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CHAPTER 1

Introduction

Singularities play a central role in modern algebraic geometry. There is now a

large and subtle taxonomy of singularity classes that tends to focus on the properties

of the canonical class.

The importance of the canonical class was already clear in classical algebraic

geometry. In the classical picture, singularities were investigated through the con-

ditions they impose on adjunction. Specifically, suppose first that A is a smooth

variety and X ⊆ A is a smooth hypersurface. Let z1, . . . , zn be local coordinates on

A and let X be given as the set {f = 0}, where f is some polynomial on A. The

Poincaré residue is the differential form

(1.1) ω =

(
dz1 ∧ · · · ∧ dzn−1

∂f/∂zn

)
X

.

Up to sign this form does not depend on the order of the zi. If X is smooth then ω

has no poles and it explicitly realizes the isomorphism

(KA +X)X ∼= KX .

Now suppose that X is singular but A is still smooth. We still have a differential

form ω as in (1.1) to restrict to X. Suppose that we have a resolution of singularities

f : X ′ → X and we consider f ∗ω. This differential form a priori has coefficients that
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are only rational functions, so f ∗ω may very well have poles now. If it doesn’t then,

classically, the singularities were said to impose no conditions on adjunction. For

example, the Du Val surfaces are precisely the surfaces whose singularities impose

no conditions on adjunction.

Even if the differential form f ∗ω has poles one may consider the ideal of functions

g ∈ OX so that f ∗(g · ω) is regular. This construction gives rise to the adjoint

ideal. Here we can see how it measures the conditions on singularities imposed by

adjunction and the Poincaré residue.

From the modern viewpoint, these considerations amount to a comparison be-

tween the canonical bundles of A, X and X ′. It is natural to consider the expression

KX′ − f ∗KX .

This divisor is effective precisely when the singularities impose no conditions on

adjunction. However, one must first define KX for singular X and, if the definition

does not produce a Cartier divisor, explain how to define the pullback f ∗KX .

To define KX , let X be a normal variety of dimension n. Let Xsm be the open

dense subset of the smooth points of X. The canonical class is constructed by taking

any divisor KXsm so that

Ωn
Xsm
∼= OXsm(KXsm)

and taking the divisor on X induced by KXsm via topological closure in the Zariski

topology. This is possible because, since X is normal, the singular locus of X is

codimension two or more.

Unfortunately, for a singular variety the construction of KX does not have to

produce a Cartier divisor. We wish to pull back KX to a resolution of singularities of

X and it is not clear how to do this if KX is not Cartier. A remedy for this problem
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is the fundamental construction in the theory of singularities of a pair (X,∆). First,

a Q-divisor on X is just a Weil divisor with coefficients in Q instead of Z. The set

of Q-divisors is a Q-vector space in the obvious way. A Q-divisor ∆ is Q-Cartier if

some multiple m ·∆ has integer coefficients and is Cartier. A pair (X,∆) is a normal

variety X and a Q-divisor ∆ so that KX + ∆ is Q-Cartier. This notion originally

arose in the study of boundaries of compactifications of quasi-projective varieties.

However, we will want to think of ∆ as some kind of error term that corrects some

particularly unpleasant aspects of the singularities of X.

With the notion of pairs comes the notion of the singularity of a pair. Note well

that, in this context, X can be smooth and (X,∆) can be very singular. First we

need a notion of resolving the singularities of (X,∆). If f : Y → X is a morphism

then, since KX + ∆ is Q-Cartier, we can define

f ∗(KX + ∆)

in the obvious way. Roughly speaking, a birational morphism f is a log-resolution

(of singularities) of (X,∆) if Y is smooth and the support of f ∗(KX + ∆), locally

analytically near every point p ∈ Y , looks like a union of coordinate hyperplanes in

Cn where n is the dimension of X. Let ∆Y be the strict transform of ∆ in Y . We

will review the exact definitions in the conventions in Chapter 2.

Consider the expression

R = KY + ∆Y − f ∗(KX + ∆).

This is a Q-divisor, exceptional for f , that could reasonably be called the relative

canonical class of f . If X is smooth and ∆ = 0 then all coefficients of R are positive.

We do not expect this to happen for general pairs (X,∆). For pairs, the coefficients

of the divisors appearing in R is a generalization of the order of vanishing of ∆ at a
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point. These coefficients measure, in some subtle way, how singular (X,∆) is. Many

singularity classes place bounds on how non-positive the coefficients can be. Two

particularly important examples are klt (Kawamata log-terminal) singularities and

log-canonical singularities. Klt requires that, for all choices of f , all coefficients of

R are > −1 and log-canonical requires that, for all choices of f , all coefficients of R

are ≥ −1.

In Section 3.4 we will review the Kawamata-Viehweg vanishing theorem and see

why these numbers are important. To see roughly what is happening, suppose X

is smooth and ∆ is some effective Q-divisor. Consider what happens to the pair

(X, c · ∆) as c ranges over the positive rationals. When c is very small, regardless

of what ∆ is, the pair (X, c · ∆) is klt. There is exactly one value of c, called the

log-canonical threshold of (X, c ·∆), where this pair is log-canonical. Once c exceeds

this value the pair is not log-canonical anymore.

In this light we see that we want to allow Q-coefficients because we want a notion

of smallness for the error and rational numbers can be arbitrarily small. Many

singularity classes can be regarded as notions of smallness for ∆. We provide more

detail in Chapter 3.

Of course, there are many more classes of singularities than just klt and log-

canonical. For example, if H ⊆ X is a reduced, irreducible, divisor in X there is a

notion of (X,∆) being plt (pure log-terminal) near H. We will not define this notion

here (see Definition 3.3.4) but this class is very closely related to klt singularities. It

can be thought of as allowing (X,∆) to be log-canonical at the generic point of H

but requiring the pair be klt everywhere else. There is a list of singularity classes in

Definition 3.3.4 but this list makes no pretense at completeness.

Another class of singularities that will be important to us are Gorenstein and
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Q-Gorenstein singularities. A normal variety X is Gorenstein if KX is Cartier (this

is not quite true, Gorenstein requires that the dualizing sheaf ωX be invertible and

this implies that KX is Cartier) and Q-Gorenstein if KX is Q-Cartier.

The next important ingredient is the adjunction formula. This formula imposes

non-trivial conditions on the possible singularities of subvarieties. The classical ad-

junction formula applies to a smooth variety Z contained in a smooth variety X and

computes KZ in terms of (KX)Z and the normal bundle of Z in X. So, if we have a

presentation of Z in terms of defining equations, we can compute its canonical class

and get a lot of information about Z.

There are other ways to present a subvariety. One way that is particularly im-

portant is as a locus at which some effective Weil divisor has some fixed order of

vanishing or, in more precise language, as a center of log-canonical singularities of a

pair. In this situation there is also an adjunction type formula known as the canonical

bundle formula of Kodaira and its generalization to higher dimensions. This formula

is reviewed in Chapter 5. In Chapter 7 we will give a new adjunction formula for the

relative canonical class of certain special resolutions.

We will concentrate on a phenomenon called inversion of adjunction. While the

adjunction formula is, in some sense, classical fact, the inversion of adjunction phe-

nomenon is more recent and more subtle. Adjunction imposes conditions on singu-

larities of subvarieties by looking at the singularities of the ambient space. On the

other hand, inversion of adjunction goes backwards and predicts the singularities

of the ambient space from the singularities of subvarieties. This is surprising since

the singularity classes are defined in terms of all subvarieties of X. Thus, it seems

initially that singularities of Z seem to only impose conditions on subvarieties of X

contained inside Z, leaving out the subvarieties that intersect Z properly.
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Specifically, inversion of adjunction is a set of theorems describing how singularity

classes behave under restriction to subvarieties. For example, if (X,∆) is a pair and

H ⊆ X is an irreducible divisor, then (X,∆) is plt near H if and only if (H,∆H) is

klt. Inversion of adjunction is typically a consequence of an appropriate adjunction

formula combined with a vanishing theorem for cohomology. For a review of inversion

of adjunction, including a proof of this statement see Chapter 4.

Inversion of adjunction is a crucial part of modern birational geometry. It has

played a role in virtually all recent progress in the minimal model program, including

the celebrated work of Birkar, Cascini, Hacon and McKernan in [3], Hacon and

McKernan in [13] and [14], Siu in [31], and Takayama in [34], among many others.

It is thus natural to investigate inversion of adjunction more deeply because it is

intrinsically interesting and because we hope to apply it in the future.

The form of inversion of adjunction that we will focus on calculates a subtle and

important invariant of singularities called the multiplier ideal. The multiplier ideal

is an ideal sheaf on X associated to a pair structure (X,∆). The deeper the ideal at

a given point, the worse the singularity of the pair at that point. In this language, if

Z is a subvariety of X, (X,∆) is a pair and (Z,∆Z) is an appropriately chosen pair

structure on Z induced by ∆ (often ∆Z is simply the restriction of ∆ to Z), inversion

of adjunction calculates the multiplier ideal of (Z,∆Z) in terms of a multiplier-like

adjoint ideal on X that depends only on ∆.

Most known forms of inversion of adjunction apply to irreducible divisors, that

is, subvarieties of codimension one. There are some more recent statements, some

of which are reviewed in Chapter 4, that apply to certain subvarieties of higher

codimension. Our primary contribution is to give some new statements and methods

of proof for this higher codimension situation.
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In Chapters 5 and 6 we propose to connect these questions to another famous

theorem - Kawamata’s subadjunction theorem. A similar connection was made in

[20], where the author proves an L2-extension theorem by analytic methods. We

prove a similar theorem by algebraic methods in Chapter 8.

Kawamata’s subadjunction theorem is an analog of the adjunction formula for

so-called exceptional log-canonical centers. A log-canonical pair has a finite collec-

tion of subvarieties of X outside which it is klt. These subvarieties are called the

log-canonical centers of (X,∆) (see Definition 5.1.1 for the precise definition). An

exceptional log-canonical center is a log-canonical center that is minimal with re-

spect to inclusion and satisfies a technical condition that can always be achieved by

perturbing ∆ slightly (see Definition 5.1.3). If X is smooth then many subvarieties

of X can be exceptional log-canonical centers and any subvariety of X, not even

necessarily normal, can be written as a generically exceptional log-canonical center

of some ∆ (see Example 5.1.5). In this case, one can tautologically write

ν∗(KX + ∆)Z ∼Q KZn + ∆Zn

where ν : Zn → Z is the normalization of Z and ∆Zn is some sort of non-unique

error term.

With this setup, Kawamata’s celebrated subadjunction theorem says the follow-

ing. Suppose A is an ample divisor and 0 < ε � 1 is a small rational number.

Suppose further that (X,∆) is a pair with Z ⊆ X an exceptional log-canonical

center. Then Z is normal and we can choose a Weil Q-divisor ∆Z on Z so that

(KX + ∆ + εA)Z ∼Q KZ + ∆Z

with (Z,∆Z) klt. In our context, we can regard this theorem as saying that the error

term ∆Z is small.
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In Chapter 6 we will consider the situation of generically exceptional log-canonical

centers (recall that if X is smooth then any subvariety Z ⊆ X is such a center for

some ∆). In this situation we construct an analogous formula with a specifically

constructed ∆Z that we will call a suitably chosen Kawamata different. We will

define an adjoint ideal adjZ(X,∆), analogous to a multiplier ideal, that measures

the failure of Z to be actually exceptional for ∆. By analogy with inversion of

adjunction in codimension one, we will prove a theorem that allows us to calculate

the multiplier ideal of ∆Zn in terms of this adjoint ideal on X. Specifically, the

statement is as follows.

Theorem (Theorem 6.1.1). Let ν : Zn → Z be the normalization of Z. Let ∆Zn be

a suitably chosen Kawamata different for Z, as in Definition 5.4.4.

Recall that KZn + ∆Zn is Q-Cartier and so we may consider J (Zn,∆Zn). Then:

1. J (Zn,∆Zn) is contained in the conductor ideal of ν.

2. The conductor is also an ideal on Z and so J (Zn,∆Zn) is naturally an ideal on

Z. With this identification, we have that

adjZ(X,∆) · OZn = J (Zn,∆Zn),

3. We have the natural exact sequence

0→ J (X,∆)→ adjZ(X,∆)→ J (Zn,∆Zn)→ 0.

This theorem is a stronger version of Kawamata’s theorem. In particular, Kawa-

mata’s original subadjunction theorem can be quickly deduced from this. This the-

orem can be regarded as a form of inversion of adjunction that applies to arbitrary

subvarieties Z ⊆ X, as well as a description of the mysterious Kawamata different.
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Then, in Chapter 7, we consider the theorems of Takagi from [32] and [33]. In

these papers, S. Takagi investigates the case of a subvariety X ⊆ A with A smooth

and X Q-Gorenstein. Recall that the Q-Gorenstein condition simply means that KX

is Q-Cartier, while Gorenstein is the condition that the dualizing sheaf is invertible,

so in particular KX is Cartier. He also defines an adjoint ideal adjX(A,∆) and proves

that, if X is Gorenstein, then there is a similar inversion of adjunction formula with

an error term

adjX(A,∆) · OX = J (X,∆X + V(J1))

where J1 is the l.c.i.-defect sheaf (see Section 7.2 for a description of the basic theory

of these sheaves). Takagi’s proof proceeds by reduction to positive characteristic and

the application of tight closure techniques.

Here we present an alternative approach to this theorem that uses only standard

characteristic zero methods: resolution of singularities and Kawamata-Viehweg van-

ishing. We extend the formula to the Q-Gorenstein case and prove that, if X is only

Q-Gorenstein with Gorenstein index r (that is, rKX is Cartier) then

adjX(A,∆) · OX = J
(
X,∆X +

1

r
V(Jr)

)
.

We deduce this from a simple trick with the Leray spectral sequence and an adjunc-

tion formula for relative canonical classes of special kinds of embedded resolutions

of singularities that appears to be new (see Section 7.4 for a the notion of a strong

factorizing resolution):

Theorem (Theorem 7.6.6). Let A be a smooth variety and let X be a generically

smooth equidimensional subscheme. Let π : A → A be a factorizing resolution of X

inside A and let f be the restriction of π to X, the strict transform of X along π.
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Write

IX · OA = IX · OA(−RX).

Suppose that X is Q-Gorenstein with a Gorenstein index r. Suppose further that f

is a log-resolution of Ir,X and Jr. Let D be the divisor defined by

Jr · OX = OX(−D).

Then

KX/X −
1

r
D = (KA/A − cRX)|X

with equality being equality of Q-divisors on X.

The proof of this formula consists of writing down carefully chosen differential

forms and analyizing their transformation under birational morphisms and restric-

tions. This produces a formula for determinantal ideals that are similar to the

Jacobian ideal, true for arbitrary X, that can then be translated into a formula for

relative canonical classes if X is Q-Gorenstein.

Using similar techniques we can also provide a characteristic zero proof of Takagi’s

subadditivity theorem in our Theorem 7.8.4: if X is Q-Gorenstein and ∆1, ∆2 are

effective Q-divisors then

JacX · J (X,∆1 + ∆2) ⊆ J (X,∆1) · J (X,∆2).

Finally, in Chapter 8 we investigate a powerful application of inversion of adjunc-

tion - the extension theorem for pluri-canonical forms. Specifically, we extend from

Z ⊆ X pluri-canonical sections of Cartier divisors of the form KX +A+ ∆ where A

is big and nef and (X,∆) is log-canonical with exceptional log-canonical center Z:

Theorem (Theorem 8.5.6). Let X be a smooth projective variety and let A and ∆

be Q-divisors such that
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1. A is big and nef,

2. (X,∆) is log-canonical with an exceptional log-canonical center Z,

3. M = KX + A+ ∆ is Cartier.

Then the map

H0(X,mM)→ H0(Z,mMZ)

is surjective for all m ≥ 1.

To prove this, and out of independent interest, we investigate a construction due

to Christopher Hacon in [15]. This construction is a generalization of the asymptotic

multiplier ideal, reviewed in Section 3.5. We begin by working out a version of

this idea in the setting of incomplete linear series. We then write down some basic

statements about the case of complete linear series in the construction of the Hacon

ideal. We obtain an ideal J−(X, c · ||M ||) that we call the restricted multiplier ideal.

We prove a vanishing theorem for this ideal and generalize of a theorem of Goodman

regarding the detection of nef line bundles by multiplier ideals.



CHAPTER 2

Conventions

• We will work entirely over C.

• We let X denote a normal projective variety over C. C(X) denotes the function

field of X. A variety is an integral separated scheme of finite type over k. We

may use the terms reducible variety to denote a reduced separated scheme of

finite type over k.

• An irreducible divisor H ⊆ X is a reduced, irreducible subvariety of codimension

one. It may not be normal and may not be defined by a single equation. A Weil

divisor is then a Z-linear combination of irreducible divisors. If the ambient

variety X is smooth we may write hypersurface where we mean irreducible

divisor.

• A simple normal crossings variety is a possibly reducible variety X, with smooth

irreducible components, so that locally analytically at every point of X there

exists an isomorphism of X with a subvariety of An
C defined by unions of inter-

sections of coordinate hyperplanes. A scheme X has simple normal crossings

support if Xred is a simple normal crossings variety. We say that X has simple

normal crossings with Y if X ∪ Y has simple normal crossings support. In par-

ticular, if X is a subscheme of a smooth variety A, then X has simple normal

12



13

crossings support if locally at every point p ∈ A there exist regular parameters

xi so that the germ at p of the ideal sheaf of X is generated by elements of the

form xe1i1 · · ·x
es
is

.

• If π : X ′ → X is a birational morphism then we write exc(π) for the set of

points of X ′ at which π is not an isomorphism, endowed with the reduced

scheme structure.

• If π : X ′ → X is a morphism of non-reduced schemes we will say that π is

birational if it is an isomorphism on a dense open subset of X ′.

• Suppose π : X ′ → X is a birational morphism. Then π is the blow-up of some

ideal sheaf I ⊆ OX . Suppose Y is a subscheme of X thats not contained in

exc(π). Blowing up the ideal I · OY gives a birational morphism f : Y ′ → Y

and Y ′ is a subscheme of X ′, called the strict transform on Y along π. We will

sometimes use proper transform as a synonym for strict transform.

Suppose that Y is a subvariety not contained in exc(π). Then the strict trans-

form of Y is also a subvariety. This subvariety Y ′ is simply the Zariski closure

of Y \ exc(π) in X ′.

• An embedded resolution of singularities of a generically smooth subscheme X

contained in a possibly singular variety A is a birational morphism π : A′ → A

so that:

1. A′ is smooth and π is an isomorphism at every generic point of X.

2. The set exc(π) is a divisor with simple normal crossings support.

3. The strict transform of X in A′, denoted X ′, is smooth and has simple

normal crossings with exc(π).
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Such a resolution exists whenever X 6⊆ Asing.

A factorizing resolution of singularities of X ⊆ A as above is a birational mor-

phism π : A′ → A that is an embedded resolution of singularities of X in A so

that, if X ′ is the strict transform of X in A′, we have that

IX · OA′ = IX′ · L

with L a line bundle and the support of IX · OA′ is a simple normal crossings

variety. If A is smooth these resolutions were shown to exist in [4]. We will

show in Lemma 7.4.4 that the case of A singular and X 6⊆ Asing follows formally

from the smooth case.

Let Z be an R>0-linear combination of subschemes of A with no component

of X contained in the support of Z. An embedded resolution of singularities

π : A′ → A as above is also a log-resolution of Z if π−1Z is a divisor with simple

normal crossings support and Supp(π−1Z) ∪ exc(π) ∪ X ′ is a simple normal

crossings variety.

• X is said to be Q-Gorenstein if X is normal and there is some natural number

r so that rKX is a Cartier divisor. Any such r is called a Gorenstein index of

X.

