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Chapter 1  
Introduction 

 

The automotive industry is faced with the challenge of increasing vehicle fuel 

economy in response to changes in federal regulations and to address environmental 

concerns.  Reducing the weight of automobiles and lowering the friction in wheel 

bearings are two means by which vehicle fuel consumption can be lowered.  Regarding 

weight, the trend is to replace traditional carbon steel with light metals and their alloys 

such as high strength low alloy steel or magnesium.  Regarding friction, developments in 

wheel bearing design and materials stride to lowering the friction coefficient while 

increasing the fatigue lives of bearings.   

This dissertation consists of two parts.  In Chapters 2 and 3, the failure modes of 

laser and ultrasonic welds in lap-shear specimens are covered.  In Chapters 4, 5 and 6, 

analytical solutions to calculate the load exerted by the rolling elements in roller bearings 

are proposed and fatigue lives are estimated.   

Chapter 2 represents a paper for modeling of failure mode of laser welds in lap-

shear specimens of HSLA steel sheets.  Chapter 3 represents a paper for modeling of 

failure mode of ultrasonic welds in lap-shear specimens of magnesium to steel sheets.  

Chapter 4 represents a paper for the calculation of load and fatigue life in roller bearings.  

Chapter 5 represents a paper for the geometric effects on contact pressure distribution and 
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fatigue lives of roller bearings.  Chapter 6 represents a paper for the calculation of load 

and contact pressure in cylindrical roller bearings with interference.  

In Chapter 2, failure mode of laser welds in lap-shear specimens of high strength 

low alloy (HSLA) steel sheets is investigated in this chapter.  The experiments for laser 

welds in lap-shear specimens under quasi-static loading conditions are briefly reviewed.  

The experimental results showed that the laser welds failed in a ductile necking/shear 

failure mode and the ductile failure was initiated at a distance away from the crack tip 

near the boundary of the base metal and heat affected zone.  In order to understand the 

failure mode of these welds, finite element analyses under plane strain conditions were 

conducted to identify the effects of the different plastic behaviors of the base metal, heat 

affected zone, and weld zone as well as the weld geometry on the ductile failure.  The 

results of the reference finite element analysis based on the homogenous material model 

show that the failure mode is most likely to be a middle surface shear failure mode in the 

weld.  The results of the finite element analysis based on the multi-zone non-

homogeneous material models show that the higher effective stress-plastic strain curves 

of the weld and heat affected zones and the geometry of the weld protrusion result in the 

necking/shear failure mode in the load carrying sheet.  The results of another finite 

element analysis based on the non-homogeneous material model and the Gurson yield 

function for porous materials indicate that the consideration of void nucleation and 

growth is necessary to identify the ductile failure initiation site that matches well with the 

experimental observations.  Finally, the results of this chapter indicate that the failure 

mode of the welds should be examined carefully and the necking/shear failure mode 
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needs to be considered for development of failure or separation criteria for welds under 

more complex loading conditions. 

In Chapter 3, failure mode of ultrasonic welds in lap-shear specimens of 

magnesium and steel sheets is investigated in this paper.  The experiments for ultrasonic 

welds in dog-bone shaped lap-shear specimens under quasi-static loading conditions are 

briefly reviewed first.  The experimental results show that the ultrasonic welds failed in a 

shear failure mode initiated from the pre-existing crack tip and the corner of the 

indentation created by the sonotrode tool tip.  In order to understand the failure mode of 

the ultrasonic welds, finite element analyses under plane strain and plane stress 

conditions are conducted to identify the effects of the weld geometry and the material 

property variation on the failure mode.  The results of the finite element analyses based 

on two-zone and multi-zone material models show that the weld indentation triggers 

different plastic flow patterns in the load carrying sheet.  Also, finite element analyses are 

conducted to obtain the J  integral solutions for the pre-existing crack and a kinked crack 

with a small kink length.  The results of the finite element analyses indicate that the J  

integral solution for the kinked crack is much higher than that for the interface crack.  

This suggests that the interface strength between the magnesium and steel sheets is quite 

high and the critical J  needed to grow the crack along the interface is not met.  

Therefore, the crack kinks out of the interface to grow into the magnesium sheet where 

the critical J  to grow the crack is met.  Finally, the results of this investigation indicate 

that the failure mode of the welds should be examined carefully and the failure mode 

needs to be considered for development of failure or separation criteria for welds under 

more complex loading conditions. 
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In Chapter 4, a closed-form load distribution solution for calculation of the loads 

exerted by the rolling elements on the outer raceway in cylindrical or spherical roller 

bearings under radial loading is proposed in this chapter.  The loads exerted by the rolling 

elements are obtained based on an assumption that the maximum contact pressure 

profiles of multiple rolling elements collectively resemble the contact pressure profile of 

the corresponding continuous cylinder.  Based on this assumption, an analytical load 

distribution solution which gives the loads exerted by the rolling elements on the outer 

raceway is derived based on the non-conforming contact solution of Hertz and the 

conforming contact solution of Persson.  These loads can be calculated from the 

analytical solution with the total applied load and the normalized contact pressure profile 

of the corresponding continuous body.  Two-dimensional and three-dimensional finite 

element analyses were conducted to validate the proposed analytical solutions.  The 

maximum load of the rolling elements calculated from the analytical solution is within 3% 

and 10% of the result from the two-dimensional and three-dimensional finite element 

analyses, respectively.  A method to estimate the fatigue lives of bearings based on the 

analytical solution is summarized to present a simple procedure to compare the fatigue 

performance of the bearings with different designs. 

In Chapter 5, a special case in which the analytical solution proposed in Chapter 4 

cannot be applied due to unique boundary conditions is discussed with the cam follower 

roller bearing as an example.  Effects of roller diameter and number on the contact 

pressures, subsurface stresses and the fatigue lives of cam roller follower bearings are 

investigated in this chapter.  Finite element analyses under plane strain conditions were 

conducted to identify the effects of the diameter and number of the rolling elements and 
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the thickness of the outer ring.  A kinematic analysis under pure rolling conditions and 

the results of the finite element analyses show that the fatigue lives of the stationary inner 

pin should be shorter than those of the rotating outer ring, and the results are in 

agreement with the observations of the failure mode of cam follower roller bearings.  The 

fatigue life of the inner pin generally increases as the roller diameter increases.  But, 

reducing the number of rollers to accommodate larger rollers does not necessarily 

increase the fatigue life.  The inevitable decrease of the thickness of the outer ring due to 

the increase of the roller diameter results in the increase of compliance for the outer ring.  

This increase of compliance leads to excessive deformation of the outer ring and 

consequently more load must be carried by smaller number of rolling elements.  For cam 

roller follower bearings, a parametric study based on the finite element analyses should 

be conducted to obtain the optimum geometry which gives the lowest maximum 

subsurface Mises stress and contact pressure which results in the longest fatigue life. 

In Chapter 6, a closed-form solution to calculate the loads exerted by the rolling 

elements in cylindrical roller bearings with consideration of interference fit of rollers is 

proposed in this chapter.  The non-conforming Hertz solution and the conforming 

Persson solution are first briefly reviewed.  The interference loads by the rolling elements 

due to the interference are derived and then approximated for a given set of geometric 

parameters of bearings.  With the solution for the interference load, the loads exerted by 

the rolling elements on the outer raceway are obtained when the total load is less than the 

separation load where a rolling element possibly start to lose contact with the cylinders.  

These loads of the rolling elements can be calculated by a closed-form equation with the 

total applied load, the number of rolling elements, the angular locations of the rolling 
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elements, the equivalent elastic modulus, the interference, the outer raceway diameter and 

the thickness of the outer cylinder as the input parameters.  Two-dimensional finite 

element analyses were conducted to verify the applicability of the closed-form solution.  

Finite element models with different diameters of the outer and inner cylinders, diameters 

of the rolling element, number of rolling elements, and the thickness of the outer cylinder 

were considered for the validation.  The results of the finite element analyses show that 

the maximum contact pressures of the rolling elements obtained from the closed-form 

solution are within 1% of those of the finite element analyses when the total load is less 

than the separation load.    
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Chapter 2  
Modeling of failure mode of laser welds in lap-shear specimens of HSLA steel sheets 

 

Introduction 

Laser welding has been widely used in the industry because of its advantages such as 

narrow heat affected zone, low distortion and relatively high welding speed.  A lap joint 

is a common weld joint by laser welding due to its relatively less restricted tolerance 

requirement.  Due to the geometry of the lap joint, natural crack or notch tips are present 

at the edges of the weld bead.  Fatigue cracks are usually initiated from the natural crack 

or notch tips of lap joints.  Laser welded components with lap joints are often subjected 

to cyclic loading conditions.  Many researchers investigated the fatigue lives of laser 

welded lap joints.   

Hsu and Albright [1] combined a static stress analysis with the Neuber’s rule and 

established a model to calculate the fatigue life from the local stress and strain near the 

main notches of laser welded lap joints.  Wang and Ewing [2] conducted experiments to 

examine the fatigue strengths of resistance spot welds and laser welds under lap-shear 

loading conditions.  Flavenot et al. [3] performed fatigue tests on laser welded lap joints 

with various welding parameters such as the weld bead geometry, the gap between the 

upper and lower sheets and the input energy of laser.  Wang [4] correlated the 

experimental fatigue lives with the values of the J integral from finite element 

computations.   
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Ono et al. [5] investigated the fatigue strength of laser welded lap joints and 

correlated the fatigue lives to the maximum stress intensity factor ranges.  Terasaki et al. 

[6] examined the fatigue lives of laser welded lap joints and correlated the experimental 

results by the stress intensity factor solutions.  Kaitanov et al. [7] showed that the fatigue 

strength of laser welded lap joints depends on the weld width.  Cho et al. [8] examined 

the fatigue strength of laser welded lap joints with consideration of residual stresses 

obtained from thermo-mechanical finite element analyses.  Sonsino et al. [9] examined 

laser welded tube-tube specimens by multiaxial fatigue theories.  Sripichai et al. [10] 

investigated the fatigue lives of laser welded lap joints of high strength low alloy steel 

based on closed-form analytical and computational stress intensity factor solutions.  

Many investigations on the fatigue lives of laser welded lap joints have been 

conducted.  However, limited research has been conducted to examine the strength and 

failure mode of laser welded joints.  Ono et al. [5] correlated the static strength of laser 

welded lap joints to the tensile strength and hardness values of the welds.  Kaitanov et al. 

[7] found that the weld width and pattern significantly affect the static strength of laser 

welded lap joints.  Recently, Chien et al. [11] examined the shear failure of laser welded 

aluminum blanks under uniaxial and biaxial straining conditions.  Taban et al. [12] 

investigated the static and fatigue strength of laser welded butt joints of 12% Cr stainless 

steel plates by experiments.  Casavola et al. [13] examined the static strength of laser 

welded butt joints of titanium sheets as well as their fatigue strength.  They conducted a 

two-dimensional elastic plane strain finite element analysis to understand the stress 

concentration near the weld.  Asim et al. [14] recently conducted an experimental 
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investigation of the failure mechanism and strength of laser welds in lap-shear specimens 

of high strength low alloy steel. 

In this investigation, finite element analyses were conducted to understand the effects 

of the different material plastic behaviors of the base metal, heat affected zone and weld 

zone as well as the weld geometry on the failure mode of laser welds in lap-shear 

specimens of HSLA steel under quasi-static loading conditions.  Two-dimensional plane 

strain finite element analyses with homogeneous material properties and non-

homogeneous material properties in the weld zone, heat affected zone and base metal are 

first carried out.  Since the experimental results of Asim et al. [14] indicate that the 

failure of the laser welds is of a ductile nature, another finite element analysis is carried 

out based on the Gurson yield function [15], [16] with consideration of void nucleation 

and growth.  The results of the finite element analyses are then compared with the 

experimental observations.  Finally, conclusions are made.   

 

Experimental results 

Lap-shear specimen 

The lap-shear specimens used in Sripichai et al. [10] were also used in Asim et al. 

[14].  These specimens were made by using 95 mm by 27 mm HSLA steel sheets with a 

thickness of 0.93 mm.  The specimens were welded using a 6 kW CO2 laser with a weld 

speed of 8 m/min and were then machined into a dog-bone shaped profile using a CNC 

milling machine.  The central part of the specimen has a reduced width.  The width and 

length of the uniform straight part of the section with the reduced width are 8 mm and 

13.5 mm, respectively.  Figs. 2.1(a) and 2.1(b) show top and bottom views of a laser 
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welded lap-shear specimen.  The weld zone is very narrow and its average width is about 

1 mm.  Two doublers of 55 mm by 27 mm were used to align the fixture to avoid the 

initial realignment of the specimen due to the non-aligned grips under lap-shear loading 

conditions.  Fig. 2.1(c) shows a schematic of a lap-shear specimen.  As shown in the 

figure, the specimen has a width W , sheet thickness t  and overall length L  for the 

upper and lower sheets.  The specimen has a reduced width b  for the central portion, an 

overlap length V  and a width d  for the laser weld zone which is indicated as the shaded 

area in the figure.  The dimensions of the specimens are W  = 27 mm, t  = 0.93 mm, L  = 

95 mm, b  = 8.0 mm, V  = 30 mm and r  = 10 mm. 

 

Quasi-static test 

Quasi-static tests of lap-shear specimens as schematically shown in Fig. 2.1(c) were 

carried out under displacement controlled conditions.  These tests were conducted using 

an automated MTS testing machine at a constant cross-head speed of 1 mm/min.  Fig. 2.2 

shows a representative load-displacement curve obtained from one quasi-static test.  The 

average maximum (or failure) load and the average maximum displacement obtained 

from three quasi-static tests are about 3 kN and 2.1 mm, respectively.  The load-

displacement curves obtained from the finite element analyses are also plotted in Fig. 2.2 

and will be discussed later.  During the tests, the weld nugget rotated as the applied 

displacement increased.  The angle of rotation continued to increase and a final value of 

50˚ with respect to the line of loading was measured for a completely failed specimen.  

The nugget rotation is the consequence of the non-uniform plastic deformation through 

the thickness of the load carrying sheet near the weld nugget.   
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Fig. 2.3(a) shows a micrograph of the cross section near a weld just prior to 

failure.  Two arrows in the figure show the line of loading.  A magnified view of the 

crack formation near the inner surface of the lower left sheet at a distance to the crack tip 

is shown as an insert.  Also, the nugget rotation has caused the relatively rigid round 

protrusion to penetrate the nearby softer base metal and the heat affected zone of the left 

lower sheet in a buckling action which will be discussed later.  Fig. 2.3(a) also shows the 

necking of the upper right and lower left sheet near the weld.  The necking, which took 

place along with the weld nugget rotation, reduced the thickness of both load carrying 

sheets noticeably.  Fig. 2.3(b) shows a micrograph of the cross section near a weld that 

has been completely failed after the quasi-static test.  As shown, the lower left sheet was 

completely separated to failure at a distance away from the left crack tip.  The 

combination of the necking and the buckling of the left lower sheet appear to be the main 

mechanism to fail the weld. 

