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ABSTRACT

Flapping Wing Micro Air Vehicles: An Analysis of the Importance of the Mass of
the Wings to Flight Dynamics, Stability, and Control

by

Christopher T. Orlowski

Chair: Anouck R. Girard

The flight dynamics, stability, and control of a model flapping wing micro air vehicle

are analyzed with a focus on the inertial and mass effects of the wings on the position

and orientation of the body. A multi-body, flight dynamics model is derived from

first principles. The multi-body model predicts significant differences in the position

and orientation of the flapping wing micro air vehicle, when compared to a flight

dynamics model based on the standard aircraft, or six degree of freedom, equations

of motion. The strongly coupled, multi-body equations of motion are transformed into

first order form using an approximate inverse and appropriate assumptions. Local

(näıve) averaging of the first order system does not produce an accurate result and

a new approximation technique named ‘quarter-cycle’ averaging is proposed. The

technique is effective in reducing the error by at least an order of magnitude for

three reference flight conditions. A stability analysis of the local averaged equations

of motions, in the vicinity of a hover condition, produces a modal structure consist

with the most common vertical takeoff or landing structure and independent stability

analyses of the linearized flight dynamics of insect models. The inclusion of the wing

xv



effects produces a non-negligible change in the linear stability of a hawkmoth-sized

model. The hovering solution is shown, under proper control, to produce a limit

cycle. The control input to achieve a limit cycle is different if the flight dynamics

model includes the wing effects or does not include the wing effects. Improper control

input application will not produce the desired limit cycle effects. A scaling analysis

is used to analyze the relative importance of the mass of the wings, based on the

quarter-cycle approximation. The conclusion of the scaling analysis is that the linear

momentum effects of the wings are always important in terms of the inertial position

of the flapping wing micro air vehicle. Above a flapping frequency of approximately

30-40 Hz, the mass and inertial effects of the wings on the orientation of the body

can be neglected.
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CHAPTER 1

Introduction

1.1 Introduction

For millions of years, man has been fascinated by flight. Over the past century, sig-

nificant advances have been made in powered flight. Arguably, humans have pushed

the technological boundaries of flight with the development of supersonic and rotary

wing aircraft. Recent research efforts focus on increased efficiency, increased perfor-

mance, and increased ability to evade radar. However, two areas of flight are still

being explored at the boundary of flight regimes: the very small and the very fast.

The focus of this work is the dynamics, stability, and control of the very small. The

contribution of the dissertation will be an analysis, and the associated conclusions,

on how important (or not important) the mass of the wings of flapping wing micro

air vehicles is for dynamics, stability, and control studies.

The first step is the development of a multi-body flight dynamics model capable

of replicating insect flight. The second step is the distillation of that model into first

order equations of motion. The first order equations of motion are approximated in

order to enable analysis of reference flight conditions (equilibrium conditions), sta-

bility derivatives, and limit cycles. The analyses of the limit cycles and stability

derivatives naturally allow for the determination of when the wings are important.

The analysis will focus on the mass of the wings as the key parameter. As a general
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rule, the mass percentage of the wings of insects decreases, as total percentage of

insect body mass, as the insects decrease in mass. Also, as a general rule, the flap-

ping frequency of the wings of insects increases as the mass of the wing decreases.

Therefore, it can be concluded that mass percentage of the wings of insects decreases

as the flapping frequency of the wings increases.

Insect flight has evolved over millions of years. Current estimates place the number

of insect species at over 10 million, with many of the species yet to be discovered [1].

The evolution of insects produced fliers that make adjustments to changing flight

conditions within one wing stroke [2] or species that complete 180 degree turns in

as little as three wing strokes [3]. The potential benefits for insect-like flapping

wing micro air vehicles are numerous. The hovering ability of insects, coupled with

the ability for a quick transition to forward flight, provide an ideal reconnaissance

platform for search and rescue, law enforcement, and military efforts. The potential

benefits of using insects as a model for flapping wing micro air vehicles (FWMAVs) has

been covered extensively, especially by Ellington in [4]. Recent advances in flapping

wing micro air vehicle technology have produced very capable fliers [5, 6, 7, 8, 9]. The

ultimate goal is to make the aircraft autonomous with a limited payload. Arguably

the best prototype is the Nano Hummingbird produced by Aerovironment under a

DARPA contract [9]. However, the Nano Hummingbird is still remote controlled. In

order for FWMAVs to be autonomous with a limited payload, the processing power

dedicated to control calculations needs to be as minimal as possible. The wings may

be important in this calculation. The first step towards determining how important

is presented in the following material.

1.2 Insect Flight

The study of flapping wing micro air vehicles is not complete without the initial

studies, largely produced by biologists, of insect flight. In nature, there are two general
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types of flapping flight: bird flight and insect flight [10]. Bird flight, alternatively

referred to as ornithopter flight, is generally defined by a main flapping motion of

the wings with passive rotation of portions of the wing. The wings only have two

degrees of freedom: the main flapping motion and slight deviation from the stroke

plane defining the mean motion of the wing. Insect flight is defined by three degrees

of freedom for each wing. The main motion of the wings is defined according to a

stroke plane. The wing can actively pitch about the wing root and deviate from the

stroke plane. The three degrees of freedom of the wing can be defined such the wing

tip traces a figure-8 pattern with respect to the wing root. A lateral view of the stroke

plane is represented in Figure 1.1. Insect flight is also defined by the wing ‘flipping’

Stroke Plane

Downstroke

Upstroke

Figure 1.1: Insect Flight: Lateral View of Stroke Plane

during the wing stroke. The wing stroke is decomposed into two halves: the upstroke

and downstroke. If the rotation of the wing occurs at the end of each half-stroke,

then the rotation of the wings is coined ‘normal rotation.’ If the rotation of the wing

occurs before the end of the half-stroke, after the mid-stroke, then the rotation is

advanced. If the rotation occurs after the end of the half-stroke, but before the mid-

stroke, then the rotation is delayed. The insect wing kinematics in this study will be
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based on normal rotation. Even with normal rotation, there are two general types of

insect wing kinematics: water treading and normal hovering. In normal hovering, the

geometric pitch angle of the wing is a maximum at the mid-stroke and the wing has a

geometric angle of attack of 90◦ at the end of each half-stroke. The normal hovering

mode is illustrated in Figure 1.2. Water treading mode is defined by a maximum
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Figure 1.2: Normal Hovering Mode

geometric angle of attack at the mid-stroke and an angle of attack of zero at the end

of each half-stroke. A depiction of the angle of attack in the stroke plane is shown in

Figure 1.3. A detailed discussion of both modes is available in [10]. Other seminal

literature on the biology of insect flight are books written by Dudley in [1], Vogel in

[11], and Azuma in [12]. Insect flight is also described by Tennekes in [13].

Weis-Fogh published one of the first attempts to analyze the lift and power re-

quirements of hovering animals in [14]. Weis-Fogh studied the hovering flight of hum-

mingbird and insects in the Drosophila family. Weis-Fogh concluded that hovering

flight could be explained by steady-state aerodynamics and that nonsteady effects,

such as delayed stall and the Wagner effect, probably average out over the course of

a flapping cycle. Weis-Fogh expanded the work to a wider range of insects in [15] and

came to the same general conclusion in regards to steady-state aerodynamics. The
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Figure 1.3: Water Treading Hovering Mode

conclusions made by Weis-Fogh are largely disproved by Ellington, in his seminal work

in [2, 16, 17, 18, 19, 20]. Ellington claimed that Weis-Fogh’s approximations in [14]

and [15] were off by up to 30%. One of Ellington’s key contributions is that the lift

required for an insect cannot be explained by steady-state aerodynamics alone, The

generation of lift must be aided by unsteady effects. Weis-Fogh discussed nonsteady

effects, but did not consider them important for the majority of insects.

Ellington’s seminal work was divided into six parts. The first section put forth

a blade-element/quasi-steady theory for the aerodynamics of insect flight [2]. The

blade-element/quasi-steady analysis assumes that each section of the wing sees steady

flight according to classic aerodynamics theory. The effects are integrated over blade

elements along the radial component of the wing. The total results are then used to

analyze the lift and thrust generated by the motion of the insect wings. In the same

work, Ellington also conducted a study of the morphological parameters of insects

[16], the wing stroke kinematics in [17], and the unsteady aerodynamic mechanisms

contributing to the lift generation of the wings in [18]. The lift produced by insects

exceeded the predictions of classical aerodynamic theory and Ellington produced one

of the first theories of the unsteady mechanisms contributing to insect flight in [19].
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Finally, Ellington produced a work predicting the lift and power requirements of insect

flight in [20].

The literature expanded after Ellington’s six part work to other specific insect

species, describing the lift and power requirements for various species, as well as

the morphological parameters and wing kinematics. The morphological relationship

between the wings and the body of insects is studied and published for various species,

such as hawkmoths in [21, 22], dragonflies in [3, 23, 24], and bumblebees in [25, 26].

The wings of insects are generally less than 6% of their total body mass. For example,

the mass of the wings of the desert locust Schistocerca gregaria is less than 4% of the

total body mass [27]. In the study of hawkmoths by Willmott and Ellington, the

wing mass of the specimens studied ranged between 4.8 and 5.8% [21]. Insects can

flap their wings from approximately 10-26 Hz, for hawkmoths, to upwards of 200 Hz

in fruitflies and bumblebees, and even higher for gnats and mosquitoes.

The initial work covering insect flight and theorizing on the lift and thrust gen-

eration naturally expanded into the field of aerodynamics. The theory put forth by

Ellington in [19] included circulation effects into the calculation of the aerodynamic

forces. Dickinson et al. added the effects of wing rotation in [28] to the aerodynamic

knowledge of insects, which provided the basis for a blade-element/quasi-steady aero-

dynamic model presented in [29] and [30]. At this point in the wide research field, the

unsteady mechanisms of insect flight are well understood. The effects include rapid

pitch rotation, wake capture, delayed stall, vortex generation, and a passive pitching

mechanism [31]. Comprehensive reviews of insect flight and progress in aerodynamic

modeling are available from Sane in [32], Wang in [33], Ansari et al. in [34], and Shyy

et al. in [10, 31, 35].

The aerodynamic models are generally divided into two areas: blade-element and

computational fluid dynamics models. Numerous blade-element, and usually quasi-

steady, models have been developed, with varying degrees of accuracy. Blade-element
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aerodynamic models sacrifice accuracy and fidelity for speed, when compared to com-

putational fluid dynamics models. Sane and Dickinson developed a blade-element

model incorporating unsteady effects and added mass effects in [29] and [30]. Berman

and Wang developed a blade-element aerodynamic model in [36] that produces quan-

titatively similar results to CFD results as presented in [37]. Other blade-element

aerodynamic models include those developed by Doman et al. in [38] and Deng et

al. in [39]. Arguably the most complex blade-element model is that developed by

Ansari in [40, 41]. The Ansari model includes wake capture and vortex effects, but is

computationally costly.

Recent aerodynamic efforts have focused on surrogate modeling, improved effi-

ciency in calculations, and quantification of the flexibility effects of the wings in the

generation of aerodynamic forces and moments. Surrogate modeling is presented by

Trizila et al. in [42, 43]. Efforts to improve the efficiency of aerodynamics calcula-

tions is presented in [44]. Flexibility effects have been presented by Kang et al. in [45]

and Gogulapti and Friedmann in [46]. The focus of the dissertation is for dynamics,

stability, and control studies. All aerodynamic models are simplifications of the true

physics, with varying degrees of fidelity. Blade-element/quasi-steady aerodynamic

models will be used for computational efficiency and analytical tractability.

Research has also focused on the effects of the wings on flapping flight, specifically

on the effects of the wing kinematics and wing geometry. The reported research areas

have involved experimental and theoretical work into the determination of the effects

of wing kinematics and geometry on the lift and thrust generation of flapping wings.

Ansari et al. provide a comprehensive examination on the effects of wing kinematics in

[47] and wing geometry in [48]. Khan and Agrawal calculate optimal wing kinematics

using a robotic flapper in conjunction with an aerodynamic model in [49]. Chabalko

et al. conduct a similar analysis to [49] by using CFD models in [50].

The following section will provide a comprehensive review of the studies involving
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dynamics, stability, and control of flapping wing micro air vehicles. The literature

review will set the basis for the contribution to the field of knowledge regarding the

flight dynamics, stability, and control of flapping wing micro air vehicles. The review

will be separated into three sections, covering dynamics, stability, and control studies.

1.3 Literature Review

It is generally impossible to distinguish between dynamics and stability studies

of insects and flapping wing micro air vehicles. The dynamics and stability of flying

systems are inherently tied together. However, the literature review will at least

attempt to distinguish, with lines of grey, between those studies that are generated

with a goal of determining stability or those developing a dynamic model for further

study. Furthermore, the control analysis of insects, biomimetic vehicles, or flapping

wing micro air vehicles cannot be conducted without the inclusion of a flight dynamics

model. The dynamics will be addressed first, but the majority of the significant works

are in the area of stability and control, to be discussed in Sections 1.3.2 and 1.3.3,

respectively.

1.3.1 Dynamics Studies

From an extensive review, we discovered very few models of the flight dynamics

of flapping wing micro air vehicles that treated the inertial/mass effects of the wings

on the central body, and by extension, the entire system. Many of the dynamics

models present in the literature focus on the standard aircraft model and neglect the

inertial effects of the mass of the wings. The standard aircraft equations of motion,

to included the linearized model resulting from small perturbation theory, is exten-

sively developed in [51]. For example, Khan and Agrawal present the modeling and

simulation of flapping wing micro air vehicles based on the standard aircraft model

in [52]. Simulations are presented for a hover condition by utilizing a quasi-steady

8



aerodynamic model. The aerodynamic forces generated by the wings are transformed

from the wing frames to the body frame by using 2-3-1 Euler angles, but the inertial

effects of the wings are neglected. An aerodynamic model is developed, based on [29],

that includes rotational and leading edge vortex effects. The coefficients for the aero-

dynamic model are determined from a robotic flapper. The wing dimensions from the

robotic flapper and the mathematical model are used to present simulations of the

FWMAV in a hover condition. Many of the uses of the standard aircraft model for

flapping wing flight dynamics are tied to research areas conducting control research.

For example, Duan and Li developed the flight dynamics model for an ornithopter in

[53] for the purpose of attitude control.

In [54] and [55], Lasek and Sibilski and Buler et al., respectively, derive the equa-

tions of motion for a flapping wing micro air vehicle using the Gibbs-Appel Equations.

The model developed by Lasek and Sibilski is one of the first multi-body models of

flapping wing flight and is used to model ornithopters. Lasek and Sibilski develop a

simulation architecture in [54] and limit the wings to two degrees of freedom: flapping

and lagging. Alternatively, flapping is the deviation angle and lagging is the flapping

(sweep) angle. The feathering, or pitch angle, remains fixed in the study. Buler et

al. model a flapping wing micro air vehicle with two degrees of freedom for each

wing: sweep in the stroke plane and an angle of attack relative to the stroke plane

in [55]. The authors derived a flight dynamics model with six degrees of freedom

for the central body and two holonomically constrained degrees of freedom for each

wing, resulting in a system with 10 degrees of freedom. Buler et al. use the model to

numerically calculate a Jacobian linearization of the system around a desired trajec-

tory and present a linear quadratic regulator control solution to track the trajectory.

In [56], Jackson et al. present a trajectory optimization problem for a flapping wing

micro air vehicle. The FWMAV is modeled as a system of three bodies, but the cen-

tral body is modeled as a point mass. The inertial effects of the wings are included,
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but without the presence of a rigid body for the central body, the inertial coupling

between the wings and the central body is not accounted for in the simulations and

trajectory optimization problem.

In [57] and [58], Grauer and Hubbard derived the equations of motion of an or-

nithopter using the Boltzman-Hamel equations and five rigid bodies: one for the

central body, one for each wing, and two determining the linkage for the tail. The

work is motivated to provide control of a relatively larger vehicle; namely an or-

nithopter with a four foot wingspan. Each linked rigid body is allowed one degree

of freedom. The angle of attack of the wings is due to passive rotation and a quasi-

steady aerodynamic model is used for simulation efforts. Additionally, the equations

of motion are transformed into a form found often in spacecraft and robotics control

in order to allow for the integration of nonlinear control techniques. Grauer et al.

have recently expanded the use of the model to the testing and system identification

of an ornithopter in [59].

Bolender derived the equations of motion for a flapping wing micro air vehicle

using Kane’s Equations in [60]. The novel approach conducted by Bolender is to

derive the equations of motion with four rigid bodies: a central body, a tail, and

two wings. The tail is used for pitch control of the central body. Bolender includes

the derivation of the inertial and active forces, necessary for Kane’s equations, but

limits the derivation of the wings. The wings are allotted two degrees of freedom, but

the effects of the wings on the central body can be reconfigured through tilting of

the stroke plane. The simulations presented in [60] are for the dynamic model with

wing effects included and are simulated in an open loop fashion. Furthermore, the

presented simulations include the motion of the tail. The equations show that without

control, the magnitude of the pitch velocity of the central body steadily increases.

In [61], Gebert et al. derive the equations of motion for a flapping wing micro

air vehicle using Newtonian methods, which requires the calculation of the constraint
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forces between the wings and the body. The wings are not neglected, but simulations

are not presented to validate the efforts. Furthermore, Sun et al. claim in [62] that

the equations of motion derived in [61] contain errors and cannot be used. Dickson

et al. present simulation efforts for a model insect based on Drosophila that includes

the mass effects of the wings in [63] and [64]. The method chosen uses physics engine

software, similar to that used to make video games and animated features, to model

the wings and body. Simulations are presented using the physics engine. If equations

of motion were developed, which may be important for the development of relevant

control algorithms, the equations are not presented.

1.3.2 Stability Studies

The initial studies of the dynamics and stability of insect flight, and by extension

flapping wing micro air vehicles, started with the analysis of the flight dynamics of

specific insect species. The first formal analysis of the dynamic stability of insects,

by Taylor and Thomas in [27], studied the dynamics of the desert locust Schistocerca

gregaria. The mass of the wings, and the associated coupling terms, are neglected

due to the assumption that the wings beat fast enough to not excite the rigid body

modes of the central body. The stability derivatives are obtained from experimental

methods and through the use of the standard aircraft equations of motion, available

from [51]. The authors acknowledge that the linearized system may not be the best

approximation of the flight behavior of the desert locust. Furthermore, the stability

derivatives are not for an unperturbed system. The study is conducted on actual

insects and the authors found it impossible to distinguish between the active and

passive stability mechanisms of the desert locust. Taylor and Thomas state that the

rigid body approximation is only valid if the wingbeat frequency is at least 10 times

higher than the fastest rigid body mode. Furthermore, the authors conclude that

a linear system may not be the best way to approximate an inherently nonlinear
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system. Taylor et al. expand the work presented in [27] to nonlinear longitudinal

dynamics of the desert locust in [65]. The authors present a combination of stability

and control derivatives obtained from experiments. The derivatives are combined

due to the inability to distinguish between active and passive stability in insects.

The derivatives are then used for a nonlinear time-periodic (NLTP) model of the

longitudinal dynamics. Both the linear and NLTP model neglect the mass effects of

the wings and are longitudinal models only.

In [66], Sun and Xiong use the same rigid body approximation as in [27] to analyze

the hovering flight stability of a bumblebee. The stability derivatives are obtained

from computational fluid dynamics using flight data from [25]. The aerodynamic

forces and moments are cycle-averaged; the resultant forces over one flapping cycle are

used to determine the equilibrium flight condition in the vicinity of a hover condition.

The analysis results in the determination that, based on the linearized system, the

bumblebee has an unstable oscillatory mode for the longitudinal axis. In an open

loop setting, the aerodynamic pitching moment destabilizes the longitudinal axis.

Improper phasing between the pitching and flapping motion of the wings will enhance

the destabilizing effects of the pitching moment.

Sun et al. expand the analysis presented in [66] to four additional insect species

in [62]. The same methodology is used: coupling of the standard aircraft, rigid body

equations of motion with aerodynamic derivatives calculated from computational fluid

dynamics techniques. Sun et al. provided a justification for use of the standard

aircraft equations of motion after presenting a Newton-Euler multi-body derivation

of the equations of motion in [62]. The standard aircraft equations of motion are

justified by assuming that either or the gyroscopic effects of the wings are small,

compared to the body effects, or that the effects averaged over one flapping cycle are

identically zero. The simulation model is used to determine the equilibrium solution

for hovering for the four insect species: dronefly, cranefly, hoverfly, and hawkmoth.

12



The authors determine an eigenvalue modal structure identical to that of [66]. The

modal structure has two stable subsidence modes, one fast and one slow, and one

unstable, oscillatory mode. Sun et al. conclude that the rigid body approximation

may not be accurate for the larger insect species studied (the cranefly and hawkmoth).

Furthermore, Sun et al. conclude that the assumptions at the core of the analysis,

namely that the effects of the wings are either small or time-average to zero, need to

be validated with additional analysis.

Xiong and Sun continue the work presented in [66] and apply the methodology to

forward flight for a bumblebee in [67]. The linear stability analysis is conducted at

various forward flight speeds, ranging from 0 m/s to 4.5 m/s. The authors determined

that at slow forward flight speeds of less than 1.0 m/s, the modal structure of the

system matrix is qualitatively similar with the structure obtained in [62, 66]. At for-

ward flight speeds of approximately 2.5 m/s, the modal structure for the longitudinal

flight dynamics is approximately neutrally stable. The eigenvalues exist in two pairs

and both are stable, although the magnitudes are close to the jω-axis and noted

as marginally stable. As forward flight continues to increase, the modal structure

switches back to the structure near hover. The final modal structure contains four

real eigenvalues: two stable and two unstable. The results differ from those presented

in [27]. In [27], the analysis predicted a modal structure identical to the hovering

modal structure for even faster forward flight speeds. However, it is important to

note that the studies are conducted for two separate insect species and used different

methods for the determination of the aerodynamic derivatives.

The analysis used in [62, 66, 67] is expanded in [68] to allow for oscillations of

the central body. Wu et al. present a method of obtaining the hover solution for

two model insects, the dronefly and hawkmoth, by coupling the equations of motion

with the Navier-Stokes equations. The work is significantly different from [62, 66]

because the body is no longer assumed to be fixed. Wu et al. present a method of
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solving the required parameters by using a ‘shooting’ method. The hover condition

is solved for the longitudinal equations of motion; the lateral motion of the insect

model is neglected. The results for the hover condition are qualitatively consistent

with results obtained from biological studies of droneflies and hawkmoths. Although

the derivation presented in [62] is mentioned, the hover solution is obtained while

neglecting the coupling effects of the wings.

The validity of the assumptions made by Sun et al. in [62] is evaluated by Zhang

and Sun in [69]. The validity of the assumptions is examined by comparing the

solutions obtained in [62] for hovering using the approximate theory to the solutions

obtained in [68]. Numerical simulations are presented that show, under the effects of

the disturbances from the hover condition, that the models are close for three flapping

cycles. The results are similar for the hawkmoth and the dronefly. Zhang and Sun

conclude that due to the relatively low flapping frequency of the hawkmoth (26 Hz),

the approximate model should be valid for all insects.

The results presented by Sun et al. in [62, 66, 67] are obtained independently,

and using a different method, by Faruque and Humbert in [70]. In [70], Faruque

and Humbert model an insect using the standard aircraft equations of motion and

cycle-averaged forces and moments. The forces and moments are calculated using a

quasi-steady/blade-element aerodynamic model, as opposed to the CFD aerodynamic

model used in [66]. The system matrix and control inputs matrix, in vicinity of a

hover condition, are obtained using frequency-based system identification techniques.

Faruque and Humbert obtain the same modal structure as presented in [62] and [66]

for an open loop system: two subsidence modes (one fast and one slow) and one

unstable, oscillatory pair. With halteres providing sensing and feedback applied, the

unstable oscillatory mode become stable. The stable modal structure is independently

obtained by Gao et al. in [71]. Gao et al. conduct a numerical analysis of hawkmoth

hovering using coupling of computational fluid dynamics with the standard aircraft
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equations of motion. As opposed to the work presented in [66] and [70], Gao et al.

do not assume simple sinusoidal motion for the wing stroke. Instead, actual wing

kinematics from [21, 22] are used. The numerical analysis results in two subsidence

modes, one fast and one slow, and a stable oscillatory mode. The stable oscillatory

mode is small in magnitude and close to the jω-axis. The authors attribute the

difference in the stability of the oscillatory mode to the choice of wing kinematics.

Faruque and Humbert expand their work to lateral stability, in the vicinity of

hover, in [72]. Zhang and Sun present a similar approach to the analysis of the

stability derivatives for lateral motion in [73]. The lateral stability derivatives are

determined for the standard aircraft equations of motion, in the vicinity of a hover

condition, using computational fluid dynamics. Zhang and Sun’s analysis reveals

three natural modes for the dronefly model: one unstable (fast) subsidence mode,

one stable (slow) subsidence mode, and a stable (slow) oscillatory mode. Faruque

and Humbert use the same techniques as outlined in [70]: a standard aircraft flight

dynamics model, a quasi-steady aerodynamic model, and frequency based techniques

to identify the stability derivatives. They explicitly include a passive damping term, as

determined by Hedrick et al. in [74], named flapping counter torque (FCT). Faruque

and Humbert determine the closed-loop lateral system to be stable with three natural

modes: two subsidence modes, one fast and one slow, and one stable oscillatory mode.

The difference in results between the two studies, a stable versus unstable system,

may be due to the inclusion of the flapping counter torque by Faruque and Humbert.

Bolender examines the open loop stability of a flapping wing micro air vehicle in

hover in [75]. The analysis is conducted by examining the orbital stability of the flap-

ping wing micro air vehicle, due to the periodicity of the flapping wing system. The

vehicle is modeled as a point mass with a quasi-steady, two-dimensional aerodynamic

model transformed from the wing frames. The body of the flapping wing micro air

vehicle is first modeled as a point mass and the stability analysis is conducted using
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Floquet Theory. The calculation determines that the orbit of the point mass model

is unstable. The analysis is also conducted with a multi-body model, with the central

body modeled as a rigid body. The orbit for the multi-body model is also unstable.

The standard aircraft model is used to analyze the stability of the flight dynamics

of an ornithopter by Dietl and Garcia in [76, 77, 78]. In [76, 77], the vehicle dynamics

model is presented along with the aerodynamic model. Dietl and Garcia present the

longitudinal dynamics, trim solutions and a limit cycle. The aerodynamic model used

is developed in [36] and used throughout [76, 77, 78]. The longitudinal dynamics are

decoupled from the lateral dynamics in the standard model. In [78], in addition to an

analysis of the dynamics of the vehicle, control solutions are presented, based on the

discrete-time eigenvalues resulting from the periodic solution. The periodic solution

and stability analysis are conducted using Floquet Theory, as in [75]. The analysis of

the dynamics neglects the inertial effects of the wings on the central body and limits

the wings to bird-like flapping: one degree of freedom with passive rotation of the

wings due to aerodynamic pressure on the wing.

The stability studies are summarized in Table 1.1. The stability studies have a

general consensus. For both nonlinear and linear systems, in the absence of active

control, flapping wing micro air vehicle models are unstable. The addition of active

control can stabilize the system for linear systems, for both time-invariant and time-

varying systems. The development of stabilization methods for nonlinear systems,

both time-invariant and time-varying, will be discussed. The stabilization methods

will be discussed in Section 1.3.3. For reference, ‘LTV’ in Table 1.1 is short for

linear time-varying. ‘NLTV’ is short for nonlinear time-varying. The majority of the

stability studies are for longitudinal flight. A flight system only has three degrees of

freedom under the appropriate assumptions for longitudinal flight. The distinction

has been made between longitudinal flight and full, six degree of freedom flight where

applicable. The results in [70] and [72] are condensed into one entry. In actuality, the
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stability analyses in [70, 72] produced two separate three degree of freedom models

to analyze the linear stability of the six degree of freedom system in the vicinity of a

hover condition.

Authors
Dynamics Aero Stability Flight

Model Model (type) Condition
Taylor and Thomas, Linear Experi- Unstable Forward

2003 (3DOF) mental (open loop) Flight
Sun and Xiong, 2005 Linear

CFD
Unstable Hover

Sun et al., 2008 (3DOF) (open loop) (longitudinal)
Xiong and Sun, Linear

CFD
Unstable Forward

2008 (3DOF) (open loop) Flight

Gao et al., 2009
Linear

CFD
Stable Hover

(3DOF) (open loop) (longitudinal)
Faruque and Linear Quasi- Unstable (open)

Hover
Humbert, 2010 (6DOF) steady Stable (closed)
Zhang and Sun, Linear

CFD
Unstable Hover

2009 (6DOF) (open loop) (lateral)

Bolender, 2010
NLTV Quasi- Unstable Hover

(1DOF,3DOF) steady (open loop) (longitudinal)
Dietl and Garcia, LTV Quasi- Unstable Hover

2008 (3DOF) steady (open loop) (longitudinal)

Table 1.1: Summary Table of Stability Studies

1.3.3 Control Studies

In [38] and [79], Doman et al. present modeling and control of a flapping wing

micro air vehicle based on the ‘RoboFly’ developed by Wood and presented in [80].

The aerodynamic model used in the simulations is developed in [38] and based on the

work of Sane and Dickinson in [29] and [30]. The cycle-averaged aerodynamic forces

and moments are presented in detail, along with calculation of the control derivatives

based on the dynamic and aerodynamic models. The authors present a method of

controlling the six degrees of freedom of the central body through the use of split-cycle

frequency modulation and a bob-weight to control the pitch. Split-cycle frequency
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modulation varies the frequency of the wing stroke during either the upstroke or

downstroke. The result is asymmetric thrust forces and body moments, allowing for

control of the system. The work is expanded on and presented in [81]. Doman et

al. neglect the mass of the wings and their associated effects due to basing the work

on the RoboFly, where the mass of the wings comprises less than 1% of the total

vehicle mass. The work is expanded in [82, 83, 84] to include wing bias. The addition

of wing bias increases the number of control inputs to four from the previous model

using only split cycle frequency modulation. The wing bias changes the midpoint of

the wingstroke and enables six degree of freedom control, without the bobweight as

detailed in [79].

The research efforts into six degree of freedom control in [81, 84] are expanded to

robust nonlinear control by Serrani et al. in [85, 86]. Serrani presents a method for

the robust control of a 1-DOF flapping wing micro air vehicle in [85]. In [86], Serrani

presents the robust control of a 3-DOF FWMAV. The flight dynamics model is based

on the work by Bolender in [60], but restricted to the longitudinal plane. The control

is achieved through the use of varying the wingbeat frequency and stroke plane angle.

Through the use of decomposing the system dynamics into different time scales, the

x and z position of the FWMAV can be controlled directly and the pitch attitude

stabilized. Simulation results show the control is effective, by achieving the set point

tracking command, in about 60 seconds. The solution is achieved by allowing the

pitch angle to oscillate, but by stabilizing the oscillations so that they are bounded.

Deng et al. use the standard aircraft model and time-averaged forces and mo-

ments to derive a switching controller for a biomimetic insect in [87]. The controller

is used, with success, to control the biomimetic insect in the vicinity of a hover con-

dition. Schenato et al. present a controllability study of a biomimetic insect using

the standard aircraft equations in [88]. In [39, 89], Deng, Schenato, et al. develop

a mathematical model for the dynamics of a FWMAV. An aerodynamic model is
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developed and based on the ‘Robot Fly’ experiments by Sane and Dickinson in [29]

and [30]. The dynamics of the actuators are included, as well as the required sensors

for effective flight. The wings are given three degrees of freedom, but parameterized

into one single degree of freedom. The averaged dynamics and aerodynamic inputs

are presented and used as a basis for controller and sensor design. Using averaging

and linear quadratic regulator theory, a control strategy for ensuring proper stroke

kinematics is presented resulting in good tracking of a reference flight condition.

Hu et al. develop a control mechanic in [90] based on the work of Deng, Schenato

et al. in [39, 89]. Using four control inputs, the authors demonstrate control combi-

nations that enable six degree of freedom control of a flapping wing micro air vehicle.

The controls for each wing are flip-start timing, alternatively referred to as advanced

or delayed rotation, and change in the mid-stroke angle of attack. The control me-

chanic developed in [90] is expanded to develop the control parameters in [91]. The

choice of control is parameterized and the parameterized controls are coupled using

random input choices and system identification techniques. The system identification

produces a control input matrix and demonstrates the controllability of the system.

Simulation results demonstrate successful control of the flapping wing micro air ve-

hicle. The results are expanded in [92] to the use of time-periodic, feedback control

to stabilize the attitude of a flapping wing micro air vehicle. Using the time-average

forces and moments, as well as time-averaged dynamics, the controller is able to sta-

bilize the system as long as the number of control inputs is equal to the numbers of

degrees of freedom in the system. Hu et al. discuss controllability issues with flapping

wing micro air vehicles in [93]. The effects of various choices of flip-start timing and

mid-stroke angle of attack are evaluated. The mean forces and moments are detailed

as a result of the various input choices.

Sun and Wang use the analysis from [66] to stabilize a hovering model insect in [94].