• The abbreviation l.c.i. stands for locally complete intersection. We say that a

variety X is l.c.i. at a point p ∈ X if the local ring OX,p is a locally complete

intersection ring. This is equivalent to saying that X is locally a complete

intersection for any embedding X ⊆ A with A smooth. Recall that X is locally

a complete intersection in some smooth A if and only if it is locally a complete

intersection in all smooth A.



15

• If X ⊆ A is an equidimensional subscheme of a variety A we write codimA(X)

for the codimension of X in A.

• If L is a line bundle and F is a subsheaf of L then we can write F = I · L for

some ideal sheaf I. We will say that F generates the ideal I.

• If I is an ideal sheaf, we denote by V(I) the subscheme defined by I.

• A multi-index of type (
n

m

)
is an ordered list of integers (i1, . . . , im) so that is < is+1 and is ∈ [1, n] for all

s. If I is a multi-index we write

dxI = dxi1 ∧ · · · ∧ dxim

as short-hand for differential forms.

• If D is a Q-divisor on a smooth variety A and X is a subvariety not contained

in the support of D we will write DX for the intersection of D with X as a

Q-divisor on X. If F is a sheaf on A we will write FX for F ⊗OX .

• In diagrams of morphisms, the arrow

� � //

denotes a closed immersion.



CHAPTER 3

Singularities of pairs and the multiplier ideal

Before we can proceed with the main body of the exposition and results, we need

to recall some facts and fix some notation. That is the purpose of this chapter. Most

of the facts here are standard and can be found in [7], [21], [25].

3.1 Q-divisors and pairs

In this section we fix definitions for a basic construction for everything we will do

- Q-divisors. Recall that X was a normal projective variety over C.

Definition 3.1.1. A Weil Q-divisor on X is a finite linear combination

D :=
n∑
i=1

aiDi

where n is a natural number, Di are prime Weil divisors on X and ai ∈ Q. The set

of all Weil Q-divisors is a Q-vector space in the evident way. If the Weil Q-divisor

D is such that ai ∈ Z for all 1 ≤ i ≤ n we will say that D is a Weil divisor on X.

Definition 3.1.2. Let D1, D2 be two Weil Q-divisors.

1. We say that D1 is rationally equivalent to D2, denoted D1 ∼Q D2, if there exists

a natural number m so that mD1 and mD2 are Weil (integer) divisors and, as

Weil divisors, they are rationally equivalent.

16
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2. We similarly say that a Weil Q-divisor D is Q-Cartier if there is a natural

number m so that mD is a Weil divisor that is Cartier as a Weil divisor.

Q-Cartier divisors can be pulled back by morphisms as follows.

Definition 3.1.3. Let f : X → Y be a morphism of complex projective varieties

and let D be a Q-Cartier Q-divisor on Y . Let m be such that mD is a Cartier divisor

and define

f ∗(D) =
1

m
f ∗(mD).

This is only a Q-divisor in general. It is straightforward to check that this definition

does not depend on the choice of m.

We can allow R-coefficients, and this is often done, but a divisor with real coef-

ficients cannot have its denominator cleared and our subsequent definitions become

more subtle. See Section 1.3.B in [24] for the details.

We now proceed to the definition of pairs. First, we need to define the canonical

class.

Definition 3.1.4. Let X a normal quasi-projective variety of dimension d. There

is a canonical Weil divisor class KX defined as follows. On the dense open smooth

locus Xsm ⊆ X, there is a canonical line bundle

OXsm(KXsm) :=
d∧

ΩXsm .

Write

KXsm =
s∑
i=1

aiDi.

We let KX to be the closure of this divisor in X:

KX =
s∑
i=1

aiDi



18

where Di is the topological closure of Di in X with the induced reduced scheme

structure.

Unfortunately, there is no reason why KX has to be Cartier or even Q-Cartier.

In particular, if f : Y → X is a morphism, there is no obvious way to define f ∗KX .

There is a standard way to fix this problem.

Definition 3.1.5. Let X be a normal projective variety over C and let ∆ be a Weil

Q-divisor on X. We say that (X,∆) is a pair if KX + ∆ is Q-Cartier.

Of course, without some restrictions on ∆ we can write any Weil Q-divisor this

way, so we really need a notion of smallness for ∆. First we need to discuss an

important subclass of divisors that will play a central role in our work.

3.2 Big line bundles

Here we recall the definitions and properties of big divisors.

Definition 3.2.1. Let X be a projective variety of dimension n and let L be a line

bundle on X. We say that L is big if

lim sup
m→∞

h0(X,L⊗m)

mn
> 0.

We define the volume of L to be

volX(L) = lim sup
m→∞

h0(X,L⊗m)

mn/n!
.

The Riemann-Roch formula immediately implies that, if L is ample, then

volX(L) = (L)n,

where (L)n is the top self-intersection number of L.
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We summarize some of the basic facts about big line bundles. See Section 2.2 in

[25] for the proofs, as well as [26] for an interesting new point of view on the entire

theory.

Proposition 3.2.2. Let X be a smooth projective variety of dimension n and let L

be a line bundle on X. Then (all citations are from [24])

1. The lim sup in the definition is always finite and is always a limit (Remark

2.2.50).

2. The property of being big depends only on the numerical class of L (Corollary

2.2.8).

3. All classes of the form H + C, H an ample Q-divisor and C an effective Q-

divisor, are big. Conversely, every big Q-divisor M can be written as

M ∼Q H + C

where H is ample and C is effective, H and C are Q-divisors (Corollary 2.2.7).

4. The numerical classes of big line bundles form an open pointed (not containing a

line) cone in N1(X)⊗Q, denoted Big(X). The closure of the cone of big classes

is called the cone of pseudoeffective classes, denoted Big(X). A pseudoeffective

class is not necessarily even numerically equivalent to an effective class (Section

2.2.B).

5. The function vol : N1(X) → R is continuous on Big(X) and is zero on the

boundary of this cone (Corollary 2.2.45).

6. If π : Y → X is a birational morphism and L is a big line bundle then π∗L is

also big (this is an immediate consequence of the projection formula).
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For every big line bundle there are associated three important subsets of X, see

[7] for more information.

Definition 3.2.3. Let X be a smooth complex projective variety and let L = OX(D)

be a big line bundle on X.

1. We define the augmented base locus

B+(D) =
⋂

D≡numH+E
H,E Q-divisors

H ample, E effective

E.

Note that, if Z ⊆ X is a subvariety with Z 6⊆ B+(D) then LZ is big.

2. We define the stable base locus

B(L) =
⋃
m≥1

B(mD)

where B(mD) denotes the base locus of mD.

3. We define the restricted base locus

B−(D) =
⋃

A ample Q-divisor

B(D + A).

It is easy to see that B+(D) and B−(D) depend only on the numerical class of D

while B(D) does not. We furthermore have the following easy sequence of inclusions

B+(D) ⊆ B(D) ⊆ B−(D).

The sets B+(D) and B(D) are subvarieties while B−(D) is a priori a countable union

of subvarieties. As of this writing it is not known whether B−(D) is always a variety.

3.3 Singularities of pairs and multiplier ideals

In this section we recall the definitions of discrepancy and the associated singu-

larity classes.
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Definition 3.3.1. A divisor over X is a divisorial rank 1 discrete valuation ν :

C(X) → Z on the function field of X. By a theorem of Zariski (Lemma 2.45 in

[21]) all such valuations are realized as follows - there exists a birational morphism

π : Y → X and a prime divisor E ⊆ Y so that ν(g) = ordE(π∗g) for all g ∈ C(X).

We say that π extracts E. We will often simply say that E is a divisor over X.

Remark 3.3.2. Note that E need not be exceptional for π in this definition.

Definition 3.3.3. Let (X,∆) be a pair. Let E be a divisor over X and let π : Y → X

be a log-resolution of ∆ that extracts E. We define the discrepancy of (X,∆) along

E as

a(E;X,∆) := ordE (dKY − π∗(KX + ∆)e) .

We define the total discrepancy of (X,∆) at a (not necessarily closed) point η as

totaldiscrep(η;X,∆) := inf
E,η∈center(E)

a(E;X,∆).

If η is the generic point of X we simply write totaldiscrep(X,∆). We also want to

define the total discrepancy of ideals. Let a1, . . . , as ⊆ OX be a finite collection of

ideals and let ci ∈ Q>0. Let π : Y → X be a log-resolution of (X,∆) and of the ai.

Write ai · OY = OY (−Fi). We define

a (E; (X,∆), ac11 · · · acss ) := ordE

(
KY − π∗(KX + ∆)−

∑
ciFi

)
.

If Zi is a finite collection of subschemes of X and ai ∈ Q>0 then we define

a

(
E; (X,∆),

∑
i

aiZi

)
:= a

(
E; (X,∆),

∏
IciZi
)
.

Finally, we define

totaldiscrep

(
η; (X,∆),

∑
i

aiZi

)
:= inf

E,η∈center(E)
a

(
E; (X,∆),

∑
i

aiZi

)
.
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We will use the following three classes of singularities.

Definition 3.3.4. Let (X,∆) be a pair and let H ⊆ X be an irreducible divisor.

We say that (X,∆) is

1. klt if, for every divisor E over X, a(E;X,∆) > −1,

2. plt if a(E;X,∆) > −1 for every exceptional divisor over X,

3. plt along H if a(E;X,∆+H) > −1 for every divisor over X with center different

from H,

4. log-canonical if a(E;X,∆) ≥ −1 for every divisor over X.

We also recall the standard definitions of multiplier and adjoint ideals, see Section

9.2 in [25] for an excellent expanded discussion. First, the following lemma follows

immediately from the definition.

Lemma 3.3.5. Let π : Y → X be a birational morphism with Y smooth and let

D =
∑

aiDi

be a Weil divisor on Y . Let U be an open subset of X. Then we have the following

description:

H0(U, π∗OY (D)) =
{
f ∈ C(X) | π∗(f) ∈ H0(π−1(U),OY (D))

}
= {f ∈ C(X) | ordDiπ

∗(f) ≥ −ai} .

Here we recall the definition of multiplier ideals. We will review their basic prop-

erties in the next section.

Definition 3.3.6. Let (X,∆) be a pair and let π : Y → X be a log-resolution of ∆.

We define

J (X,∆) := π∗OY (dKY − π∗(KX + ∆)e).
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We also want a definition for multiplier ideals of ideals, so let a1, . . . , as ⊆ OX be a

finite collection of ideals and let ci ∈ Q>0 (or even in R>0). Let π : Y → X be a

log-resolution of (X,∆) and of the ai. Write ai · OY = OY (−Fi). We define

J ((X,∆); ac11 · · · acss ) := π∗OY
(⌈
KY − π∗(KX + ∆)−

∑
ciFi

⌉)
.

If Zi is a finite collection of subschemes of X and ai ∈ Q>0 then we define

J

(
(X,∆);

∑
i

aiZi

)
:= J

(
(X,∆);

∏
i

IaiZi

)
.

The following is straightforward to check from Lemma 3.3.5.

Theorem 3.3.7. Let (X,∆) be a pair and let π : Y → X be a log-resolution of ∆.

Then

J (X,∆) = OX

if and only if (X,∆) is klt and

J (X, (1− ε)∆) = OX for all ε� 1

if and only if (X,∆) is log-canonical.

We will also discuss the adjoint ideal along an irreducible divisor.

Definition 3.3.8. Let (X,∆) be a pair and let H ⊆ X be a (reduced) irreducible

divisor. Let π : Y → X be a log-resolution of ∆ + H. Let H ′ ⊆ Y be the strict

transform of H along π. We define

adjH(X,∆) := π∗OY (dKY − π∗(KX + ∆ +H) +H ′e).

The straightforward analog of the previous theorem for adjoint ideals is the fol-

lowing.
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Theorem 3.3.9. Let (X,∆) be a pair, let H ⊆ X be an irreducible divisor and let

π : Y → X be a log-resolution of ∆ +H. Then

adjH(X,∆) = OX

if and only if (X,∆) is plt along H.

3.4 Basic properties of multiplier and adjoint ideals

In this section we recall some basic facts about multiplier and adjoint ideals. The

following lemma follows immediately from Lemma 3.3.5.

Lemma 3.4.1. Let (X,∆) be a pair and let π : Y → X be a log-resolution of this

pair. Let U ⊆ X be an open set and let f ∈ OX(U). Then f ∈ Γ(U,J (X,∆)) if and

only if

div(π∗f) ≤ KY − π∗(KX + ∆).

We begin with the following theorem. Due to its central importance and our later

use of the proof, we provide a proof.

Theorem 3.4.2. The definitions of J (X,∆) and adjH(X,∆) are independent of the

choice of log-resolution π : Y → X.

Proof. We will prove this for J (X,∆). The statement for adjH(X,∆) is completely

analogous and in any event we will prove a stronger version in Proposition 5.1.8.

So, suppose that π1 : Y1 → X and π2 : Y2 → X are two log-resolutions of (X,∆).

There exists a birational morphism π : W → X that factors through π1 and π2, that
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is, there is a diagram

W

~~}}
}}

}}
}}

  A
AA

AA
AA

A

Y1

π1   A
AA

AA
AA

A Y2

π2~~}}
}}

}}
}}

X

and so that π is a log-resolution of (X,∆). If we can show that

π1,∗OY1(dKY1 − π∗1(KX + ∆)e) = π∗OW (dKW − π∗(KX + ∆)e)

then it follows by symmetry that

π1,∗OY1(dKY1 − π∗1(KX + ∆)e) = π2,∗OY2(dKY2 − π∗2(KX + ∆)e)

as required.

We are thus reduced to the following setup. Suppose we are given two maps

f : W → Y and g : Y → X so that π = f ◦ g and g are log-resolutions of (X,∆).

Then we need to show that

π∗OW (dKW − π∗(KX + ∆)e) = g∗OY (dKY − π∗(KX + ∆)e).

We claim that it is enough to show that

(3.1) dKW − π∗(KX + ∆)e = f ∗(dKY − g∗(KX + ∆)e) +B

with B an effective exceptional divisor. This is because the projection formula says

that

π∗OW (dKW/X − π∗∆e) = π∗OW (f ∗(dKY/X − g∗∆e) +B)

= g∗(OY (dKY/X − g∗∆e)⊗ f∗OW (B))

= g∗(OY (dKY/X − g∗∆e)
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by Lemma 3.4.1.

To see (3.1), we first write

dKW − π∗(KX + ∆)e = KW/Y − b−f ∗(KY − π∗(KX + ∆))c.

By adding the Cartier divisor f ∗b−(KY − π∗(KX + ∆))c to both sides of (3.1) we

can assume that

b−(KY − π∗(KX + ∆))c = 0

and that −(KY − π∗(KX + ∆)) is an effective Q-divisor. We are reduced to proving

that, in this special case,

KW/Y − b−f ∗(KY − π∗(KX + ∆))c ≥ 0.

But then part (3) of Corollary 2.31 in [21] applies to our situation and says that

a(E;X,−(KY − π∗(KX + ∆))) > −1

for all divisors E over X. After recalling the definition of the discrepancy we see

that this is exactly the statement we are looking for.

One of the crucial facts about the multiplier ideal formalism is the Kawamata-

Viehweg vanishing theorem and its multiplier ideal version, known as the Nadel van-

ishing theorem. We will use the following statement of Kawamata-Viehweg vanishing

(see Theorem 9.1.18 in [25] for the proof).

Theorem 3.4.3 (The Kawamata-Viehweg vanishing theorem). Let Y be a smooth

complex projective variety and let OY (D) be a line bundle on Y . Suppose that we

can write

D ≡num KY + A+ ∆
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with A a big and nef Q-divisor and ∆ a simple normal crossings Q-divisor with

b∆c = 0. Then

H i(Y,OY (D)) = 0 for all i > 0.

One may think of ∆ as some kind of error term. The following two theorems

follow directly from the Kawamata-Viehweg vanishing theorem.

Theorem 3.4.4 (Local vanishing). Let f : Y → X be a proper birational morphism

with X, Y projective varieties and Y smooth. Let D be a Q-divisor that has simple

normal crossings support and is numerically equivalent to KY ′ + f ∗D′ where D′ is

any Q-divisor on X. Then

Rif∗OY ′(dDe) = 0

for all i > 0.

Proof. An argument using the Leray spectral sequence and Serre vanishing shows

that, if H is ample on X, then

H i(Y ′,OY ′(dDe+ f ∗(mH))) = 0

for all i > 0 and m� 0. But D′ +mH is ample for all m� 0. Then

dDe+ f ∗(mH) ≡num KY ′ + f ∗(D′ +mH) + ∆

where ∆ is a simple normal crossings Q-divisor with b∆c = 0. Since D′ + mH is

ample and f is birational, f ∗(D′ +mH) is big and nef. The required vanishing now

follows from the Kawamata-Viehweg vanishing theorem.

Theorem 3.4.5 (Nadel vanishing). Let (X,∆) be a pair and let D be a Cartier

divisor on X so that

D ≡num KX + ∆ + A
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with A a big and nef Q-divisor. Then

H i(X,OX(D)⊗ J (X,∆)) = 0

for all i > 0.

Proof. Let f : Y → X be a log-resolution of (X,∆). By the projection formula,

OX(D)⊗ J (X,∆) = f∗OY (dKY − f ∗(KX + ∆−D)e).

By the local vanishing theorem 3.4.4,

Rif∗OY (dKY − f ∗(KX + ∆−D)e) = 0

for all i > 0. By the Leray spectral sequence,

H i(X,OX(D)⊗ J (X,∆)) = H i(Y,OY (dKY − f ∗(KX + ∆−D)e)).

But the hypotheses imply that

KX + ∆−D ≡num −A,

and so

dKY − f ∗(KX + ∆−D)e ≡num KY + f ∗A+ ∆

where ∆ = {KY − f ∗(KX + ∆−D)} is a simple normal crossings divisor with b∆c =

0. Since f is a birational morphism, f ∗A is again big and nef. It follows from the

Kawamata-Viehweg vanishing theorem 3.4.3 that

H i(Y,OY (dKY − f ∗(KX + ∆−D)e)) = 0

for all i > 0, as required.
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3.5 Asymptotic multiplier ideals

Asymptotic multiplier ideals will play a central role in the extension theorem of

the last chapter, so we recall them. See Chapter 11 of [25] for an excellent explanation

of this material. First we will need the following setup.

Definition 3.5.1. Let X be a projective variety. A graded system of ideals is a

sequence of ideals ai ⊆ OX , i ∈ N, with ai · aj ⊆ ai+j. Let L be a line bundle. A

graded linear series Wl, l ∈ N, is a sequence of subspaces

Wl ⊆ H0(X,L⊗l)

so that

|Wi|+ |Wj| ⊆ |Wi+j|.

Note that the ideals al := b(Wl), where Wl is a graded linear series, are a graded

system of ideals.

Now let (X,∆) be a pair. To define the asymptotic multiplier ideal, let ai be a

graded system of ideals and let c be a positive real number. We can then consider

the ideals

Ji = J ((X,∆); a
c/i
i ).

Lemma 3.5.2. For every k ∈ N we have the inclusion

Ji ⊆ Jki.

Proof. Fix a k ∈ N. Let π : Y → X be a log-resolution of (X,∆), ai and aki

simultaneously. Let OY (−Fi) = ai ·OY and similarly for Fki. Since aki ⊆ aki we must

have

kFi ≥ Fki.
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It follows that

Ji = J ((X,∆); ac/i)

= π∗OY
(
KY −

⌊
π∗(KX + ∆) +

c

i
Fi

⌋)
⊆ π∗OY

(
KY −

⌊
π∗(KX + ∆) +

c

ki
Fki

⌋)
= J ((X,∆); ac/ki) = Jki.

This lemma is the crucial point in the construction of the asymptotic multiplier

ideal.