 

Weld microstructure 

Fig. 2.4 shows a micrograph for the cross section near a weld in a lap-shear 

specimen.  Three regions can be identified based on their distinct grain structures.  The 

fusion zone of the weld is characterized by its columnar dendrites and non-equiaxed 

coarse grains with fine pearlite and low carbon bainite [17].  These were formed due to 

the localized heat from the high energy laser beam followed by a rapid cooling of the 

molten metal.  A less coarse grain structure in the narrow heat affected zones (HAZs) is 

visible between the fusion zone and the base metal.  The narrow HAZs span about 50 μm 

on both sides of the fusion zone.  The base metal has a fine and randomly oriented grain 

structure.   
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Hardness measurement 

Micro-hardness tests were carried out to obtain the Vickers hardness values for 

the upper sheet, middle surface and lower sheet across the weld width.  The hardness 

values are fairly consistent in the thickness direction for the upper sheet, middle surface 

and lower sheet.  Shown in Fig. 2.5 are the results of the hardness values across the weld.  

The hardness value for the base metal is around 150HV.  The hardness value sharply 

increases in the heat affected zone and reaches the highest value of near 240HV at the 

center of the weld zone.  Fig. 2.5 also shows the assumed hardness distributions for the 

middle surface of the weld, which are used to estimate the tensile stress-plastic strain 

curves of the different material sections in the 3-zone and 6-zone finite element analyses 

that will be discussed later.   

 

Material stress-strain curve 

The tensile stress-strain curve of the base metal is fitted by an elastic power-law 

strain hardening relation based on the experimental tensile stress-strain curve as 

 
0

0

     for    

   for    n

E

K

   

   

 

 
 (2.1) 

where   represents the tensile stress, E  represents the elastic modulus,   is the tensile 

strain and 0  is the initial yield stress.  K  represents the strength coefficient and n  

represents the hardening exponent.  0 , K , n  and E  are determined for the base metal 

as 315 MPa, 617 MPa, 0.18 and 200 GPa, respectively.  Fig. 2.6 shows the tensile stress-

plastic strain curve of the base metal based on the stress-strain relation in Eq. (2.1). 
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Since it is difficult to determine the tensile stress-plastic strain curves of the weld 

and heat affected zones, the tensile stress-plastic strain curves for the weld and heat 

affected zones have been estimated by scaling the tensile stress of the base metal 

proportional to the corresponding hardness values measured by the indentation tests for a 

given plastic strain.  The values of the Vickers hardness and the scaled initial yield stress 

are listed in Table 2.1(a) for the 3-zone finite element model and Table 2.1(b) for the 6-

zone finite element model.  Fig. 2.6 shows the tensile stresses as functions of the plastic 

strain for the base metal, heat affected zone and weld zone used in the 3-zone finite 

element model.  The tensile stress-plastic strain curves for the 6-zone finite element 

model are scaled up by the hardness values for a given plastic strain in a similar fashion.  

These tensile stress-plastic strain curves were used as the effective stress-plastic strain 

curves in the finite element analyses.  The deformation histories of the material elements 

in the lap-shear specimen are obtained from the finite element analyses and are used to 

examine the failure mode of the laser welds that will be presented in the following 

section. 

 

Finite element simulations 

Finite element model 

In addition to the different plastic behaviors of the base metal, heat affected zone 

and weld zone, the geometry of the weld appears to affect the failure mode significantly 

[14].  Finite element analyses based on the initial weld geometry as shown in Fig. 2.4 are 

carried out in this study to identify the influences of the plastic behaviors of the heat 

affected and weld zones as well as the weld geometry on the failure mode of the welds in 
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lap-shear specimens.  Since the weld zone dimensions have minimal discrepancy along 

the welding direction due to the high consistency achieved by the laser welding process, 

two-dimensional plane strain finite element models are used to simulate the elastic-plastic 

behavior in the middle portion of the lap-shear specimen.  Fig. 2.7(a) shows a two-

dimensional finite element model of a lap-shear specimen where the shaded region 

represents the weld zone.  The Cartesian coordinate X-Y system is also shown in the 

figure.  As shown in Fig. 2.7(a), the middle plane of the left end of the model is fixed and 

the displacement of the middle plane of the right end of the model is applied in the X 

direction.  Fig. 2.7(b) shows a close-up view of the finite element mesh near the weld.  

First-order, isoparametric, plane strain, quadrilateral, reduced integration elements 

(CPE4R) are used in this model.  The minimum element size is 0.014 mm.  The elastic 

modulus is taken as 200 GPa and the Poisson’s ratio is taken as 0.3.  The Mises yield 

function is adopted to describe the elastic-plastic behavior of the material with the tensile 

stress-plastic strain curve used as the effective stress-plastic strain curve.  The yield 

surface evolution is assumed to follow the isotropic hardening rule.  It should be 

mentioned that the residual stresses near the weld are not considered due to lack of 

quantitative information.  Computations were performed using the commercial finite 

element code ABAQUS v6.8 [18]. 

 

Homogeneous material model 

In order to understand the effect of the material stress-strain curves on the failure 

mode, a reference finite element analysis was first conducted by assuming a 

homogeneous material behavior throughout the model using the material properties of the 

base metal.  It should be noted that the material plastic behavior can be nearly the same as 
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the base metal as for aluminum ultrasonic spot welds [19].  The results of the parametric 

study presented here can give some insight on the failure mode of the ultrasonic spot 

welds under lap-shear loading conditions.  The results from the homogeneous model will 

be compared with those of more realistic multi-zone finite element models where the 

higher effective stress-plastic strain curves of the heat affected and weld zones are 

considered.  It will be shown later that the existence of the heat affected and weld zones 

with higher effective stress-plastic strain curves significantly affects the patterns of 

plastic deformation, failure mode and the location of failure of the lap-shear specimen.   

The load-displacement curve of the lap-shear specimen from the finite element 

analysis based on the homogeneous material model is shown in Fig. 2.2.  The load-

displacement curve from the finite element analysis is reasonably in agreement with but a 

bit lower than the experimental results.  Figs. 2.8(a)-(d) show the deformed shapes of a 

lap-shear specimen from the finite element analysis based on the homogeneous material 

model at the applied displacements of 0.5, 1.0, 1.5 and 2 mm, respectively.  The rotation 

of the non-load carrying sheets due to the rotation of the weld zone increases as the 

displacement increases.  Similar rotational behavior has been observed in simulations of 

lap-shear specimens with resistance spot welds in Radaj et al. [20] and Nielson [21].   

Fig. 2.9(a) shows the equivalent plastic strain distributions near the two crack tips 

at the applied displacement of 0.1 mm.  The plastic zones are large near the tips in two 

directions due to the mixed mode loading conditions and the constraint conditions 

imposed by the geometry of the lap-shear specimen [22].  As the displacement increases, 

both type A and B plastic zones as marked in Fig. 2.9(a) grow.  Due to the proximity of 

the two crack tips, the type A plastic zones originating from both crack tips link up and 
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evolve into the dominant plastic strain deformation mode of the weld as shown in Fig. 

2.9(b) at the applied displacement of 2.0 mm.  The type B plastic zone near the left crack 

tip grows to the edge of the weld protrusion on the bottom surface of the lower left sheet.  

However, the type B plastic zone near the right crack tip does not grow to the other side 

of the sheet surface.  Necking develops for both the lower left and upper right load 

carrying sheets due to non-uniform plastic deformation near the tips.  Thus, for the 

homogeneous material model, the failure mode of the lap-shear specimen can be most 

likely to be a middle surface shear failure mode in the weld due to the large plastic 

deformation between the two tips.  This is possible only when the heat affected and weld 

zones have the same stress-strain behavior as the base metal.  However, the experimental 

results clearly indicate that the failure occurs in a ductile necking/shear mode in the lower 

left load carrying sheet.  This implies that the homogeneous material assumption is not 

suitable to explain the observed failure mode and that a non-homogeneous material 

model with consideration of more realistic stress-strain curves for the heat affected and 

weld zones should be considered. 

 

3-zone non-homogeneous material model 

In order to understand the effect of the higher effective stress-plastic strain curves 

of the heat affected and weld zones, the tensile stress-plastic strain curves as shown in Fig. 

2.6 for the heat affected and weld zones have been incorporated in the finite element 

model as shown in Fig. 2.10(a).  The different stress-plastic strain curves are adopted in 

the finite element analysis in order to account for the different hardness values in the base 

metal, heat affected zone and weld zone.  The size, shape and location of the heat 

affected and weld zones were designed to match the distinct grain structures based on the 
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micrograph of the cross section near a weld in a lap-shear specimen as shown in Fig. 2.4 

and again in Fig. 2.10(b).  Based on the grain size and shape in the micrograph, the heat 

affected zone appears to extend from the crack tip into both base metal and weld zone 

with an average width of 50 µm along the middle surface.  Therefore, in the 3-zone finite 

element model, the heat affected zone is assumed to extend into both base metal and weld 

zone with the width of 50 µm along the middle surface.  Thus, the total width of the heat 

affected zone along the middle surface in the finite element model is taken to be 100 µm.  

Based on the micrographs shown in Figs. 2.4 and 2.10(b) and other cross sections of the 

welds, the average weld width is 800 µm measured from one crack tip to the other.  

Therefore, the weld width along the middle surface between the two crack tips in the 

finite element model is taken to be 800 µm.  The weld and heat affected zones are 

expanded in the lower sheet due to the protrusion in the finite element model as shown in 

Fig. 2.10(a).  The values of the scaled initial yield stresses and the assumed hardness 

values for the base metal, heat affected zone and the weld zone are listed in Table 2.1(a).   

The deformed shapes of the specimen from the finite element analysis based on 

the 3-zone model at the applied displacements of 0.5, 1.0, 1.5 and 2.0 mm, respectively, 

are depicted in Figs. 2.11(a)-(d).  The rotation of the non-load bearing sheets is visible.  

When compared with the results based on the homogeneous material model, the rotation 

of the non-load bearing sheets for the 3-zone model is slightly larger at a given 

displacement.  When the displacement at the right end is at 2.0 mm, the angle of the 

rotation for the homogeneous model is 35˚ (Fig. 2.8(d)) while that angle is 40˚ (Fig. 

2.11(d)) for the 3-zone model.  In order to accommodate the imposed displacement 

boundary condition to the specimen, the material along the middle surface of the weld 
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deforms significantly for the homogeneous model.  However, when the heat affected and 

weld zones have the higher stress-strain curves for the 3-zone model, the material along 

the middle surface of the weld is more rigid compared to the base metal and therefore has 

less plastic deformation along the middle surface of the weld compared to that of the 

homogeneous material model.  Consequently, as the applied displacement increases, the 

material outside of the weld in the two load carrying sheets must deform more and the 

rotation of the non-load carrying sheets must be larger than that of the homogenous 

model in order to accommodate the imposed displacement boundary condition. 

Figs. 2.12(a) and 2.12(b) show the equivalent plastic strain distributions near a 

weld for the 3-zone model at the displacements of 0.1 mm and 2.0 mm, respectively.  

Type A plastic zones ahead of the tips, yet small compared to type B plastic zones, are 

still visible at the small displacement of 0.1 mm.  The higher effective stress-plastic strain 

curves of the heat affected and weld zones in the 3-zone model prevent type A plastic 

zones ahead of the two crack tips from growing and linking with each other.  The type B 

plastic zones near the two tips are the dominant plastic deformation mode as shown in 

Fig. 2.12(a) for the 3-zone model at the displacement of 0.1 mm.  When the displacement 

continues to increase to 2.0 mm, the type B plastic zones grow significantly and the 

necking of the two load carrying sheets becomes apparent as shown in Fig. 2.12(b).  Also 

shown in Fig. 2.12(b), plastic deformation concentrates in the base metal near the 

boundary of the base metal and the heat affected zone for both load carrying sheets.  The 

abrupt change in the effective stress-plastic strain relations along the boundary of the 

base metal and the heat affected zone confines most of the plastic strain to occur on the 

base metal side of the boundary.  Fig. 2.12(c) shows a magnified view of the step-like 
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crack tip profile, the effective plastic strain distribution near the left crack tip, and the 

outer surface buckling and contact near the round protrusion of the lower left sheet.  Fig. 

2.12(d) shows a magnified view of the step-like crack tip profile and the effective plastic 

strain distribution near the right crack tip.  The computational results shown in Figs. 

2.12(a)-(d) indicate that the 3-zone model can simulate the ductile shear/necking failure 

mode observed in the experiment but the step-like crack tip profile does not match well 

with that of the micrograph as shown in Fig. 2.3(a). 

Based on the computational results of the 3-zone model, the following two 

important observations can be made.  First, the incorporation of the higher effective 

stress-plastic strain curves for the heat affected and weld zones drastically changes the 

macroscopic plastic flow pattern of the lap-shear specimen.  While the results of the 

homogeneous model imply that the middle surface shear failure could occur between the 

two crack tips in the weld, the results of the 3-zone non-homogenous model indicate that 

the necking/shear failure can occur on the base metal side of the boundary of the base 

metal and the heat affected zone in the load carrying sheets.   

Second, the bending of the load carrying sheets causes the rotation of the weld 

zone or vice versa as shown schematically in Figs. 2.13(a) and 2.13(b) at a small and 

large applied displacements, respectively.  In these figures, T represents tension and C 

represents compression while the two arrows indicate the line of loading.  The weld zone 

rotation induces tensile stresses on the upper portion of the lower left and the lower 

portion of the upper right load carrying sheets while the lower portion of the lower left 

and the upper portion of the upper right load carrying sheets experience compressive 

stresses.  Since the material on the outer surface near the round protrusion of the lower 
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left load carrying sheet is under compression, the material begins to buckle as the round 

protrusion pushes in as shown in Fig. 2.13(b).  The outer surface buckling creates an 

artificial notch or crack when the notch or crack surfaces contact each other near the left 

end of the round protrusion.  The imposed displacement boundary condition soon begins 

to open up the notch or crack which contributes to the final shear failure.  Based on these 

two observations, the necking/shear failure is most likely to occur on the side of the base 

metal of the lower left sheet where the plastic deformation of the upper portion of the 

lower left sheet can be linked up with that of the outer surface notch or crack near the 

weld protrusion. 

