially taking trips down to Vandalia, IL while working full-time or always being wrong in our childhood because I was older and "should know better." It doesn't matter if you don't become an astronaut or a brain surgeon, as long as you are happy and healthy-that's all I care about. Everyone [hopefully] has a job/career to keep them busy and I know you will always be good at yours. Oddly, looking back, it would have been impossible for me to predict that my little brother would become one of my best friends later on in life.

I would also like to acknowledge my grandparents James and Lois McLaren for providing a roof over our heads at times and wisdom about all kinds of things. To think I actually beat my grandpa in chess one time out of maybe 100 times is actually a pretty impressive accomplishment for me-he was really smart. Games of cribbage, family dinners, and trips to Jim's Pantry were also favorite staples of my youth spent with my
grandparents. Thanks to my family I had plenty growing up and I feel grateful for that privileged childhood. My Aunt Karen and Uncle Jim have also been incredibly supportive both family-wise and career-wise.

In addition, I would like to thank my advisor Professor John P. Wolfe for taking in a college student who had been out of academics for two years and helping mold me into a functional and mostly knowledgeable graduate student. I have learned the fundamentals of lots of different types of chemistry from John and although our time together has not always been smooth, it is difficult to take issue with the end results. John has had patience with my sometimes artistic and stubborn approach to Science and he has been extremely reliable in helping me approach one issue at a time and triple check things to make sure we have them correct.

I would like to thank Professor Melanie S. Sanford for being inspirational in my development as a scientist, especially since much of my graduate work spanned across the traditional boundaries of Wolfe Group research. Melanie has been a constant role model as far as teaching philosophy and doing more than is necessary to help studentseven students who aren't in her research group. Melanie's enthusiasm and positive thinking are contagious and this outlook can go a long way in any discipline. I believe this is especially true in chemistry research where the hours are long and the results aren't always great.

Professor Masato Koreeda has also had a tremendous impact on my time at The University of Michigan from the very first time I taught a lab section under his supervision. I came to Michigan with no lab teaching experience and he was extremely patient and helped me gain confidence in teaching basic laboratory skills and
understanding fully the responsibility of keeping college kids safe and out of harm's way in the lab. I also had the honor of completing a research rotation for Masato and enjoyed learning about carbohydrates, gold-chemistry, and total synthesis. Masato has been a constant resource to me mainly for teaching, but especially as a role model who makes himself available to his students at all times.

Other Professors at Michigan who have inspired me include Professor Edwin Vedejs, who does not just seem to know everything about chemistry-I really think he does. Professor Pavel Nagorny, a newer recruit, also brings a synthetic flair that I believe will serve Michigan Chemistry well. Professor Yoichi Osawa has also been a great resource for pharmacology and metabolism and how ethanol gets metabolized to acetic acid (an important thing to know on a college campus!) and I actually learned about my cognate advisor's research and enjoyed that. I will always be grateful for the time when Professor Arthur Ashe III generously donated hundreds of NMR tubes to me personally (which I generously split amongst my labmates).

I would also like to thank DePaul University and the U.S. Environmental Protection Agency for helping me get a foot in the door for graduate school at The University of Michigan. After attending a liberal arts college and interning for the Federal Government in Chicago; Michigan and Ann Arbor in particular has truly been a culture shock, but it has been a learning experience foremost. Specifically I would like to thank Professor Matthew Dintzner and Professor Thomas Murphy for mentoring me in the ways of Organic Chemistry at DePaul and I would also like to thank Professors Richard Niedziela and Wendy Wolbach for teaching outstanding classes that made Physical Chemistry and Analytical Chemistry palatable for me. At the U.S. EPA, I would mostly
like to thank Dr. Lawrence Zintek for supervising me directly and Dennis Wesolowski for helping give me the chance to prove my worth as an intern.

Finally, I would like to acknowledge my friends and labmates who, in some part, have shared this experience with me. Some of my best friends in the world such as Ryan Borre, Ken Harang, MD., Josh Kumpula, and Bobby Hundley have inspired me remotely through my five years of graduate school via friendship. Influential labmates include Dr. Josh Ney, Dr. Mike Hay, and Dr. Josie Nakhla for introducing me to graduate-level laboratory techniques. Also, Dr. Myra Beaudoin Bertrand and Dr. Jon Fritz were not only knowledgeable but friendly and fun to work with. Dr. Nick Perch was extremely helpful with our mechanistic work! My fellow 2006 matriculators Duy Mai, Georgia Lemen, and Ahleah Rohr have been an eclectic group to be classmates with and each of them have made contributions to me getting work done. Duy and I have had some of the goofiest, least useful, crudest, and most funny conversations that I would ever hope to have; this has kept the mood light despite the pressures of graduate school. Two of my other best friends in Ann Arbor, Zack Buchan and Wei Li, are amazing people and almost polar opposites of one another. Going up north to Traverse City, MI for Zack and Nicole Buchan's wedding and our shared Big House experiences are two of my most cherished memories in Michigan. Wei has been a trustworthy friend who will do almost anything to help someone out and he has been a major reason for me to improve my basketball skills. I also have to give one final shout out to Alvin Aquino, Brandon Rosen, Kate Crawford, and Chase Schuler who have been outstanding undergraduate students in our lab and have helped me learn to explain Science better and have also taught me stuff.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS iii
LIST OF FIGURES ix
LIST OF SCHEMES X
LIST OF TABLES xi
LIST OF ABBREVIATIONS xii
CHAPTER
I. Introduction 1
II. Synthesis of Saturated 1,4-Benzodiazepines via Pd-Catalyzed Carboamination
Reactions 9
III. Intramolecular Alkene Aminopalladation Reactions of(dppf) $\operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}\right]$ Complexes. Insertion of Unactivated
Alkenes into Pd-N Bonds 43
IV. Intramolecular Insertion of Alkenes into Pd-N Bonds. Effects of Substrateand Ligand Structure on the Reactivity of $(\mathrm{P}-\mathrm{P}) \mathrm{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CR}=\mathrm{CHR}{ }^{\prime}\right]$
Complexes 78

LIST OF FIGURES

FIGURE

I. 1 Structures of Commonly Prescribed Anti-Anxiety Benzodiazepines 6
II. 1 Biologically Active Saturated 1,4-Benzodiazepines 9
II. 2 Assignment of Stereochemistry. 40
III. 1 Possible Structures of Intermediate III-A 45
III. 2 Representative Plot of Raw Kinetic Data 47
III. 3 First Order Consumption of Pd-Amido Complex III-3a at $24^{\circ} \mathrm{C}$. 68
III. 4 Eyring Plot for k_{1} in the Conversion of III-3b to III-6b from $25-60{ }^{\circ} \mathrm{C}$ 70
III. 5 Eyring Plot for k_{2} in the Conversion of III-6b to III-4b from $25-60^{\circ} \mathrm{C}$ 71
IV. 1 Hammett Correlation for the N-Aryl Group k_{1} 82
IV. 2 Hammett Correlation for the N-Aryl Group k_{2} 83
IV. 3 Hammett Correlation for the Pd-Aryl Group k_{1} 83
IV. 4 Hammett Correlation for the Pd-Aryl Group k_{2}. 84

LIST OF SCHEMES

SCHEME

I. 1 Syn-Insertion of DMAD into Pd-Amido Complex I-1 1
I. 2 Aminoacetoxylation of Terminal Alkenes with Phthalimide and Acetate. 2
I. 3 Syn- and Anti-Aminopalladation Dependent on Reaction Conditions 2
I. 4 Alkene Diamination with a Urea Substrate 3
I.5 Pd-Catalyzed Carboamination Reactions to Afford 2-Benzylpyrrolidines 3
I. 6 Regioselctivity and Stereochemical Evidence for Syn-Insertion 3
I. 7 Generic Catalytic Cycle for Wolfe Group Carboamination Reactions 4
I. 8 Intramolecular Syn-Amidopalladation and C-H Activation Sequence 5
II. 1 Mechanism and Competing Pathways 10
II. 2 Synthesis of Substrates 11
II. 3 Origin of Observed Diastereoselectivity. 15
II. 4 Subtle Differences in Regioselectivity 16
III. 1 Overall Reaction Sequence 44
III. $2{ }^{13} \mathrm{C}$-Labeling Experiment to Ascertain the Structure of Intermediate III-A 46
III. 3 Reaction Scheme with Different N-Aryl Groups 47
III. 4 Deuterium Labeling Study to Establish Syn-Insertion. 48
III. 5 Synthesis of ${ }^{13} \mathrm{C}$-Labeled Substrate 55
III. 6 Synthesis of Stereochemistry Comparison Substrate. 61
IV. 1 Pd-Catalyzed Alkene Carboamination 79
IV. 2 Deuterium Isotope Effect at Terminal Alkene Position 87
IV. 3 Absence of Deuterium Isotope Effect at Internal Alkene Position. 87
IV. 4 Possible Mechanistic Pathways for Conversion of IV-3 to IV-4. 89

LIST OF TABLES

TABLE

II. 1 Optimization of Reaction Conditions 12
II. 2 Synthesis of Saturated 1,4-Benzodiazepines. 13
II. 3 Synthesis of 1,4-Benzodiazepin-5-one Products. 17
III. 1 Average Rate Constant Data for Eyring Plots 71
III. 2 Key Spectroscopic Data for the Reaction Mixture. 72
IV. 1 Effect of N-Aryl Group and Pd-Aryl Group on Reaction Rates 82
IV. 2 Effect of Ligand Bite Angle on Reactivity 85
IV. 3 Ligand Electronic Effects 86
IV. 4 Alkene Substituent Effects 88

LIST OF ABBREVIATIONS

9-BBN .9-borabicyclo(3.3.1)nonane
acetic acid- d_{4} perdeuterated acetic acid
AcOH acetic acid
ACS American Chemical Society
Anal analytical
app apparent
Ar aryl
ArBr aryl bromide
atm. atmosphere
ATP adenosine triphosphate
BINAP 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl
Bn. benzyl
Boc. tert-butyloxycarbonyl
br. broad
Br. .bromine
brine saturated aqueous sodium chloride
ca. crude approximation
CaH_{2}

\qquad calcium hydridecalcdcalculated
CaSO_{4} calcium sulfate
cat. catalytic
$\mathrm{CD}_{2} \mathrm{Cl}_{2}$ perdeuterated dichloromethane
CDCl_{3}. deuterated chloroform
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dichloromethane
cm^{-1} .wavenumbers
COSY .correlation spectroscopy
$\qquad$$\mathrm{Cs}_{2} \mathrm{CO}_{3}$
\qquad .cesium carbonate
d. doublet
DCE 1,2-dichloroethane
dd. doublet of doublets
ddd.doublet of doublets of doublets
ddm doublet of doublet of multiplets
${ }^{\circ} \mathrm{C}$. degrees Celsius
δ. chemical shift
$\Delta \mathrm{H}^{\neq}$ enthalpy of activation
ΔS^{\neq} entropy of activation
DIC. diisopropylcarbodiimide
dm. doublet of multiplets
DMAD. dimethylacetylenedicarboxylate
DMAP $. \mathrm{N}, \mathrm{N}$-dimethylpyridine-4-amine
DMF dimethylformamide
DMSO dimethylsulfoxide
DPE-Phos bis(2-diphenylphosphino)phenyl ether
dpp-Benzene 1,2-bis(diphenylphosphino)benzene
dppe 1,2-bis(diphenylphosphino)ethane
dppf...1,1’-bis(diphenylphosphino)ferrocenedppf-p- $\mathrm{CF}_{3} \ldots \ldots \ldots1,2-\operatorname{bis}($ bis(4-trifluoromethyl)phenyl)phosphino)ferrocene
dppf- p-OMe 1,2-bis(bis(4-methoxyphenyl)phosphino)ferrocene
dppp 1,2-bis(diphenylphosphino)propane
dq. doublet of quartets
dr. .diastereomeric ratiodtdoublet of triplets
EI .electron impact mass spectrometry
equiv equivalents
ESI. electrospray injection mass spectrometry
Et. .ethyl

EtOAc. ethyl acetate
EtOH.
ethanol
eu. entropy unitsg.grams
GC.GC/MSgas chromatography/mass spectrometry
h. hours
H^{+}. proton
HCl . .hydrochloric acid
$\mathrm{H}_{2} \mathrm{O}$water
HOBT. .N-hydroxybenzotriazole
$\mathrm{H}_{3} \mathrm{PO}_{4}$. .phosphoric acid
HRMS .high resolution mass spectrometry
HSQC .heteronuclear single quantum correlation
Hz. hertz
i-Pr. .isopropyl
$i-\mathrm{Pr}_{2} \mathrm{NEt}$ diisopropylethylamine
Ir. iridium
IR. .infrared spectroscopy
J. coupling constant value
kcal. kilocalorie
KHMDSpotassium bis(trimethylsilyl)amideKOH .
potassium hydroxide
LDA. .lithium diisopropylamide
LiAlH_{4}
.lithium aluminum hydride
LiHMDS lithium bis(trimethylsilyl)amide
L-Lgeneric bidentate ligand
L_{n}.
generic ligandm.
\qquadMe methyl
MeMgBr methyl magnesium bromide
$\mathrm{Me}_{4} \mathrm{NOAc}$. tetramethylammonium acetate
mg. milligrams
MHz megahertz
$\mu \mathrm{L}$ microliters
$\mu \mathrm{mol}$. micromole
\min minutes
mL milliliters
mM millimolar
mmol. millimoles
mol. mole
m.p. melting point
MS mass spectrometry
N -Me-Nixantphos 4,6-bis(diphenylphosphino)-10-methyl-10H-phenoxazine
Na sodium
Na^{+}. sodium ion
$\mathrm{Na}_{2} \mathrm{CO}_{3}$ sodium carbonate
NaOH sodium hydroxide
NaOt -Bu. sodium tert-butoxide
$\mathrm{Na}_{2} \mathrm{SO}_{4}$ sodium sulfate
NIH National Institutes of Health
nixantphos 4,6-bis(diphenylphosphino)phenoxazineNMR.nuclear magnetic resonance
nOe.
\qquad .nuclear Overhauser effectNSFNational Science Foundation
O_{2}. dioxygen
obsd observed
P (2-fur) .tri-2-furylphosphine
$\mathrm{P}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$ tris(4-fluorophenyl)phosphine
$\mathrm{PCy}_{2} \mathrm{Ph}$. .dicyclohexylphenylphosphine
Pd. palladium
$\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ dichlorobis(acetonitrile)palladium(II)
$\mathrm{Pd}(\mathrm{dba})_{2}$ bis(dibenzylideneacetone)palladium(0)
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ tris(dibenzylideneacetone)dipalladium(0)
$\mathrm{Pd}(\mathrm{OAc})_{2}$ palladium(II) acetate
PG generic protecting group
Ph. phenyl
PhCHO benzaldehyde
$\mathrm{PhI}(\mathrm{OAc})_{2}$. iodobenzenediacetate
phth phthalimidyl
PMP para-methoxyphenyl
P-P. .generic bidentate phosphine ligand
$\mathrm{PPh}_{2} \mathrm{Cy}$ cyclohexyldiphenylphosphine
ppm parts per million
p-tol. .para-tolyl
py. pyridine
q.. quartet
qdd. quartet of doublet of doubletsquint.quintet
quintd .quintet of doublets
R. generic alkyl grouprac.racemic
rt. .room temperature
s. singlet
sec seconds

S-Phos............................2-dicyclohexylphosphino-2', 6'-di-isopropoxy-1,1'-biphenyl t..triplet t-Bu...tert-butyl tdd...triplet of doublets of doublets TFA .trifluoroacetic acid THF..tetrahydrofuran
THF- d_{8} .perdeuterated tetrahydrofuran

TLC..thin layer chromatography
TMS..tetramethylsilane
Toluene- d_{8}. .perdeuterated toluene

Ts..4-methylbenzene-1-sulfonyl

xantphos..................................9,9-dimethyl-4,5-bis-(diphenylphosphino)xanthene
X-Phos.................................2-dicyclohexylphosphino-2',4',6'-triisopropylbiphenyl

CHAPTER I

Introduction

Along with the venerable Wacker oxidation reaction ${ }^{1}$ thought to proceed historically via anti-oxypalladtion of alkenes, ${ }^{2}$ anti-aminopalladation reactions have similarly become highly developed over the past 35 years. ${ }^{3,4,5}$ In contrast, Pd-mediated syn-aminopalladations of alkenes have been discovered only in relatively recent times. In 1992, Boncella and co-workers provided direct evidence for intramolecular syn-insertion of DMAD (I-2) into Pd-amido complex I-1 to form vinyl Pd-complex I-3 (Scheme I.1), ${ }^{6}$ but the analogous alkene insertion had not been demonstrated with a Pd-catalyst. Synaminopalladation was a topic of research in the late 1980s to the mid-1990s mainly using transition metals other than Pd . Casalnuovo and co-workers reported $\operatorname{Ir}(\mathrm{I})$-catalyzed addition of aniline to norbornylene in $1988 .^{7}$ Around the same time, Trogler and Cowan reported insertion of acrylonitrile into a Pt-amido complex, which was conceptually challenging because late-metal-amido complexes had been thought to be thermodynamically unstable complexes. ${ }^{8,9,10}$

Scheme I. 1 Syn-Insertion of DMAD into Pd-Amido Complex I-1

Despite being a more recent phenomenon, mechanistic and synthetic work has begun to reveal intermolecular syn-aminopalladation of alkenes as an expedient method for the preparation of linear, functionalized amines such as I-5 (Scheme I.2). ${ }^{11}$ Recent direct evidence for intermolecular Pd-mediated syn-aminopalladations of ethylene and 1octene has been put forth by Hartwig and co-workers. ${ }^{12}$ Stahl and Liu have also shown that oxidative, intramolecular anti- or syn-aminopalladations are both possible depending on the nature of the catalyst employed. ${ }^{13}$ For example, a catalyst composed of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{DMSO} / \mathrm{O}_{2}$ yields only anti-aminopalladation product $\mathbf{I - 7}$ whereas a $\mathrm{Pd}(\mathrm{OAc})_{2} /$ pyridine $/ \mathrm{O}_{2}$ catalyst system affords syn-aminopalladation products $\mathbf{I}-\mathbf{8}$ and $\mathbf{I}-\mathbf{9}$ (Scheme I.3).

Scheme I. 2 Aminoacetoxylation of Terminal Alkenes with Phthalimide and Acetate

Scheme I. 3 Syn- and Anti-Aminopalladation Dependent on Reaction Conditions

In addition, intramolecular aminopalladation processes have been demonstrated as a preferred route for the synthesis of valuable nitrogen heterocycles. For example, intramolecular alkene diamination (Scheme I.4, I-10 $\rightarrow \mathbf{I}-11$), ${ }^{14}$ chloroamination, ${ }^{15}$ and
hetero-Heck-type transformations ${ }^{16}$ have appeared in the literature for the synthesis of a plethora of valuable nitrogen-containing structures.

Scheme I. 4 Alkene Diamination with a Urea Substrate

Pd-catalyzed carboamination of alkenes has also become a useful method for the synthesis of a broad array of nitrogen-containing heterocycles. ${ }^{17,18}$ In 2004, Wolfe and Ney reported the Pd-catalyzed coupling of γ-aminoalkenes such as $\mathbf{I}-\mathbf{1 2}$ with aryl bromides to yield 2-benzylpyrrolidines such as $\mathbf{I}-14$ (Scheme I.5). ${ }^{19}$ In addition to pyrrolidines being an interesting class of medicinally-relevant compounds, ${ }^{20}$ this carboamination method was demonstrated to involve a novel, intramolecular synaminopalladation step. In 2005, Wolfe and Ney illustrated that carboamination of $\gamma-N$ arylaminoalkene substrate $\mathbf{I}-\mathbf{1 5}$ gave products $\mathbf{I}-\mathbf{1 7}$ and $\mathbf{I}-19$ derived from syn-addition of the nitrogen and aryl group across the pendant alkene (Scheme I.6). ${ }^{21}$

Scheme I. 5 Pd-Catalyzed Carboamination Reactions to Afford 2-Benzylpyrrolidines

Scheme I.6 Regioselectivity and Stereochemical Evidence for Syn-Insertion

From this initial work, a catalytic cycle was postulated involving: (1) oxidative addition of the ArBr to $\operatorname{ad}(0)$ complex to afford $\mathbf{I}-20$; (2) transmetalation of the deprotonated amine substrate $\mathbf{I}-\mathbf{2 1}$ with complex I-20 to give a Pd-amido complex; (3) syn-aminopalladation from the Pd-amido complex through transition state I-22 to give Pd-complex I-23; and (4) reductive elimination to liberate pyrrolidine I-24 and regenerate the $\mathrm{Pd}(0)$ species (Scheme I.7).

Scheme I. 7 Generic Catalytic Cycle for Wolfe Group Carboamination Reactions

Since this seminal work, several syntheses of other important nitrogen-containing heterocycles have been undertaken by the Wolfe Group, including more easily cleavable N-Boc pyrrolidines, ${ }^{22,23,24}$ imidazolidin-2-ones, ${ }^{25}$ pyrazolidines, ${ }^{26}$ piperazines, ${ }^{27}$ isoxazolidines, ${ }^{28}$ morpholines, ${ }^{29}$ as well as polycyclic nitrogen-containing heterocycles. ${ }^{30,31}$ In another recent development, an enantioselective synthesis of N-Boc pyrrolidines has been communicated. ${ }^{32}$ Moreover, advances such as the general use of aryl chlorides as coupling partners ${ }^{33}$ and a synthetic route to trans-2,5-disubstituted pyrrolidines ${ }^{34}$ have both been recently published.

In addition to Wolfe Group syn-aminopalladation reactions, other researchers have been active in this field. Earlier this year, Yang and Yip demonstrated a tandem synamidopalladation sequence using a $\mathrm{Pd}(\mathrm{OAc})_{2}$ pre-catalyst with an ethyl nicotinate ligand for the synthesis of polycyclic nitrogen-containing heterocycle I-26 from I-25 (Scheme I.8). ${ }^{35}$ In 2009 Michael and co-workers demonstrated the synthesis of 2benzylpyrrolidines via a $\mathrm{Pd}(\mathrm{II}) / \mathrm{Pd}(\mathrm{IV})$ sequence involving tandem intramolecular alkene aminopalladation and $\mathrm{C}-\mathrm{H}$ activation of solvent arene molecules. ${ }^{36}$ Additionally, in 2009 Oshima demonstrated Pd-catalyzed carboamination to be a convenient method for accessing aziridine products. ${ }^{37}$ Metal-catalyzed carboamination reactions for the synthesis of nitrogen-containing heterocycles employing other metals such as Cu and Au have also been disclosed by Chemler ${ }^{38}$ and Zhang ${ }^{39}$ respectively.

Scheme I. 8 Intramolecular Syn-Amidopalladation and C-H Activation Sequence

A large body of literature has been amassed since 2004 by the Wolfe Group for the Pd-catalyzed synthesis of nitrogen-containing heterocycles. However, little was known about the key intramolecular syn-aminopalladation step in the catalytic cycle until work described in Chapters III and IV of this dissertation. In addition, Wolfe Group methodology had not yet been expanded to the synthesis of 7-membered ring heterocycles until the studies described in Chapter II of this dissertation.

Specifically, 7-membered ring benzodiazepine heterocycles have captured the imagination of medicinal and organic chemists for the past 50 years. As a metric of how
important benzodiazepines have been in the treatment of anxiety etc. in humans, the common benzodiazepine drug diazepam (I-27) has been cited in $>30,000$ journal articles according to SciFinder Scholar as of 04/26/2011. Related benzodiazepine alprazolam (I28) had been cited 2,831 times whereas clonazepam ($\mathbf{I}-29$) had been cited 4,999 times in journal articles according to SciFinder Scholar as of 04/26/2011 (Figure I.1).

Figure I. 1 Structures of Commonly Prescribed Anti-Anxiety Benzodiazepines

Diazepam

Alprazolam

Clonazepam

A key feature of most biologically active benzodiazepines to date is various degrees of unsaturation such as a double bond in the 7 -membered ring or a carbonyl moiety. Despite intense interest in and many methods for convenient syntheses of new and potentially therapeutic benzodiazepines, most recent methods are not suited for expeditious synthesis of fully saturated benzodiazepine variants. Literature methods for ring closure of the 7-membered benzodiazepine ring include intramolecular N -arylation, ${ }^{40}$ anti-aminopalladation $/ \beta$-hydride elimination, ${ }^{41}$ ring-expansion of anhydrides with amines, ${ }^{42}$ Mitsunobu reactions, ${ }^{43}$ 1,3-dipolar cycloaddition, ${ }^{44}$ electrophilic aromatic substitution, ${ }^{45}$ and multicomponent reactions ${ }^{46}$ especially those using amino acids. ${ }^{47,48,49}$ In Chapter II, we illustrate a new method utilizing syn-aminopalladation of alkenes to yield fully saturated 1,4-benzodiazepine and 1,4-benzodiazepin-5-one products.

References

${ }^{1}$ Tsuji, J. Synthesis 1984, 369.
${ }^{2}$ Keith, J. A.; Henry, P. M. Angew. Chem. Int. Ed. 2009, 48, 9038.
${ }^{3}$ Hegedus, L. S.; Allen, G. F.; Waterman, E. L. J. Am. Chem. Soc. 1976, 98, 2674.
${ }^{4}$ Tamaru, Y.; Kobayashi, T.; Kawamura, S.-i., Ochiai, H.; Yoshia, Z.-i. Tetrahedron Lett. 1985, 26, 4479.
${ }^{5}$ McDonald, R. I.; Liu, G.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
${ }^{6}$ Villanueva, L. A; Abboud, K. A.; Boncella, J. M. Organometallics 1992, 11, 2963.
${ }^{7}$ Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738.
${ }^{8}$ Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451.
${ }^{9}$ Cowan, R. L.; Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750.
${ }^{10}$ Bryndza, H. E.; Tam, W. Chem. Rev. 1988, 88, 1163.
${ }^{11}$ Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
${ }^{12}$ Hanley, P. M.; Marković, D.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 6302.
${ }^{13}$ Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328.
${ }^{14}$ Muñiz, K.; Hövelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763.
${ }^{15}$ Helaja, J.; Gottlich, R. Chem. Commun. 2002, 720.
${ }^{16}$ Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 45.
${ }^{17}$ Wolfe, J. P. Eur. J. Org. Chem. 2007, 571.
${ }^{18}$ Wolfe, J. P. Synlett, 2008, 2913.
${ }^{19}$ Ney, J. E.; Wolfe, J. P. Angew. Chem. Int. Ed. 2004, 43, 3605.
${ }^{20}$ O'Hagan, D. Nat. Prod. Rep. 2000, 17, 435.
${ }^{21}$ Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
${ }^{22}$ Bertrand, M. B.; Wolfe, J. P. Tetrahedron, 2005, 61, 6447.
${ }^{23}$ Bertrand, M. B.; Leathen, M. L.; Wolfe, J. P. Org. Lett. 2007, 9, 457.
${ }^{24}$ Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851.
${ }^{25}$ Fritz, J. A.; Wolfe, J. P. Tetrahedron 2008, 64, 6838.
${ }^{26}$ Giampietro, N. C.; Wolfe, J. P. J. Am. Chem. Soc. 2008, 130, 12907.
${ }^{27}$ Nakhla, J. S.; Schultz, D. M. Tetrahedron 2009, 65, 6549.
${ }^{28}$ Lemen, G. S.; Giampietro, N. C.; Hay, M. B.; Wolfe, J. P. J. Org. Chem. 2009, 74, 2533.
${ }^{29}$ Leathen, M. L.; Rosen, B. R.; Wolfe, J. P. J. Org. Chem. 2009, 74, 5107.
${ }^{30}$ Nakhla, J. S.; Kampf, J. W.; Wolfe, J. P. J. Am. Chem. Soc. 2006, 128, 2893.
${ }^{31}$ Schultz, D. M.; Wolfe, J. P. Org. Lett. 2010, 12, 1028.
${ }^{32}$ Mai, D. N.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 12157.
${ }^{33}$ Rosen, B. R.; Ney, J. E.; Wolfe, J. P. J. Org. Chem. 2010, 75, 2756.
${ }^{34}$ Lemen, G. S.; Wolfe, J. P. Org. Lett. 2010, 12, 2322.
${ }^{35}$ Yip, K.-T.; Yang, D. Org. Lett. 2011, 13, 2134.
${ }^{36}$ Rosewall, C. F.; Sibbald, P. A.; Liskin, D. V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
${ }^{37}$ Hayashi, S.; Yorimitsu, H.; Oshima, K. Angew. Chem. Int. Ed. 2009, 48, 7224.
${ }^{38}$ Miao, L.; Haque, I.; Manzoni, M. R.; Tham, W. S.; Chemler, S. R. Org. Lett. 2010, 12, 4739.
${ }^{39}$ Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474.
${ }^{40}$ Beccalli, E. M.; Broggini, G.; Paladino, G.; Zoni, C. Tetrahedron 2005, 61, 61.
${ }^{41}$ Beccalli, E. M.; Broggini, G.; Paladino, G.; Penoni, A.; Zoni, C. J. Org. Chem. 2004, 69, 5627.
${ }^{42}$ Kukla, M. J.; Breslin, H. J.; Diamond, C. J.; Grous, P. P.; Ho, C. Y.; Miranda, M.; Rodgers, J. D.; Sherrill, R. G.; De Clercq, E.; Pauwels, R.; Andries, K.; Moens, L. J.; Janssen, M. A. C.; Janssen, P. A. J. J. Med. Chem. 1991, 34, 3187.
${ }^{43}$ Rujirawanich, J.; Gallagher, T. Org. Lett. 2009, 11, 5494.
${ }^{44}$ Majumdar, K. C.; Ray, K.; Ganai, S.; Ghosh, T. Synthesis 2010, 858.
${ }^{45}$ Sakai, N.; Watanabe, A.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Tetrahedron, 2010, 66, 8837.
${ }^{46}$ Lecinska, P.; Corres, N.; Moreno, D.; García-Valverde, M.; Marcaccini, S.; Torroba, T. Tetrahedron 2010, 66, 6783.
${ }^{47}$ Bunin, B. A.; Plunkett, M. J.; Ellman, J. A. Proc. Nat. Acad. Sci. USA 1994, 91, 4708.
${ }^{48}$ Mishra, J. K.; Garg, P.; Dohare, P.; Kumar, A.; Siddiqi, M. I.; Ray, M.; Panda, G. Bioorg. Med. Chem. Lett. 2007, 17, 1326.
${ }^{49}$ Liu, J.; Cheng, A. C.; Tang, H. L.; Medina, J. C. ACS Med. Chem. Lett. ASAP.

CHAPTER II

Synthesis of Saturated 1,4-Benzodiazepines via Pd-Catalyzed Carboamination Reactions

The benzodiazepine moiety is considered a privileged scaffold in medicinal chemistry, and many biologically active compounds bear this core. ${ }^{50}$ Although much effort has been directed towards the construction of unsaturated 1,4-benzodiazepines, ${ }^{51}$ fewer methods for the synthesis of saturated derivatives have been developed. ${ }^{52}$ This remains an important goal, as saturated 1,4-benzodiazepines are displayed in both natural products and pharmaceutical leads (Figure II.1). For example, anthramycin (II-1) is a naturally occurring antitumor antibiotic, ${ }^{53}$ and analogs such as $\mathbf{I I}-2$ display antileishmanial activity. ${ }^{54}$ Benzodiazepine II-3 is an inhibitor of mitochondrial $\mathrm{F}_{1} \mathrm{~F}_{0}$ ATP hydrolase, and has been examined as a potential candidate for treatment of cardiac ischemic conditions. ${ }^{55}$ In addition, benzodiazepine II-4 exhibits potent antitumor activity. ${ }^{56}$

Figure II. 1 Biologically Active Saturated 1,4-Benzodiazepines

Our group has demonstrated that Pd-catalyzed carboamination reactions between aryl or alkenyl halides and amines bearing pendant alkenes are effective for the synthesis of a broad array of five- $-{ }^{57}$ and six-membered ${ }^{58}$ nitrogen heterocycles. ${ }^{59,60}$ However, our prior studies suggested that generation of seven-membered heterocycles via this strategy would be quite challenging, as both yields and reaction rates diminish with increasing ring size. This appears to be due to two main problems related to the mechanism of these transformations: as ring size increases, (a) Syn-aminopalladation of the alkene (Scheme II.1), II-6 $\rightarrow \mathbf{I I}-7$, becomes more difficult due to entropic and stereoelectronic effects; and (b) competing formation of enamine side products $\mathbf{I I}-\mathbf{9}$ or $\mathbf{I I}-\mathbf{1 0}$, via β-hydride elimination from intermediate II-7, becomes more problematic. ${ }^{29}$ The application of this methodology to the construction of seven-membered rings has not previously been demonstrated, and the formation of seven-membered nitrogen heterocycles via other metal-catalyzed alkene difunctionalization reactions is very rare. ${ }^{61}$ For example, Michael has described a conceptually related $\mathrm{Pd}(\mathrm{II})$-catalyzed $\mathrm{C}-\mathrm{H}$ activation/carboamination of a N-allyl-2-(aminomethyl)aniline derivative that afforded a 3-substituted 1,4benzodiazepine. However, only a single example was reported, and the yield was modest $(53 \%) .{ }^{36}$

Scheme II. 1 Mechanism and Competing Pathways

To determine the feasibility of forming seven-membered nitrogen heterocycles via Pd-catalyzed carboamination reactions, we elected to examine the synthesis of saturated 1,4-benzodiazepines. The substrates II-14 for these studies were prepared in three steps from readily available diarylamines II-11 (Scheme II.2), which can be generated via Pd-catalyzed N-arylation of methyl-2-aminobenzoate. ${ }^{62}$ Saponification of the ester followed by coupling of the resulting acid II-12 with an allylic amine provided amides II-13. Reduction of the amides with LiAlH_{4} then afforded II-14 in moderate to good yield.

Scheme II. 2 Synthesis of Substrates

In our preliminary experiments we examined the Pd-catalyzed coupling of II-14a with 4-bromobiphenyl (Table II.1). Our previous studies indicated that use of $\mathrm{P}(2 \text {-fur })_{3}$ as a ligand gave satisfactory results in six-membered ring forming reactions. ${ }^{27}$ However, use of this ligand in a reaction of $\mathbf{I I}-14$ a provided desired product $\mathbf{I I}-\mathbf{1 5}$ in a modest 58% NMR yield, along with 13% of ketone II-16. This side product presumably results from hydrolysis of an enamine ($\mathbf{I I}-\mathbf{9}, n=3$), which is generated via a competing β-hydride elimination pathway (Scheme II.1). In order to minimize this side reaction, several other monodentate ligands were examined. Use of S-Phos failed to afford the desired product. Instead, competing N-arylation of the starting material was observed. However, after
additional experimentation we discovered that a catalyst composed of $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}$ and $\mathrm{PPh}_{2} \mathrm{Cy}$ provided acceptable results (79% NMR yield), and upon isolation the desired product II-15 was obtained in 65% yield.

Table II. 1 Optimization of Reaction Conditions

Conditions: 1.0 equiv II-14a, 2.0 equiv 4-bromobiphenyl, 2.0 equiv $\mathrm{NaOt} t-\mathrm{Bu}, 2 \mathrm{~mol} \%$ [Pd], $4 \mathrm{~mol} \%$ ligand. Product II-15 was formed with $>20: 1 \mathrm{dr}$. ${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixtures using phenanthrene as an internal standard. ${ }^{b}$ The major product resulted from N-arylation of the starting material. ${ }^{c}$ Isolated yield (average of two experiments).

Table II. 2 Synthesis of Saturated 1,4-Benzodiazepines

Conditions: Reactions were conducted on a 0.15 mmol scale using 1.0 equiv substrate, 2.0 equiv $\mathrm{ArBr}, 2.0$ equiv NaOt - Bu , $2 \mathrm{~mol} \% \mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}, 4 \mathrm{~mol} \% \mathrm{PPh}_{2} \mathrm{Cy}$, xylenes $(0.2 \mathrm{M}), 135^{\circ} \mathrm{C}$, $18-24 \mathrm{~h}$ reaction time. ${ }^{a}$ Isolated yield (average of two experiments). In all cases, 2,3-disubstituted products were obtained with $>20: 1 \mathrm{dr}{ }^{b}$ This product contained ca. 8% of ketone side product II-16.

As shown in Table II.2, the transformations were effective for a number of different substrate combinations. Aryl bromides bearing electron-donating or electronwithdrawing groups were coupled in good yields. However, N -arylation of the substrate was observed with highly electron-poor aryl bromides such as 4-bromo-2fluorobenzonitrile. In most cases reactions were also effective for aryl bromides bearing o-alkyl substituents (Table II.2, entries 3, 10-11) including the very hindered 2,4,6triisopropylbromobenzene (Table II.2, entry 11). However, no reaction was observed in the attempted coupling of 1-bromo-2-chlorobenzene with II-14a, and no desired product was obtained in a reaction between 1-bromopentamethylbenzene and II-14d; competing Heck arylation of the starting material was observed. Efforts to employ alkenyl bromides have thus far been unsuccessful.