Theorem 3.5.3. The family of ideals Ji has a unique maximal element that we will

call the asymptotic multiplier ideal of the graded system of ideals a• and denote

J ((X,∆); c · a•).

This ideal is computed by the ideals Jk for k divisible by some (potentially large)

integer k′ that depends on the ideals ai.

Proof. It follows immediately from the previous lemma and the ascending chain

condition that there is a maximal element Jp. Suppose Jq is also maximal. By the

previous lemma they must then both be equal to Jpq. This proves that the maximal

element is unique.

Finally, we define the asymptotic multiplier ideal of a graded linear series.

Definition 3.5.4. If Wl is a graded linear series and c ∈ Q>0 then we set

J ((X,∆); c · ||W•||) = J ((X,∆); c · a•)
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where ai = b(|Wi|) are the base loci of the Wl. If Wl is the complete linear series

|lM | for all (or just sufficiently divisible) l then we write

J ((X,∆); c · ||M ||)

for the resulting asymptotic multiplier ideal.



CHAPTER 4

Inversion of adjunction - (some of) the story so far

In this chapter we will briefly survey some of the highlights of what is known

about inversion of adjunction, especially those theorems closest to our subsequent

results. This material is purely expository.

Inversion of adjunction is a central tool in the theory of high-dimensional projec-

tive varieties. Since Mori’s foundational work it became apparent that, on the one

hand, singularities are a fact of life for the classification of varieties of dimension

more than three, and on the other hand, that not all singularities are equally bad.

There is now a subtle taxonomy of singularities and we recalled some of these classes

of singularities in the previous chapter (see Definition 3.3.4 for a very incomplete

list).

From a technical standpoint, many proofs in high-dimensional geometry proceed

by induction on the dimension, even including Hironaka’s fundamental theorem on

the resolution of singularities. However, unlike resolution of singularities, we gener-

ally do not expect many of the more subtle theorems, such as the minimal model

program, to hold in the arbitrarily singular case. As such, induction on the dimen-

sion is presented with two complications. The first, not too difficult to resolve, is

that for a pair (X,∆) we need to be able to bound the singularities of (Z,∆Z) where

32
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Z ⊆ X is a subvariety and ∆Z is an appropriately chosen restriction of ∆ to Z. The

second is that we need to be able to lift data from the irreducible divisor to the larger

variety. For example, suppose we know that the singularities of (Z,∆Z) are bounded

in some way. Do we obtain a bound for the singularities of (X,∆) near Z?

Inversion of adjunction was originally a statement to this effect when (X,∆) is a

pair and Z is an irreducible divisor with Z 6⊆ Supp(∆). Here we take ∆Z to be simply

the component-wise restriction of ∆ to Z. In this situation, inversion of adjunction

says that (Z,∆Z) is klt if and only if (X,∆) is plt near Z. Note the intrinsic geometric

appeal of this statement - modulo some subtle distinctions between klt and plt, log-

terminal singularities do not ever see transversality problems, in constrant with the

generic situation in Bertini’s theorem. It is interesting to generalize this theorem,

both intrinsically and for several technical applications.

4.1 Inversion of adjunction for klt pairs

In this section we revisit the proof of the original statement of inversion of adjunc-

tion. This was originally a proven by Shokurov in dimension 3 in [30] and extended

to all dimensions in [1], sections 17.6 - 17.7. In the same papers, the authors con-

jecture a much stronger statement about minimal log-discrepancies that is still open

as of the time of writing. We will give the statement in less than full generality to

make the exposition more transparent.

We begin with the following interesting lemma. This is essentially a packaging of

local vanishing and, as we will see, can often be circumvented by the use of multiplier

ideals. It is, however, of intrinsic geometric interest. We again reduce the generality

of the statement to ease exposition.

Lemma 4.1.1 (Connectedness lemma). Let X be normal, Y smooth, and let f :
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Y → X be a proper birational morphism. Let

D =
∑

aiDi

be a simple normal crossings Q-divisor so that f∗D is effective and

KY +D ≡num f ∗B

for some divisor B on X. Write

A =
∑
i:ai<1

aiDi, and F =
∑
i:ai≥1

aiFi.

Then the support of F is connected in a neighborhood of any fiber of f .

Proof. This proof is taken from the proof of Theorem 5.48 in [21]. Notice that

d−Ae − bF c ≡num KY − f ∗B + {A}+ {F} .

By the local vanishing theorem 3.4.4, we have that

R1f∗OY (d−Ae − bF c) = 0.

We therefore can push down the exact sequence

0→ OY (d−Ae − bF c)→ OY (d−Ae)→ ObF c(d−Ae)→ 0

to get that the map of sheaves

f∗OY (d−Ae)→ f∗ObF c(d−Ae)

is surjective.

Let Di be a component of the support of A. Since g∗D is effective, either Di is

f -exceptional or ai > 0. In particular, d−Ae is f -exceptional and effective. It follows

that f∗OY (d−Ae) = OX and we get an exact sequence

OX → f∗ObF c(d−Ae)→ 0.
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This easily implies the conclusion. Indeed, suppose that for some x ∈ X we can

write bF c = F1 + F2 with F1 and F2 having disjoint support near f−1(x). But then

f∗ObF c(d−Ae)x = f∗ObF1c(d−Ae)x ⊕ f∗ObF2c(d−Ae)x

with both summands non-zero, and OX,x, which is a local integral domain, cannot

surject onto this.

Theorem 4.1.2. Let (X,∆) be a pair and let H ⊆ X be a normal irreducible divisor

that is not a component of the support of ∆. Suppose that H is Cartier, that is,

OX(H) is an invertible sheaf. Then the pair (X,∆) is plt near H if and only if

(H,∆H) is klt.

Proof. This proof is taken from [21], Theorem 5.50. Since H is Cartier, (X,∆ +H)

is a pair. Let f : Y → X be a log-resolution of (X,∆ +H). Write

−D = KY − f ∗(KX + ∆ +H),

note carefully the minus sign.

Let H ′ be the strict transform of H and let A and F as in the lemma above, applied

with our choice of D. Write F = H ′+F ′. Combining the fact that D−H ′ = A+F ′

and the adjunction formula we obtain

KH′ = f ∗(KH + ∆H)− (A+ F ′)H′ ,

even as divisors (this can be checked with the Poincaré residue, see [19]). In other

words,

KH′ − f ∗(KH + ∆H) = −(A+ F ′)H′ .

If we unwind all the definitions and use the fact that everything in sight is simple

normal crossings, we see that
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1. (X,∆ +H) is plt near H if and only if F ′ ∩ f−1(H) = ∅, and

2. (H,∆H) is klt if and only if F ′ ∩H ′ = ∅.

It is now obvious that (X,∆ + H) plt implies that (H,∆H) is klt. Note that we

did not need to apply any vanishing theorems to deduce this. Conversely, suppose

that (H,∆H) is klt. By the connectedness lemma directly above, for every x ∈ H

we have that

(H ′ ∪ F ′) ∩ f−1(x)

is connected. But F ′ ∩H ′ = ∅, so F ′ ∩ f−1(x) = ∅. This holds for every x ∈ H, so

F ′ ∩ f−1(H) = ∅ and we are done.

4.2 The adjoint ideal and the restriction theorem for multiplier ideals

Recall that the multiplier ideal J (X,∆) measures the failure of this pair to be klt

and the adjoint ideal adjH(X,∆) measures the failure of the pair to be plt near H.

Therefore, one can expect there to be a version of inversion of adjunction involving

these ideals, and indeed there is one.

Theorem 4.2.1 (The restriction theorem). Let (X,∆) be a pair and let H ⊆ X be

an irreducible divisor. Then

adjH(X,∆) · OH = J (H,∆H)

and we have an exact sequence describing the kernel as

0→ J (X,∆ +H)→ adjH(X,∆)→ J (H,∆H)→ 0.

Proof. Let π : Y → X be a log-resolution of (X,∆+H), let H ′ be the strict transform
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of H in Y and consider the short exact sequence

0→ OY (dKY − π∗(KX + ∆ +H)e)

→ OY (dKY − π∗(KX + ∆ +H) +H ′e)

→ OH′(dKY − π∗(KX + ∆ +H) +H ′e)H′ → 0.

On the one hand,

dKY − π∗(KX + ∆ +H) +H ′eH′ = d(KY − π∗(KX + ∆ +H) +H ′)H′e

because everything in sight has simple normal crossings support. But the adjunction

formula says that

(KY − π∗(KX + ∆ +H) +H ′)H′ = KH′ − π∗(KH + ∆H),

As before, one can show that thisholds at the level of divisors using the Poincaré

residue (see [19]) or the adjunction formula we shall prove in Theorem 7.6.6.

On the other hand, the local vanishing theorem 3.4.4 says that

R1π∗OY (dKY − π∗(KX + ∆ +H)e) = 0.

It follows that the sequence above pushes down to the exact sequence

0→ π∗OY (dKY − π∗(KX + ∆ +H)e)

→ π∗OY (dKY − π∗(KX + ∆ +H) +H ′e)

→ π∗OH′(dKY − π∗(KX + ∆ +H) +H ′e)H′ → 0

and, combined with our adjunction calculation, this is the exact sequence in the

statement of the theorem.

The explicit description of the kernel as a multiplier ideal is very powerful when

combined with Nadel vanishing since it gives a method for lifting sections of adjoint
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bundles OX(KX +A) with A sufficiently positive from H back to X. This is particu-

larly useful for proving extension theorems for pluricanonical forms. We will use this

now standard idea in Theorem 8.5.6 to generalize Siu’s famous extension theorem to

the high codimension situation.

4.3 A sampling of other forms of inversion of adjunction

Theorem 4.2.1 is the starting point of a rich and developing theory. In this

section we will review, without proof, some of the more recent work on inversion of

adjunction.

The notions of klt and plt can be interpreted in terms of the total discrepancy.

There is a statement of inversion of adjunction, due to Kawakita in [17] and inde-

pendently Ein and Mustaţă in [8], for the total discrepancy.

Theorem 4.3.1 (Kawakita, Ein-Mustaţă). Let A be a smooth variety and let X ⊆ A

be a closed normal subvariety of codimension c. Let ∆ be a Q-divisor on A with

X 6⊆ Supp(∆). Let W ⊆ X be a proper closed subset. Suppose r is a Gorenstein

index of X and Jr is the l.c.i.-defect ideal of X (see Section 7.2). Then

totaldiscrep

(
W ;X,∆X +

1

r
V(Jr)

)
= totaldiscrep(W ;A, cX + ∆).

The proof uses motivic integration on spaces of arcs. We also have inversion of

adjunction of log-canonical singularities.

Theorem 4.3.2 (Kawakita). Let (X,S + B) be a pair so that S is a reduced irre-

ducible divisor with S 6⊆ Supp(B). Let Sν be the normalization of S and let Bν be

the different of B on Sν defined by adjunction:

ν∗(KX + S +B)S = KSν +Bν .

Then (X,S +B) is log-canonical near S if and only if (Sν , Bν) is log-canonical.
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The work of Takagi from [33] and [32], reviewed in Section 7.3, is another direction

of generalization for inversion of adjunction that we will explore in detail. In a

superficial sense it is similar to the theorem of Kawakita and Ein-Mustaţă, although

the methods and conclusions are different.



CHAPTER 5

Kawamata subadjunction

We now change gears slightly and review the subadjunction theorem of Kawamata.

One can regard this theorem as a generalization of the adjunction formula. To

understand the analogy, suppose X is smooth and ∆ = H where H is a smooth

hypersurface. We then have the formula

(KX + ∆)H ∼Q KH ,

(we even have that the two sides are linearly equivalent but we will not focus on

that). This ∆ is log-canonical and klt outside H. In a sense that we will make

precise in the first section of this chapter, H is center of log-canonical singularities

for this ∆.

In precise language, H is an exceptional log-canonical center of ∆ (see Definition

5.1.3). In general, these centers do not have to be hypersurfaces; many Z ⊆ X can

be exceptional log-canonical centers of some ∆; and at least if X is smooth, every

Z ⊆ X is a generically exceptional log-canonical center of some ∆ (see Example 5.1.5

for the proof). In this case, one can tautologically write

(KX + ∆)Z ∼Q KZ + ∆Z

where ∆Z is some sort of non-unique error term.

40
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One can ask if there are some choices of ∆Z that are better than others. Since Z is

a generically exceptional log-canonical center, it comes with a morphism f : E → Z,

unique up to birational equivalence. This f is not birational in general but it is

projective with connected fibers and E can be chosen to be smooth. It is easy to

construct a pair structure (E,R) so that, if F is a general fiber of f then (F,RF ) is klt

and log-Calabi-Yau. There is some expectation that ∆Z can be explicitly described

as the pullback of an ample divisor by a morphism that this structure induces from

Z to an appropriate moduli space of log-Calabi-Yau varieties. Unfortunately, as of

the time of writing, the construction of reasonable moduli spaces of such varieties is

a major unsolved problem.

Fortunately, all is not lost. Where the moduli space does not exist we can some-

times substitute the induced morphism to the moduli space with a variation of Hodge

structure. A deep fact is that this ∆Z can be described in an explicit Hogde-theoretic

way through such a variation of Hodge structure. Although we do not review the

Hodge theory, we do review (and slightly generalize) this construction in Section 5.3.

This construction recovers enough information for Kawamata to prove in [18] the

following celebrated result. Suppose A is an ample divisor and 0 < ε� 1 is a small

rational number. Suppose further that (X,∆) is a pair with Z ⊆ X an exceptional

log-canonical center of ∆. Then Z is normal and we can choose a Weil Q-divisor ∆Z

on Z so that

(KX + ∆ + εA)Z ∼Q KZ + ∆Z

with ∆Z klt. In our context, we can regard this theorem as saying that the error

term ∆Z is small in an appropriate sense.

In this chapter we state the Hodge-theoretic result and slightly generalize the con-

struction of ∆Z to the case where Z is only a generically exceptional log-canonical



42

center. We are moving in the direction of generalizing Kawamata’s theorem to cal-

culate J (Z,∆Z) in this much more general situation.

Almost all of the material in this section is expository. The material that is not

expository is only a minor variation on existing results and will be indicated as such.

5.1 Log-canonical centers

We begin by recalling the definition of log-canonical centers. We also review

exceptional log-canonical centers and define our notion of a generically exceptional

log-canonical center. We then define a variant of the adjoint ideal that detects how

exceptional a general pair (X,∆) is near a generically exceptional log-canonical center

Z. Generically exceptional log-canonical centers and our new adjoint ideal will play

a central role in our statement of inversion of subadjunction.

Definition 5.1.1. Let (X,∆) be a log-canonical pair. A subvariety Z ⊆ X is called

a log-canonical center if there exists a log-resolution π : Y → X of ∆ and a divisor

E ⊆ Y with a(E;X,∆) = −1 so that π(E) = Z.

The following standard theorem is a crucial part of the theory.

Theorem 5.1.2. Let (X,∆) be a log-canonical pair. There exists a log-resolution

π : Y → X of ∆ so that all log-canonical centers of ∆ are realized by π, in other

words, for every subvariety Z ⊆ X that is a log-canonical center of ∆ there is a

divisor E ⊆ Y so that Z = π(E).

Proof. The proof of Corollary 2.31 in [21] shows that the number of log-canonical

centers is finite. Once this is known the theorem is obvious.

For our purposes it will be important to define the following special cases of log-

canonical centers.
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Definition 5.1.3. Let (X,∆) be a log-canonical pair and let π : Y → X be a log-

resolution of ∆ realizing all log-canonical centers of ∆. Let Z ⊆ X be a log-canonical

center of ∆.

1. Z is a minimal log-canonical center if Z is a minimal element of the set of

log-canonical centers of ∆ with respect to inclusion.

2. Z is an exceptional log-canonical center if Z is minimal and the divisor E ⊆ Y

with π(E) = Z and a(E;X,∆) = −1 is unique.

3. Z is generically an exceptional log-canonical center if there is a dense open

subset U ⊆ X containing the generic point of Z so that ZU is an exceptional log-

canonical center of (U,∆U). In other words, the divisor E ⊆ Y with π(E) = Z

and a(E;X,∆) = −1 is unique but Z may not be a minimal log-canonical

center.

Example 5.1.4. Suppose that X is smooth and ∆ is a reduced simple normal

crossings Weil divisor, say

∆ =
∑

Ei.

Then (X,∆) is log-canonical. The log-canonical centers of ∆ are simply intersections

of the Ei. The minimal centers are the intersections of maximal subcollections Eiα

so that

Z =
⋂
iα

Eiα

is not empty. Every intersection of any subcollection of the Ei is generically excep-

tional. All minimal centers are exceptional.

Example 5.1.5. Let X = C2 and let ∆ be the cusp, that is, the image of the

morphism C → C2 that sends t 7→ (t2, t3). Then ∆′ = c · ∆ is log-canonical when
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c = 5/6. The origin is an exceptional log-canonical center of (X,∆′). The cusp itself

is a generically exceptional log-canonical center of (X,∆) even though (X,∆) is not

log-canonical.

Example 5.1.6. Let X be a smooth quasi-projective variety and let Z ⊆ X be

an arbitrary subvariety of X. We claim that there exists a ∆ on X so that Z is a

generically exceptional log-canonical center of ∆. Indeed, the problem is local on X

so we may assume that Z is smooth. Let A be a divisor so ample that OX(A)⊗ IZ

is globally generated. Then we can choose divisors

H1, . . . , Hs ∈ |OX(A)⊗ IZ |

so that H1 ∩ · · · ∩Hs = Z and the Q-divisor

∆ = c · (H1 + · · ·+Hs)

is simple normal crossings outside Z, where c ∈ Q>0 is to be determined. Take a

log-resolution f : Y → X of (X,∆). Consider

KY/X − f ∗∆ = KY/X − cf ∗(H1 + · · ·Hs) =
∑
i

biEi.

Since ∆ was simple normal crossings outside Z we can choose a c with 0 < c ≤ 1 so

that ∆ is log-canonical outside Z, all bi with Ei dominating Z are ≤ −1 and some bi

with Ei dominating Z is equal to −1. Then the locus where ∆ is not log-canonical

does not contain Z and we may remove it from X.

We have shown that there exists an open subset U ⊆ X and a pair structure

(X,∆) so that Z∩U as a minimal log-canonical center of ∆U . We can then apply the

tie-breaking procedure as in, for example, Proposition 8.7.1 in [5], to get an (X,∆′)

with Z ∩ U an exceptional log-canonical center of ∆′U , that is, Z is a generically

exceptional log-canonical center of (X,∆′).
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Just as in the codimension one case, there is a natural adjoint ideal that measures

the failure of a log-canonical center to be exceptional. The adjoint ideal we define

here seems to be new.

Definition 5.1.7. Let (X,∆) be a pair and let Z ⊆ X be a generically exceptional

log-canonical center of ∆. Let g : X ′ → X be a log-resolution ∆. Define

adjZ(X,∆) = g∗OX′
(⌈
KX′/X − g∗∆

⌉
+ E

)
where E is the unique divisor dominating Z with discrepancy −1.

Proposition 5.1.8. This ideal does not depend on the choice of g.

Proof. Consider a sequence of birational maps

X ′′
f //

π
!!C

CC
CC

CC
C X ′

g

��
X

with g a log-resolution of ∆ and f a log-resolution of g∗(∆) + Exc(g). Note that π

is a log-resolution ∆. As usual, it is enough to show that g and π compute the same

ideal.

Now, let

B =
⌈
KX′/X − g∗∆

⌉
+ E.

As in Theorem 3.4.2, it is enough to show that, if Eπ and Eg are the exceptional

divisors of discrepancy −1 dominating W on X ′′ and X ′ respectively, then

(5.1)
⌈
KX′′/X − π∗∆

⌉
+ Eπ = f ∗

(⌈
KX′/X − g∗∆

⌉
+ Eg

)
+B

with B effective and f -exceptional. But this follows from already established facts.