The stabilization is achieved on the linear time-invariant model using four controls:
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change in stroke (flap) amplitude, change in stroke (flap) offset, an equal change in

the angle of attack, and a differential change in the angle of attack. Xiong and Sun

in [95] use the analysis presented in [66] and [67] to apply stabilization control to the

linear, time-invariant models of bumblebee flight previously developed. Stabilization

is applied to both hovering and forward flight. CFD models are used to calculated

the control derivatives given the following set of control inputs: changes in the stroke

(flap) amplitude, change in the mean stroke (flap) position with respect to the body,

an equal change in the angle of attack, and a differential change in the angle of attack

for each wing. The authors concluded that for the forward flight speeds presented in

the study that the system is controllable and therefore using linear systems theory,

the system is stable in the presence of active control. The control work is expanded

by Wu and Sun in [96] to include determining the controls necessary, based on the

linear models for both the system and control inputs, to transition from hovering to

slow, forward flight speeds. Change in the mean stroke angles enables forward or

backwards translation. An equal change in the stroke amplitude or angle of attack

enables vertical flight. Coupling the two controls enables full, six degree of freedom

flight.

Cheng and Deng present a derivation of the linear dynamics and control near

hover in [97]. The wings are modeled with two degrees of freedom relative to the

stroke plane, the deviation is neglected, and the body is modeled as three rigid body

ellipsoids. The intent of the work is to mimic the flight of the fruit fly Drosophila.

The effects of the change in angle of attack on the aerodynamic forces are neglected

due to being in vicinity of a hover condition. The method develops estimations of

the stability and control derivatives based on flapping-counter forces (FCFs) and

flapping-counter torques (FCTs) presented in [74]. The control inputs are chosen to

be an equal change in mean position of the left and right wings, differential change in

stroke amplitudes, and differential change in stroke plane angle. The open loop system
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is unstable and the system is stabilizable using proper choices of only proportional

control, based on the chosen control inputs.

Rifäı et al. control a model flapping wing micro air vehicle using bounded, non-

linear state feedback in [98]. The dynamics model is based on the standard aircraft

equations of motion with quaternions used to describe the orientation of the cen-

tral body. Average forces and moments, as well as averaged dynamics, are used to

compute the control law for the time-varying system. The developed controller is

effective in bringing the flapping wing model to an equilibrium condition, under the

presence of disturbances, from a significant initial condition. Humbert and Faruque

expand the analysis presented in [70] to a reachability analysis in [99]. Faruque and

Humbert demonstrate that controllability is achieved through the choice of two of

the following control inputs: stroke plane, flapping offset (similar to wing bias), and

change in the angle of attack between the upstroke and downstroke. For a proper

choice of control inputs, the most effective choice is the combination of stroke plane

changes and changes in the angle of attack between the upstroke and downstroke.

Geder et al. present a model that includes the sensors and actuators in [100]. Con-

trol for hovering, forward flight, and turning maneuvers is achieved through the use

of PID-control and an extended Kalman filter. Fuzzy neural networks have also been

investigated for control schemes for flapping wing micro air vehicles. Guo et al. de-

veloped a neural network controller, in [101], that effectively stabilizes the position

and orientation of a biomimetic robot, based on the work presented in [93]. Other

control techniques include control through engineered central pattern generators in

[102] and the evolution of analog neuromorphic devices in [103].

The control of insect-like flapping wing micro air vehicles is widely studied and

continuing to expand. The significant control studies are summarized in Table 1.2.

The following abbreviations, not previously defined, are relevant. ‘DTLTI’ stands

for discrete-time linear time-invariant. ‘LTI’ stands for linear time-invariant. The
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flapping amplitude input is shortened to ‘flap amp’ and angle of attack is shortened to

‘AoA.’ ‘LQR’ refers to linear quadratic regulator and ‘LQG’ refers to linear quadratic

Gaussian. In regards to linear gains: ‘P’ is proportional, ‘I’ is integral, and ‘D’ is

derivative.

Authors
Dynamics

Control Technique Inputs
Model

Deng, Schenato DTLTI
Linear LQR/LQG

Flap amp.
et al., 2006 (3DOF) AoA

Doman et al., NLTV
Linear

Pseudo-inverse Split-cycle
2010 (6DOF) allocation Wing bias

Serrani, 2010
NLTV Nonlinear Time scale Flap frequency

(3DOF) Robust separation Stroke plane
Sun et al., 2007 LTI

Linear
Modal decomp. Flap and AoA

Xiong et al., 2009 (3DOF) LQR Offset and Diff

Rifäı et al., 2008
NLTV

Nonlinear
Bounded Flap amp.

(6DOF) Feedback AoA
Cheng and Deng, LTI

Linear Linear Gains: PD
Flap amp./bias

2010 (3DOF) Stroke plane
Geder et al., NLTV

Linear Linear Gains: PID
Flap amp./bias

2010 (6DOF) Stroke plane

Table 1.2: Summary Table of Control Studies

None of the control results presented in Table 1.2 include the mass and inertia effects

of the wings in the control algorithms. The robust control schemes developed by

Rifäı, in [98], and Serrani, in [85, 86], may be able to handle to the mass of the wings.

All of the control studies discussed are not only a wealth of knowledge for feasible

control inputs, but control strategies as well.

1.4 Conclusions

The many dynamics models previously discussed in the literature review are sum-

marized in Table 1.3. The dynamics of flapping wing micro air vehicles is widely stud-
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Authors
Dynamics Wing Aero-

Applicability
Model Effects dynamics

Taylor and Thomas,
Linear No Experimental

Desert
2003 locusts

Sun and Xiong, 2005 Linear No CFD Honeybees
Doman et al., 2009 6DOF No Blade-element Robot Fly

Deng, Schenato et al.,
6DOF No Blade-element Insects

2006
Khan & Agrawal, 2005 6DOF No Blade-element Insects

Loh & Cook, 2003 Multi-body 2 DOFs Blade-element Insects
Bolender, 2009 Multi-body 2 DOFs Berman Wang Insects
Sun et al., 2008 6DOF No Navier-Stokes Insects

Buler et al., 2004 Multi-body 2 DOFs Not specified Ornithopters
Grauer et al., 2009 Multi-body 1 DOF Blade-element Ornithopters

Orlowski et al., 2011 Multi-body 3 DOFs Blade-element Insects

Table 1.3: Summary Table of Dynamics Models

ied from the aspect of a rigid body approximation. However, studying the multiple-

body nonlinear system, with mass and inertia coupling effects from the wings, has

not been widely reported. In [60], Bolender makes the claim that the effects of the

wings need to be included for proper control studies. The aerodynamic models used

by Doman and Oppenheimer in [81, 84] and by Deng, Schenato et al. in [39, 88, 89]

are based on the experiments of Sane and Dicksinson in [29, 30]. The lift and drag

coefficients used by Doman et al. are derived from model wing experiments in an oil

tank. The model wing is based off of the common fruit fly, Drosophila melanogaster,

but the wings are scaled to a semi-span of 25 cm and mean chord of 6.7 cm. Sane

and Dickinson conducted their experiments at a Reynolds number of 115, whereas

hawkmoths operate in a flow regime with a Reynolds number of approximately 6,000

- 8,000 [10, 21, 22]. The dynamics models derived by Taylor and Thomas in [27],

Sun and Xiong in [66], and by Doman in [38, 82] are directly tied to the aerody-

namics models presented in the papers. Especially in [27, 62, 66], the dynamic and

aerodynamic results are specifically tied to the insect species presented in the specific

studies.

23



In regards to the the other studies presented, the work is not tied to a specific

aerodynamic model. The aerodynamic models are chosen as inputs. In [39, 88, 89],

the control results are tied to the aerodynamic model, but the dynamics presenta-

tions allows for the implementation of different aerodynamic models. However, the

presented results neglect the mass of the wings. The work by Lasek and Sibiliski in

[54], Buler et al. in [55], and Grauer and Hubbard in [58] include the mass effects

of the wings, but the formulation is limited to ornithopter flight and not true insect

flight. Bolender, in [60], included the wing effects in the derivation and simulations,

but the wings only have two degrees of freedom relative to the stroke plane. Shyy et

al. state that the third degree of freedom, relative to the stroke plane, is important

for the transition from hover to forward flight for insect-like flapping [10]. The results

presented by Sun and Xiong in [62, 66, 67] are presented without the mass effects

of the wings and the linear solutions are based upon the calculations performed us-

ing the Navier-Stokes equations. The aerodynamic model used is most likely more

accurate, but the method is computationally expensive.

Throughout all of the previous references discussed, the work is presented for a

single aerodynamic model and the effects of the mass of the wings is either included, or

neglected. An analysis of how the wings may affect the central body is largely absent

from the literature. Furthermore, since every aerodynamic model is an approximation

(of varying degrees of fidelity) of the actual aerodynamic forces and moments gener-

ated by the wings, there has not been an attempt to quantify, or qualify, the effects of

choosing a different aerodynamic model. The main issue is the availability of compu-

tationally efficient aerodynamic models for dynamics, control, and stability studies.

The most accurate modeling of flapping wings is obtained from computational fluid

dynamics methods, but to obtain data is computationally expensive. Tying these

models to a dynamics model will further increase the computational time. Quasi-

steady/blade-element models are computationally inexpensive, but their accuracy is
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debatable. The model used for previous simulations, developed by Berman and Wang

in [36], achieves decent accuracy for calculations when compared to the CFD efforts

by Sun and Du in [37]. However, the point of this study is to determine the inertial

effects of the wings on the dynamics of the central body for stability and control

studies. A quasi-steady aerodynamic model will suffice. Specifically, the goal is to

develop and analyze model that includes the inertial coupling effects of the wings on

the central body, due to the continuous motion of the wings. The model must be able

to replicate true insect flight with three degrees of freedom relative to a stroke plane.

All effects of the wings on the body, and vice versa, are included in the derivation.

None of the effects will be neglected or simplified.

Once the multi-body model is developed, it can be used to analyze the relative

importance of the wings. In order to analyze the relative importance of the wings,

the first order equations of motion needed to be obtained from the multi-body model.

Once the first order equations of motion are determined, the equations of motion need

to be properly approximated. Even in first order form, the equations of motion are

quite complex and equilibrium (or reference flight) conditions are not immediately

apparent. With proper approximation, the importance of the wings can be analyzed

and included in dynamics and stability studies.

1.5 Original Contributions

• The derivation, from first principles, of a multi-body flight dynamics capable of

modeling true insect flight. The flight dynamics model allows for three degrees

of freedom relative to a stroke plane. The flight dynamics model is the only

model in the literature with three degrees of freedom, the stroke plane, and

multi-body dynamics. The multi-body flight dynamics model is capable of

modeling configurations with two wings, two wings with a tail and/or a control

mass, and four wings. The technique is easily expanded to configurations with
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more wings.

• The multi-body, flight dynamics model is used to analyze the open loop effects

of the mass and inertial effects of the wings on the position and orientation of

the central body. The multi-body model predicts behavior different from the

standard aircraft model for the same aerodynamic inputs. The differences in

behavior manifest in both the position and orientation.

• The derivation of approximate first order equations of motion for flapping wing

micro air vehicles. The first order equations of motion are approximated from

the multi-body, flight dynamics model. The first order equations of motion can

be written as the standard aircraft equations of motion plus perturbations of

the wing mass. First order equations of motion, with the wing effects included,

did not previously exist in the literature.

• The development of an approximation technique for a periodic system, in con-

text of flapping wing micro air vehicles, coined quarter-cycle averaging. The new

approximation technique is necessary due to the lack of an analytical solution

for the standard aircraft equations of motion. The quarter-cycle techniques re-

duces the error in approximation by over an order of magnitude when compared

to local (näıve) averaging.

• The development of an analytically tractable method of determining the sta-

bility derivatives for a flapping wing micro air vehicle in vicinity of a hover

condition. The results are qualitatively consistent with independent numerical

efforts.

• The development of a method for determining the relative importance of the

wing mass effects on the position and orientation of a flapping wing model.

The method predicts that the linear momentum effects are always important,
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but the angular momentum effects can be neglected greater than a flapping

frequency of approximately 30-40 Hz.

1.6 Dissertation Organization

The dissertation will start with the detailed derivation, from first principles, of the

multi-body, flight dynamics model in Chapter 2. Certain portions of the derivation

are presented in Appendix A to maintain a consistent flow. Chapter 2 will present a

simulation comparison of the multi-body and the standard aircraft (6DOF) equations

of motion in Section 2.5.2. The multi-body model is also used to show system behavior

with different aerodynamic inputs (2.5.3) and decreasing wing mass for a fixed body

mass (2.5.4). Chapter 3 presents a derivation of the first order equations of motion

for the multi-body dynamics, with certain details presented in Appendices B and

C. The first order equations of motion derived in Chapter 3 are approximated using

local averaging and a new approximation technique coined ‘quarter-cycle’ averaging in

Section 3.4. The quarter-cycle averaging techniques are presented for three reference

flight conditions: hovering flight (3.4.1), forward flight (3.4.2), and vertical flight

(3.4.3).

The equations of motion and approximation techniques developed in Chapters

2 and 3 will be used to evaluate the stability and limit cycles of the multi-body,

flapping wing micro air vehicle system in Chapter 4. An analytically tractable method

for obtaining the stability derivatives of a flapping wing micro air vehicle in the

vicinity of a hover condition will be presented in Section 4.2. The stability results

will be presented for models with and without wing effects. Linear and nonlinear

control analysis in the vicinity of a hover condition, to include limit cycle conditions,

will be presented in Sections 4.4 and 4.5. Finally, Chapter 5 will present scaling

relationships that examine the relative importance of the wings. Chapter 5 will

include an analysis of certain scaling relationships for insects and application of the
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scaling relationships to the linear and angular momentum effects of the wings on the

position and orientation of the body.
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CHAPTER 2

Multi-Body Dynamics for Insect-like Flapping

Wing Micro Air Vehicles

2.1 Introduction

As detailed in Chapter 1, the majority of the reported studies regarding the dy-

namics and stability of flapping wing micro air vehicles neglect the mass of the wings

and their associated coupling effects. Various multi-body models have been devel-

oped, but all of the models lack, to a certain degree, the desired flexibility for the

analysis of an insect-like, flapping wing micro air vehicle. The models developed by

Lasek and Sibilski in [54], Buler et al. in [55], and Grauer and Hubbard in [57, 58] are

based on ornithopter models. The multi-body models developed by Loh and Cook in

[104] and Bolender in [60] allow for only two degrees of freedom of the wings, relative

to the stroke plane. The third degree of freedom, the deviation angle, is important

for the transition from hovering to forward flight [10]. Furthermore, the derivation in

[104] is lacking the majority of the pertinent details.

The inclusion of three degrees of freedom relative to the stroke plane is not a

new development. The work is previously presented in [52], but the flight dynamic

model development is limited to the transformation of forces from the wing frames

and does not include multi-body considerations. Gebert et al. in [61] and Sun et
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al. in [62] develop multi-body models with three degrees of freedom for each wing.

However, the models are developed with Newton-Euler techniques. Some of the re-

quired implementation details are not presented in [61] and [62]. Furthermore, the

use of Newton-Euler requires the calculation of the constraint forces between two

bodies, which is quite cumbersome given bodies in continuous motion. The following

derivation will present a multi-body, flight dynamics model for a flapping wing micro

air vehicle that includes three degrees of freedom for each wing relative to the stroke

plane. The model will enable the study of the flight dynamics of insect-like flapping

micro air vehicles and a determination of the (relative) importance of the inertial

coupling effects of the wings on the position and orientation of the vehicle.

2.2 Derivation of the Equations of Motion

2.2.1 Method

The derivation of a dynamic model that encompasses the mass and inertial effects

of the wings, as well as allowing three degrees of freedom for the wings relative to the

stroke plane, is now presented. The method chosen for the derivation is D’Alembert’s

Principle for Multiple Rigid Bodies, alternatively presented as the ‘general form of

the equations of motion for multiple rigid bodies’ in [105]. The derivation method is

presented in [105, 106, 107]. The chosen method is a hybrid of Euler and Lagrange

techniques and is akin to Kane’s Equations and the Gibbs-Appel Equations [107].

The flight dynamics model to be developed is presented in [108, 109, 110, 111]. The

main equation, governing the derivation, is:

n∑
i=1

[
˙̄pi · γ̄ij +

(
˙̄Hi +miρ̄ci × ˙̄vi

)
· β̄ij

]
= Qj, (2.1)

where i denotes the number of rigid bodies and j denotes the number of generalized

coordinates (with associated quasi-velocities). In Equation (2.1), linear momentum is
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defined as p̄i and angular momentum is H̄i. For completeness, the linear momentum

rate and angular momentum rate of the ith rigid body are defined as

˙̄pi = mi

(
˙̄v + ˙̄ρci

)
and ˙̄Hi = Ii · ˙̄ωi + ω̄i × Ii · ω̄i. (2.2)

The method has a few main advantages. One, since the principle of virtual work

is used to calculate the forces and moments for each generalized coordinate, the

constraint forces between the wing and the central body are neglected, as constraint

forces do not perform virtual work. Two, the method allows for the choice of reference

points for the velocity of each body. The wings are assumed to be attached to the

central body by joints that allow three degrees of freedom. To simplify the derivation,

and eliminate the need for tracking the absolute velocity and acceleration of the

wings in an inertial frame, the velocity reference points for the wings are chosen to

be the respective wing joints. Finally, the inertia tensor for the individual bodies is

calculated with respect to the reference point and does not need to be calculated at

the time-varying center of mass of the system.

2.2.2 Reference Frames

In order to accurately describe the motion of the body with respect to an inertial

frame, and the motion of the wings with respect to the body, six reference frames

are required. The first reference frame is an inertial (fixed) frame. The absolute

velocity and position of the flapping wing micro air vehicle (FWMAV) are described

with respect to the inertial frame. The B frame is a body-fixed frame attached to the

body (fuselage) of the FWMAV with origin at the center of mass of the body. The B

frame is depicted in Fig. 2.1a. The frame is oriented with positive x-axis along the

longitudinal axis of the central body. The y-axis is perpendicular to the x-axis and

is positive out of the right side of the vehicle. The z-axis is positive downward and
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Figure 2.1: Model Representation with Reference Frames and Reference Vectors

perpendicular to the x − y plane. The unit vectors of the B frame are denoted by

b̂x, b̂y, and b̂z. An x− z plane of mass symmetry is assumed for the body. In addition

to the B frame, the stroke plane frames are two body fixed-frames originated at the

wing joints. The stroke plane frames are denoted by Rsp and Lsp and have initial

orientation parallel to the B frame. The orientation is rotated by an angle β about

the b̂y-axis of the B frame to the stroke plane. The stroke plane defines the mean

motion of the wing. The stroke plane angle defines the orientation of the stroke plane

relative to the longitudinal axis of the central body. The y-axis of the stroke plane

frames will always remain parallel to the B frame. The x and z axes of Rsp and Lsp

will be rotated by the fixed angles βR and βL. The last two frames are fixed frames

attached to the wings. The initial orientation of the wing frames is parallel to the

stroke plane frames with an origin coincident with the wing joint. The wing frames,

Rw and Lw, move with the rotation of the wings and enable the calculation of the

wings’ orientations with respect to the stroke plane, and by extension, the central

body. The right stroke plane frame and wing frame are depicted in Fig. 2.1b. The

stroke plane frame is represented by solid lines and unit vectors with the subscript

sp,R. The wing frame is represented by dashed lines and unit vectors with the

subscript w,R.
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Figure 2.2: Wing Angles and Stroke Plane Angles

2.2.2.1 Orientation

The orientation of the central body is determined by 3-2-1 Euler angles with

respect to the inertial (fixed) frame. The nomenclature for the angles is consistent

with the NASA standard for aircraft [107]. The orientation of the stroke plane with

respect to the body is denoted by the angles βR and βL and is fixed for a given flight

condition. The stroke plane is defined relative to the longitudinal axis of the body

and not an inertial (fixed) frame, as is the common practice in the biology literature.

The orientation of the wings with respect to the stroke plane is determined by the

deviation, pitch, and flap angles of the wings. The wing angles are δ, α, and ζ. The

stroke plane angle and angle of attack are shown in Fig. 2.2a. A common, although

not completely accepted, nomenclature choice for the deviation (elevation) and flap

(sweep) angles are θ and φ, respectively. Here, δ is chosen for the deviation angle and

ζ is chosen for the sweep angle to avoid confusion with the pitch and roll angles of

the central body. The relation of the δ and ζ angles to the central body are shown

in Figs. 2.2b and 2.2c.

Positive rotations are consistent with the right hand rule. A positive angle of

attack is ‘up’ in the stroke plane frame. A positive deviation (elevation) angle is

down and a positive flap (sweep) angle is forward. The kinematics of the wings,

usually sinusoidal functions to be discussed later, will always be set so that positive

motion is ‘forward’ and ‘down.’
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2.2.2.2 Rotation Matrices

The rotation matrix from the inertial frame to the body frame, RB, is determined

by proper combination of the 3-2-1 Euler angles. The standard combination can be

found in [51] and [107]. The rotation matrix from the body to the stroke plane frame

is

Rβ =


cos β 0 − sin β

0 1 0

sin β 0 cos β

 , (2.3)

where βR and βL are substituted for the proper stroke plane frame. The orientation

for the right and left wings with respect to the Rsp and Lsp frames is determined by

the 3-1-2 Euler angles, where ζ = 3, α = 2, and δ = 1. The choice of 3-1-2 Euler

angles matches the requirements of the system in a physical sense. For example, the

radial position of a point on the wing can be tracked in the stroke plane frame using

spherical coordinates with the angles ζ and δ (please see Equation (A.4)). The choice

of 3-1-2 Euler angles gives spherical coordinates for a radial (y) position of the wing

when transformed from the wing frame to the stroke plane frame. The singularity

for 3-1-2 Euler angles, using the chosen nomenclature, is at δ = ±π
2

and will not be

reached by the wing stroke kinematics. The rotation matrices for the right wing are

RδR =


1 0 0

0 cos δR sin δR

0 − sin δR cos δR

 ,RαR =


cosαR 0 − sinαR

0 1 0

sinαR 0 cosαR

 ,

and

RζR =


cos ζR − sin ζR 0

sin ζR cos ζR 0

0 0 1

 . (2.4)
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The rotation matrices are combined according to

RR = RαRRδRRζR . (2.5)

The rotation matrices for the left wing, with respect to the left stroke plane, are

combined in the same manner as in Equation (2.5). The rotation matrices for the left

wing are presented in Equation (A.1). The negative signs for the rotation matrices

for the ζ and δ angles are interchanged for the right and left wings. The sign change

is due to the fact that ‘positive’ motion of the wings is forward, which is a positive

rotation for the left wing by the angle ζL, but a negative rotation for the right wing

by the angle ζR. Likewise, ‘positive’ downward motion is a positive rotation of the

angle δR for the right wing, but a negative rotation by the angle δL for the left wing.

The correct sign ensures proper cancellation of forces and moments in the B frame

when the flapping is symmetrical, which will be discussed in Section 2.2.7.

2.2.3 Generalized Coordinates

A flapping wing micro air vehicle truly only has six degrees of freedom: the

three translational and rotational degrees of freedom of the central body. However,

each of the wings has three holonomically constrained degrees of freedom relative to

the central body. Combining the six true degrees of freedom and six holonomically

constrained degrees of freedom, we can view the system as having twelve independent

degrees of freedom [54, 55, 106]. As a result, we need twelve generalized coordinates

to accurately describe the system. The inertial position is described by X, Y, and Z.

The orientation of the body with respect to an inertial frame is determined by the

angles ψ (yaw), θ (pitch), and φ (roll). The orientation of the right wing is described

by the angles δR, αR, and ζR. The orientation of the left wing is described by the

angles δL, αL, and ζL. Sum total, the twelve degrees of freedom for the system are
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described by the generalized coordinates, qj, listed together as

qj =

[
X Y Z ψ θ φ δR αR ζR δL αL ζL

]
. (2.6)

The associated quasi-velocities of the system, uj, are

uj =

[
u v w p q r pRW qRW rRW pLW qLW rLW

]
. (2.7)

The variables u, v, and w describe the translational velocity of the central body in the

B frame. The variables p, q, and r describe the angular velocity of the central body

in the B frame. The final six quasi-velocities are the angular velocity components of

the wings in the stroke plane and are expressed in the B frame.

2.2.4 Reference Vectors

The reference vectors are denoted by ρ̄ci in Equation (2.1). For each body, a

reference point is chosen. The reference vectors denote the position of the center of

mass of the ith body with respect to the reference point. For the central body, the

reference point is chosen to be its center of mass. As a direct result, the reference

vector ρ̄c1 is identically zero. The reference points for each of the wings are chosen

to be the respective wing joints. We assume that each wing is rigid. The vectors

describing the position of the wing center of mass relative to the wing joint, in the

wing frame, are ρ̄c2,w and ρ̄c3,w. To express the reference vectors in the body frame,

the vectors are transformed from the wing frame according to

ρ̄c2 = RβR
TRR

Tρ̄c2,w and ρ̄c3 = RβL
TRL

Tρ̄c3,w. (2.8)

The required accelerations of the reference vectors are denoted by ¨̄ρci. The accelera-

tion of the reference vector for the central body is identically zero. The acceleration
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vectors for the right and left wing reference vectors are obtained according to the

following derivation. The reference vectors are defined according to Equation (2.8).

The velocity of the reference vectors is obtained from

˙̄ρc2 =
∂

∂t

(
RβR

TRR
Tρ̄c2,w

)
+ ω̄2 × ρ̄c2. (2.9)

The angular velocities of the wings in the B frame, ω̄2 for the right wing and ω̄3 for the

left wing, are calculated according to Equation (2.19) with appropriate substitutions

made for the left wing. The time derivative of the right wing reference vector is

∂

∂t

(
RβR

TRR
Tρ̄c2,w

)
= RβR

T
(
ṘT
Rρ̄c2,w + RR

T ˙̄ρc2,w

)
, (2.10)

where the stroke plane angle, βR, is assumed to be constant and the derivative of the

reference vector, in the wing frame, is zero. The result is

∂

∂t

(
RβR

TRR
Tρ̄c2,w

)
= RβR

T
(
ṘT
Rρ̄c2,w

)
. (2.11)

The time derivative of the transpose of the rotation matrix, ṘT
R, is obtained from the

relationship between angular velocity and rotation matrices [105]. The time derivative

of the transpose of the rotation matrix is equal to

ṘT
R = RR

Tω̃2,sp, (2.12)

where ω̃2,sp denotes the skew-symmetric (or cross) matrix of the angular velocity of the

right wing with respect to the stroke plane frame, which will be defined in Equation

(2.18). A similar procedure is used to derive the acceleration of the left wing reference

vector. The acceleration of the reference vectors, with respect to the inertial frame
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and expressed in the B frame, is calculated according to

¨̄ρc2 =
∂

∂t
˙̄ρc2 + ˙̄ω2 × ρ̄c2 + ω̄2 × (ω̄2 × ρ̄c2). (2.13)

The full representation of ¨̄ρc2 is presented in Equation (A.14). Additionally, wing

joint vectors are defined from the center of mass of the body frame to the wing joints.

Since the central body is assumed to be rigid, then the wing joint vectors are fixed

and their respective components are constant. The vector from the origin of the B

frame to the right wing joint is r̄R and to the left wing joint is r̄L. The wing reference

vectors and wing joint reference vectors are depicted in Fig. 2.1c. Depending on

the configuration of the flapping wing aircraft, r̄R and r̄L may, or may not, have

components in all directions in the B frame. The components of the vectors r̄R and

r̄L are defined by Rx, Ry, Rz, Lx, Ly, and Lz.

2.2.5 Velocities

The velocities of each of the rigid bodies are defined in the B frame, with respect

to the inertial frame. The translational velocity of the body is

v̄1 = u b̂x + v b̂y + w b̂z . (2.14)

The angular velocity of the body is

ω̄1 = p b̂x + q b̂y + r b̂z . (2.15)

Since the wing joints are chosen to be the reference points, the reference velocity, for

each of the wings, is the velocity of the respective wing joint in the B frame. The
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velocities of the right and left wing joints are

v̄2 = v̄1 + ω̄1 × r̄R and v̄3 = v̄1 + ω̄1 × r̄L. (2.16)

The angular velocities of the wings are a function of the wing angles and angular rates.

The angular velocities of the wings, with respect to the stroke plane, are calculated

according to the 3-1-2 Euler angle relationship. The angular velocity of the right wing

is calculated according to

ω̄2,sp = RR


0

0

−ζ̇R

+ RαRRδR


˙δR

0

0

+ RαR


0

α̇R

0

 . (2.17)

In component form, the angular velocity of the right wing with respect to the stroke

plane, is

ω̄2,sp =


pRW

qRW

rRW

 =


(cosαR)δ̇R + (sinαR cos δR)ζ̇R

α̇R − (sin δR)ζ̇R

(sinαR)δ̇R − (cosαR cos δR)ζ̇R

 . (2.18)

The total angular velocity of the right wing with respect to the inertial frame, and

expressed in the B frame, is

ω̄2 = ω̄1 + RβR
Tω̄2,sp. (2.19)

A similar procedure is used to develop the angular velocity of the left wing and is

presented in Equations (A.6) and (A.7). The total angular velocity of the right wing,

expressed in Equation (2.19), is the angular velocity of the wing expressed in the

body frame with respect to the inertial frame. It’s important to note, consistent with

the development of the orientation of the wings with respect to the stroke planes and

the right hand rule, that the signs are opposite for δ̇R and δ̇L and ζ̇R and ζ̇L, which
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results (for symmetric flapping) in −pLW = pRW and rLW = −rRW in the B frame.

2.2.6 Velocity and Angular Velocity Coefficients

Velocity and angular velocity coefficients arise from the calculation of virtual work

performed by forces and moments [106]. Each velocity and angular velocity coefficient

is a vector. The velocity and angular velocity coefficients are calculated according to

γ̄ij =
∂v̄i
∂uj

and β̄ij =
∂ω̄i
∂uj

. (2.20)

The velocities and angular velocities for the ith rigid body are defined in Section 2.2.5.

The system quasi-velocities, uj, are detailed in Section 2.2.3. Since each coefficient is

a vector, the coefficients are combined with the other elements of the equations gen-

erated by Equation (2.1) according to inner product rules. With twelve coordinates

and three rigid bodies, the total number of velocity coefficients and angular velocity

coefficients is thirty-six each. The velocity coefficients for all three rigid bodies, due

to the translational motion of the central body, can be summarized as


γ̄11

γ̄12

γ̄13

 =


γ̄21

γ̄22

γ̄23

 =


γ̄31

γ̄32

γ̄33

 = I3x3


b̂x

b̂y

b̂z

 . (2.21)

The velocity coefficients of the right wing and left wings, due to the angular velocity

of the central body are


γ̄24

γ̄25

γ̄26

 =


0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0



b̂x

b̂y

b̂z

 and


γ̄34

γ̄35

γ̄36

 =


0 −Lz Ly

Lz 0 −Lx

−Ly Lx 0



b̂x

b̂y

b̂z

 .
(2.22)

40



The velocity coefficients due to the angular velocity components of the wings are all

identically zero, for each rigid body. The non-zero angular velocity coefficients for

the central body and the wings are


β̄14

β̄15

β̄16

 =


β̄24

β̄25

β̄26

 =


β̄34

β̄35

β̄36

 = I3x3


b̂x

b̂y

b̂z

 . (2.23)

The angular velocity coefficients for the central body due to the angular velocity of

the wings and translational velocity of the central body are identically zero. Since

the total angular velocity of the wings is a combination of the angular velocity of the

central body and the angular velocity of the wings with respect to the body frame,

the angular velocity coefficients from the wings due to the angular velocity of the

central body are identical. The angular velocity coefficients for the right wing, due

to the angular velocity of the right wing, and the angular velocity coefficients of the

left wing, due to the angular velocity of the left wing, are


β̄2,7

β̄2,8

β̄2,9

 = RβR
T


b̂x

b̂y

b̂z

 and


β̄3,10

β̄3,11

β̄3,12

 = RβL
T


b̂x

b̂y

b̂z

 . (2.24)

The angular velocity coefficients of the right wing, due to the angular velocity of the

left wing, are identically zero. The same is true for the angular velocity coefficients

of the left wing due to the angular velocity of the right wing.

2.2.7 Forces

The forces are calculated according to the principle of virtual work. The principle

of virtual work calculates the generalized forces and moments acting on the system

due to an arbitrary virtual displacement. The derivation of the principle of virtual
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work is detailed in [105, 106, 107]. The generalized forces and moments are calculated

according to

Qj =
n∑
i=1

(
Fi · γ̄ij + Mi · β̄ij

)
, (2.25)

for each jth coordinate. The resultant forces, Fi, and moments, Mi are determined

for each rigid body. The resultant forces acting on the central body are due to the

acceleration due to gravity and the aerodynamic forces generated on the central body

due to its translation. There are zero resultant moments acting directly on the central

body. The resultant forces acting on the wings are the aerodynamic forces generated

by the motion of the wings, acting at the wing center of pressure, and the gravity

force, acting at the center of mass of the wing. The resultant moments on the wings

are calculated with respect to the wing joints and include contributions from the

aerodynamic forces, the gravity force, and the control moments applied to obtain the

desired wing motion. The generalized forces affecting the translation of the central

body are 
Q1

Q2

Q3

 =


Fx

Fy

Fz

+ (m1 +m2 +m3)RB


0

0

g

 . (2.26)

The generalized forces affecting the rotation of the central body are


Q4

Q5

Q6

 = M̄aero + M̄g. (2.27)

where M̄aero is the vector of aerodynamic moments acting on the central body and

M̄g is the moments due to gravity of the wings on the central body. The moments

due to gravity are calculated according to

M̄g = M̄g,R + M̄g,L, (2.28)

42



where the moments due to gravity for the right wing and left wing are calculated

according to

M̄g,R = (r̄R + ρ̄c2)× (m2)RB


0

0

g

 and M̄g,L = (r̄L + ρ̄c3)× (m3)RB


0

0

g

 . (2.29)

The generalized forces Q7, Q8, and Q9 are the control moments for the right wing.