Although sterically bulky aryl bromides were reasonably well-tolerated, transformations of hindered diamine substrates proved to be more challenging. For example, substrates that contained an allylic-methyl group were stereoselectively transformed to cis-2,3-disubstituted products with >20 :1 dr (Table II.2, entries 6-11). However, substrates bearing either larger substituents at the allylic position, or 1,1disubstituted alkenes, failed to react. The electronic properties of the N-aryl group on the cyclizing nitrogen atom did not have a large influence on chemical yield, as substrates bearing N-phenyl-, N-PMP-, and N-(3,5-dichlorophenyl)-groups were all effectively converted to products in moderate to good yield. However, attempts to employ substrates with a benzyl group on the cyclizing nitrogen atom were unsuccessful.

The stereochemical outcome of transformations involving substrates II-14a and II-14e is likely determined during $\mathrm{C}-\mathrm{N}$ bond-forming alkene aminopalladation of an
intermediate palladium(aryl)(amido) complex. ${ }^{63}$ Our prior studies have indicated that alkene aminopalladations proceed via organized transition states in which the alkene is eclipsed with the $\mathrm{Pd}-\mathrm{N}$ bond. This suggests reactions of substrates II-14a and II-14e, which afford cis-2,3-disubstituted products, most likely occur via boat-like transition state II-27 (Scheme II.3). ${ }^{64}$ Pathways leading to the trans-disubstituted products appear to be high in energy. Chair-like transition state II-28 suffers from unfavorable steric interactions between the N -aryl group and the C5 methylene unit, and boat-like transition state II-29 is presumably disfavored due to the axial orientation of the C3 methyl group.

Scheme II. 3 Origin of Observed Diastereoselectivity

In order to further explore the scope of benzodiazepine-forming reactions, we examined the use of amides II-13 as substrates for the carboamination reactions. As shown in Scheme II.4, the conditions that were optimized for transformations of diamine substrates provided good yields of II-30 in the coupling of II-13b with 4-bromobiphenyl, although small amounts of regioisomer II-31 were also obtained. ${ }^{65}$ After some additional optimization we found that use of $\mathrm{P}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$ as ligand provided slightly improved selectivities. The regioisomer was separable by chromatography, and II-30 was obtained in 79% isolated yield. These modified conditions proved to be useful for the coupling of
amides II-13b, II-13d, and II-13f with a number of different aryl bromides (Table II.3). However, efforts to employ an amide substrate bearing an allylic methyl group were unsuccessful; complex mixtures of regioisomers were obtained.

Scheme II. 4 Subtle Differences in Regioselectivity

In conclusion we have developed an efficient entry into saturated 1,4benzodiazepines and 1,4-benzodiazepin-5-ones via Pd-catalyzed alkene carboamination reactions. The method is effective for a variety of different aryl bromide coupling partners, and cis-2,3-disubstituted 1,4-benzodiazepines are formed with >20:1 dr. These transformations are rare examples of 7-membered ring-forming alkene difunctionalization reactions. Further studies toward enantioselective synthesis of 1,4benzodiazepines and application of this strategy to biologically active targets are currently in progress.

Table II. 3 Synthesis of 1,4-Benzodiazepin-5-one Products

Conditions: Reactions were conducted on a 0.15 mmol scale using 1.0 equiv substrate, 2.0 equiv $\mathrm{ArBr}, 2.0$ equiv $\mathrm{NaO} t$ - $\mathrm{Bu}, 1 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 4 \mathrm{~mol} \% \mathrm{P}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$, xylenes $(0.2 \mathrm{M}), 135{ }^{\circ} \mathrm{C}, 18-24 \mathrm{~h}$ reaction time. ${ }^{a}$ Isolated yield (average of two experiments).

Experimental

All reactions were carried out under a dry nitrogen atmosphere in flame-dried glassware using standard Schlenk techniques. All reagents were obtained from commercial sources and used without further purification. Toluene, THF, diethyl ether, and dichloromethane were purified using a GlassContour solvent purification system.

Xylenes and diisopropylethylamine were distilled over CaH_{2} before use. Methyl 2(phenylamino)benzoate, ${ }^{66}$ methyl 2-(3,5-dichlorophenylamino)benzoate, ${ }^{66}$ methyl 2-(4methoxyphenylamino)benzoate, ${ }^{67} \mathrm{~N}$-benzylbut-3-enyl-2-amine, ${ }^{68} \mathrm{~N}$-allyloctan-1-amine, ${ }^{69}$ N-benzylprop-2-en-1-amine, ${ }^{69}$ and tert-butyl 4-bromobenzoate ${ }^{70}$ were prepared according to literature procedures. (E)-but-2-enyl acetate was prepared by treatment of crotyl alcohol with acetic anhydride, triethylamine and DMAP at rt in dichloromethane. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR analysis unless otherwise noted. The product yields reported in the experimental section are the result of a single experiment whereas the yields in Chapter II are an average of two experiments.

General Procedure 1: Saponifcation of Benzoate Substrates. A flask equipped with a magnetic stirbar was charged with the benzoate substrate (1.0 equiv) and a 1:1 mixture of water: EtOH ($7.5 \mathrm{~mL} / \mathrm{mmol}$ substrate). Finely ground KOH (2.5 equiv) was added, and the resulting mixture was heated to reflux for 3 h . The mixture was then cooled to rt and concentrated to remove all of the EtOH . Additional water (15 mL) was added, the mixture was acidified to $\mathrm{pH} \sim 2$ with $\mathrm{HCl}(1 \mathrm{M})$, and a precipitate formed. The precipitate was collected by filtration and the crude product was purified by flash column chromatography on silica gel to furnish the pure carboxylic acid product.

General Procedure 2: Peptide Coupling of Acid Substrates with Allylic Amines. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate carboxylic acid substrate (1.0 equiv) and N-hydroxybenzotriazole, (1.2 equiv). The flask
was purged with nitrogen for 5 min , then the appropriate allylic amine substrate (1.0 equiv), diisopropylethylamine (3.0 equiv), and dichloromethane ($3 \mathrm{~mL} / \mathrm{mmol}$ substrate) were added. The resulting clear solution was stirred for ca. 2 min , then diisopropylcarbodiimide (1.05 equiv) was added. The reaction mixture was stirred for $12-24 \mathrm{~h}$ and then concentrated in vacuo. The crude material was purified by flash column chromatography on silica gel to afford the pure benzamide product.

General Procedure 3: Reduction of Amides to Amine Substrates. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate benzamide substrate (1.0 equiv) and purged with nitrogen for 5 min . THF ($1 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added, the resulting solution was cooled to $0{ }^{\circ} \mathrm{C}$, and a 1 M solution of LiAlH_{4} in diethyl ether (1.0 equiv) was added slowly over 5 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min then warmed to rt and stirred until TLC analysis indicated complete consumption of starting material. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then water $(0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate), $6 \mathrm{M} \mathrm{NaOH}(0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate $)$ and additional water ($0.15 \mathrm{~mL} / \mathrm{mmol}$ substrate) were sequentially added. The resulting white suspension was stirred vigorously for 30 min , then filtered and the white precipitate was washed with diethyl ether $(3 \times 30$ $\mathrm{mL})$. The organic solution was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting product was purified by flash column chromatography on silica gel.
N-Allyl- N-benzyl-2-(phenylamino)benzamide (II-13b). 2-(Phenylamino)benzoic acid $(1.02 \mathrm{~g}, 4.8 \mathrm{mmol})$ was coupled with N-benzylprop-2-en-1-amine ($680 \mathrm{mg}, 4.6 \mathrm{mmol}$) for

24 h using General Procedure 2. Flash chromatography on silica gel (90:10 hexanes:ethyl acetate) afforded $1.40 \mathrm{~g}(89 \%)$ of the title compound as a white solid, m.p. $73-75{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) \delta 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.18(\mathrm{~m}, 8 \mathrm{H}), 7.04(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.81-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.20-$ $5.08(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.04-3.90(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$) δ 171.4, 142.6, 142.2, 136.9, 133.0, 130.2, 129.3, 128.7, 127.7, 127.49, 127.47, 124.7, $121.5,119.8,118.9,117.9,117.7,49.4$, one aliphatic carbon signal is incidentally equivalent; IR (film) $3332,1627 \mathrm{~cm}^{-1}$. MS (ESI) 343.1801 (343.1805 calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.
N-Allyl- N-benzyl-2-(3,5-dichlorophenylamino)benzamide (II-13d). Methyl 2-(3,5dichlorophenylamino)benzoate ($2.50 \mathrm{~g}, 8.4 \mathrm{mmol}$) was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 50:50 hexanes:ethyl acetate $\rightarrow 100 \%$ ethyl acetate as the eluent to afforded $1.81 \mathrm{~g}(76 \%)$ of 2-(3,5-dichlorophenylamino)benzoic acid as a fluffy white solid, m.p. $245-246{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 13.1$ (s, br, 1 H), 9.54 (s, br, 1 H), $7.91(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1$ H), $7.52-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H})$, $6.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 169.3, 144.3, 144.2, 134.7, 134.1, 131.9, 120.7, 120.0, 117.3, 116.6, 115.9.

The above 2-(3,5-dichlorophenylamino)benzoic acid ($998 \mathrm{mg}, 3.5 \mathrm{mmol}$) was coupled with N-benzylprop-2-en-1-amine ($556 \mathrm{mg}, 3.8 \mathrm{mmol}$) for 15 h using General Procedure 2. Flash chromatography on silica gel (85:15 hexanes:ethyl acetate) afforded $1.24 \mathrm{~g}(85 \%)$ of the title compound as a white solid, m.p. $131-132{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 6{ }^{\circ}{ }^{\circ} \mathrm{C}\right) \delta 7.38-7.21(\mathrm{~m}, 7 \mathrm{H}), 7.17(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.07-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.97(\mathrm{dt}$, $J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 3 \mathrm{H}), 5.81-5.66(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.07(\mathrm{~m}, 2 \mathrm{H}), 4.65$ (s, 2 H), 4.04-3.83 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 62{ }^{\circ} \mathrm{C}$) $\delta 170.8,145.2,139.9$, 136.7, 135.7, 130.6, 128.9, 128.6, 127.7, 127.5, 121.9, 121.8, 120.5, 120.4, 118.1, 115.3, 115.2, 49.1, two aliphatic carbon signals are incidentally equivalent; IR (film) 3298, 1621 cm^{-1}. MS (ESI) 433.0850 (433.0845 calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
N-Allyl- N-octyl-2-(phenylamino)benzamide (II-13f). Methyl 2-(phenylamino)benzoate $(2.76 \mathrm{~g}, 12.1 \mathrm{mmol})$ was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 70:30 hexanes:ethyl acetate as the eluent to afforded $1.96 \mathrm{~g}(76 \%)$ of 2-(phenylamino)benzoic acid as a white solid, m.p. 185-187 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60{ }^{\circ} \mathrm{C}\right) \delta 10.8(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 9.32(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 8.04(\mathrm{dd}, \mathrm{J}=$ $0.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.76$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$) δ 173.7, 148.9, 140.3, 135.2, 132.6, 129.4, 124.1, 123.2, 117.2, 114.0, 110.4; IR (film) $3339,1658 \mathrm{~cm}^{-1}$.

The above 2-(phenylamino) benzoic acid ($1.0 \mathrm{~g}, 4.7 \mathrm{mmol}$) was coupled with N -allyloctan-1-amine ($790 \mathrm{mg}, 4.7 \mathrm{mmol}$) for 24 h using General Procedure 2. Flash chromatography on silica gel (90:10 hexanes:ethyl acetate) afforded $1.55 \mathrm{~g}(91 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) \delta 7.33(\mathrm{~d}, \mathrm{~J}$ $=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.88-6.81 (m, 2 H), 5.87-5.71 (m, 1 H), 5.23-5.12 (m, 2H), 4.10-3.96 (m, 2 H), 3.46$3.31(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.15(\mathrm{~m}, 10 \mathrm{H}), 0.86(\mathrm{t}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) \delta 171.0,142.6,141.9,129.4,129.2,127.6,127.4,125.1$,
$121.4,119.6,119.0,118.8,117.4,46.8,31.8,29.2,29.1,27.9,26.9,22.6,13.9$, one aliphatic carbon signal is incidentally equivalent; IR (film) $3311,1622 \mathrm{~cm}^{-1}$. MS (ESI) 365.2589 (365.2587 calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}$).

2-\{[Allyl(benzyl)amino]methyl\}- N-phenylaniline (II-14b). N-Allyl- N-benzyl-2(phenylamino)benzamide ($4.95 \mathrm{~g}, 14.5 \mathrm{mmol}$) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded 3.19 g (67%) of the title compound as a white solid, m.p. $70-71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.47 (s, br, 1 H), $7.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.15(\mathrm{~m}, 11 \mathrm{H}), 6.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.78(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{dd}, J=2.4,14.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 2$ H), $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.06(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5$, 143.0, $138.6,134.4,131.1,129.3,129.2,128.4,128.1,127.1,125.2,120.2,119.2,118.8,117.7$, $114.9,57.9,57.7,55.8$; IR (film) $3255,1593 \mathrm{~cm}^{-1}$. MS (ESI) 329.2017 (329.2018 calcd for $\left.\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

2-\{[Allyl(benzyl)amino]methyl\}- \boldsymbol{N}-(4-methoxyphenyl)aniline (II-14c). Methyl 2-(4methoxyphenylamino)benzoate ($6.12 \mathrm{~g}, 23.8 \mathrm{mmol}$) was saponified according to General Procedure 1. Purification via flash chromatography on silica gel using 50:50 hexanes:ethyl acetate $\rightarrow 100 \%$ ethyl acetate as the eluent to afforded $5.20 \mathrm{~g}(89 \%)$ of 2-(4-methoxyphenylamino)benzoic acid as a light yellow solid, m.p. $185-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.7(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 9.14(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.33-7.27 (m, 1 H), 7.24-7.16 (m, 2 H), 6.97-6.90 (m, 3H), 6.69 (dt, $J=1,7.5 \mathrm{~Hz}, 1 \mathrm{H})$
3.83 (s, 3 H) ${ }^{13}{ }^{13} \mathrm{CNMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 173.5,157.0,150.5,135.2,132.9,132.5$, 126.4, 116.3, 114.7, 113.4, 109.4, 55.5; IR (film) $3323,1664 \mathrm{~cm}^{-1}$.

The above 2-(4-methoxyphenylamino) benzoic acid ($2.0 \mathrm{~g}, 8.2 \mathrm{mmol}$) was coupled with N-benzylprop-2-en-1-amine ($1.2 \mathrm{~g}, 8.2 \mathrm{mmol}$) for 18 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded 2.96 g (97\%) of N -allyl- N -benzyl-2-(4-methoxyphenylamino)benzamide as a viscous, yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) \delta 7.40-7.02(\mathrm{~m}, 10 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.71$ (m, 1 H), 5.84-5.75 (m, 1 H), 5.22-5.11 (m, 2 H), $4.69(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$) $\delta 171.7,155.8,144.2,137.1,135.4$, $133.1,130.4,128.8,127.8,127.52,127.51,123.0,122.6,118.4,117.9,115.6,115.0,55.7$, 49.6, 2 aliphatic carbon signals are incidentally equivalent; IR (film) $3351,1626 \mathrm{~cm}^{-1}$. MS (ESI) 373.1911 (373.1911 calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).
N-Allyl- N-benzyl-2-(4-methoxyphenylamino)benzamide ($2.96 \mathrm{~g}, 8.0 \mathrm{mmol}$) was reduced according General Procedure 3. Flash chromatography on silica gel (95:5 hexanes:ethyl acetate) afforded $1.68 \mathrm{~g}(59 \%)$ of the title compound as an off-white, solid, m.p. $59-60{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (s, br, 1 H), $7.29(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 4 \mathrm{H})$, 7.26-7.19 (m, 1 H), 7.16-7.02 (m, 5 H), 6.89-6.83 (m, 2 H$), 6.72(\mathrm{dt}, J=1.6,6.8 \mathrm{~Hz}, 1$ H), $5.97-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.22-5.15(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.66(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H})$, $3.06(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.5,145.1,138.7,136.1$, $134.5,131.0,129.2,128.3,128.2,127.1,123.8,121.3,118.7,118.1,114.6,113.0,58.0$, $57.6,55.8,55.6$; IR (film) $3240,1599 \mathrm{~cm}^{-1}$. MS (ESI) 359.2120 (359.2133 calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.
N-\{2-[(Allyl<benzyl>amino)methyl]phenyl\}-3,5-dichloroaniline (II-14d). N-Allyl- N -benzyl-2-(3,5-dichlorophenylamino)benzamide ($950 \mathrm{mg}, \quad 2.3 \mathrm{mmol}$) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded $712 \mathrm{mg}(78 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.56(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.35-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{dd}, J=1.0,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{dt}, J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.76(\mathrm{~m}, 3 \mathrm{H}), 5.93-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.24-$ $5.15(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.04(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 145.3,141.6,138.3,135.3,134.2,131.3,129.3,128.5,128.3,127.4,126.7$, $121.2,119.23,119.17,117.1,114.4,57.9,57.5,56.0$; IR (film) $3238,1594 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 397.1234 (397.1233 calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).

2-\{[Benzyl(but-3-en-2-yl)amino]methyl\}-N-(4-methoxyphenyl)aniline (II-14a). 2-(4Methoxyphenylamino)benzoic acid ($494 \mathrm{mg}, 1.8 \mathrm{mmol}$) was coupled with N -benzylbut-3-enyl-2-amine ($314 \mathrm{mg}, 1.9 \mathrm{mmol}$) for 22 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded 499 mg (66%) of N -benzyl- N-(but-3-en-2-yl)-2-(4-methoxyphenylamino)benzamide as a viscous, yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$) $\delta 7.37-7.10(\mathrm{~m}, 6 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.83$ (m, 2 H), 6.76 (dt, $J=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 1 \mathrm{H}), 5.95-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.19-$ $5.08(\mathrm{~m}, 2 \mathrm{H}), 4.88-4.80(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}$) $\delta 172.1$, $155.8,144.0,138.6,135.4,130.2,128.4,127.30,127.26,126.9,123.6,122.4,118.6$, $116.3,115.8,115.0,114.9,55.7,49.7,18.0$, one aliphatic carbon signal is incidentally
equivalent; IR (film) 3354, $1626 \mathrm{~cm}^{-1}$. MS (ESI) 387.2067 (387.2067 calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

The above N-benzyl- N-(but-3-en-2-yl)-2-(4-methoxyphenylamino)benzamide $(1.49 \mathrm{~g}, 2.0 \mathrm{mmol})$ was reduced according General Procedure 3. Flash chromatography on silica gel (95:5 hexanes:ethyl acetate) afforded 701 mg (49\%) of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.10(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.35-7.05(\mathrm{~m}, 8$ H), $7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{dt}, J=2.0,7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.03-5.91(m, 1 H$), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.38$ (quint, $J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.4,145.2,139.6$, $138.4,136.0,131.1,129.1,128.3,128.1,127.0,123.7,121.3,118.0,116.9,114.5,112.9$, 55.6, 55.1, 53.61, 53.57, 14.5; IR (film) 3240, $1599 \mathrm{~cm}^{-1}$. MS (ESI) 373.2276 (373.2274 calcd for $\left.\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

2-\{[Benzyl(but-3-en-2-yl)amino]methyl\}-N-phenylaniline (II-14e).

2-(Phenylamino)benzoic acid ($995 \mathrm{mg}, 4.7 \mathrm{mmol}$) was coupled with N-benzylbut-3-enyl-2-amine ($748 \mathrm{mg}, 4.6 \mathrm{mmol}$) for 22 h using General Procedure 2. Flash chromatography on silica gel (80:20 hexanes:ethyl acetate) afforded $1.52 \mathrm{~g}(92 \%)$ of N -benzyl- N -(but-3-en-2-yl)-2-(phenylamino)benzamide as a viscous, yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 60^{\circ} \mathrm{C}\right) \delta 7.31(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.13(\mathrm{~m}, 8 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $6.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.79(\mathrm{~m}, 2 \mathrm{H}), 5.91-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.15-5.04(\mathrm{~m}, 2 \mathrm{H})$, 4.85-4.72(m, 2 H$), 4.41(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 60{ }^{\circ} \mathrm{C}\right) \delta 171.7,142.6,141.8,138.8,138.4,130.0,129.3,128.4,127.2$,
126.9, 126.6, 125.6, 121.4, 120.0, 118.8, 117.8, 116.3, 55.6, 46.7, 17.9; IR (film) 3377, $1624 \mathrm{~cm}^{-1}$. MS (ESI) 357.1962 (357.1961 calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

The above N-benzyl- N-(but-3-en-2-yl)-2-(phenylamino)benzamide ($5.34 \mathrm{~g}, 15$ mmol) was reduced according General Procedure 3. Flash chromatography on silica gel (98:2 hexanes:ethyl acetate) afforded $3.17 \mathrm{~g}(62 \%)$ of the title compound as a viscous, light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.42(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.33-7.01(\mathrm{~m}, 9 \mathrm{H}), 7.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{dt}, J=0.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.76(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37$ (quint, $J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.5,142.9$, $139.5,138.3,131.2,129.2,129.1,128.4,128.0,127.0,125.0,120.2,119.2,117.8,117.0$, $114.6,55.2,53.7,53.5,14.5$; IR (film) $3253,1593 \mathrm{~cm}^{-1}$. MS (ESI) 343.2171 (343.2169 calcd for $\left.\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

General Procedure 4: Pd-Catalyzed Synthesis of 1,4-Benzodiazepines. A flame-dried Schlenk tube was cooled under a stream of nitrogen and charged with $\mathrm{PdCl}_{2}(\mathrm{MeCN})_{2}(2$ $\mathrm{mol} \%), \mathrm{PPh}_{2} \mathrm{Cy}(4 \mathrm{~mol} \%), \mathrm{NaOt}$ - Bu (2.0 equiv), and ArBr (2.0 equiv). The tube was purged with nitrogen and a solution of the amine substrate (1.0 equiv) in xylenes (5 $\mathrm{mL} / \mathrm{mmol}$ amine) was added. The mixture was heated to $135{ }^{\circ} \mathrm{C}$ with stirring until the starting material had been consumed as judged by TLC analysis (18-24 h; the reaction times were not minimized). The reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate (2×5
$\mathrm{mL})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel.

4-Benzyl-1-phenyl-2-(3,4,5-trimethoxybenzyl)methyl]-2,3,4,5-tetrahydro-1H-

 benzo $[e][\mathbf{1 , 4}]$ diazepine (II-17). General Procedure 4 was used for the coupling of 2-\{[allyl(benzyl)amino]methyl\}- N-phenylaniline ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) with 5-bromo-1,2,3trimethoxybenzene ($75 \mathrm{mg}, 0.30 \mathrm{mmol}$) to afford $60 \mathrm{mg}(79 \%)$ of the title compound as a foamy, white solid with a wide m.p. range $51-64{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.05(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 3 \mathrm{H}), 6.40(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $3.73(\mathrm{~s}, 6 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.81-2.67 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 153.0,148.5,143.7,139.3,137.1$, $136.3,135.5,130.4,129.7,129.1,128.4,128.3,127.8,127.0,125.6,118.2,115.4,106.1$, $62.6,60.8,58.9,57.9,57.7,56.0,39.0$; IR (film) $1591 \mathrm{~cm}^{-1}$. MS (ESI) 495.2637 (495.2648 calcd for $\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3},[\mathrm{M}+\mathrm{H}]^{+}$).
4-Benzyl-2-(biphenyl-4-ylmethyl)-1-phenyl-2,3,4,5-tetrahydro-1H-

benzo $[e][1,4]$ diazepine (II-18). General Procedure 4 was used for the coupling of 2-\{[allyl(benzyl)amino]methyl\}- N-phenylaniline $\quad\left(\begin{array}{llllll}51 & \mathrm{mg}, & 0.15 & \mathrm{mmol}) & \text { with } & 4-\end{array}\right.$ bromobiphenyl ($71 \mathrm{mg}, 0.30 \mathrm{mmol}$) to afford $65 \mathrm{mg}(88 \%)$ of the title compound as a foamy, white solid with a wide m.p. range $50-66{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.58-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.13(\mathrm{~m}, 17 \mathrm{H}), 7.06(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 3 \mathrm{H})$,
4.55-4.47 (m, 1 H), 3.67-3.59 (m, 3 H), 3.44 (d, $J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.71(\mathrm{~m}, 4 \mathrm{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.6,143.8,141.0,139.3,139.0,138.9,137.0,130.4$, $129.6,129.5,129.2,128.9,128.7,128.3,128.0,127.04,127.03,126.9,125.6,118.2$, $115.5,62.7,59.0,58.0,56.8,37.3$, one aromatic carbon signal is incidentally equivalent; IR (film) $1593 \mathrm{~cm}^{-1}$. MS (ESI) 481.2645 (481.2638 calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).

4-Benzyl-2-(2-ethylbenzyl)-1-(4-methoxyphenyl)-2,3,4,5-tetrahydro-1H-

benzo $[e][1,4]$ diazepine (II-19). General Procedure 4 was used for the coupling of 2-\{[allyl(benzyl)amino]methyl\}- N -(4-methoxyphenyl)aniline (49 mg, 0.14 mmol) with 1-bromo-2-ethylbenzene ($39 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) to afford $60 \mathrm{mg}(94 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.01(\mathrm{~m}, 7 \mathrm{H}), 6.94(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-$ 6.73 (m, 2 H$), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.30(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~d}, \mathrm{~J}=14.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.59(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=7.0 \mathrm{H}, 2 \mathrm{H})$, $2.77-2.55(\mathrm{~m}, 4 \mathrm{H}), 1.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9$, 145.4, 143.0, 142.3, 139.3, 137.6, 136.0, 130.2, 130.1, 128.8, 128.30, 128.27, 127.8, $127.0,126.3,125.7,124.3,118.8,114.6,62.7,59.2,59.1,57.6,55.6,34.5,25.4,15.3$, one aromatic carbon signal is incidentally equivalent; IR (film) $1507 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) $463.2735\left(463.2749\right.$ calcd for $\left.\mathrm{C}_{32} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4-Benzyl-1-(3,5-dichlorophenyl)-2-[4-(trifluoromethyl)benzyl]-2,3,4,5-tetrahydro-

$\mathbf{1 H}$-benzo $[\boldsymbol{e}][\mathbf{1 , 4}]$ diazepine (II-20). General Procedure 4 was used for the coupling of N -\{2-[(allyl<benzyl>amino)methyl]phenyl\}-3,5-dichloroaniline (53 mg, 0.13 mmol) with

1-bromo-4-(trifluoromethyl)benzene ($38 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) to afford $53 \mathrm{mg}(74 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.38-7.24(\mathrm{~m}, 7 \mathrm{H}), 7.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 1 \mathrm{H})$, $3.67(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~d}, J=13 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.65$ (m, 4 H) ${ }^{13}{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 149.7$, 143.1, 141.2, 138.8, 135.6, 130.8, 130.0, $129.4,128.9,128.5,128.43,128.40,127.4,127.3,125.33,125.29,124.2(\mathrm{q}, J=272 \mathrm{~Hz})$, 117.5, 112.2, 62.9, 59.2, 57.2, 37.6, 29.7; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$ (m); IR (film) $1580 \mathrm{~cm}^{-1}$. MS (ESI) 541.1432 (541.1425 calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4-Benzyl-1-(3,5-dichlorophenyl)-2-[3-(trifluoromethyl)benzyl]-2,3,4,5-tetrahydro-

$\mathbf{1 H}$-benzo $[e][\mathbf{1}, 4]$ diazepine (II-21). General Procedure 4 was used for the coupling of N -$\{2-[($ allyl<benzyl>amino)methyl $]$ phenyl $\}-3,5$-dichloroaniline ($53 \mathrm{mg}, 0.13 \mathrm{mmol}$) with 1-bromo-3-(trifluoromethyl)benzene ($38 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) to afford $56 \mathrm{mg}(78 \%)$ of the title compound as a viscous, colorless film. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.22(\mathrm{~m}, 10 \mathrm{H}), 7.19(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.63(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.60(\mathrm{~d}, J$ $=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 149.8,141.2,139.8,138.7,137.5,135.6,132.3,130.8,130.5,130.1,128.8$, $128.4,127.33,127.26,126.20,126.16,124.1(\mathrm{q}, J=272 \mathrm{~Hz}), 123.3,123.2,117.5,112.3$, 62.9, 58.9, 57.4, 37.5, 29.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6 (m); IR (film) $1580 \mathrm{~cm}^{-}$ ${ }^{1}$. MS (ESI) 541.1429 (541.1425 calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}\right)$. coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}-N-(4-methoxyphenyl)aniline (52 $\mathrm{mg}, 0.14 \mathrm{mmol})$ with 4-bromobiphenyl ($64 \mathrm{mg}, 0.28 \mathrm{mmol}$) to afford $48 \mathrm{mg}(65 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.18(\mathrm{~m}, 11 \mathrm{H}), 7.12-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{td}, J=2.3,11.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85-3.65(\mathrm{~m}, 7 \mathrm{H}), 3.48(\mathrm{dq}, J=2.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.50(\mathrm{dd}, J=10.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.8,145.0,143.4,141.0,140.8,140.0,138.8,137.0,130.8,129.7,129.5,128.7$, $128.5,128.3,127.9,127.0,126.98,126.95,126.8,124.3,119.0,114.4,67.5,61.2,57.1$, 55.6, 52.4, 33.8, 19.2; IR (film) $1504 \mathrm{~cm}^{-1}$. MS (ESI) 525.2909 (525.2900 calcd for $\left.\mathrm{C}_{37} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.
(\pm)-3-\{benzyl[2-(phenylamino)benzyl]amino\}butan-2-one (II-16). General Procedure 4 was used for the coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}-N-phenylaniline ($49 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 1-bromo-3,5-dichlorobenzene ($66 \mathrm{mg}, 0.29 \mathrm{mmol}$) to afford 8.7 $\mathrm{mg}(12 \%)$ of the title compound as a viscous, colorless film. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.82(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.11(\mathrm{~m}, 7 \mathrm{H}), 7.09-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{tt}, J$ $=1.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{td}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.6$, 143.3, $142.6,138.7,131.5,129.13,129.11,128.6,128.5,127.5,124.3,120.7,119.2,118.3$,
$115.0,62.8,54.6,53.9,27.9,8.1$; IR (film) $1714,1593 \mathrm{~cm}^{-1}$. MS (ESI) 359.2117 (359.2118 calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}$).
(\pm)-(2R,3S)-4-Benzyl-2-[(6-methoxynaphthalen-2-yl)methyl]-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-benzo $[\boldsymbol{e}][\mathbf{1 , 4}]$ diazepine (II-22). General Procedure 4 was used for the coupling of $2-\{[$ benzyl(but-3-en-2-yl)amino $]$ methyl $\}-N$-phenylaniline (50 mg , 0.15 mmol) with 2-bromo-6-methoxynaphthalene ($70 \mathrm{mg}, 0.28 \mathrm{mmol}$) to afford 59 mg (81%) of the title compound as a foamy, light yellow solid with a wide m.p. range 51-69 ${ }^{\circ} \mathrm{C}$. This material contained ca. 8% of ketone II-16, which could not be separated by chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=9.6$ Hz, 1 H), 7.43-7.15 (m, 9 H), 7.12-7.07 (m, 3 H), 7.06-7.00 (m, 2 H$), 6.86$ (dd, $J=2.0$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dt}, J=2.0,10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.63(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{dd}, J=2.4$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=2.0,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}, J=10.8,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,148.8,143.4,140.8,138.4,135.2$, 133.1, 131.1, 130.9, 129.0, 128.9, 128.4, 128.3, 127.8, 127.7, 127.3, 126.8, 126.7, 125.6, $118.6,117.7,115.3,110.0,105.6,64.6,60.8,56.8,55.3,52.1,33.6,19.1$; IR (film) 1605, $1592 \mathrm{~cm}^{-1}$. MS (ESI) 499.2741 (499.2749 calcd for $\left.\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.
(\pm)-4-[(2R,3S)-4-Benzyl-1-(4-methoxyphenyl)-3-methyl(-2,3,4,5-tetrahydro-1Hbenzo $[e][1,4]$ diazepin-2-yl)methyl $]-N, N$-dimethylaniline (II-23). General Procedure 4 was used for the coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}-N-(4methoxyphenyl)aniline ($52 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 4-bromo- N, N-dimethylaniline (56 mg ,
$0.28 \mathrm{mmol})$ to afford $55 \mathrm{mg}(81 \%)$ of the title compound as a viscous, colorless film. This material contained ca. 8% of ketone II-16, which could not be separated by chromatography. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42-7.16(\mathrm{~m}, 6 \mathrm{H}), 7.11-6.99(\mathrm{~m}, 4 \mathrm{H})$, $6.90(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $9.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{td}, J=2.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.67(\mathrm{~m}, 6 \mathrm{H}), 3.64(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1$ H), $3.51-3.41(\mathrm{~m}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 6 \mathrm{H}), 2.83(\mathrm{dd}, J=2.0,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=10.8$, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 152.6, 149.1, $145.3,143.6,140.9,136.9,130.8,129.7,129.6,128.8,128.5,128.2,127.8,126.7,124.0$, $119.1,114.4,113.0,67.7,61.2,57.0,55.6,52.1,40.9,33.1,19.1$; IR (film) $1506 \mathrm{~cm}^{-1}$. MS (ESI) 492.3014 (492.3009 calcd for $\mathrm{C}_{33} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}$).

(\pm)-(2R,3S)-4-benzyl-2-(3,5-dichlorobenzyl)-3-methyl-1-phenyl-2,3,4,5-tetrahydro-

1H-benzo[e][1,4]diazepine (II-24). General Procedure 4 was used for the coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}- N-phenylaniline ($49 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 1 -bromo-3,5-dichlorobenzene ($66 \mathrm{mg}, 0.29 \mathrm{mmol}$) to afford $44 \mathrm{mg}(63 \%)$ of the title compound as a viscous, colorless film. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.33$ (m, 4 H), 7.32-7.22 (m, 2 H$), 7.21-7.03(\mathrm{~m}, 5 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{dd}, J=1.2,7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 6.70(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{td}, J=2.4,11.6 \mathrm{~Hz}, 1$ H), $3.69(\mathrm{~s}, 2 \mathrm{H}), 3.63-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{dq}, J=2.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{dd}, J=2.4$, $15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=11.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.5,143.7,142.9,140.5,138.3,134.5,131.0,130.8,129.2,128.33$, $128.30,127.5,126.9,126.3,125.9,118.2,115.4,64.5,60.6,57.0,52.7,33.2,19.1$; IR (film) $1592 \mathrm{~cm}^{-1}$. MS (ESI) 487.1698 (487.1708 calcd for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).
(\pm)-(2R,3S)-4-Benzyl-2-(2,6-dimethylbenzyl)-1-(4-methoxyphenyl)-3-methyl-2,3,4,5-tetrahydro-1H-benzo $[\boldsymbol{e}][\mathbf{1 , 4}]$ diazepine (II-25). General Procedure 4 was used for the coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}-N-(4-methoxyphenyl)aniline (52 $\mathrm{mg}, 0.14 \mathrm{mmol})$ with 2-bromo-meta-xylene $(37 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ to afford $58 \mathrm{mg}(87 \%)$ of the title compound as a viscous, colorless film. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.32$ $(\mathrm{m}, 4 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.89(\mathrm{~m}, 5 \mathrm{H}), 6.69-6.65(\mathrm{~m}, 2$ H), 6.63-6.56(m, 3 H), 4.48-4.42(m, 1 H$), 3.99(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=14.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{dq}, J$ $=2.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dq}, J=8.0,14.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 6 \mathrm{H}), 1.23(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 3$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.9,146.7,146.0,142.9,140.7,137.2,137.1$, $132.8,130.6,128.6,128.3,127.8,126.7,126.5,125.8,122.5,122.0,114.4,65.3,60.9$, 56.1, 55.5, 55.3, 29.9, 20.7, 19.2; IR (film) $1506 \mathrm{~cm}^{-1}$. MS (ESI) 477.2905 (477.2900 calcd for $\left.\mathrm{C}_{33} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

(\pm)-(2R,3S)-4-Benzyl-1-(4-methoxyphenyl)-3-methyl-2-(2,4,6-triisopropylbenzyl)-

 2,3,4,5-tetrahydro-1H-benzo $[\boldsymbol{e}][\mathbf{1 , 4}]$ diazepine (II-26). General Procedure 4 was used for the coupling of 2-\{[benzyl(but-3-en-2-yl)amino]methyl\}-N-(4-methoxyphenyl)aniline ($52 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 2-bromo-1,3,5-triisopropylbenzene ($71 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) to afford $51 \mathrm{mg}(64 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{td}, J=1.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.01(\mathrm{dd}, J=1.5,7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.95(\mathrm{td}, J=1.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-$ 6.68 (m, 2 H), 6.67-6.61 (m, 2 H), $4.16(\mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$,$3.78-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.54(\mathrm{dd}, J=10.5,14.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 4 \mathrm{H}), 2.90(\mathrm{dd}, J=$ $5.5,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3$ H), $1.11(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.03(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $154.0,147.4,147.2,146.5,142.9,140.5,132.7,132.2,130.6,128.6,128.2,127.8,126.7$, $126.1,122.6,122.4,120.8,114.4,67.5,60.1,56.0,55.9,55.5,34.1,29.2,29.0,24.6,24.1$, 23.8, 18.8; IR (film) $1507 \mathrm{~cm}^{-1}$. MS (ESI) 575.4002 (575.3996 calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}$, [M $+\mathrm{H}]^{+}$.