Indeed, the proof of 3.4.2 shows verbatim the statement that

(5.2)
⌈
KX′′/X − π∗∆

⌉
= f ∗

⌈
KX′/X − g∗∆

⌉
+B′
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with B′ effective and f -exceptional. On the other hand, by definition of discrepancy

we have that

ordEπ
(⌈
KX′′/X − π∗∆

⌉)
= ordEg

(⌈
KX′/X − g∗∆

⌉)
= −1.

It follows that

(5.3) ordE
(⌈
KX′′/X − π∗∆

⌉
+ Eπ

)
= ordE

(⌈
KX′/X − g∗∆

⌉
+ Eg

)
= 0.

Thus, (5.2) shows that (5.1) holds for all divisors except E and (5.3) shows that (5.1)

holds for E. This gives (5.1).

The importance of these definitions will become clear shortly when we discuss

their roles in generalizing the adjunction formula. First however we need to take a

detour into some Hodge theory.

5.2 The Kodaira canonical bundle formula - motivation

We begin with Fujita’s version of Kodaira’s original formula. This is explained

in the excellent article of Kollár in [5], Section 8.2. Let f : S → C be a relatively

minimal elliptic surface. The basic associated invariants to this morphism are the

induced moduli morphism j : C →M1
∼= P1 and the set of points S of C that have

singular fibers Ex, x ∈ S. In the original formula of Kodaira we needed to know the

monodromy of f around the singular fibers Ex but it is now recognized that the only

necessary number is the log-canonical threshold c(Ex) of the pair (S,Ex).

All these data determine the formula

KS ∼Q f
∗

(
KC +

1

12
j∗OP1(1) +

∑
x∈S

(1− c(Ex))[x]

)
.

The important features of the formula are

KS ∼Q f
∗(KC + J +B)
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where J is the pull-back of some ample divisor on the moduli space parameterizing

the fibers via a moduli map, and B is some Q-divisor that depends only on easily

computable information about the singularities of the singular fibers.

There are many obstacles to generalizing this formula to the log-Calabi-Yau sit-

uation. First of all, there are no known reasonable moduli spaces of log-Calabi-Yau

varieties. We hope to deal with this by replacing the moduli space with a variation of

Hodge structure. Second, the fiber space is not minimal and cannot be made minimal

without introducing additional singularities. Let’s deal with the second issue now.

First suppose that we still have an elliptic surface f : S → C which may no longer

be minimal. Let π : S → S ′ be the blow-down morphism to the minimal surface and

let f ′ : S ′ → C be the resulting Iitaka fibration. Then KS = π∗KS′ + E for some

exceptional divisor E and we can apply the original canonical bundle formula to get

that

KS − E ∼Q f
∗

(
KC +

1

12
j∗OP1(1) +

∑
x∈S

(1− c(Ex))[x]

)
.

This seems bad, as we have no easy way to compute E purely in terms of the given

morphism f : S → C.

So, we adjust our expectations and again focus only on the important features.

We do know that the support of E consists of singular fibers and so we can try to

absorb E into B and write

KS +RS ∼Q f
∗(KC + J +B)

where RS is some divisor supported on the singular fibers. We lose uniqueness here,

because if we change the coefficient of [x] from 1 − c(Ex) to 1 − c(Ex) + d we can

compensate for this by adding dEx to RS. This is not all bad, it just means that,

while RS and B are not geometrically meaningful, the geometric content is hidden
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in RS − f ∗B.

Given that we’ve given up on making RS and B meaningful by themselves we

need to decide what we will take for B. Our choice will be compensated for by RS.

Write

B =
∑
x∈S

a(x)[x]

for some coefficients a(x) ∈ Q that are to be determined. One choice is to just take

a(x) = 0. This removes the singular fibers from B and puts them into R. While this

will work, in our setup B is what we control and R is the unknown, so we would

prefer to keep some information about the singular fibers in B. The next obvious

choice is a(x) = 1. This works well, and generalizes well.

We can now write out exactly what the balancing act between RS and f ∗B

amounts to in theorem form. We get the following statement.

Theorem 5.2.1. Let f : S → C be an elliptic surface that is not minimal. Let

S ⊆ C be the set of points that have singular fibers. There is then a unique Q-divisor

R on S so that we can write

KS +R ∼Q f
∗(KC + J +B)

where:

1. J is the (ample) moduli part, obtained by pull-back fromM1 of an ample divisor

by the moduli map,

2. B =
∑

x∈S [x],

3. Supp(R) ⊆ f−1(S),

4. (S,R) is log-canonical (so that R is not somehow too big), and
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5. for every x ∈ S there is a point q ∈ f−1(x) so that (S,R) is not klt at q (so that

R is not somehow too small).

5.3 The higher-dimensional Kodaira canonical bundle formula

Theorem 5.2.1 generalizes well to higher dimensions and to the situation of a log-

canonical pair. The main question is what the replacement of the moduli map by a

variation of Hodge structure actually gives. What do we expect to get? Suppose we

had a moduli space. Then we expect to write J = j∗A where j is the moduli map that

the fiber space induces and A is an ample divisor. In the case of an elliptic surface

we had that the base of the fiber space was a curve and the moduli space was also a

curve. If the fiber space is not isotrivial we get that j is a finite morphism and J is

therefore actually ample. In general we do not expect this dimensional coincidence

and so we expect J to be only semi-ample (which includes the isotrivial case), at

least if the fiber space is nice enough to give us a morphism to the moduli space and

not only a rational map. This conjecture is known as the adjunction conjecture of

Kawamata and Shokurov and it is wide open at the time of writing.

With the variation of Hodge structure approach it turns out that we get only that

J is nef, not semi-ample. We are now finally ready to give the full statement of the

theorem we will base all our calculations on.

Theorem 5.3.1 (Theorem 8.5.1 in [5]). Let E and W be smooth projective varieties

and let f : E → W be a dominant morphism. Let F be a general fiber of f . Let R

be a Q-divisor on E and let B be a reduced divisor on W so that:

1. KE +R ∼Q f
∗(some divisor on W ),

2. κ(F,KF +RF ) = 0,

3. f : E → W , R and B satisfy the standard normal crossings assumptions:
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(a) E and W are smooth (as assumed in our statement),

(b) R + f ∗B and B are simple normal crossings,

(c) f is smooth over W \B, and

(d) if F ′ is a fiber of f over a point p ∈ W \B then RF ′ is klt.

Then we can write

KE +R ∼Q f
∗(KW + J(E/W,R) +BR)

where:

• J(E/W,R) is a divisor, defined only up to linear equivalence. It is the so-called

moduli part. It depends only on (F,RF ) and on W . Under our standard normal

crossings assumptions it is nef.

• BR is a Q-divisor that is uniquely defined once we fix the divisor B as follows:

it is the unique Q-divisor for which there is a codimension ≥ 2 subset S ⊂ W

such that

1. (E \ f−1(S), R + f ∗(B −BR)) is log-canonical, and

2. every irreducible component of B is dominated by a log-canonical center of

(E,R + f ∗(B −BR)).

Condition 1 essentially determines R, condition 2 is an analog of the log-Calabi-

Yau condition and condition 3 is essentially the semi-stable reduction that is expected

to turn the moduli map into a morphism. Of the conditions on B, condition 1 says

that R− f ∗BR is not too big and condition 2 says that R− f ∗BR is not too small.

5.4 The Kawamata different and the subadjunction theorem

We now come to one of the main ideas of our point of view on the subadjunction

theorem. Consider the classical adjunction formula: if X is a smooth projective
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variety and H is a smooth hypersurface then

(KX +H)H ∼ KH .

The directly analogous higher codimension formula involves the normal bundle and

so needs information about defining equations, and if H is singular then it is not

immediately clear what analog of this formula we want. We can compute dualizing

sheaves in this manner, but we are often interested in the canonical class.

What does this have to do with log-canonical centers? Let ∆ = H. It is immediate

that H is an exceptional log-canonical center of ∆ and so

(KX + ∆)H ∼ KH .

What then if Z is a normal exceptional log-canonical center1 of some ∆?

Example 5.4.1. Consider the twisted cubic C ⊆ P3. It is the intersection of three

degree 2 hypersurfaces H ′1, H
′
2, H

′
3. The intersection H ′1 ∩ H ′2 is equal to C ∪ L

with L a line that intersects C at a point. Blowing up this point writes an image

of P1 as a component of the intersection of two smoooth hypersurfaces H1, H2 in

a threefold X. Let ∆ = H1 + H2; this ∆ is log-canonical. A direct calculation

shows that (KP3 + ∆)C has degree 2, while C is abstractly isomorphic to P1, so

(KP3 + ∆)C 6= KC . Note however that the difference between the two has positive

degree, suggesting a positivity result.

To try to recover a formula, we can tautologically write

(KX + ∆)Z ∼Q KZ + ∆Z

for lots of choices of ∆Z . The Hodge theoretic result of the previous section can

be used to show that this ∆Z does indeed have something to do with adjunction.
1We will see later that these are always normal.
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Unfortunately, due to J(E/W,R) only being nef and not semi-ample we need to add

some ampleness to the situation by perturbing ∆.

We emphasize that the content of the following theorem is the explicit construction

of ∆Zn . The construction is slightly more general than Kawamata’s in [18] in order

to accomodate log-canonical centers that are only generically exceptional.

Theorem 5.4.2. Let X be a smooth projective variety, let H be an ample divisor

on X and let ε > 0. Let ∆ be a Q-divisor on X and suppose that Z is a generically

exceptional log-canonical center of (X,∆). Let ν : Zn → Z be the normalization of

Z. With the above setup there exists an explicitly constructed Q-divisor ∆Zn on Zn

that we will call the Kawamata different, so that

1. KZn + ∆Zn is Q-Cartier,

2. ν∗(KX + ∆ + εH)Z ∼Q KZn + ∆Zn.

Before giving the proof, we remark that the theorem of Kawamata applies when

Z is an exceptional log-canonical center of ∆. He shows that in this case Z is normal

and ∆Z is klt. We will not prove this statement here, although it is a corollary of

our Theorem 6.1.1 (see Corollary 6.2.3).

Proof of Theorem 5.4.2. We begin with the following claim.

Claim 5.4.3. There exists a log-resolution g : Y ′ → X of ∆ with the following

properties. Let E be the unique divisor on Y ′ of discrepancy −1 lying over Z and let

gE : E → Z be the restriction of g. Then we can arrange for g to factor as in the
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following diagram

(5.4) E

gE

��

fE
��

⊆ Y ′

f

��
g

��

W

πE

��

⊆ Y

π

��
Z ⊆ X

so that, if we write

KY ′ + E + ∆′ ∼Q g
∗(KX + ∆)

with g∗∆
′ = ∆ and let R = ∆′E (this divisor has simple normal crossings support),

then W carries a divisor B that, together with R and f , satisfies the standard normal

crossings assumptions of Theorem 5.3.1.

First, we will finish the proof of Theorem 5.4.2 assuming the truth of the claim.

Note that, since Z is generically an exceptional log-canonical center of ∆, R is klt

on a generic fiber of gE.

Using Theorem 5.3.1, we obtain a divisor BR, supported on B so that

KE +R ∼Q f
∗
E(KW + J(E/W,R) +BR).

Since H is ample and J(E/W,R) is nef, the sum J(E/W,R) + επ∗EH is big and

nef and so is Q-equivalent to some effective divisor Jε. But recall that KE + R ∼Q

g∗E(KX + ∆)Z . It follows that

KW + Jε +BR ∼Q π
∗
E(KX + ∆ + εH)Z .

Now, πE must factor through the normalization ν : Zn → Z; write πE = ν ◦ h for

this factorization. Pushing the above formula forward along h yields

ν∗(KX + ∆ + εH)Z ∼Q KZn + h∗(Jε +BR).

Set ∆Zn = h∗(Jε +BR).
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Proof of Claim. For clarity, we will construct the required resolution in several steps.

Step 1: Begin with any log-resolution of ∆, say g : X1 → X, and let R and E

as in the statement of the claim. Take any reduced divisor B0 so that Supp(B0)

contains Sing (Z), and so that the locus of points at which g is not smooth or R and

Fp are not simple normal crossings, where Fp is the fiber of gE : E → Z over p.

Step 2: Take a smooth blow-up π : Y → X that does not blow up the generic

point of Z and that induces a birational morphism πE : W → Z with W smooth

and B = π∗EB0 simple normal crossings. Note that, currently, π is related to g only

because B depends on g. We have so far the following diagram

W
� � //

πE   A
AA

AA
AA

A Y

π
��@

@@
@@

@@
@ X1

g
~~||

||
||

||

Z
� � // X

Step 3: In the above diagram we can identify two opportunities for a fiber product:

E

��
W // Z

X1

��
Y // X

Let E ′ ⊆ E ×Z W be the component of the fiber product dominating W and let

X ′ ⊆ X1 ×X Y be the component of the fiber product containing E ′. Note that the

blow-up X ′ → Y is an isomorphism outside B so that outside B we have that E ′ is

isomorphic to E and X ′ is isomorphic to X1. In particular, X ′ is a log-resolution of

∆ outside B.

Step 4: We have the following diagram

E ′
� � //

��

X ′

��
W

� � //

��

Y

��
Z

� � // X
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with X ′ → X isomorphic to X1 → X outside B. Complete the diagram to a new

diagram

E
� � //

��

Y ′

��
E ′

� � //

��

X ′

��
W

� � //

��

Y

��
Z

� � // X

where the morphism g : Y ′ → X ′ → X has the following properties. Let k : Y ′ → X ′

be the factoring morphism. We require that Y ′ be a log-resolution of ∆ and that,

if we replace E by its strict transform under k, E becomes smooth. Let R′ = k∗R,

write

KY ′ + E + ∆′ ∼Q g
∗(KX + ∆)

with g∗∆
′ = ∆ and replace R with R = ∆′E. The next property for which we ask is

that the exceptional set of k should have simple normal crossings. Note that then R

differs from R′ by divisors exceptional for k, so R+ f ∗B is simple normal crossings.

As all blow-up centers of k had centers on X that are contained in B, these choices

construct Diagram 5.4 with the given initial choice of g : X1 → X and B.

We finally introduce a condition on ∆Zn that should be thought of as saying that

∆Zn is sufficiently generic.

Definition 5.4.4. Notation as in the previous theorem. We say that a Kawamata

different (Zn,∆Zn) is suitably chosen if, in addition to the requirements in Claim

5.4.3, the following are satisfied.

• The map πE is sufficiently high - the Rees valuations of adjZ(X,∆) · OZn are

extracted by πE,
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• Jε is general - bJε +BRc = bBRc,

• B is sufficiently large - the components of B include the Rees valuations of

adjZ(X,∆) · OZn ,

Remark 5.4.5. To achieve this we make our choices in Claim 5.4.3 as follows. We

select B large enough to contain the support of adjZ(X,∆) · OZ and we select π :

Y → X to factor through the blow-up of adjZ(X,∆), this makes πE sufficiently high

and B sufficiently lage. To make Jε sufficiently general, we use the fact that Jε is big

and nef to choose it to be of the form H + εC, where H is a general ample divisor,

C is effective and ε is sufficiently small. Note that all this may a priori change BR

and ∆Zn .



CHAPTER 6

Inversion of subadjunction

We now arrive at the first of our main results. The material in this chapter is

adapted from [10].

Let X be a smooth projective variety, let ∆ be a Q-divisor and let Z be a generi-

cally exceptional log-canonical center of ∆. As we discussed earlier, the statement of

Kawamata’s subadjunction theorem can be regarded as a kind of adjunction formula:

ν∗(KX + ∆ + εH)Z ∼Q KZ + ∆Z ,

where ∆Z can be viewed as an error term. In this light, Kawamata’s theorem says

that when the singularities of ∆ near Z are as nice as possible, that is, Z is an

exceptional log-canonical center of ∆), then the singularities of ∆Z are nice, that is,

klt. In this chapter we prove one of our main theorems. We generalize Kawamata’s

statement to compute J (Zn,∆Zn) in terms of adjZ(X,∆).

While our result immediately implies Kawamata’s theorem, it should not be re-

garded as a new proof of it. Instead it is a strictly stronger statement that is deduced

via similar methods by doing more work.
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6.1 The statement

We will first state the theorem, then recall and prove a few lemmas, and then

finally give the proof of the theorem.

Theorem 6.1.1 (Inversion of subadjunction). Let X be a smooth projective variety

and let ∆ be a Q-divisor on X. Suppose that Z ⊆ X is a generically exceptional

log-canonical center of (X,∆). Let

ν : Zn → Z

be the normalization of Z. Let ∆Zn be a suitably chosen Kawamata different for Z,

as in Definition 5.4.4.

As KZn + ∆Zn is Q-Cartier, we may consider the multiplier ideal J (Zn,∆Zn) ⊆

OZn. Then:

1. J (Zn,∆Zn) is contained in the conductor ideal of ν.

2. The conductor is also an ideal on Z and so J (Zn,∆Zn) can naturally be viewed

as an ideal on Z. With this identification, we have that

adjZ(X,∆) · OZn = J (Zn,∆Zn),

3. We have an exact sequence

0→ J (X,∆)→ adjZ(X,∆)→ J (Zn,∆Zn)→ 0

of sheaves on Z.

Remark 6.1.2. In the statement of Theorem 6.1.1, the short exact sequence has the

form

0→ J (X,∆)→ adjZ(X,∆)→ J (Zn,∆Zn)→ 0.
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On the other hand, in codimension one the statement of Theorem 4.2.1 contains the

short exact sequence

0→ J (X,∆ +H)→ adjH(X,∆)→ J (H,∆H)→ 0.

The reader may be worried that we have J (X,∆) on the one hand and J (X,∆+H)

on the other. To deduce Theorem 4.2.1 from Theorem 6.1.1, suppose we are given

H and ∆ as in Theorem 4.2.1. We set ∆ in Theorem 6.1.1 to be ∆ +H.

The following lemma will play a key role in our discussion.

Lemma 6.1.3. Let f : Y ′ → X be a proper birational morphism between projective

varieties and let Z be a subvariety of X. Let E ⊆ Y ′ be an irreducible divisor lying

over Z. Let fE : E → Z be the restriction of f and let D be a Cartier divisor on Y ′

with E 6⊆ Supp(D). Suppose that the natural map of sheaves

f∗OY ′(D)→ fE,∗OE(DE)

induced by restriction of sections is surjective. Let U be an open subset of Z. Then

we can describe the sheaf fE,∗OE(DE) by the rule

Γ(U, fE,∗OE(DE)) =
{
p ∈ C(Z) | f ∗E(p) ∈ Γ(f−1

E (U),OE(DE))
}
.

In other words, every rational function in the set Γ(f−1
E (U),OE(DE)) is a pull-back

of a rational function from Z.

Proof of Lemma. Let

S(U) =
{
p ∈ C(Z) | f ∗E(p) ∈ Γ(f−1

E (U),OE(DE))
}
.

It is easy to see that this assignment, together with the obvious restriction maps,

defines a sheaf S on Z (even an OZ-module). On the other hand, since E 6⊆ Supp(D),
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we can define f∗OY ′(D) · OZ in the usual way since all rational functions in OY ′(D)

are regular at the generic point of E and obtain S more intrinsically.

By the definition of S, there is a natural map of sheaves

ϕ : S → fE,∗OE(DE)

given by p 7→ f ∗E(p). We wish to show that ϕ is an isomorphism. It is injective since

E dominates Z. Since both source and target are sheaves, if ϕ is surjective as a map

of sheaves then ϕU : Γ(U,S)→ Γ(U, fE,∗OE(DE)) is an isomorphism for every open

subset U of Z.