Q10, Q11, Q12 are the control moments for the left wing. Q8 and Q11 control the

angle of attack of the wings, right and left wing respectively. Q7 and Q10 control

the deviation angle of the wings, while Q9 and Q12 control the flap angle of the

wings. The control moments are required to produce the desired motion of the wings.

The forces and moments produced by the wings will be the result of aerodynamic

modeling of the wing. For the moment, we will assume the motion will produce a

force normal, FN , and tangential, FT , to the wing. The forces will be calculated in

the wing frame and transformed to the stroke plane and body frame. We define the

total aerodynamic forces acting on the body, expressed in the B frame as

F̄aero = Fx b̂x + Fy b̂y + Fz b̂z. (2.30)

The total aerodynamic moments are defined as

M̄aero = L b̂x +M b̂y +N b̂z. (2.31)
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Assuming a normal and tangential force produced by each wing, the forces expressed

in the body frame are calculated according to


Fx,R

Fy,R

Fz,R

 = RβR
TRR

T


FT,R

0

FN,R

 and


Fx,L

Fy,L

Fz,L

 = RβL
TRL

T


FT,L

0

FN,L

 . (2.32)

If the chosen aerodynamic model produces identical normal and tangential forces for

the right and left wings, then in the body frame the Fx and Fz forces are the same and

the Fy forces will perfectly cancel each other out, when the flapping is symmetrical

with respect to the central body. A rotation from the stroke plane will not change

the Fy forces and will only change the magnitude/combination of the Fx and Fz

forces. The aerodynamic centers of pressure of the wings are calculated based on

the morphology of the wings. The x- and y-positions of the aerodynamic centers of

pressure, in the wing frame, are obtained with the assistance of following equations

r̂2 =

√∫ R
0
c(r)r2dr

R2Aw
and ĉ =

∫ R
0
c2(r)rdr

r̂2RAwcmax
, (2.33)

which are based on the geometry of the wings [39, 89]. The resulting aerodynamic

center is at the following coordinates in the wing frames

ρ̄ac,R,w =


cR
4

r̂2,RbR

0

 and ρ̄ac,L,w =


cL
4

−r̂2,LbL

0

 . (2.34)

In Equation (2.34), cR and cL are the chords of the respective wings, bR and bL are

the semi-spans of the wings and r̂2 denotes the normalized aerodynamic center of

pressure. The aerodynamic centers are transformed into the B frame in the same

manner as the forces are transformed in Equation (2.32). The total aerodynamic
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moment in the B frame, for each wing, is given by:

M̄aero,R = (r̄R + ρ̄ac,R)× F̄aero,R and M̄aero,L = (r̄L + ρ̄ac,L)× F̄aero,L. (2.35)

In component form, the total aerodynamic moments in the B frame are


L

M

N

 =


ρRW,yFz,R − ρRW,zFy,R + ρLW,yFz,L − ρLW,zFy,L

ρRW,zFx,R − ρRW,xFz,R + ρLW,zFx,L − ρLW,xFz,L

ρRW,yFx,R − ρRW,xFy,R + ρLW,yFx,L − ρLW,xFy,L

 , (2.36)

where ρ̄RW = r̄R + ρ̄ac,R and ρ̄LW = r̄L + ρ̄ac,L. For symmetrical flapping, we showed

previously that Fy,R = −Fy,L. Similarly, under the constraint of symmetrical flapping,

ρac,R,y = −ρac,L,y. Good engineering design will place the y components of r̄R and

r̄L equal and opposite, or asymmetric moments result. Therefore, if the flapping is

symmetric and the stroke plane angles are equal, we can perform proper cancellations

and obtain 
L

M

N

 =


0

ρRW,zFx,R − ρRW,xFz,R + ρLW,zFx,L − ρLW,xFz,L

0

 , (2.37)

which is expected if the flapping is perfectly symmetrical, the normal and tangential

forces are identical for both wings when symmetrical flapping occurs, and the wings

have the same morphological parameters.
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2.2.8 Equations of Motion

The equations of motion are now summarized for each of the generalized coordi-

nates. The equations of motion governing the translation of the central body are

I3x3

(
3∑
i=1

(mi + ¨̄ρci)

)
=

[
Q1 Q2 Q3

]T

. (2.38)

The equations of motion governing the rotation of the central body are

m2r̄R×( ˙̄v2+ ¨̄ρc2)+m3r̄L×( ˙̄v3+ ¨̄ρc3)+
3∑
i=1

( ˙̄Hi+miρ̄ci× ˙̄vi) =

[
Q4 Q5 Q6

]T

. (2.39)

The equations of motion governing the motion of the right wing are

RβR
T
(
I2 ˙̄ω2 + ω̄2 × I2ω̄2 +m2ρ̄c2 × ˙̄v2

)
=

[
Q7 Q8 Q9

]T

. (2.40)

The equations of motion governing the motion of the left wing are

RβL
T
(
I3 ˙̄ω3 + ω̄3 × I3ω̄3 +m3ρ̄c3 × ˙̄v3

)
=

[
Q10 Q11 Q12

]T

. (2.41)

2.3 Standard Aircraft Model

The standard aircraft equations of motion, alternatively known as the six degree

of freedom (6DOF) aircraft equations of motion, can be summarized according to:

˙̄vb = 1
mb

(
W̄b + F̄aero

)
+ ω̄b × v̄b

˙̄ωb = Ib
−1
(
ω̄b × Ibω̄b + M̄aero

)
.

(2.42)

In Equation (2.42), ω̄b denotes the angular velocity of the central body, v̄b is the

translational velocity of the central body, mb is the mass of the central body, Ib is
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the inertia tensor of the central body about its respective center of mass, and W̄b

is the weight vector of the body expressed in a body frame. The standard aircraft

model neglects the inertial and mass effects of the wings on the central body. The

wings’ motion is solely included to generate aerodynamic forces and moments on the

central body. The set of equations in Equation (2.42) are simulated when combined

with an aerodynamic model using the traditional equations of motion for six degree

of freedom, rigid body flight.

From the derivation of the full nonlinear equations previously presented, we can

make the following substitutions into Equation (2.42): ω̄1 = ω̄b, I1 = Ib, and v̄1 = v̄b.

The mass of the body will equal the entire mass of the system, both central body and

wings. The inertia tensor will be calculated based on the mass of the system, adding

the mass of the wings to that of the central body. Additionally, the aerodynamic

forces and moments generated by the wings will be calculated in the same manner as

previously presented. The multi-body model will be simulated against the standard

aircraft model.

2.4 Simulation

2.4.1 Body Parameters

The FWMAV is modeled after a hawkmoth as presented in [21]. The specific

specimen chosen is F1. A hawkmoth is chosen because, according to Willmott and

Ellington in [21], the wingstrokes can be considered the most ‘representative’ of insect

wingstrokes. Additionally, the flapping frequency for hawkmoths is generally between

24 and 26 Hz, which can be replicated by current technology (as opposed to using

a bumblebee or fruitfly, where the flapping frequency is on the order of 150 and 200

Hz, respectively). The total mass of the FWMAV will be set at 1648 mg, with the

wings accounting for 5.7% of the total body mass.
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2.4.1.1 Central Body

The central body is modeled as a cylinder with a constant radius. The mass of

the body is set at 1554 mg, with a length of 42.1 mm, and a constant radius of 6 mm.

The parameters are similar to those used in [112]. The length is calculated based off

of the L̂ parameter in [21]. The radius is calculated from the l̂1 parameter in [21].

Since the body is modeled as a cylinder, the inertia tensor for the central body will

be diagonal. The wings are assumed to be mounted at wing joints with components

such that Ry = r1 and Ly = −r1, where r1 denotes the constant radius of the central

body.

2.4.1.2 Wings

The wings are modeled as thin, flat plates with a constant chord. The wing semi-

span (b, the span of each wing) is set at 51.9 mm. With an aspect ratio of 5.65 for

both wings, the chord is set at 18.4 mm. The wings are mounted at the wing joints

at the mid-point of the wing, such that the center of mass of the wing is along the

y-axis of the respective wing frame. The inertia tensors for the wings are calculated

at the wing joint according to (using the right wing as an example),

I2,w =


m2

3
b2

2 0 0

0 m2

12
c2

2 0

0 0 m2

(
1
3
b2

2 + 1
12
c2

2
)
 . (2.43)

The inertia tensor for the left wing, I3,w, is identical to the inertia tensor for the

right wing in the wing frames. For aerodynamic force and moment calculations, the

thickness of the wings is set at 0.076% of the wing semi-span. The mass of each of the

wings is set at 47 mg. The inertia tensor for the wing in Equation (2.43) is expressed

in the wing frame. In order to express the inertia tensor in the stroke plane frame,
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the inertia tensors in the wing frames are transformed according to

I2,sp = RR
TI2,wRR and I3,sp = RL

TI3,wRL. (2.44)

When the stroke plane is non-zero, the inertia tensors in the stroke plane frames are

transformed to the B frame according to

I2 = RβR
TI2,spRβR and I3 = RβL

TI3,spRβL . (2.45)

No further transformation of the inertia tensors is necessary. The derivation method

only requires calculation of the inertia tensors with respect to the reference points for

each rigid body.

2.4.2 Aerodynamic Model

The model used for the majority of the simulations is the quasi-steady/blade-

element model developed by Berman and Wang and presented in [36]. The model

is slightly modified from that presented in [36] and [60] in order to properly fit the

presented dynamics. The reference directions are changed to fit our representation

of the dynamics, e.g. from r1 and r3 in [60] to rx and rz. Furthermore, notation

is changed to fit with model development previously presented. The model includes

linear and circulation terms, but does not include leading edge vortex or wake capture

effects, which have been previously shown through CFD results to enhance lift. The

morphological parameters for the FWMAV simulations to be presented are based

off of a hawkmoth. In [36], Berman and Wang use the drag coefficients obtained

by Usherwood and Ellington in [113, 114]. Usherwood and Ellington used model

hawkmoth wings, scaled to 0.5m, at a Reynolds number of 8071, to obtain the drag

coefficients used in the simulations.

The Berman and Wang model is chosen for the aerodynamic model because the
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drag coefficients are calculated for a Reynolds number equivalent to the Reynolds

number of the wings in the simulation results. Although the model does not include

wake capture effects or vortex sheddings effects, Sane and Dickinson determined in

[29] that as high as 80% of the lift and drag generated in a hover condition are due

to translation and rotational effects. Hedrick and Daniel state in [112] that a com-

putationally efficient model for aerodynamics, including wake and vortex effects, is

not presently available. The Ansari blade-element aerodynamic model, presented in

[40] and [41], includes wake and vortex effects, but high fidelity runs are not compu-

tationally efficient for control studies. Quasi-steady aerodynamic models have been

used in multi-body simulations presented in [54, 55, 58, 60]. The intent of this study

is to provide the basis for dynamics studies from a stability and control standpoint.

Therefore, a complicated, complex aerodynamic model with a large computation time

will not result in practical calculations.

A velocity of a point on the wing is required to calculate the aerodynamic forces

and moments. The velocity on a point of the wing, relative to the body, is calculated in

the following manner. The position of a point along the center of the wing, expressed

in the B frame, is given by

r̄RW = rw RβR
T


cos δR sin ζR

cos δR cos ζR

sin δR

 (2.46)

for the right wing, where rw denotes the position along the wing in the stroke plane

frame. The velocity of the wing is calculated according to the transport theorem such

that

˙̄rRW =
∂r̄RW
∂t

+ ω̄2 × r̄RW . (2.47)
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The acceleration of the wing is

¨̄rRW =
∂ ˙̄rRW
∂t

+ ω̄2 × ˙̄rRW . (2.48)

A similar procedure is used to develop the velocity and acceleration of the left wing.

The angular velocities of the right and left wings, ω̄2 and ω̄3, are obtained from

Equation (2.18), which define the angular velocity of the wing with respect to the

stroke plane frame. The force generation for a wing in the x-direction is

dFx =

{[(
−c(r)
c̄R

mw +m22

)
α̇ + ρΓ

]
˙̄rz −m11 ¨̄rx

}
dr (2.49)

and in the z-direction is

dFz =

{[(
−c(r)
c̄R

mw +m11

)
α̇ + ρΓ

]
˙̄rx −m11 ¨̄rz

}
dr, (2.50)

where c(r) denotes the chord as a function of the radial position of the wing, m11 and

m22 are added mass terms, mw is the mass of the wing, and Γ is the circulation term.

The added mass terms are calculated according to

m11 =
π

4
ρt̄2 and m22 =

π

4
ρc(r)2. (2.51)

The circulation term is calculated according to the equation

Γ = −1
2
CT c(r)|| ˙̄rW ||2sin(2α) + 1

2
CRc(r)

2α̇ . (2.52)

The viscous effects on the wings are calculated by

dF ν
x =

1

2
ρc(r)

(
CDocos2α + CDπ/2sin2α

)
|| ˙̄r||2 ˙̄rx (2.53)

51



and

dF ν
z =

1

2
ρc(r)

(
CDocos2α + CDπ/2sin2α

)
|| ˙̄r||2 ˙̄rz. (2.54)

CT , CDo , and CDπ/2 are coefficients to fit the lift and drag of each wing. The

constants used for simulation purposes are those for the hawkmoth presented in [36]

and are obtained from experiments on model hawkmoth wings presented in [113].

The method does not calculate lift and drag directly, but the resultant forces in the

x and z directions in the wing frames [60]. The normal and tangential forces on the

wings are calculated according to

dFT = dFx − dF ν
x and dFN = dFz − dF ν

z . (2.55)

For simulation purposes, five slices of the wing are used at each time step to integrate

and calculate the resultant normal and tangential forces. Five slices are chosen based

on the results presented in [112]. The lift, drag, and lateral forces generated by

each wing in the B frame are calculated according to Equation (2.32). The resultant

pitch, roll, and yaw moments are calculated using the results from Equations (2.32)

and (2.35). A summary of the simulation framework is presented in Figures 2.3

and 2.4. Figure 2.3 details the inputs to the system, including the calculation of

the mass matrix, aerodynamic forces and moments, body forces and moments, and

control moments. The calculation of the mass matrix is necessary, as the ode15s

suite in MATLAB is used for simulation purposes. Figure 2.4 details the outputs of

the system. The simulation involves two sets of integrations. First, systems quasi-

velocities are integrated using the mass matrix and the forces and moments. After the

results are obtained for the system quasi-velocities, the system generalized coordinates

are obtained using the proper representation from Euler angle relationships. Although

not specifically detailed in Figures 2.3 and 2.4, the quasi-velocities and generalized

coordinates calculated at each time step are also inputs to the next simulation step.
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Figure 2.4: Simulation Framework: Model Outputs

2.5 Results

2.5.1 Simulation Parameters

The wing kinematics are based off of the biological flight mechanics of specimen

F1 in [21]. The deviation angle of the right and left wings is set at

δ(t) = δm sin (2πNδft) . (2.56)
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The parameter Nδ is a shape parameter, which is set to 2 to ensure a proper figure

8 pattern for the wings. The specimen F1 has an average deviation angle of 0.9

degrees. As a result, δm will be set to one degree to approximate the kinematic

pattern of hawkmoth. The flap angle will be governed by the equation

ζ(t) = ζm sin (2πft) . (2.57)

Hawkmoths, like most insect species, generally exhibit a total flapping (stroke) am-

plitude of approximately 120 degrees, therefore ζm will be set to 60 degrees. The

stroke plane angle and the flapping frequency will be varied for the simulations, as

well as the initial pitch angle. A summary table of the pertinent wing morphological

parameters, for aerodynamic calculations, is shown Table 2.1. The positions of the

aerodynamic centers of pressure are shown for their fixed position in the respective

wing frames.

Wing Semi-span Chord x-pos of c.p. y-pos of c.p. Reynolds number
Right 51.9 mm 18.4 mm 4.6 mm 29.6 mm 8000
Left 51.9 mm 18.4 mm 4.6 mm -29.6 mm 8000

Table 2.1: Summary of Wing Morphological Parameters

2.5.2 Dynamic Model Comparison - Water Treading Mode

The dynamic model comparison will be presented for the water treading mode

previously discussed in Chapter 1.2. The motion of the angle of attack is described

by the motion

α(t) = αm sin (2πft+ Φα) , (2.58)

where Φα is a phase shift to ensure the proper mid-stroke angle of attack. For the

simulations presented, the amplitude is set at 45 degrees and the phase shift is set

at π
2
. A phase shift of π

2
ensures that the angle of attack is positive during the down
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stroke and that the mid-stroke angle of attack is 45 degrees. Additionally, the angle

of attack will be -45 degrees during the upstroke, but since the wing is moving in the

opposite direction, the magnitude of the angle of attack is still correct. A phase of

3π
2

will have the wing rotated in the wrong direction (negative on the downstroke,

positive on the upstroke) and produce ‘positive’ lift, quickly driving the vehicle into

the ground. It’s important to note that during the upstroke, the center of pressure

of the wing is at a x-coordinate of − c
4

in the wing frame since the wing is ‘flipped’

over [38]. The angle of attack presented in [39, 89] uses a water-treading mode.

Simulations, for three flapping cycles, are presented in Figs. 2.5, 2.6, and 2.7. For

each of the plots, the solid line represents the full nonlinear model and dot-dash line

represents the standard aircraft model. The FWMAV starts at an initial altitude of

5 m with zero initial body velocities. The flapping frequency, initial pitch angle, and

the stroke plane angle vary for the four cases presented. In all Figures 2.5-2.7, the

multi-body model is denoted by ‘MB’ and represented by the solid line. The standard

aircraft model is denoted by ‘6DOF’ and represented by the dash-dot line. Table 2.2

presents a summary of the flapping inputs for the dynamic model comparison.

Case
Initial Pitch Angle Stroke Plane Flapping Frequency

θo (◦) β (◦) f (Hz)
1 34.9 -10 26
2 20.0 -20 26
3 15 -25 26
4 5 -5 24

Table 2.2: Summary of Input Parameters for Dynamic Model Comparison Simula-
tions, Presented in Figures 2.5-2.7

The inertial position, in Fig. 2.5, shows that the inertial effects of the wings

push the vehicle away from the initial starting point and the vehicle gains altitude.

The total lift, in the absence of inertial coupling effects, is enough for the standard

aircraft model to slowly gain altitude. With no control, the resultant drag (thrust)

forces pushed the vehicle models away from a hover condition. However, the direction
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of the displacement from the initial conditions differs between the two models. In Figs.

2.5(a) and 2.5(d), the standard aircraft models moves in a negative direction, while

the multi-body model moves in a positive direction. The models move in the same

direction in Figs. 2.5(b) and 2.5(c). For Case 4, presented in Fig 2.5(d), the standard

aircraft model not only translates in the opposite direction, but gains altitude. The

addition of the inertial coupling effects actually increases the amount of lift generation

required for flapping wing micro air vehicle model.

In [68], the authors estimate that the peak-to-peak displacement of the center

of mass of the hawkmoth in a hover condition is 4 mm. Furthermore, Hedrick and

Daniel in [112] found the maximum deviation of a hawkmoth center of mass in a true

hover condition is 6.5 mm. The simulations presented here are open loop, and not

exhibiting a controlled, true hover condition. An average horizontal displacement of

approximately 10mm per flapping cycle, over the four cases, is qualitatively consistent

with the previous studies. Fig. 2.6 shows the pitch angle and Fig. 2.7 shows the pitch

velocity of the FWMAV simulations. The wings are started, for simulation purposes,

at midstroke of the downstroke. The initial gravity moment is nose down, while the

initial aerodynamic pitching moment is nose up.

The greatest difference between the two models is exhibited in the pitch angle,

and as a direct cause, the pitch velocity. At the end of the three flapping cycles,

the average difference between the pitch angle prediction is approximately 42.9◦ (0.75

radians). Furthermore, as depicted in Figure 2.6(d), the multi-body model predicts a

nearly nose up orientation (θ = π
2
) after the three flapping cycles, while the standard

aircraft model is only halfway to the nose up orientation.

The simulations show a marked difference for the standard aircraft model in re-

gards to the pitch velocity. Both sets of simulations show a steadily increasing mag-

nitude in the pitch velocity, consistent with the results presented by Bolender in [60].

However, the difference in magnitude between the two models, directly due to the
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inclusion of the inertial effects of the wings, results in the difference in orientation

prediction presented in Fig. 2.7(d). The simulation results lead to the conclusion

that the inertial effects of the wings need to be included for dynamics, stability, and

control studies of flapping wing micro air vehicles.
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Figure 2.5: Inertial Position Results for Dynamic Model Comparison with αm = 45◦,
ζm = 60◦
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Figure 2.6: Pitch Orientation Results for Dynamic Model Comparison with αm = 45◦,
ζm = 60◦

2.5.3 Dynamic Model Comparison - Aerodynamic Model Comparison

The following simulations will show that the qualitative performance of the flight

dynamics models, for both the model presented in this paper and the standard aircraft

model, is similar for different aerodynamic models. The two flight dynamics mod-

els previously presented will be compared with different aerodynamic models: the

Berman and Wang model previously discussed and the blade-element/quasi-steady

model used in [39, 89]. The model in [39, 89] is a combination of a quasi-steady model

from the Sane and Dickinson ‘Robot Fly’ experiments and empirically matched data.

The model includes delayed stall and rotational lift effects, but does not include wake
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Figure 2.7: Pitch Velocity Results for Dynamic Model Comparison with αm = 45◦,
ζm = 60◦

capture or leading edge vortex effects. The model calculates normal and tangential

forces on the wing. The forces due to the translation of the wing are

Ftr,N(t) =
1

2
ρAwCN(α(t))U2

cp(t) and Ftr,T (t) =
1

2
ρAwCT (α(t))U2

cp(t). (2.59)

The normal force on the wing, due to the rotation of the wing, is

Frot,N(t) =
1

2
ρAwCrotcmaxα̇(t)Ucp(t). (2.60)
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In Equations (2.59) and (2.60), Aw is the area of the wing, CN and CT are the normal

and tangential force coefficients, Ucp(t) is the velocity of the center of pressure, and

Crot is the rotational lift coefficient. The normal and tangential forces are transformed

into the B frame according to Equation (2.32).

The comparison simulations are presented in Figs. 2.8 and 2.9. The simulation

of the model with wing effects and the Berman and Wang model is represented by

the solid line. The simulations of the full nonlinear model with the comparison

aerodynamic model, denoted ‘UCB’, is shown by the dash-dot line. The standard

aircraft simulation results with the Berman and Wang model are represented by the

dashed line and the results with the comparison model are represented by the dashed

line. Simulations with the multi-body model are denoted by ‘MB.’ Simulations with

the standard aircraft model are denoted by ‘6DOF.’ The presented simulations are

for a wing mass of 47 mg per wing. The stroke plane angle is set at -16◦ and the

initial pitch angle is 16◦. The initial orientation of the wings is parallel to the ground

in the inertial frame. A summary of the input parameters for the aerodynamic model

comparison simulations is presented in Table 2.3.

Case
Mid-stroke Angle of Attack Flapping Amplitude Flapping Frequency

αm(◦) ζm(◦) f (Hz)
1 45 60 24
2 40 60 24
3 45 58 23
4 40 58 23

Table 2.3: Summary of Input Parameters for Aerodynamic Model Comparison Sim-
ulations, Presented in Figures 2.8 and 2.9

The models with wing effects exhibit similar dynamic behavior, independent of the

aerodynamic model. Likewise, the standard aircraft model exhibits similar behavior

with different aerodynamic models. Both models produce a significant quantitative

difference in position after three wing strokes. The inertial position shows a quali-

tative similarity between the two dynamics models. The inertial position results are
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presented in Figure 2.8. The difference in aerodynamic models is significant in the

inertial position of the FWMAV, when compared with the standard aircraft model.

As shown in Section 2.5.2, there is a marked difference in the position of the two

models after three wing beats when the Berman and Wang aerodynamic model is

used. However, the UCB model also predicts a significant difference in position. The

difference is even greater, approximately 0.5 body lengths after three flapping cycles.

The results show that the multi-body dynamics model predicts different behavior, in-

dependent of the aerodynamic model being used to generate the aerodynamic forces

and moments. The multi-body dynamics, from the simulation results, seem less sus-

ceptible to difference in position when given a choice of aerodynamic model, than the

standard aircraft dynamics. The multi-body flight dynamics predict translation in

the same direction and the most significant error is in altitude (or height). The stan-

dard aircraft model, on the other hand, does not have predictions that are consistent

in the same direction for the cases presented.

The pitch orientation results for the aerodynamic model comparison are presented

in Figure 2.9. The aerodynamic models produce qualitatively similar behavior in the

angular position of the central body between the two dynamics models. However, the

quantitative difference is significant and predicts different behavior. The pitch angle

of the model with wing effects increases at a faster rate with the ‘UCB’ model than

with the Berman and Wang model. After three flapping cycles, the ‘UCB’ model

predicts a continuing increase in the pitch angle of the central body for both the

standard aircraft and multi-body model. The models using the Berman and Wang

model predict a decreasing pitch angle.

The ‘UCB’ model does not predict a significant difference in the attitude of the

FWMAV when the wing effects are included, but the position still exhibits a large

difference, on the order of 1.5 body lengths in three flapping cycles. The Berman and

Wang aerodynamic model predicts different behavior in both position and orientation,
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when the wing effects are included. The ‘UCB’ model exhibits similar behavior in

attitude, but different behavior in position, when the wing effects are included. In

fact, the difference between the position of the two models for the ‘UCB’ model is

approximately 50% greater than that of the two dynamics models when the Berman

and Wang model is used. The aerodynamic model comparison shows that despite

the choice of different aerodynamic models, the flight dynamics difference between

the standard aircraft model and the multi-body model are significant. Furthermore,

different aerodynamics models can predict significant differences when the standard

aircraft model is used for the flight dynamics model.
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Figure 2.8: Inertial Position Results for Aerodynamic Model Comparison: θo = 16◦,
β = −16◦
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Figure 2.9: Pitch Orientation Results for Aerodynamic Model Comparison: θo = 16◦,
β = −16◦

2.5.4 Dynamic Model Comparison - Decreased Wing Mass

The following simulations results show the comparison between the nonlinear

model with wing effects and the standard aircraft model, with the mass of the wings

decreased from the previous water treading simulations. The simulations use the

same initial conditions for velocity as the previous simulation results. The aerody-

namic model used is the model presented in [36]. Each set of simulations presented
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shows results for different number of flapping cycles and different conditions for the

initial pitch angle, stroke plane angle, and flapping frequency. The first set of sim-

ulations shows the inertial position, pitch angle and pitch velocity with the wing

mass reduced by one half to 23.5 mg per wing. The 1/2 wing mass simulations are

represented by the dash-dot line. The second set of comparison simulations presents

results with the wing mass reduced to 1/8 of the initial wing mass, or approximately

5.875 mg for each wing, and is represented by the dashed line. The solid line repre-

sents the full wing mass. The simulation results for zero wing mass, alternatively the

standard aircraft model, are represented by the dotted line. Figure 2.10 shows the

simulation results for the inertial position of the FWMAV. The input parameters for

the decrease wing mass simulations is presented in Table 2.4.

Case
Initial Pitch Angle Stroke Plane Flapping Frequency Number of

θo (◦) β (◦) f (Hz) Flapping Cycles
1 0 0 22 4
2 15 -15 24 3
3 22.5 -22.5 23 2
4 45 -45 25 2.5

Table 2.4: Summary of Input Parameters for Decreased Wing Mass Simulations, Pre-
sented in Figures 2.10-2.12

The simulation results show that as the mass of the wings is decreased, relative to

the central body, the multi-body dynamics model approaches the standard aircraft

model. The simulation results for pitch orientation in Figure 2.11 and pitch velocity

in Figure 2.12 present a similar trend. In nature, the mass of insects tends to decrease

with increase flapping frequency. Also, as a general trend to be shown in Chapter

5, the relative mass of the wings of insects also tends to decrease with the mass of

insects. A vehicle of the size presented here, with a total mass of approximately 1.6

grams, does not usually have wings with a combined mass of only 11.5 mg.
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Figure 2.10: Inertial Position Results for Mass Comparison αm = 45◦, ζm = 60◦.

The simulation results presented in Figs. 2.10-2.12 show that as the mass of

the wings relative to the central body decreases, the simulation results from the full

nonlinear model approach the results of the model with simple nonlinear dynamics.

However, there are still differences in simulation results when the wings total only

0.71% of the total body mass, especially in the inertial position of the central body.

The simulations presented with full wing mass showed that the wings may reduce the

destabilizing effect of the aerodynamic pitching moment. As the mass of the wings

is reduced relative to the central body, the aerodynamic pitching moment seems to

have more of an effect on the attitude of the central body. The simulation results

lead to the conclusion that the relative importance of the mass of the wings, from a
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dynamics standpoint, should decrease as the mass of the wings decrease relative to

the total mass of the flapping wing micro air vehicle.
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Figure 2.11: Pitch Orientation Results for Mass Comparison αm = 45◦, ζm = 60◦.
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Figure 2.12: Pitch Velocity Results for Mass Comparison αm = 45◦, ζm = 60◦.

2.6 Conclusions

The chapter presented the derivation and simulation of the nonlinear dynamics

of a flapping wing micro air vehicle with three degrees of freedom. The dynamic

model includes the mass and inertia effects of the wings. The simulations show that

the common practice of neglecting the mass of the wings produces a vastly different

result from when mass coupling effects of the wings are included. Additionally, the

choice of aerodynamic model, and the associated underlying assumptions, can make

a substantial difference in the predicted behavior of the system. The total wing mass

is 5.7% for the initial set of simulations, on the outside of the range of wing mass
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values that lead to neglecting the effects of the wings. However, the inertial position

(and translational velocity) results are vastly different for the full nonlinear model and

the standard aircraft models. For the same flapping frequency in a water treading

hovering mode, the full nonlinear model climbs and translates forward, while the

standard aircraft models continue to ascend and translate backwards. Changing the

aerodynamic model produces qualitatively similar results. A difference in behavior

between the flight dynamics model with wing effects, and the model without, is

present for a total wing mass of 0.7% of the body mass.

From a simulation standpoint, neglecting the mass effects of the wings on the

central body of a FWMAV may be foolhardy for flight stability and controls studies

of a flapping wing aircraft. Some, if not all, of the mass effects of the wings need

to be included for a representative model of the aircraft dynamics and performance.

The wing effects, as detailed in this study, are important in an open loop setting.

When active controls are added to the system, the result may change. Furthermore,

the relative importance of the effects of the wings on the motion of the central body

needs to be examined. The following chapter will presents a method of approximating

the dynamics of flapping wing micro air vehicles, in order to enable studies of the

relative importance of the mass of the wings.
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CHAPTER 3

Averaging of the Nonlinear Dynamics of Flapping

Wing Micro Air Vehicles for Symmetrical Flapping

3.1 Introduction

In order to analyze the importance of the mass coupling effects of the wings on the

position and orientation of the body of a FWMAV, the multi-body model presented

in Chapter 2 needs to be transformed to first order form. Once transformed into

first order form, an approximation technique of some form may be used to enable

analysis of the larger system. Numerous techniques are available for approximations

of nonlinear systems. A natural choice, due to the periodic nature of the system,

is averaging theory. Averaging, in the traditional sense, involves equations of the

following form

ẋ = ε f(x, t), (3.1)

where ε is a small parameter. Classical averaging theory applies to equations of the

form of Equation (3.1), commonly referred to as averaging in the standard form.

Averaging in the non-standard form involves equations of the following form:

ẋ = f (0)(x, t) + ε1f (1)(x, t) + ε2f (2)(x, t) + · · ·+ εnf (n)(x, t), (3.2)
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where ε1 . . . εn are perturbations of order 1 . . . n and we used the notation of Bogoli-

ubov and Mitropolsky in [115] and [116]. According to [117], local (näıve) averaging

is not encouraged due to inaccurate results. Local averaging involves equations of mo-

tion of the form of either Equation (3.1) or Equation (3.2) and integrating according

to

f̄(x) =
1

T

t+T∫
t

f(x, t)dt (3.3)

where T is the desired period for integration. In order to place an equation of the form

in Equation (3.2) in the standard form, the analytical solution of the unperturbed

system is required [117]. The equation of the form in Equation (3.2), to ε precision,

is solved for ε = 0 and a given initial condition. The explicit solution, denoted by

x = h(y, t), is then composed into the ε portion of the equation according to the

method of the variation of constants. The formula is

∂h(t, y)

∂t
+

[
∂h

∂y
(y, t)

]
dh

dt
= f (0) (h(y, t), t) + εf (1) (h(y, t), t, ε) , (3.4)

where
[
∂h
∂y

]
denotes the Jacobian of the solution x = h(y, t). The first terms on the

left and right sides of the equation cancel out and the resultant perturbation problem

in the standard form is [117]

ḣ = ε

[
∂h

∂y
(y, t)

]−1

f (1) (h(y, t), t, ε) . (3.5)

Once the equation is placed in the standard form, ḣ can then be averaged in the

traditional sense.