General Procedure 5: Pd-Catalyzed Synthesis of 1,4-Benzodiazepin-5-ones. A flamedried Schlenk tube was cooled under a stream of nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1$ $\mathrm{mol} \%$ complex, $2 \mathrm{~mol} \% \mathrm{Pd})$ or $\mathrm{Pd}(\mathrm{dba})_{2}(2 \mathrm{~mol} \%), \mathrm{P}\left(4-\mathrm{F}-\mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}(4 \mathrm{~mol} \%), \mathrm{NaOt} \mathrm{Bu}$ (2.0 equiv), and ArBr (2.0 equiv). The tube was purged with nitrogen and a solution of the amine substrate (1.0 equiv) in xylenes ($5 \mathrm{~mL} / \mathrm{mmol}$ amine) was added. The mixture was heated to $135{ }^{\circ} \mathrm{C}$ with stirring until the starting material had been consumed as judged by TLC analysis (18-24 h ; the reaction times were not minimized). The reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (2 mL) and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate $(2 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel.

2-([1,1'-Biphenyl]-4-ylmethyl)-4-benzyl-1-phenyl-3,4-dihydro-1H-

benzo[e][1,4]diazepin-5(2H)-one (II-30). General Procedure 5 was used for the
coupling of N-allyl- N-benzyl-2-(phenylamino)benzamide ($40 \mathrm{mg}, 0.12 \mathrm{mmol}$) with 4 bromobiphenyl ($52 \mathrm{mg}, 0.22 \mathrm{mmol}$) to afford $44 \mathrm{mg}(76 \%)$ of the title compound as a white solid with a wide m.p. range $67-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.88(\mathrm{dd}, J=$ $1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62-7.58$ (m, 2 H), 7.55-7.40 (m, 6 H), 7.39-7.34 (m, 1 H$), 7.32-7.20$ (m, 3 H), 7.19-7.01 (m, 7 H$), 6.77(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{dd}, J=11.5,15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{dd}, J=10.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.5,148.3,140.6,139.8,139.6,137.0,136.4,136.2,132.3,130.4,130.3$, 129.03, 129.02, 128.8, 128.6, 128.4, 127.5, 127.4, 127.3, 127.1, 127.0, 118.3, 113.7, 62.9, 51.3, 50.1, 36.4; IR (film) $1648 \mathrm{~cm}^{-1}$. MS (ESI) 495.2423 (495.2431 calcd for $\left.\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

tert-Butyl-4-[(4-benzyl-5-oxo-1-phenyl-2,3,4,5-tetrahydro-1H-benzo[e][1,4]diazepin-

 2-yl)methyl]benzoate (II-32). General Procedure 5 was used for the coupling of N-allyl-N-benzyl-2-(phenylamino)benzamide $(36 \mathrm{mg}, \quad 0.10 \mathrm{mmol})$ with tert-butyl 4 bromobenzoate ($40 \mu \mathrm{~L}, 0.20 \mathrm{mmol}$) to afford $39 \mathrm{mg}(72 \%)$ of the title compound as a foamy white solid with a wide m.p. range $68-85{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93-$ $7.86(\mathrm{~m}, 3 \mathrm{H}), 7.52(\mathrm{dt}, J=2.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20$ (m, 2 H$), 7.17-7.08(\mathrm{~m}, 4 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.77(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.82(\mathrm{~m}, 1 \mathrm{H})$, $3.30-3.10(\mathrm{~m}, 2 \mathrm{H}), 3.04(\mathrm{dd}, J=5.2,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dd}, J=6.0,14.0 \mathrm{~Hz}, 1 \mathrm{H})$, 1.61 (s, 9 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.4,165.5,148.2,142.1,139.6,136.9$, $136.2,132.3,130.5,130.4,130.3,129.9,129.1,128.7,128.5,128.4,127.5,127.2,118.4$,113.6, 81.1, $62.7,51.3,50.2,36.8,28.2$; IR (film) $1711,1649 \mathrm{~cm}^{-1}$. MS (ESI) 541.2465 (541.2462 calcd for $\mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{3},[\mathrm{M}+\mathrm{Na}]^{+}$).

2-(4-Benzoylbenzyl)-4-benzyl-1-phenyl-3,4-dihydro- $1 H$-benzo $[e][1,4]$ diazepin-5(2H)-

 one (II-33). General Procedure 5 was used for the coupling of N-allyl- N-benzyl-2(phenylamino)benzamide ($34 \mathrm{mg}, 0.10 \mathrm{mmol}$) with 4-bromobenzophenone ($52 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ to afford 33 mg (64\%) of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(\mathrm{dd}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64-7.59(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1$ H), 7.16-7.10(m, 6 H$), 7.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.90(\mathrm{~m}, 1 \mathrm{H})$, $3.27(\mathrm{dd}, J=11.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=4.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=5.0,15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 2.50(\mathrm{dd}, J=9.5,14.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.2,169.5$, $148.2,142.3,139.5,137.5,136.8,136.2,136.1,132.5,132.4,130.6,130.4,130.3,130.0$, 129.1, 128.7, 128.6, 128.4, 128.3, 127.6, 127.2, 118.4, 113.6, 62.7, 51.3, 50.2, 36.9; IR (film) $1649,1603 \mathrm{~cm}^{-1}$. MS (ESI) 523.2377 (523.2380 calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).
(\pm)-(2R,3R)-3-(4-benzoylphenyl)-4-benzyl-2-methyl-1-phenyl-3,4-dihydro-1H-

 benzo $[e][1,4]$ diazepin-5(2H)-one (II-S1). General Procedure 5 was used for the coupling of N-allyl- N-benzyl-2-(phenylamino)benzamide ($34 \mathrm{mg}, 0.10 \mathrm{mmol}$) with 4 bromobenzophenone ($52 \mathrm{mg}, 0.20 \mathrm{mmol}$) to afford $5 \mathrm{mg}(9 \%)$ of the title compound as an off-white film in ca. 80% purity. The structure and relative stereochemistry of II-31 was assigned based on analogy to II-S1. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21$ (dd, $J=1.6$,$8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.54-$ 7.43 (m, 3 H), $7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.00-$ $6.94(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2$ H), $5.21(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 196.2, 161.7, $147.8,146.7,142.4,137.5,136.6,135.6,132.9,132.5,130.7,130.0,129.2,128.7,128.4$, $128.3,128.1,127.8,127.1,124.1,123.4,123.3,122.9,121.3,79.8,48.9,43.8,18.2$; IR (film) $1653,1603 \mathrm{~cm}^{-1}$. MS (ESI) 523.2371 (523.2380 calcd for $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2},[\mathrm{M}+\mathrm{H}]^{+}$).

4-Benzyl-1-(3,5-dichlorophenyl)-2-(pyridine-3-ylmethyl)-3,4-dihydro-1H-

benzo $[e][1,4]$ diazepin-5(2H)-one (II-34). General Procedure 5 was used for the coupling of N-allyl- N-benzyl-2-(3,5-dichlorophenylamino)benzamide ($35 \mathrm{mg}, 0.09$ mmol) with 3-bromopyridine ($17 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) to afford $32 \mathrm{mg}(78 \%)$ of the title compound as a white solid, m.p. $153-155{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{dd}, J$ $=1.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dt}, J=$ $1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dt}, J=1.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, $7.20-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.10(\mathrm{~s}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=11.5,15.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=5.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=5.0,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=$ 9.0, $14.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.6,150.0,149.8,148.6,137.4$, $136.9,136.0,135.4,132.8,132.2,130.8,130.1,128.9,128.5,128.4,128.0,123.6,118.1$, $111.4,62.9,51.0,50.1,34.1$; IR (film) $1643 \mathrm{~cm}^{-1}$. MS (ESI) 488.1292 (488.1291 calcd for $\left.\mathrm{C}_{28} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}\right)$.

4-Benzyl-1-(3,5-dichlorophenyl)-2-[2-(trifluoromethyl)benzyl]-3,4-dihydro-1H-

 benzo $[e][1,4]$ diazepin-5(2H)-one (II-35). General Procedure 5 was used for the coupling of N-allyl- N-benzyl-2-(3,5-dichlorophenylamino)benzamide (36 mg, 0.09 $\mathrm{mmol})$ with 1-bromo-2-(trifluoromethyl)benzene ($23 \mu \mathrm{~L}, 0.17 \mathrm{mmol}$) to afford 25 mg (50\%) of the title compound as a white solid, m.p. $235-237{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{dd}, J=1.6,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38 (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.32-7.23 (m, 2 H), 7.19-7.09 (m, 3 H), 7.08-7.02 (m, 2 H), $6.62(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.81(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.39(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{dd}, J=11.6,15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{dd}, J=$ $4.8,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=7.2,14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-59.0(\mathrm{~m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.6,150.5,137.3,136.9$, $136.5,135.6,135.1,132.9,132.1,131.6,130.9,130.5,128.8,128.6,128.5,127.9,127.2$, $126.6,126.5,124.3(\mathrm{q}, J=275 \mathrm{~Hz}), 117.8,111.4,63.4,51.5,50.3,33.6$; IR (film) 1646 cm^{-1}. MS (ESI) 577.1023 (577.1032 calcd for $\left.\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{Na}]^{+}\right)$.
2-(4-Benzoylbenzyl)-4-octyl-1-phenyl-3,4-dihydro-1H-benzo[e][1,4]diazepin-5(2H)-

 one (II-36). General Procedure 5 was used for the coupling of N-allyl- N-octyl-2(phenylamino)benzamide ($35 \mathrm{mg}, 0.10 \mathrm{mmol}$) with 4-bromobenzophenone ($52 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ to afford 36 mg (69%) of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86-7.78(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{dt}, J=1.5,7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 3$ H), 7.44-7.38 (m, 3 H), 7.28-7.24(m, 2 H), 7.19-7.12 (m, 2 H$), 6.77(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.54-4.40(\mathrm{~m}, 1 \mathrm{H}), 3.62-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.20(\mathrm{~m}, 3 \mathrm{H})$, $3.15(\mathrm{dd}, J=5.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=9.0,13.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.00(\mathrm{~m}, 12 \mathrm{H})$,$0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 196.2, 169.3, 148.3, 142.5, $139.5,137.5,136.6,136.3,132.5,132.1,130.8,130.4,130.01,129.98,129.1,128.9$, $128.3,127.1,118.6,113.7,63.5,52.1,47.1,37.2,31.7,29.4,29.1,28.7,26.6,22.6,14.1$; IR (film) $1649,1602 \mathrm{~cm}^{-1}$. MS (ESI) 545.3166 (545.3163 calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{2},[\mathrm{M}+$ $H]^{+}$.

4-Octyl-2-(phenanthren-9-ylmethyl)-1-phenyl-3,4-dihydro-1H-

benzo $[e][1,4]$ diazepin-5(2H)-one (II-37). General Procedure 5 was used for the coupling of N -allyl- N -octyl-2-(phenylamino)benzamide ($38 \mathrm{mg}, 0.10 \mathrm{mmol}$) with 9 bromophenanthrene ($50 \mathrm{mg}, 0.19 \mathrm{mmol}$) to afford $41 \mathrm{mg}(74 \%)$ of the title compound as a viscous, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.85-8.76(\mathrm{~m}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.22-8.16(\mathrm{~m}, 1 \mathrm{H}), 7.87-7.80(\mathrm{~m}, 3 \mathrm{H}), 7.77-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.55(\mathrm{~m}$, $4 \mathrm{H}), 7.46(\mathrm{dt}, J=1.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{dd}, J=0.8,8 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 2 \mathrm{H})$, $6.73(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.77(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=5.2$, $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=11.6,14.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-2.97(\mathrm{~m}, 3 \mathrm{H})$, $1.42-0.95(\mathrm{~m}, 12 \mathrm{H}), 0.82(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.3$, $148.8,139.6,137.1,132.2,131.8,131.5,131.1,130.9,130.6,130.4,129.9,129.2,128.2$, $127.8,127.3,127.0,126.9,126.7,126.6,123.9,123.6,122.5,118.3,113.6,62.4,52.6$, $47.0,34.5,31.7,29.3,29.0,28.6,26.5,22.6,14.1$; IR (film) $1646 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 541.3217 (541.3213 calcd for $\mathrm{C}_{38} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O},[\mathrm{M}+\mathrm{H}]^{+}$).

Assignment of Stereochemistry

The stereochemistry of II-15 was assigned on the basis of nOe correlations as shown below. In addition, the measured value of $J_{\mathrm{ab}}=2.0 \mathrm{~Hz}$ correlates well with the calculated value of 1.5 Hz for a cis-arrangement of these protons. The stereochemistry of other disubstituted products was assigned based on analogy to II-15.

Figure II. 2 Assignment of Stereochemistry

The trans-stereochemistry of II-S1 was assigned on the basis of the measured value of $J_{a b}$ $=10.4 \mathrm{~Hz}$. The stereochemistry of II-31 was assigned based on analogy to II-S1.

References

$\left({ }^{50}\right)$ Costantino, L.; Barlocco, D. Curr. Med. Chem. 2006, 13, 65.
$\left({ }^{51}\right)$ Reviews: (a) Horton, D. A.; Bourne, G. T.; Smythe, M. L. Chem. Rev. 2003, 103, 893. (b) Ellman, J. A. Acc. Chem. Res. 1996, 29, 132.
$\left({ }^{52}\right)$ For recent examples, see: (a) Donald, J. R.; Martin, S. F. Org. Lett. 2011, 13, 852. (b) Sakai, N.;
Watanabe, A.; Ikeda, R.; Nakaike, Y.; Konakahara, T. Tetrahedron 2010, 66, 8837. (c) Mishra, J. K.;
Samanta, K.; Jain, M.; Dikshit, M.; Panda, G. Bioorg. Med. Chem. Lett. 2010, 20, 244. (d) Rujirawanich, J.; Gallagher, T. Org. Lett. 2009, 11, 5494. (e) Yar, M.; McGarrigle, E. M.; Aggarwal, V. K. Org. Lett. 2009, 11, 257. (f) Wang, J.-Y.; Guo, X.-F.; Wang, D.-X.; Huang, Z.-T.; Wang, M.-X. J. Org. Chem. 2008, 73, 1979.
$\left({ }^{53}\right)$ Leimgruber, W.; Stefanovic, V.; Schenker, F.; Karr, A.; Berger, J. J. Am. Chem. Soc. 1965, 87, 5791.
$\left({ }^{54}\right)$ Clark, R. L.; Carter, K. C.; Mullen, A. B.; Coxon, G. D.; Owusu-Dapaah, G.; McFarlane, E.; Thi, M. D. D.; Grant, M. H.; Tettey, J. N. A.; Mackay, S. P. Bioorg. Med. Chem. Lett. 2007, 17, 624.
$\left({ }^{55}\right)$ Hamann, L. G.; Ding, C. Z.; Miller, A. V.; Madsen, C. S.; Wang, P.; Stein, P. D.; Pudzianowski, A. T.; Green, D. W.; Monshizadegan, H.; Atwal, K. S. Bioorg. Med. Chem. Lett. 2004, 14, 1031.
${ }^{56}$) (a) Hunt, J. T.; Ding, C. Z.; Batorsky, R.; Bednarz, M.; Bhide, R.; Cho, Y.; Chong, S.; Chao, S.; GulloBrown, J.; Guo, P.; Kim, S. H.; Lee, F. Y. F.; Leftheris, K.; Miller, A.; Mitt, T.; Patel, M.; Penhallow, B. A.; Ricca, C.; Rose, W. C.; Schmidt, R.; Slusarchyk, W. A.; Vite, G.; Manne, V. J. Med. Chem. 2000, 43, 3587. (b) Johnston, S. R. D. IDrugs 2003, 6, 72.
$\left({ }^{57}\right)$ Pyrrolidines: (a) Ney, J. E.; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605. (b) Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851. (c) Lemen, G. S.; Wolfe, J. P. Org. Lett. 2010, 12, 2322. Pyrazolidines: (d) Giampietro, N. C.; Wolfe, J. P. J. Am. Chem. Soc. 2008, 130, 12907.

Isoxazolidines: (e) Lemen, G. S.; Giampietro, N. C.; Hay, M. B.; Wolfe, J. P. J. Org. Chem. 2009, 74, 2533. Imidazolidin-2-ones: (f) Fritz, J. A.; Wolfe, J. P. Tetrahedron 2008, 64, 6838.
$\left({ }^{58}\right)$ Piperazines: (a) Nakhla, J. S.; Schultz, D. M.; Wolfe, J. P.; Tetrahedron 2009, 65, 6549. Morpholines:
(b) Leathen, M. L.; Rosen, B. R.; Wolfe, J. P.; J. Org. Chem. 2009, 74, 5107.
(${ }^{59}$) Reviews: (a) Wolfe, J. P. Eur. J. Org. Chem. 2007, 571. (b) Wolfe, J. P. Synlett 2008, 2913.
$\left({ }^{60}\right)$ For Cu - or Au-catalyzed carboamination reactions that afford 2-(arylmethyl)pyrrolidines and related heterocycles, see: (a) Chemler, S. R. Org. Biomol. Chem. 2009, 7, 3009. (b) Zhang, G.; Cui, L.; Wang, Y.; Zhang, L. J. Am. Chem. Soc. 2010, 132, 1474. For alkene carboamination reactions involving solvent C-H bond functionalization, see: (c) Rosewall, C. F.; Sibbald, P. A.; Liskin, D.V.; Michael, F. E. J. Am. Chem. Soc. 2009, 131, 9488.
$\left({ }^{61}\right)$ For hydroamination reactions see: (a) Leitch, D. C.; Payne, P. R.; Dunbar, C. R.; Schafer, L. L. J. Am. Chem. Soc. 2009, 131, 18246. (b) Reznichenko, A. L.; Hultzsch, K. C. Organometallics 2010, 29, 24. (c) Gagné, M. R.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1992, 114, 275. For diamination reactions see: (d) Streuff, J.; Hövelmann, C. H.; Nieger, M.; Muñiz, K. J. Am. Chem. Soc. 2005, 127, 14586. For Copetype hydroamination reactions, see: (e) Roveda, J. -G.; Clavette, C.; Hunt, A. D.; Gorelsky, S. I.; Whipp, C. J.; Beauchemin, A. M. J. Am. Chem. Soc. 2009, 131, 8740.
$\left({ }^{62}\right)$ Wolfe, J. P.; Buchwald, S. L. Tetrahedron Lett. 1997, 38, 6359.
$\left({ }^{63}\right.$) (a) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. J. Am. Chem. Soc. 2010, 132, 6276. (b) Neukom, J. D.; Perch, N. S.; Wolfe, J. P. Organometallics 2011, 30, 1269. (c) Hanley, P. S.; Markovic, D.; Hartwig, J. F. J. Am. Chem. Soc. 2010, 132, 6302.
$\left({ }^{64}\right)$ The major stereoisomers could also arise from chairlike transition states in which the methyl groups are oriented in axial positions. However, these transitions states appear to be higher in energy than II-27 due to 1,3-diaxial interactions and unfavorable steric interactions between the N-aryl group and the C 5 methylene similar to those illustrated in II-28.
$\left({ }^{65}\right)$ This regioisomer likely originates from competing β-hydride elimination processes similar to those illustrated in Scheme II.1. For further discussion, see reference 21.
${ }^{66}$ Correa, A.; Tellitu, I.; Dominguez, E.; SanMartin, R. Tetrahedron 2006, 62, 11100.
${ }^{67}$ Wolfe, J. P.; Buchwald, S, L. Tetrahedron Lett. 1997, 38, 6359.
${ }^{68}$ Dubovyk, I.; Watson, I. D. G.; Yudin, A. K. J. Am. Chem. Soc. 2007, 129, 14172.
${ }^{69}$ Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336.
${ }^{70}$ Manku, S.; Wang, F.; Hall, D. G. J. Comb. Chem., 2003, 5, 379.

CHAPTER III

Intramolecular Alkene Aminopalladation Reactions of (dppf) $\operatorname{Pd}(\mathbf{A r})\left[\mathbf{N}\left(\mathbf{A r}^{1}\right)\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C H}=\mathbf{C H}_{2}\right]$ Complexes. Insertion of Unactivated Alkenes into Pd-N Bonds

The prospect of effecting syn-migratory insertion of alkenes into palladiumnitrogen bonds has been of longstanding interest in organometallic chemistry. Studies on the viability of this transformation were a focal point of early work towards the development of late-metal catalyzed hydroamination reactions. ${ }^{71,72}$ However, a number of experiments suggested that aminopalladation reactions of alkenes generally proceed through outer-sphere anti-addition pathways. ${ }^{73}$ More recently, the syn-insertion of alkenes into $\mathrm{Pd}-\mathrm{N}$ bonds has been implicated as a key step in many useful Pd-catalyzed reactions including alkene carboaminations, ${ }^{74}$ diaminations, ${ }^{75}$ oxidative aminations, ${ }^{76}$ chloroaminations, ${ }^{77}$ aminoacetoxylations, ${ }^{78}$ and hetero-Heck transformations. ${ }^{79,80}$ However, despite the considerable interest in these processes, the syn-migratory insertion of an alkene into the $\mathrm{Pd}-\mathrm{N}$ bond of a well-characterized palladium amido complex has yet to be observed. ${ }^{81,82}$

In this Chapter we describe the synthesis of (dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p\right.$ F) $\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}=\mathrm{CH}_{2}\right]$ complexes III-3, which are thought to be intermediates in Pdcatalyzed alkene carboamination reactions. We illustrate that these complexes are transformed to 2-benzylpyrrolidines via migratory insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond, followed by reductive elimination of the resulting
(dppf)palladium(aryl)(pyrrolidin-2-ylmethyl) complexes. These are the first examples of insertions of alkenes into Pd-N bonds of well-defined complexes.

Scheme III. 1 Overall Reaction Sequence

Prior studies on the synthesis of $\mathrm{L}_{\mathrm{n}} \mathrm{Pd}(\mathrm{Ar})\left(\mathrm{NRR}{ }^{\prime}\right)$ complexes suggested that the high reactivity of these species would preclude their isolation in most cases. ${ }^{83}$ As such, the isolable (dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})$ complex III-1 was prepared using previously described routes ${ }^{83,84}$ and the potassium anilide salt of $N-\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)$-pent-4-enylamine (III-2a) was synthesized via deprotonation of the corresponding amine with KHMDS. ${ }^{83}$ As shown in Scheme III.1, a solution of III-1 in THF or THF- d_{8} was treated with III-2a (1.05 equiv) in the presence of 2-fluorotoluene as internal standard and dppf (2 equiv) as a trap for $\operatorname{Pd}(0)$. The conversion of III-1 to III-3a was complete upon mixing, and the formation of amido complex III-3a was evident by the presence of a pair of doublets at $24.9 \mathrm{ppm}\left(J_{\mathrm{PP}}=38.1 \mathrm{~Hz}\right)$ and $9.0 \mathrm{ppm}\left(J_{\mathrm{PP}}=35.5 \mathrm{~Hz}\right)$ in the ${ }^{31} \mathrm{P}$ NMR spectrum, which are comparable to data previously reported for $(\mathrm{dppf}) \operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)(\mathrm{R})\right]$ complexes. ${ }^{83,85}$ New signals at -123.7 and -137.3 ppm were also observed in the ${ }^{19} \mathrm{~F}$ NMR spectrum of

III-3a.

Shortly after forming, ${ }^{86}$ amido complex III-3a underwent reaction to generate a new intermediate complex (III-A), which exhibited ${ }^{19} \mathrm{~F}$ NMR resonances at -124.1 and -
133.3 ppm , and ${ }^{31} \mathrm{P}$ NMR signals at $21.3 \mathrm{ppm}\left(J_{\mathrm{PP}}=24.1 \mathrm{~Hz}\right)$ and $16.6 \mathrm{ppm}\left(J_{\mathrm{PP}}=21.7\right.$ $\mathrm{Hz})$. This intermediate was transformed to pyrrolidine III-4a and $(\mathrm{dppf})_{2} \mathrm{Pd}$ at a rate that appeared to be roughly comparable to that of its formation from III-3a. Overall, the conversion of III-3a to III-4a proceeded in 86% NMR yield in 45 min at $24{ }^{\circ} \mathrm{C}$. No additional intermediates on the pathway from III-3a to III-4a were detected, and no side products resulting from β-hydride elimination were observed.

Figure III. 1 Possible Structures of Intermediate III-A

As shown in Figure III.1, it seemed most likely that intermediate III-A was either a 5-coordinate alkene complex (III-5a), or an aryl(alkyl) palladium complex (III-6a). In addition, although Pd-catalyzed carboamination reactions have been shown to proceed through aminopalladation rather than carbopalladation pathways, we sought to exclude the possible intermediacy of III-7a in the stoichiometric transformation. However, the data obtained in our initial experiments could not be used to assign the structure of III-A. For example, the ${ }^{1} \mathrm{H}$ NMR alkene signals of III-3a decreased as the reaction proceeded, but this region of the spectrum was sufficiently complicated that the presence of a new alkene containing intermediate (III-5a) could not be definitively confirmed or refuted. Similarly, the complicated ${ }^{1} \mathrm{H}$ NMR data also did not allow for differentiation of III-6a vs. III-7a. We observed that $(\mathrm{dppf}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{CH}_{2}(\right.$ cyclopentyl $\left.)\right]$ (III-8) generated in situ from III-1 and (cyclopentyl) $\mathrm{CH}_{2} \mathrm{MgBr}$ underwent $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination in $<5 \mathrm{~min}$ at $\mathrm{rt},{ }^{87}$ which seemed to argue against the intermediacy of III-6a.

However, the reductive elimination of III-6a could be significantly slowed relative to III-8 due to the inductive electron-withdrawing effect of the nitrogen atom in III-6a. ${ }^{88}$ Thus, the identity of intermediate III-A could not be ascertained without additional experimentation.

Scheme III. $2{ }^{13} \mathrm{C}$-Labeling Experiment to Ascertain the Structure of Intermediate III-A

In order to elucidate the structure of III-A we prepared and examined the reactivity of ${ }^{13} \mathrm{C}$ labeled amido complex III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ (Scheme III.2). Analysis of the reaction by ${ }^{13} \mathrm{C}$ and ${ }^{31} \mathrm{P}$ NMR indicated that intermediate III-A is the aryl(alkyl)palladium complex III-6a. The chemical shifts of the labeled carbon atoms in III-A were not consistent with an alkene, and the chemical shift of C_{b} indicated it was located adjacent to a heteroatom. Thus, this data ruled out the possible intermediacy of III-5a and III-7a. Moreover, the ${ }^{31} \mathrm{P}$ chemical shifts, coupling constants, and J_{CP} correlate well with data reported by Brown for $(\mathrm{dppf}) \mathrm{Pd}(\mathrm{Ph})(\mathrm{Me}) .{ }^{89}$

Having ascertained the structure of intermediate III-A, kinetic data were measured at $24^{\circ} \mathrm{C}$ for the transformation of amido complex III-3a to pyrrolidine III-4a by way of intermediate III-6a (Scheme III. 3 and Figure III.2). Rate constants were extracted for the consecutive first-order reactions (III-3a to III-6a, $k_{1}=1.74 \times 10^{-3} \mathrm{~s}^{-1}$; III-6a to III-4a, $k_{2}=1.36 \times 10^{-3} \mathrm{~s}^{-1}$), which occur with rates within one order of
magnitude from each other. ${ }^{90}$ The activation parameters for the conversion of related amido complex III-3b to III-4b were determined by Eyring plot analysis $\left(25-60{ }^{\circ} \mathrm{C}\right),{ }^{91}$ and are similar for both steps of the transformation. For the conversion of III-3b to III$\mathbf{6 b} \Delta \mathrm{H}^{\ddagger}=24.8 \pm 0.6 \mathrm{kcal} / \mathrm{mol}, \Delta \mathrm{S}^{\ddagger}=4.6 \pm 1.8$ eu. For the reductive elimination of III-4b from III- $6 \mathbf{b} \Delta H^{\ddagger}=23.3 \pm 0.8 \mathrm{kcal} / \mathrm{mol}, \Delta \mathbf{S}^{\ddagger}=4.6 \pm 2.5 \mathrm{eu}$. The reaction enthalpies are comparable to those observed for insertion of alkenes into late-metal-carbon bonds, ${ }^{92 a-c}$ and for $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination processes. ${ }^{92 \mathrm{~d}}$ The small entropy values are consistent with unimolecular transformations. ${ }^{92}$

Scheme III. 3 Reaction Scheme with Different N-Aryl Groups

Figure III. 2 Representative Plot of Raw Kinetic Data

The stereochemistry of the aminopalladation reaction was determined through reaction of deuterated amido complex III-3c. As shown in Scheme III.4, this complex was cleanly transformed to pyrrolidine III-4c with net syn-addition of the aryl group and the N -atom across the $\mathrm{C}-\mathrm{C}$ double bond. This supports a mechanism involving synmigratory insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond, rather than amide dissociation, alkene coordination, and outer-sphere attack of the pendant nucleophile. This result is also consistent with the stereochemical outcome of Pd-catalyzed carboamination reactions between γ-aminoalkene derivatives and aryl bromides. ${ }^{24}$

Scheme III. 4 Deuterium Labeling Study to Establish Syn-Insertion

In conclusion, we have described the first examples of intramolecular synmigratory insertion reactions of alkenes into well-defined palladium(aryl)(amido) complexes. These reactions proceed with complete chemoselectivity for insertion into the $\mathrm{Pd}-\mathrm{N}$ bond vs. the $\mathrm{Pd}-\mathrm{C}$ bond, and provide observable (dppf)palladium(aryl)(pyrroldin-2-ylmethyl) complexes. These results provide further support for postulated synaminopalladation mechanistic pathways in palladium-catalyzed alkene difunctionalization reactions.

Experimental

All reactions were carried out under a dry nitrogen atmosphere in flame-dried glassware using standard Schlenk techniques or in a nitrogen-filled glovebox. All reagents were obtained from commercial sources and used without further purification. $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{D}) \mathrm{Cl},{ }^{93}$ and 4 -(pent-4-enylamino)benzonitrile ${ }^{19}$ were prepared according to literature procedures. $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})\right\}_{2}{ }^{94}$ and $(\mathrm{dppf}) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})^{95}$ were prepared using methods analogous to those previously described by Buchwald. ${ }^{95}$ Pent-4-ynyl-4-methylbenzenesulfonate was prepared by treatment of 4-pentyn-1-ol with 1.2 equiv TsCl , 2 equiv $\mathrm{Et}_{3} \mathrm{~N}$, and 0.1 equiv DMAP at $0{ }^{\circ} \mathrm{C}$ in dichloromethane. Toluene, THF, diethyl ether, and dichloromethane solvents used in the synthesis of organic substrates or air-stable Pd-complexes were purified using a GlassContour solvent purification system. THF and THF- d_{8} solvents used for preparation of Pd-amido complexes and kinetics experiments were dried over sodium/benzophenone overnight under vacuum and then vacuum transferred before use. 2-Fluorotoluene and 4fluorotoluene were purified by distillation from CaH_{2} under nitrogen. Benzaldehyde was purified by distillation from CaSO_{4} under nitrogen. $\mathrm{CD}_{2} \mathrm{Cl}_{2}$, acetic acid- d_{4}, and propargyl alcohol- ${ }^{13} \mathrm{C}_{3}$ were obtained anhydrous from Cambridge Isotope Laboratories and used as received. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR analysis unless otherwise noted. The yields reported in the experimental section describe the result of a single experiment, whereas all kinetic data have been averaged over duplicate experiments. All kinetic experiments were set up in a glovebox under nitrogen atmosphere. All glassware and microsyringes associated with kinetic experiments were oven dried at $120{ }^{\circ} \mathrm{C}$ overnight before use. ${ }^{31} \mathrm{P}$ NMR shifts are
given relative to an $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ external standard. ${ }^{1} \mathrm{H}$ NMR shifts for the experimental section are reported downfield of TMS in CDCl_{3} or referenced to residual protia in THF$d_{8} .{ }^{19} \mathrm{~F}$ NMR shifts are referenced to 2-fluorotoluene (-117.2 ppm) or 4-fluorotoluene ($117.9 \mathrm{ppm})$ in THF- d_{8}.

Preparation and Characterization of Potassium Amide Substrates

General Procedure 6: Conversion of N-aryl-pent-4-enamides to N-aryl-pent-4enylamines. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate N-aryl-pent-4-enamide (1.0 equiv) and purged with nitrogen for 5 min . THF ($4 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To this solution, a 1 M solution of LiAlH_{4} in diethyl ether (1.2 equiv) was added slowly over 10 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min then warmed to rt and stirred overnight (ca. 16 h). The reaction mixture was cooled to $0^{\circ} \mathrm{C}$, then water $(0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate), $6 \mathrm{M} \mathrm{NaOH}(0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate) and additional water ($0.15 \mathrm{~mL} / \mathrm{mmol}$ substrate) were sequentially added. The resulting white suspension was stirred vigorously for 30 min , then filtered through glass wool and the white precipitate was washed with diethyl ether $(3 \times 30 \mathrm{~mL})$. The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting product was purified by flash chromatography on silica gel.

General Procedure 7: Conversion of \boldsymbol{N}-aryl-pent-4-enylamines to Potassium N-aryl-pent-4-enyl Amides. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate N-aryl-pent-4-enylamine (1.3 equiv) and purged with nitrogen for 5
min. In the glovebox, a separate flame-dried Schlenk flask equipped with a magnetic stirbar was charged with solid KHMDS (1.0 equiv), capped with a septum, removed from the glovebox, and connected to a vacuum/nitrogen manifold. Toluene $(5 \mathrm{~mL} / \mathrm{mmol}$ KHMDS) was added to each flask to afford clear solutions. Subsequently the amine solution was added dropwise to the KHMDS solution at rt to afford a bright yellow solution. The solution was stirred for 1.5 h at rt , over which time the solution became progressively more cloudy. The solvent was removed under high vacuum to afford a crude solid, which was taken into the glovebox under vacuum. The crude solid was purified on a medium glass frit via rinsing/trituration with pentane $(4 \times 10 \mathrm{~mL})$ The resulting potassium N -aryl-pent-4-enyl amides were determined to contain ca. 1.6-1.8\% KHMDS as judged by ${ }^{1} \mathrm{H}$ NMR analysis. This material was used without further purification.

Potassium (4-fluorophenyl)(pent-4-enyl)amide (III-2a). A flame-dried flask equipped with a magnetic stirbar was charged with 4-pentenoic acid ($2.0 \mathrm{~mL}, 19.6 \mathrm{mmol}$) and purged with nitrogen for 5 min . Dichloromethane $(35 \mathrm{~mL})$ and DMF $(50 \mu \mathrm{~L})$ were subsequently added and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To this solution oxalyl chloride (19.8 mmol) was added dropwise over 5 min . The resulting solution was stirred for 15 min at $0^{\circ} \mathrm{C}$ and then allowed to warm to rt over 3 h . The solution was then cooled to $0{ }^{\circ} \mathrm{C}$ and added dropwise to a solution of 4-fluoroaniline ($3.8 \mathrm{~mL}, 40 \mathrm{mmol}$) in dichloromethane (20 mL). The reaction mixture was warmed to rt and stirred overnight (ca. 16 h$)$. Water (50 mL) was added and the resulting biphasic mixture was transferred to a separatory funnel. The layers were separated and the aqueous layer was extracted
with diethyl ether $(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with water (30 mL) and brine (30 mL) then were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting product was purified by flash chromatography on silica gel. This procedure afforded $3.28 \mathrm{~g}(81 \%)$ of N-(4-fluorophenyl)pent-4-enamide as a white solid, m.p. $75-78.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.49-7.41$ (m, 2 H), 7.02-6.93 (m, 2 H), 5.93-5.80(m, 1 H$), 5.11(\mathrm{dd}, J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ $(\mathrm{d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,159.5$ $(\mathrm{d}, J=244 \mathrm{~Hz}), 137.0,134.0,122.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 116.2,115.8(\mathrm{~d}, J=23.0 \mathrm{~Hz}), 36.8$, 29.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.0(\mathrm{~m})$.
N-(4-Fluorophenyl)pent-4-enamide ($1.50 \mathrm{~g}, 7.8 \mathrm{mmol}$) was reduced using a solution LiAlH_{4} in diethyl ether $(9.36 \mathrm{~mL}, 9.36 \mathrm{mmol})$ according to General Procedure 6. This procedure afforded 1.20 g (86%) of 4-fluoro- N-(pent-4-enyl)aniline as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 6.94-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.49(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.77(\mathrm{~m}$, $1 \mathrm{H}), 5.10-4.97(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 2 \mathrm{H})$, 1.70 (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.9(\mathrm{~d}, J=235 \mathrm{~Hz}), 145.0$ $(\mathrm{d}, J=2.3 \mathrm{~Hz}), 138.2,115.8(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 115.4,113.7(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 44.3,31.5$, 28.8; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-128.5$ (m); IR (film) $3414,1221 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) 179.1109 (179.1110 calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{FN}$).