 

6-zone non-homogeneous material model 

In order to create a more realistic model than the 3-zone non-homogeneous model, 

the heat affected zone and the adjacent region of the weld zone as shown in Fig. 2.4 are 

sectioned into four distinct zones with four different effective stress-plastic strain curves.  

Fig. 2.14 shows a schematic of the 6-zone finite element model with different material 

sections.  The scaled initial yield stresses and the assumed hardness values of the base 

metal, heat affected zones (HAZ 1 and HAZ 2) and weld zones (Weld 1, Weld 2 and 

Weld 3) for the 6-zone model are listed in Table 2.1(b).  The initial yield stresses for 

HAZ 1, HAZ 2, Weld 1 and Weld 2 are scaled as 1.1 B
0 , 1.2 B

0 , 1.3 B
0  and 1.43 B

0  

according to the trends of the experimental hardness values.  Here, B
0  is the yield stress 

of the base metal.  A parametric study has been performed to lower the hardening 

exponent as the initial yield stress or the hardness values increases.  However, the 
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computational results indicate that the quantitative and qualitative results of the 

computations do not change significantly.   

Figs. 2.15(a) and 2.15(b) show the distributions of the equivalent plastic strain 

near a weld from the finite element analysis at the applied displacements of 0.1 mm and 

2.0 mm, respectively.  Similar to the results of the 3-zone model, type A plastic zones 

ahead of the crack tips are clearly smaller than type B plastic zones due to the higher 

effective stress-plastic strain curve of the weld zone at the displacement of 0.1 mm.  

Similar to the results of the 3-zone model, type B plastic zones near the crack tips are the 

dominant plastic deformation mode at the displacement of 0.1 mm.  As the displacement 

increases to 2.0 mm, type B plastic zones grow significantly, necking develops in both 

load carrying sheets, and plastic deformation concentrates on the base metal side of the 

boundary of the base metal and heat affected zone near both crack tips.  However, unlike 

the results of the 3-zone model where the plastic strain is abruptly larger on the base 

metal side of the boundary of the base metal and the heat affected zone, the plastic strain 

is more uniformly distributed in the base metal and the heat affected zones which have 

lower effective stress-plastic strain curves.  This allows for a smooth deformation mode 

and thus the crack tip profile resembles the deformed crack tip profile observed in the 

experiment.   

The deformed mesh near a weld in a lap-shear specimen at the applied 

displacement of 2.4 mm is shown in Fig. 2.16(a).  It should be noted that no failure 

criterion is selected for the finite element analysis and therefore the computation can 

continue to run at larger displacements than where the specimens actually failed during 

experiments.  Similar to the result of the 3-zone model, the rotation of the weld zone is 
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observed and the concentrated plastic deformation between the crack tips is prevented 

due to the higher effective stress-plastic strain curves of the weld zone.  The plastic 

deformation near the boundary of the base metal and heat affected zone close to the two 

crack tips becomes very large.  The outer surface notch due to buckling can also be 

observed.  This matches the micrograph of a weld in a lap-shear specimen before failure 

at the applied displacement of 1.95 mm as shown in Fig. 2.3(a) and again in Fig. 2.16(b).  

Although Figs. 2.16(a) and 2.16(b) correspond to different displacements, the general 

trend of the necking and the outer surface buckling of the lower left sheet can still be 

qualitatively correlated.   

 

Failure prediction using Gurson's yield function  

Gurson’s yield function 

Gurson [15] developed a yield function for porous materials, where the matrices 

are modeled by the Mises yield function, to account for the loss of stress carrying 

capacity due to microvoid nucleation and growth.  The Gurson yield function   is 

expressed as [15], [16] 
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where e  is the macroscopic tensile effective stress based on the Mises yield function, 

m  is the macroscopic mean stress, M  is the matrix flow stress, and f  is the void 

volume fraction.  Here, 1q , 2q  and 3q  are the fitting parameters which were first 

introduced by Tvergaard [23].  Chien et al. [24] obtained the fitting parameters for the 

Gurson yield function based on the Hill quadratic yield function for aluminum and steel 
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sheets with the anisotropy parameter R  equal to 0.8 and 1.6, respectively.  The fitting 

parameters are almost the same for both aluminum and steel sheets with R = 0.8 and R = 

1.6.  Although the Mises yield function ( R = 1) is used for the macroscopic tensile 

effective stress e  in the Gurson yield function in this investigation, the values of 1q  = 

1.45, 2q  = 0.95 and 3q  = 1.6 for steel sheets obtained by Chien et al. [24] are taken in the 

finite element analysis.   

The increase of void volume fraction arises from the nucleation of new voids and 

from the growth of the existing voids.  For the increase rate of void volume fraction due 

to nucleation, we adopt the plastic strain controlled nucleation model suggested by 

Gurson [15] based on the experimental data in Gurland [25].  The increase rate of void 

volume fraction due to growth can be obtained from the plastic incompressibility of the 

matrix material.  Thus the increase rate of void volume fraction can be expresses as  
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where the first term on the right-hand side of the equation represents the plastic strain 

controlled void nucleation rate and the second term represents the void growth rate.  Here, 

p
M  is the matrix equivalent plastic strain rate, 

pk
k.  represents the macroscopic 

dilatational plastic strain rate and A  is expressed as 
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Here, Nf  is the volume fraction of void nucleating particles for the plastic strain 

controlled nucleation model, s  is the standard deviation and N  is the mean value of the 

normal distribution for the plastic strain controlled nucleation model.  In the finite 
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element analysis, the tensile stress-plastic strain curves for different zones of the 6-zone 

model are used as the matrix tensile stress-plastic strain curves.  Without experimental 

data available for this HSLA steel, the void nucleation material parameters Nf  = 0.0085, 

N  = 0.2 and s  = 0.04 are assumed for all the material elements in the base metal, heat 

affected zone and weld zone in order to obtain some qualitative results on the void 

volume fraction distribution [26].  Other sets of void nucleation parameters were also 

chosen and the computational results in general have the same qualitative results as 

discussed in the following section.  

 

Failure prediction 

The failure of the laser weld in the lap-shear specimen is investigated by a finite 

element analysis with consideration of void nucleation and growth in all zones for the 6-

zone model.  Figs. 2.17(a) and 2.17(b) show the distributions of the equivalent plastic 

strain and the void volume fraction from the finite element analysis at the applied 

displacement of 1.2 mm, respectively.  In the early stage of the deformation, the void 

volume fractions are very high for the elements near the two crack tips due to the large 

plastic strains near the tips.  However, as the displacement increases, the higher stress-

strain curves in the heat affected and weld zones near the crack tips suppress the increase 

of the plastic strains and, consequently, the void nucleation and growth in these zones, 

similar to the suppressing of the growth of type A plastic zones ahead of the tips.  The 

void volume fractions of the material elements near the boundary of the base metal and 

the heat affected zone become larger than those near the crack tips due to the expansion 

of the type B plastic zones at the later stage of the deformation as shown in Fig. 2.17(a).  
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As shown in Fig. 2.17(b), the material elements with the larger void volume fractions are 

located near the left crack tip in the lower left load carrying sheet.  This suggests that the 

initiation of ductile fracture due to void nucleation and growth should be observed near 

this location in failed specimens.   

In fact, crack formation in a nearly failed specimen was observed near this 

location as shown in Fig. 2.3(a).  Fig. 2.18(a) shows a SEM picture of a dimpled fracture 

surface due to void nucleation and growth on the upper portion of the fracture surface of 

the lower left sheet.  Fig. 2.18(c) shows a SEM picture of a cleavage fracture surface on 

the lower portion of the fracture surface of the lower left sheet.  The cleavage fracture 

surface corresponds to the final separation of the weld joint due to the loss of the load 

carrying capacity [14].  Fig. 2.18(b) shows a SEM picture of the middle portion of the 

fracture surface that represents the transition region from the dimpled fracture surface to 

the cleavage fracture surface.  The crack formation location shown in Fig. 2.3(a) and the 

dimpled fracture surface on the upper portion of the fracture surface shown in Fig. 2.18(a) 

correlate very well with the results of the finite element analysis shown in Fig. 2.17(b). 

 

Discussions 

Based on the experimental observations of Asim et al. [14], several geometric 

features may affect the failure mode of the lap-shear specimen.  The first geometric 

feature is the round protrusion.  Its role as an additional constraint has been discussed in 

the previous section.  The second geometric feature is the gap between the two sheets 

being welded together.  The round protrusion is thought to be a byproduct of a gapless 

weld.  Examination of the micrographs of many cross sections of lap-shear specimens 
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have led to the conclusion that if a gap exists between the two sheets, the round 

protrusion becomes shallow or even results in a concave surface due to the molten metal 

being distributed into the gap.  Detailed discussions of the failure mode of the laser welds 

with gaps can be found in Asim et al. [14].  Note that the gap can create extra moment to 

the weld zone [14], [27] and, in turn, can reduce the failure strength of a lap-shear 

specimen.   

The third geometric feature is the weld width.  Here, the effects of the normalized 

weld width td  on the plastic deformation mode are investigated for idealized welds 

(without protrusion and gap) based on the homogeneous material model.  Figs. 2.19(a)-(e) 

show the deformed shapes and plastic strain distributions at the same displacement of 1.4 

mm for the normalized weld widths of 0.7, 1.0, 1.1, 1.2 and 1.5 based on the 

homogeneous material model.  Fig. 2.19(f) shows the angles of rotation for the non-load 

carrying sheet as a function of normalized weld width for the five cases.  As shown in the 

figure, the angle of rotation of the non-load carrying sheet is maximum for the case of 

td  = 1.1.  For td  = 0.7, 1 and 1.1, as the normalized weld width increases, the necking 

near the top surface of the lower left sheet and the bottom surface of the upper right sheet 

increases, the angle of rotation of the non-load carrying sheet increases, and the shear 

plastic deformation between the two crack tips becomes less intense.  For td  = 1.1, 1.2 

and 1.5, as the normalized weld width increases, the necking near the top surface of the 

lower left sheet and the bottom surface of the upper right sheet decreases, the angle of 

rotation of the non-load carrying sheet decreases, and the shear plastic deformation 

between the two crack tips disappears.  The critical normalized weld width for the 

transition of the shear plastic deformation mode between the two crack tips to the 
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necking/shear mode near the tips is near td  =1.1 based on the homogeneous material 

model. 

 

Conclusions 

In this investigation, the experiments for laser welds in lap-shear specimens under 

quasi-static loading conditions are briefly reviewed first.  The experimental results 

showed that the laser welds failed in a ductile necking/shear failure mode and the ductile 

failure was initiated at a distance away from the crack tip near the boundary of the base 

metal and heat affected zone. Two-dimensional plane strain finite element analyses were 

then carried out to understand the failure mode of laser welds in lap-shear specimens 

under quasi-static loading conditions.  The results of the reference finite element analysis 

based on the homogeneous material model suggest a possible middle surface shear failure 

mode in the weld, which does not match with the experimental results.  Therefore, the 

multi-zone models are developed to take into account the higher hardness values and the 

higher stress-strain curves of the heat affected and weld zones.  The results of the finite 

element analyses based on the multi-zone non-homogeneous material models show that 

the higher effective stress-plastic strain curves of the weld and heat affected zones and 

the geometry of the weld protrusion can result in the necking/shear failure mode in the 

load carrying sheet.  The results of the finite element analyses closely match with the 

experimental observations.  Although lap-shear specimens are used to investigate the 

strength of the weld under shear dominant loading conditions, the load carrying sheets 

near the weld are subjected to dominant tensile deformation due to large plastic 

deformation.  Note that Lin et al. [28] recognized the fact that the large plastic 
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deformation near a spot weld in a lap-shear sheet specimen gives dominant tensile 

deformation mode at the critical locations near the weld.   

A two-dimensional plane strain finite element analysis of the lap-shear specimen 

with consideration of void nucleation and growth was also conducted.  Initially, the 

material elements located near the two crack tips exhibit a high rate of void nucleation 

and growth.  As the applied displacement increases, the plastic strains of the material 

elements of the base metal near the heat affected zone begin to exceed the plastic strains 

of the material elements near the crack tips due to the higher stress-strain behavior of the 

material elements in the heat affected zone.  The location of the large void volume 

fraction gradually shifts from the material elements near the two crack tips to the material 

elements in the base metal near the heat affected zone.  With the absence of the round 

protrusion, the void volume fraction is thought to be equal in the base metal regions for 

both the lower left and the upper right load carrying sheets due to symmetry.  However, 

the round protrusion imposes additional geometric constraint to the lower left sheet and 

thus the computational results show that the void volume fractions are larger for the 

material elements on the base metal side of the boundary of the base metal and the heat 

affected zone.  The location of the material elements with the larger void volume fraction 

matches well with that of the crack formation as observed in the experiment.  With the 

adoption of the Gurson yield function, the location of the initiation of ductile fracture can 

be clearly correlated with the experimental observation as in the investigation of the 

ductile fracture mode of gas metal arc welds (GMAW) of HSLA steel sheets in Amodeo 

et al. [30].  It should be emphasized that the conclusions of this investigation are 

applicable to the laser welds in lap-shear specimens under quasi-static loading conditions.  
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Finally, the results of this investigation for laser welds, the research work of Lin et al. 

[28], [29] for resistance spot welds, and the research work of Amodeo et al. [30] for gas 

metal arc welds indicate that the failure mode of the welds in automotive structures 

should be examined carefully and the necking/shear failure mode needs to be considered 

for development of failure or separation criteria for welds under more complex loading 

conditions for crash simulations.  
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Table 2.1  The hardness values from indentation tests and the scaled initial yield stresses 
for the base metal, heat affected and weld zones for (a) the 3-zone model and (b) the 6-
zone model. 