A classic technique for dealing with nonlinear elements in dynamics systems is

the method of describing functions. Originally developed by Krylov and Bogoliubov

in [115], the method replaces nonlinear elements in an otherwise linear system with

constant gains. The gains are based on the frequency and/or amplitude of the input
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to the nonlinear ‘block.’ Further treatment of the method of describing functions is

available in [118], [119], and [120]. Describing functions does not fit as an approxi-

mation technique because the method requires that the nonlinear elements are odd

functions. The method would immediately eliminate many of the nonlinearities in

the equations of motions, simply because the functions are even functions.

Asymptotic methods of approximation do not fit the problem, either. The regular

perturbation problem, is described by the dynamical system

ẋ = f (t, x, ε) , (3.6)

where ε is a ‘small’ parameter. The regular perturbation problem is covered exten-

sively in [115], [116], and [121]. The regular perturbation method uses Taylor series

expansions to approximate the exact solution and is often applied to weakly coupled

systems. The interactions between the wings and the body in the flight dynamics

model of a flapping wing micro air vehicle are strongly coupled and may exist at dif-

ferent time scales. A method of approximating a strongly coupled nonlinear system,

often with multiple time scales, is the singular perturbation method. The singular

perturbation method involves systems of equations of the form

ẋ = f (t, x, z, ε) (3.7)

εż = g (t, x, z, ε) ,

where ε is the small parameter. The singular perturbation method does not neces-

sarily fit the applications of the system, either. As detailed in [121], [122], and [123],

the singular perturbation method requires exponential stability of the boundary layer

system (g(.)). Furthermore, for control applications as detailed in [123], the equi-

librium point of the ‘slow’ system (f(.)) needs to be asymptotically stable without

control. Unfortunately, the flapping wing equations of motion are not asymptotically

71



stable without control.

The chapter will present the derivation of the first order equations of motion.

Using the mass of the wings as the ‘small’ parameter, the equations of motion can

be transformed into the form of Equation (3.2). The equations of motion are the

standard aircraft equations of motion with first and second order perturbations due

to the mass of the wings. Local averaging will be used to obtain a poor solution, as

predicted by [117]. Classical averaging techniques are not available since the general

analytical solution of the standard aircraft equations of motion, when ε ≡ 0, does

not exist. An approximation technique, coined ‘quarter-cycle’ averaging, will be used

to approximate the equations of motion. The technique results in greater than an

order of magnitude improvement in the approximation error in the system versus local

averaging for three different flight conditions: hovering, forward flight, and vertical

flight. The derivation of the first order equations of motion and the subsequent

approximation technique will allow for the analysis of the (relative) importance of

the wings in the dynamics, stability, and control of flapping wing micro air vehicles.

3.2 First Order Equations of Motion

In order to conduct any analysis using averaging theory, the equations of motion

presented in Chapter 2 need to be decoupled and placed into first-order form. The

equations of motion can be placed into the following form

Mu̇j =



F̄aero + F̄g −
∑3

i=1

(
˙̄vi,red + ¨̄ρci,red

)
M̄aero + M̄g −

∑3
i=1

(
Iiω̄1 × ω̄i + ω̄i × Iiω̄1 +miρ̄ci × ˙̄vi,red

)
QRW −

(
I2ω̄1 × ω̄2 + ω̄2 × I2ω̄2 +m2ρ̄c2 × ˙̄v2,red

)
QLW −

(
I3ω̄1 × ω̄3 + ω̄3 × I3ω̄3 +m3ρ̄c3 × ˙̄v3,red

)


, (3.8)
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with u̇j ∈ R12x1 and M ∈ R12x12. The vector u̇j contains the time derivatives of

the quasi-velocities presented in Chapter 2. M in Equation (3.8) is a time-varying

mass matrix describing the coupling between the time rate of change of the various

quasi-velocities. The terms ¨̄ρci,red and ˙̄vi,red represent the reduced forms of the terms

defined in Chapter 2. The terms contain the components of the vectors ¨̄ρci and ˙̄vi that

do not contain time-derivatives of the quasi-velocities. The details are in Appendix

A. Traditionally, the first-order form for equations of motion is obtained by inverting

the matrix M. However, the analytical inversion of a 12x12 matrix with symbolic

inputs is computationally intractable.

In order to obtain the first order equations of motion, an approximate inverse is

used to decouple the equations of motion. The approximate inverse has the form

M−1 = (A + εE)−1 = A−1 + εA−1EA−1. (3.9)

In this case, the mass of the wings is considered as the small parameter ε. All of the

terms in E contain the mass of the wings. If the mass of the wings is equal to zero,

then E ≡ 0. The details of the composition of the approximate inverse are contained

in Appendix B. The analysis will be based on symmetrical flapping with respect

to the body. Symmetrical flapping is achieved with identical stroke plane angles

(βR = βL), identical flapping angles (ζR = ζL), identical deviation angles (δR = δL),

and identical pitch angles (αR = αL). Furthermore, if the following initial conditions

are met: p = r = 0, ψ = φ = 0, then the FWMAV will maintain longitudinal

flight given proper choices of the wing motion. Identical wing angles, and associated

time derivatives of the wing angles, produces angular velocities where pRW = −pLW ,

qRW = qLW , and −rRW = rLW . Furthermore, with symmetrical flapping and wings

with the same length and mass parameters, the inertia terms for Ixy,w and Iyz,w are

equal in magnitude and opposite sign (where the appropriate wing is substituted for
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w). The remaining inertia tensor terms (Ixx,w, Ixz,w, Iyy,w, and Izz,w) are equal in both

sign and magnitude.

The assumptions enable simplification of various terms and enable the deriva-

tion of first order equations of motion. The assumptions, when combined with the

approximate inverse defined in Equation (3.9), produce the first order equations of

motion. The inverse also enables the calculation of the control moments of the wings.

Alternatively, the control moments can be defined as the required accelerations of the

wing angular velocities to produce the required wing angles and, by extension, the

necessary aerodynamic forces and moments to maneuver the FWMAV. Using the ap-

proximate matrix inversion, we can calculate the control moments required to achieve

the desired values for the time derivatives of the angular velocities of the wings. The

control moments for the right wing and left wing are calculated according to

QRW = RβR
TI2RβR

T


ṗRW,d

q̇RW,d

ṙRW,d

 and QLW = RβL
TI3RβL

T


ṗLW,d

q̇LW,d

ṙLW,d

 . (3.10)

For future reference, we define the following

ΩRW,d =


ṗRW,d

q̇RW,d

ṙRW,d

 and ΩLW,d =


ṗLW,d

q̇LW,d

ṙLW,d

 , (3.11)

where d in the subscript denotes the desired values of the time derivatives of the wing

angular velocities. Based on the calculation of the control moments, we assume that

the system will produce the desired wing motion. Therefore, the system of equations

can be reduced to a longitudinal system of equations with the wing effects included

in the equations governing the translational and rotational behavior of the body.
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3.2.1 u̇ - Longitudinal Velocity of the Body

The first equation governs the longitudinal velocity of the body. Putting the u̇

equation in the form of Equation (3.2), we can write

u̇ = ẋ1 = f
(0)
1 (x, t) + εf

(1)
1 (x, t) + ε2f

(2)
1 (x, t) . (3.12)

The first term, f
(0)
1 represents the longitudinal equation of motion for an aircraft in

the absence of yawing and rolling motion:

f
(0)
1 =

1

msys

Fx − g sin θ − qw. (3.13)

The second term, f
(1)
1 , represents the first order effects of the wings on the motion of

the central body:

f
(1)
1 =

1

msys

( (
ρ̃T
c2RβR

T + RβR
TΘRW

)
ΩRW,d (3.14)

+
(
ρ̃T
c3RβL

T + RβL
TΘLW

)
ΩLW,d

)
· b̂x

+

(
(ρc2,z + ρc3,z)

(MR +ML)

msysIyy,sys

)
− 1

msys

(¨̄ρc2,red + ¨̄ρc3,red) · b̂x.

The third term, f
(2)
1 represents the second order effects of the wings on the motion of

the central body. The second order effects are

f
(2)
1 =

(ρc2,z + ρc3,z)

msysIyy,sys

((
M g (3.15)

−
3∑
i=2

(
ω̄1 × Iiω̄i + ω̄i × Iiω̄i +miρ̄ci × ˙̄vi,red

) )
· b̂y

)
.
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3.2.2 ẇ - Vertical Velocity of the Body

As with the equation for u̇, we wish to write ẇ in the following form:

ẇ = ẋ2 = f
(0)
2 (x, t) + εf

(1)
2 (x, t) + ε2f

(2)
2 (x, t) . (3.16)

The first term of ẋ2 has the same form as the standard aircraft equations of motion

for vertical velocity:

f
(0)
2 =

1

msys

Fz + g cos θ + qu. (3.17)

The first order effects of the wings on the vertical translation of the central body are

f
(1)
2 =

1

msys

( (
ρ̃T
c2RβR

T + RβR
TΘRW

)
ΩRW,d (3.18)

+
(
ρ̃T
c3RβL

T + RβL
TΘLW

)
ΩLW,d

)
· b̂z

−
(

(ρc2,x + ρc3,x)
(MR +ML)

msysIyy,sys

)
− 1

msys

(¨̄ρc2,red + ¨̄ρc3,red) · b̂z

The second order effects of the wings on the vertical translation of the central body

are

f
(2)
2 =

(ρc2,x + ρc3,x)

msysIyy,sys

((
−M g (3.19)

+
3∑
i=2

(
ω̄1 × Iiω̄i + ω̄i × Iiω̄i +miρ̄ci × ˙̄vi,red

) )
· b̂y

)
.

3.2.3 q̇ - Pitch Velocity of the Body

The equations of motion for q̇ can be placed in the same form as u̇ and ẇ, such

that

q̇ = ẋ3 = f
(0)
3 (x, t) + εf

(1)
3 (x, t) + ε2f

(2)
3 (x, t) . (3.20)
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The first term, f
(0)
3 , is simply defined by the aerodynamic pitching moment and is

calculated according to

f
(0)
3 =

MR +ML

Iyy,sys
. (3.21)

The first order effects of the mass of the wings on the pitch velocity of the central

body are

f
(1)
3 =

1

msysIyy,sys

(
(ρc2,z + ρc3,z) (Fx −msys (g sin θ + qw)) (3.22)

− (ρc2,x + ρc3,x) (Fz +msys (g cos θ + qu))
)

+
1

Iyy,sys

(
M g −

3∑
i=2

(
ω̄1 × Iiω̄i + ω̄i × Iiω̄i +miρ̄ci × ˙̄vi,red

))
· b̂y

+
1

Iyy,sys

(
A22

−1E23ΩRW,d + A22
−1E24ΩLW,d

)
· b̂y,

where A22, E23, and E24 are defined in Appendix B and represent the wing acceleration

contribution to the pitch angle of the flapping wing micro air vehicle. The second

order effects of the mass of the wings on the pitch velocity of the central body are

f
(2)
3 =

1

msysIyy,sys

(
(ρc2,x + ρc3,x)

(
(¨̄ρc2,red + ¨̄ρc3,red) · b̂z

)
(3.23)

− (ρc2,z + ρc3,z)
(

(¨̄ρc2,red + ¨̄ρc3,red) · b̂x
))

.

3.3 Averaging Results

The local averaging of the dynamic equations is obtained from the following equa-

tion

˙̄x(t) = f̄ (0)(x̄) + εf̄ (1)(x̄) =
1

T

T∫
0

ẋ(t)dt =
1

T

T∫
0

f (0) (x, t) + εf (1)(x, t)dt, (3.24)
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where the implicit functions of time are assumed to remain constant and explicit

functions of time are integrated over a specified period, T . For a hover condition,

we make the assumption that only two degrees of freedom per wing are needed, such

that the deviation angle from the stroke plane will remain zero, e.g. δR = δL ≡ 0.

The assumption reduces the complexity of several terms in the equations of motion,

including the resultant aerodynamic forces and moments, the inertia tensors of the

wings when expressed in the body frame, and the orientation of the centers of mass

of the wings with respect to the origin of the body frame.

3.3.1 Aerodynamic Model

In order to average the equations of motion, an aerodynamic model is required.

The aerodynamic model chosen is based on the model developed and presented by

Deng, Schenato, et al. in [39] and [89] and previously presented in Section 2.5.3.

We assume that the flapping angle, ζ, and the pitch angle of the wing, α, have the

following form

ζ(t) = ζm sin (2πft) and α(t) = αm sgn
(
ζ̇
)
. (3.25)

The angle of attack is constant during each half-stroke. As a direct result, the time

rate of change of the pitch angle is zero (α̇ ≡ 0). The choice is made to simplify

the calculation of the various integrals used to obtain the 1/4-cycle equations to be

presented and present an analytical solution. If the assumption is not made, the

majority of the integrals to be calculated can only be evaluated numerically. It is

important to note that a pitch angle of the form α(t) = αm cos (2πft) will produce

qualitatively similar results. The velocity of the center of pressure of the wing, Ucp(t),

is assumed to act at the center of pressure calculated from Equation (2.33). The
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velocity of the center of pressure can be written as

Ucp(t) = r̂2bwζ̇ = (r̂2bw) (ωζm) cos(ω t), (3.26)

where bw denotes the semi-span of the wings (the span of one wing). The value for

Ucp(t) can be substituted into Equation (2.59) to obtain the normal and tangential

forces on the wing generated by the motion of the wings:

FT =
1

2
ρslAwCT (r̂2bwωζm)2 cos2 (ωt) (3.27)

and

FN =
1

2
ρslAwCN (r̂2bwωζm)2 cos2 (ωt) . (3.28)

The rotational force contribution, previously defined in Equation (2.60), is identically

zero since α̇ ≡ 0. In Equations (3.27) and (3.28), r̂2bw denotes the aerodynamic center

of pressure of the wing for velocity calculations and ω = 2πf , denotes the flapping

frequency. The coefficients in Equations (3.27) and (3.28) are calculated according to

CT = −0.4 sgn
(
ζ̇
)

cos2(2α) and CN = −3.4 sgn
(
ζ̇
)

sin(α). (3.29)

In Equation (3.29), the signum function is used to ensure proper orientation of the

forces on the wings. Based on the assumption for the form of the pitch angle, α(t),

the coefficients in Equation (3.29) can be simplified to

CT = −0.4 sgn
(
ζ̇
)

cos2(2αm) and CN = −3.4 sin(αm). (3.30)

The flapping velocity of the wings is assumed to be much greater than the velocity

of the freestream air, since the FWMAV is considered to be at (or near) a hovering

condition. Therefore, the velocity of the body of the FWMAV and the change in the
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true angle of attack of the wing are neglected.

3.3.2 Averaged Forces

Rotating from the stroke plane frame to the body frame will not alter the time

average of the aerodynamic forces, just the orientation of the forces in the body

frame. We can examine, individually, the thrust and lift forces in the body frame for

a parallel (to the longitudinal axis) stroke plane frame without loss of generality. The

resultant thrust and lift forces are

Fx = (cosα cos ζ)FT + (sinα cos ζ)FN (3.31)

and

Fz = − (sinα)FT + (cosα)FN (3.32)

The average of the forces is obtained according to

F x =
1

2π

2π∫
0

Fx dt and F z =
1

2π

2π∫
0

Fz dt . (3.33)

The thrust and lift forces are not continuous over the interval [0, 2π], but are contin-

uous over each quarter-stroke, due to the choice of representation of the normal and

tangential force coefficients. The average of the lift and thrust forces is calculated by

a summation of four integrals, each integral over a quarter-stroke:
[
0, 1

2
π
]
,
[

1
2
π, π

]
,[

π, 3
2
π
]
, and

[
3
2
π, 2π

]
. The average of the thrust force in the stroke plane is identi-

cally zero. For simplicity in presentation, the following constants are defined (based

on the averaged values):

kT = 0.2ρslAw cos2(2αm) (r̂2bwωζm)2 and kN = 1.7ρslAw sin(αm) (r̂2bwωζm)2 .

(3.34)
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The average of the lift force in the stroke plane is calculated according to

F z,sp =
1

2
kT sin(αm)− 1

2
kN cos(αm). (3.35)

The integrals of individual terms are calculated using assistance from [124, 125, 126].

Figure 3.1 shows the instantaneous lift force and the averaged lift force for a flapping

frequency of 21 Hz, a flapping amplitude of 60 degrees, and a maximum angle of attack

of 34.4212 degrees. The wings are considered to be thin, flat plates with constant

chord. The dimensions of the wings are set to 51.9 mm for the semi-span and 18.9

mm for the chord, based off of hawkmoth specimen F1 from [21]. The wings have

the same dimensions as in the results presented previously in Chapter 2. The average
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Figure 3.1: Instantaneous Lift Force and Average Lift Force

of the aerodynamic pitching moment is zero, over one flapping cycle, consistent with

[38] and [82].

3.3.3 Averaged Equations and Simulation Results

To achieve the averaged equations of motion, we assume that the control moments

produce the desired equations of motion of the wings. Therefore, we can define the
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angular velocity of the wings according to


pRW

qRW

rRW

 =


sinαRζ̇R

0

− cosαRζ̇R

 and


pLW

qLW

rLW

 =


− sinαLζ̇L

0

cosαLζ̇L

 . (3.36)

With symmetrical flapping, pRW = −pLW and −rRW = rLW . The period for the

calculation of the averaged equations is set to be 1
f
, where f denotes the flapping

frequency. The local averaging produces the following equations of motion for the

translation of the central body, where the averaged variables are denoted by a ‘bar,’

˙̄u =
F̄x
msys

− g sin θ̄ − q̄w̄ +
2

msys

mwρwωζm sin(αm) cos β

(
2

π

sin (ζm)

ζm

)
q̄ (3.37)

+
mwρwr̂2bw
msysIyy,sys

(
kT sin(αm)− kN cos(αm)

)
sin β

(
1− J0 (2ζm)− J2 (2ζm)

)
and

˙̄w =
F̄z
msys

+ g cos θ̄ + q̄ū− 2

msys

mwρwωζm sin(αm) sin β

(
2

π

sin (ζm)

ζm

)
q̄ (3.38)

−mwρwr̂2bw
msysIyy,sys

(
kT sin(αm)− kN cos(αm)

)
cos β

(
1− J0 (2ζm)− J2 (2ζm)

)
,

where the terms ρw and mw denote the distance to the center of mass of the wing

from the wing joint and the mass of the wing, respectively. Through the calculation

of numerous individual integrals, over the period T , the majority of the effects of the

wings on the central body are zero, which is consistent with the method and results

in [62]. In order to calculate the average of the equation for q̇, the term Iyy,sys is

averaged separately in order to obtain some form of an analytical averaging solution.

The time-varying form of Iyy,sys, for symmetrical flapping, is

Iyy,sys = Iyy,1 + 2
(
Iyy,w cos2(ζ) +

(
Ixx,w cos2(α) + Izz,w sin2(α)

)
sin2(ζ)

)
. (3.39)
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The averaged result is

Īyy,sys = Iyy,1 +
(
Ixx,w cos2 (αm) + Izz,w sin2(αm)

)
(1− J0 (2ζm)) (3.40)

+Iyy,w (1 + J0 (2ζm)) .

As stated previously, the average of the aerodynamic pitching moment, over one

flapping-cycle, is identically zero. Likewise, the average over one flapping cycle of all

of the terms in f
(1)
3 is also identically zero. As a direct result, the averaged equation

for the pitch velocity is

˙̄q = 0 (3.41)

The numerical solutions for the perturbed system, to precision of ε, and the averaged

system are presented in Figures 3.2. The morphological parameters of the FWMAV

are based off a hawkmoth and are consistent with those used in previous multi-body

simulations. The flapping amplitude, ζm, is equal to 60◦ and the pitch angle, αm, is

equal to 34.4212◦. The flapping frequency is set at 22 Hz. The simulation results are

for a stroke plane parallel to the inertial frame, β = −10◦, and an initial pitch angle

of 10◦. The simulations are started with zero body velocities and an initial altitude

of 5 m.

The results are presented in Fig 3.2. The numerical results in Fig. 3.2 are poor.

The averaged equations do not match the first order equations of motion. In Fig.

3.2(a), the FWMAV model climbs vertically, but the averaged model does not predict

the translation in the negative x direction. Of special concern is the pitch angle of the

FWMAV. Averaging, based on the first order equations of motion, predicts the change

in the pitch attitude of the FWMAV to be zero for symmetrical flapping. Without

control, the pitch angle of the non-averaged system continues to increase (Fig 3.2(b)),

while the pitch angle of averaged system remains constant. Furthermore, the pitch
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velocity of the FWMAV remains at zero for the averaged system, while the pitch

velocity changes drastically during each flapping cycle for the ε1 system. Section

3.4 will present a method for approximating the dynamics of the FWMAV that will

closely match the predicted behavior of the nonlinear, time-varying dynamics of the

system.
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Figure 3.2: Simulation Results for Local Averaging in the Vicinity of Hovering, β =
−10◦, θo = 10◦
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3.4 Quarter-Cycle Averaging Results

Obviously, the results from local averaging are poor. The error between the pre-

dicted pitch angle from averaging and the actual pitch angle is 100%. The error in

the x-position of the FWMAV is also 100%. To provide a better approximation of

the system behavior, we propose a method coined ‘quarter-cycle’ averaging. Essen-

tially, all of the integrals that evaluated to zero over the course of one flapping cycle

in Section 3.3.3 are re-written as piecewise continuous, constant functions. The time

average, over the course of one flapping cycle, is still zero. The method results in a set

of four step, discrete, autonomous equations of motion. The quarter-cycle results for

the equations of motion presented in Section 3.2 are detailed in Appendix C. The in-

tegrals are broken up over quarter-cycles because of the desire to obtain an analytical

solution. Integral tables, available in [124], [125], [126] and Wolfram Alpha, contain

anayltical results for many complicated integrals over the interval
[
0 π

2

]
. The nec-

essary analytical results do not exist for intervals less than π
2

in length. Furthermore,

the integrals are readily defined, analytically, for the intervals
[
π
2

π
]
,
[
π 3π

2

]
, and[

3π
2

2π
]
. A summary of the integrals that arose in the derivation process and the

appropriate quarter-cycle representations are presented in Appendix D.

The issue with the perturbation problem in the standard form is the analytical so-

lution of the unperturbed system. The general analytical solution of the longitudinal

aircraft equations of motion does not exist. An additional issue is that the aerody-

namic forces and moments are generated by piecewise continuous explicit functions of

time. The approach, presented here, is to utilize the knowledge of dynamic changes

during a flapping cycle and use that knowledge to construct piecewise continuous

equations that will accurately approximate the dynamics of the flapping micro air ve-

hicle. The results will take one of four forms: constant over the entire flapping cycle,

sign changes consistent with a sine wave, sign changes consistent with a cosine wave,

and sign changes consistent with a sine wave at twice the normal flapping frequency.

85



Flapping amplitude and flapping velocity can be written as the following

ζ(t) = ζm sin (ωt) and ζ̇(t) = ωζm cos (ωt) . (3.42)

where ω = 2πf . Functions that are consistent with a sine wave are positive over the

interval (0 π) and negative over the interval (π 2π). Functions consistent with a

sine wave will be denoted by sgn (ζ). Functions the are consistent with a cosine wave

are positive over the interval
(
0 π

2

)
, negative over the interval

(
π
2

3π
2

)
, and positive

over the interval
(

3π
2

2π
)
. Functions consistent with a cosine wave will be denoted

by sgn
(
ζ̇
)

. Functions consistent with a sine wave at twice the normal flapping

frequency are positive over the intervals
(
0 π

2

)
and

(
π 3π

2

)
and negative over the

intervals
(
π
2

π
)

and
(

3π
2

2π
)
. These functions will be denoted by sgn (s (2ω)).

For example, in Section 3.3.3, the thrust force, in the stroke plane, and the aero-

dynamic pitching moment are identically zero when averaged over a flapping cycle.

The thrust force may be written as

F x,sp,QC =
1

2
sgn

(
ζ̇
) (
kT cos(αm) + kN sin(αm)

)(
J0 (ζm) + J2 (ζm)

)
, (3.43)

where Jn denotes a Bessel function of the first kind, order n. The aerodynamic

pitching moment, for one wing, may be written as

M = (sinα sin ζ) r̂2bwFT − (cosα sin ζ) r̂2bwFN − sgn
(
ζ̇
) cw

4
(cos ζ)FN . (3.44)

When averaged over the four quarter-cycles, the result is

Maero,QC = sgn (ζ) r̂2bw
1

ζm
H1 (ζm)

(
kN cos(αm)− kT sin(αm)

)
(3.45)

+
1

8
sgn

(
ζ̇
)
cwkN

(
J0 (ζm) + J2 (ζm)

)
.
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H1 denotes the first order Struve function of the first kind. In the stroke plane, the

averaged lift and quarter-cycle averaged lift are identical. A comparison of the instan-

taneous thrust, lift, and aerodynamic pitching moment and the respective quarter-

cycle results are presented in Figure 3.3. The lift and thrust forces are resolved into

the B frame of the FWMAV. As a result, the thrust force will not have a time average

of zero, nor will the lift force be constant over a flapping cycle. If the stroke plane

were identically zero, or parallel with the longitudinal axis of the body, then the lift

force would be constant and the thrust would average to zero over the course of one

flapping cycle.
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Figure 3.3: Comparison of Instantaneous and Quarter-Cycle Averaged Thrust, Lift,
and Aerodynamic Pitching Moment
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The following three sections, 3.4.1-3.4.3, will show simulation results for three

reference flight conditions: hovering flight, forward flight, and vertical flight. The

simulation results won’t present true reference flight conditions. The results will not

be presented for an equilibrium condition of the averaged system. Due to coupling

between the pitch and translational velocities, the solutions will quickly diverge from

the reference flight condition. However, differences between each condition will be

illustrated. The hover solution will not include effects on the aerodynamic force

and moment generation from the translational velocity of the body. The forward

flight presentation, in Section 3.4.2, will include the longitudinal velocity of the body

included in the aerodynamic calculations. The vertical flight simulations, in Section

3.4.3, will include the vertical velocity of the body.

3.4.1 Hovering Flight

The results for quarter-cycle averaging, versus local averaging over the entire flap-

ping cycle, are presented in the vicinity of a hover condition. The translational

velocity of the body, u and w, and the pitch velocity of the body, q, are not included

in the aerodynamic force and moment calculations. The aerodynamics force and mo-

ment calculations used for the hovering solutions are presented in Equations (3.35),

(3.43), and (3.45). The derivation of the quarter-cycle equations for the ε1 effects of

the wings, as detailed in Sections 3.2.1-3.2.3, is presented in Appendix C. The results

are vastly improved over the results from the locally averaged equations. For the

same simulation parameters as presented in Section 3.3.3, the quarter-cycle averaged

system is compared to the ε1 system and the averaged system. The results are pre-

sented in Figure 3.4. The quarter-cycle system is denoted by ‘QC’ and represented by

the solid line. The ε1 system is represented by the dashed line. The averaged system

is represented by the dash-dot line.

The quarter-cycle system does a much better job of approximating the dynamics
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of the FWMAV through the use of nothing but piecewise continuous, constant func-

tions. The inertial position in Figure 3.4(a) shows slight variation between the ε1 and

‘QC’ models during the three flapping cycle duration of the simulation. The inertial

position has an error of 4.9% in the x-direction and 10.4% in the z-direction, between

the ε1 system and the ‘QC’ system. The error between the averaged system and the

ε1 system is 100% in the x-direction and 13.5% in the z-direction. Finally, the error

between the pitch angle at the end of the simulation is 100% between the averaged

and ε1 system, while the error is only 5.2% with the ‘QC’ system. All errors are cal-

culated based on the difference between the initial position/orientation and the final

position/orientation. The quarter cycle averaging method definitely supplies an im-

provement over local averaging and provides an alternative approximation technique

for a nonlinear, time-varying, periodic system.

The results in Figure 3.4 only represent one flight condition, with once choice of

input parameters. Figures 3.5-3.8 present the error after three flapping cycles for the

distance from the initial point and the pitch angle. The initial conditions are set to

zero for all of the body velocities. The initial pitch angle is zero degrees, as is the

stroke plane angle, for all of the simulations. The flapping amplitude ranges from 55◦

to 64◦, with 1◦ intervals. The flapping frequency is set at 24Hz. The angle of attack

is determined by using a bisection algorithm over the interval [0◦ 45◦] and solving

for equilibrium from Equations (3.38) and (3.39). The error in the distance from the

initial condition is presented in Figure 3.5 for the quarter-cycle equations versus the

first order equations of motion. The error in distance between the averaged equations

and the first order equations of motion is presented in Figure 3.6.

The maximum error between the quarter-cycle equations is approximately 10%

over 100 different simulation results. The minimum error for the averaged equations is

approximately 40%. The error in the pitch angle between the quarter-cycle equations

and the first order equations of motion is presented in Figure 3.7. The pitch angle
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error for the local averaged equations is presented in Figure 3.8. The maximum error

for the quarter-cycle equations for the pitch angle is approximately 4.9%. The error

for the averaged equations, for every single simulation, is 100%. The quarter-cycle

equations of motion definitely provide a better approximation than local averaging

over a wide range of flight conditions, in vicinity of an initial hover condition.
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Figure 3.4: Simulation Results for Local Averaging and Quarter-Cycle Averaging in
the Vicinity of Hover, β = −10◦, θo = 10◦
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3.4.2 Forward Flight

To consider forward flight, we can define the total velocity of the wing, for longi-

tudinal flight, in the wing frame according to

vwing =

r̂2bζ̇

0

+

cos(ζ) cos(β)u

sin(β)u

 . (3.46)

The vertical velocity of the body (w) and the pitch velocity of the body (q) are

neglected in the calculation of the aerodynamic forces and moments. The magnitude

of the wing velocity is

||vwing||2 =
(
r̂2bζ̇

)2

+ 2r̂2bζ̇ cos(ζ) cos(β)u+
(
cos2(β) cos2(ζ) + sin2(β)

)
u2. (3.47)

Therefore, we can define the normal and tangential forces in the wing frame according

to

FT =
1

2
ρAwCT ||vwing||2 and FN =

1

2
ρAwCN ||vwing||2. (3.48)

The normal and tangential force coefficients, CN and CT , respectively are defined

according to Equation (3.29). For a non-zero stroke plane, the forward velocity of the

FWMAV will cause a change in the angle of attack of the wing from the geometric

pitch angle defined by α(t). The total angle of attack, αtotal, is a combination of the

geometric angle of attack, α, and a change in angle of attack, α∆, defined by

α∆ = tan−1

(
vwing ·Rw,z

vwing ·Rw,x

)
= tan−1

(
sin(β)u

r̂2bζ̇ + cos(ζ) cos(β)u

)
. (3.49)

The additional angle of attack is assumed to act at the aerodynamic center of pressure

of the wing. Although this may not be the best assumption, a thorough literature

search has not discovered a viable, analytical approximation. The calculation has

rarely been handled in the literature. It is mentioned in [70], but a method of the
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calculation is not presented. In order to obtain an analytical solution for the ‘aver-

aged’ system, we assume that α∆ will remain ‘small’ in accordance with small angle

approximations. As a direct result, tan−1 can be approximated according to

α∆ = tan−1

(
sin(β)u

r̂2bζ̇ + cos(ζ) cos(β)u

)
≈ sin(β)u

r̂2bζ̇ + cos(ζ) cos(β)u
. (3.50)

The coefficients of the normal and tangential forces can redefined according to

CT,α∆
= −0.4 sgn

(
ζ̇
)

cos2 (2 (α + α∆))

≈ −0.4 sgn
(
ζ̇
) (

cos2 (2α)− 2 sin (2α)α∆

)
(3.51)

and

CN,α∆
= −3.4 sgn

(
ζ̇
)

sin (α + α∆)

≈ −3.4 sgn
(
ζ̇
)

(sin(α) + cos(α)α∆) . (3.52)

A further approximation is needed to handle the inclusion of α∆ into the calculation of

the aerodynamic forces and moments. The aerodynamic force calculation will result

in terms with the form

α∆||vwing||2 =
sin(β)u

r̂2bζ̇ + cos(ζ) cos(β)u

((
r̂2bζ̇ + cos(ζ) cos(β)u

)2

+ sin2(β)u2

)
= sin(β)u

(
r̂2bζ̇ + cos(ζ) cos(β)u

)
+

sin3(β)u3

r̂2bζ̇ + cos(ζ) cos(β)u
. (3.53)

If, for an initial analysis, forward flight speeds of less than 1 m/s are considered, the

term containing u3 will not only be small compared to its denominator, but small

compared to the other terms in the aerodynamic calculations. Therefore, we choose

to neglect it. The thrust force in the body frame, due to the geometric angle of attack,
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can be written as

Fx,α = −1

2
cos(β)sgn

(
ζ̇
) (
kT cos(αm) + kN sin(αm)

)(
J0 (ζm) + J2 (ζm)

)
+

1

2
sin(β)

(
kT sin(αm)− kN cos(αm)

)
− 1

π
cos2(β) (k1 + k2)

(
1 +

sin(2ζm)

2ζm

)
u

− sin(2β)sgn
(
ζ̇
)

(k3 − k4)

(
sin(ζm)

ζm

)
u (3.54)

−sgn
(
ζ̇
)

(k5 + k6)

(
cos3(β)

(
3

4
J0(ζm) +

1

4
J0(3ζm)

)

+ cos(β) sin2(β)J0(ζm)

)
u2

+ (k7 − k8)

(
sin(β) cos2(β)

(
1

2
+

1

2
J0 (2ζm)

)
+ sin3(β)

)
u2,

where the constants ki are defined in Appendix C. The inclusion of the longitudinal

velocity of the central body into the aerodynamic calculations results in a thrust force

that is no longer zero over the course of a flapping cycle. The term containing the

constants k1 and k2 is constant when averaged over the course of the flapping cycle

and results from the thrust force on the wings in the stroke plane. The thrust force

is directly dependent on the velocity of the body. The term containing k7 and k8 is a

result of the lift force on the wings in the stroke plane and varies with the power of

u2. The contribution to the thrust force from the change in angle of attack is

Fx,α∆
=

2

π
sin(2β)

(
cos(β) sgn

(
ζ̇
)

(k9 − k10)

(
sin(ζm)

ζm

)
− sin(β) (k11 + k12)

)
u

+ sin(2β)
(
cos(β) (k13 − k14)

(
1 + J0 (2ζm)

))
u2 (3.55)

− sin(2β)
(

sin(β) sgn
(
ζ̇
)

(k15 + k16) J0 (ζm)
)
u2.