General Procedure 7 was used for the conversion of 4-fluoro- N-(pent-4enyl)aniline ($266 \mathrm{mg}, 1.5 \mathrm{mmol}$) to the title compound. This procedure afforded 189 mg (69\%) of the title compound as a tan powder that contained ca. 1.8% KHMDS as judged by ${ }^{1} \mathrm{H}$ NMR analysis. This material was used without further purification. ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}) $\delta 6.49(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.00-5.85(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.91(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.68(\mathrm{~m}, 2 \mathrm{H}$, partially obscured by THF signal); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 159.0,150.4(\mathrm{~d}, J=$ $219 \mathrm{~Hz}), 141.0,116.2(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 114.0,109.5(\mathrm{br}), 52.7,34.1,33.9 ;{ }^{19}$ F NMR (376 $\mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-143.9(\mathrm{~s}, \mathrm{br})$.

Potassium (4-cyanophenyl)(pent-4-enyl)amide (III-2b). General Procedure 7 was used for the conversion of 4-(pent-4-enylamino)benzonitrile ${ }^{19}(400 \mathrm{mg}, 2.1 \mathrm{mmol})$ to the title compound. This procedure afforded $309 \mathrm{mg}(80 \%)$ of the title compound as a peachcolored powder that contained ca. 1.8% KHMDS as judged by ${ }^{1} \mathrm{H}$ NMR analysis. This material was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 6.77(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.05-5.80(\mathrm{~m}, 3 \mathrm{H}), 4.97(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H}$, partially obscured by THF signal); ${ }^{13} \mathrm{C}$ NMR (100 MHz, THF- $\left.d_{8}\right) \delta 161.8,140.8,133.0,126.0,114.1,113.3$ (br), 82.1, 50.2, 33.6, 32.6.

Potassium (E)-(4-chlorophenyl)(5-deuteriopent-4-enyl)amide (III-2c). A flame-dried flask equipped with a magnetic stirbar was charged with pent-4-ynyl-4methylbenzenesulfonate ($708 \mathrm{mg}, 3.0 \mathrm{mmol}$) and purged with nitrogen for 5 min . THF $(10 \mathrm{~mL})$ was added followed by a solution of $9-B B N$ in THF $(12 \mathrm{~mL}, 6 \mathrm{mmol}, 0.5 \mathrm{M})$ at rt . The reaction mixture was stirred for 6 h at rt then $\mathrm{PhCHO}(300 \mu \mathrm{~L}, 2.9 \mathrm{mmol})$ was added. The resulting solution was stirred for an additional 3.5 h at rt and then was cooled to $0{ }^{\circ} \mathrm{C}$. Acetic acid- $d_{4}(200 \mu \mathrm{~L}, 3.6 \mathrm{mmol})$ was added and the solution was warmed to rt and stirred for 45 min . Saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$ and $\operatorname{EtOAc}(10 \mathrm{~mL})$ were
sequentially added, and the resulting mixture was transferred to a separatory funnel. The layers were separated, the aqueous layer was extracted with diethyl ether $(1 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo to afford (E)-(5-deuteriopent-4-enyl)-4-methylbenzenesulfonate as a colorless oil that was used in the next step without further purification.

A flame-dried flask equipped with a magnetic stirbar was charged with 4chloroaniline ($540 \mathrm{mg}, 4.2 \mathrm{mmol}$) and purged with nitrogen for 5 min . THF (4 mL) was added followed by a solution of LiHMDS in THF ($2.5 \mathrm{~mL}, 2.5 \mathrm{mmol}, 1.0 \mathrm{M}$) to afford a dark green solution. This solution was added to a solution of the crude (E)-(5-deuteriopent-4-enyl)-4-methylbenzenesulfonate from the previous reaction in THF (4 $\mathrm{mL})$. The resulting mixture was heated to $50^{\circ} \mathrm{C}$ for 2 h then cooled to rt . Water (20 mL) and EtOAc (10 mL) were added, the mixture was transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with EtOAc ($2 \times 10 \mathrm{~mL}$) and the combined organic layers were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting product was purified by flash chromatography on silica gel to afford $271 \mathrm{mg}(51 \%)$ of (E)-4-chloro- N-(5-deuteriopent-4-enyl)aniline as a pale yellow oil with $\sim 87 \%$ deuterium incorporation as judged by GC/MS and ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.48(\mathrm{~m}, 2 \mathrm{H}), 5.90-$ 5.77 (m, 1 H), $5.04(\mathrm{td}, J=1.2,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.10(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $2.16(\mathrm{qd}, J=1.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.71$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 147.1,138.0,129.2,121.9,115.2\left(\mathrm{t}, J_{\mathrm{CD}}=24.1 \mathrm{~Hz}\right), 113.9,43.7,31.4,28.7$; IR (film) $3416 \mathrm{~cm}^{-1}$. MS (EI) 196.0883 (196.0878 calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{DCIN}$).

General Procedure 7 was used for the conversion of (E)-4-chloro- N-(5-deuteriopent-4-enyl)aniline ($201 \mathrm{mg}, 1.0 \mathrm{mmol}$) to the title compound. This procedure afforded 105 mg (55\%) of the title compound as a yellow powder that contained ca. 1.6% KHMDS as judged by ${ }^{1} \mathrm{H}$ NMR analysis. This material was used without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.00-5.85(\mathrm{~m}, 3$ H), $5.00(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 0.88 \mathrm{H}), 4.90(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 0.12 \mathrm{H}), 2.87-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.18$ (q, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.75-1.65\left(\mathrm{~m}, 2 \mathrm{H}\right.$, partially obscured by THF signal); ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 160.1,140.8,129.6,114.1\left(\mathrm{t}, J_{\mathrm{CD}}=26.1 \mathrm{~Hz}\right), 112.0(\mathrm{br}), 108.2$, 51.9, 33.9, 33.6.

Scheme III. 5 Synthesis of ${ }^{13}$ C-Labeled Substrate

3,4,5- ${ }^{13} \mathbf{C}$-Potassium (4-fluorophenyl)(pent-4-enyl)amide (III-2a- ${ }^{13} \mathbf{C}_{3}$). Labeled potassium amide III-2a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ was synthesized in 5 linear steps in 10% overall yield, starting from propargyl alcohol- ${ }^{13} \mathrm{C}_{3}$, as shown in Scheme III.5. A round-bottomed flask equipped with a stirbar was charged with powdered $\mathrm{KOH}(2.37 \mathrm{~g}, 42.3 \mathrm{mmol}), \mathrm{TsCl}$ $(1.99 \mathrm{~g}, 10.4 \mathrm{mmol})$, and dry $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$. The resulting suspension was cooled to $0{ }^{\circ} \mathrm{C}$ and propargyl alcohol- ${ }^{13} \mathrm{C}_{3}(500 \mathrm{mg}, 8.46 \mathrm{mmol})$ was added. The mixture was stirred for 2.5 h and allowed to warm gradually from $0{ }^{\circ} \mathrm{C}$ to room temperature over that time. Water $(25 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{~mL})$ were then added to the reaction mixture and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$, and the
combined organic layers were dried over anhydrous sodium sulfate, filtered and concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to afford propargyl tosylate- ${ }^{13} \mathrm{C}_{3}$ (III-S1) as a colorless oil (1.74 g, 97\%). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.71(\mathrm{dm}, J=$ $154 \mathrm{~Hz}, 2 \mathrm{H}$), 2.47 (ddm, $J=72.5,232 \mathrm{~Hz}, 1 \mathrm{H}), 2.46$ (s, 3 H).

A solution of N-(4-fluorophenyl)acetamide ${ }^{96}(3.75 \mathrm{~g}, 24.5 \mathrm{mmol})$ in 30 mL dry THF was added slowly to a solution of freshly prepared LDA (49.0 mmol) in THF and hexanes at $-78{ }^{\circ} \mathrm{C}$, and allowed to stir for 1 h . A solution of propargyl tosylate- ${ }^{13} \mathrm{C}_{3}$ (IIIS1) $(1.74 \mathrm{~g}, 8.17 \mathrm{mmol})$ in 60 mL dry THF was then added slowly via addition funnel over the course of 1 h while maintaining a reaction temperature of $-78^{\circ} \mathrm{C}$. The resulting solution was stirred for 3 h at $-78^{\circ} \mathrm{C}$ and warmed slowly to rt over the course of 2 h before being quenched with aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(40 \mathrm{~mL})$. Water $(120 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(120 \mathrm{~mL})$ were added, the layers were separated, and the aqueous layer was extracted with ether $(2 \times 120 \mathrm{~mL})$. The combined organic layers were washed with brine (120 mL), dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was purified via flash chromatography on silica gel to afford labeled amide III$\mathbf{S} 2$ as pale orange solid $(1.04 \mathrm{~g}, 66 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.52-7.41(\mathrm{~m}, 3$ H), 7.04-6.98(m, 2 H), $2.66\left(\mathrm{dm}, J_{\mathrm{CH}}=135 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.58$ (quint, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.07$ (qdd, $J=2.6,51,249 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, labeled carbons only) δ 83.0 (dd, $J=67,171 \mathrm{~Hz}), 69.9(\mathrm{dd}, J=11.2,171 \mathrm{~Hz}), 15.0(\mathrm{dd}, J=11.2,67 \mathrm{~Hz})$.

Reduction of the alkyne was accomplished using the method of Soderquist, ${ }^{97}$ and reduction of the amide was conducted without isolating the resulting alkene. An ovendried round-bottomed flask was charged with amide III-S2 ($1.01 \mathrm{~g}, 5.20 \mathrm{mmol})$ and
purged with nitrogen. Anhydrous THF (20 mL) and a solution of 9-BBN in THF (0.5 M , $42 \mathrm{~mL}, 21 \mathrm{mmol}$) were added, and the resulting solution was stirred at rt for 12 h . PhCHO ($690 \mu \mathrm{~L}, 6.67 \mathrm{mmol}$) was added, and the resulting solution was stirred at rt for 7 h. Acetic acid ($650 \mu \mathrm{~L}, 10.6 \mathrm{mmol}$) was added, and the solution was stirred at rt for 45 min . Water $(25 \mathrm{~mL})$ and ether $(25 \mathrm{~mL})$ were then added and the layers were separated. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 40 \mathrm{~mL})$, and the combined organic layers were dried over anhydrous sodium sulfate, filtered, concentrated, and purified by flash chromatograpy on silica gel. This procedure afforded an oil, which was dissolved in 20 mL dry THF under nitrogen, and cooled to $0^{\circ} \mathrm{C}$. A solution of $\mathrm{LiAlH}_{4}(1.0 \mathrm{M}$ in ether, $8.5 \mathrm{~mL}, 8.5 \mathrm{mmol}$) was added slowly via syringe, and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . Aqueous workup and filtration were conducted according to General Procedure 6. The resulting crude product was purified by flash chromatography on silica gel to afford p-fluoro- N -(3,4,5- ${ }^{13} \mathrm{C}_{3}$-pent-4-enyl)aniline III-S3 as a colorless oil (260 mg , 28% from III-S2). HRMS detected only triply ${ }^{13} \mathrm{C}$-labeled compound (M-1 not observed, $\mathrm{M}+1$ intensity was as predicted by natural abundance of isotopes). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 6.91-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.51(\mathrm{~m}, 2 \mathrm{H}), 5.83\left(\mathrm{dm}, J_{\mathrm{CH}}=152 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05(\mathrm{dm}$, $\left.J_{\mathrm{CH}}=153 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01\left(\mathrm{dm}, J_{\mathrm{CH}}=158 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.48(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H})$, $2.17\left(\mathrm{dm}, J_{\mathrm{CH}}=126 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.75-1.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right.$, labeled carbons only) $\delta 137.9(\mathrm{dd}, J=41.6,68.7 \mathrm{~Hz}), 115.1(\mathrm{~d}, J=69.1 \mathrm{~Hz}), 31.3(\mathrm{~d}, J=41.5$ $\mathrm{Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta-128.5(\mathrm{~m})$. MS (EI) 182.1215 (182.1211 calcd for $\left.{ }^{12} \mathrm{C}_{8}{ }^{13} \mathrm{C}_{3} \mathrm{H}_{4} \mathrm{FN}\right)$.

General Procedure 7 was used for the conversion of labeled amine III-S3 (250 $\mathrm{mg}, 1.37 \mathrm{mmol})$ to the title compound. This procedure yielded $185 \mathrm{mg}(0.841 \mathrm{mmol}$,
77%) of a bright yellow powder which was stored in a $-20^{\circ} \mathrm{C}$ freezer in the glovebox. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{THF}-d_{8}, 400 \mathrm{MHz}\right) \delta 6.50(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.92(\mathrm{~m}, 2 \mathrm{H}), 5.89\left(\mathrm{dm}, J_{\mathrm{CH}}=\right.$ $150 \mathrm{~Hz}, 1 \mathrm{H}), 5.00\left(\mathrm{dm}, J_{\mathrm{CH}}=153 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.89\left(\mathrm{dm}, J_{\mathrm{CH}}=158 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.86-2.81(\mathrm{~m}$, $2 \mathrm{H}), 2.18\left(\mathrm{dm}, J_{\mathrm{CH}}=118 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.73-1.65\left(\mathrm{~m}\right.$, partially obscured by THF signal); ${ }^{13} \mathrm{C}$ NMR (THF- $d_{8}, 100 \mathrm{MHz}$, labeled carbons only) $\delta 140.9(\mathrm{dd}, J=42.2,69.4 \mathrm{~Hz}), 114.0(\mathrm{~d}$, $J=69.4 \mathrm{~Hz}), 33.8(\mathrm{~d}, J=41.8 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(\mathrm{THF}-d_{8}, 376 \mathrm{MHz}\right) \delta-143.8(\mathrm{~s}, \mathrm{br})$.

Synthesis of Authentic Samples of Pyrrolidine Products Formed in Kinetic Runs

General Procedure 8: Pd-Catalyzed Carboamination of γ-(N-arylamino)alkenes with Aryl Bromides. ${ }^{98}$ An oven or flame-dried Schlenk tube was cooled under a stream of argon or nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1 \mathrm{~mol} \%$ complex, $2 \mathrm{~mol} \% \mathrm{Pd})$, $\mathrm{dppf}(2$ $\mathrm{mol} \%), \mathrm{NaOt}-\mathrm{Bu}$ (1.0 equiv), and the ArBr (1.5 equiv). The tube was purged with argon or nitrogen and a solution of the amine substrate (1.0 equiv) in toluene ($4 \mathrm{~mL} / \mathrm{mmol}$ aryl bromide) was added. The mixture was heated to $60-110^{\circ} \mathrm{C}$ with stirring until the starting material had been consumed as judged by GC or ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel.

1-(4-Fluorophenyl)-2-(4-fluorobenzyl)pyrrolidine (III-4a). General Procedure 8 was used for the coupling of 4 -fluoro- N -(pent-4-enyl)aniline ($51 \mathrm{mg}, 0.28 \mathrm{mmol}$) with 1 -
bromo-4-fluorobenzene ($47 \mu \mathrm{~L}, 0.42 \mathrm{mmol}$) to afford $53 \mathrm{mg}(68 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.93(\mathrm{~m}, 4 \mathrm{H})$, 6.60-6.53(m, 2H), 3.94-3.85 (m, 1H), 3.42-3.32(m, 1H), 3.19-3.08(m, 1 H), 2.94 (dd, $J=3.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=8.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.74(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.8(\mathrm{~d}, J=245 \mathrm{~Hz}), 155.0(\mathrm{~d}, J=234 \mathrm{~Hz}), 143.9(\mathrm{~d}, J=1.6$ $\mathrm{Hz}), 135.1(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 115.9(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=$ $20.7 \mathrm{~Hz}), 112.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 60.2,49.2,38.0,29.9,23.4 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta-117.0(\mathrm{~m}),-130.7(\mathrm{~m})$; IR (film) $1225 \mathrm{~cm}^{-1}$. MS (ESI) 274.1413 (274.1407 calcd for $\left.\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~F}_{2} \mathrm{~N}, \mathrm{M}+\mathrm{H}^{+}\right)$.

4-[2-(4-Fluorobenzyl)pyrrolidin-1-yl]benzonitrile (III-4b). General Procedure 8 was used for the coupling of 4-(pent-4-enylamino)benzonitrile ($34 \mathrm{mg}, 0.18 \mathrm{mmol}$) with 1 -bromo-4-fluorobenzene ($40 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$) to afford $41 \mathrm{mg}(79 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H})$, 7.04-6.96(m, 2 H), 6.64-6.57 (m, 2 H$), 4.06-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.45-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.28-$ 3.16 (m, 1 H$), 2.93(\mathrm{dd}, J=3.2,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{dd}, J=8.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.02-$ $1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7(\mathrm{~d}, J=245 \mathrm{~Hz}), 149.2,134.0,133.6$, $130.6(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 120.8,115.3(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 111.8,97.0,59.6,48.2,37.1,29.3$, 22.7; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.4$ (m); IR (film) 2211, $1222 \mathrm{~cm}^{-1}$. MS (ESI) 281.1462 (281.1454 calcd for $\left.\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{FN}_{2}, \mathrm{M}+\mathrm{H}^{+}\right)$.
(\pm)-($2 R^{*}, 1^{\prime} S^{*}$)- N-(4-Chlorophenyl)-2-(1'-deuterio-p-fluorobenzyl)pyrrolidine (III-
4c). General Procedure 8 was used for the coupling of (E)-4-chloro- N-(5-deuteriopent-4-
enyl)aniline ($27 \mathrm{mg}, 0.14 \mathrm{mmol}$) with 1-bromo-4-fluorobenzene ($24 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) to afford $31 \mathrm{mg}(78 \%)$ of the title compound as a colorless oil. This material was judged to contain $\sim 87 \%$ deuterium incorporation by GC/MS and ${ }^{1} \mathrm{H}$ NMR analysis. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.53(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.86$ (m, 1H), 3.38-3.31(m, 1H), 3.18-3.08(m, 1H), $2.90(\mathrm{~s}, 0.85 \mathrm{H}), 2.59(\mathrm{dd}, J=8.8,14.0$ $\mathrm{Hz}, 0.13 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.8(\mathrm{~d}, J=245 \mathrm{~Hz}$), 145.7, $134.9(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 130.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 129.3,120.5,115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz})$, $113.1,59.9,48.8,37.4\left(\mathrm{t}, J_{\mathrm{CD}}=19.6 \mathrm{~Hz}\right), 29.7,23.3 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 116.9 (m); IR (film) $1222 \mathrm{~cm}^{-1}$. MS (ESI) 291.1185 (291.1175 calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{DCIFN}$, $\left.\mathrm{M}+\mathrm{H}^{+}\right)$.

The stereochemistry of III-4c was assigned by carboamination of the analogous N-Boc-substituted substrate with 1-bromo-4-fluorobenzene. We have previously demonstrated that reactions of this substrate proceed with syn-addition of the nitrogen atom and the aryl group across the alkene. ${ }^{24}$ Cleavage of the Boc-group followed by Pdcatalyzed N -arylation of the resulting pyrrolidine with 1-bromo-4-chlorobenzene afforded III-4c as depicted in Scheme III. 6 below. The N-arylation has been previously demonstrated to occur with no scrambling of stereochemistry using the conditions illustrated below. ${ }^{99}$

Scheme III. 6 Synthesis of Stereochemistry Comparison Substrate

Proof of Stereochemistry of III-4c via Alternative Synthesis.

A flame-dried Schlenk tube was cooled under a stream of nitrogen and charged with $\mathrm{Pd}(\mathrm{OAc})_{2}(4.8 \mathrm{mg}, 0.021 \mathrm{mmol})$, DPE-Phos $(23.7 \mathrm{mg}, 0.044 \mathrm{mmol})$, and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ (807 $\mathrm{mg}, 2.5 \mathrm{mmol})$. The tube was purged with nitrogen for 5 min and a solution of (E)-tert-Butyl-5- d-pent-4-enylcarbamate ${ }^{24}(203 \mathrm{mg}, 1.1 \mathrm{mmol})$ and 1-bromo-4-fluorobenzene $(150 \mu \mathrm{~L}, 1.4 \mathrm{mmol})$ in 1,4-dioxane (5 mL) was added. The mixture was heated to $100{ }^{\circ} \mathrm{C}$ with stirring for 38 h upon which time the reaction mixture was quenched as in General Procedure 8 . The crude product was then purified by flash chromatography on silica gel to afford $187 \mathrm{mg}(61 \%)$ of pyrrolidine III-S4 as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz , toluene- $\left.d_{8}, 100{ }^{\circ} \mathrm{C}\right) \delta 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.75(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92-3.81(\mathrm{~m}, 1 \mathrm{H})$, 3.32-3.20 (m, 1 H), 3.15-3.04 (m, 1H), 2.98-2.90(m, 1 H), 1.46 (s, 9 H$), 1.40-1.28(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}\right.$, toluene $\left.-d_{8}, 100^{\circ} \mathrm{C}\right) \delta 162.4(\mathrm{~d}, J=245 \mathrm{~Hz}), 154.4,135.6$, $131.2(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 115.4(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 78.9,59.1,47.0,39.6\left(\mathrm{t}, J_{\mathrm{CD}}=19.1 \mathrm{~Hz}\right)$, 30.0, 28.9, 23.6; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.5$ (m); IR (film) $1693,1222 \mathrm{~cm}^{-1}$. MS (ESI) 303.1595 (303.1595 calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{DFNO}_{2}, \mathrm{M}+\mathrm{Na}^{+}$).

A flame-dried flask was charged with pyrrolidine III-S4 (153 mg, 0.55 mmol) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Trifluoroacetic acid $(1 \mathrm{~mL})$ was added and the mixture was allowed to stir at rt for 4 h . The reaction mixture was then concentrated in vacuo. Residual trifluoracetic acid was removed by addition of benzene (4 mL) followed by concentration in vacuo (repeated three times). This procedure afforded $160 \mathrm{mg}(100 \%)$ of pyrrolidinium trifluoroacetate salt III-S5 as a viscous brown oil that was used without further purification.

Crude pyrrolidinium trifluoroacetate III-S5 was N -arylated with 1-bromo-4chlorobenzene using conditions developed by Buchwald for N-arylation of amines bearing stereocenters adjacent to the nitrogen atom. ${ }^{99}$ A flame-dried Schlenk tube was cooled under a stream of nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(6.3 \mathrm{mg}, 0.007 \mathrm{mmol})$, (rac)-BINAP ($8.8 \mathrm{mg}, 0.014 \mathrm{mmol}$), NaOt - Bu ($82.1 \mathrm{mg}, 0.85 \mathrm{mmol}$), and 1-bromo-4chlorobenzene ($78.1 \mathrm{mg}, 0.41 \mathrm{mmol}$). The tube was purged with nitrogen for 5 min and a solution of III-S5 (100 mg, 0.34 mmol$)$ in toluene $(1.1 \mathrm{~mL})$ was added. The mixture was heated to $70{ }^{\circ} \mathrm{C}$ with stirring for 6 h upon which time the reaction mixture was quenched as in General Procedure 8. The crude product was purified by flash chromatography on silica gel to afford $47 \mathrm{mg}(48 \%)$ of pyrrolidine III-4c as a colorless oil that was spectroscopically identical to the material prepared directly from III-3c, thus establishing the syn-addition stereochemistry illustrated above.

Preparation and Characterization of (dppf)Pd($\left.\mathbf{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})(\mathrm{III}-1)$.

A flame-dried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(497 \mathrm{mg}, 0.54 \mathrm{mmol})$, and $\mathrm{P}(o-\text { tol })_{3}(412 \mathrm{mg}, 1.4$
$\mathrm{mmol})$. The flask was purged with nitrogen for 5 min , toluene (20 mL) and 1-bromo-4fluorobenzene ($300 \mu \mathrm{~L}, 2.8 \mathrm{mmol}$) were added, and the resulting dark purple-brown solution was stirred at $25^{\circ} \mathrm{C}$ for 2.5 h . At this time the solution had changed to a dark purple-yellowish color and was subsequently filtered through celite eluting with diethyl ether (ca. 100 mL) to obtain a yellow-orange filtrate. The filtrate was concentrated in vacuo to ca. 15 mL , layered with 60 mL pentane and transferred to an Erlenmeyer flask. The stoppered, layered solution was then allowed to settle at rt for 2 h upon which time significant formation of a yellow precipitate had occurred. The mixture was filtered to isolate 322 mg of dimeric $\left[(o-\mathrm{tol})_{3} \mathrm{P}\right] \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})$ as a fluffy yellow powder that was subsequently used without further purification.

A flame-dried flask equipped with magnetic stir bar was charged with 121 mg $(0.1 \mathrm{mmol})$ of the dimeric $\left[(o-\right.$ tol $\left.){ }_{3} \mathrm{P}\right] \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})$ complex and dppf $(115 \mathrm{mg}, 0.21$ $\mathrm{mmol})$. The flask was purged with nitrogen for 5 min and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added. The resulting orange solution was stirred for 1 h at rt and then concentrated in vacuo to ca. 0.5 $\mathrm{mL} . \mathrm{Et}_{2} \mathrm{O}(7 \mathrm{~mL})$ was added, the resulting slurry was stirred for 1 min and then allowed to settle for 1 h at rt . The mixture was then filtered to yield 114 mg (33% over 2 steps) of an orange solid that was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 8 \mathrm{~mL})$ and pentane $(3 \times 8 \mathrm{~mL})$ to afford the title complex. m.p. $185{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.10-8.00(\mathrm{~m}, 4$ H), $7.50-7.10(\mathrm{~m}, 16 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.41-6.31(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.65(\mathrm{~m}, 2 \mathrm{H})$, 4.52-4.47(m, 2 H), 4.18-4.12(m, 2 H), 3.66-3.60(m, 2 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 160.7(\mathrm{~d}, J=239 \mathrm{~Hz}), 152.0(\mathrm{~s}), 150.7(\mathrm{~s}), 136.2(\mathrm{~m}), 135.9(\mathrm{~d}, J=11.7 \mathrm{~Hz})$, $134.6(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=13.3 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=33.4 \mathrm{~Hz}), 130.9(\mathrm{dd}, J=2.0$, $9.7 \mathrm{~Hz}), 128.6(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 128.5(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 114.4(\mathrm{~m}), 77.1(\mathrm{dd} J=7.4,51.0$
$\mathrm{Hz}), 76.7(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 75.4(\mathrm{dd}, J=2.7,38.5 \mathrm{~Hz}), 74.9(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 74.1(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}), 72.9(\mathrm{~d}, J=4.7 \mathrm{~Hz}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-124.6(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.9(\mathrm{dd}, J=2.3,32.0 \mathrm{~Hz}$), $9.9(\mathrm{dd}, J=1.9,32.0 \mathrm{~Hz}$); IR (film) 1474 , 1435, $1211 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{40} \mathrm{H}_{32} \mathrm{BrFFeP}_{2} \mathrm{Pd}$: C, $57.48 ; \mathrm{H}, 3.86$. Found: C, 57.42; H, 3.80.

Representative Procedure for In Situ Formation of Pd-Amido Complexes III-3 and

Conversion to III-6.

In a glovebox under nitrogen atmosphere, (dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})($ III-1 $)(6.3 \mathrm{mg}$, $0.0075 \mathrm{mmol})$ and dppf ($4.7 \mathrm{mg}, 0.0085 \mathrm{mmol}$) were placed into a small vial. THF- d_{8} ($550 \mu \mathrm{~L}$) was added and the resulting orange solution was transferred to an NMR tube. 4Fluorotoluene ($0.3 \mu \mathrm{~L}, 0.0027 \mathrm{mmol}$) was added as an internal ${ }^{19} \mathrm{~F}$ standard, and the tube was sealed with a septum. The tube was cooled to $-60{ }^{\circ} \mathrm{C}$ in the probe of an NMR spectrometer and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ spectra were obtained. A solution of potassium (4-fluorophenyl)(pent-4-enyl)amide (III-2a) $(2.7 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $200 \mu \mathrm{~L}$ THF- d_{8} was prepared in the glovebox and $121 \mu \mathrm{~L}$ (1 equiv) of that solution was loaded into a gas tight syringe and injected into the NMR tube containing the Pd complex. The tube was inverted several times to ensure complete mixing, and a rapid color change from orange to red was observed. The tube was returned to the cold NMR probe and allowed to reequilibrate at $-60{ }^{\circ} \mathrm{C}$ and a ${ }^{19} \mathrm{~F}$ spectrum was obtained. The solution was then warmed to $-20{ }^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ spectra were obtained. Experiments in which the ratio of Pdcomplex III-1 to dppf were varied over a range of 0.75 to 2 equivalents dppf: Pd had no effect on the identity of the species formed in these reactions.
(dppf) $\mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{4}-p-\mathbf{F}\right)\left[\mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}\right.\right.$-F) $\left.\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H}_{2}\right)\right]$ (III-3a): ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}) $\delta 7.95-7.87(\mathrm{~m}), 7.76(\mathrm{t}, J=8.6 \mathrm{~Hz}) 7.59-7.40(\mathrm{~m}), 7.20-7.12(\mathrm{~m}), 7.06-$ $7.01(\mathrm{~m}), 6.60(\mathrm{q}, J=7.4 \mathrm{~Hz}), 6.36(\mathrm{t}, J=8.4 \mathrm{~Hz}), 6.09(\mathrm{t}, J=8.6 \mathrm{~Hz}), 5.62(\mathrm{tdd}, J=6.8$, $10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.81(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.70$ (m, obscured by THF), 1.42-1.30 (m, 1H), 1.20-1.08 (m, 1H) (due to overlap and spectral crowding, accurate integration values for aryl protons could not be determined and are not reported); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-123.7\left(\mathrm{~m}, \mathrm{Pd}^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right),-137.3(\mathrm{~s}$, N-C $6_{6} \mathrm{H}_{4} \mathrm{~F}$) ${ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.9(\mathrm{~d}, J=38.1 \mathrm{~Hz}), 9.0(\mathrm{~d}, J=35.5 \mathrm{~Hz})$.

The solution of the palladium-amido complex III-3a was warmed to $15{ }^{\circ} \mathrm{C}$, monitoring at 2 min intervals by ${ }^{19} \mathrm{~F}$ NMR for appearance of peaks at -124.1 and -133.3 ppm (attributed to III-6a), along with diminishment of the peaks at -123.7 and -137.3 ppm . When the new peaks were near their maximum, the solution was cooled to $-20^{\circ} \mathrm{C}$ and ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ spectra were obtained. ${ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ data are reported; the ${ }^{1} \mathrm{H}$ spectrum for this and related compounds could not be extracted from the combined spectra of the species present in the reaction mixture. This general protocol was also followed for the reactions of $\mathbf{I I I -} \mathbf{- 3 a}-{ }^{13} \mathbf{C}_{\mathbf{3}}, \mathbf{I I I}-\mathbf{3 b}$, and $\mathbf{I I I}-\mathbf{3 c}$. Data for these amido complexes and intermediates III- $\mathbf{6 a}-{ }^{13} \mathbf{C}_{3}$, III- $\mathbf{6 b}$, and III-6c are provided below.
(dppf) $\mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{F}\right)\left\{\mathbf{C H}_{\mathbf{2}}\left[\mathbf{C H C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathrm{F}\right)\right]\right\}$ (III- $\left.\mathbf{6 a}\right): \quad{ }^{19} \mathrm{~F}$ NMR (376.9
MHz, THF- d_{δ}) $\delta-124.1$ (s), -133.3 (s); ${ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{\delta}$) $\delta 21.3$ (d, $J=24.1$ $\mathrm{Hz}), 16.6(\mathrm{~d}, J=21.7 \mathrm{~Hz})$.
(dppf)Pd $\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2}{ }^{13} \mathrm{CH}_{2}{ }^{13} \mathrm{CH}={ }^{13} \mathrm{CH}_{2}\right)\right] \quad\left(\right.$ III $\left.-3 \mathrm{a}-{ }^{13} \mathrm{C}_{3}\right): \quad{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.7\left(\mathrm{~m}, \mathrm{Pd}^{2}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right),-137.3\left(\mathrm{~s}, \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.9(\mathrm{~d}, J=38.1 \mathrm{~Hz}), 9.0(\mathrm{~d}, J=35.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, THF$\left.d_{8}\right) \delta 140.3\left(\mathrm{dd}, J_{\mathrm{CC}}=42.0,69.3 \mathrm{~Hz}\right), 114.0\left(\mathrm{~d}, J_{\mathrm{CC}}=69.3 \mathrm{~Hz}\right), 33.2\left(\mathrm{~d}, J_{\mathrm{CC}}=42.0 \mathrm{~Hz}\right)$ (data are provided only for ${ }^{13} \mathrm{C}$ labeled carbon atoms).
(dppf)Pd($\left.\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left\{{ }^{13} \mathrm{CH}_{2}\left[{ }^{13} \mathrm{CH}^{13} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\right]\right\} \quad\left(\mathrm{III}-6 a_{-}{ }^{13} \mathrm{C}_{3}\right): \quad{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.1(\mathrm{~m}),-133.3(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, THF- $\left.d_{8}\right) \delta$ $21.3\left(\mathrm{dd}, J_{\mathrm{PC}}=7.6 \mathrm{~Hz}, J_{\mathrm{PP}}=22.5 \mathrm{~Hz}\right) ; 16.6\left(\mathrm{dd}, J_{\mathrm{PP}}=22.5 \mathrm{~Hz}, J_{\mathrm{PC}}=91.5 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 62.0\left(\mathrm{t}, J_{\mathrm{CC}}=37.4 \mathrm{~Hz}\right), 34.8\left(\mathrm{~d}, J_{\mathrm{CC}}=36.3 \mathrm{~Hz}\right), 30.0\left(\mathrm{ddd}, J_{\mathrm{CP}}=\right.$ 8.2, $91.1 \mathrm{~Hz}, J_{\mathrm{CC}}=38.1 \mathrm{~Hz}$) (data are provided only for ${ }^{13} \mathrm{C}$ labeled carbon atoms).
 MHz, THF- d_{8}) $\delta 7.87-7.78(\mathrm{~m}), 7.64-7.35(\mathrm{~m}), 7.21-7.13(\mathrm{~m}), 6.99-6.90(\mathrm{~m}), 6.80-6.70$ (m), 6.22-6.12 (m), $5.64(\mathrm{tdd}, J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dd}, J=2.0,8.8 \mathrm{~Hz}, 1$ H), 4.89-4.85 (m, 2H), 4.49 (br, 3 H), 4.40 ($\mathrm{s}, 1 \mathrm{H}$), 4.38 (s, 1 H$), 4.33$ ($\mathrm{s}, 2 \mathrm{H}), 4.21$ ($\mathrm{s}, 1$ H), 2.57-2.37 (m, 2 H), 1.76-1.62 (m, partially obscured by THF, ~ 2 H), 1.49-1.37 (m, 1 H), 1.07-0.94 (m, 1 H$) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-122.7(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 23.4(\mathrm{dd}, J=2.6,30.5 \mathrm{~Hz}), 13.7(\mathrm{dd}, J=2.6,30.5 \mathrm{~Hz})$.
(dppf) $\mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{F}\right)\left\{\mathbf{C H}_{2}\left[\mathbf{C H C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{2} \mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{C N}\right)\right]\right\}$ (III- $\left.\mathbf{- b}\right):{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- $\left.d_{8}\right) \delta-123.8(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 21.2(\mathrm{~d}, J=25.4 \mathrm{~Hz}), 17.2$ $(\mathrm{dd}, J=2.4,24.1 \mathrm{~Hz})$.
(dppf)Pd($\left.\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right)\left(\boldsymbol{E}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHD}\right)\right] \quad(\mathrm{III}-3 \mathrm{c}):{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 7.90-7.71(\mathrm{~m}), 7.58-7.38(\mathrm{~m}), 7.36-7.09$ (m, partially obscured), 7.09-6.95 (m), $6.67(\mathrm{q}, J=7.4 \mathrm{~Hz}), 6.56-6.45(\mathrm{~m}), 6.12(\mathrm{t}, J=8.4 \mathrm{~Hz}), 5.63(\mathrm{td}, J=6.6$, $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.39$ $(\mathrm{s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H})$ (remaining Cp protons obscured), 2.53-2.43(m, 1 H), 2.26-2.13 $(\mathrm{m}, 1 \mathrm{H}), 1.73-1.62\left(\mathrm{~m}\right.$, partially obscured), $1.50-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.4(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 24.3(\mathrm{~d}, J=$ $35.3 \mathrm{~Hz}), 10.8(\mathrm{~d}, J=34.2 \mathrm{~Hz})$.
 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta-124.0(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 21.3(\mathrm{~d}, J=24.1 \mathrm{~Hz}), 16.8$ $(\mathrm{dd}, J=2.6,23.0 \mathrm{~Hz})$.