Notice however that we can factor ϕ as follows. Let U be an open subset of Z,

let p ∈ Γ(U,S) and let p′ be any rational function on X so that p′Z = g. Then

f ∗(p′)E = ϕU(p). But, since E 6⊆ Supp(D), the map

f∗OY ′(D)→ fE,∗OE(DE)

is nothing more than the map that, for an open subset V of X takes a rational

function p′ ∈ Γ(V, f∗OY ′(D)) and maps it to f ∗(p′)E. By hypothesis, this map is

surjective as a map of sheaves. But this map clearly factors through ϕ and so ϕ is

also surjective, as required.

Remark 6.1.4. Note that the conclusion of the lemma is equivalent to the statement

that the natural “base change” map

f∗OY ′(D) · OZ → fE,∗OE(DE)

is an isomorphism. In fact, this is how the proof of the lemma proceeds. We will

make use of this equivalent formulation.

We now turn to the proof of Theorem 6.1.1.
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Proof of Theorem 6.1.1. To make the proof more clear, we will proceed in several

steps. As shorthand, set

b = adjZ(X,∆) · OZ .

Step 1: We show that there is a natural exact sequence

0→ J (X,∆)→ adjZ(X,∆)→ b→ 0,

that b is contained in the conductor of ν, that it is integrally closed on Zn, and

we describe its local sections. We accomplish this by combining local vanishing and

Lemma 6.1.3 in the following manner. First, we construct the diagram of morphisms

E
hE

  B
BB

BB
BB

B

gE

��

Zn

νE~~||
||

||
||

Z

⊆

⊆

⊆

Y ′

h

~~||
||

||
||

g

��

X0

ν
!!B

BB
BB

BB
B

X

using the following steps:

• Step 1: Let νE : Zn → Z is the normalization map. It is proper and birational

and therefore it is given by the blowing up of some ideal sheaf I on Z. Lift I

in an arbitrary manner to an ideal sheaf on X and blow up this ideal sheaf to

obtain X0 and ν : X0 → X. Thus, X0 is reduced but possibly not normal.

• Step 2: Complete ν to a log-resolution g : Y ′ → X as in Definition 5.1.7. Let

E be the unique divisor lying over Z with discrepancy −1 and let gE : E → Z

be the restriction of g to E.

• Step 3: With these choices, gE factors through νE and g factors through ν. Let

the factorizations be gE = νE ◦ hE and g = ν ◦ h, here hE is the restriction of h

and νE is the restriction of ν.
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Now, let

D = KY ′/X − g∗∆ + E.

Consider the short exact sequence

(6.1) 0→ OY ′(dD − Ee)→ OY ′(dDe)→ OY ′(dDe)E → 0.

of sheaves on Y ′. Because of our assumption that Z is an exceptional log-canonical

center of ∆ near the generic point of Z, E cannot be in the support of D. As we are

in a simple normal crossings situation, we have

OY ′(dDe)E = OE(dDEe).

By the local vanishing theorem 3.4.4 applied to (6.1) and the morphism g, we get

the short exact sequence

0→ J (X,∆)→ adjZ(X,∆)→ gE,∗OE(dDEe)→ 0.

Then Lemma 6.1.3 says that the natural map

b := adjZ(X,∆) · OZ → gE,∗OE(dDEe)

is an isomorphism.

We can also apply local vanishing to (6.1) and the morphism h. We obtain that

R1h∗OY ′(dD − Ee) = 0.

Lemma 6.1.3 again says that the natural map

h∗OY ′(dDe) · OZn → hE,∗OE(dDEe)

is an isomorphism. In particular, the sheaf hE,∗OE(dDEe) is naturally a subsheaf of

the function field of Z. But we have just seen that

gE,∗OE(dDEe) = νE,∗(hE,∗OE(dDEe))
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is an ideal of OZ (in a compatible sense) and so b is contained in the conductor of ν.

Note that this describes the local sections of b as follows. Let p ∈ Γ(U,OZ) be a

regular function on an open set U . Then g∗E(p) ∈ Γ(g−1(U),OE(dDEe)) if and only

if p ∈ Γ(U, b). In particular, since the membership criteria for b are clearly given by

valuations and b is an ideal subsheaf of the sheaf of integrally closed rings OZn , b is

integrally closed.

We also emphasize that, since b = adjZ(X,∆) · OZ , the ideal b does not depend

on any choices of log-resolutions or Kawamata boundaries.

Step 2: Next we make use of the fact, just proven, that b is integrally closed in

order to make our choice of log-resolution and other parameters for the rest of the

proof. Let Ri be the finite set of divisors over Z that compute membership in the

integrally closed ideal b, that is, the Rees valuations of b. As in Claim 5.4.3, our

diagram of morphisms will be as follows:

E

gE

  

fE
��

� � // Y ′

f

��
g

��

W

πE
��

� � // Y

π

��
Z

� � // X

where:

• g : Y ′ → X is a log-resolution of ∆ as in Definition 5.1.7, E is the unique divisor

of discrepancy −1 lying over Z, and gE : E → Z is the restriction of g to E,

• πE : W → Z is a proper birational morphism with simple normal crossings

exceptional divisor, chosen so that it extracts the Ri. We choose π : Y → X to

be a proper birational morphism that induces πE : W → Z by restriction.

• As observed after Definition 5.4.4, we may additionally choose g and πE in such
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way as to have a reduced divisor B on W with the properties that:

– B satisfies the standard normal crossings assumptions of Theorem 5.3.1.

Denote by BR the divisor constructed from B in Theorem 5.3.1.

– Ri ⊆ Supp(B),

• Again, πE : W → Z factors through the normalization ν : Zn → Z and we

write πE = ν ◦ h for the factorization.

Note that these conditions say that the resulting Kawamata different is suitably

chosen in the sense of Definition 5.4.4. We define Ei to be the components of B.

Next, we adopt the notation from the proof of Kawamata’s subadjunction theorem

in Theorem 5.4.2. Notice that in fact

−(Jε +BR) = KW − π∗E(KZn + ∆Zn)

as Q-divisors. Indeed, their non-exceptional parts are equal by definition and it

follows that the exceptional parts are Q-equivalent, hence equal. In particular,

h∗OW (d−BRe) = J (Zn,∆Zn).

Step 3: We finally compare b and J (Zn,∆Zn). For each index i, let Fα
i be the

divisors on E that dominate Ei (the indices α runs through depend on i). Note that

we do not claim that ordFαi (f ∗BR) = ordFαi (R) for all i and α!

To make the comparison, recall from the definition of BR that

(a) For any irreducible divisor G on W , (E,R + f ∗E(B − BR)) is log-canonical in a

neighborhood of the generic point of every component of f ∗EG that dominates

G,

(b) every component of B is dominated by a log-canonical center of (E,R+f ∗E(B−

BR)).
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Since R+f ∗E(B−BR) is a simple normal crossings divisor by assumption, our choice

of B from step 2 and condition (a) say that

ordFαi (R− f ∗EBR) ≤ 1− ordFαi (f ∗EB) ≤ 0

for all i and α. This says that J (Zn,∆Zn) = h∗OW (d−BRe) ⊆ b.

For the reverse inequality, notice that condition (b) says that for every i there is

an α so that

ordFαi (−R + f ∗E(BR −B)) = −1.

So suppose that (locally) there were to exist an element p ∈ b \ J (Zn,∆Zn). Then,

on the one hand, we have

ordFαi (g∗Ep) ≥ ordFαi (R)

for all i and α. On the other hand, there must exist an index i with

ordEi(π
∗
Ep) < −d−ordEi(BR)e = bordEi(BR)c.

Since the left hand side is an integer, this inequality is satisfied if and only if

ordEi(π
∗
Ep) ≤ ordEi(BR)− 1.

Pulling back we obtain, for this i and all Fα
i ,

ordFαi (g∗Ep) ≤ ordFαi (f ∗E(BR −B)).

Putting the two inequalities together we see that, we must have

ordFαi (R) ≤ ordFαi (g∗Ep) ≤ ordFαi (f ∗E(BR −B)).

Then, for this i and all Fα
i , ordFαi (−R + f ∗E(BR −B)) ≥ 0, a contradiction.
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6.2 Corollaries

This theorem has a number of immediate corollaries, including Kawamata’s sub-

adjunction statement as well as a naive version of inversion of subadjunction.

Corollary 6.2.1. All suitably chosen Kawamata differents are effective. All suitably

chosen Kawamata differents have the same multiplier ideal.

Proof. By the theorem, J (Zn,∆Zn) is always an ideal. This is equivalent to the

assertion that ∆Zn is effective. Also, J (Zn,∆Zn) = adjZ(X,∆) · OZn and this latter

ideal does not depend on the choice of ∆Zn .

Example 6.2.2. To illustrate this phenomenon we present an example that can be

found in [2]. Let C ⊆ P2 be the curve defined by the equation x2z − y3 = 0. The

normalization of this curve is a P1. Direct computation shows that

(KP2 + C)C = KCν + 2p

with p ∈ P1 a point. C is, of course, a generically exceptional log-canonical center of

∆ = C.

The twisted cubic C ⊆ P3 is another example. There are two quadrics H1, H2 ⊆ P2

with H1 ∩H2 = C ∪ L with L a line at infinity. Setting ∆ = H1 +H2 we can check

by direct computation that C is a generically exceptional log-canonical center of ∆,

although it is not minimal - the point C ∩ L is also a log-canonical center. We can

easily check that (KP3 + ∆)C is ample while C is, of course, Fano, so the difference

is ample and, in particular, effective.

Corollary 6.2.3 (Kawamata subadjunction). If ∆ is log-canonical and Z is an

exceptional log-canonical center of ∆, then Z is normal and the suitably chosen

Kawamata different is effective and klt.
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Proof. If ∆ is log-canonical and Z is a minimal center then

adjZ(X,∆) = OX .

It follows from Theorem 6.1.1 that J (Zn,∆Zn) = OZn . But the theorem also tells

us that J (Zn,∆Zn) is contained in the conductor of ν. This conductor is therefore

the unit ideal, that is, Z is normal. Furthermore, the formula J (Z,∆Z) = OZ

immediately implies that ∆Z is effective and klt.

Corollary 6.2.4 (Naive inversion of subadjunction). Suppose Z is an exceptional

log-canonical center of ∆ in a neighborhood of the generic point of Z. Then a suitably

chosen Kawamata different is klt on Zn if and only if ∆ is log-canonical and Z is a

minimal log-canonical center of ∆.

Proof. Since adjZ(X,∆) · OZn = J (Zn,∆Zn), the equivalence follows from checking

when each side of this equation can be equal to OZn .

Corollary 6.2.5 (Kawamata-Viehweg vanishing for adjE(X,∆)). Suppose that Z

is normal and A is a big and nef Q-divisor with AZ again big (in particular, if

Z 6⊆ B+(A)). Suppose that L is a Cartier divisor with A ≡num L−∆. Then

H i(X,OX(KX + L)⊗ adjZ(X,∆)) = 0

for all i > 0.

Proof. This follows immediately from Kawamata-Viehweg vanishing applied to the

long exact sequence in cohomology that we get from the short exact sequence in

Theorem 6.1.1.



CHAPTER 7

The special case of a Q-Gorenstein center

In the previous chapter we gave a statement of inversion of adjunction for arbitrary

subvarieties. One may expect that for special subvarieties or special ∆ there may

be more precise statements. In this chapter we will discuss inversion of adjunction

when restricting to a high codimension subvariety with Q-Gorenstein singularities

(see Definition 7.1.2). Much of our work here is inspired by earlier work of S. Takagi

in [33] and [32]. Takagi uses reduction to positive characteristic and tight closure

methods, our work here can be regarded as a characteristic zero proof of his theorems.

We do obtain slightly stronger results here than he did.

Our main new contribution is an adjunction formula for relative canonical classes

in what are known as strong factorizing resolutions. We define strong factorizing

resolutions in Definition 7.4.3, the proof of their existence is in [4]. Our formula

computes the relative canonical class of an appropriate embedded resolution of a Q-

Gorenstein subvariety in terms of the relative canonical class of the ambient variety

and the l.c.i.-defect sheaf (see 7.2) of the subvariety. This formula, combined with a

simple Leray spectral sequence trick, give our proofs of Takagi’s theorems.

The material in this chapter is adapted from [11].

68
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7.1 Gorenstein and Q-Gorenstein singularities

Here we briefly review the definitions of Gorenstein and Q-Gorenstein singulari-

ties. First we review the classical notion of a Gorenstein singularity (see [16], Section

V.9). We do not aim for maximum generality.

Definition 7.1.1. Let X be a projective variety. We say that X is Gorenstein if

the dualizing complex of X is quasi-isomorphic to an invertible sheaf. In particular,

not only the canonical sheaf but even the dualizing sheaf of X is invertible.

We will not use this notion very much. Instead we will use the following notion,

which is also often called Gorenstein.

Definition 7.1.2. Let X be a normal projective variety. We say that X is quasi-

Gorenstein if KX is Cartier. We say that X is Q-Gorenstein if KX is Q-Cartier.

As we already implied, one can show that Gorenstein implies quasi-Gorenstein

but not vice versa. We give a few examples.

1. Any hypersurface in a smooth variety is Gorenstein.

2. Almost all affine toric varieties that are Q-Gorenstein are not Gorenstein. Write

X = SpecC[σ∨ ∩M ] and let σ have primitive generators a1, . . . , as. Then X is

Q-Gorenstein if and only if there is a u ∈ M so that u(ai) = −r ∈ Z for all

1 ≤ i ≤ s. If r 6= 1 then X is not Gorenstein (see Exercise 31 in [28]).

7.2 The Jacobian ideal and the l.c.i.-defect ideal

Here we briefly review the relevant notions of l.c.i.-defect sheaves. For proofs see

the extremely clear appendix of [8]. There is a good explanation of this material

in [17] as well. We adopt the notation of [8] to emphasize the dependence of the

l.c.i.-defect sheaves on the Gorenstein index.
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Recall that any irreducible scheme X has an associated Jacobian ideal sheaf JacX ,

defined locally as follows. Suppose that X ⊆ An+c is affine of codimension c, defined

by an ideal sheaf I ⊆ OAn+c . Let x ∈ X and suppose that I is generated near x by

f1, . . . , fs. We can form the matrix of partials

∂fi
∂zj

and the Jacobian ideal is generated by the c × c-minors of this matrix. This ideal

does not depend on the choice of generators fi or on the choice of local coordinates

zj (see [9], Section 20.2).

Suppose that X is Q-Gorenstein with a Gorenstein index r. We get a map

(Ωn
X)⊗r → OX(rKX)

given by restricting a section on the left to X \ Xsing and extending this restricted

section to a section of OX(rKX), which is possible since X is normal and OX(rKX)

is an invertible sheaf. Since OX(rKX) is an invertible sheaf there must be an ideal

sheaf Ir,X so that the image of this map is Ir,X · OX(rKX). Then it is true that

(JacX)r ⊆ Ir,X with equality if and only if X is locally a complete intersection. In

general there is an ideal sheaf Jr so that

Jr · Ir,X = JacrX ,

where I indicates the integral closure of the ideal I. The ideal sheaf Jr is called the

r-th l.c.i.-defect sheaf of X. Its support is precisely the set of points where OX,x is

not an l.c.i. local ring.

We should also mention the fact that (Jr)
s ⊆ Jrs and (Jr)s = Jrs. This ensures

that the conclusions of Theorem 7.7.1 do not depend on the arbitrary choice of

Gorenstein index.
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7.3 A brief summary of the work of Takagi in the Q-Gorenstein case

In [33], Takagi defines an adjoint ideal that turns out to be analogous to our

adjoint ideal from Definition 5.1.7. Specifically, his definition is as follows.

Definition 7.3.1. [The Takagi adjoint ideal] Let A be a smooth complex variety

and let ∆ be an effective Q-divisor on A. Let X be a reduced closed subscheme

of pure codimension c so that no component of X is contained in the support of

∆. Let f : A′ → A be the blow-up of X and let E1, . . . , Es be the resulting divisors

dominating a component of X. Let g : A→ A be a log-resolution of (A′, f ∗∆+f−1X)

so that the strict transform of E1 ∪ . . . ∪ Es is smooth. Set π = f ◦ g. Define

adjX(A,∆) = π∗OA

(
KA/A − bπ∗∆c − cπ−1(X) +

s∑
j=1

Ej

)
.

Takagi proves the following proposition, which gives a sense of what singularities

the ideal adjX(A,∆) detects.

Proposition 7.3.2. Over an open set U ⊆ X, the local sections of adjX(A,∆)

consist of those f ∈ OX(U) that satisfy the inequality

ordE(f) + a(E;A, cX + Y ) > 0

for all divisors E over A with center intersecting U and contained in Xsing∪Supp(∆).

With this setup, Takagi’s main theorem is the following.

Theorem 7.3.3. If X is a normal, Gorenstein, closed subvariety of codimension c

that is not contained in Supp(∆) then

J (X,∆X + V(J1)) = adjX(A,∆) · OX ,

where the multiplier ideal of an R>0-linear combination of subschemes is defined as

in Definition 3.3.6.
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To prove this theorem, Takagi proceeds by reducing the problem to positive char-

acteristic, where the adjoint ideal becomes an appropriate modification of the test

ideal from tight closure theory. The problem is then reduced to a problem in tight

closure theory.

In the earlier paper [32], Takagi also proves the following generalization of the

subadditivity formula for multiplier ideals. The proof proceeds via tight closure

techniques as well.

Theorem 7.3.4. Let X be a Q-Gorenstein complex variety. Let JacX be the Jacobian

ideal of X and let D1 and D2 be two Q-Cartier Q-divisors on X. Then

JacX · J (X,D1 +D2) ⊆ J (X,D1) · J (X,D2).

In the case of X smooth, this theorem is deduced from the restriction theorem by

considering the diagonal ∆ ⊆ X ×X and computing

J (X ×X, p∗1D1 + p∗2D2) · O∆ = p−1
1 J (X,D1) · p−1

2 J (X,D2).

Our proof of Takagi’s subadditivity theorem will proceed along similar lines.

7.4 Strong factorizing resolutions

In our approach to Takagi’s theorems we make crucial use of so-called strong

factorizing resolutions of Bravo and Villamayor in [4]. Here we summarize the main

results of their work. First we define precisely the meaning of a simple normal

crossings variety.

Definition 7.4.1. A simple normal crossings variety is a possibly reducible variety

X, with smooth irreducible components, so that locally analytically at every point

of X there exists an isomorphism of X with a subvariety of An
C defined by unions
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of intersections of coordinate hyperplanes. A scheme X has simple normal crossings

support if Xred is a simple normal crossings variety. We say that X has simple normal

crossings with Y if X ∪ Y has simple normal crossings support.

In particular, if X is a subscheme of a smooth variety A then X has simple normal

crossings support if locally at every point p ∈ A there exist regular parameters xi

so that the germ at p of the ideal sheaf of X is generated by elements of the form

xe1i1 · · ·x
es
is

.

These varieties are, in a precise sense, the smoothest varieties that can be achieved

through embedded resolutions of singularities. The following definition makes this

precise.

Definition 7.4.2. An embedded resolution of singularities of a generically smooth

subscheme X contained in a possibly singular variety A is a birational morphism

π : A′ → A so that:

1. A′ is smooth and π is an isomorphism at every generic point of X.

2. The set exc(π) is a divisor with simple normal crossings support.

3. The strict transform of X in A′, denoted X ′, is smooth and has simple normal

crossings with exc(π).

It is a standard fact in the theory of resolutions of singularities (see e.g. the

excellent exposition in [22]) that such a resolution exists whenever X 6⊆ Asing. Next

we state the work of Bravo and Villamayor.