(a) 3-zone model 

 Base metal Heat-affected zone Weld 

Vickers hardness 150 190 230 

Yield stress 0  

(MPa) 
315 400 484 

 

(b) 6-zone model 

 
Base 
metal 

HAZ 1 HAZ 2 Weld 1 Weld 2 Weld 3 

Vickers 
hardness 

150 166 182 198 214 230 

Yield stress 

0  (MPa) 315 349 382 416 450 484 
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(a) 

 

(b) 

 

(c) 

Fig. 2.1  (a) Top view, (b) bottom view and (c) a schematic of a lap-shear specimen.

b

d

r

t

L

V

W

Doubler

Doubler

20 mm 

20 mm 



 

35 
 

 

Fig. 2.2  The load-displacement curves of a lap-shear specimen from the experiment and 
the finite element analyses based on the homogeneous and 6-zone material model.
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(a) 

 

(b) 

Fig. 2.3  A micrograph of the cross section near the weld from (a) a specimen just prior to 
failure and (b) a failed specimen.  
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Fig. 2.4  A micrograph of the cross section of a laser weld in a lap-shear specimen.
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Fig. 2.5  The Vickers hardness values across the weld width obtained from the 
indentation tests and the assumed hardness values across the weld along the middle 
surface used in the 3-zone and 6-zone finite element analyses.  
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Fig. 2.6  The tensile stresses as functions of the plastic strain for the weld metal, heat 
affected zone and the base metal used in the 3-zone finite element analysis. 
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(a) 

 

(b) 

Fig. 2.7  (a) A schematic of a two-dimensional finite element model of a lap-shear 
specimen and the boundary conditions and (b) a close-up view of the finite element mesh 
near the weld.   
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(a)                                                                (b) 

 

(c)                                                                (d) 

Fig. 2.8  Deformed shapes of a lap-shear specimen from the finite element analysis based 
on the homogeneous material model at the applied displacements of (a) 0.5 mm, (b) 1.0 
mm, (c) 1.5mm and (d) 2.0 mm.   
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(a) 

 

(b) 

Fig. 2.9  Equivalent plastic strain distributions for the homogeneous model at the applied 
displacements of (a) 0.1 mm and (b) 2.0 mm.  Fig. 2.9(a) shows type A and type B plastic 
zones. 
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(a) 

 

(b) 

Fig. 2.10  (a) A schematic of the 3-zone finite element model with different material 
sections and (b) the corresponding micrograph of the cross section near a weld in a lap-
shear specimen. 
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(a)                                                                 (b) 

 

(c)                                                                 (d) 

Fig. 2.11  Deformed shapes of a lap-shear specimen from the finite element analysis 
based on the 3-zone material model at the applied displacements of (a) 0.5 mm, (b) 1.0 
mm, (c) 1.5mm and (d) 2.0 mm.  
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(a)                                                                         (b) 

 

(c)                                                                          (d) 

Fig. 2.12  Equivalent plastic strain distributions near a weld from the finite element 
analysis for the 3-zone model at the applied displacements of (a) 0.1 mm and (b) 2.0 mm.  
Close-up views of the deformed shapes and equivalent plastic strain distributions near (c) 
the left crack tip and (d) the right crack tip at the applied displacement of 2.0 mm.
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(a) 

 

(b) 

Fig. 2.13  Schematics of the tensile and compressive stress regions (a) before and (b) 
after the outer surface buckling of the lower left load carrying sheet.  
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Fig. 2.14  A schematic of the 6-zone finite element model with different material sections.
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(a) 

 

(b) 

Fig. 2.15  Equivalent plastic strain distributions near a weld from the finite element 
analysis based on the 6-zone model at the applied displacements of (a) 0.1 mm and (b) 
2.0 mm.  
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(a) 

 

(b) 

Fig. 2.16  The necking and the outer surface buckling of the lower left sheet from (a) the 
finite element analysis based on the 6-zone model and (b) the experiment.  
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(a) 

 

(b) 

Fig. 2.17  The distributions of (a) the equivalent plastic strain and (b) the void volume 
fraction near a weld from the finite element analysis based on the 6-zone model at the 
displacement of 1.2 mm.  
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(a) 

 

(b) 
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(c) 

Fig. 2.18  SEM pictures of (a) the upper portion, (b) the transition region and (c) the 
bottom portion of the fracture surface of a failed lower left sheet.  
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(a)                                                                    (b) 

 

 

(c)                                                                     (d) 
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(e)                                                                        (f) 

Fig. 2.19  Deformed shapes and equivalent plastic strain distributions at the same applied 
displacement of 1.4 mm for the normalized weld width of (a) 0.7, (b) 1.0, (c) 1.1, (d) 1.2 
and (e) 1.5 based on the homgeneous material model.  The angles of rotation for the non-
load carrying sheet as a function of normalized weld width for the five cases are shown in 
(f).   
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Chapter 3  
Failure mode of ultrasonic welds in lap-shear specimens of magnesium and steel 

sheets 

 

Introduction 

In order to address rising concerns of fuel economy as well as environmental issues, 

the automotive industry is investigating ways to increase the use of lightweight materials 

such as magnesium or aluminum.  By replacing steel in vehicles with magnesium and 

aluminum alloys, fuel consumption can be lowered by reducing the overall weight of the 

vehicle [1], [2], [3], [4].  Magnesium is 33% lighter than aluminum and 78% lighter than 

the traditional steel commonly used in vehicles.  However, increasing use of magnesium 

requires overcoming technical challenges related to the joining of magnesium to steel.  

Joining magnesium to steel is especially challenging due to the large difference of their 

melting temperatures and immiscibility between magnesium and iron. 

As magnesium alloys are considered for various structural components that need to 

attach to steel structures, the ability to reliably make durable and high-strength joints is 

becoming increasingly important.  A complication for applying the traditional fusion 

welding methods comes from the fact that magnesium has a boiling temperature of 

1107°C [5].  This is about 400°C lower than the melting temperatures of typical 

automotive sheet steels, which are in the vicinity of 1500°C.  Melting magnesium alloy 

and steel together as might be done in resistance welding would vaporize the magnesium 

alloy creating unacceptable levels of porosity in the weld nuggets of resistance welds.  
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Due to the difficulty of the traditional fusion welding, solid state joining methods 

such as ultrasonic welding are poised to gain importance for joining magnesium to steel.  

Ultrasonic welding is considered as a solid-state bonding process that does not depend on 

or require melting to achieve a strong bond [6].  Other characteristics usually associated 

with ultrasonic welding are highly localized heating at the bond interface, relative 

insensitivity to modest levels of surface oxides and other contaminants, and the ability to 

make joints of dissimilar metals [7].  These characteristics provide the motivation for this 

study of using ultrasonic welding for joining magnesium to steel. 

For joining similar materials by ultrasonic spot welding (USW) for automotive 

applications, researchers conducted studies on processing conditions of joining similar 

aluminum sheets, for example, see Hetrick et al. [8], Jahn et al. [9] and Wright et al. [10].  

For joining dissimilar materials by USW, Watanabe et al. [11] conducted research on 

joining aluminum and steel sheets.  Recently, Santella et al. [12] conducted research on 

joining magnesium to zinc-coated steel sheets by USW. 

Lap-shear specimens are ideal to study the shear strength of a welded joint.  The 

geometry of a lap joint provides pre-existing cracks or notch tips at the edges of the weld 

region.  Lee et al. [13] and Asim et al. [14] recently conducted computational and 

experimental investigations on the failure mechanism and strength of laser welds in lap-

shear specimens of high strength low alloy steel under quasi-static loading conditions.  

The lap-shear specimens were made in a dog-bone shape to avoid the failure of the 

specimen far away from the weld due to the necking of the specimen. 

In this study, the failure mode of the ultrasonic weld in lap-shear specimens between 

magnesium and HSLA steel sheets under quasi-static loading conditions is investigated.  
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The lap-shear specimens were made in a dog bone shape in order to study the failure 

mode conveniently.  Micrographs of the cross sections of ultrasonic welded lap joints 

were obtained before quasi-static tests.  The results of a micro-hardness test with an 

ultrasonic weld of the magnesium sheet and a zinc-coated carbon steel sheet were used to 

assess the mechanical properties in the weld region which has varying microstructures 

due to the localized heat generated during the welding.   

Finite element analyses were conducted to understand the effects of the weld 

geometry on the failure mode of ultrasonic welds in lap-shear specimens under quasi-

static loading conditions.  Due to the dog bone shape of the specimen, two-dimensional 

plane strain and plane stress finite element analyses using two-zone and multi-zone 

material models were carried out.  The results of the finite element analyses are then 

compared with the experimental observations.  Also, the J  integral solutions for the pre-

existing crack and a kinked crack with a small kink length are obtained from the finite 

element analyses.  The J  integral solutions can also be used to explain the observed 

failure mode of lap-shear specimens in the experiments.  Finally, conclusions are made. 

Experimental results 

Lap-shear specimen 

The lap-shear specimens used in the experiments were made by joining AZ31B-H24 

magnesium alloy and HSLA steel sheets with a nominal thickness of 1.5 mm.  The lap-

shear specimen was made by using a 30 mm × 100 mm magnesium sheet and a 30 mm × 

100 mm steel sheet with an overlap area of 30 mm × 75 mm.  Prior to welding, the 

surfaces of the magnesium alloy sheets were buffed with non-metallic abrasive pads 

(Scotch-Brite™) to remove surface oxides.  Both metals were cleaned with acetone 
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followed by isopropyl alcohol to remove lubricants and surface debris.  The specimen 

preparation procedure and the processing conditions are explained in detail in Santella et 

al. [12].  An USW lap-shear specimen before being machined into a dog-bone shaped 

profile is shown in Fig. 3.1(a).  The upper sheet is the magnesium alloy and the lower 

sheet is the steel. 

A Sonobond CLF 2500 single-transducer, wedge-reed ultrasonic welder was used to 

weld the sheets into lap-shear specimens for quasi-static tests conducted in this 

investigation.  The sonotrode tip was made from T1 steel and has a square face of 7 mm 

× 7 mm.  The face has grooves as described by Jahn et al. [9].  A face view and a side 

view of the sonotrode tip are shown in Figs. 3.1(b) and 3.1(c), respectively.  The only 

clamping during the welding was the pressure applied by the sonotrode tip.  Specimens 

were positioned for welding so that the grooves on the sonotrode tip is parallel to the 

longitudinal axis of the lap-shear specimen and the primary vibration direction of the 

sonotrode was perpendicular to the longitudinal axis of the lap-shear specimen.  Welding 

was made using a power of 1500 W.  The pressure to the tip clamping mechanism was 

adjusted to make the welds under constant nominal pressure of 39 MPa. 

The lap-shear specimens were then machined into a dog-bone shaped profile 

using a CNC milling machine.  The specimen geometry in general follows the guidelines 

of the ANSI/AWS B4.0:2007 standard for the mechanical testing of welds.  The central 

portion of the dog-bone shaped specimens has a reduced width.  The width and length of 

the uniform straight part of the section with the reduced width are 8 mm and 13.5 mm, 

respectively.  Figs. 3.2(a) and 3.2(b) show a top view and a bottom view of a lap-shear 

specimen after being machined into the dog-bone shaped profile.  The weld zone (crack 
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tip to crack tip) has an average width of about 9 mm.  Two doublers of 30 mm × 30 mm 

were used to align the fixture to avoid the initial realignment of the specimen due to the 

non-aligned grips under lap-shear loading conditions.  Fig. 3.2(c) shows a schematic of a 

lap-shear specimen.  As shown in the figure, the specimen has a width W, sheet thickness 

t and overall length L for the upper and lower sheets.  The specimen has a reduced width 

b for the central portion, an overlap length V, a weld width d, an indentation width c and 

a fillet radius r for the weld zone.  The dimensions of the specimens are W = 30 mm, t = 

1.5 mm, L = 100 mm, b = 8 mm, V = 75 mm, d = 9 mm, c = 7 mm and r = 10 mm.  

Specimens with similar shapes were adopted by a number of researchers for the study of 

laser welded joints, for example, see, Lee et al. [13], Asim et al. [14], Anand et al. [15] 

and Sripichai et al. [16]. The detailed dimensions of the lap-shear specimens are listed in 

Table 3.1.   

 

Weld microstructure 

A USW lap-shear specimen before quasi-static testing was sectioned through the 

center of the weld along the loading direction of the specimen.  Fig. 3.3(a) shows an 

optical micrograph of the cross section along the symmetry plane near the weld of the 

lap-shear specimen. As mentioned previously, the upper sheet is the magnesium and the 

lower sheet is the steel.  It should be noted that the cross section in Fig. 3.3(a) has been 

created by cutting mostly through the ridge of the grooves created by the sonotrode tip 

rather than the valley.  Therefore, the indentation depth appears to be shallow.  During 

welding, the sonotrode tip indented into the upper magnesium alloy sheet and forced the 

magnesium under the tip to flow outward.  The flash can be seen on both side of the 

indentation.  The weld region reaches just outside of the visible indented region.  On the 
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right side of the weld region, between the magnesium and the steel sheets, a gap and a 

visible Mg-Zn eutectic layer between the magnesium and steel sheets can be seen.  On 

the left side, the Mg-Zn eutectic layer between the two sheets is quite thin and the gap 

between the two sheets can barely be seen.  The uneven distribution of the Mg-Zn 

eutectic layer is possibly due to lack of constraint of the fixture and the upper sheet of the 

specimen [17]. 

Important features of the weld microstructures are shown in the micrographs in 

Figs. 3.3(b) and 3.3(c).  The micrograph of Figs. 3.3(b) and 3.3(c) corresponds to the 

regions marked in Fig. 3.3(a).  Fig. 3.3(b) shows the microstructure of the magnesium 

alloy away from the weld region.  The micrograph shows a microstructure of equiaxed 

grains with an average size of about 5 μm.  Fig. 3.3(c) shows a micrograph of the 

magnesium alloy near the interface directly beneath the center of the indenter tip.  The 

magnesium alloy in this region is comprised of equiaxed grains of sizes of about 20 μm.  

The difference of the grain sizes is due to the grain growth under the high temperature 

generated during welding [12].  The grain size affects the hardness and the tensile stress-

strain curve of the material as discussed later. 

 

Quasi-static tests 

The dog-bone shaped lap-shear specimens were tested under quasi-static loading 

conditions by using a MTS testing machine at a displacement rate of 1 mm per minute.  

Fig. 3.4(a) shows a lap-shear specimen just prior to failure at the applied displacement of 

1.13 mm.  Fig. 3.4(b) shows a failed lap-shear specimen with the upper right load 

carrying leg separated from the lap-shear specimen.  The specimen failed at an applied 

displacement of 1.23 mm.  During the tests, the weld region and the non-load carrying leg 
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rotated as the applied displacement increased.  The angle of rotation continued to increase 

and a final value of 5° with respect to the line of loading was measured for a completely 

failed specimen.  The rotation is the consequence of the non-uniform plastic deformation 

through the thickness of the load carrying sheet near the weld nugget.   

Fig. 3.4(c) shows an optical micrograph of the fracture surface of the separated 

upper right load carrying sheet.  Three distinct surfaces can be seen from the optical 

micrograph.  The upper inclined surface was created during the welding due to the 

indentation of the sonotrode tip.  The middle fracture surface is due to cracking from the 

sonotrode tip.  The bottom fracture surface is due to cracking from the right pre-existing 

crack tip.  The two cracks, each initiated and propagated from the sonotrode tip and the 

right pre-existing crack tip, converge and create the distinct intersection between the 

middle fracture surface and the bottom fracture surface as shown in Fig. 3.4(c).   