As with the contribution to the thrust force due to the geometric angle of attack, both

the thrust force and the lift force in the stroke plane result in a constant contribution
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to the thrust force as a result of the velocity of the body. The lift force contribution,

in the body frame, from the geometric pitch angle is

Fz,α =
1

2
cos(β)

(
kT sin(αm)− kN cos(αm)

)
+

1

2
sin(β) sgn

(
ζ̇
) (
kT cos(αm) + kN sin(αm)

)(
J0 (ζm) + J2 (ζm)

)
+ cos2(β) sgn

(
ζ̇
)

(k3 − k4)

(
2

π

sin(ζm)

ζm

)
u

+
1

2
sin(2β) (k1 + k2)

(
1

π
+

1

π

sin(2ζm)

2ζm

)
u (3.56)

+sgn
(
ζ̇
)

(k5 + k6)

(
1

4
sin(β) cos2(β) (3J0(ζm) + J0(3ζm)) +

+ sin3(β)J0(ζm)

)
u2

+ (k7 − k8)

(
cos3(β)

(
1

2
+

1

2
J0 (2ζm)

)
+ cos(β) sin2(β)

)
u2.

The lift contribution from the change in angle of attack is

Fz,α∆
= − 1

π

(
sin(2β) (k11 + k12) + sin2(β) (k9 − k10) sgn

(
ζ̇
)(sin(ζm)

ζm

))
u

− sin(2β)
(

cos(β) sgn
(
ζ̇
)

(k15 + k16) J0 (ζm)
)
u2 (3.57)

+ sin(2β)
(

sin(β) (k14 − k13)
(
1 + J0 (2ζm)

))
u2.

Without considering the contribution of the body velocity on the aerodynamic forces

and moments, the average of the aerodynamic pitching moment over one flapping

cycle is identically zero. However, including the body velocity u results in a non-zero,

time-averaged contribution to the aerodynamic pitching moment. The aerodynamic
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pitching moment, due to the geometric angle of attack for one wing, is equal to

Maero,α = sgn
(
ζ
)
r̂2bw

(
kN cos(αm)− kT sin(αm)

) 1

ζm
H1 (ζm)

+
1

8
sgn

(
ζ̇
)
cwkN

(
J0(ζm) + J2(ζm)

)
+

1

2
sgn (s(2ω)) cos(β)r̂2bw (k4 − k3)

(
2

π

1− cos(2ζm)

2ζm

)
u (3.58)

+sgn (ζ) r̂2bw (k8 − k7)
(1

4
cos2(β)

(
H0 (ζm) + H0 (3ζm)

)
+ . . .

+ sin2(β)H0(ζm)
)
u2 + cos(β)k17

(
2

π
+

2

π

sin(2ζm)

2ζm

)
u

+sgn
(
ζ̇
)
k18

(
1

4
cos2(β) (3J0(ζm) + J0(3ζm)) + J0(ζm) sin2(β)

)
u2.

The contribution to the aerodynamic pitching moment due to the change in angle of

attack is

Maero,α∆
= sgn (ζ) (k19 + k20) sin(β)

(
2

π

1− cos(ζm)

ζm

)
u (3.59)

+sgn (s(2ω)) sin(2β) (k21 + k22) H0 (2ζm)u2

+k23 sin(β)sgn
(
ζ̇
)( 2

π

sin(ζm)

ζm

)
u+ k24 sin(2β)

(
1 + J0 (2ζm)

)
u2.

The pitch moment has constant contributions from the aerodynamics proportional

to u, the term containing k17 in Equation (3.58), and u2, the term containing k24 in

Equation (3.59).

Case
Initial Pitch Angle Stroke Plane Angle Initial velocity

θo (◦) β (◦) uo (m/s)
1 0 -20 0.25
2 0 -10 0.5
3 5 -5 -0.5
4 5 -15 -0.25

Table 3.1: Summary of Input Parameters for Forward Flight Comparison Simulations,
Presented in Figures 3.9-3.12

97



0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
4.9998

5

5.0002

5.0004

5.0006

5.0008

5.001

5.0012

5.0014

5.0016

5.0018

x(m)

z(
m

)

 

 

3DOF
QC
AVG

(a) Case 1: θo = 0◦, β = −20◦, uo = 0.25 m/s

0 0.01 0.02 0.03 0.04 0.05
5

5.0002

5.0004

5.0006

5.0008

5.001

5.0012

5.0014

5.0016

5.0018

5.002

x(m)

z(
m

)

 

 

3DOF
QC
AVG

(b) Case 2: θo = 0◦, β = −10◦, uo = 0.5 m/s
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(c) Case 3: θo = 5◦, β = −5◦, uo = 0.5 m/s

0.025 0.02 0.015 0.01 0.005 0
4.9995

5

5.0005

5.001

5.0015

5.002

5.0025

5.003

x(m)

z(
m

)

 

 

3DOF
QC
AVG

(d) Case 4: θo = 5◦, β = −15◦, uo = −0.25 m/s

Figure 3.9: X −Z Position Simulation Results for Forward Flight: f = 22Hz, αm =
35◦, ζm = 60◦

Figures 3.9-3.12 present simulation results for a longitudinal aircraft model, with-

out the wing effects included, but including the body velocity u into the aerodynamic

calculations. The solid line is the longitudinal aircraft model with the analytical

aerodynamic model. The dash-dot line is the simulation results for the quarter-cycle

model. The dotted line is the results for the averaged system. Four cases are pre-

sented in each Figure. The input parameters for the simulations are presented in

Table 3.1.
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(a) Case 1: θo = 0◦, β = −20◦, uo = 0.25 m/s
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(b) Case 2: θo = 0◦, β = −10◦, uo = 0.5 m/s
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(c) Case 3: θo = 5◦, β = −5◦, uo = 0.5 m/s
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(d) Case 4: θo = 5◦, β = −15◦, uo = −0.25 m/s

Figure 3.10: Pitch Angle Simulation Results for Forward Flight: f = 22Hz, αm =
35◦, ζm = 60◦

Figure 3.9 shows the inertial position of the FWMAV after two flapping cycles.

The simulation results show that the quarter-cycle method predicts the actual behav-

ior of the FWMAV better than averaging alone, consistent with the results presented

in Section 3.4.1. As opposed to the hovering flight approximation, local averaging at

least gets the longitudinal direction of the motion correct. For Case 1, in Fig. 3.9(a),

the local averaging solution predicts a decrease in altitude while the actual solution,

and the quarter-cycle solution, predict an increase in altitude. For the other cases,

local averaging predicts the correct direction, but vastly overestimates (or underesti-

mates) the amount of displacement.
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(a) Case 1: θo = 0◦, β = −20◦, uo = 0.25 m/s
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(b) Case 2: θo = 0◦, β = −10◦, uo = 0.5 m/s
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(c) Case 3: θo = 5◦, β = −5◦, uo = 0.5 m/s
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(d) Case 4: θo = 5◦, β = −15◦, uo = −0.25 m/s

Figure 3.11: Pitch Velocity Simulation Results for Forward Flight: f = 22Hz, αm =
35◦, ζm = 60◦

Figures 3.10 and 3.11 show the simulation results for the pitch angle and pitch

velocity of the central body. For a positive forward velocity, in Figures 3.10(a)-3.10(c),

both the averaged system and the quarter-cycle system predict a positive increase in

the pitch angle. However, for a negative initial velocity in Figure 3.10(d), the averaged

model predicts an increase in the opposite direction from the quarter-cycle averaged

system. In either case, the magnitude of the pitch angle at the end of two flapping

cycles for the quarter-cycle system is much closer to the true system than to the

averaged system. The results are presented for only two flapping cycles because the

100



pitch angle quickly reaches a nose-up orientation, at θ = π
2
, with the inclusion of the

forward velocity in an open loop simulation.

Figure 3.12 shows the simulation results for the longitudinal velocity of the body,

u, for the two flapping cycles. As with the pitch orientation and velocity, the quarter-

cycle approximation performs vastly better than local averaging. As with the FW-

MAV in a hover condition, the quarter-cycle approximation performs better than the

local averaging method. The derivation of the equations in this section will provide a

basis for the analysis of the forward flight regime and the determination of equilibrium

conditions and possibly limit cycles around said equilibrium conditions.
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(a) Case 1: θo = 0◦, β = −20◦, uo = 0.25 m/s
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(b) Case 2: θo = 0◦, β = −10◦, uo = 0.5 m/s
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(c) Case 3: θo = 5◦, β = −5◦, wo = 0.5 m/s
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(d) Case 4: θo = 5◦, β = −15◦, wo = −0.25 m/s

Figure 3.12: Longitudinal Velocity Simulation Results for Forward Flight: f = 22Hz,
αm = 35◦, ζm = 60◦
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3.4.3 Vertical Flight

Considering vertical flight, we define the total velocity of the wing, in the wing

frame, according to

vwing =

r̂2bζ̇

0

+

− cos(ζ) sin(β)w

cos(β)w

 . (3.60)

The magnitude of the wing velocity, expressed in the wing frame and relative to the

inertial frame, is

||vwing||2 = (r̂2bw)2 − 2 r̂2bw cos(ζ)ζ̇ sin(β)w +
(
cos2(ζ) sin2(β) + cos2(β)

)
w2. (3.61)

The normal and tangential forces in the wing frame are still defined according to

Equation (3.48). The change in angle of attack, α∆, is derived in the same manner

as in Equation (3.49). However, the actual result differs and is calculated according

to

α∆ = tan−1

(
cos(β)w

r̂2bwζ̇ − cos(ζ) sin(β)w

)
≈ cos(β)w

r̂2bwζ̇ − cos(ζ) sin(β)w
. (3.62)

The normal and tangential force coefficients are identical to those defined in Equation

(3.29). The change in the force coefficients due to the change in angle of attack is

the same as in the forward flight case, as defined in Equations (3.51) and (3.52). The

inclusion of the α∆ term into the calculation of the aerodynamics forces and moments

for vertical flight differs from that of forward flight. The aerodynamic calculation will
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result in terms calculated according to

α∆||vwing||2 =
cos(β)w

r̂2bwζ̇ − cos(ζ) sin(β)w

((
r̂2bwζ̇ − cos(ζ) sin(β)w

)2

+ cos2(β)w2

)
= cos(β)w

(
r̂2bwζ̇ − cos(ζ) sin(β)w

)
+

cos3(β)w3

r̂2bwζ̇ − cos(ζ) sin(β)w
. (3.63)

A similar assumption is made for vertical flight as with forward flight, the terms

containing w3 are neglected for relatively slow vertical flight regimes. The thrust

force, in the body frame due to the velocity of the wing, is calculated according to

Fx,α = −1

2
cos(β)sgn

(
ζ̇
) (
kT cos(αm) + kN sin(αm)

)(
J0 (ζm) + J2 (ζm)

)
+

1

2
sin(β)

(
kT sin(αm)− kN cos(αm)

)
(3.64)

+
1

2
sin(2β) (k1 + k2)

(
1

π
+

1

π

sin(2ζm)

2ζm

)
w

+ sin2(β)sgn
(
ζ̇
)

(k4 − k3)

(
2

π

sin(ζm)

ζm

)
w − (k5 + k6) sgn

(
ζ̇
)
∗(

cos(β) sin2(β)

(
3

4
J0 (ζm) +

1

4
J0 (3ζm)

)
+ cos3(β)J0 (ζm)

)
w2

+ (k7 − k8)

(
sin3(β)

(
1

2
+

1

2
J0 (2ζm)

)
+ sin(β) cos2(β)

)
w2.

As with the forward flight equations, the thrust force contributes constant and peri-

odic effects proportional to w and w2. Analysis of the thrust force shows that if β ≡ 0,

then all of the constant functions will be identically zero. With a stroke plane parallel

to the longitudinal axis of the body, only periodic forces will affect the longitudinal

position of the body. The contribution to the thrust force from the change in angle

of attack is calculated according to

Fx,α∆
=

1

π

(
2 cos2(β)sgn

(
ζ̇
)

(k9 − k10)

(
sin(ζm)

ζm

)
− sin(2β) (k11 + k12)

)
w

+ sin(2β) (cos(β) (k14 − k13) (1 + J0 (2ζm)))w2 (3.65)

+ sin(2β)
(

sin(β)sgn
(
ζ̇
)

(k15 + k16) J0 (ζm)
)
w2.
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As with the thrust contribution from the geometric angle of attack, the constant

thrust contribution due to the change in angle of attack will also be identically zero

if β ≡ 0. The contribution to the lift force from the geometric angle of attack is

calculated according to

Fz,α =
1

2
cos(β)

(
kT sin(αm)− kN cos(αm)

)
(3.66)

+
1

2
sin(β)sgn

(
ζ̇
) (
kT cos(αm) + kN sin(αm)

)(
J0(ζm) + J2(ζm)

)
+

1

2
sin(2β)sgn

(
ζ̇
)

(k4 − k3)

(
2

π

sin(ζm)

ζm

)
w

− sin2(β) (k1 + k2)

(
1

π

)(
1 +

sin(2ζm)

2ζm

)
w + (k5 + k6) sgn

(
ζ̇
)
∗(

1

4
sin3(β) (3J0(ζm) + J0(3ζm)) + sin(β) cos2(β)J0(ζm)

)
w2

+ (k7 − k8)

(
1

2
cos(β) sin2(β) (1 + J0 (2ζm)) + cos3(β)

)
w2.

For a stroke plane equal to zero (β ≡ 0), the lift force will have two constant con-

tributions: one due to the flapping velocity of the wing and one proportional to w2.

The contribution to the lift force from the change in angle of attack is

Fz,α∆
=

1

π

(
sin(2β)sgn

(
ζ̇
)

(k10 − k9)

(
sin(ζm)

ζm

)
− 2 (k11 + k12) cos2(β)

)
w

+ sin(2β)
(

cos(β) (k15 + k16) sgn
(
ζ̇
)

J0 (ζm)
)
w2 (3.67)

+ sin(2β) ((k13 − k14) sin(β) (1 + J0 (2ζm)))w2.

The lift force due to the change in angle of attack contributes a constant force propor-

tional to w if the stroke plane is identically zero. The aerodynamic pitching moment
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due to the velocity of the wing is calculated according to

Maero,α = sgn
(
ζ
)
r̂2bw

(
kN cos(αm)− kT sin(αm)

) 1

ζm
H1 (ζm) (3.68)

+
1

8
sgn

(
ζ̇
)
cwkN

(
J0(ζm) + J2(ζm)

)
+

1

2
sgn (s(2ω t)) sin(β)r̂2bw (k3 − k4)

(
2

π

1− cos(2ζm)

2ζm

)
w

+sgn (ζ) r̂2bw (k8 − k7) ∗(
1

4
sin2(β)

(
H0 (ζm) + H0 (3ζm)

)
+ cos2(β)H0(ζm)

)
w2

− sin(β)k17

(
2

π
+

2

π

sin(2ζm)

2ζm

)
w

+sgn
(
ζ̇
)
k18

(
sin2(β)

(
3

4
J0(ζm) +

1

4
J0(3ζm)

)
+ J0(ζm) cos2(β)

)
w2.

The majority of the contributions to the aerodynamic pitching moments are periodic.

For a stroke plane equal to zero, the only constant contribution to the aerodynamic

pitching moment from the geometric angle of attack will also be zero. The final

contribution to the aerodynamic pitching moment is the contribution from the change

in angle of attack due to the vertical velocity.

Maero,α∆
= sgn (ζ) (k19 + k20) cos(β)

(
2

π

1− cos(ζm)

ζm

)
w (3.69)

−sgn (s(2ω t)) sin(2β) (k21 + k22) H0 (2ζm)w2

+k23 cos(β)sgn
(
ζ̇
)( 2

π

sin(ζm)

ζm

)
w − k24 sin(2β)

(
1 + J0 (2ζm)

)
w2.

The constant contribution, proportional to w2, will be zero for a stroke plane equal

to zero.

The quarter-cycle approximation of vertical flight equations of motion will be

simulated versus the analytical system and the averaged system. Four different cases

will be presented; two cases will be for ascending flight and two for descending flight.

The input parameters are detailed in Table 3.2.
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Case
Initial Pitch Angle Stroke Plane Initial velocity

θo (◦) β (◦) wo (m/s)
1 20 -20 0.25
2 20 -20 -0.25
3 10 -10 0.5
4 10 -10 -0.5

Table 3.2: Summary of Input Parameters for Vertical Flight Comparison Simulations,
Presented in Figures 3.13-3.16
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(a) Case 1: θo = 20◦, β = −20◦, wo = 0.25 m/s
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(b) Case 2: θo = 20◦, β = −20◦, wo = −0.25 m/s
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(c) Case 3: θo = 10◦, β = −10◦, wo = 0.5 m/s
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(d) Case 4: θo = 10◦, β = −10◦, wo = −0.5 m/s

Figure 3.13: X−Z Position Simulation Results for Vertical Flight: f = 21Hz, αm =
35◦, ζm = 60◦

The simulation results for vertical flight are presented in Figures 3.13-3.16. For

ascending and descending flight, vertical flight predicts a backwards translation (neg-
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ative x-direction). The inertial position for the four simulations is presented in Fig-

ure 3.13. For descending flight, in Figs. 3.13(a) and 3.13(c), the analytical and

quarter-cycle approximations predict translation in the same direction. The averaged

system predicts translation in the opposite direction (positive x-direction). For as-

cending flight, both approximations predict translation in the correct direction, but

the quarter-cycle approximation is a vast improvement in accuracy over the averaged

system.
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(a) Case 1: θo = 20◦, β = −20◦, wo = 0.25 m/s
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(b) Case 2: θo = 20◦, β = −20◦, wo = −0.25 m/s
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(c) Case 3: θo = 10◦, β = −10◦, wo = 0.5 m/s
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(d) Case 4: θo = 10◦, β = −10◦, wo = −0.5 m/s

Figure 3.14: Pitch Angle Simulation Results for Vertical Flight: f = 21Hz, αm =
35◦, ζm = 60◦

The pitch orientation for the vertical flight simulations are presented in Figure

107



3.14. The pitch behavior is generally the same for all four cases presented and well

approximated by the quarter-cycle equations. In the case of ascending flight, as shown

in Figs. 3.14(b) and 3.14(d), the pitch prediction for the averaged system is increasing

in magnitude from the actual system. For descending flight, in Figs. 3.14(a) and

3.14(c), the averaged system gets the direction of the pitch change correct but is not

close in magnitude. The quarter-cycle equations also match the pitch velocity, in

Figure 3.15, and vertical velocity, in Figure 3.16, well throughout the simulation of

the FWMAV.
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(a) Case 1: θo = 20◦, β = −20◦, wo = 0.25 m/s

0 0.5 1 1.5 2
5

0

5

10

15

20

q 
(ra

d/
s)

 

 
3DOF
QC
AVG
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(c) Case 3: θo = 10◦, β = −10◦, wo = 0.5 m/s
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(d) Case 4: θo = 10◦, β = −10◦, wo = −0.5 m/s

Figure 3.15: Pitch Velocity Simulation Results for Vertical Flight: f = 21Hz, αm =
35◦, ζm = 60◦
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(c) Case 3: θo = 10◦, β = −10◦, wo = 0.5 m/s
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(d) Case 4: θo = 10◦, β = −10◦, wo = −0.5 m/s

Figure 3.16: Vertical Velocity Results for Vertical Flight: f = 21Hz, αm = 35◦,
ζm = 60◦
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3.5 Error Summary and Conclusions

The chapter presented a method of approximating the behavior of a flapping wing

micro air vehicle for three reference flight conditions: hover, forward flight, and ver-

tical flight. The quarter-cycle approximation produces good results compared to the

first order equations of motion and a vast improvement over the local (näıve) averaged

system. It is important to note that there is no guarantee for accuracy using the local

averaging method. In Section 3.4.1, error results are presented for 100 simulations of

the quarter-cycle approximation versus the local averaging approximation. For the

hover simulations, the stroke plane angle and initial pitch angle are both set at zero

degrees. The error results are summarized in Table 3.3. The flapping amplitude is

varied from 55◦ to 64◦ with increments of one degree. For each flapping amplitude,

with a set frequency of 24 Hz, the require angle of attack for a trim condition of the

averaged systems is calculated using a bisection algorithm. The error results for a 121

Comparison Average Error (%) Maximum Error (%) Minimum Error (%)
QC - Distance 5.80 9.86 1.53

AVG - Distance 74.2 98.8 45.3
QC - Pitch 4.58 5.05 4.20

AVG - Pitch 100 100 100

Table 3.3: Error Results for Quarter-Cycle Approximation and Local Averaging Ap-
proximation for Hover

forward flight simulations are presented in Table 3.4. The simulations use a constant

angle of attack set to 35◦, a flapping amplitude set to 60◦, and a flapping frequency

of 22 Hz. The simulations are conducted for two flapping cycles. The final pitch

angle and distance from the start point are compared to the first order system for

the quarter-cycle approximation and the local averaging approximation. The initial

longitudinal velocity is varied from -1 m/s to 1 m/s in increments of 0.2 m/s. The

stroke plane angle is varied from 0◦ to -20◦ in increments of two degrees. All other

initial velocities are set to zero. The same input parameters used in the forward flight
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Comparison Average Error (%) Maximum Error (%) Minimum Error (%)
QC - Distance 2.97 27.4 0.0171

AVG - Distance 49.78 373 11.92
QC - Pitch 2.99 12.73 0.16

AVG - Pitch 133 633 60.5

Table 3.4: Error Results for Quarter-Cycle Approximation and Local Averaging Ap-
proximation for Forward Flight

simulations for the angle of attack, the flapping amplitude, and flapping frequency are

used for an evaluation of the error for the vertical flight approximations. The vertical

velocity is varied over the same range as the initial longitudinal velocity. The stroke

plane is varied over the same range, except the initial pitch angle is set to be the

negative of the stroke plane angle. The condition on the initial pitch angle make the

wings parallel to the inertial frame at the initial condition. The error results for the

vertical flight approximations are presented in Table 3.5. The error results presented

Comparison Average Error (%) Maximum Error (%) Minimum Error (%)
QC - Distance 1.17 3.07 0.00790

AVG - Distance 19.1 80.4 0.31
QC - Pitch 1.51 3.28 0.00239

AVG - Pitch 84.1 100 70.0

Table 3.5: Error Results for Quarter-Cycle Approximation and Local Averaging Ap-
proximation for Vertical Flight

in Tables 3.3-3.5 show that the quarter-cycle approximation technique improves the

error by over an order of magnitude for all three flight conditions, when compared

to local averaging. The method is effective at approximating the dynamic behavior

of the first order equations of motion. The quarter-cycle equations of motion will

be used for the analysis of stability derivatives and limit cycles in Chapter 4 and

the importance of the wings on the position and orientation of the central body in

Chapter 5.
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CHAPTER 4

Hover Analysis Using Local Averaging and

Quarter-Cycle Averaging

4.1 Introduction

Averaged forces and moments have been used in numerous studies to determine

the stability of flight for model insects. As previously referenced in Chapter 1, numer-

ous studies have identified the stability derivatives of insects using numerical methods.

Sun and Xiong calculated the stability derivatives for a hovering bumblebee in [66].

Sun et al. calculated the stability derivatives, in vicinity of a hover condition, for

four insect species (hawkmoth, cranefly, dronefly, and hovefly) in [62]. The stabil-

ity derivatives are calculated using flapping cycle averaged aerodynamic forces and

moments. The aerodynamic force and moment data is obtained using computational

fluid dynamics in [66] and [62]. In [70], Faruque and Humbert calculate the sta-

bility derivatives for a model fruit fly using system identification. The numerical

result is obtained by using the flapping cycle averaged aerodynamic forces and mo-

ments obtained from a quasi-steady/blade-element aerodynamic model. The results

in [62, 66, 70] are consistent in the modal structure of the eigenvalues. The model

structure contains two stable subsidence modes (one fast and one slow) and one un-

stable, oscillatory mode. The modal structure is consistent with the most common
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structure for vertical takeoff or landing (VTOL) aircraft [70, 127]. All of the stability

derivatives neglect the mass of the wings, and the associated coupling effects, in the

calculation of the stability derivatives.

The chapter will present a analytically tractable method of obtaining the stability

derivatives for a flapping wing micro air vehicle in the vicinity of a hover condition.

The stability derivatives are obtained using a quasi-steady/blade-element aerody-

namic and local averaging techniques for the standard aircraft model. The modal

structure is consistent with previous studies. The stability derivatives results for the

standard aircraft model are presented in [128]. Additionally, the stability derivatives

for the hover condition will be presented with wing effects included. The analysis

will show that inclusion of the wing effects not only changes the trim solution for

hover, but increases the time constant of the unstable oscillatory mode. The same

techniques will be used to calculate the control derivatives. A linear control analysis

will show that not including the wing effects will not produce the desired pole loca-

tions. Finally, an approximation of a limit cycle in vicinity of a hover condition can

be obtained using the averaged trim condition, coupled with proper control of the

pitch velocity of the central body. The control is designed for a system without wing

effects. When the control is applied to a system with the wing effects included, the

desired output is not achieved.

4.2 Stability Derivatives in Vicinity of a Hover Condition:

Standard Aircraft Model

For an initial analysis, the mass of the wings, and the wings’ associated inertial

effects on the position and orientation of the central body, are neglected. An addi-

tional assumption is that the aerodynamic model will produce identical normal and

tangential forces for symmetrical flapping relative to the central body. Additionally,
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under the constraint of symmetrical flapping and with the aerodynamic forces as-

sumption, the lateral forces, roll moments, and yaw moments will be identically zero

when resolved in the body frame. For longitudinal motion, the equations of motion

are

u̇ =
Fx
msys

− g sin θ − q w, (4.1)

ẇ =
Fz
msys

+ g cos θ + q u, (4.2)

θ̇ = q, (4.3)

and

q̇ =
M

Iyy
. (4.4)

The mass of the system is denoted by msys and the moment of inertia with respect

to b̂y of the B frame is Iyy,sys. The wings are assumed to be mounted at joints such

that their y-positions in the B frame are equal in magnitude, but opposite in sign.

The x- and z-positions of the wings joints in the B frame are identically zero.

4.2.1 Aerodynamic Model

The aerodynamic model is based on the model used extensively in [39] and [89] and

previously used in Chapters 2 and 3. We will make a simplifying assumption that

the angle of attack is constant during each half-stroke, therefore the normal force

contribution due to rotation of the wing will be zero. The assumption was previously

used in [38, 79, 82, 83]. The wing is assumed to flip instantly at the end of each

half-stroke. As a result, we can write the angle of attack as a function of time as

α(t) = sgn
(
ζ̇
)
αm, (4.5)
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where ζ̇ denotes the time rate of change of the flapping angle of the wing. The

flapping angle will be a sinusoidal function, defined by:

ζ(t) = ζm sin (2πft) , (4.6)

where ζm is half of the total flapping amplitude. The tangential and normal forces

on the wing are calculated according to

FT =
1

2
ρAwCTUcp(t)

2 and FN =
1

2
ρAwCNUcp(t)

2. (4.7)

The coefficients for the tangential and normal forces are calculated according to

CT = −0.4 sgn
(
ζ̇
)

cos2 (2αm) (4.8)

and

CN = −3.4 sin (αm) . (4.9)

The coefficients are modified from [39] consistent with the choice of wing kinematics.

In Equations (4.8) and (4.9), αm is the constant amplitude of the angle of attack

during the upstroke and the downstroke. If the translational and angular velocity of

the body is neglected in the calculation of aerodynamic forces and moments, then the

velocity at the center of pressure of the wing is

Ucp(t) = r̂2b (ωζm) cos (ωt) . (4.10)

The normal and tangential forces generated by the motion of the wing are transformed

into the body frame. The transformation is obtained through a sequence of rotations

from the wing frame to the stroke plane frame and from the stroke plane frame to

the body frame. The wings are assumed to be thin, rigid flat plates with constant
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chord, c, and semi-span, b. The center of pressure of the wing is calculated to be at

the normalized center of pressure, r̂2, and 1/4 of the chord from the leading edge of

the wing, based on the chosen wing geometry.

4.2.2 Hover Solution

The hover solution is obtained through the use of local averaging. A treatment

of local averaging is available in [117]. The aerodynamic forces and moments are

averaged over one flapping cycle, according to

y =
1

2π

2π∫
0

y(t)dt , (4.11)

where y(t) is representative of the aerodynamic force or moment equation. Based on

the chosen aerodynamic model and representation of the flight dynamics, the averaged

thrust force in the stroke plane frame is zero, identical to the result obtained in [38].

The averaged lift force in the stroke plane frame, for one wing, is equal to

F z,sp =
1

2
kT sin(αm)− 1

2
kN cos(αm). (4.12)

The average of the aerodynamic pitching moment is zero, identical to the result in

[38], due to the assumptions on wing joint placement. Therefore, a hover solution

in the B frame is obtained when the averaged thrust is zero and the averaged lift is

equal to weight. If the stroke plane is inclined relative to the longitudinal axis of the

body, then the following two conditions will need to be met:

F z cos β = −msysg cos θo and F z sin β = msysg sin θo, (4.13)

where θo denotes the nominal pitch attitude. The trim solution differs slightly from

the solution presented in [70]. In [70], the wing joint placement is forward of the center
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of mass of the body. The time-averaged pitching moment is trimmed appropriately

to compensate for the difference.