Definition 7.4.3. A factorizing resolution of singularities of X ⊆ A as above is a

birational morphism π : A′ → A that is an embedded resolution of singularities of X

in A so that, if X ′ is the strict transform of X in A′, we have that

IX · OA′ = IX′ · L
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with L a line bundle, and such that moreover support of IX · OA′ is a simple normal

crossings variety.

Let ∆ be an effective Q-Cartier Q-divisor with no component of X contained

in Supp(∆). An embedded resolution of singularities π : A′ → A as above is also

a log-resolution of ∆ if π∗∆ is a divisor with simple normal crossings support and

Supp(π∗∆) ∪ exc(π) ∪X ′ is a simple normal crossings variety.

If Z1, . . . , Zs are subschemes with ideals IZi , we similarly define an embedded

resolution π : A′ → A that is also a log-resolution of the Zi to be an embedded

resolution as above so that

IZ1 · · · IZs · OA

is the ideal sheaf of a divisor with simple normal crossings support. Call this divisor

F . We require that F ∪exc(π)∪X ′ be a simple normal crossings variety. A resolution

of a finite linear combination ∑
aiZi

of subschemes of A is just a resolution of the Zi.

If A is smooth these resolutions were shown to exist in [4]. We prove in the next

lemma that the existence of these resolutions in the case that A is singular and

X 6⊆ Asing follows formally from the smooth case.

Lemma 7.4.4. Let X ⊆ A be a generically smooth subscheme of a not necessarily

smooth variety A. Let π1 : A′ → A be a birational morphism from a smooth variety

A′ that is an isomorphism at the generic points of the components of X. Let X ′

be the strict transform of X in A′ and let E be a divisor on A′ with simple normal

crossing support so that no component of X ′ is contained in E. Then there exist
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morphisms

X
� � //

��

A

π2

��
X ′

� � //

��

A′

π1

��
X

� � // A

where X is the strict transform of X in A so that π := π1 ◦ π2 is a factorizing

resolution of X inside A and X ∪ exc(π) ∪ Supp(π∗2E) is a simple normal crossings

variety.

Proof. We perform the following procedure. Take a factorizing resolution of

(π−1
1 (X))red.

Note that the strict transforms of all irreducible components of (π−1
1 (X))red are

smooth and disjoint. Blow up the supports of the strict transforms of all irreducible

components of (π−1
1 (X))red other than the strict transforms of the components of X.

Let π◦ : A′′ → A′ be the resulting morphism, let π′′ : A′′ → A be its composition

with π1 and consider the subscheme X ′′ of A′′ defined by the ideal sheaf

IX′′ := (IX · OA′′) · OA′′(−(π◦)∗E).

This is a scheme supported on the strict transform of X and a union of divisors on

a smooth variety, but it may have some embedded primes.

Since A′′ is smooth the divisorial components of X ′′ are locally principal. The

embedded primes of X ′′ are supported either on the strict transform of X, which is

generically reduced, or on one of these divisorial components. Write the divisorial

part of X ′′ as ∑
aiDi
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with ai > 0 and let

L = OA′′
(∑

(ai − 1)Di

)
.

The subscheme Y of A′′ defined by the ideal IY = IX′′ · L is generically reduced. We

conclude by taking a factorizing resolution A of Y , which is now possible since it is

generically smooth, and noticing that the expansion of IY and IX′′ to this resolution

must differ by the pull-back of L. By definition of X ′′ it follows that

IX · OA = IX · M

for a line bundleM and the simple normal crossings hypothesis in the lemma is also

satisfied.

Corollary 7.4.5. If no component of X is contained in Asing then a factorizing

resolution of X always exists. Furthermore we can choose this resolution to be a

log-resolution π of any R>0-linear combination Z of subschemes of A not containing

any component of X in its support.

Proof. Let π′ : A′ → A be any birational morphism with A′ smooth that is an

isomorphism at the generic points of X. Take a log-resolution π′′ : A′′ → A′ of

(π′)−1Z + exc(π). Let π1 = π′ ◦ π′′ and let

E = (π′′)−1(Supp(π′)−1Z + exc(π)).

We apply the previous lemma to this π1 and E to conclude.

7.5 A different definition of the Takagi adjoint ideal

In this section we give a new way to compute the Takagi adjoint ideal. This new

way is analogous to the more familiar definition from [25].
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Definition 7.5.1. Let X be a generically smooth equidimensional subscheme of

a variety A. Let c = codimA(X) and let ∆ be an effective Q-Cartier Q-divisor

with no component of X contained in Supp(∆) ∪ Asing. Finally suppose that A is

Q-Gorenstein. Let π : A → A be a log-resolution of ∆ that is also a factorizing

resolution of X in the sense of Corollary 7.4.5. Let X be the strict transform of X

in A. Write

IX · OA = IX · OA(−RX).

We define

adj′X(A,∆) := π∗OA(dKA/A − π∗∆e − cRX).

First we prove that our definition always computes the Takagi adjoint ideal.

Proposition 7.5.2. Keep the notation of the preceding definition. Then

adjX(A,∆) = adj′X(A,∆).

Proof. Let π be a factorizing resolution as in Definition 7.5.1 and let A′′ be the

blow-up of A along X. Let π′′ : A′′ → A be the blow-up morphism. Let π′ be the

composition A′′ → A. Notice that due to the simple normal crossings hypotheses

the composition A′′ → A satisfies the conditions of Definition 7.3.1. Let E be the

(reduced) union of the exceptional divisors lying above the generic points of the

irreducible components of X. Since π′′ is a blow-up of smooth centers transverse to

the exceptional locus of π we compute:

(π′′)∗OA(dKA/A − π∗∆− cRXe) = OA′′(dKA′′/A − (π′)∗∆− cRXe − (c− 1)E)

= OA′′(dKA′′/A − (π′) ∗∆− c(π′)−1(X) + Ee).

By the universal property of blow-ups, π′ must factor through the blow-up of X in

A. But then the divisor we just arrived at computes Takagi’s adjoint. We conclude

by the projection formula.
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From now on we will conflate the two notations, that is, we will write adj′X(A,∆)

as adjX(A,∆). We have observed that Takagi has already shown that adjX(A,∆)

does not depend on the choice of resolution and so our adjoint does not either.

We will now prove a formula that may seem technical at first, but that packages the

application of the local vanishing theorem that we will use to deduce our restriction

theorems.

Lemma 7.5.3. Keep the notation of Definition 7.5.1. Let

D := dKA/A − π∗∆e − cRX ,

so that we have the usual short exact sequence

(7.1) 0→ IX · OA(D)→ OA(D)→ OX(DX)→ 0.

Then

Riπ∗(IX · OA(D)) = 0

for all i > 0. In particular, if f is the restriction of π to X,

adjX(A,∆) · OX = f∗(OA(dKA/A − π∗∆e − cRX) · OX).

In other words we may restrict first then push forward. Furthermore,

π∗IX · OA(D) = J (A, cX + ∆).

Proof. We calculate as follows. Let π′′ : A′′ → A be the blow-up of X with reduced

exceptional divisor E. Let π′ be the composition A′′ → A. Then

(IX · OA′′) · (π′′)∗OA(dKA/A − π∗∆e − cRX) = OA′′((π′′)∗(dKA/A − π∗∆e − cRX)− E)

= OA′′(dKA′′/A − (π′)∗∆− c(π′)−1Xe).
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This has vanishing higher direct images by local vanishing (see Theorem 3.4.4).

Furthermore,

π∗IX · OA(D) = π′∗OA′′(dKA′′/A − (π′)∗∆− c(π′)−1Xe) = J (A, cX + ∆).

In turn, local vanishing for π′′ implies that

Riπ′′∗(OA′′(dKA′′/A − (π′)∗∆− c(π′)−1Xe)) = 0

for all i > 0. We conclude by the following lemma.

Lemma 7.5.4. Suppose we are given a diagram of proper morphisms

X ′′

f

��

h

}}{{
{{

{{
{{

X ′

g
!!C

CC
CC

CC
C

X

and a coherent sheaf F on X ′′. Suppose that Rjh∗F and Rjf∗F vanish for all j > 0.

Then Rjg∗(h∗F) = 0 for all j > 0.

Proof. This is an easy consequence of the Leray spectral sequence. Indeed, the Leray

spectral sequence has the form

Rig∗(R
jh∗F)⇒ Ri+jf∗F .

Since Rjh∗F = 0 for all j > 0 the spectral sequence degenerates at the E2 sheet. Now

the assumption that Rjf∗F = 0 for all j > 0 immediately implies the conclusion.

7.6 A high-codimension adjunction formula for relative canonical classes

We now discuss the adjunction formula that we will use in our proof of Takagi’s

restriction theorem. We begin with a formula for Jacobian ideals. First we introduce

some notation.
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Definition 7.6.1. Let A be a matrix of elements of a commutative ring R. We

denote by [A]n the ideal of R generated by the n × n-minors of A. This definition

extends to the situation of a map ϕ : F → G of locally free sheaves to give [ϕ]n.

Let f : Y → X be a morphism of possibly reducible varieties of pure dimension

with Y smooth and dim(X) = dim(Y ) = n. Consider the natural map f ∗Ωn
X → Ωn

Y .

The image of this map is, by definition, given by Jacf ·Ωn
Y . If X is also smooth then,

in local coordinates, Jacf is just [df ]n.

Our next goal is to prove a general lemma regarding Jacobian ideals that can

be viewed as a kind of chain rule. It will be useful in the current generality in our

investigation of the subadditivity theorem. First, we make a few definitions.

Setup 7.6.2. Here we indicate assumptions that will be in force later.

(a) Denote by A a smooth variety of dimension N and X an equidimensional pos-

sibly reducible subvariety of dimension n and codimension c. Let a to be an

ideal sheaf on A contained in the ideal sheaf of X. We denote by π : A′ → A

a birational morphism with A′ smooth that is furthermore an isomorphism at

every generic point of X. Denote by X ′ the strict transform of X along π. We

assume that X ′ is smooth. Let f : X ′ → X be the restriction of π. The diagram

of morphisms is as follows.

X ′
� � //

f

��

A′

π

��
X

� � // A

(b) Let p ∈ A′ and let the germ of a at π(p) be generated by (h1, . . . , hm). Let

w1, . . . , wN be local coordinates of A′ at p and let z1, . . . , zN be local coordinates

of A at π(p). We suppose finally that w1, . . . , wn restrict to local coordinates on

X ′ at p and that all other wj restrict to zero on X ′.
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(c) To distinguish the two constructions, in the case where π is a factorizing reso-

lution for X we will write A instead of A′ and X instead of X ′.

With these choices we have the following formula.

Lemma 7.6.3. Keep the notation of Setup 7.6.2. As germs at p,

Jacf ·
([

∂(hi ◦ π)

∂wj

]
c

)
· OX′ =

(
Jacπ ·

[
∂hi
∂zj

]
c

· OA′
)
· OX′ .

Here π need not be factorizing for X.

Proof. If m < c the statement is trivial so let I be a multi-index of type
(
N
n

)
and let

J be a multi-index of type
(
m
c

)
. Consider the form

ωI,J = d(zi1 ◦ π) ∧ · · · ∧ d(zin ◦ π) ∧ d(hj1 ◦ π) ∧ · · · ∧ d(hjc ◦ π).

The form ωI,J is an element of the module (ΩN
A′)p. Let b be the ideal generated by

the ωI,J for all choices of I and J . On the one hand,

ωI,J = π∗(dzi1 ∧ · · · ∧ dzin ∧ dhj1 ∧ · · · ∧ dhjc)

= ±π∗ (mIc,J · (dz1 ∧ · · · ∧ dzN))

= ±Jacπ · (mIc,J ◦ π) · (dw1 ∧ · · · ∧ dwN).

where mIc,J is the minor of the matrix of partials ∂hi
∂zj

corresponding to the rows

(1, . . . , N) \ I and columns J . It follows that

b · OX′ =

(
Jacπ ·

[
∂hi
∂zj

]
c

· OA′
)
· OX′ .

Now observe that for any i we have

d(hi ◦ π)X′ = d((hi ◦ π)X′) = 0

since the hi vanish on X. On the other hand,

d(hi ◦ π)X′ =
N∑
j=1

(
∂(hi ◦ π)

∂wj

)
X′
d(wj,X′).
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We choose w1,X′ , . . . , wn,X′ to be local coordinates on X ′ at p, so the d(wj,X′) are

linearly independent for 1 ≤ j ≤ n while the rest are zero. It follows that we must

have (
∂(hi ◦ π)

∂wj

)
X′

= 0

for 1 ≤ j ≤ n.

Now, if we define πi = zi ◦ π, then

ωI,J =

 ∑
S type (Nn)

(
∂πi1
∂ws1

· · · ∂πin
∂wsn

)
· dws1 ∧ · · · ∧ dwsn

∧
 ∑
T type (Nc )

(
∂(hj1 ◦ π)

∂wt1
· · · ∂(hjc ◦ π)

∂wtc

)
· dwt1 ∧ · · · ∧ dwtc

 .

By our calculation of the derivatives of hi ◦ π, the terms(
∂(hj1 ◦ π)

∂wt1
· · · ∂(hjc ◦ π)

∂wtc

)
X′

are non-zero only if T = (n+ 1, . . . , N). It follows that

b · OX′ =

(
[dπ]n,(1,...,n) ·

[
∂(hi ◦ π)

∂wj

]
c

)
· OX′

where [dπ]n,(1,...,n) is the ideal of n × n-minors of dπ with the choice of columns

(here the columns give the variables that we differentiate with respect to) equal to

(1, . . . , n). But, since w1, . . . , wn were chosen to restrict to the local coordinates of

X ′ and wn+1, . . . , wN were chosen to restrict to zero on X ′ it is immediate that

([dπ]n,(1,...,n)) · OX′ = Jacf .

The following lemma is essentially the adjunction formula that we will use to

deduce Takagi’s restriction theorem.
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Lemma 7.6.4. Keep the notation of Setup 7.6.2. Suppose furthermore that π is a

factorizing resolution1 of X. Write

IX · OA = IX · OA(−RX).

Then

(Jacπ · OX) · (JacX · OX) = Jacf · (OA(−cRX)) · OX .

Proof. We apply the previous lemma. Choose a to be the ideal of X. Suppose that,

at p, I = (h1, . . . , hm). We get that

Jacf ·
([

∂(hi ◦ π)

∂wj

]
c

)
· OX =

(
Jacπ ·

[
∂hi
∂zj

]
c

· OA
)
· OX .

By definition, ([
∂hi
∂zj

]
c

)
· OX = JacX .

Now, as germs at p we may write

IX · OA = (h1 ◦ π, . . . , hm ◦ π) = (gh1, . . . , ghm)

with g a local generator of OA(−RX). But

∂(hi ◦ π)

∂wj
=
∂(ghi)

∂wj
= g

∂(hi)

∂wj
+ hi

∂g

∂wj
.

Since hi restricts to zero on X, we see that([
∂(hi ◦ π)

∂wj

]
c

)
· OX = gc · JacX = (gc)

since X is smooth.

The next step is to interpret the various Jacobian ideals that appear in this formula

in terms of relative canonical classes.
1Recall that, in Setup 7.6.2, we agreed to use A and X in the notation for factorizing resolutions.
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Lemma 7.6.5. Let X be a Q-Gorenstein possibly reducible variety and let f : X → X

be a birational morphism with X smooth. Let r be a Gorenstein index of X. Then

Jacrf = (Ir,X · OX) · OX(−rKX/X).

Proof. Write

KX +K− = f ∗KX +K+

with K+, K− effective. We get a map

f ∗OX(rKX)⊗OX(−rK−)→ OX(r(KX)).

The image of this map is given by I · OX(rKX) where I is the ideal OX(−rK+).

Next we have a commutative diagram

f ∗(Ωn
X)⊗r ⊗OX(−rK−) //

++WWWWWWWWWWWWWWWWWWW
OX(rKX)

f ∗OX(rKX)⊗OX(−rK−).

OO

By computing the images of these maps we see that

Jacrf · OX(−rK−) = (Ir,X · OX) · OX(−rK+).

The required statement follows by rearranging this equation.

We can now finally prove our adjunction formula.

Theorem 7.6.6. Let A be a smooth variety and let X be a generically smooth equidi-

mensional subscheme. Let π : A→ A be a factorizing resolution of X inside A and

let f be the restriction of π to X, the strict transform of X along π. Write

IX · OA = IX · OA(−RX).
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Suppose that X is Q-Gorenstein with a Gorenstein index r. Suppose further that f

is a log-resolution of Ir,X and Jr. Let D be the divisor defined by

Jr · OX = OX(−D).

Then

KX/X −
1

r
D = (KA/A − cRX)X

with equality being equality of Q-divisors on X.

Proof. This follows easily from the previous two lemmas and the definition of Jr.

Note that the necessary π, that is, a log-resolution of Ir,X and Jr can always be

found by Lemma 7.4.4. Lastly we record the following easy fact that will be useful

for the subadditivity theorem.

Lemma 7.6.7. Let f1 : A → B and f2 : B → C be birational morphisms and let

f = f2 ◦ f1. Suppose that A and B are smooth. Then

Jacf = (Jacf2 · OA) · Jacf1

Proof. Let n be the dimension of the varieties involved. Consider the composition of

natural maps

f ∗Ωn
C → f ∗2 Ωn

B → Ωn
A.

The composition is df and the formula follows easily since Ωn
B and Ωn

A are line bundles

and the second morphism is just multiplication by a generator of Jacf1 .

7.7 Takagi’s restriction theorem in the Q-Gorenstein case

The tools developed so far enable us to give a quick proof of a stronger form of

the restriction theorem given by Takagi in his paper [33].
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Theorem 7.7.1. Let X ⊆ A be a Q-Gorenstein (in particular, reduced) equidimen-

sional subscheme of an ambient smooth variety with a Gorenstein index r and codi-

mension c. Let ∆ be an effective Q-Cartier Q-divisor not containing any component

of X in its support. Then there exists a short exact sequence

0→ J (A, cX + ∆)→ adjX(A,∆)→ J
(
X,

1

r
V(Jr) + ∆X

)
→ 0

with the first map given by inclusion and the last map given by restriction to X.

Proof. Let π : A→ A be a factorizing resolution as in Definition 7.5.1 and in Theorem

7.6.6. Lemma 7.5.3 gives the short exact sequence

0→ IX · OA(D)→ OA(D)→ OX(DX)→ 0

where D := dKA/A − π∗∆e − cRX . The same lemma states that

Riπ∗(IX · OA(D)) = 0

for all i > 0. We have already seen in Lemma 7.5.3 that

π∗(IX · OA(D)) = J (A, cX + ∆)

and

π∗OA(D) = adjX(A,∆)

by definition. We must only check that

f∗OX(DX) = J
(
X,

1

r
V(Jr) + ∆X

)
.

This follows immediately from the following expresssion

(7.2) OX(DX) = OX
(⌈

KX/X −
1

r
π−1(Jr)− π∗∆X)

⌉)
which itself follows immediately from the formula of Theorem 7.6.6.
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The following form of our restriction theorem answers a question of Takagi’s in

[33], Remark 3.2, (3).

Corollary 7.7.2. In the situation of the theorem we have the formulas

adjX(A,∆) · OX = J
(
X,

1

r
V(Jr) + ∆X

)
and

J
(
X,

1

r
V(Jr) + ∆X

)
⊆ J (A,∆) · OX .

Proof. The first expression follows immediately from Theorem 7.7.1 while the second

follows from the easy observation that adjX(A,∆) ⊆ J (A,∆) by definition.

Corollary 7.7.3. Keep the notation of Definition 7.5.1. The adjoint ideal satisfies

local vanishing, that is,

Riπ∗OA(dKA/A − π∗∆e − cRX) = 0

for all i > 0.