Fig. 3.5 shows the load-displacement curves obtained from three quasi-static tests.  

The average maximum (or failure) load and the average maximum displacement obtained 

from three quasi-static tests are about 2,750 N and 1.23 mm, respectively.   

 

Finite element simulations 

Hardness measurement and stress-strain curve 

Previous works by Lee et al. [13] and Asim et al. [14] have shown that the tensile 

stress-plastic strain curves of the weld region in laser-welded lap-shear specimen 

drastically affects the failure mode of the specimens under quasi-static loading conditions.  

Therefore, the variation of the tensile stress-plastic strain curves of the weld regions will 

be considered in this investigation.   
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A micro-hardness test was carried out to obtain the Vickers hardness values near 

the weld region for a USW of the magnesium sheet and a low carbon steel sheet 

specimen.  An automated Vickers hardness tester at Oak Ridge National Laboratory was 

used to create micro hardness indentations as shown in Fig. 3.6(a).  It should be noted 

that the low carbon steel sheet for the USW as shown in Fig. 3.6(a) is thinner than the 

HSLA steel sheet as shown in Fig. 3.3(a).  The hardness measurements are shown as a 

grayscale map in Fig. 3.6(b) superposed over the cross section of the USW.  A darker 

square represents a higher hardness value while a lighter square represents a lower 

hardness value.  For the upper magnesium sheet, the highest hardness value measured is 

78 and the lowest is 53.  For the upper magnesium sheet, the far left region with 

relatively darker squares is assumed to be the region which is not affected by the welding.  

This region retains the grain microstructure and the hardness values of the base 

magnesium sheet as shown in Fig. 3.3(b).  The region beneath the corner of the 

indentation have lighter squares which represents that the hardness values have decreased 

due to the grain growth associated with heat generation during the welding process.  The 

variation in the hardness values along the longitudinal direction for the upper magnesium 

sheet can clarified by plotting the average of the four hardness measurements in the sheet 

thickness direction as shown in Fig. 3.6(c).  The average hardness value for the base 

magnesium sheet region is around 70 HV.  The hardness value sharply decreases near the 

corner of the indentation and decreases to about 64 HV beneath the indentation.  Fig. 

3.6(d) shows the average hardness values for the low carbon steel sheet.  The highest 

hardness value is 107 and the lowest is 85. The transition region of the hardness values 

for the steel sheet is not at clear as the magnesium sheet.   
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Tension tests were conducted for the magnesium and steel sheets.  The 

engineering stress-strain curves of three tensile specimens of the magnesium sheets are 

shown in Fig. 3.7.  The tensile stress-strain curves of the magnesium sheets are fitted by 

an elastic power-law strain hardening relation based on the experimental tensile stress-

strain curve as 
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where   represents the tensile stress, E  represents the elastic modulus,   is the tensile 

strain and 0  is the initial yield stress.  Here, K  represents the strength coefficient and 

n  represents the hardening exponent.  The values of 0 , K , n  and E  are determined 

for the magnesium sheets as 141 MPa, 254 MPa, 0.122 and 45 GPa, respectively.   

Since it is difficult to determine the tensile stress-plastic strain curves for the 

magnesium of the weld region where the microstructure and the hardness value are 

different from that of the as-received magnesium sheets, the tensile stress-plastic strain 

curves for the magnesium of the weld region are estimated by scaling the tensile stress of 

the base magnesium region for a given plastic strain proportional to the corresponding 

hardness values of the weld region measured by the indentation tests as in [13].  For 

simplicity, only three tensile stress-plastic strain curves will be used for the magnesium 

sheet rather than scaling the tensile stress-plastic strain curves for all measured hardness 

values for the weld region.  The magnesium regions with the hardness values higher than 

71 HV will be defined as the base magnesium region.  The regions with the hardness 

values lower than 61 HV will be defined as the low magnesium region.  The regions with 

the hardness values between the base and low magnesium region will be defined as the 
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middle magnesium region.  Three representative scaled stress-plastic stain curves for the 

base, middle and low magnesium of the weld regions are shown in Fig. 3.8.  

The steel sheet will be considered to have a single tensile stress-plastic strain 

curve rather than multiple curves since the tensile stress-strain curve of the HSLA steel is 

much higher than those of the magnesium weld regions.  The stress-strain curves of the 

HSLA steel in the weld regions should not change significantly due to the limited 

temperature increase during the welding.   

The average values of the Vickers hardness and the scaled initial yield stresses for 

the base, middle and low magnesium regions as well as those for the HSLA steel are 

listed in Table 3.2.  Fig. 3.8 also shows the tensile stresses as functions of the plastic 

strain for the HSLA steel.  The tensile stress-plastic strain curves used in the two-zone 

and the multi-zone finite element models will be discussed in the next section.  The 

tensile stress-plastic strain curves were used as the effective stress-plastic strain curves in 

the finite element analyses.  The deformation histories of the material elements in the 

weld region in the lap-shear specimen obtained from the finite element analyses will be 

used to examine the failure mode of the ultrasonic welds that will be presented in the 

following section. 

 

Finite element model 

Finite element analyses based on the micrograph of the weld geometry as shown 

in Fig. 3.3(a) are carried out in this study to identify the influence of the weld geometry 

on the failure mode of the ultrasonic welds in lap-shear specimens.  Two-dimensional 

finite element models are used to simulate the elastic-plastic behavior in the middle 

portion of the lap-shear specimen under plane strain conditions.  Also, the two 



 

65 
 

dimensional finite element models are used to simulate the elastic-plastic behavior near 

the edges of the lap-shear specimen under plane stress conditions.  Note that the ratio of 

the width to the sheet thickness is 5.2 for the narrow region of the dog-bone shaped lap-

shear specimen.  This ratio suggests that the majority of the crack front of the weld is 

possibly under plane strain loading conditions.  However, the plane stress conditions near 

the edge of the crack front may be important and therefore both plane strain and plane 

stress conditions were considered in the finite element analyses.   

Fig. 3.9(a) shows a schematic of the two-dimensional finite element model of a 

lap-shear specimen.  The indentation due to the sonotrode tip is schematically shown in 

the figure.  The Cartesian coordinate x-y system is also shown in the figure.  As shown in 

Fig. 3.9(a), the middle plane of the left end of the model is fixed and the displacement is 

applied in the x direction at the middle plane of the right end of the model.  First-order, 

isoparametric, quadrilateral, reduced integration, plane strain elements (CPE4R) are 

under plane strain conditions while plane stress elements (CPS4R) are used under plane 

stress conditions.  The smallest element size near the crack tip is 0.0245 mm.  Fig. 3.9(b) 

shows a close-up view of the finite element mesh near the right crack tip.  For the 

magnesium alloy, the elastic modulus is taken as 45 GPa and the Poisson’s ratio is taken 

as 0.3.  For the steel, the elastic modulus is taken as 200 GPa and the Poisson’s ratio is 

taken as 0.3.  The Mises yield function is adopted to describe the elastic-plastic behaviors 

of the material elements with the previously described tensile stress-plastic strain curves 

used as the effective stress-plastic strain curves.  The yield surface evolutions are 

assumed to follow the isotropic hardening rule.  Computations were performed using the 

commercial finite element code ABAQUS v6.8 [18]. 
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As previously mentioned, the geometry of the weld affects the failure mode 

significantly [13], [14].  The right crack tip and the corner of the indentation should have 

dominant influences on the plastic flow patterns and the failure modes.  The relative 

position of these two locations can affect the plastic flow patterns and the failure modes 

of the lap-shear specimen.  Therefore, four cases have been considered as shown in Figs. 

3.10(a), 3.10(b), 3.10(c) and 3.10(d).  The indentation due to the sonotrode tip is removed 

in the finite element model shown in Fig. 3.10(a) while the finite element models in Figs. 

3.10(b), 3.10(c) and 3.10(d) have an indentation with a width of 7 mm.  The depth of the 

indentation is selected as 0.625 mm for these three cases.  The weld width is selected as 9 

mm for the finite element models in Figs. 3.10(a) and 3.10(b).  The weld widths are 

selected as 8 mm and 7 mm for the finite element models in 3.10(c) and 3.10(d), 

respectively.  The right indentation corner in the 9 mm weld width model in Fig. 3.10(b) 

is located at an angle of 135° measured from the right crack face with the right crack tip 

as the origin.  The right indentation corner of the 8 mm weld width model in Fig. 3.10(c) 

is located at an angle of 63.4° measured from the right crack face with the right crack tip 

as the origin.  The right indentation corner in the 7 mm weld width model of Fig. 3.10(d) 

is located directly above the right crack tip.   

The effect of the indentation on the failure mode can be determined by comparing 

the results of the finite element models in Figs. 3.10(a) and 3.10(b).  The plastic flow 

patterns and crack growth propensity of the pre-existing crack tip towards the indentation 

corner can be examined by the three different weld width models as shown in 3.10(b), 

3.10(c)and 3.10(d).   
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Since the bond between the Mg-Zn eutectic layer and the steel located near the 

right edge of the weld region appears to be weaker than the bond between the magnesium 

and the steel within the weld zone, the bond between the Mg-Zn eutectic layer and the 

steel will fail first at a lower load and the weld width effectively decreases, as suggested 

by the experimental observations of Franklin et al. [17].  It is assumed that under lap-

shear loading conditions, a small amount of interfacial crack grows between the Mg-Zn 

eutectic layer and the steel first.  As the crack propagates between the Mg-Zn eutectic 

layer and the steel, the crack tip will approach the interface between the magnesium and 

the steel where the bond appears to be stronger.  The stronger bond disrupts the 

propagation of this interfacial crack.  The effect of the location of the interfacial crack tip 

on the plastic flow patterns and the failure modes can be studied from the finite element 

models as shown in Figs. 3.10(b), 3.10(c) and 3.10(d).   

Two types of material models were used in the finite element analyses as shown 

in Figs. 3.11(a), 3.11(b) and 3.11(c).  The first material model is shown in Figs. 3.11(a) 

and 3.11(b) where a single stress-strain curve based on the base magnesium as shown in 

Fig. 3.8 is used for the entire magnesium sheet and a single stress-strain curve for the 

HSLA steel sheet is used for the entire steel sheet.  This model will be referred to as the 

two-zone material model throughout this investigation.  The second material model is 

shown in Fig. 3.11(c) where the three stress-strain curves for the base, middle and low 

magnesium as shown in Fig. 3.8 according to the hardness grayscale map of Fig. 3.6(b).  

This model will be referred to as the multi-zone material model throughout this 

investigation.  The effect of the lower tensile stress-strain curves due to the change of the 

microstructure can be determined by using these two material property assignments. 
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Results of the finite element analyses 

The deformed shape of the lap-shear specimen from the finite element analysis 

based on the 9 mm weld width, two-zone model with tool indention at the applied 

displacement of 1.2 mm is depicted in Figs. 3.12(a).  The rotation of the non-load bearing 

sheets is visible.  The angle of rotation of 4.5° is similar to the experimental result.  

Similar rotational behavior has been observed in simulations of lap-shear specimens with 

resistance spot welds in Lee et al [13], Radaj et al. [19] and Nielson [20]. 

The load-displacement curves of the lap-shear specimen obtained from the finite 

element analyses under plane strain and plane stress conditions based on the two-zone 

model with the 9 mm weld width and the tool indentation are shown in Fig. 3.12(b).  The 

load-displacement curve of an actual lap-shear specimen should be lower than load-

displacement curve under plane strain conditions but higher than that under plane stress 

conditions.  The experimental load-displacement curve seems to fit between the load-

displacement curves under plane strain and plane stress conditions.   

The load-displacement curves of the lap-shear specimen from the finite element 

analyses based on the two-zone models with the 9 mm, 8 mm and 7 mm weld width and 

the tool indentation are shown in Fig. 3.12(c) to compare with the experimental result.  

The load-displacement curves of the three models seems to match well at small 

displacements.  The load-displacement curve is slightly lower for a smaller weld width at 

large displacements.  

Fig. 3.13 shows the equivalent plastic strain distributions near the right crack tip 

at the displacement of 0.3 mm under plane strain conditions for the two-zone model with 

the 9 mm weld width and without the tool indentation.  Figs. 3.14(a), 3.14(b) and 3.14(c) 
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show the equivalent plastic strain distributions near the right crack tip at the displacement 

of 0.3 mm under plane strain conditions for the two-zone model with the 9 mm, 8 mm 

and 7 mm weld widths and the tool indentation, respectively.  Figs. 3.15(a), 3.15(b) and 

3.15(c) show the equivalent plastic strain distributions near the right crack tip at the 

displacement of 0.3 mm under plane strain conditions for the multi-zone model with the 9 

mm, 8 mm and 7 mm weld widths and the tool indentation, respectively.   

The plastic zone sizes near the crack tip are large in two directions due to the 

mixed mode loading conditions and the constraint conditions imposed by the loading and 

geometry of the lap-shear specimen for all models as shown in Figs. 3.13, 3.14 and 3.15.  

The plastic zones in these two directions are marked as A and B in Figs. 3.13, 3.14 and 

3.15.  Note that for elastic perfectly plastic materials, centered fan sectors can result in 

large sizes of plastic zones in these directions [21].  At the relatively small displacement 

of 0.3 mm, plastic zone B is larger compared to plastic zone A.   

As the applied displacement increases, both plastic zones in the A and B 

directions near the right crack tip develop.  Fig. 3.16 shows the equivalent plastic strain 

distributions near the right crack tip at the displacement of 1 mm under plane strain 

conditions for the two-zone model with the 9mm weld width and without the tool 

indentation.  Both plastic zones develop at the larger applied displacement but fail to link 

with the plastic deformation on the upper surface due to a lack of a plastic flow initiation 

site on the upper surface of the magnesium sheet at this displacement.   

The absence of a dominant plastic deformation mode as shown in Fig. 3.16 does 

not necessary lead to the conclusion that the lap-shear specimen will not fail under the 

applied displacement.  The focus of this study is the effect of the indentation on the 
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plastic flow patterns.  The model without the indentation serves its purpose to show that 

the presence of the indentation accelerates the development of a dominant plastic 

deformation mode.  With the indentation as shown in Figs. 3.17 and 3.18, the plastic 

zones link up with the indentation corner which acts as a plastic flow initiation site, and 

develop into a dominant plastic deformation mode.   