Representative Protocol for Measurements of Reaction Kinetics

In the glovebox, $(\mathrm{dppf}) \mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)(\mathrm{Br})(\mathbf{I I I}-1)(4.0 \mathrm{mg}, 0.0048 \mathrm{mmol})$ and $\mathrm{dppf}(5.3$ $\mathrm{mg}, 0.0096 \mathrm{mmol})$ were accurately weighed into a small vial and THF $(660 \mu \mathrm{~L})$ was added to give a homogeneous orange solution. The entire solution was transferred to a sealable screw-top NMR tube with Teflon septum and tightly sealed. Into a separate small vial, potassium (4-fluorophenyl)(pent-4-enyl)amide (III-2a) ($3.5 \mathrm{mg}, 0.015 \mathrm{mmol}$) was accurately weighed and $2 \mu \mathrm{~L}$ of 2-fluorotoluene (internal standard) was added. THF ($300 \mu \mathrm{~L}$) was added to dissolve and the vial was sealed tightly via screw-cap with Teflon septum. Both glass vessels were taken out of the glovebox and transported to the NMR
instrument where $100 \mu \mathrm{~L}(0.005 \mathrm{mmol})$ of the solution of III-2a was added to the contents of the sealed NMR tube via gastight microsyringe. Upon addition, the solution was inverted once to homogenize the color and then quickly placed in the NMR probe pre-adjusted to the appropriate temperature. Periodic monitoring by ${ }^{19} \mathrm{~F}$ NMR spectroscopy of the disappearance of Pd-amido complex III-3a, intermediate III-6a and appearance of pyrrolidine product III-4a afforded kinetic data over approximately 3 halflives. The NMR yield of the transformation was determined based on comparison of the ${ }^{19}$ F NMR integrations to 2-fluorotoluene (internal standard).

The consumption of Pd-amido complex III-3a as it undergoes alkene insertion, is modeled by the first order kinetic equation given in Figure III.3.

Figure III. 3 First Order Consumption of Pd-Amido Complex III-3a at $24^{\circ} \mathrm{C}$

Kinetic Model of Reaction System/Rate Constants

Kinetic data indicates the reaction system follows a consecutive irreversible reaction scheme as described by Swain. ${ }^{100}$ As shown in Scheme 3, Pd-amido complex III-3a is transformed to III-6a, which then undergoes carbon-carbon bond-forming reductive elimination to afford pyrrolidine III-4a and $(\mathrm{dppf})_{2} \mathrm{Pd}$.

For this reaction system, the consumption of III-3a obeys first-order kinetics and:

$$
\begin{equation*}
\mathrm{d}[\mathbf{I I I}-\mathbf{3 a}] / \mathrm{dt}=-k_{1}[\mathbf{I I I}-\mathbf{3 a}] \tag{1}
\end{equation*}
$$

Integrating gives:

$$
\begin{equation*}
[\mathrm{III}-\mathbf{3 a}]=[\mathrm{III}-\mathbf{3 a}]_{0} e^{-k_{1} t} \tag{2}
\end{equation*}
$$

From which the first-order relationship between [III-3a] and reaction time gives k_{1} (Figure III.3). Additionally, because III-6a is both produced by III-3a and depleted in production of III-4a, [III-6a] is governed by the relationship:

$$
\begin{equation*}
\mathrm{d}[\mathbf{I I I}-\mathbf{6 a}] / \mathrm{dt}=k_{1}[\mathbf{I I I}-\mathbf{3 a}]-k_{2}[\mathbf{I I I}-\mathbf{4 a}] \tag{3}
\end{equation*}
$$

Integrating gives the single transcendental equation:

$$
\begin{equation*}
[\mathbf{I I I}-\mathbf{6 a}]=\left\{\left([\text { III-3a }]_{0} k_{1}\right) /\left(k_{2}-k_{1}\right)\right\}\left(e^{-k_{1} t}-e^{-k_{2} t}\right) \tag{4}
\end{equation*}
$$

Equation 4 cannot be solved exactly but can be accurately approximated via the mathematical treatment of Emanuel. ${ }^{101}$ Thus after some manipulations:

$$
\begin{equation*}
\beta_{\max }=\kappa^{[\kappa /(1-\kappa)]} \tag{5}
\end{equation*}
$$

where $\beta_{\text {max }}=\left([\text { III-6a }]_{\text {max }} /[\text { III-3a }]_{0}\right)$ and $\kappa=k_{2} / k_{1}$
The value of $\beta_{\max }$ can be calculated graphically directly from Figure III. 2 and κ can be calculated iteratively so that equation 5 is satisfied. The value of k_{2} is calculated from the product of κ and k_{1}.

Figure III. 4 Eyring Plot for k_{1} in the Conversion of III-3b to III-6b from $25-60^{\circ} \mathrm{C}$

Figure III. 5 Eyring Plot for k_{2} in the Conversion of III-6b to III-4b from $25-60^{\circ} \mathrm{C}$

Table III. 1 Average Rate Constant Data for Eyring Plots

Transformation	Temperature (K)	$\boldsymbol{k}_{\mathbf{1}}\left(\mathbf{s e c}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\mathbf{2}}\left(\mathbf{s e c}^{\mathbf{- 1}}\right)$
$\mathbf{I I I}-3 \mathbf{3 a} \rightarrow$ III-6a \rightarrow III-4a	297	$1.74 \pm 0.02 \times 10^{-3}$	$1.36 \pm 0.41 \times 10^{-3}$
$\mathbf{I I I - 3 b} \rightarrow$ III-6b \rightarrow III-4b	298	$4.16 \pm 0.19 \times 10^{-5}$	$4.78 \pm 0.20 \times 10^{-4}$
$\mathbf{I I I - 3 b} \rightarrow$ III-6b \rightarrow III-4b	308	$1.88 \pm 0.01 \times 10^{-4}$	$1.96 \pm 0.03 \times 10^{-4}$
$\mathbf{I I I - 3 b} \rightarrow$ III-6b \rightarrow III-4b	318	$5.71 \pm 0.17 \times 10^{-4}$	$6.05 \pm 0.43 \times 10^{-3}$
$\mathbf{I I I - 3 b ~} \rightarrow$ III-6b \rightarrow III-4b	328	$2.15 \pm 0.16 \times 10^{-3}$	$1.72 \pm 0.02 \times 10^{-2}$
$\mathbf{I I I - 3 b} \rightarrow$ III-6b \rightarrow III-4b	333	$3.98 \pm 0.24 \times 10^{-3}$	$3.85 \pm 0.91 \times 10^{-2}$

Description of Structural Assignment for III-6a

The structure of III-6a was assigned through comparison of ${ }^{13} \mathrm{C}$ chemical shifts of III-6a- ${ }^{13} \mathbf{C}_{\mathbf{3}}$ with pyrrolidine product III-4a, amido complex III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$, and through comparison of ${ }^{31} \mathrm{P}$ NMR chemical shifts and $\mathrm{P}-\mathrm{C}$ coupling constants with the known complex $(\mathrm{dppf}) \mathrm{Pd}(\mathrm{Ph})\left({ }^{13} \mathrm{CH}_{3}\right) .{ }^{87}$

The assignment of the chemical shifts shown below to C_{a}, C_{b}, and C_{c} in pyrrolidine product III-4a was established through COSY and HSQC experiments. The signal attributed to C_{a} in III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ was assigned on the basis of chemical shift (the only labeled carbon in the aliphatic region of the spectrum). Signals assigned to C_{b} and C_{c} appear in the alkene region of the ${ }^{13} \mathrm{C}$ NMR spectrum. The signal at $\delta 114.0$ is coupled to only one other labeled carbon atom, whereas the signal at $\delta 140.3$ is coupled to two labeled carbon atoms. This indicates that the signal at $\delta 140.3$ corresponds to C_{b} (the internal alkene carbon), whereas the signal at $\delta 114.0$ is attributed to C_{c}. The observation that the chemical shifts of the alkene carbon atoms in III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ are nearly identical to those of the corresponding potassium arylamide III-2a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ and the parent aniline III-S3
is consistent with the assignment of III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ as the four-coordinate, alkene unbound species illustrated below.

A listing of key NMR data is provided below in Table III. 2 Analysis of this data is provided below.

Table III. 2 Key Spectroscopic Data for the Reaction Mixture

Molecule	$\delta \mathrm{C}_{\mathrm{a}}$	$\delta \mathrm{C}_{\mathrm{b}}$	$\delta \mathrm{C}_{\text {c }}$	$\delta \mathrm{P}_{1}$	$\delta \mathrm{P}_{2}$
	$\begin{aligned} & 33.2(\mathrm{~d} J= \\ & 42.0 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 140.3(\mathrm{dd}, J \\ =42.0,69.3 \\ \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 114.0(\mathrm{~d}, J \\ & =69.3 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 24.9(\mathrm{~d}, J= \\ & 38.1 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 9.0(\mathrm{~d}, J= \\ & 35.5 \mathrm{~Hz}) \end{aligned}$
	$\begin{aligned} & 30.0(\mathrm{~d}, J= \\ & 35.6 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 61.3(\operatorname{app} \mathrm{t}, \\ & J=35.2 \\ & \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 38.3(\mathrm{~d}, J= \\ & 35.5 \mathrm{~Hz}) \end{aligned}$	-	-
Data for Intermediate III-A which has been assigned the structure shown below	$\begin{aligned} & 34.8(\mathrm{~d}, J= \\ & 36.0 \mathrm{~Hz}) \end{aligned}$	$\begin{gathered} 62.0(\mathrm{app} \mathrm{t} \\ J=37.1 \\ \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} 30.0(\mathrm{ddd}, \mathrm{~J} \\ =8.1,38.2, \\ 91.1 \mathrm{~Hz}) \end{gathered}$	$\begin{aligned} & 21.3 \quad(\mathrm{dd}, \\ & J_{\mathrm{PP}}=23 \\ & \mathrm{~Hz}, J_{\mathrm{PC}}=8 \\ & \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & 16.6 \quad(\mathrm{dd}, \\ & J_{\mathrm{PP}}=23 \\ & \mathrm{~Hz}, \quad J_{\mathrm{PC}}= \\ & 92 \mathrm{~Hz}) \end{aligned}$
	-	-	$\delta \mathrm{CH}_{3}=7.8$	$\begin{aligned} & 21.3 \quad(\mathrm{dd}, \\ & J_{\mathrm{PP}}=23 \\ & \mathrm{~Hz}, J_{\mathrm{PC}}=8 \\ & \mathrm{~Hz}) \\ & \hline \end{aligned}$	$\begin{aligned} & 17.8 \quad(\mathrm{dd}, \\ & J_{\mathrm{PP}}=23 \\ & \mathrm{~Hz}, J_{\mathrm{PC}}= \\ & 92 \mathrm{~Hz}) \\ & \hline \end{aligned}$

Several aspects of the data shown in row 3 for intermediate III-A are consistent with the illustrated structure III-6a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$, and are inconsistent with other reasonable possible alternative structures for intermediate III-A.

Evidence that Supports the Assignment of III-A as Structure III-6a

The chemical shift, splitting pattern, and coupling constant of C_{b} (62.0 ppm , app t , $J=37.1 \mathrm{~Hz})$ is nearly identical to those of C_{b} in the pyrrolidine product III-4a (61.3 ppm, $\operatorname{app} \mathrm{t}, J=35.2 \mathrm{~Hz})$.

The assignment of the peak at 62.0 ppm in the carbon spectrum of intermediate III-A as C_{b} is supported by the observation that C_{b} is an apparent triplet, indicating coupling to both C_{a} and C_{c}. In contrast, the signal for C_{a} is a doublet, indicating that C_{a} is coupled with only a single adjacent labeled carbon atom. The signal for C_{c} is a doublet of doublet of doublets (ddd), which results from coupling with a single additional labeled carbon and the two phosphorus atoms (noted below).

Carbon C_{c} is coupled to the phosphorus atoms of the dppf ligand, which is consistent with a $\mathrm{C}_{\mathrm{c}}-\mathrm{Pd}$ bond. In addition, the $\mathrm{C}_{\mathrm{c}}-\mathrm{P}^{1}$ and $\mathrm{C}_{\mathrm{c}}-\mathrm{P}^{2}$ coupling constants (8.1 Hz and 92 Hz , respectively) are identical to those reported for the known complex (dppf) $\mathrm{Pd}(\mathrm{Ph})\left({ }^{13} \mathrm{CH}_{3}\right)(8 \mathrm{~Hz}$ and 92 Hz$)$.

Carbon C_{c} is shifted upfield in intermediate III-A (30.0 ppm) relative to C_{c} in the pyrrolidine product III-4a (38.3 ppm). This is also consistent with the presence of a C_{c} Pd bond in intermediate III-A.

The chemical shifts of P^{1} and P^{2} in intermediate III-A (21.3 and 16.6 ppm) are very close to the chemical shifts of P^{1} and P^{2} in the (dppf) $\mathrm{Pd}(\mathrm{Ph})\left({ }^{13} \mathrm{CH}_{3}\right)$ complex (21.3 and 17.8 ppm$)$.

Evidence that Rules out Assignment of III-A as Structure III-5a

The chemical shift of all three labeled carbon atoms present in intermediate III-A are upfield of 65 ppm , and are inconsistent with the presence of alkene functionality.

The chemical shift of P^{2} in intermediate III-A (16.6 ppm) is significantly different from the chemical shift of P^{2} in amido complex III-3a, suggesting that P^{2} in intermediate III-A is not trans to an electronegative atom.

Evidence that Rules out Assignment of III-A as Structure III-7a

The chemical shift of C_{b} in intermediate III-A appears at 62 ppm , which is inconsistent with a metal-bound carbon atom that is not adjacent to a heteroatom. The chemical shift of C_{b} in III-7a should be well upfield of 62 ppm , as C_{b} in this structure is not adjacent to an electronegative heteroatom.

Carbon C_{b} in the spectrum of intermediate III-A does not show evidence for coupling with either of the phosphorous atoms. However, the C_{b} atom that would correspond to III-7a should show strong coupling to P^{1} and P^{2}.

Carbon C_{c} in the spectrum of intermediate III-A shows characteristic two-bond P-C coupling. However, the C_{c} atom that would correspond to III-7a should not show significant $\mathrm{P}-\mathrm{C}$ coupling.

The chemical shift of P^{2} in intermediate III-A (16.6 ppm) is significantly different from the chemical shift of P^{2} in amido complex III-3a, suggesting that P^{2} in intermediate III-A is not trans to an electronegative atom.

Analysis of ${ }^{13} \mathrm{C}$ NMR Data for $\mathbf{6 a}-{ }^{13} \mathrm{C}_{3}$

${ }^{13} \mathrm{C}$ NMR spectra were taken during the course of the conversion of III-3a- ${ }^{13} \mathbf{C}_{3}$ to III-4a- ${ }^{13} \mathbf{C}_{\mathbf{3}}$ in the presence of 1.1 equiv of dppf. The observable species present in these spectra are: III-3a- ${ }^{\mathbf{1 3}} \mathbf{C}_{3}$, III-4a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$, III- $\mathbf{6 a}-{ }^{13} \mathbf{C}_{\mathbf{3}}$, dppf, and a small amount of free N-(p-fluorophenyl)pent-4-enylamine (bearing ${ }^{13} \mathrm{C}$ labeled allylic and alkenyl carbon atoms).

Two signals (one due to III-6a- ${ }^{\mathbf{1 3}} \mathbf{C}_{3}$, and one due to III-4a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$) appear at ca. 30 ppm. There is a ddd centered at $30 \mathrm{ppm}(J=8.1,38.2,91.1 \mathrm{~Hz})$ that is attributed to C_{c} in the labeled intermediate III- $\mathbf{6 a}-{ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$. In addition, a second signal is also centered at 30 ppm ($\mathrm{d}, J=35.6 \mathrm{~Hz}$) that is attributed to C_{a} in the labeled pyrrolidine product III-4a${ }^{13} \mathbf{C}_{3}$. The signal attributed to pyrrolidine was assigned on the basis of COSY and HSQC spectra from the isolated pyrrolidine III-4a. The signal attributed to III-6a- ${ }^{13} \mathbf{C}_{\mathbf{3}}$ was assigned on the basis of $\mathrm{C}-\mathrm{P}$ coupling through the metal. The coupling constants of 8.1 and 91.1 Hz are very close to $\mathrm{C}-\mathrm{P}$ coupling constants reported in the literature for (dppf) $\mathrm{Pd}(\mathrm{Ph})\left({ }^{13} \mathrm{CH}_{3}\right)$.

There are two signals (one due to III-6a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$, and one due to III-4a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$) that appear close to each other near 60 ppm . The signal centered at $61.3 \mathrm{ppm}(\mathrm{appt})$ has been assigned as C_{b} (the carbon adjacent to the nitrogen atom) in the pyrrolidine product III$\mathbf{4 a -}{ }^{13} \mathbf{C}_{3}$. This assignment was corroborated by HSQC NMR data for III-4a. A second signal is centered at $62.0 \mathrm{ppm}\left(\mathrm{appt} \mathrm{t}\right.$) and has been assigned as C_{b} (the carbon adjacent to the nitrogen atom) in intermediate III-6a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$. This assignment was made on the basis of chemical shift and the splitting pattern that indicates it is coupled to two other ${ }^{13} \mathrm{C}$ labeled atoms. Although these signals for C_{b} in both III-4a- ${ }^{\mathbf{1 3}} \mathbf{C}_{3}$ and III-6a- ${ }^{13} \mathbf{C}_{3}$ should, in
principle, appear as dd, the coupling constants are sufficiently similar to give rise to the apparent triplets.

The third labeled carbon signal for III-6a- ${ }^{\mathbf{1 3}} \mathbf{C}_{\mathbf{3}}$ appears at $34.8 \mathrm{ppm}(\mathrm{d}, J=36.0$ $\mathrm{Hz})$. This signal has been assigned as C_{a} on the basis of chemical shift and its coupling to a single labeled carbon atom.

References

$\left({ }^{71}\right)$ Seligson, A. L.; Cowan, R. L.; Trogler, W. C. Inorg. Chem. 1991, 30, 3371.
$\left({ }^{72}\right)$ A single example of the insertion of an activated alkyne into a $\left(\mathrm{Me}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}(\mathrm{Ph})(\mathrm{NHPh})$ complex has been reported. See: Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1992, 11, 2963. ${ }^{73}$) (a) Bäckvall, J. E. Acc. Chem. Res. 1983, 16, 335. (b) Åkermark, B.; Bäckvall, J. E.; Siirala-Hansen, K.; Sjöberg, K.; Zetterberg, K. Tetrahedron Lett. 1974, 15, 1363.
${ }^{74}$) (a) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644. (b) Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851.
${ }^{75}$) (a) Muñiz, K.; Hövelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763. (b) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
${ }^{(76}$) (a) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868.
${ }^{77}$) Helaja, J.; Göttlich, R. J. Chem. Soc., Chem. Commun. 2002, 720.
$\left({ }^{78}\right)$ Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
(${ }^{79}$) Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 45.
$\left({ }^{80}\right)$ For reviews on metal-catalyzed reactions that involve syn-alkene insertion into $\mathrm{Pd}-\mathrm{N}$ bonds, see: (a) Wolfe, J. P. Synlett 2008, 2913. (b) Minatti, A.; Muñiz, K. Chem. Soc. Rev. 2007, 36, 1142. (c) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910.
$\left({ }^{81}\right)$ For rare examples of insertion of alkenes into Rh-N, Pt-N or Ir-N bonds, see: (a) Zhao, P.; Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 12066. (b) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (c) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. $\left({ }^{82}\right)$ For a related intramolecular insertion of an unactivated alkene into a Rh-O bond, see: Zhao, P.; Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9642.
$\left({ }^{83}\right)$ Yamashita, M.; Cuevas Vicario, J. V.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 16347.
$\left({ }^{84}\right)$ Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787.
$\left({ }^{85}\right)$ Key data from reference 83 for $(\mathrm{dppf}) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CF}_{3}\right)\left[\mathrm{N}(\mathrm{Me})\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Me}\right)\right]:{ }^{31} \mathrm{P}$ NMR $\left(-45{ }^{\circ} \mathrm{C}\right): \delta 9.3$ (br), 24.3 (d, $J=38 \mathrm{~Hz}$).
$\left({ }^{86}\right)$ Detectable amounts of intermediate III-A were observed after 2 min at rt .
$\left({ }^{87}\right)$ Brown has demonstrated that (dppf) $\mathrm{Pd}(\mathrm{Ph})(\mathrm{Me})$ undergoes $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination with a rate constant of $1.32 \times 10^{-3} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$. See: Brown, J. M.; Guiry, P. J. Inorg. Chim. Acta. 1994, 220, 249.
${ }^{88}$) Culkin, D. A.; Hartwig, J. F. Organometallics 2004, 23, 3398.
$\left({ }^{89}\right)$ Key data from reference 87 for (dppf)Pd(Ph)(Me): ${ }^{31} \mathrm{P}$ NMR: $\delta 17.8(\mathrm{~d}, J=23 \mathrm{~Hz}), 21.3(\mathrm{~d}, J=23 \mathrm{~Hz})$.
${ }^{13}$ C NMR: $J_{\mathrm{CP}}: 9 \mathrm{~Hz}$ (cis), 97 Hz (trans).
$\left({ }^{90}\right)$ Neither excess phosphine ligand nor excess potassium N-arylamide had an effect on k_{1} or k_{2}.
$\left({ }^{91}\right)$ The $N-\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{CN}\right)$ derivative III-3b was employed for these studies as it reacted at a slower rate than
III-3a, which simplified experimental setup and allowed for rates to be measured over a range of temperatures above rt.
${ }^{92}$) (a) Perch, N. S.; Widenhoefer, R. A. J. Am. Chem. Soc. 2004, 126, 6332. (b) Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1995, 117, 1137. (c) Ermer, S. P.; Struck G. E.; Bitler, S. P.; Richards, R.; Bau, R.;

Flood, T. C. Organometallics 1993, 12, 2634. (d) Moravskiy, A.; Stille, J. K. J. Am. Chem. Soc. 1981, 103, 4182.
$\left({ }^{93}\right)$ Buchwald, S. L.; LaMaire, S. J.; Nielsen, R. B.; Watson, B. T.; King, S. M. Tetrahedron Lett. 1987, 28, 3895. $\mathrm{LiAlD}_{4}(96 \% \mathrm{D})$ was employed instead of LiAlH_{4}.
$\left({ }^{94}\right)$ Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. Organometallics 1996, 15, 2745.
$\left({ }^{95}\right)$ Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787.
$\left({ }^{96}\right)$ Prepared by reaction of 4-fluoroaniline with acetic anhydride, neat at $0^{\circ} \mathrm{C}$.
$\left({ }^{97}\right)$ Colberg, J. C.; Rane, A.; Vaquer, J.; Soderquist, J. A. J. Am. Chem. Soc. 1993, 115, 6065.
${ }^{98}$) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644.
(${ }^{99}$) Wagaw, S.; Rennels, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 8451.
$\left({ }^{100}\right)$ Swain, C. G. J. Am. Chem. Soc. 1944, 66, 1696.
$\left({ }^{101}\right)$ Emanueĺ, N. M.; Knorre, D. G. Chemical Kinetics: Homogenous Reactions; English translation by Kondor, R.; Slutzkin D.; Wiley: New York, 1973.

CHAPTER IV

Intramolecular Insertion of Alkenes into Pd-N Bonds. Effects of Substrate and Ligand Structure on the Reactivity of $(\mathbf{P}-\mathbf{P}) \mathbf{P d}(\mathbf{A r})\left[\mathbf{N}\left(\mathbf{A r}^{1}\right)\left(\mathbf{C H}_{2}\right)_{3} \mathbf{C R}=\mathbf{C H R}{ }^{\prime}\right]$ Complexes

Studies on the synthesis and reactivity of a series of ($\mathrm{P}-$ P) $\operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CR}=\mathrm{CHR}\right.$ '] complexes IV-3 are described. These complexes are transformed to observable ($\mathrm{P}-\mathrm{P}$) $\mathrm{Pd}(\mathrm{Ar})$ [pyrrolidin-2-ylmethyl] complexes IV-4 via syninsertion of the pendant alkene into the $\mathrm{Pd}-\mathrm{N}$ bond. Complexes IV-4 then undergo $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination to yield N -aryl-2-benzylpyrrolidine derivatives IV-2. Kinetic studies indicate the rates of conversion of IV-3 to IV-4 and IV-4 to IV-2 are within one order of magnitude. The effects of phosphine ligand structure, alkene substitution, and the electronic properties of the Ar and Ar^{1} groups on reaction rates are reported, as are the results of deuterium isotope effect studies. The mechanism of the aminopalladation step is discussed in detail, and the results of the experiments described in this paper are most consistent with conversion of IV-3 to IV-4 via rate-determining ligand displacement followed by fast aminopalladation. These transformations represent rare examples of syn-migratory insertion of unactivated alkenes into $\mathrm{Pd}-\mathrm{N}$ bonds.

The syn-insertion of alkenes into $\mathrm{Pd}-\mathrm{N}$ bonds has been implicated as a key step in many useful Pd-catalyzed reactions. For example, Pd-catalyzed alkene carboaminations between γ-aminoalkene derivatives IV-1 and aryl bromides are believed to involve synaminopalladation of intermediate palladium(aryl)amido complexes (e.g., IV-3), followed
by reductive elimination of the resulting palladium(aryl)(pyrroldin-2-ylmethyl) complexes (e.g, IV-4) to yield substituted pyrrolidine products IV-2 (Scheme IV.1). ${ }^{102}$ The syn-aminopalladation step leads to formation of a $\mathrm{C}-\mathrm{N}$ bond, and also leads to generation of two stereocenters, which are retained in the pyrrolidine products. This mechanistic pathway is also believed to occur in Pd-catalyzed diaminations, ${ }^{103}$ oxidative aminations, ${ }^{104}$ chloroaminations, ${ }^{105}$ aminoacetoxylations, ${ }^{106}$ and hetero-Heck transformations. ${ }^{107,108}$

Scheme IV. 1 Pd-Catalyzed Alkene Carboamination

Despite the significance of syn-aminopalladation processes, and the influence of this pathway on the stereochemical outcome of synthetically useful reactions, documented unambiguous examples of syn-insertions of olefins into late transition metalnitrogen bonds are very rare, ${ }^{109}$ and cases involving palladium complexes have only recently been described by our group and Hartwig's group. As such, little is known about the effect of palladium amido complex structure on the facility of aminopalladation. However, information on the relationship between structural features and reactivity could potentially be used to improve the efficiency of catalytic processes, or to guide the design of new catalysts for use in challenging reactions or enantioselective transformations.

In this Chapter, detailed studies on the synthesis and reactivity of ($\mathrm{P}-$ P) $\operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CR}=\mathrm{CHR}^{\prime}\right]$ complexes IV-3 are described. ${ }^{110}$ These complexes undergo syn-migratory insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond to provide detectable $(\mathrm{P}-\mathrm{P}) \mathrm{Pd}(\mathrm{Ar})($ pyrrolidin-2-ylmethyl) complexes IV-4, which undergo $\mathrm{C}-\mathrm{C}$ bond forming reductive elimination to yield N-aryl-2-benzylpyrrolidine derivatives IV-2. The rates of aminopalladation of IV-3 and reductive elimination of IV-4 are influenced by several structural parameters, including the electronic properties of the Ar and Ar^{1} groups, the degree of alkene substitution, and the nature of the bis-phosphine ligand. Our experiments suggest the alkene aminopalladation occurs from a four-coordinate complex, and illustrate that ligand electronic properties can be tuned to have a positive influence on the rates of both aminopalladation and reductive elimination.

Following our initial experiments on the reactivity of complex III-3a (Chapter III), we sought to probe the effects of N-aryl group structure, Pd -aryl group structure, and ligand structure on the rate of the alkene aminopalladation process. To this end a series of (bis-phosphine) $\operatorname{Pd}(\mathrm{Ar})(\mathrm{Br})$ complexes were prepared using standard routes ${ }^{111}$ and were treated with potassium salts of N-(aryl)-pent-4-enylamine derivatives in a manner analogous to that described above in Chapter III. In all cases the amido complexes (IV-3a-k) were generated in $<2 \mathrm{~min}$ at rt , and were characterized by diagnostic ${ }^{31} \mathrm{P}$ NMR signals with chemical shifts close to those observed for III-3a. Reactions were allowed to proceed at rt and kinetic data were collected by ${ }^{19} \mathrm{~F}$ NMR spectroscopy. Rate constants for k_{1} (conversion of IV-3 to IV-4) and for k_{2} (conversion of IV-4 to IV-2) were then determined as in Chapter III and are provided in Table IV.1.

Hammett plots were constructed from the data shown in Table IV.1. Clear trends were observed in transformations of complexes IV-3a-3f bearing various N-aryl substituents, and linear plots of $\log \left(k_{R} / k_{H}\right)$ were obtained for both steps in the conversion of IV-3a-f to IV-2a-f (Figures IV. 1 and IV.2). Best fits were obtained using the Hammett σ_{p} parameters which gave $\rho=-2.5 \pm 0.2$ for step 1 (IV-3 to IV-4) and $\rho=-$ 0.92 ± 0.06 for step 2 (IV-4 to $\mathbf{I V}-\mathbf{2}$). The increased reactivity of complexes bearing electron-rich N-aryl groups is consistent with trends previously reported by Hartwig for alkene insertion reactions of cyclometalated $\left[t-\mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Pd}\left(\mathrm{NAr}_{2}\right)$ complexes. ${ }^{12}$

A similar analysis of data obtained in reactions of $N-(p-$ fluorophenyl)pentenylamine derived complexes IV-3a and IV-3g-k bearing various R^{2} groups failed to provide clear trends. Hammett plots derived from this series of experiments were nonlinear (Figures IV. 3 and IV.4), although all values of k_{1} for this series were within a factor of 2.5 of each other, and all values of k_{2} for this series were within a factor of 7 of each other. As such, although the precise effect of Pd-aryl substituent on reactivity is unclear, it appears to be relatively small. We were unable to obtain k_{1} and k_{2} values for reactions of complexes derived from electron-poor aryl bromides $\left(\mathrm{R}=\mathrm{CN}, \mathrm{CF}_{3}\right)$, as these complexes underwent rapid $\mathrm{C}-\mathrm{N}$ bond-forming reductive elimination (full conversion was observed in $<1 \mathrm{~min}$ at rt) to yield N - $(\mathrm{p}$ -fluorophenyl)- N - $\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{R}^{2}\right)$-pent-4-enylamines, rather than the desired aminopalladation to afford IV-4.

Table IV. 1 Effect of N-Aryl Group and Pd-Aryl Group on Reaction Rates

Conditions: All reactions were conducted in NMR tubes with [IV-3] $=6.26 \mathrm{mM}$, [dppf] $=12.6 \mathrm{mM}$, [2fluorotoluene] $=11.8 \mathrm{mM}$ (internal standard), $\mathrm{THF}, 24^{\circ} \mathrm{C}$. All values for k_{1} and k_{2} are the average obtained over duplicate runs. ${ }^{a .} \mathrm{C}-\mathrm{N}$ bond-forming reductive elimination from IV-3 to provide the corresponding N $\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)-N-\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{R}^{2}\right)$-pent-4-enylamine was the predominant reaction pathway observed.

Figure IV. 1 Hammett Correlation for the N-Aryl Group k_{1}

Figure IV. 2 Hammett Correlation for the N-Aryl Group k_{2}

Figure IV. 3 Hammett Correlation for the Pd-Aryl Group k_{1}

Figure IV. 4 Hammett Correlation for the Pd-Aryl Group k_{2}

The steric and electronic properties of the bis-phosphine ligand also had a significant influence on reactivity in the conversion of IV-3I-r to IV-2e. As shown in Table IV.2, the fastest transformations were observed with wide bite angle ligands N -methyl-nixantphos ${ }^{112}$ and xantphos. Amido complexes IV-3q-r bearing these ligands were rapidly converted to pyrrolidine IV-2e at rt with rates too fast to accurately measure; both reactions proceeded to completion in < 1 min . In contrast, complexes IV-31-o bearing ligands with relatively small bite angles failed to undergo the desired transformation. Complexes IV-3m and IV-3o did not react at temperatures up to $60{ }^{\circ} \mathrm{C}$, and complexes IV-3I and IV-3n decomposed to afford complex mixtures of products. The DPE-Phos complex IV-3p was transformed to IV-2e with an observed rate constant of $0.686 \times 10^{-3} \mathrm{~s}^{-1}$; no intermediate complex IV-4 was detected during this reaction.

Table IV. 2 Effect of Ligand Bite Angle on Reactivity

Starting Complex	Intermediate Complex	Ligand	Bite Angle (${ }^{\circ}$)	Result
IV-3I	Not observed	dppe	86	Decomposition of Complex a
IV-3m	Not observed	dpp-Benzene	87	No Reaction ${ }^{b}$
IV-3n	Not observed	dppp	91	Decomposition of Complex a
IV-3o	Not observed	(rac)-BINAP	93	No Reaction b
IV-3e	IV-4e	dppf	99	$k_{1}=0.56 \pm 0.02 \times 10^{-3} \mathrm{~s}^{-1}$
				$k_{2}=0.90 \pm 0.02 \times 10^{-3} \mathrm{~s}^{-1}$
IV-3p	Not observed	DPE-Phos	104	$k_{\text {obs }}=0.686 \times 10^{-3} \mathrm{~s}^{-1 c}$
IV-3q	Not observed	xantphos	108	Too fast to measure ${ }^{d}$
				Too fast to measure ${ }^{d}$

Conditions: All reactions were conducted in NMR tubes with $[\mathbf{I V}-3]=6.26 \mathrm{mM},[\mathrm{dppf}]=12.6 \mathrm{mM}$, [2fluorotoluene] $=11.8 \mathrm{mM}$ (internal standard), $\mathrm{THF}, 24^{\circ} \mathrm{C}$. All values for k_{1} and k_{2} are the average obtained over two or more runs. ${ }^{a}$ Decomposition to afford a complex mixture of products was observed. The expected pyrrolidine IV-2e was not detected in significant amounts. ${ }^{b}$. No reaction was observed at temperatures up to $60^{\circ} \mathrm{C}$. ${ }^{c \cdot}$ No intermediate was detected in this reaction. ${ }^{d}$ Complete conversion to IV-2e was observed within 1 min of mixing IV-3q-r and the potassium N-arylamide salt.

The effect of ligand electronic properties on reaction rates was examined through comparison of complexes bearing differently substituted dppf-derived ligands. As shown in Table IV.3, the presence of para-electron withdrawing trifluoromethyl groups on the P-Ar substituents in complex IV-3s led to acceleration of both steps of the transformation to IV-2d relative to the analogous reaction of parent dppf complex IV-3d. In contrast, decreased rates were observed for both steps in the conversion of complex IV-3t bearing para-electron donating methoxy groups to IV-2d.

Table IV. 3 Ligand Electronic Effects

Starting Complex	Intermediate Complex	Ligand	$\boldsymbol{k}_{\mathbf{1}}\left(\mathbf{1 0}^{\mathbf{- 3}} \mathbf{s}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\mathbf{2}}\left(\mathbf{1 0}^{-\mathbf{3}} \mathbf{s}^{\mathbf{- 1}}\right)$
$\mathbf{I V - 3 s}$	$\mathbf{I V - 4 s}$	dppf- $p-\mathrm{CF}_{3}$	4.08 ± 0.03	14.6 ± 2.4
$\mathbf{I V - 3 d}$	$\mathbf{I V - 4 d}$	dppf	2.44 ± 0.12	1.88 ± 0.07
$\mathbf{I V - 3 t}$	$\mathbf{I V - 4 t}$	dppf- $p-\mathrm{OMe}$	0.77 ± 0.01	0.59 ± 0.20

Conditions: All reactions were conducted in NMR tubes with [IV-3] $=6.26 \mathrm{mM}$, [dppf] $=12.6 \mathrm{mM}$, [2fluorotoluene] $=11.8 \mathrm{mM}$ (internal standard), THF, $24^{\circ} \mathrm{C}$. All values for k_{1} and k_{2} are the average obtained over two runs.