4.2.3 Perturbed Aerodynamics

The stability derivatives are obtained using a combination of averaging and a

perturbed aerodynamic model. First, the perturbed velocity of the body needs to be

written in the respective wing frames according to

∆v̄wb = RζRβ

∆u

∆w

 , (4.14)

where Rβ denotes the rotation matrix carrying the body frame to the stroke plane

frame. The matrix Rζ details the rotation matrix carrying the stroke plane angle to

the wing frame when the flapping angle is non-zero. In component form, the perturbed

translational velocity of the body in the wing frame (neglecting the y-direction for

longitudinal flight) is:

∆v̄wb =

cos(ζ) (cos(β)∆u− sin(β)∆w)

sin(β)∆u+ cos(β)∆w

 . (4.15)

The pitch velocity of the body is transformed into the wing frame according to

∆ω̄wb = RζRβ


0

∆q

0

. (4.16)

The total velocity of the wing, in the wing frame, is calculated according to

v̄wing =

r̂2b ζ̇

0

+ ∆v̄wb + ∆ω̄wb × ρ̄wac. (4.17)
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The aerodynamic center of pressure in the wing frame, relative to the body frame,

is expressed as ρ̄wac. The total velocity of the wing, in the wing frame, in component

form is

v̄wing =

r̂2bw ζ̇ + cos(ζ) (cos(β)∆u− sin(β)∆w)

sin(β)∆u+ cos(β)∆w − r̂2bw sin(ζ)∆q

 . (4.18)

The magnitude of the wing velocity squared, neglecting ∆2 terms, is

||v̄wing||2 = (r̂2bζ̇)2 + 2r̂2bw cos(ζ)ζ̇ (cos(β)∆u− sin(β)∆w) . (4.19)

The first term, (r̂2bζ̇)2, accounts for the averaged lift/thrust force in the hover solu-

tion. Therefore, the perturbations to the aerodynamic forces and moments will result

from the second and third terms. The hover solution is subtracted from the per-

turbed aerodynamics equations obtained from the equations of motion in vicinity of

a hover condition; a more detailed treatment is available in [51] and [70]. Therefore,

the velocity perturbations are accounted for in the aerodynamic force and moment

calculations. After eliminating the contributions enabling the hover condition, the

perturbed equations of motion can be written as:

∆u̇ = Xu(t)∆u+Xw(t)∆w +Xq(t)∆q − g cos θo∆θ, (4.20)

∆ẇ = Zu(t)∆u+ Zw(t)∆w + Zq(t)∆q − g sin θo∆θ, (4.21)

and

∆q̇ = Mu(t)∆u +Mw(t)∆w +Mq(t)∆q, (4.22)

where X[.], Z[.], and M[.] are nonlinear functions of the flapping angle and angle of

attack. The aerodynamic perturbations do not directly affect the pitch angle of the

FWMAV.
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4.2.4 Stability Derivatives due to Velocity Perturbations

In [127], the perturbed hover equations for VTOL aircraft and helicopters neglect

a perturbation velocity in the x-direction due to velocity in the z-direction (w). In

[70], perturbations are only considered in the longitudinal direction. In this analy-

sis, perturbations to both the longitudinal velocity, ∆u, and vertical velocity, ∆w,

are considered. For brevity in the following equations, the following coefficients are

defined:

cT = 0.2ρAwr̂2bw ω ζm cos2 (2αm) (4.23)

and

cN = 1.7ρAwr̂2bw ω ζm sin (αm) , (4.24)

which account for the effects of the tangential and normal forces generated on the

wings due to motion of the central body. The stability derivatives are arranged in

the following manner: 

∆u̇

∆ẇ

∆θ̇

∆q̇


= Āhover



∆u

∆w

∆θ

∆q


, (4.25)

where the system matrix is arranged according to

Āhover =



Xu Xw Xq −g cos(θo)

Zu Zw Zq −g sin(θo)

Mu Mw M q 0

0 0 1 0


. (4.26)

The overbar denotes average with respect to time t. The mass and moment of inertia

about the y-axis of the central body are absorbed into the stability derivatives in
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Āhover, such that

Xu =
2

msys

 1

2π

2π∫
0

Xu(t)dt

 . (4.27)

For example, the nonlinear function describing the effect of longitudinal velocity on

the vertical dynamics of the central body, due to the tangential force on the wing is

Zu,T (t) =

(
1

2
sin(2β) cos(αm) cos2 ζ + cos2 β sin(αm)sgn

(
ζ̇
)

cos(ζ)

)
∗sgn

(
ζ̇
)
cT cos (ωt) ∆u. (4.28)

The averaged result is

Zu,T =
1

π
sin (2β) cos (αm) cT

(
1 +

sin(2ζm)

2ζm

)
∆u. (4.29)

The integrals are calculated using assistance from [124] and [126]. The non-zero

stability derivatives for the longitudinal motion of the body are

Xu = − 2

π
cos2(β) (cos(αm)cT + sin(αm)cN)

(
1 +

sin(2ζm)

2ζm

)
(4.30)

and

Xw =
1

π
sin (2β) (cos(αm)cT + sin(αm)cN)

(
1 +

sin(2ζm)

2ζm

)
. (4.31)

The non-zero stability derivatives for the vertical motion of the body are

Zu =
1

π
sin (2β) (cos(αm)cT + sin(αm)cN)

(
1 +

sin(2ζm)

2ζm

)
(4.32)

and

Zw = − 2

π
sin2(β) (cos(αm)cT + sin(αm)cN)

(
1 +

sin(2ζm)

2ζm

)
. (4.33)

The results predict that if the stroke plane is zero, namely the main flapping motion

is along the longitudinal axis of the central body, then there will be no effect on the
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motion of the body in the longitudinal direction to a perturbation in the vertical

direction. Additionally, the effects on the vertical direction of the body are zero for

perturbations in velocity in the vertical and horizontal directions. If the stroke plane

angle is β = −90◦, then perturbations in the longitudinal velocity will not have an

effect on the stability of the system. In [127], Franklin states that the Xw derivative

is traditionally neglected for vertical takeoff or landing aircraft.

The stability derivatives in the longitudinal and vertical directions, due to the

pitch rate q, are both identically zero. For completeness,

Xq ≡ 0 and Zq ≡ 0, (4.34)

both of which are traditionally neglected due to low magnitude in comparison with

the other stability derivatives [127]. The stability derivatives resulting from change

in the aerodynamic pitching moment due to perturbations in the longitudinal and

vertical velocities are

Mu =
1

2π
cos (β) cw cN

(
1 +

sin(2ζm)

2ζm

)
(4.35)

and

Mw = − 1

2π
sin (β) cw cN

(
1 +

sin(2ζm)

2ζm

)
, (4.36)

where cw denotes the chord length of the wing. The time-average of the stability

derivative from the aerodynamic pitching moment, due to change in pitch rate, is

zero. We can state formally that

M q ≡ 0. (4.37)
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4.2.5 Stability Derivatives due to Change in Angle of Attack

The change in total velocity of the wing, in the wing frame, produces a change in

the effective angle of attack of the wing relative to the stroke plane. For example, as

detailed in [70], if the FWMAV has purely vertical velocity and increases in altitude,

then the effective angle of attack and lift will be reduced. The opposite is true for

a descent; the angle of attack and lift increase. The phenomenon is referred to as

‘heave’ damping in [70]. The change in angle of attack, ∆α, is either positive or

negative and is obtained from:

∆α = tan−1

(
vz,wg
vx,wg

)
, (4.38)

where vx,wg and vz,wg denote the total velocity of the wing, at the center of pressure,

expressed in the wing frame in the x and z directions. In the vicinity of the hover

condition, we assume that the change in angle of attack is small and using the small

angle assumption: ∆α = vz,wg/vx,wg. The change in angle of attack is then equal to

∆α =
sin(β)∆u+ cos(β)∆w − sin(ζ)r̂2bw∆q

cos(ζ) (cos(β)∆u− sin(β)∆w) + r̂2bζ̇
. (4.39)

The effects of ∆α will manifest in the coefficients for the normal and tangential forces,

previously detailed in Eqs. (4.8) and (4.9). The resulting normal and tangential lift

coefficients will be equal to

CT,∆α = −0.4 sgn
(
ζ̇
) (

cos2 (2α)− 2 sin(4α)∆α
)

(4.40)

and

CN,∆α = −3.4 sgn
(
ζ̇
)

(sin(α) + cos(α)∆α) . (4.41)
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When the coefficients are substituted into the equations for lift and drag, we make

the following assumption:

Ucp(t)
2∆α ≈ (sin(β)∆u+ cos(β)∆w − sin(ζ)r̂2bw∆q)Ucp(t), (4.42)

due to the fact that over the course of a flapping cycle, Ucp(t) >> ∆[.]. The normal

and tangential coefficients for the additional angle of attack are:

cT,∆α = 0.4ρAw sin (4αm) (r̂2bw ωζm) (4.43)

and

cN,∆α = 1.7ρAw cos (αm) (r̂2bw ωζm) . (4.44)

The stability derivative additions, due to the change in angle of attack, for the longi-

tudinal motion of the FWMAV are:

Xu,∆α = − 2

π
sin2(β) (cT,∆α sin(αm) + cN,∆α cos(αm)) (4.45)

and

Xw,∆α = − 1

π
sin (2β) (cT,∆α sin(αm) + cN,∆α cos(αm)) . (4.46)

The stability derivatives affecting the vertical motion of the FWMAV are:

Zu,∆α =
1

π
sin (2β) (cT,∆α sin(αm)− cN,∆α cos(αm)) (4.47)

and

Zw,∆α =
2

π
cos2 (β) (cT,∆α sin(αm)− cN,∆α cos(αm)) . (4.48)

If the stroke plane is identically zero, perturbations in the vertical velocity will now

have an effect on the system. For a parallel stroke plane, when only velocity pertur-
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bations are considered, there is no effect on the stability of the hover condition due

to a vertical velocity perturbation. Likewise, if the stroke plane is −90◦, longitudinal

velocity perturbations will manifest in the system through the stability derivatives

due to the change in angle of attack.

The stability derivative of the aerodynamic moment, due to pitch rate, is no longer

identically zero. The stability derivative, M q,∆α is calculated according to:

M q,∆α = − 1

π

(
1− sin(2ζm)

2ζm

)
(r̂2b)

2
(
cT,∆α sin(αm) + cN,∆α cos(αm)

)
. (4.49)

Without the addition of the stability derivatives due to ∆α, the analysis does not

produce results consistent with previous studies. The system matrix with the addition

of the stability derivatives due to the change in angle of attack is

Āhover =



Xu +Xu,∆α Xw +Xw,∆α 0 −g cos(θo)

Zu + Zu,∆α Zw + Zw,∆α 0 −g sin(θo)

Mu Mw M q,∆α 0

0 0 1 0


. (4.50)

4.2.6 Results

4.2.6.1 Variation with Stroke Plane Angle

Results are presented for a FWMAV with hawkmoth type body parameters. The

flapping frequency is set at 21 Hz with an amplitude ζm = 60◦. A simple bisection

algorithm, between 0◦ and 45◦, is used to determine the angle of attack to maintain a

hover condition. The bisection algorithm calculates an angle of attack of 35.895◦. The

stability derivatives are non-dimensionalized consistent with the manner presented in

[51], [62], and [66]. The reference length is c, the reference velocity is U , and the

124



reference time is c/U . The reference velocity, U , is defined as:

U = 4ζmf r̂2b. (4.51)

The non-dimensional stability derivatives, denoted by a superscript +, are calculated

in the following manner:

X [.]
+

=
X [.]

ρU2Aw
, Z [.]

+
=

Z [.]

ρU2Aw
, and M [.]

+
=

M [.]

ρU2Awc
. (4.52)

The stability derivatives due to the pitch rate, q, are non-dimensionalized by multi-

plying the denominator by an additional reference length. The mass of the system,

mass moment of inertia, and gravity are non-dimensionalized according to:

msys
+ =

msys

ρAwc
, Iyy,sys

+ =
Iyy,sys
ρAwc3

, and g+ =
gc

U2
. (4.53)

Fig. 4.1 shows the variation of the pole locations for a hawkmoth-sized FWMAV for

changes in the stroke plane angle. To maintain the equilibrium at hover, the nominal

pitch angle also changes. The stroke plane angle, β, varies from β ∈ {0 − 22.5 − 45}

and the corresponding nominal pitch angle is θo ∈ {0 22.5 45}. Both angles are given

in degrees. For a pitch angle of zero degrees, the system has two stable poles and a

pair of unstable, oscillatory poles. As the pitch angle increases, the magnitude of the

stroke plane angle changes to maintain the equilibrium condition. The magnitude

of the poles varies slightly with the change in nominal pitch angle and stroke plane

angle. The modal structure is consistent with the independent results presented in

[62, 66, 70].

The magnitude of the poles differs from the previous efforts. The unstable oscilla-

tory mode has a slower time constant than the results in [62]. The slower of the two

subsidence modes is faster than the results in [62]. The discrepancy in the magnitude
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of the eigenvalues could be a result of the numerous assumptions used to obtain the

approximate model. In [62], the Navier-Stokes equations are coupled with the flight

dynamics equations to compute the equilibrium solution at hover. The aerodynamic

model is a simple quasi-steady/blade-element model. The assumption on the angle of

attack results in the neglect of the rotational lift effects of the wing. The wingstrokes

in [62] and [70] are more complicated and biomimetic. The wing joint placement is

different. The wing joints in other studies are placed forward of the center of mass of

the body. The wingstroke chosen here can be replicated by current technology [80].
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Figure 4.1: Modal Structure for Local Averaging in the Vicinity of Hover, Variation
of Pole Locations with Stroke Plane Angle β

4.2.6.2 Variation of Model Insect

The modal structure for different insect models is now presented, based off of

the parameters and analysis in [62] and [66]. The five model insects are a hoverfly

(HF), dronefly (DF), cranefly (CF), hawkmoth (HM), and bumblebee (BB). Table 4.1

details the pertinent parameters for each model. The angle of attack for each insect
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model is calculated using a bisection algorithm. For all model insects, the nominal

Model m (mg) b (mm) c (mm) ζm(◦) f (Hz) αm(◦)
HF 27.3 9.3 2.2 45 160 23.90
DF 68.4 11.4 3.19 54.5 157 17.47
CF 11.4 12.7 2.38 60 45.5 22.11
HM 1648 51.9 18.26 60.5 26.3 24.99
BB 175 13.2 4.01 58 155 20.46

Table 4.1: Model Parameter Summary

pitch angle is set to θo = 45◦ and the associated stroke plane angle is β = −45◦.

The chosen pitch angle is close to the values presented in [62]. It’s important to note

that in [62], as well as much of the biology literature, the stroke plane is defined

relative to the inertial frame. In the development in Chapter 2, the stroke plane is

defined relative to the longitudinal axis of the body. The associated modal structure

is presented in Fig. 4.2. The modal structure is consistent with the results presented

in [62, 70], as stated previously. As shown in [62], the stability derivatives for the

dronefly and the hoverfly are nearly identical. The magnitude of the slow subsidence

mode is larger than expected from the results in [62], but the magnitude of the fast

subsidence mode has less than ten percent error for all species. The results in [62]

predict approximately a half to full order of magnitude difference between the slow

and fast subsidence mode. The worst approximation is of the unstable oscillatory

mode for the cranefly; the results differs by over an order of magnitude. The sources

of discrepancy are numerous and include the wingstroke assumptions, wing planform

instructions, and the simplified aerodynamic model.
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Figure 4.2: Nondimensional Modal Structure for Multiple Insect Models

4.3 Stability Derivatives in Vicinity of a Hover Condition:

Multi-Body Model

The stability derivatives previously presented for hover can be expanded to include

the averaged wing effects, as derived in Chapter 3. The equations of motion were

previously detailed in Equations (3.38), (3.39), and (3.41). The averaged equation of

motion for the longitudinal velocity of the body is

˙̄u =
F̄x
msys

− g sin θ̄ − q̄w̄ +
2

msys

mwρwωζm sin(αm) cos β

(
2

π

sin (ζm)

ζm

)
q̄ (4.54)

+
mwρwr̂2bw
msysIyy,sys

(
kT sin(αm)− kN cos(αm)

)
sin β

(
1− J0 (2ζm)− J2 (2ζm)

)
.

The averaged equation of motion for the vertical velocity of the body is

˙̄w =
F̄z
msys

+ g cos θ̄ + q̄ū− 2

msys

mwρwωζm sin(αm) sin β

(
2

π

sin (ζm)

ζm

)
q̄ (4.55)

−mwρwr̂2bw
msysIyy,sys

(
kT sin(αm)− kN cos(αm)

)
cos β

(
1− J0 (2ζm)− J2 (2ζm)

)
.
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As detailed in Chapter 3, the time average of the equations of motion for the pitch

velocity is identically zero. Therefore, the pitch dynamics will be governed by

˙̄q = 0 (4.56)

and

˙̄θ = 0. (4.57)

The equilibrium condition changes from the solution presented in Section 4.2.2. A

pitch velocity of zero will continue to serve for equilibrium. However, the kinematic

parameters will change slightly to handle the additional constant force resulting from

the local averaging of the equations of motion. Fortunately, the additional force,

which is in the second line of Equations (4.55) and (4.56), is coincident with the lift

vector. Therefore, the new equilibrium condition is

−g cos(θ) = cos(β)
Fz,sp
msys

− cos(β)
mwρwr̂2bw
msysIyy,sys

∗ (4.58)(
kT sin(αm)− kN cos(αm)

)(
1− J0 (2ζm)− J2 (2ζm)

)
and

g sin(θ) = − sin(β)
Fz,sp
msys

+ sin(β)
mwρwr̂2bw
msysIyy,sys

∗ (4.59)(
kT sin(αm)− kN cos(αm)

)(
1− J0 (2ζm)− J2 (2ζm)

)
.

The condition for the pitch velocity and pitch angle are trivially satisfied, given the

nature of Equations (4.56) and (4.57). The additional stability derivatives will be a

result of the term containing the pitch velocity, q̄, in Equations (4.55) and (4.56).

129



The additional stability derivatives will be defined, for one wing, according to

Xq,wg = mwρwωζm sin(αm) cos(β)

(
2

π

sin(ζm)

ζm

)
(4.60)

and

Zq,wg = −mwρwωζm sin(αm) sin(β)

(
2

π

sin(ζm)

ζm

)
. (4.61)

The inclusion of the wing effects actually adds additional stability derivatives to the

system matrix. The wings affect the position of the flapping micro air vehicle through

the pitch velocity. In [66], Sun and Xiong state that improper phasing between the

flapping and pitching motion of the wings can produce highly unstable results (in

terms of the averaged system). It is an interesting result that the wing effects create,

or add, stability derivatives that the previous analysis did not develop. The stability

derivatives of the position of the body, Xq and Zq, are neglected in the analysis

presented in [70]. The derivatives are not neglected by Sun in [66] and [62]. With the

addition of the stability derivatives due to the coupling between the wing and body

motion, the system matrix now can be presented as

Āhover,wg =



Xu +Xu,∆α Xw +Xw,∆α Xq,wg −g cos(θo)

Zu + Zu,∆α Zw + Zw,∆α Zq,wg −g sin(θo)

Mu Mw M q,∆α 0

0 0 1 0


. (4.62)

In order to analyze the effects of the wings, the mass of the wings needs to be calcu-

lated for each of the model insects. The following tables presents additional data not

previously presented in Table 4.1. The mass of the wings presented in Table 4.2 is

for one wing. The data is taken from Ellington in [16] for the hoverfly, dronefly, and

cranefly. The specimen number is listed in parenthesis. The data for the hawkmoth

is from Willmott and Ellington in [21]. For the bumblebee, the data is from Dudley
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Model mw(%) mw (mg) αm(◦) αm(◦) ∆αm(%)
HF (HF07) 1.27 0.17 23.90 23.99 0.38
DF (DF01) 1.54 0.53 17.47 17.57 0.57
CF (CF02) 4.29 0.24 22.11 22.11 0
HM (F1) 5.79 47.71 24.99 26.16 4.68

BB (BB01) 0.53 0.46 20.46 20.51 0.24

Table 4.2: Model Parameters - Wings

and Ellington in [25]. Table 4.2 details the changes in angle of attack required for

the hover solution with the wing effects included. The angle of attack is determined

by using a bisection algorithm. All other parameters remain the same as in Section

4.2.6. The change in angle of attack is negligible, except for the hawkmoth parame-

ters. Tables 4.3 and 4.4 present the eigenvalues previously presented in Section 4.2.6

compared to the eigenvalue results for the system matrix and equilibrium solution

with the wing effects included.

Model λ1 λ1,wg ∆λ1(%) λ2 λ2,wg ∆λ2(%)
HF -0.01594 -0.01606 0.71 -0.005441 -0.005431 0.17
DF -0.01520 -0.01532 0.77 -0.006209 -0.006201 0.12
CF -0.06085 -0.06085 0 -0.02170 -0.02170 0
HM -0.1048 -0.1074 2.48 -0.03425 -0.03347 2.27
BB -0.01432 -0.01437 0.07 -0.004266 -0.004263 0.34

Table 4.3: Eigenvalue Comparison: Standard Aircraft Equations vs. Wing Effects,
Subsidence Modes (Fast and Slow)

Model λ3,4 λ3,4,wg ∆λ3,4(%)
HF 0.004437±0.01149j 0.004491±0.01141j 1.23
DF 0.003587±0.01029j 0.003644±0.01026j 1.6
CF 0.0006144±0.02028j 0.0006146±0.02028j 0.03
HM 0.01130±0.05541j 0.01281±0.05560j 13.35
BB 0.003653±0.009903j 0.003677±0.009888j 0.67

Table 4.4: Eigenvalue Comparison: Standard Aircraft Equations vs. Wing Effects,
Oscillatory Mode

The addition of the wing effects introduces a noticeable change in the non-dimensional

stability derivatives for the hawkmoth model. The change is minimal for the other
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insect models. The changes in the subsidence modes for the cranefly were less than

0.01% and not significant. The addition of the wing effects produces an error of

13.35% for the unstable, oscillatory mode of the hawkmoth model. As detailed in

Table 4.2, the mass of the wings of the hawkmoth are nearly two orders of magnitude

greater than the mass of the other insect models. Furthermore, the flapping frequency

is only an order of magnitude less than the bumblebee, dronefly, and cranefly. As

detailed in Equations (4.55) and (4.56), the wing effects are proportional to mass and

the flapping frequency, or the flapping frequency squared. Therefore, the wing effects

for the hawkmoth should be more significant than for the other insect models.

4.4 Linear Control Analysis in Vicinity of Hover

In order to get a gauge of whether or not the mass of the wings is important for

control studies of the averaged system, a control analysis will be conducted in vicinity

of the hover condition. The input matrix will be determined by perturbations from

equilibrium, as detailed in [51] and [70]. A controllability analysis for flapping wing

micro air vehicles is nothing new and is widely reported. However, the analysis in

the context of the wing effects has not been approached. For the control inputs, a

stroke plane angle tilt can shift the lift vector and enable translation of the vehicle

[70]. The stroke plane is also used as a control input in [100]. The stroke plane tilt

is not available to the work presented in [79, 83], since the dynamic model does not

allow for stroke plane changes. Lift can be increased (or decreased) by increasing

(decreasing) the flapping frequency. The effect of the flapping frequency has been

previously presented in [70] and [79]. For pitch control, a control mass will be used.

The multi-body equations of motion, to include the control mass, wings, and central

body, are presented in [109]. The control mass controls the pitch by creating a mass

moment about the center of mass of the vehicle and directly changing the orientation.

The method has been independently presented in [104] and [79]. In [104], the mass
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moment is created by pitching a segmented body. In [79], the control mass is a

‘bobweight’ with a single degree of freedom that translates to create pitch control.

The derivation presented in [109] assumes the control mass has two degrees of freedom:

freedom to translate along the longitudinal and vertical axes of the body. As stated,

a detailed derivation of the multi-body effects is available in [109]. The resulting

moment, with one degree of freedom along the longitudinal axis, is

Mcm = −mcmxcm(t) g cos(θ), (4.63)

where mcm denotes the mass of the control mass and xcm(t) is the position of the

control mass relative to the central body center of mass along b̂x. The position of the

control mass is defined according to

xcm(t) = xcm,o + xcm,m sin (2πfmasst) , (4.64)

where xcm,o denotes the initial position of the mass relative to the center of mass of

the central body. The amplitude of the control mass’ motion is defined by xcm,m and

the frequency of the motion is denoted by fmass. If the fmass is equal to the flapping

frequency, then the time averaged effect of the control mass is simply

M cm = −mcmxcm,o g cos(θ). (4.65)

The quarter-cycle representation of the moment due to the control mass is

M cm,QC = −mcmxcm,o g cos(θ)− sgn
(
ζ̇
)
mcmxcm,m g cos(θ). (4.66)

The small perturbations from equilibrium for the control inputs of the averaged sys-

tem are simply: fo + ∆f , βo + ∆β, and xcm,o + ∆xcm,o. Substitution of the perturbed
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control inputs into the equations of motion, coupled with subtraction of the equilib-

rium control inputs, will produce the control derivatives. For the system without the

wing effects, the control derivatives due to change in the stroke plane are

Xβ =
1

2
cos(βo) (kN cos(αm)− kT sin(αm)) (4.67)

and

Zβ =
1

2
sin(βo) (kN cos(αm)− kT sin(αm)) . (4.68)

The coefficients kN and kT are evaluated at the trim condition. The control deriva-

tive for pitch due to a change in stroke plane, Mβ, is identically zero. Due to the

assumption of wing joint position, a change in the stroke plane has zero effect on the

pitch angle. If the wing joints were fore, or aft, of the body center of mass, then

change in the stroke plane would affect the pitch velocity. The control derivatives for

the position of the FWMAV due to the control mass, Xcm and Zcm, are identically

zero. The control derivative for pitch, due to the control mass, is

Mxcm = −mcm g cos(θo). (4.69)

To efficiently define the control derivatives due to change in the flapping frequency,

the following constants are defined

kT,∆f = 0.2ρslAw cos2(2αm) (2πr̂2bwζm)2 (4.70)

and

kN,∆f = 1.7ρslAw sin(αm) (2πr̂2bwζm)2 . (4.71)
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The control derivatives for the position of the FWMAV due to change in flapping

frequency, are

Xf = −1

2
sin(βo) (kT,∆f sin(αm)− kN,∆f cos(αm)) fo (4.72)

and

Zf =
1

2
cos(βo) (kT,∆f sin(αm)− kN,∆f cos(αm)) fo. (4.73)

The control derivative for pitch due to change in the flapping frequency is identically

zero. The linear system is arranged in state-space form in the following manner:



∆u̇

∆ẇ

∆q̇

∆θ̇


= Āhover



∆u

∆w

∆q

∆θ


+ B̄hover


∆β

∆xcm,o

∆f

 . (4.74)

The system matrix, Āhover, is defined in Equation (4.50). The control input matrix

is defined according to

B̄hover =



Xβ Xxcm Xf

Zβ Zxcm Zf

Mβ Mxcm M f

0 0 0


. (4.75)

The nominal control input for the control mass, to maintain the equilibrium conditions

previously defined, is simply xcm,o = 0 and fmass = f . Additionally, the mass of the

control mass will be set to equal the total wing mass. The controllability of the system

can be checked according to one of the controllability rank conditions in [129]. The

controllability matrix is calculated according to

C =

[
B AB A2B . . . An−1B

]
. (4.76)
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If the rank of the controllability matrix is equal to the dimension of the system,

then the system is completely controllable [129]. The dimension of the flapping wing

micro air vehicle system, based on the linearized averaged dynamics, is four. Using

the hawkmoth parameters as an example, the system is completely controllable. A

completely controllable system can be stabilized using full state feedback. We can

define a control input according to u = −Kx + r, where K is the gain matrix and r

is a reference. The system is stabilized using pole placement and the completely con-

trollable system allows for picking the placement of poles. Using full state feedback,

the dynamics of the new system are

ẋ = (A−BK)x+ Br (4.77)

and the matrix (A−BK) is stable with all of the eigenvalues in the left-half side of

the complex plane. Alternatively, the system is stable if the magnitude of the real

parts of all of the eigenvalues is negative. Full state feedback will be used to analyze

the effect of the wings on the stabilization of the unstable system of a flapping wing

micro air vehicle in the vicinity of hover. The addition of wing effects changed the

stability derivatives for the flapping wing micro air vehicle near hover. The addition

of the wing effects will also change the control derivatives. The change is due to the

constant wing force as detailed in Equations (4.55) and (4.56). The changes to the

control derivatives will manifest in Xβ, Zβ, Xf , and Zf . The changes in the control

derivatives due to perturbations in the stroke plane angle are

Xβ,wg =
cos(βo) (kT sin(αm)− kN cos(αm)) r̂2bwmwρw (1− J0(2ζm)− J2(2ζm))

Iyy,sys
(4.78)
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and

Zβ,wg =
sin(βo) (kT sin(αm)− kN cos(αm)) r̂2bwmwρw (1− J0(2ζm)− J2(2ζm))

Iyy,sys
.

(4.79)

The control derivatives are evaluated at the trim condition with the nominal control

input. The changes in the control derivatives due to perturbations in the flapping

frequency are

Xf,wg =
sin(β) (kT,∆f sin(αm)− kN,∆f cos(αm)) r̂2bwmwρw (1− J0(2ζm)− J2(2ζm)) fo

Iyy,sys
(4.80)

and

Zf,wg = −cos(β) (kT,∆f sin(αm)− kN,∆f cos(αm)) r̂2bwmwρw (1− J0(2ζm)− J2(2ζm)) fo
Iyy,sys

.

(4.81)

The control input matrix with the wing effects included is

B̄hover,wg =



Xβ +Xβ,wg Xxcm Xf +Xf,wg

Zβ + Zβ,wg Zxcm Zf + Zf,wg

Mβ Mxcm M f

0 0 0


. (4.82)

The pair
(
Āhover,wg, B̄hover,wg

)
is also controllable. Using state feedback, the gains for

placing the poles at the following locations

P =


−0.1077

−0.0122± 0.0557j

−0.0314

 (4.83)
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are different for the linearized, averaged system without wing effects and the lin-

earized, averaged system with wing effects. The desired pole locations for the sub-

sidence modes are the same as the open loop poles for the averaged system without

wings. The unstable, oscillatory mode is changed to be at the same time constant

and damping ratio, but with a stable magnitude. The gain matrix K1 denotes the

gains for the system without wings. The gain matrix K2 denotes the gain matrix for

the system with wings. The resulting gain matrices are

K1 =


0.3892 0.1257 −0.3737 0.4830

−0.0224 −0.0164 −0.0334 −0.0046

−32.4690 −14.3222 18.2678 −7.4598


and

K2 =


0.3719 0.1097 −0.1534 0.4651

−0.0239 −0.0171 −0.0357 −0.0046

−25.9670 −12.4080 −7.0859 −6.2070

 .
The system with wing effects requires less overall control authority to achieve the

desired pole locations. Figure 4.3 shows the open loop stability derivatives for the

hawkmoth models with and without wing effects. Figure 4.4 shows the effects of

applying the two different gain matrices to the open loop models. The diamond

represents the system without wings with the correct feedback. The square represents

the system with wings with the feedback calculated for the system without wings.

The ‘x’ represents the system without wings with the feedback calculated for the

system with wings. From an initial analysis, it appears applying the wrong feedback

to the system with wings may results in an unstable configuration if the desired pole

locations, or the pole locations due to a limited control input, are too close to the

imaginary axis. For example, if the closed-loop pole locations of the oscillatory mode

are placed at −0.005 ± 0.0557j, applying the feedback K1 to the system with wings
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Figure 4.3: Stability Derivatives for Hawkmoth Model w/ and w/o Wing Effects.
Wing effects detailed by ‘w/ wgs’
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Figure 4.4: Stability Derivatives for Hawkmoth Model w/ and w/o Wing Effects with
Full State Feedback

will not result in stable poles, but in marginally stable poles. The poles will have real

parts equal to 0 and exist squarely on the jω-axis. If the closed-loop pole location is

set at −0.0003±0.0557j, then the application of the feedback for the system without

wings to the system with wings will result in a slowly unstable system. The unstable
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oscillatory mode will be 0.0001 ± 0.0547j. The wide range of linear control theory

could easily handle this problem, namely robust and/or adaptive control techniques

that account explicitly for unknown or uncertain system parameters. However, the

point is simply that the inclusion of the wing effects, for a hawkmoth sized vehicle,

changes the linear dynamics. The linear dynamics are good for only small deviations

from equilibrium. In Chapter 3, the method of local averaging did not produce a

good approximation of the system. Furthermore, the nonlinear dynamics predict a

significant difference in the position and orientation of the flapping wing micro air

vehicle when the wing effects are included. The wings can have an impact on the

linearization of the averaged system. The effects of the wings need to be addressed

on the nonlinear dynamics to quantify, when (if) the mass effects of the wings are no

longer important.

4.5 Limit Cycle Analysis in Vicinity of Hover

The quarter-cycle equations introduced in Chapter 3, coupled with the equilibrium

solution, can be used to identify conditions for limit cycles. In reality, the averaged

system is only an approximation of the periodic flapping wing micro air vehicle system.

As stated in [74] and [82], the equilibrium condition for a flapping wing micro air

vehicle is stable oscillations around an operating point. In [75], Bolender conducted

an orbital stability analysis of the limit cycle behavior of a model flapping wing micro

air vehicle. Bolender determined that the limit cycle is unstable. The conditions for

the existence of a limit cycle can be identified for both a three degree of freedom

standard aircraft model and for the three degree of freedom model with the mass and

inertial effects of the wings included. As described in [66], the destabilizing effect

from equilibrium is largely a result of coupling between the pitch velocity and the

translational velocity of the body. The aerodynamic pitch moment, after the quarter-

cycle approximation is applied, is given in Equation (3.45). The equation is repeated
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here, where Maero,QC is calculated according to

Maero,QC = sgn (ζ) r̂2bw
1

ζm
H1 (ζm)

(
kN cos(αm)− kT sin(αm)

)
(4.84)

+
1

8
sgn

(
ζ̇
)
cwkN

(
J0 (ζm) + J2 (ζm)

)
.

Taking inspiration from the control theory of feedback linearization as detailed in

[121], two conditions can be set for limit cycles in vicinity of hovering. Both conditions

assume that there is a control input that meets two conditions. One, the control input

necessary for the limit cycle does not affect the vertical and longitudinal equilibrium

of the flapping wing micro air vehicle. Alternatively, the control necessary to produce

the limit cycle results in zero net thrust and lift equal to weight over the course of a

flapping cycle. The second condition depends on the desired behavior. If the control

can cancel out the entirety of the quarter-cycle approximation for Maero, then the

limit cycle behavior will only be exhibited in the longitudinal position of the flapping

wing micro air vehicle. The pitch velocity will remain zero and the pitch angle will

not change. Therefore, assuming the control is available, we can define Mc1 according

to

Mc1 = −2 sgn (ζ) r̂2bw
1

ζm
H1 (ζm)

(
kN cos(αm)− kT sin(αm)

)
. (4.85)

The control is multiplied by two to account for the contribution of both wings. Using

the same morphological parameters as in Chapter 3, the flapping wing model will

be based on a hawkmoth. The flapping frequency is set at 22 Hz. With a flapping

amplitude ζm = 60◦, the calculated angle of attack is 31.4923◦. The angle of attack is

calculated using a bisection algorithm as detailed in Section 4.2.6. The trim condition

is for the averaged system without the effects of the wings. The control is applied

to the analytical system and the ‘quarter-cycle’ approximation of the system. The

position of the flapping wing micro air vehicle after four flapping cycles is presented

in Fig 4.5(a). The pitch angle is presented in Fig 4.5(b).
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Figure 4.5: Simulation Results for Limit Cycle with Mc1, β = −15◦, θo = 15◦

The pitch angle is stable, in the absence of perturbations. The flapping wing micro

air vehicle slowly translates from the initial starting point. The piecewise linear

control applied to the first order system results in a slightly larger oscillation from

the initial pitch angle of 15◦. The control applied is open loop and is used as a mean

of identifying the conditions necessary for limit cycle type behavior of the pitch angle.