Figs. 3.17(a), 3.17(b) and 3.17(c) show the equivalent plastic strain distributions 

near the right crack tip at the displacement of 1 mm under plane strain condition for the 

two-zone model with the 9 mm, 8 mm and 7 mm weld widths and the indentation, 

respectively.  In Fig. 3.17(a), the right indentation corner is located in the direction of 

plastic zone A from the right crack tip.  The plastic zone A from the right crack tip links 

up with the plastic zone of the indentation corner and develops into a dominant plastic 

shear deformation mode.  In Fig. 3.17(b), plastic flow patterns similar to the plastic zones 

A and B near the right crack tip develop from the corner of the indentation as the 

displacement increases.  One of the plastic zones from the indentation corner and the 

plastic zone B from the right crack tip link up with each other.  The plastic zones from 

the indentation corner and the crack tip create a distinctive plastic flow pattern which 

resembles the fracture surfaces of the failed specimen as shown in Fig. 3.4(c).  Fig. 3.17(c) 

shows the plastic flow pattern for the 7 mm weld width model.  As shown in the figure, 

the plastic zone from the indentation corner and the plastic zone from the right crack tip 

do not link as those in Fig. 3.17(b).  One possible reason that the two plastic zones do not 

link up is that the plastic zone from the indentation corner grows to the opposite surface 

of the magnesium sheet to accommodate the applied displacement.  There is no need to 

link with the plastic zoned from the crack tip to accommodate the applied displacement.  
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Finally, as shown in Figs. 17(b) and 17(c), the crack faces make contact due to the large 

scale yielding of the magnesium sheet.   

Figs. 3.18(a), 3.18(b) and 3.18(c) show the equivalent plastic strain distributions 

near the right crack tip at the displacement of 1 mm under plane strain conditions for the 

multi-zone model with the 9 mm, 8 mm and 7 mm weld widths and the indentation, 

respectively.  As can be seen, the plastic flow patterns are similar to those of the 

corresponding two-zone models.  Therefore, it seems that the variation of the material 

stress-strain curves due to the variation of the hardness values has no significant effects 

on the failure mode of the welds.   

 

J integral solutions for pre-existing and kinked cracks 

In this section, the J integral solutions for the pre-existing crack tip and a kinked 

crack with a small kink length obtained from the finite element analyses based on the 

multi-zone material model with the previously mentioned three weld widths are used to 

explain the failure mode observed in the experiment.  Fig. 3.19 shows a schematic of a 

crack and an arbitrary contour Γ surrounding the crack tip.  As shown in the figure, a 

Cartesian coordinate system is centered at the crack tip.  The J integral is defined as [22] 
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where Γ represents a counterclockwise contour enclosing the crack tip from the lower 

crack face to the upper crack face, ds represents the differential arc length of the contour 

Γ, nx represents the x component of the unit outward normal n to the differential arc 

length ds,  i ij jT n  represent the components of the traction vector T on the 
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differential arc length ds, and ui represent the components of the displacement vector u.  

In the above equation, the strain energy density W is defined as  

 ),,,(    ,
0
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ij

ijij  


  (3.3) 

The J integral is path independent for a crack in a homogenous non-linear elastic 

material.  For elastic-plastic power-law strain hardening materials under proportional 

loading conditions, the J integral can be used to represent the singularity amplitude of the 

crack-tip stress and strain fields.   

Fig. 3.20 shows a close-up view of the finite element model near the right pre-

existing crack tip for the multi-zone model with the 7 mm indentation and 9 mm weld 

width.  A total of nine contours were assigned in the finite element model to obtain the J 

integral solutions.  These contours are shown as thick lines surrounding the right pre-

existing crack tip in Fig. 3.20.  The area above the pre-existing crack is low magnesium 

alloy region with one stress-strain curve and the area below is the steel region.  Since, the 

top half of the contours are within a homogeneous low magnesium alloy region and the 

bottom half are within the steel region, the J integral should be path independent and 

represent the fracture parameter of the crack tip under nearly proportional loading 

conditions.  The J integral, instead of the local crack tip parameters such as the crack tip 

opening displacement (CTOD) or crack tip opening angle (CTOA), is selected here for 

the fracture parameter because the J integral is a macroscopic continuum path 

independent fracture parameter whereas the local CTOD or CTOA is mesh dependent 

from finite element analyses.   

The J integral contours are numbered 1 to 9 where contour 9 is farthest away from 

the crack tip.  The J integral solutions from the finite element analyses of the 9 mm weld 
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width model of contours 5 to 9 for the right pre-existing crack tip are plotted as functions 

of the applied load in Fig. 3.21.  It should be noted that the J integral solutions from the 

finite element analysis are higher for the right pre-existing crack tip as compared to those 

for the left pre-existing crack tip due to most of the deformation occurring in the stronger 

steel for the left crack tip.  Therefore, only the J integral solution for the right pre-existing 

crack tip is considered in this study since the failure will be initiated from the right pre-

existing crack tip.  The maximum variation of the J integral solutions for contours 5 to 9 

is less than 1% for a given load.   

A kinked crack model is also created as shown in Fig. 3.22(a).  The kinked crack 

extend from the pre-existing crack along the interface in the in the vertical direction.  

Other kink angle can be selected.  However, the general trend of the J integral solution 

obtained here should be representative of kinked cracks with different kink angles.  The 

length of the kinked crack, a is 0.125 mm, which gives the ratio of the kink length to the 

sheet thickness of a/t = 0.083.  A close-up view of the finite element model near the right 

kinked crack tip for the 7 mm indentation length model is shown in Fig. 3.22(b).  A total 

of six contours were assigned in the finite element model to obtain the J integral solutions 

in order to prevent the contours from passing through the steel region.  These contours 

are shown as thick lines surrounding the kinked crack tip as shown in Fig. 3.22(b).   

The J integral solutions for the 3 contours farthest away from the kinked crack tip 

are path independent.  Fig. 3.23 shows the J integral solutions for the contours farthest 

from the crack tip as a function of the normalized applied load for the pre-existing crack 

tip with three weld widths and the kinked crack with the 9 mm weld width from the finite 

element analyses.  Fig. 3.23 can be used to understand the failure mode of the ultrasonic 
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welds in lap-shear specimens.  As shown in the figure, the kinked crack has a 

significantly larger J integral value than the three pre-existing cracks at a given load.  At 

the failed load of 2,750 N, the crack growth driving force, the J integral, to grow the 

crack along the interface is quite small when compared with that for the kinked crack 

with the kink angle of 90°.  Since at the failure load, significant plastic deformation 

occurs in the magnesium sheet, the large value of J integral solution for the kinked crack 

represent a much larger driving force to justify that the crack should kink out of the 

interface.  Kinking of a crack out of an interface was investigated by He and Hutchinson 

[23] based in the linear elastic model.   

 

Discussions 

The Mg-Eutectic layer visible at the right edge of the weld zone between the 

magnesium and steel sheet is shown in Fig. 3.3(a).  The bonding strength between the 

Mg-Zn eutectic layer and the steel appears to be weaker than the bonding strength 

between the magnesium and steel sheets as suggested by Franklin et al.   

As the applied displacement increases during a quasi-static test of the USW lap-

shear specimen, the bond between the Mg-Zn eutectic layer and the steel fails first.  Once 

the crack propagates through the entire bond length of the Mg-Zn eutectic layer and the 

steel and reaches the strong bond between the magnesium and steel sheets, the crack 

kings out from the interface.  The weld then fails along the paths that follow the plastic 

flow patterns similar to Figs. 3.17(b) and 3.17(c).  One failure path following the plastic 

flow pattern shown in Fig. 3.17(b) is shown in Fig. 3.4(c).   
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The variation of the material properties was shown to affect the failure mode of 

lap-shear specimens as in Lee et al. [13].  However, a comparison of the equivalent 

plastic strain patterns between Figs. 3.17(b) and 3.18(b) shows that the variation of 

material properties seems to have minimal effects on the failure mode of the lap-shear 

specimen.  This is possibly due to the relatively smaller variation in the initial yield 

stresses of the base, mid and low magnesium.  The change in the initial yield stress of the 

base and the weld zone due to laser welding for HSLA steel is about 45% [13].  However, 

the change in the initial yield stress due to the ultrasonic weld process is about 8%.  

Therefore, the variation of the material properties due to welding has minimal effects in 

the plastic flow patterns and most likely on the failure modes.   

Although lap-shear specimens are used to investigate the shear strength of the 

weld under shear dominant loading conditions, the load carrying sheets near the weld are 

subjected to dominant tensile deformation.  The rotation of the weld zone is affected by 

the normalized weld width (d/t) [13].  The 7 mm weld width USW lap-shear model has a 

ratio of the weld width to the sheet thickness of 4.7.  It has been shown that the critical 

weld width to thickness ratio for the maximum rotation of the weld zone is around 1.1 

with the rotation angle decreasing with increasing ratio of the weld width to the sheet 

thickness.  Therefore, the load carrying sheet near the weld lap-shear specimen is 

subjected to dominant tensile deformation.  Note that Lin et al. [24] recognized the fact 

that the large plastic deformation near a spot weld in a lap-shear sheet specimen gives 

dominant tensile deformation mode at the critical locations near the weld.   
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Conclusions 

In this investigation, the experiments for ultrasonic welds in dog-bone shaped lap-

shear specimens of magnesium and steel sheets under quasi-static loading conditions are 

reviewed first.  The micrograph of the fracture surface of a failed lap-shear specimen 

shows two distinct intersecting surfaces which were initiated from the pre-existing crack 

tip and from the indentation corner created due to the sonotrode tip and.  Two-

dimensional plane strain and plane stress finite element analyses were then carried out to 

understand the plastic flow patterns and the failure modes of ultrasonic welds in lap-shear 

specimens under quasi-static loading conditions.   

The results of finite element analyses based on the weld model with and without 

indentation suggest that the plastic flow initiation site from the indentation corner, in 

addition to the pre-existing crack tip, is mainly responsible for dominant plastic flow 

patterns to occur.  Finite element analyses for models with and without indentation and 

with different weld widths were developed with two-zone and multi-zone material 

schemes.  The results of the finite element analyses show that the weld indentation corner 

can trigger the unique fracture surface shown in Fig. 3.4(c).  The plastic flow pattern 

from the results of the finite element analyses closely matches the fracture surface profile 

form experimental observations.  Additionally, finite element analyses based on the 

multi-zone material models with different weld widths were conducted to obtain the J 

integral solutions for the pre-existing crack and a kinked crack with a small kink length.  

The result of the finite element analyses are used to explain the crack kinking out of the 

interface.   

It should be emphasized that the conclusions of this investigation are applicable to 

the ultrasonic welds in lap-shear specimens under quasi-static loading conditions.  Finally, 
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the results of this investigation for ultrasonic welds, the research work of Lin et al. [24] 

for resistance spot welds, the research work of Amodeo et al. [25] for gas metal arc welds 

and the research work of Lee et al. [13] and Asim et al. [14] indicate that the failure mode 

of the welds in automotive structures should be examined carefully and the necking/shear 

failure mode needs to be considered for development of failure or separation criteria for 

welds under more complex loading conditions for crash simulations. 
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Table 3.1  Dimensions of the lap-shear specimen. 

 

Width of the grip section (W) 30.0 mm 

Sheet thickness (t) 1.50 mm 

Length of each leg (L) 100.0 mm 

Width of the central portion (b) 8.0 mm 

Overlap length (V) 75.0 mm 

Weld width (d) 9.0 mm 

Indentation width (c) 7.0 mm 

Fillet radius (r) 10.0 mm 

Length of doubler (s) 30.0 mm 
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Table 3.2  The hardness values from indentation tests and the scaled initial yield stresses 
for the base, middle, low magnesium alloy and steel. 

 

 Base Mg Middle Mg Low Mg Steel 

Vickers hardness 70 67 64 98 

Yield stress 0  

(MPa) 
141 135 129 363 
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(a) 

 

 (b) (c) 

Fig. 3.1  (a) A top view of an ultrasonic welded lap-shear specimen prior to being 
machined into a dog-bone shaped specimen.  (b) A face view and (c) a side view of the 
sonotrode tip used in the ultrasonic welding.   

20 mm 
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(a) 

 

(b) 

 

(c) 

Fig. 3.2  (a) A top view and (b) a bottom view of an ultrasonic welded lap-shear 
specimen and (c) a schematic of a lap-shear specimen with the loading direction shown as 
the bold arrows.   
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(a) 

 

(b) 

7 mm

9 mm
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(c) 

Fig. 3.3  (a) An optical micrograph of the cross section of an ultrasonic welded joint.  
Close-up views of (b) the area away from the weld region and (c) the area directly 
beneath the weld tip as marked in (a).  
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(a) 

 

(b) 

 

(c) 

Fig. 3.4  Side views of specimens at the applied displacements of (a) 1.13 mm prior to 
failure and (b) 1.23 mm with the right upper sheet separated from the lap-shear specimen.  
(c) An optical micrograph of the fracture surface from the separated upper right sheet. 
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Fig. 3.5  The load-displacement curves from quasi-static tests of three lap-shear 
specimens.    
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(d) 

Fig. 3.6  (a) A cross-section view of an ultrasonic welded joint with micro hardness 
indentations on the surface.  (b) The cross-section overlapped with a grayscale color map 
depicting the Vickers hardness values.  Darker squares represent higher hardness values.  
The thickness-wise average values of the hardness values across the weld for (c) the 
magnesium and (d) the steel sheets.  
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Fig. 3.7  The engineering stress-strain curves for the AZ31B magnesium sheets from 
three tensile specimens. 
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Fig. 3.8  The tensile stresses as functions of the plastic strain for the, base, middle, low 
magnesium alloy and the steel used in the multi-zone finite element analyses. 