The stereochemistry of the aminopalladation reaction was determined through reaction of deuterated amido complex III-3c. As shown in Scheme IV.2, this complex was cleanly transformed to pyrrolidine III-4c with net syn-addition of the aryl group and the N -atom across the $\mathrm{C}-\mathrm{C}$ double bond. This supports a mechanism involving synmigratory insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond, rather than amide dissociation, alkene coordination, and outer-sphere attack of the pendant nucleophile. This result is also consistent with the stereochemical outcome of Pd-catalyzed carboamination reactions between γ-aminoalkene derivatives and aryl bromides. ${ }^{24,102}$

Scheme IV. 2 Deuterium Isotope Effect at Terminal Alkene Position

Scheme IV. 3 Absence of Deuterium Isotope Effect at Internal Alkene Position

Kinetic measurements were acquired for the two-step conversion of III-3c to III$4 \mathbf{c}\left(k_{1}=0.528 \pm 0.041 \times 10^{-3} \mathrm{~s}^{-1} ; k_{2}=0.701 \pm 0.023 \times 10^{-3} \mathrm{~s}^{-1}\right)$ and were compared to values obtained for the analogous non-deuterated complex IV-3e. This comparison indicated no significant isotope effect for step 1 of the transformation $\left(k_{1 H} / k_{1 D}=1.06 \pm\right.$ 0.09), but an isotope effect was observed for the reductive elimination (step $2, k_{2 H} / k_{2 D}=$ $1.25 \pm 0.05)$. Related experiments conducted with substrate IV-3v, which contains a deuterium atom at the internal alkene carbon, indicated no significant isotope effect for either step (Scheme IV.3).

In order to probe the effect of alkene substitution on reactivity, complexes IV-3w\mathbf{y} bearing 1,1- or 1,2-disubstituted alkenes were prepared in an analogous manner to the amido complexes described above. As shown in Table IV.4, complex IV-3w, which contains a substituent at the internal alkene carbon, undergoes aminopalladation to give
intermediate IV-4w at a rate that is 10 -fold slower than for the analogous conversion of unsubstituted derivative IV-3d to IV-4d. However, the rate of reductive elimination from intermediate IV-4w to yield IV-2w is comparable to that for the transformation of IV-4d to IV-2d. Complexes IV-3x and IV-3y failed to undergo aminopalladation at temperatures up to $60^{\circ} \mathrm{C}$.

Table IV. 4 Alkene Substituent Effects

Starting Complex	Intermediate Complex	Product	\mathbf{R}	\mathbf{R}^{1}	$\mathbf{R}^{\mathbf{2}}$	$\boldsymbol{k}_{\mathbf{1}}\left(\mathbf{1 0}^{-3} \mathbf{s}^{\mathbf{- 1}}\right)$	$\boldsymbol{k}_{\mathbf{2}}\left(\mathbf{1 0}^{-\mathbf{3}} \mathbf{s}^{\mathbf{- 1}}\right)$
$\mathbf{I V - 3 d}$	$\mathbf{I V - 4 d}$	$\mathbf{I V - 2 d}$	H	H	H	2.44 ± 0.12	1.88 ± 0.07
$\mathbf{I V - 3 w}$	$\mathbf{I V - 4 w}$	$\mathbf{I V - 2 w}$	H	H	Me	0.25 ± 0.09	1.58 ± 0.16
$\mathbf{I V - 3 x}$	Not obsd	-	Me	H	H	$-^{a}$	$-^{a}$
IV-3y	Not obsd	-	H	Me	H	$-^{a}$	$-^{a}$
C							

Conditions: All reactions were conducted in NMR tubes with [IV-3] $=6.26 \mathrm{mM}$, [dppf] $=12.6 \mathrm{mM}$, [2fluorotoluene] $=11.8 \mathrm{mM}$ (internal standard), THF, $24^{\circ} \mathrm{C}$. All values for k_{1} and k_{2} are the average obtained over two or more runs. ${ }^{a}$ No reaction was observed up to $60^{\circ} \mathrm{C}$.

Plausible Mechanistic Scenarios for the Conversion of Amido Complexes IV-3 to

Palladium(aryl)(pyrrolidin-2-ylmethyl) Complexes IV-4

The conversion of $(\mathrm{P}-\mathrm{P}) \mathrm{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{C}(\mathrm{R})=\mathrm{C}(\mathrm{R})(\mathrm{R}\right.$ ') complexes IV-3 to (P-P)Pd(Ar)(pyrrolidin-2-ylmethyl) complexes IV-4 presumably does not occur via a single step, but instead likely involves: (a) intramolecular coordination of the alkene to palladium; and (b) syn-aminopalladation. As such, the conversion of IV-3 to IV-4 could potentially proceed through four different reasonable pathways (Scheme IV.4). Two scenarios would involve syn-aminopalladation from five-coordinate complex IV-7. The first would entail rate-limiting alkene coordination of IV-3 to provide IV-7, which could then undergo rapid aminopalladation to afford IV-4 (Path A). Alternatively, fast and
reversible intramolecular alkene coordination of IV-3 would yield IV-7, which could undergo rate-limiting aminopalladation to IV-4 (Path B).

Scheme IV. 4 Possible Mechanistic Pathways for Conversion of IV-3 to IV-4

Two other possibilities would involve ligand substitution of alkene for one arm of the chelating bis-phosphine ligand to give four-coordinate alkene complex IV-10 (presumably via an associative mechanism; IV-7 would be a transient intermediate en route to IV-10). ${ }^{113}$ One of these pathways (Path C) would proceed via rate-limiting associative substitution of IV-3 to give IV-10, followed by fast aminopalladation of IV10 to yield IV-4. Finally, fast and reversible associative ligand substitution of IV-3 to IV10 followed by rate-limiting aminopalladation from IV-10 to IV-4 is also a reasonable possibility (Path D).

As shown in Scheme IV.4, Path B and Path D for the conversion of IV-3 to IV-4 both involve rapid formation of an alkene-bound complex (IV-7 or IV-10) followed by rate-limiting aminopalladation (from either IV-7 or IV-10). The fact that neither IV-7 nor IV-10 are detectable intermediates argues against Paths B and D, but cannot be used to rule out these pathways as it is possible the equilibrium between IV-3 and IV-7 or IV-3 and IV-10 is fast but lies far to the left favoring IV-3. In contrast, the results obtained in
reactions with deuterated substrates III-3c and IV-3v provide good evidence that neither Path B nor D are in operation. ${ }^{114}$ The transformations of IV-7 to IV-4 and IV-10 to IV-4 both involve rehybridization of the alkene carbon atoms from sp^{2} to sp^{3}. As such, if this step were rate limiting, a significant deuterium isotope effect should be observed at both alkene carbon atoms. However, the conversions of deuterated complexes III-3c and IV3v to III-4c and IV-4v respectively proceed at the same rate as the transformation of allprotio complex IV-3e to IV-4e. Finally, the observed effect of ligand bite angle on reaction rate (Table IV.2) provides additional evidence against Path D , as the bite angle should not influence the rate of aminopalldation from IV-10 to IV-4 if the ligand is not bound to the metal by both phosphine groups in the rate determining step. ${ }^{115}$

Paths A and C both involve rate-limiting alkene coordination to the metal center, but differ in the nature of the intermediate complex that undergoes aminopalladation. In Path A, aminopalladation would occur directly from the five-coordinate intermediate IV7, whereas Path C involves substitution of alkene for phosphine followed by insertion from four-coordinate complex IV-10. Several pieces of evidence indicate the mechanism of conversion of IV-3 to IV-4 does not proceed via Path A. First of all, the positive entropy values measured for the conversion of IV-3f to IV-4f suggest that Path A is not operating, as the conversion of IV-3 to IV-7 should have a fairly large negative entropy of activation due to the increase in organization in the transition state between complex IV-3 with a single chelate ($\mathrm{P}-\mathrm{P}$) and IV-7, which contains two chelates ($\mathrm{P}-\mathrm{P}$ and alkene$\mathrm{N})$. In contrast, the measured entropy of +4.6 eu is consistent with the conversion of IV-3 to IV-10 via intermediate IV-7 (Path C), as mono-chelated complex IV-10 is less ordered than doubly-chelated complex IV-7.

The effect of ligand and amine properties on reaction rate can also be used to differentiate between Paths A and C. If transformations proceed via Path C the reaction rate should be strongly influenced by factors that favor phosphine displacement. ${ }^{116}$ In contrast, the rate of reactions that proceed by way of Path A should be insensitive to factors that favor ligand substitution, and instead should only be affected by parameters that influence initial alkene binding to the metal. The effect of phosphine ligand properties on reaction rate is most consistent with reaction via Path C. As illustrated in Scheme IV.3, complex IV-3s, which contains electron-withdrawing $p-\mathrm{CF}_{3}-\mathrm{C}_{6} \mathrm{H}_{4}$ groups on the phosphines, reacts ca. five times faster than the related complex IV-3t that bears p -$\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$ phosphine substituents. The displacement of one arm of the electron-poor p -CF_{3}-dppf ligand should be more facile than for the relatively electron rich p-MeO-dppf ligand. In addition, although we were unable to obtain quantitative rate data for ligands with very large or very small bite angles, qualitatively it is clear that the transformation is facilitated by wide bite angle ligands and impeded by ligands with small bite angles. This effect is also consistent with rate-limiting associative ligand substitution (Path C). ${ }^{117}$

The reactions of complexes bearing electron-rich N-aryl groups are considerably faster than those bearing electron-poor N-aryl groups. For example, the conversion of complexes IV-3b and IV-3c, which contain electron-donating p - t-Bu and p-OMe groups on the N-aryl moiety, to $\mathbf{I V}-\mathbf{4 b}$ and $\mathbf{I V}-\mathbf{4 c}$ are two orders of magnitude faster than the conversion of IV-3f to IV-4f (N-aryl $=p-\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}$). This electronic effect also suggests the conversion of IV-3 to IV-4 proceeds via Path C rather than Path A. The electron-rich amido groups should increase the electron density of the metal center, which should in turn increase the ease of phosphine displacement. In contrast, if Path A were operating,
coordination of the relatively electron-rich alkene should be facilitated by a less electronrich, more Lewis acidic metal center, ${ }^{118,119}$ and rates should be faster with relatively electron-poor N-aryl groups.

No clear trend was observed for the influence of Pd-aryl group electronics on the rate of conversion of IV-3 to IV-4. As such this data cannot be used to refute any of the possible mechanistic pathways. The origin of these electronic effects is unclear, but the differences in relative rates of aminopalladation for complexes IV-3a, and IV-3g-i are small (within a factor of ca. 2). However, our data do indicate that the rate of $\mathrm{C}-\mathrm{N}$ bondforming reductive elimination dramatically increases relative to the rate of aminopalladation in complexes IV-3j-k, which contain strong electron-withdrawing substituents on the $\mathrm{Pd}-\mathrm{Ar}$ group.

Influence of Structural Features on Carbon-Carbon Bond-Forming Reductive

Elimination of IV-4 to Afford IV-2

The rate of $\mathrm{C}-\mathrm{C}$ bond-forming reductive elimination from (dppf) $\operatorname{Pd}(\mathrm{Ar})($ pyrrolidin-2-ylmethyl) complexes IV-4 is also affected by structural features of the complexes. For example, the electronic properties of the N-aryl group have a significant influence on this transformation, as complexes IV-4 bearing electronrich N-aryl groups undergo reductive elimination five times faster than electron-poor derivatives. In addition, the rate of reductive elimination of the (dppf) $\operatorname{Pd}(\mathrm{Ar})($ pyrrolidin-2-ylmethyl) complexes IV-4 is considerably slower than the analogous reaction of the $(\mathrm{dppf}) \operatorname{Pd}(\mathrm{Ar})(\mathrm{alkyl})$ derivative (dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{CH}_{2}(\mathrm{cyclopentyl})\right]$ (III-8). These trends are likely due to inductive effects that slow the relative rate of reductive elimination as the electron-withdrawing power of the nitrogen atom increases in
derivatives of IV-4. The possibility that the rate of reductive elimination is slowed by binding of the nitrogen atom in IV-4 to the metal center appears less likely given the fact that electron-poor N -aryl groups should disfavor N -coordination, but rates are slowest with these groups.

The effect of ligand electronic properties and bite angle on the rate of reductive elimination from IV-4 to IV-2 is also consistent with prior observations on rates of C-C bond formation from $\mathrm{Pd}(\mathrm{II})$ complexes. ${ }^{120,121}$ In our system complex IV-4s, which bears a relatively electron-poor ligand, undergoes reductive elimination twenty-five times faster than the related complex IV-4t, which is ligated by a more electron-rich phosphine. This is likely due to the destabilizing effect of the electron-poor phosphine on the $\operatorname{Pd}(\mathrm{II})$ oxidation state. ${ }^{120}$ The reductive elimination processes also appear to be most facile with wide-bite angle ligands, which both destabilize the ground state of $(\mathrm{P}-\mathrm{P}) \operatorname{Pd}(\mathrm{Ar})(\mathrm{R})$ complexes and also stabilize the transition state for $\mathrm{C}-\mathrm{C}$ bond formation. ${ }^{121}$ The observed deuterium isotope effect at the carbon undergoing bond-formation is consistent with ratelimiting C-C bond formation in the conversion of IV-4 to IV-2, rather than rate limiting phosphine dissociation.

In conclusion, our experiments on the conversion of ($\mathrm{P}-$ $\mathrm{P}) \operatorname{Pd}(\mathrm{Ar})\left[\mathrm{N}\left(\mathrm{Ar}^{1}\right)\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CR}=\mathrm{CHR}^{\prime}\right]$ complexes IV-3 to N-aryl-2-benzylpyrrolidine derivatives IV-2 indicate that the transformations proceed via syn-insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond. This alkene syn-aminopalladation pathway has rarely been observed in well-characterized palladium complexes, but plays a key role in catalytic reactions. These studies illustrate that ligand structure and heteroatom basicity/nucleophilicity have a large impact on the rate of aminopalladation, and the observed trends could potentially
be used in the design of new catalysts for reactions involving aminopalladation. Finally, our data suggest that insertion occurs from a four-coordinate alkene complex, rather than a five-coordinate species. This mechanistic information provides insight into previously observed trends in asymmetric Pd-catalyzed alkene carboamination reactions. Use of chiral bis-phosphine ligands provides poor enantioselectivity in these transformations, ${ }^{32}$ which is likely due to dissociation of one arm of the bis-phosphine ligand prior to aminopalladation.

Experimental

All reactions were carried out under a dry nitrogen atmosphere in flame-dried glassware using standard Schlenk techniques or in a nitrogen-filled glovebox. All reagents were obtained from commercial sources and used without further purification. Crude palladium dimers ${ }^{122}$ and pure bisphosphine-ligated Pd-complexes ${ }^{123}$ were prepared analogous to the methods of Buchwald. Toluene, THF, diethyl ether, and dichloromethane were purified using a GlassContour solvent purification system. THF used in kinetic experiments was stirred as a dark purple solution of sodium/benzophenone overnight under vacuum and then vacuum transferred before use. 2-fluorotoluene, 4fluorotoluene, and pentane were distilled from $\mathrm{CaH}_{2} . \mathrm{CD}_{2} \mathrm{Cl}_{2}$, acetic acid- d_{4}, and THF- d_{8} were obtained from Cambridge Isotope Laboratories and used as received. Yields refer to isolated yields of compounds estimated to be $\geq 95 \%$ pure as determined by ${ }^{1} \mathrm{H}$ NMR analysis unless otherwise noted. The yields reported in the experimental section describe the result of a single experiment, whereas all kinetic data has been averaged over
duplicate experiments. All kinetic experiments were set up in a glovebox under nitrogen atmosphere. All glassware and microsyringes associated with kinetics experiments were oven dried at $120{ }^{\circ} \mathrm{C}$ overnight before use. ${ }^{31} \mathrm{P}$ NMR shifts are given relative to an 85% $\mathrm{H}_{3} \mathrm{PO}_{4}$ external standard. ${ }^{1} \mathrm{H}$ NMR shifts for the experimental section are reported downfield of TMS in CDCl_{3} or referenced to residual protia in THF- $d_{8} .{ }^{19} \mathrm{~F}$ NMR shifts for the experimental section are referenced to residual protia in CDCl_{3}, or to an internal standard of 2-fluorotoluene (-117.2 ppm) or 4-fluorotoluene (-117.9 ppm) in THF- d_{8}.

Preparation and Characterization of Potassium Amide Substrates General Procedure 6: Conversion of N-aryl-pent-4-enamides to N-aryl-pent-4-enylamines.

 A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate N -aryl-pent-4-enamide (1.0 equiv) and purged with nitrogen for 5 min . THF ($4 \mathrm{~mL} / \mathrm{mmol}$ substrate) was added and the resulting solution was cooled to $0^{\circ} \mathrm{C}$. To this solution, a 1 M solution of LiAlH_{4} in diethyl ether (1.2 equiv) was added slowly over 10 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min then warmed to rt and stirred overnight (ca. 16 h). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$, then water ($0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate), $6 \mathrm{M} \mathrm{NaOH}(0.05 \mathrm{~mL} / \mathrm{mmol}$ substrate) and additional water ($0.15 \mathrm{~mL} / \mathrm{mmol}$ substrate) were sequentially added. The resulting white suspension was stirred vigorously for 30 min , then filtered through glass wool and the white precipitate was washed with diethyl ether $(3 \times 30 \mathrm{~mL})$. The filtrate was dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The resulting product was purified by flash chromatography on silica gel.General Procedure 7: Conversion of N -aryl-pent-4-enylamines to Potassium N -aryl-pent-4-enyl Amides. A flame-dried flask equipped with a magnetic stirbar was charged with the appropriate N-aryl-pent-4-enylamine (1.3 equiv) and purged with nitrogen for 5 min. In the glovebox, a separate flame-dried Schlenk flask equipped with a magnetic stirbar was charged with solid KHMDS (1.0 equiv), capped with a septum, removed from the glovebox, and connected to a vacuum/nitrogen manifold. Toluene ($5 \mathrm{~mL} / \mathrm{mmol}$ KHMDS) was added to each flask to afford clear solutions. Subsequently the amine solution was added dropwise to the KHMDS solution at rt to afford a bright yellow solution. The solution was stirred for 1.5 h at rt , over which time the solution became progressively more cloudy. The solvent was removed under high vacuum to afford a crude solid, which was taken into the glovebox under vacuum. The crude solid was purified on a medium glass frit via rinsing/trituration with pentane $(4 \times 10 \mathrm{~mL})$ The resulting potassium N-aryl-pent-4-enyl amides were determined to contain ca. $0.1-2.7 \%$ KHMDS as judged by ${ }^{1} \mathrm{H}$ NMR analysis. This material was used without further purification.

Potassium (4-tert-butylphenyl)(pent-4-enyl)amide (IV-6b). The conversion of 4pentenoic acid ($2.0 \mathrm{~mL}, 19.6 \mathrm{mmol}$) and 4-tert-butylaniline ($6.3 \mathrm{~mL}, 40 \mathrm{mmol}$) to N -(4-tert-butylphenyl)pent-4-enamide was accomplished using a procedure analogous to that employed above for the preparation of N-(4-fluorophenyl)pent-4-enamide. This procedure afforded 3.10 g (68\%) of N-(4-tert-butylphenyl)pent-4-enamide as a fluffy white solid, m.p. $103-105{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.35-$ $7.28(\mathrm{~m}, 3 \mathrm{H}), 5.93-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.7$, 147.4, $137.1,135.4,126.0,119.9,116.1,37.0,34.6,31.6,29.7$.
N-(4-tert-Butylphenyl)pent-4-enamide ($1.50 \mathrm{~g}, 6.5 \mathrm{mmol}$) was reduced according to General Procedure 6 to afford $1.14 \mathrm{~g}(81 \%)$ of 4-tert-butyl- N-(pent-4-enyl)aniline (IV1b) as a pale orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.52(\mathrm{~m}$, $2 \mathrm{H}), 5.90-5.77(\mathrm{~m}, 1 \mathrm{H}), 5.09-5.01(\mathrm{~m}, 1 \mathrm{H}), 5.01-4.96(\mathrm{~m}, 1 \mathrm{H}), 3.50(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.10$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.20-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.2,140.0,138.3,126.1,115.2,112.6,43.8,34.0,31.7$, 31.5, 28.9; IR (film) $3411 \mathrm{~cm}^{-1}$. MS (EI) 217.1832 (217.1830 calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}$).

General Procedure 7 was used for the conversion of 4-tert-butyl- N-(pent-4enyl)aniline ($306 \mathrm{mg}, 1.4 \mathrm{mmol}$) to $159 \mathrm{mg}(59 \%)$ of the title compound as a yellow powder containing 0.3% KHMDS. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 6.82(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2$ H), $6.04(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.02-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.10-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.95-4.88(\mathrm{~m}, 1$ H), 2.97-2.88 (m, 2 H), 2.25-2.16 (m, 2 H), 1.82-1.71 (m, 2 H), 1.18 (s, 9 H$),{ }^{13} \mathrm{C}$ NMR (100 MHz, THF- d_{8}) $\delta 159.8,141.2,130.1,126.9,113.9,110.7,52.1,34.2,34.0,33.9$, 32.7.

Potassium (4-methoxyphenyl)(pent-4-enyl)amide (IV-6c). The conversion of 4pentenoic acid ($2.0 \mathrm{~mL}, 19.6 \mathrm{mmol}$) and p-anisidine ($4.93 \mathrm{~g}, 40 \mathrm{mmol}$) to N - $(4-$ methoxyphenyl)pent-4-enamide was accomplished using a procedure analogous to that described above for the preparation of N -(4-fluorophenyl)pent-4-enamide. This procedure afforded 3.28 g (81\%) of N -(4-methoxyphenyl)pent-4-enamide as a white solid, m.p. 91$93{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 6.90-6.81(\mathrm{~m}$,
$2 \mathrm{H}), 5.94-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.6,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.78 (s, 3 H), 2.52-2.39 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.6,156.6,137.1$, $131.2,122.0,116.0,114.3,55.7,36.8,29.7$.
N-(4-Methoxyphenyl)pent-4-enamide ($1.50 \mathrm{~g}, 7.3 \mathrm{mmol}$) was reduced according to General Procedure 6 to afford $1.27 \mathrm{~g}(91 \%)$ of 4-methoxy- N -(pent-4-enyl)aniline (IV1c) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.81-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.53(\mathrm{~m}$, $2 \mathrm{H}), 5.90-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.10-4.96(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.07(\mathrm{td}, J=$ 7.2, 1.6 Hz, 2 H), 2.20-2.12 (m, 2 H), 1.69 (quintd, $J=1.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.1,142.9,138.3,115.1,115.0,114.1,55.9,44.5,31.5,28.9$; IR (film) 3393, $1236 \mathrm{~cm}^{-1}$. MS (EI) 191.1305 (191.1310 calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$).

General Procedure 7 was used for the conversion of 4-methoxy- N-(pent-4enyl)aniline ($304 \mathrm{mg}, 1.6 \mathrm{mmol}$) to $118 \mathrm{mg}(44 \%)$ of the title compound as a light green powder containing $0.4 \% \mathrm{KHMDS} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 6.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2$ H), $6.02-5.90(\mathrm{~m}, 3 \mathrm{H}), 5.03(\mathrm{dd}, J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ (s, 3 H), 2.90-2.81 (m, 2 H$), 2.25-2.16(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.70(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 158.2,144.9,141.2,118.1,113.9,110.2,57.7,52.9,34.21,34.16$.

Potassium pent-4-enyl(phenyl)amide (IV-6d). N-Phenylpent-4-enamide ${ }^{4}(1.50 \mathrm{~g}, 8.6$ mmol) was reduced according to General Procedure 6 to afford $1.20 \mathrm{~g}(86 \%)$ of N-(pent-4-enyl)aniline (IV-1d) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.11$ (m, $2 H), 6.71-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.54(\mathrm{~m}, 2 \mathrm{H}), 5.90-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.09-4.95(\mathrm{~m}, 2 \mathrm{H})$, 3.58 (s, br, 1 H), $3.10(\mathrm{td}, J=1.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.69$ (quintd, $J=1.6$,
$7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.6, 138.2, 129.4, 117.3, 115.2, 112.9, $43.5,31.4,28.8$; IR (film) $3411 \mathrm{~cm}^{-1}$. MS (EI) 161.1201 (161.1204 calcd for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}$).

General Procedure 7 was used for the conversion of N-(pent-4-enyl)aniline (305 $\mathrm{mg}, 1.9 \mathrm{mmol})$ to $213 \mathrm{mg}(72 \%)$ of the title compound as an off-white powder containing 0.1% KHMDS. ${ }^{1}$ H NMR (400 MHz, THF- d_{8}) $\delta 6.76-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2$ H), $6.01-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=1.6,17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.94-$ $4.87(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.75$ (quint, $J=8.0 \mathrm{~Hz}, 2$ H) ${ }^{13}{ }^{1} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 161.6,141.1,130.3,113.9,111.4,105.0,51.8,34.1$, 33.9 .

Potassium (4-chlorophenyl)(pent-4-enyl)amide (IV-6e). The conversion of 4-pentenoic acid ($1.5 \mathrm{~mL}, 15.0 \mathrm{mmol}$) and 4 -chloroaniline ($4.78 \mathrm{~g}, 37.5 \mathrm{mmol}$) to N -(4-chlorophenyl)pent-4-enamide was accomplished using a procedure analogous to that described above for the preparation of N -(4-fluorophenyl)pent-4-enamide. This procedure afforded 1.78 g (58\%) of N-(4-chlorophenyl)pent-4-enamide as a white solid, m.p. 86-89 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.91-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.51-2.41 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,136.9,136.6,129.4,129.2$, 121.4, 116.2, 36.9, 29.5.
N-(4-Chlorophenyl)pent-4-enamide ($1.50 \mathrm{~g}, 7.2 \mathrm{mmol}$) was reduced according to General Procedure 6 to afford $1.28 \mathrm{~g}(91 \%)$ of 4-chloro- N-(pent-4-enyl)aniline (IV-1e) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.12-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.45(\mathrm{~m}, 2 \mathrm{H})$,
5.88-5.75 (m, 1 H), $5.05(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, \mathrm{br}, 1$ H), $3.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.67$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 147.1, 138.0, 129.1, 121.7, 115.4, 113.9, 43.6, 31.4, 28.6; IR (film) $3417 \mathrm{~cm}^{-1}$. MS (EI) 195.0820 (195.0815 calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{CIN}$).

General Procedure 7 was used for the conversion of 4 -chloro- N-(pent-4enyl)aniline ($392 \mathrm{mg}, 2.0 \mathrm{mmol}$) to 240 mg (64%) of the title compound as a yellowgreen powder containing 1.1% KHMDS. ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 6.60(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.98-5.86(\mathrm{~m}, 3 \mathrm{H}), 5.02(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.87-2.78 (m, 2 H), 2.23-2.13(m, 2 H), 1.77-1.66 (m, 2 H) ; ${ }^{13} \mathrm{C}$ NMR (100 MHz , THF$\left.d_{8}\right) \delta 160.5,141.0,129.6,114.0,111.8(\mathrm{br}), 107.7,52.2,34.0,33.8$.

Potassium (4-chlorophenyl)(4-deuteriopent-4-enyl)amide (IV-6v). A flame-dried flask equipped with magnetic stirbar was charged with $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{D}) \mathrm{Cl}(501 \mathrm{mg}, 1.9 \mathrm{mmol})$ and purged with nitrogen for $5 \mathrm{~min} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added to afford a white suspension. Subsequently a solution of pent-4-ynyl-4-methylbenzenesulfonate ($454 \mathrm{mg}, 1.9 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added and the suspension clarified instantly. The resulting solution was stirred for 20 min at rt and then cooled to $0^{\circ} \mathrm{C}$. The chilled solution was treated with 1 M aqueous $\mathrm{HCl}(5 \mathrm{~mL})$ and the layers were separated. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times 20 \mathrm{~mL})$ and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off through glass wool and the filtrate was concentrated in vacuo. Purification by flash chromatography afforded $328 \mathrm{mg}(71 \%)$ of 4-deuteriopent-4-enyl 4-methylbenzenesulfonate as a colorless oil with $>95 \%$ deuterium incorporation. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=7.5$

Hz, 2 H), 4.96-4.93 (m, 2 H), $4.04(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2 H), 1.74 (quint, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.9,136.5\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{D}}=\right.$ 24.1 Hz), 133.4, 130.0, 128.1, 115.9, 70.0, 29.5, 28.2, 21.9; MS (ESI) 242.0951 (242.0961 calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{DO}_{3} \mathrm{~S}+\mathrm{H}^{+}$).

The alkylation of 4-chloroaniline ($327 \mathrm{mg}, 2.6 \mathrm{mmol}$) with 4-deuteriopent-4-enyl 4-methylbenzenesulfonate ($298 \mathrm{mg}, 1.2 \mathrm{mmol}$) was accomplished using a procedure analogous to that described above for the preparation of (E)-4-chloro- N-(5-deuteriopent-4-enyl)aniline. This procedure afforded 211 mg (87\%) of 4-chloro- N-(4-deuteriopent-4enyl)aniline (IV-1v) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.13-7.08(\mathrm{~m}, 2$ H), 6.54-6.48 (m, 2 H), 5.07-5.03 (m, 1 H), 5.02-4.98 (m, 1 H), 3.63 (s, br, 1 H$), 3.10(\mathrm{t}$, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.70$ (quint, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.1,137.8\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{D}}=23.1 \mathrm{~Hz}\right), 129.2,121.9,115.3,113.9,43.7,31.3$, 28.7; IR (film) $3416 \mathrm{~cm}^{-1}$. MS (EI) 196.0886 (196.0878 calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{DCIN}$).

General Procedure 7 was used for the conversion of 4-chloro- N-(4-deuteriopent-4-enyl)aniline ($177 \mathrm{mg}, 0.9 \mathrm{mmol}$) to $77 \mathrm{mg}(47 \%)$ of the title compound as a yellowgreen powder containing 1.6% KHMDS. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 6.61(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.95(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 1.71 (quint, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 160.1$, $140.6\left(\mathrm{t}, J_{\mathrm{C}-\mathrm{D}}=23.1 \mathrm{~Hz}\right), 129.6,113.9,111.9$ (br), 108.2, 52.0, 33.9, 33.6.

Potassium (4-methylpent-4-enyl)(phenyl)amide (IV-6w). A flame-dried flask equipped with a magnetic stirbar was cooled under a stream of nitrogen and charged with aniline
($1.1 \mathrm{~g}, 11.8 \mathrm{mmol}$) and THF (10 mL). A solution of MeMgBr in diethyl ether (3.9 mL , $11.7 \mathrm{mmol}, 3.0 \mathrm{M}$) was added slowly at rt . The resulting mixture was stirred at rt for 30 min , then a solution of ethyl 4-methylpent-4-enoate ($1.5 \mathrm{~g}, 10.6 \mathrm{mmol}$) in THF (5 mL) was added slowly. The resulting solution was stirred at rt for 3 h upon which time $\mathrm{H}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$ and EtOAc (25 mL) were added. The layers were separated, the aqueous layer was extracted with EtOAc $(1 \times 50 \mathrm{~mL})$, and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off through glass wool and the filtrate was concentrated in vacuo. Purification by flash chromatography afforded $908 \mathrm{mg}(46 \%)$ of 4-methyl- N-phenylpent-4-enamide as a as a white solid, m.p. $82-85^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~s}, 1 \mathrm{H}), 4.76(\mathrm{~s}, 1 \mathrm{H}), 2.55-2.40(\mathrm{~m}, 4 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,144.6,138.1,129.2,124.4,120.1,111.0,36.0,33.3$, 22.7.

4-Methyl- N-phenylpent-4-enamide ($735 \mathrm{mg}, 3.9 \mathrm{mmol}$) was reduced according to General Procedure 6 to afford $548 \mathrm{mg}(81 \%)$ of N-(4-methylpent-4-enyl)aniline (IV-1w) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.65(\mathrm{~m}, 1 \mathrm{H})$, 6.61-6.55 (m, 2 H), 4.75 ($\mathrm{s}, 1 \mathrm{H}$), 4.72 ($\mathrm{s}, 1 \mathrm{H}), 3.57(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.09(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.65(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.6$, $145.3,129.4,117.2,112.8110 .5,43.7,35.4,27.5,22.5$; IR (film) $3411 \mathrm{~cm}^{-1} . \mathrm{MS}$ (EI) 175.1360 (175.1361 calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}$).

General Procedure 7 was used for the conversion of N -(4-methylpent-4enyl)aniline ($299 \mathrm{mg}, 1.7 \mathrm{mmol}$) to $189 \mathrm{mg}(65 \%)$ of the title compound as an off-white
powder containing $1.7 \% \mathrm{KHMDS} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 6.75-6.67(\mathrm{~m}, 2 \mathrm{H})$, $6.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~s}, 1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 2.90-2.82$ (m, 2 H), 2.20-2.12 (m, 2 H), 1.86-1.76 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, THF- d_{8}) δ 162.1, 147.9, 130.3, 111.4 (br), 109.7, 104.5, 52.5, 38.0, 32.9, 23.2.

Potassium (Z)-hex-4-enyl(phenyl)amide (IV-6x). A flame-dried flask equipped with magnetic stirbar was charged with (Z)-tert-butyl hex-4-enylcarbamate ($702 \mathrm{mg}, 3.5$ $\mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(25 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathrm{X}-\mathrm{Phos}(105 \mathrm{mg}, 0.2 \mathrm{mmol}), \mathrm{Cs}_{2} \mathrm{CO}_{3}(2.56 \mathrm{~g}, 7.9$ $\mathrm{mmol})$, and bromobenzene ($1.1 \mathrm{~mL}, 10.4 \mathrm{mmol}$) and purged with nitrogen for 5 min . Toluene (15 mL) was added and the resulting mixture was heated to $100^{\circ} \mathrm{C}$ for 15 h . The mixture was cooled to rt and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and EtOAc $(10 \mathrm{~mL})$ were added. The layers were separated, the aqueous layer was extracted with EtOAc ($3 \times$ 15 mL), and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off through glass wool and the filtrate was concentrated in vacuo. The resulting oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and trifluoroacetic acid (1 mL). The solution was stirred at rt for 2 h upon which time the solution was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \mathrm{~mL})$. Water $(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ were added, the layers were separated, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \times$ 20 mL) and the combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The drying agent was filtered off through glass wool and the filtrate was concentrated in vacuo to afford a crude oil, which was purified by flash chromatography to give $174 \mathrm{mg}(28 \%)$ of (Z)- N-(hex-4-enyl)aniline (IV-1x) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.63-6.57(\mathrm{~m}, 2 \mathrm{H}), 5.55-5.35(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{~s}, \mathrm{br}, 1$
H), $3.12(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.68$ (quint, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}$), 1.64-1.60(m, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 148.7, 129.9, 129.4, 124.9, 117.3 $112.9,43.7,29.5,24.6,13.0$; IR (film) $3410 \mathrm{~cm}^{-1}$. MS (EI) 175.1360 (175.1361 calcd for $\left.\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}\right)$.

General Procedure 7 was used for the conversion of (Z)- N-(hex-4-enyl)aniline ($128 \mathrm{mg}, 0.7 \mathrm{mmol}$) to 32 mg (26%) of the title compound as a tan powder containing 2.7\% KHMDS. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 6.77-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.09-6.00(\mathrm{~m}, 2 \mathrm{H})$, $5.74-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.57-5.45(\mathrm{~m}, 1 \mathrm{H}), 5.45-5.34(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.25-$ $2.10(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.60(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 161.3,132.7,130.2$, $123.5,111.4$ (br), 105.2, 51.8, 34.4, 26.9, 13.1.

Potassium (\boldsymbol{E})-hex-4-enyl(phenyl)amide (IV-6y). A flame-dried flask equipped with magnetic stirbar was charged with 3-butene-2-ol ($3.6 \mathrm{~mL}, 42 \mathrm{mmol}$), triethyl orthoacetate $(15.2 \mathrm{~mL}, 84 \mathrm{mmol})$, and neat acetic acid ($200 \mu \mathrm{~L}, 2.5 \mathrm{mmol}$). The flask was attached to a short-path distillation head, the system purged with nitrogen, and the mixture heated with stirring at $90^{\circ} \mathrm{C}$ for 45 min . The heat was gradually increased to $120^{\circ} \mathrm{C}$ over 75 min and the reaction was allowed to proceed for 14 h under those conditions before being cooled to rt . To the reaction flask was added $1 \mathrm{M} \mathrm{HCl}(40 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$, and the resulting mixture was stirred vigorously for 1 h . The layers were separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layers were washed with brine (50 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. Flash chromatography of the crude oil afforded $4.2 \mathrm{~g}(72 \%)$ of (E)-ethyl hex-4-enoate
which contained traces of chromatography solvent which was difficult to remove due to product volatility. This material was used without further purification.