Proof. This follows from the long exact sequence for Riπ∗ that arises from pushing

forward

0→ IX · OA(D)→ OA(D)→ OX(DX)→ 0

in Lemma 7.5.3. In this lemma we have already seen that the term on the left has

vanishing higher direct images. On the other hand, the expression for OX(DX) in

(7.2) shows that this sheaf has vanishing higher direct images by the local vanishing

theorem again (see Theorem 3.4.4).

7.8 A characteristic zero proof of Takagi’s subadditivity theorem

We present a proof of Takagi’s subadditivity theorem that uses only standard

algebro-geometric characteristic zero techniques: resolution of singularities and the
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vanishing theorem of Kawamata-Viehweg. Our approach will be similar to the ap-

proach of [6]. Specifically, we will make use of the following observation.

Lemma 7.8.1. Let X1, X2 be Q-Gorenstein varieties and let D1 and D2 be Q-Cartier

Q-divisors on X1 and X2, respectively. Let p1 and p2 be the projections from X1×X2

to X1 and X2 respectively. Then

J (X1 ×X2, p
∗
1D1 + p∗2D2) = p−1

1 J (X1, D1) · p−1
2 J (X2, D2).

Proof. The proof in [25], Proposition 9.5.22, goes through without the requirement

that X1 and X2 be smooth.

From now on let X be a Q-Gorenstein variety of dimension n and Gorenstein

index r and let ∆ ⊆ X ×X be the diagonal. Let g : X ′ → X be a proper birational

morphism from a smooth variety X ′ and let ρ : X ′ ×X ′ → X ×X be the product

morphism. Let ∆′ be the strict transform of ∆ in X ′ × X ′. Notice that ∆′ is the

diagonal of X ′ ×X ′ and the induced morphism ∆′ → ∆ is just g.

The obstruction to the proof of Theorem 7.8.4 is the restriction theorem: it re-

quires a smooth ambient space. We will show that, in our very special situation of

the diagonal in X × X, an appropriate restriction theorem holds. To this end we

need to uncover the analog of the adjunction formula. The following lemma becomes

precisely the required analog once we use our earlier work to translate the Jacobian

ideals into relative canonical classes.

Lemma 7.8.2. Let

∆
� � //

f

��
h

!!

A′

π

��
σ

~~

∆′
� � //

g

��

X ′ ×X ′

ρ

��
∆

� � // X ×X
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be a factorizing resolution of ∆ given by Lemma 7.4.4. Let

I∆ · OA′ = I∆ · OA′(−R∆).

Then

(Jacπ · O∆) · (Jacg · O∆)2 ⊆ Jach · (OA′(−nR∆)) · O∆.

Proof. To simplify and unify notation, let A = X ′ × X ′ and B = X × X and fix a

point p ∈ A′. Let wj be coordinates on A′ and let zj be coordinates on A at π(p)

as in Setup 7.6.2. Let pr1, pr2 : X × X → X be the two projections. Let s1,j be

generators on X of the maximal ideal of the local ring at pr1(σ(p)), where 1 ≤ j ≤M

and similarly let s2,j be generators on X of the maximal ideal of the local ring at

pr2(σ(p)). Finally, let xi = pr∗1(s1,i) and yi = pr∗2(s2,i). Then

(I∆)σ(p) = (g1, . . . , gM)

where gi = xi − yi. By Lemma 7.6.3 applied with the above choices, hi = gi ◦ ρ,

X = ∆′ and X ′ = ∆ we have that

(7.3) Jacf ·
([

∂(gi ◦ σ)

∂wj

]
n

)
· O∆ =

(
Jacπ ·

[
∂(gi ◦ ρ)

∂zj

]
n

· OA′
)
· O∆.

Suppose that we can show that on ∆′ we have

(7.4) (Jacg)
2 ⊆ Jacg ·

([
∂(gi ◦ ρ)

∂zj

]
n

· O∆′

)
.

Then, after multiplying both sides of (7.3) by Jacg and using Lemma 7.6.7, we obtain

first of all that

(Jacπ · O∆) · (Jacg · O∆)2 ⊆ Jach ·
([

∂(gi ◦ σ)

∂wj

]
n

· O∆

)
.

As in the proof of Lemma 7.6.4, write next

(I∆ · OA′)p = (g1 ◦ σ, . . . , gM ◦ σ) = (rg1, . . . , rgM)
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where r is a local generator of the sheaf OA′(−R∆). We now have that(
∂(gi ◦ σ)

∂wj

)
∆

=

(
r
∂gi
∂wj

+ gi
∂r

∂wj

)
∆

=

(
r
∂gi
∂wj

)
∆

and so ([
∂(gi ◦ σ)

∂wj

]
n

· O∆

)
= rn · Jac∆ = (rn)

since ∆ is smooth. But this concludes the proof, assuming (7.4).

It remains to show (7.4). In fact, it is clearly enough to show that

(7.5) Jacg ⊆
[
∂(gi ◦ ρ)

∂zj

]
n

· O∆′ .

For this we choose the zj as follows: let pr′1, pr′2 : X ′ × X ′ → X ′ be the two pro-

jections and let s′1,1, . . . , s
′
1,n be local coordinates on X ′ at pr′1(π(p)), s′2,1, . . . , s

′
2,n

local coordinates on X ′ at pr′2(π(p)). Let x′i = (pr′1)∗(s′1,i) and y′i = (pr′2)∗(s′2,i). Set

zj = x′j for 1 ≤ j ≤ n and zj = y′j−n for n+ 1 ≤ j ≤ 2n.

Notice that, since yi ◦ ρ does not depend on x′j we have that

∂(yi ◦ ρ)

∂x′j
= 0.

It follows that, in these coordinates, the matrix of partials

∂(gi ◦ ρ)

∂zj
=
∂(xi ◦ ρ)

∂zj
− ∂(yi ◦ ρ)

∂zj

is block diagonal with two blocks,

∂(xi ◦ ρ)

∂x′j
, −∂(yi ◦ ρ)

∂y′j
.

It is furthermore clear that the ideal of n× n - minors of each of these two blocks is

Jacg. But this in particular proves (7.5), as required.

Corollary 7.8.3. Keep the notation of the lemma. Suppose that h furthermore log-

resolves Ir,X and Jr. Let F be the divisor defined by

Ir,∆ · O∆ = O∆(−F ).



91

Then the following inequality is holds:

K∆/∆ −
1

r
F ≤ (KA′/B − nR∆)∆.

Proof. It follows from Lemma 7.6.5 that

Jacrh = (Ir,X · O∆) · O∆(−rK∆/∆),

and similarly for Jacrg. Combining this with the inequality of ideals

(Jacπ · O∆) · (Jacg · O∆)2 ⊆ Jach · (OA(−nR∆)) · O∆

we get the following inequality of divisors:

−(KA′/A)∆ −
2

r
F − 2f ∗K∆′/∆ ≤ −

1

r
F −K∆/∆ − (nR∆)∆.

Since the morphism ρ : A → B is the product g × g : X ′ × X ′ → X × X, we have

that

2K∆′/∆ = (KA/B)∆′ .

The inequality simplifies to

−(KA′/A)∆ −
1

r
F − f ∗(KA/B)∆′ ≤ −K∆/∆ − (nR∆)∆.

The corollary now follows easily.

We can now finally prove our version of Takagi’s subadditivity theorem.

Theorem 7.8.4. Let X be a Q-Gorenstein variety and let D1, D2 be Q-Cartier Q-

divisors on X. Then

JacX · J (X,D1 +D2) ⊆ J (X,D1) · J (X,D2).
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Proof. It is enough to show that

JacX · J (X,D1 +D2) ⊆ adj∆(X ×X, p∗1D1 + p∗2D2) · O∆

where p1, p2 : X ×X → X are the two projections, since we have the easy inequality

adj∆(X ×X, p∗1D1 + p∗2D2) ⊆ J (X ×X, p∗1D1 + p∗2D2)

and we will conclude by applying Lemma 7.8.1. We let σ : A′ → X × X be the

log-resolution as in Lemma 7.8.2 and we choose g : X ′ → X to also log-resolve JacX ,

Ir,X , Jr and D1 and D2, and we assume finally that σ is a log-resolution of all of these

that is also a factorizing resolution for ∆. Then, with the notation of the preceding

corollary, we obtain that

(7.6) K∆/∆ −
1

r
F ≤ (KA′/B − nR∆)∆.

Let G be the divisor defined by

JacX · O∆ = O∆(−G).

Since Ir,∆ is an ideal that contains JacrX we finally obtain the inequality

(7.7) K∆/∆ −G ≤ (KA′/B − nR∆)∆.

But by Lemma 7.5.3 we have

adj∆(X ×X, p∗1D1 + p∗2D2) · O∆ = h∗(OA′(dKA′/B − σ−1(p∗1D1 + p∗2D2)− nR∆e)∆).

Putting this together with our inequality we are done.

Remark 7.8.5. In fact, the proof also shows that

〈Ir,X〉1/r · J (X,D1 +D2) ⊆ J (X,D1) · J (X,D2)
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in the sense of Kawakita’s Q-ideals and his partial ordering on them (see [17]).

Indeed, to obtain this we simply have to skip the estimate in inequality 7.7 and use

the inequality in 7.6 on the sheaf

h∗(OA′(dKA′/B − σ−1(p∗1D1 + p∗2D2)− nR∆e)∆).



CHAPTER 8

Hacon linear series and the extension theorem

In this chapter we will switch gears slightly and investigate a construction due to

Christopher Hacon in [15]. This construction is a generalization of the asymptotic

multiplier ideal. We begin by working out a version of this idea in the setting of

incomplete linear series. This leads us to consider sequences W
k

l of linear series

whose section ring is N2-graded, we call these bigraded linear series. There is a

special subsequence of W
k

l , which we call the associated vertical subseries W k
l , that

is a graded linear series in k for each fixed l. We write down a condition that we call

the Hacon inequality that ensures that the asymptotic multiplier ideals J (X, c·|W •
l |)

stabilize.

We then write down some basic statements about the case of complete linear series

in the construction of the Hacon ideal. We obtain an ideal J−(X, c · ||M ||) that we

call the restricted multiplier ideal. We prove a vanishing theorem for this ideal and a

generalization of a theorem of Goodman regarding the detection of nef line bundles

by multiplier ideals. A similar exploration was independently undertaken in [27].

We finally use this formalism to generalize the famous extension theorem of Siu to

the high-codimension situation. Specifically, we extend from Z ⊆ X pluri-canonical

sections of Cartier divisors of the form KX + A + ∆ where A is big and nef and

94
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(X,∆) is log-canonical with exceptional log-canonical center Z.

8.1 Hacon linear series

In this section, we adopt the construction of Hacon in [15] to the case of incomplete

linear series. We are led to consider sequences of linear series W
k

l that are N2-graded

and we write down an important subsequence that we call the associated vertical

subseries. We conclude by adapting the argument of Hacon to write down a condition

that ensures that the multiplier ideals J (X, c · |W k
l |) stabilize. We call this condition

the Hacon inequality.

Definition 8.1.1. Let X be a projective variety. Let M and H be two divisors on

X. A sequence of linear series

W
k

l ⊆ H0(X,OX(lM + kH))

is called a bigraded linear series if

1. For all l there is a sufficiently divisible k := k(l) so that W
k

l 6= {0}.

2. W
0

0 = C.

3. The inequality

|W k1
l1
|+ |W k2

l2
| ⊆ |W k1+k2

l1+l2
|

is satisfied.

Bigraded linear series are very general objects. We propose the following, much

more special, notion. We propose to name it after Hacon who seems to have noticed

first their importance.

Definition 8.1.2. A bigraded linear series W
k

l is called a Hacon linear series (in k

with respect to V ) if M is pseudoeffective and there is a base-point free linear series
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V ⊆ |H| so that

|W k

l |+ |V | ⊆ |W
k+1

l |

for all k and l.

We start what a few easy examples.

1. Let H be very ample and M pseudo-effective. We can set

W
k

l = |lM + kH|.

This is a Hacon linear series in k with respect to |H|. We will call this the

complete Hacon linear series. We will study this example in more detail in the

next section.

2. More generally, let f : X → Y be a morphism and let H be base-point free on

Y . Then

W
k

l = |lM + kf ∗H|

is a Hacon linear series in k with respect to |f ∗H|. This was the Hacon linear

series used in [15]. Similar ideas were used in [23] with f the Albanese morphism.

3. Let |Wl| ⊆ |lM | be a graded linear series, let V be a base-point free linear series

and let

|W k

l | = |Wl|+ k|V |.

From our point of view, this Hacon linear series reduces our theory to the theory

of the usual asymptotic multiplier ideal.

The importance of Hacon linear series stems from the following.

Definition 8.1.3. Let W
k

l be a Hacon linear series. The associated vertical subseries

is the sequence of linear series given by

W k
l := W

k

lk.
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The reason for the name, and the intended use, stems from the observation that,

if D ∈ |W k
l |,

1

lk
D ∼Q M +

1

l
H.

Lemma 8.1.4. The associated vertical subseries is graded in k and satisfies the

Hacon inclusion:

(8.1) l|W k
l+1|+ k|V | ⊆ |W (l+1)k

l |.

Proof. Both of these follow easily from the definitions. Indeed,

|W k1
l |+ |W

k2
l | = |W

k1
lk1
|+ |W k2

lk2
| ⊆ |W k1+k2

l(k1+k2)| = |W
k1+k2
l |

and

l|W k
l+1|+ k|V | = l|W k

(l+1)k|+ k|V | ⊆ |W lk

l(l+1)k|+ k|V | ⊆ |W (l+1)k

l(l+1)k| = |W
(l+1)k
l |.

Let c ∈ R+. It follows that we get a sequence of ideals

J k
l = J

(
X,

c

kl
· |W k

l |
)

and

J •l = J
(
X,

c

l
· ||W •

l ||
)
.

An essential point, noticed by Hacon, is that these ideals stabilize.

Proposition 8.1.5. We have that J •l+1 ⊆ J •l . Furthermore, the sequence of ideals

J •l becomes stationary for all l� 0.

Proof. We claim that J k
l+1 ⊆ J

(l+1)k
l . To see this we calculate on a common log-

resolution π : X ′ → X on the base loci of W k
l+1 and W

(l+1)k
l . Let F k

l+1 the effective
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divisor on X ′ so that OX′(−F k
l+1) is the expansion of the base locus ideal of W k

l+1 to

X ′, and similarly for F
(l+1)k
l . Taking the base divisors in the Hacon inequality (8.1)

and dividing by (l + 1)lk gives

(8.2)
1

(l + 1)k
F k
l+1 ≥

1

(l + 1)lk
F

(l+1)k
l .

This proves our claim that

J k
l+1 = J

(
X,

c

k(l + 1)
· |W k

l+1|
)
⊆ J

(
X,

c

kl(l + 1)
· |W (l+1)k

l |
)

= J (l+1)k
l

and, in particular, that

J •l+1 = J
(
X,

c

l + 1
· |W •

l+1|
)
⊆ J

(
X,

c

l
· |W •

l |
)

= J •l .

The next step is to show that this sequence actually stabilizes. This is a conse-

quence of uniform global generation. By Castelnuovo-Mumford regularity, we may

choose a sufficiently ample divisor G so that the sheaves

OX(M +G)⊗ Jl

are all globally generated. Indeed,

Jl = J
(
X,

1

kl
· |W k

l |
)

and

1

kl
(k(lM +H)) ∼Q M +

1

k
H

and so it suffices to choose G so that G − 1
k
H is sufficiently ample. Hence we have

that

H0(X,OX(M +G)⊗ Jl+1) ⊆ H0(X,OX(M +G)⊗ Jl)

and we have equality if and only if Jl+1 = Jl. Since the spaces in question are

finite-dimensional, this must eventually happen for some l.
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This was essentially first noticed by Hacon in [15]. Notice that the same argument

works for adjoint ideals along a divisor.

Definition 8.1.6. We denote the limit ideals by

adjD(X, c · ||W •
• ||), J (X, c · ||W •

• ||).

Any log-resolution of W k
l with l large enough and k divisible enough is said to

compute the ideal J (X, c · ||W •
• ||).

Similarly we may consider mixed multiplier ideals of the form

J ((X,∆); c · ||W •
• ||), J ((X, db); c · ||W •

• ||)

where ∆ is a Q-divisor, d is an ideal and b ∈ R+, for which the construction also

goes through mutatis mutandis. Essentially any permutation of these definitions is

possible, as long as the ideal in question satisfies some analog of the Nadel vanishing

theorem.

Remark 8.1.7. Note that, in Example (3), J (X, c · ||W •
• ||) = J (X, c · ||W•||), the

usual asymptotic multiplier ideal.

8.2 The uniformity lemma

We know that the Hacon ideal exists but we don’t yet know anything about the

way in which the ideals J (X, c · |W k
l |) stabilize. In particular, we don’t even know

yet that there are finitely many of them. In this section we prove a technical lemma

that says that the convergence of these ideals to J (X, ||W •
• ||) is somehow “uniform.”

We then provide two corollaries of this lemma that will be useful when applying the

Hacon ideal formalism later in the chapter.
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Lemma 8.2.1 (Uniformity lemma). Let W k
l be the associated vertical subseries of a

Hacon linear series, let ∆ be an effective Q-divisor and let c, d ∈ R+. There exists a

proper birational morphism π : X ′ → X that computes J ((X, d ·∆); c · ||W •
• ||) and a

finite set of divisors Eα on X ′ so that the following condition for membership holds.

If (locally) f ∈ OX then f ∈ J ((X, d ·∆); c · ||W •
• ||) if and only if, for all large l and

divisible k,

(8.3) ordEα(π∗f) ≤ ordEα

(
KX′/X −

⌊
π∗(d ·∆) +

c

kl
F k
l

⌋)
for each Eα. Here F k

l is the divisorial part of b(W k
l ) · OX′. Furthermore, the finite

set of the Eα depends only on the support of ∆ and the base locus of W k
l for large l

and divisible k.

Proof. Let l′ and k′ be natural numbers so that

J ((X, d ·∆), c · ||W •
• ||) = J

(
(X, d ·∆),

c

lk
|W k

l |
)

for all l ≥ l′, k′|k.

Now, take log-resolutions π(l,k) : Xk
l → X of W k

l and ∆ and let them factor

through π(l′,k′) via morphisms

π(l,k)→(l′,k′) : Xk
l → Xk′

l′ .

Let

OXk
l
(−F k

l ) = b(W k
l ) · OXk

l
.

We will write simply π when the superscripts are clear from the context.

Consider the divisors

T kl := −π(l,k)→(l′,k′)
∗

⌊
π∗(d ·∆) +

c

lk
F k
l

⌋
.
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Since W k
l is graded in k, for every l there is a K(l) so that the divisors T

mK(l)
l are

constant for all m ≥ 1. Indeed, for k sufficiently divisible, the Tmkl are increasing in

m, negative and integral and so must eventually stabilize.

Next, starting with l′ and k′, take for each l a k(l) divisible enough to compute

the asymptotic multiplier ideal

J
(

(X, d ·∆),
c

lk(l)
|W k(l)

l |
)

= J
(

(X, d ·∆),
c

l
· ||W •

l ||
)

and to be divisible by K(l) and K(l − 1). We set

Dl := π(l,k(l))→(l′,k′)
∗

(
K
X
k(l)
l /X

−
⌊
π∗(d ·∆) +

c

lk(l)
F
k(l)
l

⌋)
.

By our choice of k(l) we have that lk(l) and lk(l − 1) are divisible by K(l − 1).