If the control can only change the portion of the Maero equation that is consistent

with a sine wave, the sgn(ζ) portion, then the limit cycle behavior will manifest in

the pitch angle only.

The applied control can also be assumed to counter the entirety of the aerodynamic

pitching moment according to

Mc2 = −2Maero,QC . (4.86)

If the control is applied to the first order and quarter-cycle system, a different type of

behavior manifests. The inertial position with control Mc2 is presented in Figure 4.6.

Figure 4.6(a) shows the inertial position after one flapping cycle. Figure 4.6(b) shows

the inertial position after four flapping cycles. The first order system is represented
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by the dashed line and labeled ‘3DOF.’ The approximation of the first order system

is represented by the solid line and labeled ‘QC.’
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Figure 4.6: X − Z Position Simulation Results for Limit Cycle with Mc2, β = −15◦,
θo = 15◦

Without active control, the first order system nearly returns to the initial starting

point after one flapping cycle. The aircraft slowly translates away from the initial

starting point. The quarter-cycle system demonstrates the limit cycle behavior. The

aircraft translates back and forth at the initial starting altitude. The pitch angle of

the first order system is presented in Figure 4.7(a) and pitch angle of the quarter-

cycle system is presented in Figure 4.7(b). The limit cycle about the initial pitch

angle still manifests in the first order system, although it is qualitatively different

from the previous result. In the absence of disturbances, the control perfectly cancels

the approximation of the aerodynamic pitch moment and there is no change from the

initial pitch angle.
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Figure 4.7: Pitch Angle Simulation Results for Limit Cycle with Mc2, β = −15◦,
θo = 15◦

The same analysis can be applied to the approximation of the first order system

presented in Chapter 3.4.1 and Appendix C. The results are not the same. The

control is only designed to cancel the effects of the aerodynamic pitching moment and

does not account for the effects of the wings. Figure 4.8 presents the X −Z position

results for the two controls applied to the system representations with wing effects

included. The first order system is represented by the dashed line. The ‘quarter-cycle’

approximation is represented by the solid line. Figure 4.9 presents the simulation

results for the pitch angle. The controls end up having similar performance for the

presented system. The equilibrium solution is not changed from the system without

wing effects. The simulations seem to predict that if the wing effects are not included

in control applications, then the desired behavior of the system will not be achieved.

The same controls produced limit cycle behavior in the pitch angle for both the first

order and quarter-cycle system without wing effects. The same behavior does not

manifest when the wing effects are included.
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Figure 4.8: X − Z Inertial Position for Systems with Wing Effects, β = −15◦, θo =
15◦, with Controls Mc1 and Mc2
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Figure 4.9: Pitch Angles for Systems with Wing Effects, β = −15◦, θo = 15◦, with
Controls Mc1 and Mc2

4.6 Conclusions

A stability and control analysis of a flapping wing micro air vehicle shows that the

inertial and mass effects of the wings can have an effect on stability. Local averaging

produces stability derivatives that are qualitatively consistent with modal structures

for VTOL aircraft and independent analyses of insect models. When the same local

averaging techniques are applied to the averaged system with wings, the hawkmoth
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model exhibits error in the trim solution and the magnitude of the open loop poles.

The local averaging analysis is extended to control derivatives. Improper application

of control, albeit with a poor location for closed loop poles, can produce an unstable

system when a stable system is desired.

The insight gained from the equilibrium condition for the averaged system is

applied to the first order system and quarter-cycle system with and without the wing

effects. Control application can produce limit cycle behavior for the system without

wings. When the same control is applied to the systems with wings, the limit cycle

behavior does not manifest. Through stability and open loop control analysis, the

mass of the wings affects the behavior of the system. The next chapter will use

appropriate application of scaling laws to determine when (if) the mass effects of the

wings are no longer important.
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CHAPTER 5

The Importance of the Wings

5.1 Introduction

The importance of the wings needs to be addressed. As detailed in Chapter 2,

a multi-body model flight dynamics model for a flapping wing micro air vehicle was

derived from first principles. The multi-body model predicts significant differences in

the position and orientation of a flapping wing MAV model, when compared to the

predictions of the standard aircraft flight dynamics model. In Section 2.5.4, the mass

of the wings of the flapping wing micro air vehicle model is decreased as a percentage

of the total body mass. The predicted behavior of the multi-body model approaches

the predicted behavior of the standard aircraft model as the mass of the wings is

decreased. However, in nature, the mass of the wings does not monotonically decrease

as the total mass of the flier and the flapping frequency remain fixed. Greenwalt, in

[130], states

It follows from the wing area-wing weight relationship that the weight

of the wings will comprise a steadily increasing percentage of total body

weight as the size of the flying animal increases.

The first order equations of motion derived in Chapter 3 will be used to analyze

the relative importance of the mass and inertial effects of the wings on the position
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and orientation of the body. Allometric scaling relationships for a range of biological

fliers will be used to develop relationships between the flapping frequency and mass

of a model body, with the mass of the wings as a percentage of the mass of the body.

5.2 Scaling

The importance of the wings to dynamics and stability studies will expressed with

the aid of scaling relationships. Scaling relationships are widely studied in regards to

insects and birds. Relationships are best-exemplified by the Great Flight Diagram in

[13]. The Great Flight Diagram illustrates the scaling relationship between cruising

speed and weight for biological fliers as small as a fruit fly to airplanes as large as the

Airbus A380. A common scaling relationship, and a focus of a high amount of study,

is the relationship between body mass and flapping frequency. The work is based

on the extensive compilation of insect statistics, such as their mass, wing area, and

wingbeat frequency. Greenewalt conducted a seminal and often cited study of the

scaling relationships of flying animals in [130]. Byrne et al. present the compilation

of the body morphologies of 160 insect species in [131]. Other allometric studies of

insect species include a relationship between wingbeat frequency, wing area, and body

mass by Corben in [132], a study of panamanian bees by Darveau et al. in [133], and

scaling relationships developed by Deakin in [134] and [135]. Comprehensive reviews

of scaling relationships are available from Weis-Fogh in [136], Templin in [137] and

Shyy et al. in [138]. Scaling relationships are also available in [1], [10], and [12].

There are numerous different scaling trends and no one trend is a perfect fit.

Usually, the single allometric relationships have a high amount of variance in the

data. Single allometric relationships relate one parameter to another, e.g. body

mass to flapping frequency. Double allometric relationships correlate two variables

to another, e.g. wing area and body mass to flapping frequency as detailed in [135].

The relationships can vary for interspecific and intraspecific studies. In [16], Ellington
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states that the average insect does not exist in nature. However, general relationships

do exist for a large range of biological fliers. The general trend, as detailed in [130,

138], is that the weight (W ) of biological fliers is proportional to the cube of the total

wing span (R). The relationship is easily defined according to W ∝ R3. The inverse

of the relationship defines that R ∝ W 1/3. The total wing area (S) of fliers scales

with the mass of the fliers (M) according to S ∝ m2/3. In [12], the flapping frequency

is proportional to different powers of the body mass, depending on the species under

study and the assumptions used to determine the relationship. The relationship may

be calculated according to dimensional relationships, force balances, or aerodynamic

power relationships.

A general relationship does not exist for the mass of the biological fliers. Instead,

there is the general trend that as the total mass of the insect flier increases, the

mass percentage of the wings also increases. Likewise, the general trend is that as

the total mass of the biological flier decreases, the flapping frequency increases. In a

personal communication with Professor Michael Dickinson from Caltech, Dickinson

states that there is not a significant scaling relationship for insect wing mass to body

mass or flapping frequency. He states part of the problem is that insect wings are

notoriously hard to weigh. He recommends to conduct a study by capturing insects

and weighing the wings. Instead of conducting a study over a wide range of insects,

the available relationships and knowledge of insects will be used to develop a design

space of various combinations of wing mass percentage and flapping frequency.

There is no significant relationship for the wing thickness as a function of other

parameters. In [130], Greenewalt states that wing thickness scales with wing length

(b) to the 1.34 power, or twing ∝ b1.34. However, in [16], Ellington states that there

is not a significant correlation between wing thickness and any other parameters for

insects. Instead, Ellington recommends using the non-dimensional wing thickness

parameter ĥ to evaluate the relative mass of wings for different insect species. The
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parameter ĥ is expressed as a percentage of the wing span in [16]. The differences

in thickness are generally due to the type of wing construction, largely dependent on

the Order of the insect species. The wing thickness ranges from 0.015% to 0.106% of

the insect wing length, with an average value of 0.0507% [16]. The only correlated

study for the wing mass that a wide literature review discovered is the following

relationship from [130]. Greenewalt correlates wing mass to to wing area according

to 2570mwing = S5/3, where mwing is given in milligrams (mg) and the wing area is

given in square millimeters (mm2). The application of scaling relationships will be to

develop a relationship between the body mass and wing mass of insects. A conclusion

can be made in regards to at what point, either as percentage of body mass or flapping

frequency, the wings are no longer important to the studies of dynamic, stability, and

control for flapping wing micro air vehicles.

In the development of this analysis, we used combinations of multiple different

scaling relationships to create a ‘design space.’ The application of a wide range of

scaling relationships often produced spurious results. The combination of wing area,

flapping frequency, and body mass would produce estimates of flapping amplitude

and mid-stroke angle of attack well below values seen in nature. Alternatively, if the

flapping amplitude and mid-stroke angle of attack are fixed, the resulting flapping

frequency would be extremely low. In addition to the ‘design space’, the scaling

analysis will also present results based on scaling of a specific insect species over

a wide range of frequencies. Insect species from the different groups identified by

Greenewalt in [130] will be used. Based on scaling relationships, e.g. m ∝ S3/2,

correlation constants will be calculated for individual insects and expanded to create

the design space.

Of important note is the relationship between Reynolds number for different fre-

quencies and wing sizes. For hovering flight, the Reynolds number can be defined
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according to [10]:

Re =
ΦR2

ν

(
4

AR

)
, (5.1)

where Φ denotes the total flapping amplitude, ν is the kinematic viscosity, R is the

wing length, and AR is the aspect ratio of the wings (ratio of length to width).

To fit the description of the dynamics previously presented, Φ = 2ζm. Shyy et al.

state in [10] that the Reynolds number can be preserved over a range of sizes, for

a geometrically similar wing, using the product fR2. For the analysis of the mass

and inertial effects of the wings to be presented, the aerodynamics affect the analysis

indirectly. None of the terms to be analyzed are directly dependent on an aerodynamic

model. Directly, an aerodynamic model could change the flapping amplitude, angle

of attack, or flapping frequency. The flapping parameters are inputs into the mass

and inertial wing effects. Changing the parameters will not change the analysis, as

long as the parameters are consistent with insect flight. The simplified aerodynamic

model presented in Section 3.3.1 will be used to trim the averaged solution of the first

order equations of motion. Since a force balance will be achieved for the averaged

system in hover, the flapping input parameters will be relevant and realistic. Finally,

the work is motivated to present an analytical model of the equations of motion. As

a direct result, an analytical aerodynamic model is necessary.

5.3 Scaling Motivation

As detailed in Chapter 2, the mass of the wings can have a significant effect on

the position and orientation of the body for a hawkmoth-sized model. However, a

hawkmoth is on the large end of insects in terms of mass. As a result, the flapping

frequency is lower and the mass percentage of the wings is higher than a bumblebee,

for example. In [62], Sun et al. stated the rigid body assumption may be inaccurate

for hawkmoths and craneflies, where the mass percentage of the wings is significantly
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Model msys (mg) mwg (%) mwg (mg) f (Hz) bw (mm) cw (mm)
BB 175 0.53 0.46 155 13.2 4.02
CF 11 4.29 0.24 45 12.7 2.31
HM 1648 5.79 47 26.3 51.9 18.6

Table 5.1: Morphological and Simulation Parameters for Insect Model Flight Dynam-
ics Comparisons

higher and the flapping frequency is lower. Zhang and Sun present simulations in [69]

to valid the rigid body assumption. Based on the analysis presented in Chapter 3,

our contention is that averaging the wing effects over a flapping cycle, and neglecting

those effects for averages of zero, may not be the best representation of the model.

Figures 5.1 and 5.2 present simulations results for a bumblebee and cranefly model,

based off of the parameters in [62] and previously used in Chapter 4. Table 5.1

presents the pertinent simulation parameters. The relevant values for the hawkmoth

parameters presented in Section 2.5.2 are included for comparison. The simulation

results presented in Figures 5.1 and 5.2 used input angles of the following form

ζ(t) = ζm sin(ωt), α(t) = αm cos(ωt), and δ(t) = δm sin(Nδωt),

with ζm = 60◦, αm = 45◦, δm = 1◦, and Nδ = 2. The results are presented for

three flapping cycles each. The aerodynamic model is the model developed by Deng,

Schenato, et al. in [39, 89] and has been used previously in Chapters 2-4. The

difference in the center of mass for the bumblebee is approximately 1/2 of the body

length in Figure 5.1(b). The difference in the center of mass position for the cranefly

is on order of one body length. The difference in pitch attitude are negligible for the

bumblebee (Fig. 5.2(b)) and very small for the cranefly (Fig. 5.2(a)). The difference

for the pitch angle for the cranefly is on order of the difference for the hawkmoth

when the ‘UCB’ aerodynamic model is used.
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Figure 5.1: X −Z Position Results for Model Insect Comparison, Multi-body Model
and 6DOF Model. β = −10◦, θo = 10◦
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Figure 5.2: Pitch Angle Results for Model Insect Comparison, Multi-body Model and
6DOF Model. β = −10◦, θo = 10◦

From an open loop, multi-body dynamics view point, the mass of the wings can

have a significant effect on the position and orientation of the body of model insects.

For a hawkmoth sized model, the effects are significant as detailed in Chapter 2. The

difference in position can be on the order of two body lengths in as little as three

flapping cycles. However, for the bumblebee model, the difference after three flapping

cycles is negligible. For a cranefly, the difference in position is more significant. The
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question needs to be answered: at what combination(s) of mass and flapping frequency

can the effects of the wings be neglected for dynamics, stability, and control studies?

5.4 General Trends

The relationships for wing area and wing length can be used to calculate the mass

of the wings. By fixing wing thickness as a percentage of the individual wing span, or

semi-span, the wing area and wing thickness (as a function of wing span) can be used

to calculate the volume of the wing. The mass of the model will be used to determine

the total wing area according to the relationship defined in [139]. McMasters defines

the relationship for wing area to mass from smallest insect to large aircraft in [139].

The mass of the ‘aircraft’ is proportional to the wing area according to m = 15S3/2,

where mass is in kilograms and wing area is in square meters. The inverse of the

relationship, to be used in the present analysis, is S = 1
152/3m

2/3.

The semi-span, or wing length, will be determined from relationships developed

in [130]. In [130], the wing length for one wing can be related to the total wing area.

The relationship is b2 = cspanS, where the wing length is given in millimeters and the

wing area is given in square millimeters. The proportionality constant, cspan, varies

for different groupings of insect species and proper care is taken to ensure consistent

dimensions for all units. A larger value of cspan will give longer wings with a narrower

chord, while a smaller value of cspan will give short, wide wings. Greenewalt con-

tributed the smallest value of cspan to butterflies and associated species. Greenewalt’s

work in [130] has five values of cspan, with cspan ∈ {3.39 2.72 1.88 1.16 0.66}. The first

constant relates to Drosophila, the genus for small flies [140]. The second constant,

cspan = 2.72, relates to the genus Tipula, which is a family of large values and includes

the cranefly [141]. The third constant, cspan = 1.88, is for the Order Diptera, which

consists of over 240,000 insects species, to include mosquitoes and gnats [142]. Other

Orders included in the correlation for third constant are Coleoptera (beetles) and Hy-
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menoptera (bees, wasps, ants) [143, 144]. The third constant encompasses the largest

range of data, correlating wing area to wing length over three orders of magnitude

of wing area. The family Sphingidae (hawkmoths) and the order Odonata (dragon-

flies, damselflies) are included in the correlation for the fourth constant, cspan = 1.16

[145, 146]. The final constant, cspan = 0.66, is a relationship for butterflies and moths

[147, 148, 149]. The relationship between wing length and wing area will be used

to develop different estimates of the mass percentage of the wings. The mass of the

wings is calculated as a product of the wing area, wing thickness, and the density of

the wings. The density of the wings is assumed to be strong cuticle and set at the

value of ρwing = 1200 kg/m3. The density is referenced in [16] and [150]. The density

is also used in a scaling of the flexural stiffness of wings in [151].

The analysis of the effects of the wings on the position and orientation of the body

will focus on four main effects. The linear momentum effects of the wings, defined by

¨̄ρci, will be used in conjunction with the wing acceleration (control moment) contri-

butions, to determine the mass effect of the wings on the position of the body. The

effects of the mass of the wings on the pitch orientation of the body will be assessed

through the angular momentum terms, Iiω̇i + ω̄i × Iiω̄i, and the wing acceleration

(control moment) contribution. The quarter-cycle approximations of the wing effects

are defined in Appendix C. Since the majority of the wing effects time average to zero,

the value for the first quarter-cycle, from 0 to π
2
, will be used. The calculated values

will be nondimensionalized so that comparisons and general trends can be identified

from changes in flapping frequency and mass percentage. The forces and moments

due to the mass effects of the wings are nondimensionalized in the same manner as

in Chapter 4.

In order to create a wide design space and to analyze general trends, the relation-

ships in [130] are used to developed five design ‘types’: from long, thinner wings to

short, wide wings. The flapping frequency is varied from 10 Hz to 300 Hz in intervals
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of 10 Hz. The mass of the system is calculated from the proportional relationship

msys ∝ f−2, with a proportionality constant of unity. In addition to the five wing

types, the initial thickness of the wing at 10 Hz is varied between 0.04% and 0.11%

of the length of one wing. The total thickness of the wing decreases according to

twing ∝ b1.34
w . The area of the wings is calculated according to the general scaling law

from [139]: msys = 15S3/2, where msys is in kg and the wing area is in m2. The

initial set of relationships is for a flapping amplitude of 60◦ and an angle of attack

calculated using a bisection algorithm for hover of the averaged system. The simple

wingstroke presented in Chapters 3 and 4 is maintained here, since it was used to

develop the quarter-cycle approximations.

The general trends are the same for all five wing choices. Depending on the

wing type choice, the mass percentage of the wings varies from nearly 16.2% to 1.2%

over the frequency range from 10 to 300 Hz. The contribution to the longitudinal

position of the flapping wing micro air vehicle from the linear momentum of the wings

is presented in Figure 5.3. The general trend shows a maximum nondimensional

contribution at the lowest flapping frequency and the highest wing mass percentage.

The linear momentum contribution in the x-direction is shown for cspan = 3.39. The

‘thickest’ wings start at 0.11% of the wing semi-span. For cspan = 3.39, the mass

percentage of the wings ranges from 16.2% down to 2.72%.

The contribution from the control moment in the x-direction is presented in Fig-

ure 5.4 for cspan = 2.72. The mass percentage ranges from 14.5% to 2.44%. The

contribution for the angular momentum terms to the pitch orientation is presented

in Figure 5.5 for cspan = 1.88. The mass percentage ranges from 12.1% to 2.03%.

The final contribution presented is for the control moment to pitch in Figure 5.6 for

cspan = 1.16. The mass percentage ranges from 9.48% to 1.59%. The general trends

for all of the contributions are the same. The maximum contribution is for the lowest

frequency and highest mass percentage. The nondimensional forces and moments de-
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Figure 5.3: Nondimensional Force for ρ̄ci · b̂x for cspan = 3.39
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Figure 5.4: Nondimensional Force for Control Moment Contribution to b̂x for cspan =
2.72

crease as the frequency increases and/or the mass percentage decreases. For a fixed

frequency, the mass of the flapping wing micro air vehicle model is the same. The

analysis shows that for a given frequency, the mass effects of the wings decrease as

the relative mass percentage is decreased. It is also important to note that although

the contributions decrease with lower mass percentage and higher frequency, so does

the nondimensional force due to lift or gravity.
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Figure 5.5: Nondimensional Moment for ω̄ × Iω̄ for cspan = 1.88
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Figure 5.6: Nondimensional Moment for Control Moment Contribution to Pitch for
cspan = 1.16

5.5 Scaling Analysis for Individual Insect Models

The previous scaling analysis showed that the wing effects decrease with increasing

flapping frequency and/or decreasing wing mass percentage. The final scaling analysis

will be conducted based on the models of the hawkmoth, bumblebee, and cranefly.

For all models, the body will be assumed to be a rigid cylinder with constant radius
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Model
Mass Mass Wing Area

ĥ (%)
twing

Correlation Coefficient Coefficient Coefficient
HM1 f−2 1.1399 0.1384 0.076 0.002078
HM2 f−3 29.9795 0.1384 0.076 0.002078
BB f−2 4.2044 0.0339 0.06 0.002613
CF f−3 1.0362 0.1222 0.0554 0.2401

Table 5.2: Correlation Coefficients for Scaling Analysis of Individual Insect Models

for mass moment of inertia calculations. The wings are assumed to be thin, rigid

flat plates. Over a range of flapping frequencies, a single allometric relationship will

be used to determine the mass of the flapping wing micro air vehicle. The chosen

relationship will depend on the model insect being used. From [12], the mass of

bees is proportional to f−2, where m is the mass of the model in kilograms and f

is the flapping frequency in Hertz. The mass of craneflies is closer to f−3, while the

hawkmoth is in between the two boundaries of f−2 and f−3. For all of the model

insects, the total wing area S is assumed to be proportional to the two-thirds power

of the mass of the body in kilograms (S ∝ m2/3). The coefficient for the correlation

will be determined for a specific insect model for the wing area to mass relationship

and the mass to frequency relationship. The coefficients for the correlations of the

model insects are presented in Table 5.2. The correlation coefficients are determined

using the morphological parameters presented in Table 5.1. The wing thickness will

be correlated according to twing ∝ ctb
1.34. The wing thickness of the model will

based off of the ĥ parameter from Ellington in [16]. The ĥ parameters expresses the

wing thickness as a percentage of the wing semi-span (wing length). The correlation

constants for the wing thickness are presented in Table 5.2. The linear momentum

effects for each of the insect models are presented in Figures 5.7-5.10. In Figures

5.7-5.10, the circle represents the linear momentum effects in the x-direction. The ‘x’

represents the linear momentum effects in the z-direction. The square represents the

control moment contribution to the x-direction and the diamond to the z-direction.

Finally, the plus symbol presents the body weight force.
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Figure 5.7: Linear Momentum Effects for Scaled Hawkmoth Model, msys ∝ f−2
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Figure 5.8: Linear Momentum Effects for Scaled Hawkmoth Model, msys ∝ f−3

The contribution from the linear momentum effects is generally of the same order

of magnitude, or larger, than the nondimensional weight for the four scaled insect

models. For the bumblebee model, the weight is initially greater than the linear

momentum contributions at low frequencies. As the flapping frequency increases,

the linear momentum contributions increase in magnitude relative to the weight.

However, all of the linear momentum contributions time average to zero. The linear
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Figure 5.9: Linear Momentum Effects for Scaled Bumblebee Model, msys ∝ f−2
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Figure 5.10: Linear Momentum Effects for Scaled Cranefly Model, msys ∝ f−3

momentum effects are not constant. Periodic forces do not affect the system in the

same manner as lift and weight, which are constant forces in the averaged sense. In

Figure 5.9, the bumblebee model values are plotted at 155 Hz. The wing effects on

position are within an order of magnitude of the weight force. The wing effects do not

have a significant effect on the position of the nominal bumblebee model, as presented

in Figure 5.1(b). The linear momentum effects on the position of the bumblebee are
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not negligible, either. The scaling relationships do not present a clear answer for a

determination of when contributions of the linear momentum effects are no longer

significant.

The hawkmoth models predict a mass percentage ranging from 6.1% to 3.1%

for the scaling relationship m ∝ f−2. The mass percentage decreases, as flapping

frequency increases, from 6.8% to 2.5% for the scaling relationship m ∝ f−3. Even

at a frequency of 200 Hz, the mass percentage is significantly higher than seen in

nature. For the bumblebee model, the mass percentage decreases from 1.2% to 0.6%

as the flapping frequency increases. The mass percentage range for the cranefly model

is 7.7% to 2.8%. The four insect models represent a wide range of combinations for

flapping frequency and wing mass percentage. The initial conclusion is that the linear

momentum effects should be included in all dynamics, stability and control studies.

The angular momentum effects are presented in Figures 5.11-5.14. The circle

represents the nondimensional aerodynamic pitching moment. The ‘x’ represents the

contributions from the control moment. The square represents the angular momentum

contribution to pitch. For the system without wing effects, under a longitudinal flight

condition, the only contribution to a change in pitch velocity is the aerodynamic

pitching moment. Therefore, the aerodynamic pitching moment is compared to the

angular momentum effects and the control moment effects.

The angular momentum effects present a different picture from the linear momen-

tum effects. The angular momentum effects of the wings are always less than the

aerodynamic pitching moment. For the given dynamics representation and aerody-

namic model choice, the aerodynamic pitching moment has a time average of zero,

just like all of the wing effects on the pitch orientation. It can be concluded that

the aerodynamic pitching moment has the most significant effect on the orientation

of the body. The other effects are less important, especially after a frequency of ap-

proximately 30-40 Hz, depending on the insect model. After 30-40 Hz, the angular
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Figure 5.11: Angular Momentum Effects for Scaled Hawkmoth Model, msys ∝ f−2
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Figure 5.12: Angular Momentum Effects for Scaled Hawkmoth Model, msys ∝ f−3

momentum contribution for the hawkmoth and cranefly models decreases at a faster

rate than the aerodynamic pitching moment. The rate changes at a higher flapping

frequency for the bumblebee model.
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Figure 5.13: Angular Momentum Effects for Scaled Bumblebee Model, msys ∝ f−2
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Figure 5.14: Angular Momentum Effects for Scaled Cranefly Model, msys ∝ f−3

5.6 Conclusions

The scaling relationships show that, in general, the nondimensional linear and an-

gular momentum effects of the wings decrease in importance as the flapping frequency

increases. The effects also decrease as the wing mass percentage is decreased. The

most significant effects occur at high mass percentages and low flapping frequencies.

The scaling conclusions are consistent for a wide ranging design space, based on dif-
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ferent insect wing models and thickness relationships, as well as relationships based

on individual insect models.

The linear momentum effects behave differently than the angular momentum ef-

fects, when scaling effects are considered. The linear momentum effects are generally

one order of magnitude or more higher than the weight effects of the insect model.

An example of the recommendation that the linear momentum effects should always

be included is presented in Figure 5.15. After three flapping cycles, with a flapping
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Figure 5.15: X − Z Position, Scaling Example, msys ∝ f−2

frequency of 150 Hz and a wing mass percentage of 3.3%, the prediction for the

center of mass of the body is off by two body lengths. In as little as 0.02 s, there

is a significant difference in position. The same parameters produce virtually zero

difference in the pitch orientation.

The most significant contribution to the pitch of the body is the aerodynamic

pitching moment. The aerodynamic pitching moment is generally an order of magni-

tude to the wing effects. The angular momentum wing effects decrease significantly

faster than the aerodynamic pitching moment at approximately 30-40 Hz. The scal-

ing leads to the conclusion that the linear momentum effects of the wings should

always be included in dynamics, stability, and control studies.
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CHAPTER 6

Conclusion and Future Research

6.1 Summary and Contributions

The final chapter presents a summary of the work and possible future endeavors

to explore the methods and techniques even further. The main contribution of the

dissertation is a framework for evaluating the importance of the mass and inertial

effects of the wings on the position and orientation of a flapping wing micro air

vehicle. The procedure begins with a multi-body flight dynamics model. The model

is transformed to first order form and approximated using the quarter-cycle averaging

technique. Scaling analysis can then be used to evaluate the relative importance of

the linear and angular momentum effects on the position and orientation of the body.

6.1.1 Multi-Body Flight Dynamics Model

A multi-body flight dynamics model was derived from first principles. The flight

dynamics model is obtained by assuming three degrees of freedom for each wing, a

stroke plane inclined relative to the body, and the inclusion of an aerodynamic model.

The results from the flight dynamics model are dependent on the choice of aerody-

namic model. The multi-body flight dynamics model predicts significant differences

in position and orientation when compared to the standard aircraft equations of mo-

tion. The significance of the difference in position and orientation may be dependent
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on the choice of aerodynamic model.

6.1.2 Quarter-Cycle Averaging

Quarter-cycle averaging was developed to approximate the first order equations

of motion for a flapping wing micro air vehicle. The first order equations of motion

are derived from the multi-body model using an approximate inverse and appropriate

assumptions. The first order equations of motion are the standard aircraft equations

of motion plus perturbations to those equations of motion due to the mass effects of

the wings. The standard aircraft equations of motion do not have a general analyti-

cal solution, therefore standard averaging techniques are not available. Quarter-cycle

averaging re-writes the nonlinear, time-varying equations of motion as piecewise con-

tinuous functions. The approximation error is reduced by over an order of magnitude

when compared to the poor results obtained from local averaging.

6.1.3 Hover Analysis

The stability of a flapping wing micro air vehicle was analyzed in the vicinity of

a hover condition. An analytical approximation of the stability derivatives for the

flapping wing micro air vehicle was derived through the use of local averaging tech-

niques. The analytical approximation predicts a modal structure for the eigenvalues

that is consistent with independent, numerical analyses. The inclusion of wing effects

changes the magnitude of the poles, but does not change the modal structure. The

wing effects not only change the required controls for a linear analysis in the vicinity

of a hover condition, but for a nonlinear analysis of the conditions for a limit cycle

as well.
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6.1.4 Scaling

A scaling analysis was conducted to analyze the relative importance of the wings

on the position and orientation of the central body. A general design space was

created using a combination of scaling techniques. The general trend is that the

linear and angular momentum effects of the wings decrease with increased flapping

frequency and/or decreased wing mass. For a fixed flapping frequency, the wing

effects decrease as the wing mass percentage, relative to the body, is monotonically

decreased. For the given dynamics model and aerodynamics model, the wing effects

are generally important. There are cases where the mass effects of the wings do not

have a significant effect on the position of the body. However, even for a given model

at a high flapping frequency, the wings can have a significant effect on the position

of the body. The angular momentum effects do not have a significant effect on the

orientation of the body beyond a range of about 30-40 Hz.

6.2 Future Research Directions

The results and methods presented are obtained through the use of various as-

sumptions. Removing some of these assumptions can provide multiple new research

directions. True insect wings are not perfectly rigid. Research has shown that the

flexibility of insect wings is important for lift and thrust generation. Aeroelastic ef-

fects could be important in the dynamics of the flapping wing micro air vehicle and

incorporated into the model. The simulations of the flight dynamics model used a

quasi-steady/blade-element model. The model could be simulated with higher fidelity

aerodynamic data, either from a computational fluid dynamics solver or surrogate

model, to see if the mass and inertial effects are important with a wider range of

aerodynamic models.

The quarter-cycle averaging technique is conducted with a simplified wing stroke
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and only two degrees of freedom. The research can be expanded to account for the

deviation angle and the effects on the position and orientation of the vehicle. A more

biomimetic wing stroke could be used, as well as a higher fidelity aerodynamic model.

However, the inclusion of either will probably move the analysis from an analytical

one to a numerical one. The quarter-cycle averaged equations to analyze stability and

limit cycles in the vicinity of a hover condition could also be used to analyze other

reference flight conditions as well. The stability of forward flight and vertical flight

can be examined to see if the same methods produce results qualitatively consistent

with other studies. Robust and/or adaptive control studies could be conducted to

determine the sensitivity to modeling error of a flapping wing micro air vehicle due

to the mass of the wings.

The scaling analysis could be expanded to fit additional aerodynamic models.

The results may be aerodynamic model dependent. The comparison of the effects

on the pitch orientation of the central body are based on the aerodynamic pitching

moment, which will change dependent on the aerodynamic model chosen as an input

into the system. The overall conclusion of the importance of the wings for position

can be studied with nonlinear robust and/or adaptive control to determine sensitivity

to modeling uncertainty. Finally, the control algorithms should be tested on a real

prototype to see if the conclusions hold in the physical world.
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APPENDIX A

Multi-Body Derivation

The appendix presents developments used in the multi-body flight dynamics model

derivation. The following are not necessary for the full derivation, but are provided

for completeness in the presentation of the dynamics model. The appendix is intended

to include certain important aspects of the derivation for completeness, so that the

work presented previously maybe easily replicated. A summary of the numerous

assumptions used in the development of the multi-body, flight dynamics model is:

• The flapping wing micro air vehicle is operating in a flat Earth environment

with constant gravity.