  

0

100

200

300

400

500

600

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

T
en

si
le

 s
tr

es
s 

(M
P

a)

Plastic strain (mm/mm)

Steel

Base Mg

Mid Mg

Low Mg



 

92 
 

 

(a) 

 

(b) 

Fig. 3.9  (a) A schematic of a two-dimensional finite element model of a lap-shear 
specimen showing the boundary conditions and (b) a close-up view of the finite element 
mesh near the right pre-existing crack tip.  
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(d) 

Fig. 3.10  (a) The finite element model for the lap-shear specimen without indentation.  
The finite element models with the indentation width of 7 mm and the weld widths of (b) 
9 mm, (c) 8 mm and (d) 7 mm.  
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(a) 

 

(b) 

 

(c) 

Fig. 3.11  Schematics of (a) the two-zone model without the indentation, (b) the two-zone 
model with the indentation and (c) the multi-zone model with the indentation. 
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(c) 

Fig. 3.12  (a) The deformed shape of the two-zone model with the 9 mm weld width.  (b) 
The load-displacement curves obtained from the finite element analyses based on the 
two-zone model with the 9 mm weld width under plane strain and plane stress conditions 
and the experimental results.  (c) The load-displacement curves obtained from the finite 
element analyses based on the two-zone model with the 9 mm, 8 mm and 7 mm weld 
widths and the experimental results.    
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Fig. 3.13  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the two-zone model with the 9 mm weld width and without the indentation at the applied 
displacement of 0.3 mm.  
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(c) 

Fig. 3.14  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the two-zone model with the weld widths of (a) 9 mm, (b) 8 mm and (c) 7 mm.  The 
applied displacement is 0.3 mm for all cases.    
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(c) 

Fig. 3.15  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the multi-zone model with the weld widths of (a) 9 mm, (b) 8 mm and (c) 7 mm.  The 
applied displacement is 0.3 mm for all cases.    
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Fig. 3.16  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the two-zone model without the indentation at the applied displacement of 1 mm. 
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(a) 

 

(b) 
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(c) 

Fig. 3.17  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the two-zone model with the weld widths of (a) 9 mm, (b) 8 mm and (c) 7 mm.  The 
applied displacement is 1 mm for all cases.    
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(a) 

 

(b) 
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(c) 

Fig. 3.18  Equivalent plastic strain distributions near the right pre-existing crack tip from 
the multi-zone model with the weld widths of (a) 9 mm, (b) 8 mm and (c) 7 mm.  The 
applied displacement is 1 mm for all cases.     
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Fig. 3.19  A schematic of a crack and an arbitrary contour Γ surrounding the crack tip. 
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Fig. 3.20  A close-up view of the two-zone finite element model near the right pre-
existing crack tip along with the J integral contours.  
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Fig. 3.21  The J integral solutions for contours 5 to 9 for the right pre-existing crack tip as 
functions of the load from the finite element analysis for the two-zone model with the 9 
mm weld width.  
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(a) 

 

(b) 

Fig. 3.22  (a) A finite element model near the weld region showing a kinked crack and (b) 
a close-up view of the finite element model near the kinked crack tip and the J integral 
contours for the kinked crack.  
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Fig. 3.23  The J integral solutions from the finite element analyses of the contour farthest 
from the crack tip as functions of the load of the 9 mm, 8 mm and 7 mm weld width, two-
zone models and the 9 mm weld width two-zone kinked crack model.  
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Chapter 4  
A closed-form analytical solution for calculation of loads and contact pressures for 

roller and ball bearings 

 

Introduction 

Bearings are essential components in machines and vehicles allowing relative 

motions of components with minimal friction.  The fatigue lives of the bearings in 

machines and vehicles are expected to outlast the lives of the machines and vehicles 

themselves.  However, large cyclic service loads will tend to shorten the lives of the 

bearings.  For use in vehicles, bearings should be designed to withstand both the constant 

load due to the vehicle weight and the service loads caused by the operation of vehicles.  

The stresses under the raceway from these loads and in the ball or cylindrical rollers 

should be designed within the elastic range of the material.   

A bearing should be designed such that the mechanical stresses due to contact and 

deformation are under some design limits, given that the bearing is maintained under well 

lubricated conditions.  Therefore, the mechanical stresses within the bearing components 

should be well studied during the design and selection process to maximize the fatigue 

life of a bearing.   

In order to test the structural durability and the failure lives of bearings such as 

those in vehicles, the bearings are usually put in a test equipment and rotated while 

external loads are applied.  The Society of Automotive Engineers has a standardized test 

for automotive biaxial wheel tests which is well documented by Nurkala and Wallace [1].  
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However, extensive testing time on the test equipment is necessary to duplicate the 

failure modes of bearings under actual operational conditions [2].  An accelerated test 

was suggested in order to reduce the required testing time, but investigations such as 

those by Grubisic and Fischer [3] have shown that the fatigue damage characteristics will 

be changed such that the failure mode will not be representative of that from the actual 

usage of vehicles.  Finite element analyses may be considered as a reasonable alternative 

but has their limitations.  Solving multiple and simultaneous contact problems using 

finite element analyses, as is the case for the bearing analysis, require a tremendous 

amount of pre-processing time and computing power which again creates time and cost 

issues. 

In order to overcome these time and cost related issues, an analytical solution is 

proposed here to estimate the loads exerted by the rolling elements on the raceway in a 

bearing.  Stribeck [4] proposed an equation to find the maximum load on a rolling 

element based on experimental observations.  Goodelle et al. [5] developed a method to 

record the static load distribution for radial as well as thrust rolling elements.  Harris [6] 

developed methods to obtain the load distribution based on radial and thrust integrals.  De 

Paula et al. [7] presented a software package that can be used to calculate the stresses 

based on the Hertz contact theory and the fatigue lives of bearings for industry use.   

Once the load distribution or the loads exerted by rolling elements are obtained, 

the contact pressures and the subsurface contact stresses can be obtained analytically 

from solutions by McEwen [8] or Sackfield and Hills [9].  The subsurface stresses can be 

combined with the existing multiaxial fatigue theories and the critical plane approach 

such as those by Findley [10] or Socie [11] or standardized bearing life calculation 
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relationships such as those by Lundberg and Palmgren [12], Ioannides and Harris [13] 

and Lösche [14].   

The proposed analytical solution which is based on the previous well known 

analytical solutions by Hertz [8] and Persson [15] is efficient since it is a closed-form 

solution which does not require trial-and-error iterations.  By using the proposed 

analytical solution, the same bearing evaluation procedure which requires significant 

CPU time by the corresponding finite element analysis can be accomplished quickly and 

then a preliminary assessment of a given bearing design can be provided.  Also, certain 

geometric parameters such as the inner and outer raceway diameters, the size/number of 

the rolling elements and the applied load can be adjusted to decide which design 

combination gives the optimum fatigue life before initiating costly experiments or 

computations.  

In this investigation, the elastic contact theory by Hertz for cylindrical contact is first 

reviewed.  The analytical work by Persson for conforming contact is also reviewed.  

Based on the solutions by Hertz and Persson, an analytical load distribution solution is 

proposed to calculate the distribution of the loads of the rolling elements in bearings.  

Two-dimensional and three-dimensional finite element analyses were conducted to 

validate the accuracy of the proposed analytical solution.  The limitations of the 

analytical solution are also discussed.  Finally, conclusions are made.  
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Closed-form contact solutions of Hertz and Persson  

Hertz solution for non-conforming contact 

The solution for the contact between elastic cylindrical bodies was derived by 

Hertz [8].  As shown in Fig. 4.1(a), a long cylinder with the radius R is pressed onto a flat 

surface by a load per unit length, P.  The Cartesian X, Y and Z coordinates are shown in 

the figure.  The cylinder makes contact with the flat surface over a long strip of area with 

a width of 2a parallel to the Y axis.  Here, a is defined as the half contact width.  Due to 

the contact, an elliptical contact pressure profile p(x) is created on the flat surface along 

the long strip of area. 

For the cylinder pressed in contact with the flat surface by a load per unit length P 

as in Fig. 4.1(a), the contact pressure profile p(x) can be expressed as 

   2/122

2

2
)( xa

a

P
xp 


, axa   (4.1) 

where x  denotes a location within the contact area.  Fig. 4.1(b) shows the normalized 

contact pressure max/)( pxp  as a function of the normalized distance from the symmetry 

plane of contact, ax / .  The relationship between the load per unit length P  and the half 

contact width a  is given by  
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where *E  is the equivalent elastic modulus defined as 
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Here, 1E , 1 , 2E  and 2  are the elastic moduli and the Poisson's ratios for the cylinder 

and the flat surface, respectively.  When two elastic cylinders in contact with each other 
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as shown in Fig. 4.1(c), the contact pressure profile p(x) and the half contact width a still 

follow Eqns. (4.1) and (4.2), respectively.  However, R  becomes the relative radius of 

curvature defined by the radii of curvature of the two contacting bodies as  

 
21

111

RRR
 . (4.4) 

For the cylinder and flat surface problem, R  is equal to 1R  as the radius of curvature of 

the flat surface, 2R  becomes infinity.  The maximum contact pressure can be found by 

substituting 0x  into Eq. (4.1) and combining with Eq. (4.2) as 
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Eq. (4.5) can be rearranged in terms of the maximum contact pressure such that,  

 2
max *

R
P p

E


 . (4.6) 

 

Persson solution for conforming contact 

A short description of the solution of Persson [15] is provided in this section.  

Two elastic bodies are in contact with a concentrated force Q applied to the center of the 

circular inner body as shown in Fig. 4.2.  The inner body is a cylinder with a radius of 

inR .  The outer body is assumed to be an infinite body with a circular hole with a radius 

of outR .  The two body establish contact over an angle of  . The stress becomes zero at 

infinity for the outer body.  Since the difference in the radius ( inout RRR  ) is small, 

the assumption of small contact area of Hertz is no longer valid.  The contact pressure 

( )p y  is obtained by Persson [15] as 
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where d  is defined by the subtended angle   as  

 
2

tan


d  (4.8) 

and y  is the angular position of a point on the contact surface such that  

 dydy    ,
2

tan


. (4.9) 

The relation of d , R  and Q is given by 
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where the 6I  defined by 
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Closed-form load distribution solutions 

The proposed load distribution function for bearings is based on the assumption 

that the profile of the maximum contact pressures of a group of multiple rollers in contact 

with an opposing surface is the same as the continuous contact pressure profile created by 

the corresponding continuous body in contact with the opposing surface.  Consider the 

two two-dimensional contact problems as shown in Figs. 4.3(a) and 4.3(b).  In both cases, 

the outer body is infinite with a circular hole.  In Fig. 4.3(a), an inner pin is placed 

concentric to the hole.  Multiple cylindrical rolling elements, which are spaced at a 
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constant angular interval, are placed between the gap of the hole and the inner pin.  In Fig. 

4.3(b), the inner pin and the equally spaced cylindrical rolling elements are replaced by a 

single lumped cylinder.  The diametral clearances for both cases in Figs. 4.3(a) and 4.3(b) 

are zero for this analysis.  All bodies are assumed to be elastic.  The polar coordinate 

system is also shown in the figures.   

A load is applied to the center of the inner pin and the lumped cylinder as in Figs. 

4.3(c) and 4.3(d).  The multiple rolling elements and the lumped cylinder come in contact 

with the outer body.  If the magnitude of the applied load is such that the stresses due to 

contact are within the elastic range and yield does not occur, each rolling element 

positioned in the lower half of the outer body will create an elliptic contact pressure 

profile as shown in Fig. 4.3(c) as described in Eq. (4.1) since the contact width is much 

smaller than the relative radius of contact.  Note that only the contact pressure profiles on 

the outer body are depicted in Fig. 4.3(c).  The overall contact pressure profile on the 

outer body will be a discrete with regions of zero pressure between the pressure profiles 

of the rolling elements.  Also, the elliptic contact pressure profiles will have different 

maximum pressures for the rolling elements.  The elliptic contact pressure profile for the 

i-th rolling element has a maximum contact pressure max,ip .  The rolling element which is 

located closest to the line of loading, which is at or near 0  will have the largest 

maximum contact pressure maxp  among the maximum contact pressures of all rolling 

elements.  The largest maximum contact pressure is expressed as 

  nipp i  1  ,max max,max  (4.12) 

where n  is the number of rolling elements.   
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It should be noted that the multiple rolling element contact is statically 

indeterminate and cannot be solved solely by considering the force equilibrium alone 

since the total applied load is not distributed equally among the cylinders in contact.  

Therefore, additional information is required to find the loads exerted by each rolling 

element on the outer body.   

When the load is applied to the center of the lumped cylinder as in Fig. 4.3(d), a 

contact pressure profile,  p  , will be created on the outer body as shown in Fig. 4.3(d).  

This contact pressure profile is smooth and continuous compared to the discrete contact 

pressure profile from the multiple rolling elements as shown in Fig. 4.3(c).  The 

maximum contact pressure due to the lumped cylinder will be much smaller than the 

largest maximum contact pressure due to the multiple rolling element contact because of 

the increase in the contact area such that 

  max max ( )p p  . (4.13) 

Now consider the limiting case such that the gap between the outer body and the 

inner pin decreases to zero, the diameter of the roller elements also decreases to zero, and 

the number of the rolling elements increases to infinity.  The limiting case represents the 

lumped cylinder case as shown in Fig. 4.3(d).  The discrete pressure profile of the 

limiting case will also approach to that of the lumped cylinder case as shown in Fig. 

4.3(d).  With this in mind, it is assumed that the ratio between the maximum contact 

pressures of two different rolling elements in Fig. 4.3(c) is equal to the ratio between the 

contact pressures due to the lumped cylinder at the corresponding angular location as in 

Fig. 4.3(d) such that 
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where  ip   denotes the contact pressure due to the lumped cylinder at the 

corresponding location of the i-th rolling element.  In this case, the ratios, rather than the 

actual values, between the maximum contact pressures from the multiple rolling elements 

case can be found once the contact pressure profile due to the lumped cylinder is given.  

Based on this assumption, a closed-form load distribution solution can be derived in the 

following and then validated by the corresponding finite element analyses based on the 

typical geometries of wheel roller bearings and cam follower roller bearings.  

An idealized two-dimensional cylindrical roller bearing is shown in Fig. 4.4(a).  

For the idealized roller bearings, there is no interference between the bodies and the 

bearing is prismatic and infinitely long.  The cylindrical roller bearing has an outer 

cylinder, an inner cylinder and cylindrical rolling elements.  The outer cylinder is 

stationary.  The outer surface of the outer cylinder is fixed and the inner cylinder is 

rotating.  All axial motion in the Y axis direction is prohibited.  A vertical load totalP  is 

applied to the center of the inner cylinder in the z axis direction.  The rolling elements in 

the lower half of the bearing will have contact forces with the inner and outer raceways.  

These rolling elements will each create a contact pressure profile on the surfaces of the 

inner and outer raceway as in Fig. 4.4(b).  Again, only the contact pressure profiles on the 

outer raceway are depicted in Fig. 4.4(b).  It has been shown that the stationary outer 

raceway experiences a comparably harsher stress state than the inner raceway.  Therefore, 

only the contact pressure on the stationary outer raceway will be investigated.  Each and 

every contact pressure profile created by the rolling elements on the surface of the outer 
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raceway will follow the Hertz theory in Eq. (4.1) as the contact area is small compared to 

the relative radius of curvature.  Also, the magnitude of the applied load is low such that 

the stresses in the bearing components are in the elastic range.   