A flame dried flask equipped with a magnetic stir bar was charged with aniline ($3.3 \mathrm{~mL}, 35 \mathrm{mmol}$) sealed with a septum and purged with nitrogen. THF (30 mL) was added and the solution cooled to $0^{\circ} \mathrm{C}$, then a solution of $\mathrm{MeMgBr}\left(3.0 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}, 11 \mathrm{~mL}$, 33 mmol) was added slowly via syringe. The ice bath was removed and a solution of crude (E)-ethyl hex-4-enoate ($4.2 \mathrm{~g}, 30 \mathrm{mmol}$) in THF was added dropwise. The resulting solution was stirred 5 h at rt , quenched with water $(30 \mathrm{~mL})$, diluted with EtOAc $(30 \mathrm{~mL})$ and the layers separated. The aqueous layer was extracted with EtOAc (3×50 mL), the combined organic layers washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. Flash chromatography of the crude oil afforded (E)-N-(phenyl)-hex-4-enamide containing residual aniline, which was carried on without further purification.

The crude (E)- N-(phenyl)-hex-4-enamide was reduced according to General Procedure 6 to afford $1.28 \mathrm{~g}(91 \%)$ of $(E)-N$-(hex-4-enyl)aniline (IV-1y) as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.57(\mathrm{~m}$, $2 \mathrm{H}), 5.52-5.40(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 3.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.64(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.5,130.5,129.2,125.6,117.1$, 112.7, 43.5, 30.1, 29.3, 17.9; IR (film) 2930, 1603, $1508 \mathrm{~cm}^{-1}$. MS (EI) 175.1361 (175.1361 calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{~N}$).

General Procedure 7 was used for the conversion of (E) - N-(hex-4-enyl)aniline ($500 \mathrm{mg}, 2.85 \mathrm{mmol}$) to $380 \mathrm{mg}(78 \%)$ of the title compound as a yellow powder containing 2.0% KHMDS. ${ }^{1} \mathrm{H}$ NMR (500 MHz, THF- d_{8}) $\delta 6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.00(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.48-5.41(\mathrm{~m}, 1 \mathrm{H}), 2.85-$ $2.82(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{q}, \mathrm{br}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.73-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.64(\mathrm{dd}, J=1.0,6.5 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$) δ 162.2, 133.7, 130.3, 123.3, 111.3, 104.3, 52.2, 34.7, 23.9, 18.4.

Synthesis of Authentic Samples of Pyrrolidine Products formed in Kinetic Runs

General Procedure 8: Pd-Catalyzed Carboamination of $\boldsymbol{\gamma}$-(\boldsymbol{N}-arylamino)alkenes with Aryl Bromides. An oven or flame-dried Schlenk tube was cooled under a stream of argon or nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(1 \mathrm{~mol} \%$ complex, $2 \mathrm{~mol} \% \mathrm{Pd})$, dppf (2 $\mathrm{mol} \%), \mathrm{NaOt} t-\mathrm{Bu}$ (1.0 equiv), and the ArBr (1.5 equiv). The tube was purged with argon or nitrogen and a solution of the amine substrate (1.0 equiv) in toluene ($4 \mathrm{~mL} / \mathrm{mmol}$ aryl bromide) was added. The mixture was heated to $60-110^{\circ} \mathrm{C}$ with stirring until the starting material had been consumed as judged by GC or ${ }^{1} \mathrm{H}$ NMR analysis. The reaction mixture was cooled to room temperature, quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$ and diluted with ethyl acetate (10 mL). The layers were separated and the aqueous layer was extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated in vacuo. The crude product was then purified by flash chromatography on silica gel.

1-(4-tert-Butylphenyl)-2-(4-fluorobenzyl)pyrrolidine (IV-2b). General Procedure 8 was used for the coupling of 4-tert-butyl- N -(pent-4-enyl)aniline ($52 \mathrm{mg}, 0.24 \mathrm{mmol}$) with 1-bromo-4-fluorobenzene ($38 \mu \mathrm{~L}, 0.35 \mathrm{mmol}$) to afford $48 \mathrm{mg}(65 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.23-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.03-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.62(\mathrm{~m}, 2 \mathrm{H}), 3.98-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.36$ (m, 1 H), 3.24-3.10 (m, 1H), $3.00(\mathrm{dd}, J=2.8,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=9.2,13.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95-1.76(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5(\mathrm{~d}, J=243$ $\mathrm{Hz}), 144.8,138.2,135.2,130.7(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 126.1,115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 111.4,59.9$, 48.6, 38.1, 33.7, 31.6, 29.5, 23.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.2; IR (film) 1222 cm^{-1}. MS (ESI) 312.2137 (312.2128 calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$).

1-(4-Methoxyphenyl)-2-(4-fluorobenzyl)pyrrolidine (IV-2c). General Procedure 8 was used for the coupling of 4-methoxy- N -(pent-4-enyl)aniline ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$) with 1 -bromo-4-fluorobenzene ($43 \mu \mathrm{~L}, 0.39 \mathrm{mmol}$) to afford $32 \mathrm{mg}(43 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H})$, 6.92-6.86 (m, 2H), 6.66-6.60 (m, 2 H), 3.90-3.83 (m, 1 H), 3.77 (s, 3 H), 3.42-3.34 (m, $1 \mathrm{H}), 3.17-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.97(\mathrm{dd}, J=3.0,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=9.0,13.8 \mathrm{~Hz}, 1$ H), 1.94-1.74 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.5(\mathrm{~d}, J=244 \mathrm{~Hz}), 150.7$, $141.9,135.1(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 115.2,115.1(\mathrm{~d}, J=20.7 \mathrm{~Hz}), 112.6$, $60.0,56.0,49.1,38.0,29.6,23.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.3; IR (film) 1241 cm^{-1}. MS (ESI) 286.1610 (286.1607 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$).

1-(Phenyl)-2-(4-fluorobenzyl)pyrrolidine (IV-2d). General Procedure 8 was used for the coupling of N -(pent-4-enyl)aniline ($50 \mathrm{mg}, 0.31 \mathrm{mmol}$) with 1-bromo-4fluorobenzene ($51 \mu \mathrm{~L}, 0.46 \mathrm{mmol}$) to afford $58 \mathrm{mg}(74 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.1-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.99-$ $6.91(\mathrm{~m}, 2 \mathrm{H}), 6.69-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.07$ (m, 1 H), $2.99(\mathrm{dd}, J=3.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=9.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.70(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.5(\mathrm{~d}, J=244 \mathrm{~Hz}), 146.9,135.0(\mathrm{~d}, J=3.0 \mathrm{~Hz})$, $130.7(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 129.3,115.6,115.1(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 111.8,59.6,48.4,37.7,29.4$, 23.0; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.1$; IR (film) $1221 \mathrm{~cm}^{-1}$. MS (ESI) 256.1508 (256.1502 calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$).

1-(4-Chlorophenyl)-2-(4-fluorobenzyl)pyrrolidine (IV-2e). General Procedure 8 was used for the coupling of 4-chloro- N -(pent-4-enyl)aniline ($32 \mathrm{mg}, 0.16 \mathrm{mmol}$), with 1 -bromo-4-fluorobenzene ($25 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) to afford $33 \mathrm{mg}(69 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.10(\mathrm{~m}, 4 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H})$, 6.59-6.52 (m, 2 H$), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31$ (m, 1 H$), 3.18-3.08$ (m, 1 H$), 2.92$ $(\mathrm{dd}, J=2.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{dd}, J=8.8,14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.70(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 161.8(\mathrm{~d}, J=244 \mathrm{~Hz}), 145.7,134.9(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 130.9(\mathrm{~d}$, $J=7.7 \mathrm{~Hz}), 129.3,120.6,115.4(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 113.1,60.0,48.8,37.8,29.8,23.3 ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, CDCl_{3}) $\delta-117.0(\mathrm{~m})$; IR (film) $1222 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 290.1107 (290.1112 calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClFN}+\mathrm{H}^{+}$).

1-(4-Fluorophenyl)-2-(4-tert-butylbenzyl)pyrrolidine (IV-2g). General Procedure 8 was used for the coupling of 4-fluoro- N -(pent-4-enyl)aniline ($52 \mathrm{mg}, 0.29 \mathrm{mmol}$) with 4 -tert-butyl-bromobenzene ($75 \mu \mathrm{~L}, 0.43 \mathrm{mmol}$) to afford $59 \mathrm{mg}(65 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.54(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.44-3.37$ (m, 1 H$), 3.13(\mathrm{q}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{dd}, J=3.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49(\mathrm{dd}, J=9.4$, $13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.7(\mathrm{~d}$, $J=232 \mathrm{~Hz}), 149.0,143.7,136.3,128.9,125.3,115.6(\mathrm{~d}, J=22.2 \mathrm{~Hz}), 112.1(\mathrm{~d}, J=6.8$ $\mathrm{Hz}), 60.2,48.8,38.1,34.4,31.4,29.7,23.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-131.0(\mathrm{~m})$; IR (film) $1227 \mathrm{~cm}^{-1}$. MS (ESI) 312.2124 (312.2128 calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$).

1-(4-Fluorophenyl)-2-(4-methoxybenzyl)pyrrolidine (IV-2h). General Procedure 8 was used for the coupling of 4-fluoro- N -(pent-4-enyl)aniline ($49 \mathrm{mg}, 0.27 \mathrm{mmol}$) with 4 bromoanisole ($50 \mu \mathrm{~L}, 0.40 \mathrm{mmol}$) to afford $64 \mathrm{mg}(82 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.93(\mathrm{~m}, 2 \mathrm{H})$, 6.88-6.82 (m, 2 H), 6.61-6.53 (m, 2H), 3.90-3.83 (m, 1 H$), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.41-3.32(\mathrm{~m}$, $1 \mathrm{H}), 3.16-3.07(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=3.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{dd}, J=9.2,13.6 \mathrm{~Hz}, 1$ H), 1.95-1.80 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.1,154.7(\mathrm{~d}, J=232 \mathrm{~Hz}$), $143.7,131.3,130.2,115.6(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 113.8,112.2(\mathrm{~d}, J=7.2 \mathrm{~Hz}), 60.2,55.2,48.9$, 37.7, 29.6, 23.1; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-130.9$; IR (film) $1247,1226 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 286.1614 (286.1607 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$).

1-(4-Fluorophenyl)-2-benzylpyrrolidine (IV-2i). General Procedure 8 was used for the coupling of 4 -fluoro- N -(pent-4-enyl)aniline ($48 \mathrm{mg}, 0.27 \mathrm{mmol}$) with bromobenzene (43 $\mu \mathrm{L}, 0.41 \mathrm{mmol})$ to afford $55 \mathrm{mg}(81 \%)$ of the title compound as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}) $\delta 7.34-7.27$ (m, 2 H), 7.26-7.18 (m, 3 H), 7.03-6.94 (m, 2 H), 6.62$6.55(\mathrm{~m}, 2 \mathrm{H}), 3.95-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.08(\mathrm{~m}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=$ $3.2,13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=9.4,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.80(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8(\mathrm{~d}, J=232 \mathrm{~Hz}), 143.7,139.3,129.3,128.4,126.2,115.6(\mathrm{~d}, J=$ $21.7 \mathrm{~Hz}), 112.1(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 60.1,48.8,38.6,29.6,23.1 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-130.9(\mathrm{~m})$; IR (film) $1226 \mathrm{~cm}^{-1}$. MS (ESI) 256.1503 (256.1502 calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{FN}, \mathrm{M}$ $\left.+\mathrm{H}^{+}\right)$.
N-(4-Chlorophenyl)-2-deuterio-2-(p-fluorobenzyl)pyrrolidine (IV-2v). In a nitrogenfilled glovebox, IV-5a ($106 \mathrm{mg}, 0.127 \mathrm{mmol}$) and $\operatorname{dppf}(142 \mathrm{mg}, 0.256 \mathrm{mmol})$ were dissolved in THF (10 mL). To this solution was added a solution of IV-6v (29.4 mg , 0.125 mmol) and 2-fluorotoluene ($50 \mu \mathrm{~L}, 0.235 \mathrm{mmol}$) in THF (3 mL). The reaction was sealed, removed from the glovebox, and allowed to react for 4 h at rt with periodic shaking. After 4 h , the liquid was removed from a precipitate by pipette and concentrated in vacuo to give a red paste, which was triturated with hexanes:EtOAc ($96: 4,3 \times 3 \mathrm{~mL})$. The combined extracts were purified by chromatography afford $17.9 \mathrm{mg}(49 \%)$ of the title compound as a viscous colorless oil.

A second sample was prepared for ${ }^{13} \mathrm{C}$ NMR spectroscopy following General Procedure 8 for the reaction of $\mathbf{I V}-1 v$ with 1-bromo-4-fluorobenzene. The catalytic reaction with this substrate gave a mixture of ca 2.5:1 IV-2v:III-4c (with no
stereochemical information). ${ }^{13} \mathrm{C}$ NMR signals for IV-2v were assigned from this mixture. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 7.00-$ $6.95(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.53(\mathrm{~m}, 2 \mathrm{H}), 3.36-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}$, $J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 161.6(\mathrm{~d}, J=243 \mathrm{~Hz}), 145.5,134.7(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.1$, $120.3,115.2(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 112.8,48.6,37.4,29.4,23.0$ (the expected triplet signal at or about 59 ppm for $\mathrm{C}-\mathrm{D}$ was obscured); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.0(\mathrm{~m})$; IR (film) $1598,1498,1223 \mathrm{~cm}^{-1}$. MS (ESI) 291.1161 (291.1175 calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{DCIFN}, \mathrm{M}$ $\left.+\mathrm{H}^{+}\right)$.
\boldsymbol{N}-(Phenyl)-2-methyl-2-(p-fluorobenzyl)pyrrolidine (IV-2w). General Procedure 8 was used for the coupling of N-(4-methyl-pent-4-enyl)aniline ($30 \mathrm{mg}, 0.17 \mathrm{mmol}$) with 1 -bromo-4-fluorobenzene ($28 \mu \mathrm{~L}, 0.26 \mathrm{mmol}$) to afford the title compound as a colorless oil containing $\sim 12 \%$ unidentified isomeric materials. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-$ $7.23\left(\mathrm{~m}, 2 \mathrm{H}\right.$, obscured by $\left.\mathrm{CHCl}_{3}\right), 7.03-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\operatorname{app~q}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.60(\mathrm{~m}, 2$ H), $1.48(\mathrm{~s}, 3 \mathrm{H}), 1.22-1.16(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.6(\mathrm{~d}, J=243$ $\mathrm{Hz}), 146.5,134.5(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 129.0,120.1,114.7(\mathrm{~d}, J=21.0$ $\mathrm{Hz}), 113.8,64.0,50.7,43.1,40.9,26.1,21.8 ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.3(\mathrm{~m})$; IR (film) 1598, 1506, 1353, $1222 \mathrm{~cm}^{-1} . \mathrm{MS}$ (ESI) 270.1647 (270.1653 calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{FN}, \mathrm{M}+\mathrm{H}^{+}$). Resonances for the isomeric material were detected at: ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}), 7.13-7.08(\mathrm{~m}), 7.07-7.03(\mathrm{~m}), 6.72(\mathrm{t}, J=7.0 \mathrm{~Hz})$,
$3.18(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 3.03(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 2.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}), 2.64(\mathrm{dd}, J=1.5,15 \mathrm{~Hz})$, $1.52(\mathrm{~s}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.8,129.1,124.2(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 121.6,115.6$, $115.2(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 114.9,44.4,44.0,26.4 ;{ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.4$ (m).

Preparation and Characterization of Pd-Complexes

General Procedure 9: Preparation of a Palladium Arylbromide Dimer. A flamedried flask equipped with a magnetic stir bar was cooled under a stream of nitrogen and charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ (1 equiv), and $\mathrm{P}(o-\text { tol })_{3}$ (2.5 equiv). The flask was purged with
 were added, and the resulting dark purple-brown solution was stirred at $25^{\circ} \mathrm{C}$ for $1-3 \mathrm{~h}$. At this time the solution had changed to a dark purple-yellowish color and was subsequently filtered through celite eluting with diethyl ether (ca. 100 mL) to obtain a yellow-orange filtrate. The filtrate was concentrated in vacuo to ca. 15 mL , layered with 60 mL pentane and transferred to an Erlenmeyer flask. The stoppered, layered solution was then allowed to settle at rt for 2 h upon which time significant formation of a yellow precipitate had occurred. The mixture was filtered to isolate an $\left\{\left[(o-t o l)_{3} \mathrm{P}\right] \operatorname{Pd}(\mathrm{Ar})(\mathrm{Br})\right\}_{2}$ complex as a fluffy yellow powder that was subsequently used without further purification.

General Procedure 10: Preparation of (L-L)Pd(Ar)Br.

A flame-dried flask equipped with magnetic stir bar was charged with the appropriate $\left\{\left[(o-t o l){ }_{3} \mathrm{P}\right] \operatorname{Pd}(\mathrm{Ar})(\mathrm{Br})\right\}_{2}$ complex (1 equiv) and the appropriate $\mathrm{P}-\mathrm{P}$ ligand (2 equiv). The flask was purged with nitrogen for 5 min and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} / 0.1 \mathrm{mmol} \mathrm{Pd}$ complex) was
added. The resulting solution was stirred for 1 h at rt and then concentrated in vacuo to ca. 0.5 mL . Diethyl ether (7 mL) was added, the resulting slurry was stirred for 1 min and then allowed to settle for 1 h at rt . The mixture was then filtered and washed with diethyl ether $(3 \times 8 \mathrm{~mL})$ and pentane $(3 \times 8 \mathrm{~mL})$ to yield the desired $(\mathrm{L}-\mathrm{L}) \mathrm{Pd}(\mathrm{Ar})(\mathrm{Br})$ complex, which was used without additional purification.
(dppf)Pd(4-tert-butylphenyl)(Br) (IV-5g). General Procedure 9 was employed for the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(496 \mathrm{mg}, 0.54 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(584 \mathrm{mg}, 1.9 \mathrm{mmol})$ and 1-bromo-4-tert-butylbenzene $(950 \mu \mathrm{~L}, 5.4 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ for 1 h , and palladium black was removed by cannula filtration to afford a yellow solution. To the solution, dppf ($302 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added and the reaction vessel purged with nitrogen and the reaction stirred for 2 h . Work-up according to General Procedure 10 afforded 280 mg (59% over 2 steps) of the title compound as an orange solid, m.p. $175{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.09-8.02(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.30(\mathrm{~m}, 12 \mathrm{H}), 7.07(\mathrm{td}, J=2.0$, $9.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.82(\mathrm{td}, J=2.4,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{dd}, J=1.2,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.68-4.65(\mathrm{~m}$, $2 \mathrm{H}), 4.47-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($\left.100.7 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 153.8(\mathrm{dd}, J=2.3,135 \mathrm{~Hz}), 145.0,136.0(\mathrm{~d}, J=12.4 \mathrm{~Hz})$, $135.5(\mathrm{dd}, J=2.0,5.1 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=33.3 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=$ $41.1 \mathrm{~Hz}), 130.7$ (app. t, $J=2.5 \mathrm{~Hz}), 128.7,128.6(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=10.9 \mathrm{~Hz})$, $125.2(\mathrm{dd}, J=1.5,9.2 \mathrm{~Hz}), 77.5(\mathrm{dd}, J=7.4,49.5 \mathrm{~Hz}), 76.6(\mathrm{~d}, J=12.4 \mathrm{~Hz}), 75.6(\mathrm{dd}, J=$ $2.3,36.3 \mathrm{~Hz}), 74.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 74.0(\mathrm{~d}, J=7.9 \mathrm{~Hz}), 72.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 34.2,31.9$;
${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 30.8(\mathrm{~d}, J=34.3 \mathrm{~Hz}), 8.8(\mathrm{~d}, J=34.3 \mathrm{~Hz}) ;$ IR (film) 1481, $1435 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{44} \mathrm{H}_{41} \mathrm{BrFeP}_{2} \mathrm{Pd}$: C, $60.47 ; \mathrm{H}, 4.73$. Found: C, $60.19 ; \mathrm{H}, 4.65$.
(dppf)Pd(4-methoxyphenyl)(Br) (IV-5h). General Procedure 9 was used for the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(197 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{P}(o-\text { tol })_{3}(262 \mathrm{mg}, 0.86 \mathrm{mmol})$ and $4-$ bromoanisole (275 $\mu \mathrm{L}, 2.2 \mathrm{mmol})$ for 1 h to afford 79 mg of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}(p-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)(\mathrm{Br})\right\}_{2}$ as fluffy yellow powder.

General Procedure 10 was used for the reaction of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}(p-\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{OMe}\right)(\mathrm{Br})\right\}_{2}(60 \mathrm{mg}, 0.050 \mathrm{mmol})$ with dppf $(56 \mathrm{mg}, 0.10 \mathrm{mmol})$ to give 56 mg (17% over 2 steps) of the title compound as an orange solid, m.p. $165{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.10-8.00(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.22(\mathrm{~m}, 5 \mathrm{H})$, 7.17-7.10 (m, 6 H), 6.83-6.75 (m, 2 H), 6.30-6.23 (m, 2 H), 4.68-4.64 (m, 2 H), 4.50$4.45(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 156.6,146.7(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 145.4,136.0(\mathrm{~d}, J=11.6 \mathrm{~Hz}), 134.7(\mathrm{~d}, J=$ $12.4 \mathrm{~Hz}), 134.0(\mathrm{~d}, J=34.0 \mathrm{~Hz}), 133.8(\mathrm{~d}, J=55.9 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 130.8$, $128.6(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 114.3(\mathrm{dd}, J=2.0,9.2 \mathrm{~Hz}), 77.5(\mathrm{dd} J=7.3$, $50.2 \mathrm{~Hz}), 76.6(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 75.6(\mathrm{dd}, J=2.8,36.3 \mathrm{~Hz}), 74.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 74.0(\mathrm{~d}, J$ $=7.0 \mathrm{~Hz}), 72.9(\mathrm{~d}, J=4.7 \mathrm{~Hz}), 55.6(\mathrm{~s}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.7(\mathrm{~d}, J=31.7$ $\mathrm{Hz}), 9.5(\mathrm{~d}, J=31.7 \mathrm{~Hz})$; IR (film) $1480,1435,1231 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{41} \mathrm{H}_{35} \mathrm{BrFeOP}{ }_{2} \mathrm{Pd}: \mathrm{C}, 58.08 ; \mathrm{H}, 4.16$. Found: C, 57.66; H, 4.10.
(dppf)Pd(Ph)(Br) (IV-5i). General Procedure 9 was used for the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}$ $(197 \mathrm{mg}, 0.22 \mathrm{mmol}), \mathrm{P}(o-\text { tol })_{3}(265 \mathrm{mg}, 0.87 \mathrm{mmol})$ and bromobenzene $(230 \mu \mathrm{~L}, 345$ $\mathrm{mg}, 2.2 \mathrm{mmol})$ for 1 h to afford 131 mg of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \mathrm{Pd}(\mathrm{Ph})(\mathrm{Br})\right\}_{2}$ as a fluffy yellow powder that was used without further purification.

General Procedure 10 was used for the reaction of $\left\{\left[(o-t o l){ }_{3} \mathrm{P}\right] \mathrm{Pd}(\mathrm{Ph})(\mathrm{Br})\right\}_{2}(100$ $\mathrm{mg}, 0.088 \mathrm{mmol})$ with dppf ($98 \mathrm{mg}, 0.18 \mathrm{mmol}$) to give $30 \mathrm{mg}(11 \%$ over 2 steps $)$ of the title compound as an orange solid, m.p. $176{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.11-8.02 (m, 4 H$), 7.50-7.05(\mathrm{~m}, 16 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.60-6.45(\mathrm{~m}, 3 \mathrm{H}), 4.70-$ $4.65(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.66-3.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100.6 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 158.7(\mathrm{dd}, J=2.0,123 \mathrm{~Hz}), 136.2(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 136.0(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}), 134.6(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=34.4 \mathrm{~Hz}), 133.6(\mathrm{~d}, J=55.0 \mathrm{~Hz}), 130.8$, 130.7, $128.6(\mathrm{~d}, J=9.9 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=10.7 \mathrm{~Hz}), 127.8(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 122.5,77.4$ $(\mathrm{dd}, J=7.3,51.1 \mathrm{~Hz}), 76.6(\mathrm{~d}, J=11.2 \mathrm{~Hz}), 75.5(\mathrm{dd}, J=3.1,38.8 \mathrm{~Hz}), 74.8(\mathrm{~d}, J=8.4$ $\mathrm{Hz}), 74.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 72.9(\mathrm{~d}, J=4.6 \mathrm{~Hz}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.7(\mathrm{~d}, J=$ 34.2 Hz), $9.3\left(\mathrm{~d}, \quad J=33.6 \mathrm{~Hz}\right.$); IR (film) $1482,1435 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{40} \mathrm{H}_{33} \mathrm{BrFeP}{ }_{2} \mathrm{Pd}: \mathrm{C}, 58.75 ; \mathrm{H}, 4.07$. Found: C, 58.62; H, 4.19.
(dppf)Pd(4-trifluoromethylphenyl)(Br) (IV-5j). General Procedure 9 was used for the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(501 \mathrm{mg}, 0.547 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(582 \mathrm{mg}, 1.9 \mathrm{mmol})$ and $4-$ trifluoromethylbromobenzene ($763 \mu \mathrm{~L}, 5.46 \mathrm{mmol}$) for 3 h and palladium black was removed by cannula filtration to afford a yellow solution. To the solution, solid dppf ($302 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added and the reaction vessel purged with nitrogen and the reaction stirred for 1 h . Work-up according to General Procedure 10 afforded 376 mg (79% over 2 steps) of the title compound as a red-orange solid containing ca $1.5 \% \mathrm{Et}_{2} \mathrm{O}$ by mass as estimated by ${ }^{1} \mathrm{H}$ NMR, m.p. $194{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 8.07-7.99 (m, 4 H), 7.47 (s, br, 6 H), 7.34-7.28 (m, 6 H), 7.14-7.05 (m, 6H), 6.75 (d, br, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.1(\mathrm{~s}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.2(\mathrm{~d}, J=32.7 \mathrm{~Hz}), 10.1(\mathrm{~d}, J$ $=31.3 \mathrm{~Hz}$); IR (film) $1585,1436,1324$ (strong, CF_{3}), $1154 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{BrF}_{3} \mathrm{FeP}_{2} \mathrm{Pd}$: C, $55.59 ; \mathrm{H}, 3.64$. Found: C, 55.61 ; H, 3.70.
(dppf)Pd(4-cyanophenyl)(Br) (IV-5k). General Procedure 9 was employed for the reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(503 \mathrm{mg}, 0.55 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(580 \mathrm{mg}, 1.9 \mathrm{mmol})$ and $4-$ bromobenzontrile ($996 \mathrm{mg}, 5.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ for 2 h , and palladium black was removed by cannula filtration to afford a yellow solution. To the solution, solid dppf ($303 \mathrm{mg}, 0.55 \mathrm{mmol}$) was added and the reaction vessel purged with nitrogen and the reaction was stirred for 2 h . Work-up according to General Procedure 10 afforded 402 mg (44% over 2 steps) of the title compound as an orange solid, m.p. 189 ${ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 7 \mathrm{H})$, 7.39-7.30(m, 6 H), 7.18-7.11 (m, 5H), 6.83-6.76(m, 2H), 4.73-4.68(m, 2 H), 4.55$4.51(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ $170.8(\mathrm{dd}, J=2.4,131 \mathrm{~Hz}), 136.8(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 135.9(\mathrm{~d}, J=11.9 \mathrm{~Hz}), 134.5(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}), 133.3(\mathrm{~d}, J=36.3 \mathrm{~Hz}), 132.9(\mathrm{~d}, J=54.6 \mathrm{~Hz}), 131.2(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 131.0$, $129.8(\mathrm{~d}, J=9.3 \mathrm{~Hz}), 128.7,128.6(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 120.5,105.8,76.8(\mathrm{~d}, J=12.0 \mathrm{~Hz})$, 76.1 ($\mathrm{d}, J=6.9$ remaining Cp signals from carbons α to phosphorus obscured), $75.0(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}), 74.3(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 73.1(\mathrm{~d}, J=4.9 \mathrm{~Hz}) ;{ }^{31} \mathrm{P} \operatorname{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 30.9$ (d, $J=32.1 \mathrm{~Hz}$), $10.6(\mathrm{~d}, J=32.1 \mathrm{~Hz})$; IR (film) $2218,1472,1435 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{41} \mathrm{H}_{32} \mathrm{BrFeNP}{ }_{2} \mathrm{Pd}: \mathrm{C}, 58.43 ; \mathrm{H}, 3.83 ; \mathrm{N}, 1.66$. Found: C, $58.46 ; \mathrm{H}, 4.05 ; \mathrm{N}, 1.67$.
(dppe)Pd(4-fluorophenyl)(Br) (IV-5l). Complex IV-5l was prepared according to General Procedure 10 for the reaction of dppe with $\left\{\left[(o-t o l)_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}$, but could not be isolated in analytically pure form. Available NMR spectral data is provided. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.92(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}), 7.55-7.30(\mathrm{~m}, 16 \mathrm{H}), 6.95(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H})$, $6.50(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 2.56-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376.3 MHz, CDCl_{3}) $\delta-123.3(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 52.7(\mathrm{~d}, J=25.6 \mathrm{~Hz}), 34.0(\mathrm{~d}, J=25.9 \mathrm{~Hz})$.
(dpp-Benzene)Pd(4-fluorophenyl)(Br) (IV-5m). General Procedure 9 was modified for reaction of $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(500 \mathrm{mg}, 0.55 \mathrm{mmol}), \mathrm{P}(o-\mathrm{tol})_{3}(578 \mathrm{mg}, 1.9 \mathrm{mmol})$ and 1-bromo-4fluorobenzene ($600 \mu \mathrm{~L}, 5.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ at $30^{\circ} \mathrm{C}$ for 2 h , and palladium black was removed by cannula filtration to afford a yellow solution. To the solution, solid dpp-benzene ($242 \mathrm{mg}, 0.54 \mathrm{mmol}$) was added and the reaction vessel purged with nitrogen and the reaction was stirred for 2 h . Work-up according to General Procedure 10 afforded 324 mg (41% over 2 steps) of the title compound as a white solid, m.p. 218 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.74-7.67(\mathrm{~m}, 5 \mathrm{H}), 7.63-7.39(\mathrm{~m}, 11 \mathrm{H}), 7.33-7.26$ (m, 8 H$), 6.96-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.57-6.50(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100.7 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta$ 160.7 (dd, $J=2.4,239 \mathrm{~Hz}), 151.7(\mathrm{dd}, J=2.2,135 \mathrm{~Hz}), 144.3(\mathrm{dd}, J=47.2,49.5 \mathrm{~Hz})$, $141.0(\mathrm{dd}, J=34.0,41.2 \mathrm{~Hz}), 137.0(\mathrm{~m}), 134.3(\mathrm{~d}, J=14.7 \mathrm{~Hz}), 133.9(\mathrm{~d}, J=14.5 \mathrm{~Hz})$, $133.8(\mathrm{dd}, J=2.3,17.3 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=12.5 \mathrm{~Hz}), 132.1(\mathrm{~m}), 131.2(\mathrm{~d}, J=37.9 \mathrm{~Hz})$, $131.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=55.3 \mathrm{~Hz}), 128.8(\mathrm{~d}, J=10.1 \mathrm{~Hz})$, $128.7(\mathrm{~d}, J=11.7 \mathrm{~Hz}), 113.8(\mathrm{ddd}, J=1.5,11.6,18.6 \mathrm{~Hz})$, one signal obscured; ${ }^{19}$ F NMR (376.3 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-123.1(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 53.9(\mathrm{~d}, J=28.2 \mathrm{~Hz}$),
43.8 (d, $J=26.7 \mathrm{~Hz}$); IR (film) $1475,1435,1210 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{BrFP}_{2} \mathrm{Pd}$: C, 59.40; H, 3.88. Found: C, 59.54; H, 3.95.
(dppp)Pd(4-fluorophenyl)(Br) (IV-5n). Complex IV-5n was prepared according to General Procedure 10 for the reaction of dppp with $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}$, but could not be isolated in analytically pure form. Available NMR spectral data is provided. ${ }^{19} \mathrm{~F}$ NMR (376.3 MHz, THF- d_{8}) $\delta-125.9(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 16.2(\mathrm{~d}, J$ $=50.7 \mathrm{~Hz}),-8.3(\mathrm{~d}, J=50.4 \mathrm{~Hz})$.
[(rac)-BINAP]Pd(4-fluorophenyl)(Br) (IV-5o). General procedure 10 was used for the reaction of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(100 \mathrm{mg}, 0.0852 \mathrm{mmol})$ with (rac)-BINAP ($106 \mathrm{mg}, 0.170 \mathrm{mmol}$) to give $129 \mathrm{mg}(84 \%)$ of the title compound as an off-white solid, m.p. $180{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94(\mathrm{dd}, J=8.8,10.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.82-7.76 (m, 2 H$), 7.71(\mathrm{dd}, J=1.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 6$ H), 7.18-7.12 (m, 2 H), 7.07-6.93(m, 6 H), 6.77-6.58(m, 6 H), 6.52-6.47 (m, 2 H$),{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-123.4(\mathrm{~s}, \mathrm{br}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 28.8(\mathrm{~d}, J=$ 36.3 Hz), $12.5(\mathrm{~d}, J=36.6 \mathrm{~Hz})$; IR (film) $1474,1436,1212,742,696 \mathrm{~cm}^{-1}$.
(DPE-Phos)Pd(4-fluorophenyl)(Br)(IV-5p). General procedure 10 was used for the reaction of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \mathrm{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(201 \mathrm{mg}, 0.172 \mathrm{mmol})$ with DPE-Phos (184 $\mathrm{mg}, 0.341 \mathrm{mmol})$ to give $189 \mathrm{mg}(67 \%)$ of the title compound as a tan solid, m.p. $143{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.96$ (s, br, 2 H), 7.20-6.60 (m, partially obscured by solvent signal), $6.52(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz , THF-
$\left.d_{8}\right) \delta-124.2(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 14.2(\mathrm{~d}, J=30.8 \mathrm{~Hz}), 5.0(\mathrm{~d}, J=33.2$ Hz); IR (film) 1435, 1096, $694 \mathrm{~cm}^{-1}$.
(xantphos)Pd(4-fluorophenyl)(Br) (IV-5q). General procedure 10 was used for the reaction of $\left\{\left[(o-t o l){ }_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(200 \mathrm{mg}, 0.17 \mathrm{mmol})$ with xantphos $(197 \mathrm{mg}$, 0.34 mmol) to give 223 mg (40% over 2 steps) of the title compound as an off-white solid, m.p. $216{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.62$ (dd, $J=2.0,6.8 \mathrm{~Hz}, 2$ H), $7.34(\mathrm{~s}, \mathrm{br}, 8 \mathrm{H}), 7.29-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.09(\mathrm{~m}, 12 \mathrm{H}), 6.43(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 5.91(\mathrm{t}, J$ $=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.7 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 159.9(\mathrm{~d}, J=238 \mathrm{~Hz})$, 155.7 (app $\mathrm{t}, J=5.8 \mathrm{~Hz}), 149.7,135.0(\mathrm{~m}), 134.6(\mathrm{~m}), 132.1,131.6(\operatorname{app} \mathrm{t}, J=22.6 \mathrm{~Hz})$, 129.9, $128.1(\operatorname{app~t}, J=5.0 \mathrm{~Hz}), 127.4,124.5(\operatorname{app} \mathrm{t}, J=3.1 \mathrm{~Hz}), 122.1(\operatorname{app} \mathrm{t}, J=20.9$ $\mathrm{Hz}), 113.3(\mathrm{~d}, J=19.3 \mathrm{~Hz}), 36.37,36.35,28.8(\mathrm{~s}, \mathrm{br}) ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-$ 126.1 (m) ; ${ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.1$ (s); IR (film) $1474,1434,1211 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{45} \mathrm{H}_{36} \mathrm{BrFOP}_{2} \mathrm{Pd}$: C, $62.84 ; \mathrm{H}, 4.22$. Found: C, $62.94 ; \mathrm{H}, 4.34$.
(N-Me-NiXantphos) $\mathbf{P d}(4-$-fluorophenyl)(Br) (IV-5r). General procedure 10 was used for the reaction of $\left\{\left[(o-t o l)_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(149 \mathrm{mg}, 0.25 \mathrm{mmol})$ with $N-\mathrm{Me}-$ $\mathrm{NiXantphos}(145 \mathrm{mg}, 0.26 \mathrm{mmol})$ to give 139 mg (65% over 2 steps) of the title compound as a yellow powder, m.p. $195{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.42-7.30 (s, br, 6 H), 7.29-7.22 (m, br, 6 H), 7.16-7.10 (m, br, 8H), $6.96(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.82(\mathrm{dd}, J=1.2,8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.72-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.34(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H}), 5.92-$ $5.84(\mathrm{~m}, \mathrm{br}, 2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100.7 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 159.9(\mathrm{~d}, J=235 \mathrm{~Hz}$), 149.5 (app. t, $J=6.2 \mathrm{~Hz}$), 137.7 (app t, $J=3.9 \mathrm{~Hz}$), 134.8 (m), 134.2 (m), $131.0(\operatorname{app~t}, J$
$=22.4 \mathrm{~Hz}), 129.7,127.9(\operatorname{appt}, J=5.1 \mathrm{~Hz}), 125.6,124.6(\mathrm{app} \mathrm{t}, J=3.9 \mathrm{~Hz}), 121.8(\mathrm{app} \mathrm{t}$, $J=21.6 \mathrm{~Hz}), 114.5,113.0(\mathrm{~d}, J=19.5 \mathrm{~Hz}) 31.9 ;{ }^{19} \mathrm{~F}$ NMR $\left(376.9 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ broad baseline signal centered at -129 (at $25{ }^{\circ} \mathrm{C}$); ${ }^{31} \mathrm{P}$ NMR ($162.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32$; IR (film) $1474,1208 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{43} \mathrm{H}_{33} \mathrm{BrFNOP}_{2} \mathrm{Pd}: \mathrm{C}, 60.98 ; \mathrm{H}, 3.93$, N 1.65. Found: C, 60.95; H, 3.97, N 1.59.
(dppf-CF $\mathbf{3}_{\mathbf{3}} \mathbf{P d}(\mathbf{4}$-fluorophenyl)(Br) (IV-5s). General procedure 10 was used for the reaction of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(101 \mathrm{mg}, 0.086 \mathrm{mmol})$ with dppf- $\mathrm{CF}_{3}(141 \mathrm{mg}$, $0.17 \mathrm{mmol})$ to give 102 mg (28% over 2 steps) of the title compound as an orange solid, m.p. $191{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96-7.89(\mathrm{~m}, 4 \mathrm{H}), 7.76(\mathrm{~d}, J=7.2$ Hz, 4 H), 7.50-7.40 (m, 8 H), 6.80-6.71 (m, 2 H$), 6.45-6.37$ (m, 2 H$)$, 4.67-4.63 (m, 2 H), 4.63-4.59 (m, 2 H), 4.33-4.29(m, 2 H), 3.76-3.72(m, 2 H); ${ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.0(\mathrm{~d}, J=240 \mathrm{~Hz}), 149.0(\mathrm{dm}, J=129 \mathrm{~Hz}), 137.6(\mathrm{~d}, J=32.4 \mathrm{~Hz}), 137.3$ $(\mathrm{d}, J=53.0 \mathrm{~Hz}), 136.3(\mathrm{~d}, J=12.3 \mathrm{~Hz}), 136.0-135.8(\mathrm{~m}), 134.8(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 133.0$ (qd, $J=2.3,32.5 \mathrm{~Hz}), 132.9(\mathrm{qd}, J=2.3,32.4 \mathrm{~Hz}), 126.0-125.4(\mathrm{~m}), 124.3(\mathrm{q}, J=270$ Hz , partially obscured), $124.2(\mathrm{q}, J=270 \mathrm{~Hz}$, partially obscured), 115.3 (ddd, $J=1.5$, $10.3,19.4 \mathrm{~Hz}), 76.6(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 75.1(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 74.9(\mathrm{~d}, J=8.7 \mathrm{~Hz}), 74.6(\mathrm{~d}, J$ $=7.3 \mathrm{~Hz}$, partially obscured $), 73.9(\mathrm{~d}, J=5.3 \mathrm{~Hz}), 73.5(\mathrm{dd}, J=2.4,38.2 \mathrm{~Hz})$, one signal obscured; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.2(\mathrm{~m}, 12 \mathrm{~F}),-123.0(\mathrm{~m}, 1 \mathrm{~F}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 29.6(\mathrm{~d}, J=32.5 \mathrm{~Hz}), 9.3(\mathrm{~d}, J=34.3 \mathrm{~Hz}$); IR (film) 1475,1324 , $1168 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{44} \mathrm{H}_{28} \mathrm{BrF}_{13} \mathrm{FeP}_{2} \mathrm{Pd}$: C, $47.71 ; \mathrm{H}, 2.55$. Found: C, $47.91 ; \mathrm{H}$, 2.55 .
(dppf-OMe)Pd(4-fluorophenyl)(Br) (IV-5t). General procedure 10 was used for the reaction of $\left\{\left[(o-\text { tol })_{3} \mathrm{P}\right] \operatorname{Pd}\left(p-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}\right)(\mathrm{Br})\right\}_{2}(101 \mathrm{mg}, 0.086 \mathrm{mmol})$ with dppf-OMe (116 $\mathrm{mg}, 0.17 \mathrm{mmol})$ to give 83 mg (27% over 2 steps) of the title compound as an orange solid , m.p. $175{ }^{\circ} \mathrm{C}$ (decomp). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.00-7.93(\mathrm{~m}, 4 \mathrm{H}), 7.29-$ 7.22 (m, 4 H), 6.98 (dd, $J=1.2,8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.89-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.67(\mathrm{dd}, J=2.4,8.8$ Hz, 4 H), 6.39 (td, $J=9.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.58(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.16-$ 4.13 (m, 2 H), $3.86(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100.6 MHz, $\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}\right) \delta 161.9,161.8,160.6(\mathrm{~d}, J=249 \mathrm{~Hz}), 153.1(\mathrm{dm}, J=128 \mathrm{~Hz}), 137.4(\mathrm{~d}, J=13.1$ $\mathrm{Hz}), 136.3(\mathrm{~m}), 136.1(\mathrm{~d}, J=13.8 \mathrm{~Hz}), 125.0(\mathrm{~d}, J=35.1 \mathrm{~Hz}), 124.5(\mathrm{~d}, J=55.7 \mathrm{~Hz})$, $114.1(\mathrm{~d}, J=10.0 \mathrm{~Hz}), 114.0(\mathrm{~d}, J=12.2 \mathrm{~Hz}), 78.5(\mathrm{dd} J=6.9,51.8 \mathrm{~Hz}), 76.6(\mathrm{~d}, J=2.3$ Hz , partially obscured), 76.2 (d, $J=12.3 \mathrm{~Hz}$), $74.7(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 73.8(\mathrm{~d}, J=7.6 \mathrm{~Hz})$, $72.8(\mathrm{~d}, J=5.4 \mathrm{~Hz}), 55.93,55.88$, signal for the aryl carbons β to fluorine obscured; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-124.8(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 28.4(\mathrm{~d}, J=32.1$ Hz), 7.3 (d, $J=32.1 \mathrm{~Hz}$); IR (film) $1500,1253,1209,1028 \mathrm{~cm}^{-1}$. Anal calcd for $\mathrm{C}_{44} \mathrm{H}_{40} \mathrm{BrFFeO}_{4} \mathrm{P}_{2} \mathrm{Pd}$: C, 55.29; H, 4.22. Found: C, 55.34; H, 4.20.