• The Earth is not moving.

• The body and wings are rigid bodies.

• The rigid bodies have constant mass.

• The wing joints enable each wing to have three degrees of freedom relative to

the stroke plane.

• The wings are modeled as thin, rectangular flat plates with constant chord.
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• The aerodynamic center of pressure of the wings is calculated based on the

geometry of the wings.

• The effects of wind gusts are not considered.

• Aerodynamic interactions between the wings and the body are neglected.

The rotation matrices for the left wing are defined according to

RδL =


1 0 0

0 cos δL − sin δL

0 sin δL cos δL

 ,RαL =


cosαL 0 − sinαL

0 1 0

sinαL 0 cosαL

 ,

and

RζL =


cos ζL sin ζL 0

− sin ζL cos ζL 0

0 0 1

 . (A.1)

The rotation matrices for the right wing are presented in Equation (2.4). The com-

bination of the full rotation matrix carrying the right stroke plane frame to the right

wing frame, RR, is


cαRcζR + sαRsδRsζR −cαRsζR + sαRsδRcζR −sαRcδR

cδRsζR cδRcζR sδR

sαRcζR − cαRsδRsζR −sαRsζR − cαRsδRcζR cαRcδR

 , (A.2)

where ‘c’ is shorthand for cosine and ‘s’ is shorthand for sine. The rotation matrix

carrying the left stroke plane to the left wing frame, RL, is


cαLcζL + sαLsδLsζL cαLsζL − sαLsδLcζL −sαLcδL

−cδLsζL cδRcζL −sδL

sαLcζL − cαLsδLsζL sαLsζL + cαLsδLcζL cαLcδL

 . (A.3)

172



The diagonal terms for RR and RL are identical if the wing angles are identical.

The terms in the first row, third column and third row, first column of the rotation

matrices for the wings are also identical if the wing angles are equal. The remaining

four terms in the rotation matrices are equal in magnitude, but opposite in sign, if the

wing angles are identical. Inspection of the transpose of the rotation matrix carrying

the stroke plane frame to the wing frame shows the physical intuition of the choice of

3-1-2 Euler Angles. A mass at the end of a rod can be tracked according to spherical

coordinates. A point along the y-axis of the right wing frame would be tracked by

the second column of RR
T:

RR
T =


cαRcζR + sαRsδRsζR cδRsζR sαRcζR − cαRsδRsζR

−cαRsζR + sαRsδRcζR cδRcζR −(sαRsζR + cαRsδRcζR)

−sαRcδR sδR cαRcδR

 , (A.4)

which is a spherical coordinate representation using the angles δR and ζR with origin

at the wing root. A similar procedure can be used for the left wing, but the signs are

flipped since the wing is on the opposite side of the vehicle:

RL
T =


cαLcζL + sαLsδLsζL −cδLsζL sαLcζL − cαLsδLsζL

cαLsζL − sαLsδLcζL cδLcζL sαLsζL + cαLsδLcζL

−sαLcδL −sδL cαLcδL

 . (A.5)

For the left wing, the angular velocity with respect to the stroke plane is calculated

according to

ω̄3,sp = RL


0

0

ζ̇L

+ RαLRδL


−δ̇L

0

0

+ RαL


0

α̇L

0

 . (A.6)
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By components, the angular velocity of the left wing is

ω̄3,sp =


pLW

qLW

rLW

 =


−(cosαL)δ̇L − (sinαL cos δL)ζ̇L

α̇L − (sin δL)ζ̇L

−(sinαL)δ̇L + (cosαL cos δL)ζ̇L

 . (A.7)

As stated in Chapter 2, the reference point for the wings is chosen to be the respective

wing joints. In order to track the velocity of the wing joint with respect to the inertial

frame, vectors, r̄R and r̄L, are defined from the center of mass of the central body to

the wing joint. The wing joints vectors are expressed in the B frame according to

r̄R = Rxb̂x +Ry b̂y +Rz b̂z and r̄L = Lxb̂x + Ly b̂y + Lz b̂z. (A.8)

The velocities at the wing joints are

v̄2 = v̄1 + ω̄1 × r̄R and v̄3 = v̄1 + ω̄1 × r̄L. (A.9)

In component form, the velocity for the right wing joint is

v̄2 =


u+ qRz − rRy

v + rRx − pRz

w + pRy − qRx

 . (A.10)

The velocity for the left wing joint is

v̄3 =


u+ qLz − rLy

v + rLx − pLz

w + pLy − qLx

 . (A.11)
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The acceleration of the right wing joint is obtained utilizing the transport theorem.

( ˙̄v2)I = ( ˙̄v2)B + ω̄1 × v̄2

( ˙̄v2)I = ( ˙̄v1)B + ˙̄ω1 × r̄R + ω̄1 × ˙̄rR + ω̄1 × (v̄1 + ω̄1 × r̄R)

The acceleration of the left wing joint is obtained in the same manner. In the B

frame, ˙̄rR ≡ 0, and the acceleration of the right wing joint is

˙̄v2 =


u̇+ q̇Rz − ṙRy + qw − rv + qpRy + rpRz − (r2 + q2)Rx

v̇ + ṙRx − ṗRz + ru− pw + pqRx + rqRz − (p2 + r2)Ry

ẇ + ṗRy − q̇Rx + pv − qu+ prRx + qrRy − (p2 + q2)Rz

 . (A.12)

The acceleration for the left wing has the same form, except with proper substitutions

of the components of r̄L for the components of r̄R. The derivation of the acceleration

of the wing reference vectors, ¨̄ρci, results in four terms:

¨̄ρci = Rβk
TRk

Tω̃i,spω̃i,spρ̄ci,w + 2 ω̄i ×Rβk
Tω̃i,spρ̄ci,w (A.13)

+2 ω̄i × (ω̄i × ρ̄ci) + ˙̄ωi × ρ̄ci + Rβk
TRk

T ˙̃ωi,spρ̄ci,w

The acceleration terms of the right wing reference vector are obtained by setting i = 2

and k = R. The acceleration terms for the left wing reference vector are obtained by

setting i = 3 and k = L.
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APPENDIX B

First Order Equations of Motion

First Order Equations of Motion

The derivation of the equations of motion for a flapping wing micro air vehicle

are detailed in Chapter 2 and Appendix A. In order to analyze the equations of

motion and the relative importance of the wing mass, the multi-body equations need

to be decoupled and placed into first order form. Due to the highly coupled nature

of the system, obtaining the first order equations of motion in the traditional way,

by inverting the mass matrix directly, is not tractable analytically (symbolically).

Therefore, an approximate inverse is used to obtain the first order equations of motion.

The use of the approximate inverse allows the analysis of the equations of motion of

a FWMAV in first order form. The multi-body equations of motion can be written

in the following form:

M ˙̄uj =



F̄aero + F̄g −
∑3

i=1

(
˙̄vi,red + ¨̄ρci,red

)
M̄aero + M̄g −

∑3
i=1

(
Iiω̄1 × ω̄i + ω̄i × Iiω̄1 +miρ̄ci × ˙̄vi,red

)
QRW −

(
I2ω̄1 × ω̄2 + ω̄2 × I2ω̄2 +m2ρ̄c2 × ˙̄v2,red

)
QLW −

(
I3ω̄1 × ω̄3 + ω̄3 × I3ω̄3 +m3ρ̄c3 × ˙̄v3,red

)


. (B.1)
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In Equation (B.1), the matrix M is a time-varying mass matrix, with M ∈ R12x12.

The vector ˙̄uj represents the time-derivative of the quasi-velocities, ūj, defined in

Equation (2.7). In order to obtain the approximate inverse, the matrix is split into

two parts, A, and E, according to the following equation

M = A + εE, (B.2)

where ε is a small parameter. For the purpose of the analysis presented in this

manuscript, the small parameter ε is the mass of the wings. The approximate inverse,

M−1, is obtained from the following equation:

M−1 = A−1 + εA−1EA−1. (B.3)

The components of the mass matrix can be written as

A =



A11 0 0 0

0 A22 0 0

0 0 A33 0

0 0 0 A44


(B.4)

and

E =



0 E12 E13 E14

E21 0 E23 E24

E31 E32 0 0

E41 E42 0 0


. (B.5)

Matrix Composition and Inversion

The components of A and E can be further defined and explained. For simplicity

in presentation, the ε term will be absorbed into the components of the E matrix. The
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first term in A is A11 and describes the affect of the system mass on the translation

of the central body. A11 is defined according to

A11 = msysI3x3. (B.6)

A22 describes the affect of the inertia of the system on the rotation of the central

body. A22 is calculated from

A22 = I1 + I2 + I3 + (r̃R + ρ̃c2) r̃T
R + (r̃L + ρ̃c3) r̃T

L + r̃Rρ̃
T
c2 + r̃Lρ̃

T
c3. (B.7)

The terms ρ̃c2 and ρ̃c3 are skew-symmetric matrices representing the position of the

wing centers of mass in the body frame. The wing centers of mass are obtained from

Equation (2.8). For example, the skew-symmetric matrix for the right wing reference

vector is

ρ̃c2 =


0 −ρc2,z ρc2,y

ρc2,z 0 −ρc2,x

−ρc2,y ρc2,x 0

 , (B.8)

where

ρ̄c2 =


ρc2,x

ρc2,y

ρc2,z

 = RβR
TRR

Tρ̄c2,w. (B.9)

The terms r̃R and r̃L are skew-symmetric matrices representing the position of the

wing joints in the body frame. The skew-symmetric matrices are simply defined

according to

r̃R =


0 −Rz Ry

Rz 0 −Rx

−Ry Rx 0

 (B.10)
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and

r̃L =


0 −Lz Ly

Lz 0 −Lx

−Ly Lx 0

 . (B.11)

The individual entries in the definitions of r̃R and r̃L represent the components of the

wing joint reference vector in the body frame. The terms A33 and A44 describe the

effects of the individual wing moments of inertia on the angular velocities of the right

and left wings, respectively. The terms are calculated according to

A33 = RβR
TI2RβR

T and A44 = RβL
TI3RβL

T. (B.12)

The term E12 represents the effects of the coupling of the rotational motion of the

body and the position of the wing center of mass on the translation of the body. The

term E21 contains the effects of the coupling of the translational motion of the body

and the position of the wings centers of mass on the rotation of the body. The term

E12 is the transpose of the term E21, where

E21 = m2 (ρ̃c2 + r̃R) +m3 (ρ̃c3 + r̃L) . (B.13)

The terms E13 and E14 represent the effects of the necessary accelerations of the

wings, to obtain the desired wing motion, on the translation of the central body. E13

and E14 are calculated according to

E13 = m2ρ̃
T
c2RβR

T + RβR
TΘRW and E14 = m3ρ̃

T
c3RβL

T + RβL
TΘLW . (B.14)

The terms ΘRW and ΘLW represent the relationship between the acceleration of the

angular velocities of the wings and the translation of the central body. The terms are

obtained from the calculation of the acceleration of the wing center of mass reference
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vectors, defined in Equation (2.13). ΘRW results from the term RβR
TRR

T ˙̃ω2,spρ̄c2,w.

For a flat plate wing, where the wing is mounted at the mid-point, such that ρ̄c2,w =[
0 ρ2 0

]T

, ΘRW is equal to

ΘRW = m2ρ2


RR

T (1, 3) 0 −RR
T (1, 1)

RR
T (2, 3) 0 −RR

T (2, 1)

RR
T (3, 3) 0 −RR

T (3, 1)

 , (B.15)

where RR
T(1, 1) refers to the first row, first column entry of the transpose of the

rotation matrix, RR
T. In a similar manner, ΘLW is equal to

ΘLW = m3ρ3


−RL

T (1, 3) 0 RL
T (1, 1)

−RL
T (2, 3) 0 RL

T (2, 1)

−RL
T (3, 3) 0 RL

T (3, 1)

 . (B.16)

The terms E23 and E24 represent the effects of the required accelerations of the wings

on the rotation of the central body. E23 and E24 are calculated according to

E23 = I2RβR
T + r̃RE13 and E24 = I3RβL

T + r̃LE14. (B.17)

The terms E31 and E41 represent the effects of the translation of the central body on

the wing motion. The terms are calculated according to

E31 = RβR
Tρ̃c2 and E41 = RβL

Tρ̃c3. (B.18)

The last two terms, E32 and E42, represent the effects of the rotation of the central

body on the wing motion. The terms are calculated according to

E32 = RβR
T
(
I2 +m2ρ̃c2r̃

T
R

)
and E42 = RβL

T
(
I3 +m3ρ̃c3r̃

T
L

)
. (B.19)
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Using the form of the matrix approximate inverse in Equation (B.3), the approximate

inverse of the matrix can be calculated according to

M−1 ≈



A11
−1 A11

−1E12A22
−1 A11

−1E13A33
−1 A11

−1E14A44
−1

A22
−1E21A11

−1 A22
−1 A22

−1E23A33
−1 A22

−1E24A44
−1

A33
−1E31A11

−1 A33
−1E32A22

−1 A33
−1 0

A44
−1E41A11

−1 A44
−1E42A22

−1 0 A44
−1


.

(B.20)

The result utilizes the fact that since the matrix A is block diagonal, the inverse of

A is the inverse of each block diagonal element, such that

A−1 =



A11
−1 0 0 0

0 A22
−1 0 0

0 0 A33
−1 0

0 0 0 A44
−1


. (B.21)

Comparison of the Equations of Motion

As stated in Chapter 3, the use of the approximate inverse enables the equations

of motion to be placed in the following form:

ẋ = f (0)(x, t) + ε1f (1)(x, t) + ε2f (2)(x, t). (B.22)

Due to the highly coupled nature of the equations of motion, the full nonlinear model

described in Chapter 2 can be compared to the approximate equations of motion

analytically. However, through the use of simulations of the different models, the

different sets of equations of motion can be compared. The different sets of equa-

tions will be compared for symmetrical flapping and with both of the aerodynamic

models presented in Chapter 2. The pertinent flapping kinematic parameters are the

following: αm = 45◦, δm = 1◦, ζm = 60◦, and f = 22Hz. The results for the model
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developed by Deng et al. are presented in Figures B.1(a), B.2(a), and B.3(a). The

results for the Berman and Wang aerodynamic model are presented in Figures B.1(b),

B.2(b), and B.3(b).
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Figure B.1: X − Z Inertial Comparison of Dynamic Models
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Figure B.2: Pitch Angle Comparison of Dynamic Models

The approximation does not match the position when the UCB or Berman and

Wang aerodynamic models are used. The approximate inverse does not simulate the

full nonlinear system, but does still exhibit a difference in position with the standard

aircraft equations of motion. The pitch angle does match for the UCB model when

compared with the multi-body model.
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Figure B.3: Pitch Velocity Comparison of Dynamic Models
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APPENDIX C

Quarter-Cycle Equations of Motion for

Symmetrical Flapping

The appendix presents the details of the first order equations of motion presented

in Chapter 3 and their associated quarter-cycle approximations.

Longitudinal Velocity - u̇

The contributions to the forward velocity, stemming from f
(1)
1 (x, t), are the follow-

ing. The contributions of the acceleration of the wing reference vectors are detailed

in Equation (A.14). From the assumptions made in Chapter 3, we can write the

skew-symmetric matrix defining the angular velocity of the wing in the stroke plane

as

ω̃2,sp =


0 −rRW 0

rRW 0 −pRW

0 pRW 0

 , (C.1)

where pRW = sin (αR) ˙ζR and rRW = − cos (αR) ˙ζR. The first term from Equation

(A.14), RβR
TRR

Tω̃2,spω̃2,spρ̄c2,w · b̂x, simplifies to −ρ2 cos(βR) sin(ζR)ζ̇2
R based on the
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assumptions made in Chapter 3. The quarter cycle approximation is the following:

∫
QC

RβR
TRR

Tω̃2,spω̃2,spρ̄c2,w · b̂x = −mwρw (ωζm)2 cos(β)

(
1

ζm
H1 (ζm)

)
, (C.2)

where ρw is the position of the center of mass of the wing, along the y − axis of the

wing in the wing frame, and mw denotes the mass of the wing. The second term of

¨̄ρci,red is

∫
QC

(
2 ω̄2 ×

(
RβR

TRR
Tω̃2,spρ̄c2,w

) )
· b̂x

= −2mwρw(ωζm) sin(β) sgn
(
ζ̇
)( 2

π

sin(ζm)

ζm

)
q̄ (C.3)

−2mwρw (ωζm)2 cos(β) cos(αm) sgn (ζ)

(
1

ζm
H1(ζm)

)
−2mwρw (ωζm)2 sin(β) sin(αm) sgn (s (2ω))

(
1

ζm
H1(ζm)

)
.

The third term of ¨̄ρci,red is evaluated as

∫
QC

(
ω̄i × (ω̄i × ρ̄ci)

)
· b̂x

= mwρw (ωζm)
(

cos(β) sin(αm)− sin(β) cos(αm) sgn
(
ζ̇
))( 2

π

sin(ζm)

ζm

)
q̄

−mwρwω
2ζm

(
cos(β) cos2(αm) +

1

2
sin(β) sin(2αm)sgn

(
ζ̇
))

sgn (ζ) H1 (ζm)

−mwρw cos(β)sgn (ζ) H0 (ζm) q̄2. (C.4)

The control moment contribution, or alternatively the contribution from the acceler-

ation of the wings, has the following form:

∫
QC

((
ρ̃T
ciRβk

T + Rβk
TΘRW

)
ΩRW,d

)
· b̂x = (C.5)

−mwρwω
2ζmsgn (ζ)

(
cos(β) (1 + cos(αm)) + sgn

(
ζ̇
)

sin(β) sin(αm)
)

H−1 (ζm) .
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The contribution from the coupling between the position of the wings and the aero-

dynamic pitching moment is

∫
QC

ρc2,zMaero =
1

4
sin(β)r̂2bwmwρwkT sin(αm)

(
1− J0 (2ζm)− J2 (2ζm)

)
−1

4
sin(β)r̂2bwmwρwkN cos(αm)

(
1− J0 (2ζm)− J2 (2ζm)

)
−1

8
sin(β)cwmwρwkNsgn (ζ)

1

2ζm
H1 (2ζm) . (C.6)

It’s important to note that the previous developments are for one wing only. The

total contributions need to be doubled, except for the contribution from ρc2,zMaero,

which is quadrupled.

Vertical Velocity - ẇ

The first term of ¨̄ρci,red contributes to the vertical velocity according to

∫
QC

Rβk
TRk

Tω̃i,spω̃i,spρ̄ci,w · b̂z = mwρw (ωζm)2 sin(β)

(
1

ζm
H1 (ζm)

)
. (C.7)

The second term of ¨̄ρci,red is

∫
QC

(
2 ω̄2 ×

(
RβR

TRR
Tω̃2,spρ̄c2,w

) )
· b̂x

= −2mwρw(ωζm) cos(β) sgn
(
ζ̇
)( 2

π

sin(ζm)

ζm

)
q̄ (C.8)

+2mwρw (ωζm)2 sin(β) cos(αm) sgn (ζ)

(
1

ζm
H1(ζm)

)
−2mwρw (ωζm)2 cos(β) sin(αm) sgn (s (2ω))

(
1

ζm
H1(ζm)

)
.
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The third term of ¨̄ρci,red is

∫
QC

(
ω̄i × (ω̄i × ρ̄ci)

)
· b̂x

= −mwρw (ωζm)
(

sin(β) sin(αm) + cos(β) cos(αm) sgn
(
ζ̇
))( 2

π

sin(ζm)

ζm

)
q̄

+mwρwω
2ζm

(
sin(β) cos2(αm)− 1

2
sin(β) sin(2αm)sgn

(
ζ̇
))

sgn (ζ) H1 (ζm)

+mwρw sin(β)sgn (ζ) H0 (ζm) q̄2. (C.9)

The control moment contribution (wing acceleration contribution) has the following

form:

∫
QC

((
ρ̃T
ciRβk

T + Rβk
TΘRW

)
ΩRW,d

)
· b̂x = (C.10)

+mwρwω
2ζmsgn (ζ)

(
sin(β) (1 + cos(αm))− sgn

(
ζ̇
)

cos(β) sin(αm)
)

H−1 (ζm) .

The contribution from the coupling between the position of the wings and the aero-

dynamic pitching moment is

∫
QC

ρc2,xMaero =
1

4
cos(β)r̂2bwmwρwkN cos(αm)

(
1− J0 (2ζm)− J2 (2ζm)

)
−1

4
sin(β)r̂2bwmwρwkT sin(αm)

(
1− J0 (2ζm)− J2 (2ζm)

)
+

1

8
cos(β)cwmwρwkNsgn (ζ)

1

2ζm
H1 (2ζm) . (C.11)

Pitch Velocity - q̇

The contribution from the the coupling between the position of the wing center

of mass (differs from the aerodynamic pitching moment) and the aerodynamic force
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is

∫
QC

ρc2,zFx − ρc2,zFz = ρwmwsgn (ζ) (kN cos(αm)− kT sin(αm))
1

ζm
H1 (ζm) . (C.12)

For symmetrical flapping, in a longitudinal, vertical, or hovering flight condition, the

ω̄i × Iiω̄i term reduces to the following for the wings (using the right wing as the

example):

(ω̄i × Iiω̄i) · b̂y = (Ixx,2 − Izz,2) pRW rRW + Ixz,2
(
pRW

2 − rRW 2
)

(C.13)

+ (Iyz,2pRW − Ixy,2rRW ) q.

The term I2 (ω̄1 × ω̄2) results from the calculation of I2 ˙̄ω2. The remaining contribu-

tion is analogous to the ¨̄ρci terms affecting the translation of the central body. For

symmetrical flapping, the term I2 (ω̄1 × ω̄2) reduces to

I2 (ω̄1 × ω̄2) · b̂y = (Iyz,2pRW − Ixy,2rRW ) q. (C.14)

The individual components of the inertia tensor (eg. Ixx,i) correspond to the trans-

formed inertia tensor in the wing frame. The quarter cycle representation of the

I2 (ω̄1 × ω̄2) is

∫
QC

I2 (ω̄1 × ω̄2) · b̂y = (C.15)

1

π
ωζm cos(αm) (Ixx,w − 2Iyy,w + Izz,w) sgn (s (2ω))

(
1− cos(2ζm)

2ζm

)
q̄

+
1

π
ωζm (cos(αm) cos(2αm)) (Ixx,w − Izz,w) sgn (s (2ω))

(
1− cos(2ζm)

2ζm

)
q̄

− 2

π
ωζm

(
cos(αm) sin2(αm)

)
(Ixx,w − Izz,w) sgn (s (2ω))

(
1− cos(ζm)

ζm

)
q̄.
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The quarter cycle representation for ω̄i × Iiω̄i is:

∫
QC

ω̄i × Iiω̄i · b̂y = (C.16)

−1

4
(ωζm)2 (Ixx,w − Izz,w) sin(4αm) sgn

(
ζ̇
) (

J0 (ζm) + J2 (ζm)
)

− 1

16
(ωζm)2 (Ixx,w − Izz,w) sin(4αm) sgn

(
ζ̇
) (

3 + J0 (2ζm) + J2 (2ζm)
)

+
1

8
(ωζm)2 (Ixx,w − 2Iyy,w + Izz,w) sin(2αm) sgn

(
ζ̇
) (

1− J0 (2ζm)− J2 (2ζm)
)

+

∫
QC

I2 (ω̄1 × ω̄2) · b̂y. (C.17)

The wing acceleration contribution to the pitch velocity, using the right wing as an

example, is: ((
A22

−1E23

)
ΩRW,d

)
· b̂y. (C.18)

where A22 and E23 are previously defined in Appendix B. The quarter cycle repre-

sentation is

∫
QC

((
A22

−1E23

)
ΩRW,d

)
· b̂y =

1

2
ω2ζm (Ixx,w − Izz,w) sgn

(
ζ̇
)

sin(αm)J1 (ζm)

+
1

2
ω2ζm (Ixx,w − Izz,w) sgn

(
ζ̇
)

sin(αm) cos(2αm)

(
J1 (ζm) +

1

2
J1 (2ζm)

)
+

1

4
ω2ζm (Ixx,w − 2Iyy,w + Izz,w) sgn

(
ζ̇
)

sin(αm)J1 (2ζm) . (C.19)

The following constants results from the derivation of the contributions of the forward

velocity and vertical velocity to the aerodynamic forces and moments. The constants

k1 and k2 result from the u(w) contribution of the tangential force and normal force,

respectively, to the thrust force in the stroke plane as a result of the geometric angle
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of attack.

k1 = 0.4ρAw (r̂2bwωζm)

(
1

2
cos(αm) +

1

4
cos(3αm) +

1

4
cos(5αm)

)
(C.20)

k2 = 3.4ρAw (r̂2bwωζm) sin2(αm) (C.21)

The constants k3 and k4 result from the u(w) contribution of the tangential force

and normal forces, respectively, to the lift force in the stroke plane as a result of the

geometric angle of attack.

k3 = 0.4ρAw (r̂2bwωζm)

(
1

2
sin(αm)− 1

4
sin(3αm) +

1

4
sin(5αm)

)
(C.22)

k4 = 1.7ρAw (r̂2bwωζm) sin(2αm) (C.23)

The constants k5 and k6 result from the u2(w2) contribution of the tangential force

and normal forces, respectively, to the lift force in the stroke plane as a result of the

geometric angle of attack.

k5 = 0.2ρAw

(
1

2
cos(αm) +

1

4
cos(3αm) +

1

4
cos(5αm)

)
(C.24)

k6 = 1.7ρAw sin2(αm) (C.25)

The constants k7 and k8 result from the u2(w2) contribution of the tangential force

and normal forces, respectively, to the lift force in the stroke plane as a result of the

geometric angle of attack.

k7 = 0.2ρAw

(
1

2
sin(αm)− 1

4
sin(3αm) +

1

4
sin(5αm)

)
(C.26)

k8 = 0.85ρAw sin(2αm) (C.27)
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The constants k9 and k10 result from the u(w) contribution of the tangential force

and normal force, respectively, to the thrust force in the stroke plane as a result of

the change in angle of attack.

k9 = 0.2ρAw (r̂2bwωζm)
(

sin(3αm) + sin(5αm)
)

(C.28)

k10 = 0.85ρAw (r̂2bwωζm) sin(2αm) (C.29)

The constants k11 and k12 result from the u(w) contribution of the tangential force

and normal force, respectively, to the lift force in the stroke plane as a result of the

change in angle of attack.

k11 = 0.2ρAw (r̂2bwωζm)
(

sin(3αm)− sin(5αm)
)

(C.30)

k12 = 1.7ρAw (r̂2bwωζm) cos2(αm) (C.31)

The constants k13 and k14 result from the u2(w2) contribution of the tangential force

and normal force, respectively, to the thrust force in the stroke plane as a result of

the change in angle of attack.

k13 = 0.05ρAw
(

sin(3αm) + sin(5αm)
)

(C.32)

k14 = 0.425ρAw sin(2αm) (C.33)

The constants k15 and k16 result from the u2(w2) contribution of the tangential force

and normal force, respectively, to the lift force in the stroke plane as a result of the

change in angle of attack.

k15 = 0.1ρAw
(

sin(3αm)− sin(5αm)
)

(C.34)

191



k16 = 0.85ρAw cos2(αm) (C.35)

The constants k17 and k18 result from the u(w) and u2(w2) contributions of the

normal force to the aerodynamic pitching moment. The contributions are due to

the geometric angle of attack and the normal force acting through the chord-wise

component of the aerodynamic center of pressure.

k17 = 0.425ρAwcw (r̂2bwζm) sin(αm) (C.36)

k18 = 0.425ρAwcw sin(αm) (C.37)

The constants k19-k24 result from the change in angle of attack contribution to the

aerodynamic pitching moment. The constants k19 and k20 result from the u(w) con-

tribution to the tangential and normal forces, respectively, acting through the radial

component of the aerodynamic center of pressure.

k19 = 0.2ρAw (r̂2bw)2 ωζm
(

cos(3αm)− cos(5αm)
)

(C.38)

k20 = 1.7ρAw (r̂2bw)2 ωζm cos2(αm) (C.39)

The constants k21 and k22 result from the u2(w2) contribution to the tangential and

normal forces, respectively, acting through the radial component of the aerodynamic

center of pressure.

k21 = 0.05ρAwr̂2bw
(

cos(3αm)− cos(5αm)
)

(C.40)

k22 = 0.425ρAwr̂2bw cos2(αm) (C.41)

Finally, the constants k23 and k24 result from the u(w) and u2(w2) contributions of

the normal force to the aerodynamic pitching moment. The contributions are due
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to the change in angle of attack and the normal force acting through the chord-wise

component of the aerodynamic center of pressure.

k23 = 0.425ρAwcw cos(αm) (r̂2bwωζm) (C.42)

k24 = 0.10625ρAwcw cos(αm) (C.43)
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APPENDIX D

Integrals of Periodic Functions: Quarter-Cycle

Representation

The appendix details the various integrals used to calculated the average and

quarter-cycle equations of motion. The integrals are derived through the use of [124,

125, 126] and Wolfram Alpha. The input waveforms have two main forms: z sin(θ)

and z cos(θ), where z denotes the amplitude of the sinusoidal or cosinusoidal wave.

The first integral results in a Bessel function of the first kind, order zero. The integral

has the same value over each quarter-cycle.

2

π

π
2∫

0

cos (z sin θ) dθ =
2

π

π
2∫

0

cos (z cos θ) dθ = J0(z) (D.1)

The next integral results in a Struve function of the first kind, order zero. The

integral changes sign over each quarter-cycle, depending on the input wave (either

sine or cosine). However, regardless of the type of input waveform, the integral is

zero over the full flapping cycle from 0 to 2π.

2

π

π
2∫

0

sin (z sin θ) dθ =
2

π

π
2∫

0

sin (z cos θ) dθ = H0(z) (D.2)
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For a sinusoidal input, sin (z sin θ), the quarter-cycle function is sgn (sin θ) H0(z).

For a cosinusoidal input, sin (z cos θ), the quarter-cycle function is sgn (cos θ) H0(z).

The next four integrals detail integrals involving the sine and cosine of a sinusoidal

wave multiplied by an additional sine or cosine wave. The first integral changes sign

consistent with a cosine wave:

2

π

π
2∫

0

cos (z sin θ) cos θdθ =
2

π

sin(z)

z
. (D.3)

The integral is zero over the entire flapping cycle. The quarter-cycle approximation

is ∫
QC

cos (z sin θ) cos θdθ = sgn (cos θ)
2

π

sin(z)

z
. (D.4)

The next integral changes sign consistent with a sine wave and is zero over the entire

flapping cycle:

2

π

π
2∫

0

cos (z sin θ) sin θdθ = H−1(z). (D.5)

The quarter-cycle approximation is

∫
QC

cos (z sin θ) sin θdθ = sgn (sin θ) H−1(z). (D.6)

The next integral changes sign over each quarter-cycle. The sign changes are consis-

tent with a sine wave with double the angle.

2

π

π
2∫

0

sin (z sin θ) cos θdθ =
2

π

1− cos(z)

z
(D.7)
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The quarter-cycle approximation is

QC∫
0

sin (z sin θ) cos θdθ = sgn (sin 2θ)
2

π

1− cos(z)

z
. (D.8)

The next integral is constant over all four flapping cycles. No quarter-cycle represen-

tation is necessary.

2

π

π
2∫

0

sin (z sin θ) sin θdθ = J1(z) (D.9)

The next four integrals involve multiplication by double angle sinusoidal and cosinu-

soidal waveforms. The first integral is constant over all four quarter-cycles.

2

π

π
2∫

0

cos (z sin θ) cos 2θdθ = J2(z) (D.10)

The next integral averages to zero over the flapping cycle and changes sign consistent

with a double angle sine wave.

2

π

π
2∫

0

cos (z sin θ) sin 2θdθ =
4

π

(−1 + cos(z) + z sin(z))

z2
(D.11)

The quarter-cycle representation is

2

π

π
2∫

0

cos (z sin θ) sin 2θdθ = sgn (sin 2θ)
4

π

(−1 + cos(z) + z sin(z))

z2
. (D.12)

The next integral changes sign consistent with a sine wave.

2

π

π
2∫

0

sin (z sin θ) sin 2θdθ =
4

π

(−z cos(z) + sin(z))

z2
(D.13)
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The quarter-cycle representation is

2

π

π
2∫

0

sin (z sin θ) sin 2θdθ = sgn (sin θ)
4

π

(−z cos(z) + sin(z))

z2
. (D.14)

The last integral changes sign consistent with a sine wave.

2

π

π
2∫

0

sin (z sin θ) cos 2θdθ =
2

z
H1(z)−H0(z) (D.15)

The quarter-cycle representation is

2

π

π
2∫

0

sin (z sin θ) cos 2θdθ = sgn (sin θ)
2

z
H1(z)−H0(z). (D.16)

An interesting result happens with an integral of the form sin(z sin θ) cos2 θ. Using

the double angle form of cos2 θ, the integral can be evaluated according to

2

π

π
2∫

0

sin(z sin θ) cos2 θdθ =
1

z
H1(z). (D.17)
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