Combining this with inequality (8.2) we get that

Dl ≤ π(l−1,k(l))→(l′,k′)
∗

(
K
X
k(l)
l−1 /X

−
⌊
π∗(d ·∆) +

c

(l − 1)lk(l)
F
lk(l)
l−1

⌋)
= π(l−1,k(l−1))→(l′,k′)

∗

(
K
X
k(l−1)
l−1 /X

−
⌊
π∗(d ·∆) +

c

(l − 1)lk(l − 1)
F
lk(l−1)
l−1

⌋)
= Dl−1.

Since the divisorial push-forward drops some conditions for membership, we have

that

J ((X, d ·∆), c · ||W •
• ||) = π(l,k(l))

∗ O
X
k(l)
l

(
K
X
k(l)
l /X

−
⌊
π∗(d ·∆) +

c

lk(l)
F
k(l)
l

⌋)
⊆ π(l′,k′)

∗ OXk′
l′

(Dl) ⊆ π(l′,k′)
∗ OXk′

l′
(Dl′)

= J ((X, d ·∆), c · ||W •
• ||).

It follows that we have equalities throughout. It remains to choose the Eα to be the

components of the support of KXk′
l′ /X

+ π∗∆ + F k′

l′ .

The following lemmas follow easily from the uniformity lemma.
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Lemma 8.2.2. Let W k
l be the associated vertical subseries of a Hacon linear series

and let c ∈ R+. Let C be an effective Q-divisor. There exists an ε > 0 so that

J ((X, εC); c · ||W •
• ||) = J (X, c · ||W •

• ||).

Proof. Let

J ε = J ((X, εC); ||W •
• ||).

It follows easily from Proposition 8.1.5 that, if ε2 ≤ ε1 then J ε1 ⊆ J ε2 . By the

Noetherian property these ideals must stabilize as ε → 0. In particular, there are

only finitely many ideals involved as long as ε is bounded above. Let J be the limit

ideal.

Let π : X ′ → X be the birational morphism from Lemma 8.2.1 applied to the

ideal J . We get that, for all 0 < ε � 1, we have that if (locally) f ∈ OX then

f ∈ J ((X, εC); ||W •
• ||) if and only if

ordEα(π∗f) ≤ ordEα

(
KX′/X −

⌊
π∗(ε ·∆) +

c

kl
F k
l

⌋)
for all Eα in some finite set D. We may assume that π : X ′ → X is also the morphism

obtained from Lemma 8.2.1 applied to J (X, c · ||W •
• ||), that is, D is large enough so

that the following condition holds. If (locally) f ∈ OX then f ∈ J (X, c · ||W •
• ||) if

and only if, for all large l′ and divisible k,

ordEα(π∗f) ≤ ordEα

(
KX′/X −

⌊ c
kl
F k
l

⌋)
for all Eα in D.

But, for ε sufficiently small,

⌊
π∗(ε ·∆) +

c

kl
F k
l

⌋
=
⌊ c
kl
F k
l

⌋
.

This proves the lemma.
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Lemma 8.2.3. Let W k
l and V k

l be the associated vertical subseries of two Hacon

linear series and let c ∈ R+. Suppose that there exists an ideal d and, for every l a

k(l) so that for all l and all k divisible by k(l) we have

b(W k
l ) · dk ⊆ b(V k

l ).

Then

J (X, c · ||W •
• ||) ⊆ J (X, c · ||V •• ||).

Proof. Without loss of generality we may make k(l) even more divisible and so we

may assume that, for a fixed l and for all k divisible by k(l), we have

J
(
X, (b(W k

l ) · (dk))c/lk
)

= J
(
X, b(W k

l )c/lk · dc/l
)

= J
(
X, b(W •

l )c/l · dc/l
)
.

By Proposition 8.1.5, we have that for large l

J
(
X, b(W •

l )c/l · dc/l
)

= J
(
(X, dc/l), c · ||W •

• ||
)

By the previous lemma, we have that for l sufficiently large

J
(
(X, dc/l), c · ||W •

• ||
)

= J (X, c · ||W •
• ||).

On the other, hand, by assumption we have

J
(
X, (b(W k

l ) · (dk))c/lk
)
⊆ J

(
X, b(V k

l )c/lk
)

= J (X, c · ||V •• ||),

as required.

8.3 The restricted multiplier ideal

An obvious choice of W
k

l is to take the complete linear series

W
k

l = |lM + kH|.
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Since in general we very much do not have that |lM + kH| = |lM | + |kH| for

even sufficiently divisible l and k, we expect this construction to be non-trivial. We

propose to call the resulting ideal the restricted multiplier ideal, by analogy with the

restricted base locus in [7]. Here we develop the basic facts about these ideals: they

do not depend on the choice of H, they satisfy a slightly stronger analog of Nadel

vanishing, and they satisfy J−(X, c · ||(m+ 1)M ||) ⊆ J−(X, c · ||mM ||).

Definition 8.3.1. Let c ∈ R≥0, let M be a pseudo-effective divisor and let H be an

ample divisor. Let W
k

l be the linear series

W
k

l = |lM + kH|.

Then W
k

l is a bigraded linear series and, since,

|W k

l |+ |H| ⊆ |W
k+1

l |

it is also a Hacon linear series. We obtain an ideal

J H(X, c · ||M ||) := J (X, c · ||W •
• ||)

that we will call the restricted multiplier ideal of M with respect to H. It is equal,

for sufficiently large l and k and sufficiently small ε > 0, to the ideal

J
(
X,

c

kl
|k(lM +H)|

)
= J (X, ||M + εH||).

Note that we need not take k to be divisible since lM + H is big and therefore

has exponent one. From now on we will write l and k for sufficiently large integers

without further comment.

We begin with the following basic proposition.
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Proposition 8.3.2. Let H and H ′ be two ample divisors and let M be a pseudoef-

fective divisor. Then

J H′(X, c · ||M ||) = J H(X, c · ||M ||).

In light of this proposition, we make the following definition.

Definition 8.3.3. By analogy with the definition of B−(M) in [7], let

J−(X, c · ||M ||)

be J H(X, c · ||M ||) for any ample divisor H.

Proof of Proposition 8.3.2. It is enough to show that

J H(X, c · ||M ||) ⊆ J H′(X, c · ||M ||).

Pick an m� 0 so that mH −H ′ is base-point free. Then

|klM + kH ′|+ |kmH − kH ′| ⊆ |klM + kmH|

for all k. Since |kmH − kH ′| is a base-point free linear series we obtain that

J
(
X, c · 1

l
||lM +H ′||

)
⊆ J

(
X, c · 1

l
||lM +mH||

)
and therefore

J H′(X, c · ||M ||) ⊆ JmH(X, c · ||M ||).

It is therefore enough to show that

JmH(X, c · ||M ||) = J H(X, c · ||M ||).
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But we can write

JmH(X, c · ||M ||) = J
(
X, c · 1

lmk
|k(lmM +mH)|

)
= J

(
X, c · 1

l(mk)
|mk(lM +H)|

)
= J

(
X, c · 1

l
||lM +H||

)
= J H(X, c · ||M ||),

concluding the proof.

First we record the version of Nadel vanishing that holds for the restricted mul-

tiplier ideal.

Theorem 8.3.4 (Nadel vanishing). Let L and M be divisors so that M is pseudo-

effective and let c ∈ R+. Suppose that L − cM ≡num KX + A with A big and nef.

Then

H i(X,OX(L)⊗ J−(X, c · ||M ||)) = 0

for all i > 0.

Proof. Since A is big we can write A ∼Q H + C with H ample and C effective

Q-divisors. Use Lemma 8.2.2 to choose ε′ > 0 small enough so that

J−((X, ε′C), c · ||M ||) = J−(X, c · ||M ||).

Next choose ε > 0 small enough so that

J−((X, ε′C), c · ||M ||) = J
(

(X, ε′C), c ·
∣∣∣∣∣∣M +

ε

c
H
∣∣∣∣∣∣)
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and ε′ > ε. We compute

L− cM − εH ≡num KX + A− εH

≡num KX + (1− ε′)A+ ε′(H + C)− εH

= KX + (1− ε′)A+ (ε′ − ε)H + ε′C

= KX + ample + ε′C.

It follows from the usual Nadel vanishing now that

H i(X,OX(L)⊗ J−(X, c · ||M ||)) = H i
(
X,OX(L)⊗ J

(
(X, ε′C), c ·

∣∣∣∣∣∣M +
ε

c
H
∣∣∣∣∣∣))

= 0,

as required.

We note the following easy property of this ideal:

Proposition 8.3.5. The usual equality

J−(X, c · ||mM ||) = J−(X, cm · ||M ||)

holds true. Hence, the restricted asymptotic multiplier ideal satisfies the usual in-

equality

J−(X, c · ||(m+ 1)M ||) ⊆ J−(X, c · ||mM ||).

Proof. By the preceding proposition we have that

J H(X, c · ||mM ||) = JmH(X, c · ||mM ||)

= J
(
X, c · 1

l
||lmM +mH||

)
= J

(
X, cm · 1

l
||lM +H||

)
= J H(X, cm · ||M ||).
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For the second statement, it is easy to see that

J−(X, c · ||M ||) ⊆ J−(X, d · ||M ||)

for d ≤ c. But then we are done by the first statement.

The following related statement can be useful when comparing asymptotic ideal

constructions.

Proposition 8.3.6. Let M be a pseudo-effective divisor and let H be very ample.

Then

J (X, ||(l + 1)M +H||) ⊆ J (X, ||lM +H||).

Proof. We compute

J (X, ||(l + 1)M +H||) = J
(
X, (l + 1) ·

∣∣∣∣∣∣∣∣M +
1

l + 1
H

∣∣∣∣∣∣∣∣)
⊆ J

(
X, l ·

∣∣∣∣∣∣∣∣M +
1

l + 1
H

∣∣∣∣∣∣∣∣)
= J

(
X,

l

(l + 1)l
· ||l(l + 1)M + lH||

)
⊆ J

(
X,

l

(l + 1)l
· ||l(l + 1)M + (l + 1)H||

)
= J (X, ||lM +H||)

where the penultimate step follows from the fact that H is base-point free.

8.4 A generalization of a theorem of Goodman

We now take a diversion into an application of the restricted multiplier ideal.

Recall that a big line bundle M is nef if and only if J (X, ||mM ||) = OX for all m (see

[25], Proposition 11.2.18). See also Ibid., Example 11.2.19 and Remark 11.2.20 for

the related theorems of Goodman in [12] and Russo in [29]. The restricted multiplier

ideal and its vanishing theorem allow us to write down a natural generalization of

this fact.
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Theorem 8.4.1. A line bundle M is nef if and only if it is pseudo-effective and

J−(X, ||mM ||) = OX for all m.

Proof. The proof is essentially the same as for Proposition 11.2.18 in [25], we repro-

duce it for completeness. A nef line bundle is pseudo-effective and, since lM +H is

ample, we have

J−(X, ||mM ||) = J
(
X,

1

l
||lmM +H||

)
= OX

for all m. Conversely, by the standard Castelnuovo-Mumford regularity argument

we may choose an ample divisor G so that

OX(mM +G)⊗ J−(X, ||mM ||)

is globally generated. But J−(X, ||mM ||) = OX for all m and so OX(mM + G) is

globally generated. This easily implies that M is nef. Indeed, let C be any curve on

X. Since OX(mM +G) is globally generated, (mM +G.C) ≥ 0 and so

(M.C) = lim
m→∞

1

m
(mM +G.C) ≥ 0.

8.5 An extension theorem for pluricanonical forms from centers of high
codimension

The extension theorem is an important application of the multiplier ideal formal-

ism. Hacon linear series and the restricted multiplier ideal are particularly well-suited

for extension arguments. Here we prove an extension theorem for pluri-canonical sec-

tions from exceptional log-canonical centers, similar [20], using algebraic methods.

To do this we first have to develop some basic formalism for dealing with asymptotic

versions of the adjoint ideal from Definition 5.1.7.



110

For the rest of this section let X denote a smooth projective variety and ∆ a log-

canonical Q-divisor with an exceptional log-canonical center Z. Let a• be a graded

system of ideals.

Definition 8.5.1. Let a be an ideal and c ∈ R+. We define adjZ((X,∆), ac), in the

notation of Definition 5.1.7,

adjZ((X,∆), ac) = g∗OX′
(⌈
KX′/X − g∗∆− cF

⌉
+ E

)
where g : X ′ → X is also a log-resolution of a and OX′(−F ) = a · OX′ . We define

adjZ((X,∆), c · ||a•||) to be the unique maximal element of the set of ideals

adjZ

(
(X,∆),

c

l
· al
)
.

Let M be a big Cartier divisor. The ideal adjZ((X,∆); c · ||M ||) is defined in the

evident way - we take al to be the base locus of |lM |.

Lemma 8.5.2. We have

a1 ⊆ adjZ((X,∆), a•).

Proof. Take g : X ′ → X as in Definition 8.5.1. We may assume that g is also a log-

resolution of a1. Write OX′(−Fk) = ak · OX′ for k either a fixed large and divisible

number or k = 1. The definition of a graded system of ideals and the hypothesis

imply that

−F1 ≤ −
1

k
Fk.

We obtain

a1 ⊆ g∗OX′(dKX′/X − g∗∆ + Ege − F1)

= g∗OX′(dKX′/X − g∗∆ + Eg − F1e)

⊆ g∗OX′
(⌈

KX′/X − g∗∆ + Eg −
1

k
Fk

⌉)
= adjZ((X,∆), a•),
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as desired.

Remark 8.5.3. Let M be a big Cartier divisor. By Corollary 6.2.5, the ideal

(adjZ)−((X,∆); ||M ||)

exists.

Definition 8.5.4. By Theorem 6.1.1 we have a short exact sequence (this defines

bX∆(a•))

(8.4) 0→ J ((X,∆); a•)→ adjZ((X,∆), a•)→ bX∆(a•)→ 0

with bX∆(a•) a multiplier ideal. Let M be a big Cartier divisor. If Z 6⊆ B−(M), the

short exact sequence (8.4) defines a short exact sequence

(8.5) 0→ J−((X,∆); ||M ||)→ (adjZ)−((X,∆); ||M ||)→ (bX∆)−(||M ||)→ 0.

Lemma 8.5.5. We have

a1 · OZ ⊆ bX∆(a•).

More generally, if bi is a graded system of ideals and W k
l is a Hacon linear series so

that blk ⊆ b(W k
l ) then

b1 · OZ ⊆ bX∆(||W •
• ||).

Proof. This follows immediately from Lemma 8.5.2.

We are now ready for the main theorem of the chapter.

Theorem 8.5.6. Let X be a smooth projective variety and let A and ∆ be Q-divisors

such that

1. A is big and nef,

2. (X,∆) is log-canonical with an exceptional log-canonical center Z,
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3. M = KX + A+ ∆ is Cartier.

Then the map

H0(X,mM)→ H0(Z,mMZ)

is surjective for all m ≥ 1.

Proof. If MZ is not Q-effective there is nothing to prove. Fix a very ample divisor

H which we will take sufficiently ample later. We have the following two lemmas.

Lemma 8.5.7 (Basic Lifting). Let σ be a section in H0(Z, ((m + 1)M + H)Z).

Suppose that σ vanishes along bX∆(||mM + H||). Then there exists a section σ ∈

H0(X, (m+ 1)M +H) that restricts to σ.

Proof. Twist (8.4) by OX((m+ 1)M +H) to get

0→ OX((m+ 1)M +H)⊗ J ((X,∆); ||mM ||)

→ OX((m+ 1)M +H)⊗ adjZ((X,∆), ||mM ||)

→ OZ((m+ 1)MZ +HZ)⊗ bX∆(||mM ||)→ 0.

Note that

(m+ 1)M +H − (∆ +mM) = KX + A+ ∆ +H −∆ = KX + ample.

We conclude by Kawamata-Viehweg vanishing.

Lemma 8.5.8. Let a be an ideal, let L be a line bundle and suppose that L ⊗ a is

globally generated. Suppose that b is another ideal and that

H0(X,L ⊗ a) ⊆ H0(X,L ⊗ b).

Then a ⊆ b.
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Proof. This follows immediately from unwinding the definition of a globally generated

line bundle.

First make H ample enough so that M + H is base-point free. Next, pick any

0 < ε < 1/2 and let ∆Z be the Q-divisor given by the equation

(KX + ∆ + εH) ∼Q KZ + ∆Z .

Make H so ample (without changing ε) to make ∆Z ample. We can then assume

that (Z,∆Z) is klt. Since M +H is base-point free we have

J ((Z,∆Z); ||MZ ||) ⊆ b(|M +H|Z).

We also have

(m+ 1)MZ +HZ −∆Z −mMZ ∼Q MZ +HZ − (KX + ∆ + εH)Z

= AZ + (1− ε)HZ .

Choose H so ample that

AZ + (1− 2ε)HZ − (KX + ∆)Z ∼Q (dim(Z) + 1)B

with B ample. Rearranging this equation we see that

AZ + (1− ε)HZ ∼Q KZ + ∆Z + (dim(Z) + 1)B.

With these choices we also have, by Castelnuovo-Mumford regularity, that

OZ(((m+ 1)M +H)Z)⊗ J ((Z,∆Z); ||mMZ ||)

are globally generated for all m ≥ 1.

We will first prove by induction on m that

J ((Z,∆Z); ||mMZ ||) ⊆ b(|mM +H|Z)
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for all m and this choice of H. We already chose H so that the base case m = 1

holds. So suppose that the statement is true for a given m. By Lemma 8.5.5,

b(|mM +H|Z) ⊆ bX∆(||mM +H||).

Now, all this gives us the following inclusions. First, the induction hypothesis

says that

H0(Z,OZ((m+ 1)M +H)Z ⊗ J ((Z,∆Z); ||mMZ ||)) ⊆

H0(Z,OZ((m+ 1)M +H)Z ⊗ bX∆(||mM +H||)).

Next, Basic Lifting gives

H0(Z,OZ((m+ 1)M +H)Z ⊗ bX∆(||mM +H||)) ⊆

Im(H0(X,OX((m+ 1)M +H))→ H0(Z,OZ((m+ 1)M +H)Z)).

By our global generation assumption on H and Lemma 8.5.8, it follows that

J ((Z,∆Z); ||mMZ ||)) ⊆ b(|(m+ 1)M +H|Z).

The standard inequality

J ((Z,∆Z); ||(m+ 1)MZ ||)) ⊆ J ((Z,∆Z); ||mMZ ||))

now implies that

J ((Z,∆Z); ||(m+ 1)MZ ||)) ⊆ b(|(m+ 1)M +H|Z),

concluding the induction. Note that, in particular, if MZ is Q-effective then Z 6⊆

B−(M).

Fix an integer l ≥ 1. It follows from the fact that (Z,∆Z) is klt and the above

that

b(|mlMZ |) ⊆ J ((Z,∆Z); ||mlMZ ||)) ⊆ b(|mlM +H|Z)
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for all m. Since H is base-point free we can even write

b(|mklMZ |) ⊆ b(|mklM + kH|Z)

for all k ≥ 1. By Lemma 8.5.5 we get that

b(|lMZ |) ⊆ (bX∆)−(||lM ||) ⊆ (bX∆)−(||(l − 1)M ||).

We claim that this is enough. Indeed, this inclusion of the base locus shows that

the natural inclusion

H0(Z,OZ(lMZ)⊗ (bX∆)−(||(l − 1)M ||)) ⊆ H0(Z,OZ(lMZ))

is an equality. Since Z 6⊆ B−(M) there is an exact sequence

0→ J−((X,∆); ||(l − 1)M ||)→ (adjZ)−((X,∆); ||(l − 1)M ||)→

→ (bX∆)−(||(l − 1)M ||)→ 0.

Twist this exact sequence by OX(lM). To conclude we simply apply Nadel vanishing

to the sheaf on the left-hand side in the form of Proposition 8.3.4.
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Asymptotic invariants of base loci. Ann. Inst. Fourier (Grenoble), 56(6):1701–1734, 2006.
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