In Situ Formation of Pd-Amido Complexes IV-3 and Conversion to IV-2.

(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.\right.$-p-tert-butyl) $\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathbf{C H}=\mathrm{CH}_{2}\right)\right]$ (IV-3b): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 8.01-7,90(\mathrm{~m}), 7.72-7.64(\mathrm{~m}), 7.59-7.39(\mathrm{~m}), 7.22-6.98(\mathrm{~m})$, 6.71-6.59 (m), 6.11-6.04 (m), $5.60(\mathrm{tdd}, J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87-4.77(\mathrm{~m}, 2 \mathrm{H})$, 4.57 (s, 2 H), 4.44 (s, 2 H), 4.41 ($\mathrm{s}, 1 \mathrm{H}$), 4.31 ($\mathrm{s}, 1 \mathrm{H}$), 4.22 (s , partially obscured), 4.16 (s, 1 H), $4.12(\mathrm{~s}, 1 \mathrm{H}), 2.66-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}$, partially obscured, 1 H$), 1.70-$
$1.62(\mathrm{~m}$, partially obscured, 2 H$), 1.33-1.26(\mathrm{~m}$, partially obscured, 1 H$), 1.16(\mathrm{~s}, 9 \mathrm{H})$, $1.05-0.95(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.9(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , THF- $\left.d_{8}\right) \delta 23.7(\mathrm{dd}, J=2.6,38.1 \mathrm{~Hz}), 8.6(\mathrm{~d}, J=38.1 \mathrm{~Hz})$.
(dppf)Pd($\mathrm{C}_{6} \mathrm{H}_{4}-p$-F $)\left\{\mathrm{CH}_{2}\left[\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.\right.\right.$-p-tert-butyl) $\left.]\right\}$ (IV-4b): ${ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.3(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 20.7(\mathrm{~d}, J=22.8 \mathrm{~Hz}$), 16.1 (dd, $J=2.6,22.8 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{OME}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathbf{C H}=\mathrm{CH}_{2}\right)\right](\mathrm{IV}-3 \mathrm{c}):{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.95-7.79(\mathrm{~m}), 7.57-7.39(\mathrm{~m}), 7.23-7.10(\mathrm{~m}), 7.09-6.94(\mathrm{~m}), 6.61-6.52$ $(\mathrm{m}, 2 \mathrm{H}), 6.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.05(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{tdd}, J=6.4,10.0,16.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.87-4.80(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.35$ (s, 1 H$), 4.32(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 3.52(\mathrm{~s}, 3 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~m}, 2$ H), $1.70\left(\mathrm{~m}\right.$, partially obscured by THF signal), $1.45(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.1(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.8(\mathrm{~d}, J=40.7 \mathrm{~Hz})$, $7.9(\mathrm{~d}, J=39.5 \mathrm{~Hz})$.
(dppf) $) \mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\left\{\mathbf{C H}_{2}\left[\mathbf{C H C H}_{2} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{4}-p\right.\right.\right.$-OMe) $\left.]\right\}\left(\right.$ (IV-4c): ${ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.3(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 21.3(\mathrm{~d}, J=24.1 \mathrm{~Hz}) ; 16.4$ (dd, $J=2.4,24.1 \mathrm{~Hz})$.
(dppf)Pd($\left.\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{F}\right)\left[\mathbf{N}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}}\right)\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H}_{\mathbf{2}}\right)\right](\mathbf{I V}-\mathbf{3 d}):{ }^{1} \mathrm{H}$ NMR (400 MHz , THF- d_{8}) $\delta 7.93-7.86(\mathrm{~m}), 7.84-7.74(\mathrm{~m}), 7.57-7.38(\mathrm{~m}), 7.27(\mathrm{~m}), 7.20-7.08(\mathrm{~m}), 6.66$
$(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, \mathrm{br}, 1 \mathrm{H}), 6.08(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.63(\mathrm{tdd}, J=6.4,10.4$, $16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.90-4.77(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.49(\mathrm{~m}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.37$ $(\mathrm{s}, 1 \mathrm{H}), 4.32,(\mathrm{~s}, 1 \mathrm{H}), 4.21$ (obscured by dppf), 2.53-2.42(m, 1 H$), 2.29-2.20(\mathrm{~m}, 1 \mathrm{H})$, 1.70 (m, obscured by THF), 1.50-1.38 (m, 1 H), 1.18-1.04 (m, 1 H); ${ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.9(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.3(\mathrm{~d}, J=36.8 \mathrm{~Hz}), 9.9(\mathrm{~d}$, $J=36.8 \mathrm{~Hz})$.
(dppf)Pd($\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \boldsymbol{p} \boldsymbol{p}$-F $)\left\{\mathbf{C H}_{\mathbf{2}}\left[\mathbf{C H C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{N}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}}\right)\right]\right\}(\mathbf{I V}-\mathbf{4 d}):{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, THF- $\left.d_{8}\right) \delta-124.4(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 20.7(\mathrm{~d}, J=23 \mathrm{~Hz}), 16.1(\mathrm{dd}, J=$ $2.6,22.8 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathbf{H}_{4}-p-\mathbf{C l}\right)\left(\mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H}_{2}\right)\right] \quad$ (IV-3e): ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.88-7.79(\mathrm{~m}), 7.74(\mathrm{t}, J=8.6 \mathrm{~Hz}), 7.56-7.41(\mathrm{~m}), 7.23-7.12(\mathrm{~m}$, partially obscured), $6.67(\operatorname{appq}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.50(\mathrm{~d} \mathrm{br}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.12(\mathrm{t}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.67-5.58(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}$, $1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.34(\mathrm{~s}, 1 \mathrm{H}), 2.50-2.45(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.61$ (m, partially obscured by THF, 2 H), 1.51-1.38 (m, br, 1 H), 1.14-1.03 (m, br, 1 H$) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.4 ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 24.4(\mathrm{~d}, J=35.6$ $\mathrm{Hz}), 10.8(\mathrm{~d}, J=35.6 \mathrm{~Hz})$.
(dppf)Pd($\left.\mathrm{C}_{6} \mathrm{H}_{4}-\boldsymbol{p}-\mathrm{F}\right)\left\{\mathrm{CH}_{2}\left[\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{Cl}\right)\right]\right\} \quad(\mathrm{IV}-4 \mathrm{e}):{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.0(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 21.2(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 16.8$ (dd, $J=2.6,24.1 \mathrm{~Hz}$).
(dppf)Pd($\mathrm{C}_{6} \mathrm{H}_{4}$-p-tert-butyl) $\left[\mathrm{N}\left(\mathrm{C}_{6} \mathbf{H}_{4}-\boldsymbol{p}\right.\right.$-F $\left.)\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H}_{2}\right)\right](\mathbf{I V}-3 \mathrm{~g}):{ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}) $\delta 7.89(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{t}, J=8.6$ Hz, 2 H), 7.53-7.44 (m), 7.16-7.03 (m), $6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2$ H), $6.31(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.62(\mathrm{tdd}, J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86-4.79(\mathrm{~m}, 2 \mathrm{H})$, 4.49 (s, 1 H), 4.42-4.39 (m, 3 H), 4.33 (s, 1 H$), 4.16$ ($\mathrm{s}, 1 \mathrm{H}), 4.16$ (s, 1 H$)$, 2.56-2.50 (m, $1 \mathrm{H}), 2.36-2.23$ (m , obscured by internal standard), 1.73-1.60 (m , obscured by THF), $1.54-1.44(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.03-0.92(\mathrm{~m}$, partially obscured by t-Bu signal, 1 H$)$; ${ }^{19}$ F NMR (376 MHz, THF- d_{8}) $\delta-138.3(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 24.0(\mathrm{~d}, J=$ $36.8 \mathrm{~Hz}), 9.0(\mathrm{~d}, J=36.9 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}\right.$-p-tert-butyl) $\left\{\mathrm{CH}_{2}\left[\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\right]\right\}(\mathrm{IV}-\mathbf{4 g}):{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-133.6(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 20.5(\mathrm{~d}, J=22.8 \mathrm{~Hz})$, $16.6(\mathrm{~d}, J=22.8 \mathrm{~Hz})$.
 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.88-7.71(\mathrm{~m}), 7.52-7.38(\mathrm{~m}), 7.22-6.93(\mathrm{~m}), 6.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.33(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.98(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{tdd}, J=6.4,10.0,16.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.89-4.82 (m, 2 H), $4.46(\mathrm{~s}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}$,
obscured by dppf), $3.44(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}$, obscured by THF), 1.62-1.52 (m, 1 H), 1.19-1.08 (m, 1 H); ${ }^{19} \mathrm{~F}$ NMR (376 MHz , THF$\left.d_{8}\right) \delta-137.9(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.0(\mathrm{~d}, J=36.8 \mathrm{~Hz}), 9.2(\mathrm{~d}, J=34.2$ Hz).
(dppf)Pd($\mathrm{C}_{6} \mathbf{H}_{4}$-p-OMe) $\left\{\mathrm{CH}_{2}\left[\mathrm{CHCH}_{\mathbf{2}} \mathrm{CH}_{2} \mathrm{CH}_{\mathbf{2}} \mathrm{N}\left(\mathrm{C}_{6} \mathbf{H}_{\mathbf{4}}\right.\right.\right.$-p-F)]\}(IV-4h): ${ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-133.7(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 21.1(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 16.1$ $(\mathrm{d}, J=22.8 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)\left[\mathbf{N}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}}-\boldsymbol{p}-\mathbf{F}\right)\left(\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H}_{2}\right)\right](\mathbf{I V}-3 i):{ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}) $\delta 7.92-7.81(\mathrm{~m}), 7.78-7.71(\mathrm{~m}), 7.55-7.40(\mathrm{~m}), 7.21-7.14(\mathrm{~m}), 7.13-7.01(\mathrm{~m})$, 6.74-6.67 (m), 6.42-6.25 (m), $5.63(\mathrm{tdd}, J=6.8,10.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.80(\mathrm{~m}, 2 \mathrm{H})$, $4.51(\mathrm{~s}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 1 \mathrm{H})$, $2.59-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~m}$, obscured by THF), $1.54-1.42(\mathrm{~m}, 1 \mathrm{H})$, 1.18-1.07 (m, 1 H) $;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-137.9(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, THF- $\left.d_{8}\right) \delta 24.5(\mathrm{~d}, J=36.8 \mathrm{~Hz}), 8.8(\mathrm{~d}, J=36.8 \mathrm{~Hz})$.
(dppf) $\mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{5}}\right)\left\{\mathbf{C H}_{\mathbf{2}}\left[\mathbf{C H C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}} \boldsymbol{p} \boldsymbol{p}\right.\right.\right.$-F) $\left.]\right\}(\mathbf{I V}-\mathbf{4 i}):{ }^{19} \mathrm{~F}$ NMR (376.9 MHz , THF- $\left.d_{8}\right) \delta-133.6(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 20.9(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 16.6(\mathrm{~d}, J=$ 22.8 Hz).
(dppf-CF $\left.\mathbf{C l}_{3}\right) \operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathrm{H}_{4}-p-\mathrm{F}\right)\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathbf{C H}=\mathrm{CH}_{2}\right)\right] \quad\left(\mathrm{IV}-3 s^{\prime}\right):{ }^{1} \mathrm{H} \quad$ NMR (400 MHz, THF- d_{8}) $\delta 8.37-8.26(\mathrm{~m}), 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 7.95(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 7.90-7.78$
(m), $7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 7.28-7.21(\mathrm{~m}), 6.97(\mathrm{app} \mathrm{dt}, \mathrm{br}, J=1.6,8.8 \mathrm{~Hz}), 6.59(\mathrm{app} \mathrm{q}, J$ $=7.6 \mathrm{~Hz}), 6.40(\mathrm{app} \mathrm{t}, \mathrm{br}, J=8.4 \mathrm{~Hz}), 6.15(\mathrm{app} \mathrm{t}, \mathrm{br}, J=8.4 \mathrm{~Hz}), 5.54(\mathrm{ddt}, J=6.8,10.8$, $16.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.89(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.75(\mathrm{~m}, \mathrm{br}, 2 \mathrm{H}), 4.70-4.63(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H}), 4.61$ (s, br, 1 H), 4.57 (s, br, 1 H), 4.52-4.46 (m, br, 2 H), 4.40 (s, br, 1 H ; partially obscured by free ligand), $2.83-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}, 1 \mathrm{H}$, partially obscured by internal standard), 1.72-1.64 (m, 2 H, partially obscured by THF), $1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.89$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR $\left.\left(376 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta-61.89 \mathrm{~s}, 3 \mathrm{~F}\right),-61.95(\mathrm{~s}, 3 \mathrm{~F}),-$ 61.97 (s, 3 F), -62.03 (s, 3 F), -122.7 (m, 1 F), -135.8 (s, 1 F$) ;{ }^{31} \mathrm{P}$ NMR (162 MHz , THF- d_{8}) $\delta 27.0(\mathrm{~d}, J=38.1 \mathrm{~Hz}), 8.2(\mathrm{~d}, J=38.1 \mathrm{~Hz})$.
 (376.9 MHz, THF- d_{8}) $\delta-123.1(\mathrm{~s}, 1 \mathrm{~F}),-132.7(\mathrm{~s}, 1 \mathrm{~F})-\mathrm{CF}_{3}$ signals for IV-4s' could not be identified among the more prominent signals of free ligand, $\operatorname{Pd}\left(\mathrm{dppf}-\mathrm{CF}_{3}\right)_{2}$, and $\mathbf{I V}$ $\mathbf{3 s}^{\prime} ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 22.3(\mathrm{~d}, J=22.9 \mathrm{~Hz}), 17.7(\mathrm{~d}, J=25.4 \mathrm{~Hz})$. ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 7.98(\mathrm{app} \mathrm{t}$ br, $J=8.6 \mathrm{~Hz}$), $7.86-7.73(\mathrm{~m}), 7.65(\mathrm{app} \mathrm{t}, J=8.6 \mathrm{~Hz})$, 7.38-7.24 (m), 7.07-6.96(m), 6.76-6.70 (m), 6.69-6.60 (m), 6.41-6.33 (m), 6.32-6.23 (m), 6.16-6.09 (m), $5.62(\mathrm{ddt}, J=16.8,10.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.88-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 1$ H), $4.55(\mathrm{~s}, 1 \mathrm{H}), 4.51(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H})$, $3.75(\mathrm{~s}, 12 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.7-1.65$ (m, obscured by THF),
$1.25-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.08(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-123.9(\mathrm{~m}),-$ $137.9(\mathrm{~s}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 22.0(\mathrm{~d}, J=38.1 \mathrm{~Hz}), 6.3(\mathrm{~d}, J=39.4 \mathrm{~Hz})$.
(dppf-OMe)Pd($\left.\mathbf{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\left\{\mathbf{C H}_{2}\left[\mathrm{CHCH}_{2} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathrm{~N}\left(\mathrm{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\right]\right\}\left(\mathrm{IV}-4 \mathrm{t}^{\prime}\right):{ }^{19} \mathrm{~F}$ NMR (376.9 MHz, THF- d_{8}) $\delta-124.4(\mathrm{~s}),-133.4(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 18.4(\mathrm{~d}$, $J=24.2 \mathrm{~Hz}), 13.9(\mathrm{dd}, J=24.2,2.6 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathbf{H}_{4}-p-\mathrm{Cl}\right)\left(\mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C D}=\mathbf{C H}_{2}\right)\right](\mathrm{IV}-3 \mathrm{v}):{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.90-7.77(\mathrm{~m}), 7.74(\operatorname{app} \mathrm{t}, J=8.8 \mathrm{~Hz}), 7.52-7.45(\mathrm{~m}), 7.41(\operatorname{app} \mathrm{t}, J=$ $6.0 \mathrm{~Hz}), 7.23-7.10(\mathrm{~m}), 6.68(\operatorname{app~q}, J=7.6 \mathrm{~Hz}), 6.56-6.42(\mathrm{~m}), 6.12(\operatorname{app} \mathrm{t}, J=8.4 \mathrm{~Hz})$, 4.88-4.83 (m, 2 H), 4.49 (s, br, 2 H), 4.46 (s, br, 1 H), 4.41 (s, br, 1 H$), 4.39$ (s, br, 1 H), $4.34(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}$, partially obscured by THF), 1.50-1.37 (m, 1 H), 1.16-1.03 (m, 1 H), remaining Cp signals obscured by free ligand; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-123.4$ (m); ${ }^{31} \mathrm{P}$ NMR (162 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 24.1(\mathrm{~d}, J=35.7 \mathrm{~Hz}), 10.5(\mathrm{~d}, J=35.7 \mathrm{~Hz})$.
(dppf) $) \mathbf{P d}\left(\mathbf{C}_{6} \mathbf{H}_{4}-p-\mathrm{F}\right)\left\{\mathbf{C H}_{2}\left[\mathbf{C D C H}_{2} \mathbf{C H}_{2} \mathbf{C H}_{2} \mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{4}-\boldsymbol{p}\right.\right.\right.$-Cl) $\left.]\right\}$ (IV-4v): ${ }^{19} \mathrm{~F}$ NMR (376 MHz, THF- d_{8}) $\delta-124.0(\mathrm{~m}) ;{ }^{31}$ P NMR ($162 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta 20.9(\mathrm{~d}, J=24.2 \mathrm{~Hz}$), 16.5 $(\mathrm{dd}, J=3.1,23.0 \mathrm{~Hz})$.
(dppf)Pd $\left(\mathbf{C}_{6} \mathbf{H}_{4}-p\right.$-F) $\left\{\mathbf{N}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)\left[\mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C}\left(\mathbf{C H}_{\mathbf{3}}\right)=\mathbf{C H}_{\mathbf{2}}\right]\right\}$ (IV-3w): ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- $\left.d_{8}\right) \delta 7.86-7.77(\mathrm{~m}), 7.71($ app $\mathrm{t}, J=8.8 \mathrm{~Hz}), 7.55-7.40(\mathrm{~m}), 7.35(\mathrm{app} \mathrm{t}, J=$ $7.2 \mathrm{~Hz}), 6.67(\operatorname{app~q}, J=7.2 \mathrm{~Hz}), 6.59(\mathrm{~s}, \mathrm{br}), 6.08(\operatorname{app~t}, J=9.2 \mathrm{~Hz}), 4.79-4.71(\mathrm{~m}, 2$
H), 4.60 (s, 1 H$), 4.54$ ($\mathrm{s}, \mathrm{br}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.41-4.33(\mathrm{~m}, 4 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 2.42-$ $2.33(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.17-1.08(\mathrm{~m}, 1 \mathrm{H})$, remaining alkyl signal obscured; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-123.8(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR (162 MHz, THF- $\left.d_{8}\right) \delta 23.5(\mathrm{~d}, J=36.8 \mathrm{~Hz}), 10.4(\mathrm{~d}, J=36.8 \mathrm{~Hz})$.
(dppf)Pd($\left.\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-p-\mathrm{F}\right)\left\{\mathrm{CH}_{\mathbf{2}}\left[\mathbf{C}\left(\mathrm{CH}_{\mathbf{3}}\right) \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathrm{CH}_{\mathbf{2}} \mathrm{N}\left(\mathrm{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{5}}\right)\right]\right\} \quad(\mathrm{IV}-\mathbf{4 w}):{ }^{19} \mathrm{~F}$ NMR (376 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta-124.6(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR ($\left.162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 20.2(\mathrm{~d}, J=22.8 \mathrm{~Hz}), 14.0$ $(\mathrm{dd}, J=2.1,23.2 \mathrm{~Hz})$.
(dppf) $\operatorname{Pd}\left(\mathrm{C}_{6} \mathbf{H}_{4}-\boldsymbol{p}-\mathrm{F}\right)\left[\mathrm{N}\left(\mathrm{C}_{6} \mathbf{H}_{5}\right)\left((\mathbf{Z})-\mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H C H}_{3}\right)\right](\mathrm{IV}-3 \mathrm{x}):{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.97-7.90(\mathrm{~m}), 7.86-7.73(\mathrm{~m}), 7.52-7.46(\mathrm{~m}), 7.46-7.38(\mathrm{~m}), 7.19-7.13$ (m), 7.13-7.02 (m), $6.88(\operatorname{app} \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.66(\operatorname{app~q}, J=7.2 \mathrm{~Hz}), 6.58(\mathrm{~s}, \mathrm{br}), 6.08$ (app. t, $J=8.4 \mathrm{~Hz}$), $5.38-5.29(\mathrm{~m}, 1 \mathrm{H}), 5.25-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.54(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H})$, $4.44(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.38(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.56-2.45(\mathrm{~m}$, $1 \mathrm{H}), 2.28-2.18$ (m, 1 H - partially obscured), 1.70-1.63 (m, 2 H - partially obscured by THF), 1.46-1.34 (m, 1 H), 1.18-1.08 (m, 1 H); ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-123.9$ $(\mathrm{m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 23.1(\mathrm{~d}, J=35.7 \mathrm{~Hz}), 8.5(\mathrm{~d}, J=38.3 \mathrm{~Hz})$.
(dppf)Pd($\left.\mathbf{C}_{6} \mathbf{H}_{\mathbf{4}}-p-\mathrm{F}\right)\left[\mathrm{N}\left(\mathbf{C}_{6} \mathbf{H}_{5}\right)\left((\boldsymbol{E})-\mathbf{C H}_{2} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}_{\mathbf{2}} \mathbf{C H}=\mathbf{C H C H}_{3}\right)\right]\left(\right.$ IV-3y): ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}) $\delta 7.95-7.88(\mathrm{~m}), 7.86-7.74(\mathrm{~m}), 7.51-7.45(\mathrm{~m}), 7.44-7.40(\mathrm{~m}), 7.19-7.14$ (m), 7.13-7.01 (m), $6.88(\operatorname{app~t}, J=7.8 \mathrm{~Hz}), 6.66(\operatorname{app~q}, J=7.6 \mathrm{~Hz}), 6.57(\mathrm{~s}$, br), 6.07 (app $\mathrm{t}, J=8.6 \mathrm{~Hz}$), $5.53-5.40(\mathrm{~m}, 1 \mathrm{H}), 5.32-5.19(\mathrm{~m}, 1 \mathrm{H}-$ partially obscured), $4.54(\mathrm{~s}$, $1 \mathrm{H}), 4.48(\mathrm{~s}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 4.20(\mathrm{~s}, 1 \mathrm{H})$, $4.19(\mathrm{~s}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m} 1 \mathrm{H}), 2.27-2.16(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 5 \mathrm{H}-$ partially
obscured), $1.46-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.18-1.06(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{THF}-d_{8}$) $\delta-$ $123.9(\mathrm{~m}) ;{ }^{31} \mathrm{P}$ NMR $\left(162 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 23.0(\mathrm{~d}, J=37.0 \mathrm{~Hz}), 8.3(\mathrm{~d}, J=36.8 \mathrm{~Hz})$.

References

${ }^{(102}$) (a) Ney, J. E.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127, 8644. (b) Bertrand, M. B.; Neukom, J. D.; Wolfe, J. P. J. Org. Chem. 2008, 73, 8851. (c) Ney, J. E.; Wolfe, J. P. Angew. Chem., Int. Ed. 2004, 43, 3605.
$\left({ }^{103}\right)$ (a) Muñiz, K.; Hövelmann, C. H.; Streuff, J. J. Am. Chem. Soc. 2008, 130, 763. (b) Du, H.; Zhao, B.; Shi, Y. J. Am. Chem. Soc. 2007, 129, 762.
$\left({ }^{104}\right)$ (a) Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2007, 129, 6328. (b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868.
$\left({ }^{105}\right)$ Helaja, J.; Göttlich, R. Chem. Commun. 2002, 720.
$\left({ }^{106}\right)$ Liu, G.; Stahl, S. S. J. Am. Chem. Soc. 2006, 128, 7179.
$\left({ }^{107}\right)$ Tsutsui, H.; Narasaka, K. Chem. Lett. 1999, 45.
$\left({ }^{108}\right)$ For reviews on metal-catalyzed reactions that involve syn-alkene insertion into $\mathrm{Pd}-\mathrm{N}$ bonds, see: (a) Wolfe, J. P. Synlett 2008, 2913. (b) Minatti, A.; Muñiz, K. Chem. Soc. Rev. 2007, 36, 1142. (c) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910.
(${ }^{109}$) (a) Villanueva, L. A.; Abboud, K. A.; Boncella, J. M. Organometallics 1992, 11, 2963. (b)
VanderLende, D. D.; Abboud, K. A.; Boncella, J. M. Inorg. Chem. 1995, 34, 5319. (c) Cowan, R. L.;
Trogler, W. C. J. Am. Chem. Soc. 1989, 111, 4750. (d) Cowan, R. L.; Trogler, W. C. Organometallics 1987, 6, 2451. (e) Casalnuovo, A. L.; Calabrese, J. C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. (f) Zhao, P.; Krug, C.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 12066.
$\left({ }^{110}\right)$ For a related intramolecular insertion of an unactivated alkene into a $\mathrm{Rh}-\mathrm{O}$ bond, see: Zhao, P.;
Incarvito, C. D.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 9642.
$\left({ }^{111}\right)$ (a) Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787. (b) Driver, M. S.; Hartwig, J. F. J. Am. Chem. Soc. 1997, 119, 8232. (c) Zuideveld, M. Z.; Swennenhuis, B. H. G.;

Boele, M. D. K.; Guari, Y.; van Strijdonck, G. P. F.; Reek, J. N. H.; Kamer, P. C. J.; Goubitz, K.; Fraanje, J.; Lutz, M.; Spek, A. L.; van Leeuwen, P. W. N. M. J. Chem. Soc., Dalton Trans. 2002, 2308.
$\left({ }^{112}\right)$ An N-methylated derivative of nixantphos was employed in these studies to avoid acid/base side reactions between the ligand and the potassium N-arylamide salts. The bite angle of this ligand is estimated to be similar to N-benzyl nixantphos; see: Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Reek, J. N. H. Acc. Chem. Res. 2001, 34, 895.
$\left({ }^{113}\right)$ Ligand substitution reactions of $\mathrm{d}^{8}-\mathrm{Pd}(\mathrm{II})$ complexes generally occur via associative pathways. See: (a) Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056. (b) Shultz, L. H.; Tempel, D. J.;
Brookhart, M. J. Am. Chem. Soc. 2001, 123, 11539 and references cited therein. For rare exceptions, which involve very large, sterically bulky ligands, see: (c) Bartolome, C.; Espinet, P.; Martin-Alvarez, J. M; Villafane, F. Eur. J. Inorg. Chem. 2004, 2326. (d) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598.
$\left({ }^{114}\right)$ Prior studies by Hartwig have shown that cyclometallated four-coordinate [t -
$\left.\mathrm{Bu}_{2} \mathrm{PCH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right] \mathrm{Pd}\left(\mathrm{NAr}_{2}\right)$ (ethylene) complexes undergo very fast insertion of the alkene into the $\mathrm{Pd}-\mathrm{N}$ bond at temperatures as low as $-40^{\circ} \mathrm{C}$. See reference 12 .
$\left({ }^{115}\right)$ Although the wide bite angle ligands DPE-Phos, xantphos, and N-Me-nixantphos are more electronrich than dppf, the trends observed with p-substituted dppf derivatives (complexes IV-3s and IV-3t) suggest the large bite angle is responsible for the rate enhancement rather than electronic properties. The electron-rich complex IV-3t reacts at a slower rate than IV-3s. In addition, DPE-Phos and xantphos have similar electronic properties, but the complexes bearing these ligands have considerably different reactivities.
$\left({ }^{116}\right)$ The lability of a chelating ligand has previously been observed to influence the rate of carbopalladation in $(\mathrm{L}-\mathrm{L}) \mathrm{Pd}(\mathrm{Me})\left[\mathrm{PPh}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{4}-o-\mathrm{CH}=\mathrm{CH}_{2}\right)\right]$ complexes. See: Cavell, K. J.; Jin, H. J. Chem. Soc., Dalton Trans. 1995, 4081.
$\left({ }^{117}\right)$ Delis, J. G. P.; Groen, J. H.; Vrieze, K.; van Leeuwen, P. W. N. M. Organometallics 1997, 16, 551. $\left({ }^{118}\right)$ Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc. 2005, 127, 10323.
$\left({ }^{119}\right)$ The opposite trend has been observed in reactions between cationic methylpalladium complexes and electron-poor alkenes. This effect has been ascribed to the influence of π-backbonding interactions between a relatively electron-rich metal center and the electron-poor alkene. See: Wu, F.; Jordan, R. F. Organometallics 2006, 25, 5631.
${ }^{120}$) (a) Ariafard, A.; Yates, B. F. J. Organomet. Chem. 2009, 694, 2075. (b) Ananikov, V. P.; Musaev, D. G.; Morokuma, K. Eur. J. Inorg. Chem. 2007, 5390. (c) Hartwig, J. F. Inorg. Chem. 2007, 46, 1936.
$\left({ }^{121}\right)$ Zuidema, E.; van Leeuwen, P. W. N. M.; Bo, C. Organometallics 2005, 24, 3701.
$\left({ }^{122}\right)$ Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. Organometallics 1996, 15, 2745.
$\left({ }^{123}\right)$ Widenhoefer, R. A.; Zhong, H. A.; Buchwald, S. L. J. Am. Chem. Soc. 1997, 119, 6787.