As discussed earlier, the rolling elements as well as the inner cylinder are again 

replaced by a single lumped cylinder having the same radius as that of the inner surface 

of the outer cylinder as shown in Fig. 4.5(a).  The contact pressure profile that the 

replaced cylinder creates on the outer raceway,  p  , is smooth and continuous as in Fig. 

4.5(a).  This contact pressure profile can be analytically obtained by using the Persson 

solution in Eqns. (4.7) to (4.11). 

For non-conforming contact, i.e. the contact between a rolling element and the 

raceway, the size of the contact area is dependent on the magnitude of the applied load as 

shown in Eq. (4.2).  However, assuming that there is no interference between the outer 

cylinder and the lumped cylinder, the Persson solution in Eq. (4.10) indicates that the size 

of the contact area is independent of the applied load.  This leads to the most important 

part of the assumption for the proposed solution conclusion that the contact pressure 

profiles in Fig. 4.5(a) created by an applied load will be self-similar regardless of the 

magnitude of the applied load.  Therefore, a normalized contact pressure function  p   

can be obtained by the Persson solution as  

    
  max

p
p

p





 . (4.15) 

This normalized contact pressure function  p   is shown in Fig. 4.5(b).  The 

contact angle measured from the vertical symmetry plane spans from -91.7° to +91.7°.  
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The contact angle is a constant value for the zero-interference condition.  The number of 

rollers in contact, n, is equal to the number of rolling elements within this contact angle. 

The normalized contact pressure function  p   can be used to obtain the 

normalized maximum contact pressures of the rolling elements.  The ratio between the 

maximum contact pressure of the i-th rolling element, ipmax, , and the largest maximum 

contact pressure   nipp i  1  ,max max,max  can be estimated by  

  max,

max

i
i

p
p

p
 , ni 1  (4.16) 

where i  is the angular location of the i-th rolling element.  The load exerted by the i-th 

rolling element, iP , which is shown in Fig. 4.6 can be obtained by Eq. (4.6) in terms of 

the maximum contact pressure of the i-th rolling element as  

 2
max,*i i

R
P p

E


 , ni 1 . (4.17) 

As referring to Fig. 4.6, the sum of the vertical components of the loads exerted by the 

rolling elements should be equal to the total applied load totalP  due to the force 

equilibrium such that 

   total

n

i
ii PP 

1

cos  (4.18) 

Combining Eqns. (4.16), (4.17) and (4.18) gives the following expression for the load 

exerted by the i-th rolling element on the outer raceway in terms of the total applied load 

as  
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By using Eq. (4.19), the load exerted by the i-th rolling element on the outer raceway can 

be obtained by the number of rolling elements, n , the angular location of the rolling 

elements i , and the normalized contact pressure function  p  .  

 

Validation of the closed-form solution 

Two-dimensional finite element analyses were carried out to validate the 

analytical load distribution function.  The contact pressures from the finite element 

analyses are compared to the contact pressures of the analytical solution.  Two-

dimensional plane strain finite element models were developed to obtain the loads 

between the rolling elements and the outer raceway in the middle portion of a cylindrical 

roller bearing.  A representative finite element model is shown in Fig. 4.7(a).  The 

Cartesian X-Y coordinates are also shown in the figure.  Fig. 4.7(a) shows the three 

essential parts of the finite element model; an inner cylinder, the rolling elements and the 

outer cylinder.  Second-order, isoparametric, plane strain, quadrilateral, reduced 

integration elements (CPE8R) are used in the models.  The minimum element size is 10.0 

x10-3 mm.  The outer surface of the outer cylinder is constrained in both X and Y 

directions.  The central region of the inner cylinder is constrained in the X direction to 

prohibit undesirable horizontal motion.  A uniformly distributed vertical load in the 

negative Y direction is applied to the central region of the inner cylinder.  The bold arrow 

in Fig. 4.7(a) shows the direction of the applied load.  Fig. 4.7(b) shows a close-up view 

of the mesh refinement near the contact region boxed in Fig. 4.7(a).  The elastic modulus 

E is 200 GPa and the Poisson’s ratio ν is 0.3 for all material elements in the finite element 

model.  The steels used for manufacturing bearing components usually have high yield 



 

125 
 

stresses of more than 1200 MPa.  For a given design load 60 N, stresses on the contact 

surface and in the subsurface area near the contact are within the elastic range.  

Computations were performed using the commercial finite element software Abaqus v6.8 

[16].   

The maximum contact pressures between the rolling elements and raceway 

obtained from the finite element analysis are compared to the contact pressures calculated 

using the analytical solution.  Since the analytical solution method gives the loads exerted 

by the rollers as shown in Fig. 4.6 instead of the maximum contact pressures from the 

rollers as shown in Fig. 4.4(b).  Therefore, Eqns. (4.5) and (4.6) are used to calculate the 

maximum contact pressures for the i-th rolling element, max,ip , from the load exerted by 

the i-th rolling element, iP .   

The maximum contact pressures of the rolling elements obtained from the two-

dimensional finite element analysis and the analytical solution are listed in Table 4.1 and 

shown in Fig. 4.8.  Table 4.1 also shows the details of using Eq. (4.19) based on the 

analytical solution to obtain the loads exerted by the rolling elements in contact.  The first 

row of Table 4.1 shows the angular locations of the rolling elements in contact.  The 0° is 

defined as where the load line intersects the outer raceway.  The second row of Table 4.1 

show the values from the normalized contact pressure function,  ip  , for the 

corresponding angular locations in the first row based on the Persson solution as shown 

in Fig. 4.5(b).  The third and fourth rows show the necessary values needed for Eq. (4.19).  

The fifth row shows the values of the load iP  exerted by the rolling elements.  These 
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values are substituted into Eq. (4.5) to calculate the values of the maximum contact 

pressure ipmax,  for each rolling element which are shown in the sixth row.   

The seventh row shows the values of the maximum contact pressures for the 

rolling elements in contact obtained from the two-dimensional finite element analysis.  

The errors of the maximum contact pressures calculated from the analytical solution 

compared to those of the two-dimensional finite element analysis for the rolling elements 

are shown in the last row.  As listed in the table, the largest error occurs at the rolling 

elements located at ±50° and is about 6%.  Also, the error between the highest possible 

maximum contact pressure rolling elements located at ±10°, which causes the largest 

subsurface stresses, is less than 3%. 

The maximum contact pressures from the two-dimensional finite element analysis 

and the analytical solution are shown in Fig. 4.8(a).  As shown in the figure, the 

analytical solution gives the maximum contact pressures which are close to the maximum 

contact pressures obtained from the finite element analysis.  Fig. 4.8(b) shows the 

normalized maximum contact pressures from the two-dimensional finite element analysis 

and the analytical solution.  The pressures are normalized by the maximum pressures of 

the rolling element with the largest load.  Note that the eight contact pressure profiles 

shown as vertical lines from the finite element analysis in Fig. 4.8 actually are elliptical 

curves defined in Eq. (4.1).   

It should be noted that the discrete nature of using finite element analysis to 

simulate elastic or elastic-plastic contact problems usually give the maximum contact 

pressure from the simulations with an error of a few percents when compared to the 

analytical Hertz solutions [17].  For this particular simulation, there are at least 18 finite 



 

127 
 

elements in contact for the given load.  The contact pressure profiles for the roller at θ=10° 

from the finite element analysis and the Hertz solution are shown in Fig. 4.8(c).  As 

shown in the figure, the contact pressure solutions from the finite element analysis and 

the Hertz solution are compared well with each others.   

As shown in Fig. 4.7, the outer cylinder appears to have the thickness in the same 

order of the roller diameter.  The outer cylinder appears not to represent an infinite body 

as required by the assumption for derivation of the Persson solution used to derive the 

analytic load distribution solution.  However, by considering the small contact length for 

the given design load, the cylinder is still large enough to represent an infinite outer 

cylinder.  Note that the geometric parameters of the bearing investigated here are 

representative of the cam follower roller bearings and wheel bearings.  The analytical 

solution appears to work well.  As the diameter of the rollers becomes smaller and the 

number of the rollers increases, the approximate solution should be more applicable as 

discussed earlier for the limiting case.   

 

Fatigue life estimation 

The loads exerted by the rolling elements obtained by the analytical solution in Eq. 

(4.19) have been validated for a typical bearing design in the previous section.  However, 

the loads given by Eq. (4.19) may not be the most important consideration during bearing 

design or selection processes.  Rather, the fatigue lives of the subsurface material due to 

the contact stresses induced by the loads through the contact of the rolling elements is a 

better measure of the performance of a given bearing.  The process of estimating the 

fatigue life of a given bearing is summarized in this section.  This process has been used 
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as the basis for a bearing fatigue life estimation software.  The software has been 

successfully implemented into the bearing selection procedure at Chrysler LLC.   

The subsurface stresses along the symmetry plane directly under a Hertz contact 

pressure profile having a maximum pressure of 0p  is given by  
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 (4.21) 

  y x z     . (4.22) 

The maximum contact pressure can be obtained by using Eq. (4.5) with the load 

exerted by the rolling elements from Eq. (4.19).  Here, a  is the half contact width and z  

is the subsurface depth.  The maximum shear stress occurs directly under the roller in the 

subsurface at a depth of 0.78z a  and is given by  

 max 00.3p  . (4.23) 

Also, the Mises stress as a function of the principal stresses is given by 

      2 2 21

2
mises x y y z z x            . (4.24) 

Substituting Eqns. (4.20), (4.21) and (4.22) into Eq. (4.24) will given the Mises stress as a 

function of the maximum contact pressure, the half contact width and the subsurface 

depth.  The maximum Mises stress occurs in the subsurface at a depth of 0.7z a  and is 

given by 

   0max
0.28mises p  . (4.25) 
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The maximum shear stress obtained in Eq. (4.23) can be used with the bearing life 

predictions by Lundberg and Palmgren [12], Ioannides and Harris [13] and Lösche [14].  

Here, a simplified fatigue life estimation method is proposed with the use of Goodman 

relation to find the equivalent stress amplitude for fully reversed loading.  The equivalent 

stress amplitude is combined with the stress-life curve of the material to estimate the 

number of cycles to failure.   

The simplified fatigue life estimation is based on the assumption that the total 

applied load on the bearing is constant.  The simplified fatigue life estimation is also 

based on the assumption that the initial load and the interference load are not considered.  

By assuming a constant value for the total applied load, the loads exerted by the rolling 

elements on the outer raceway as well as the maximum contact pressures due to these 

loads will remain constants.  Also, the maximum value of the Mises stress and the 

location of the maximum Mises stress remain the same.  Therefore, a material element 

located in the subsurface of the outer raceway at a depth of 0.7z a  experiences a cyclic 

stress state ranging from zero to the maximum Mises stress.  The mean stress m  and the 

stress amplitude a  is given by 

 
1

2m mises   (4.26) 

 
1

2a mises   (4.27) 

Therefore, the equivalent stress amplitude for fully reversed loading, nS , is  
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where uS  is the ultimate stress of the bearing material.  Once, the equivalent stress 

amplitude is obtained, the fatigue life of a bearing can be estimated from the stress-life 

curve of the bearing material as 
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   
 

 (4.29) 

Here, fN  is the number of cycles to failure and A and B are material constant which are 

obtained with standardized fatigue testing procedures.  At the initial design stage, the 

simple life estimation method based on the Goodman relation and the Mises stress can be 

used.  Life estimations based on multiaxial fatigue theories and the critical plane 

approach can be used at the later stages of bearing design.   

 

Discussions 

The normalized contact pressure function  p   for the zero interference model is 

critical to accurately calculate the loads exerted by the rolling elements and the maximum 

contact pressures created by these loads.  Alternate candidates for the normalized contact 

pressure profile for the zero interference model can be a higher order polynomial 

functions or an elliptic function.  However, it has been determined that the alternate 

candidates did not achieve the accuracy of the original Persson solution by comparing the 

maximum contact pressures of the rolling elements as in the previous section.   

The Persson solution is derived based on an assumption that the outer raceway 

should be an infinite body without any constraints such that the stress due to contact 

vanishes at infinity.  However, in reality, bearings have geometric restrictions and finite 

outer cylinder dimensions.  Therefore, the bearing models discussed in this chapter does 
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not satisfy the original infinite outer body assumption.  The thickness of the outer 

cylinder has a length usually larger that the radius of the rolling elements.  However, due 

to the small contact lengths of the rolling elements compared to the radius of the rolling 

elements, the analytical solution based on the Persson solution fits well to the finite 

element results.   

The analytical solution is applicable in situations where the outer cylinder is fixed.  

Bearings used in cam systems, such as the cam follower roller bearings, do not have any 

constraints on the outer surface of the outer cylinder except for the area of contact with 

the cam.  Since the outer cylinder does not have geometric constraints, the outer ring is 

able to deform under the load applied to the cam follower roller bearing by the cam.  The 

applied load causes the outer cylinder to become lopsided which results in decrease of the 

number of rolling elements in contact.  The contact pressures between the rolling 

elements and the raceway surface on the outer cylinder can no longer be estimated by the 

normalized contact pressure function,  p   as discussed in this chapter.   

For spherical roller bearings, a similar derivation can be used to estimate the loads 

exerted by the rolling elements on the outer raceway such that  

 totaln
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i PP






1

3

3
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


,   ni 1 . (4.30) 

A three-dimensional finite element analysis has been conducted to validate the 

applicability of Eq. (4.30).  A finite element model which is based on a double row 

angular contact generation 3 automobile wheel bearing is shown in Figs. 4.9(a) and 4.9(b).  

Due to the limited computing resources, the mesh is crude with relatively large element 

size near the contact region.  The maximum contact pressures from the three-dimensional 
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finite element analysis and the analytical solution from Eq. (4.30) are shown in Fig. 

4.10(a).  Fig. 4.10(b) shows the normalized maximum contact pressures from the two-

dimensional finite element analysis and the analytical solution.  The pressures are 

normalized by the maximum pressures of the rolling element with the largest load.  As 

shown in Figs. 4.10(a) and 4.10(b), the analytical solution gives a reasonable estimation 

of the loads for the rolling elements.   

 

Conclusion 

In this chapter, an analytical load distribution solution to calculate the loads 

exerted by the rolling elements in cylindrical bearings without interference is proposed 

based on the analytical solutions of Hertz and Persson.  The analytical solution is based 

on the assumption that the profiles of the maximum contact pressure between the 

multiple rolling elements and the opposing surface is the same as the contact pressure 

profile between the continuous body and the opposing surface.  This assumption 

combined with the force equilibrium condition forms the basis to derive the analytical 

solution.  With the normalized load distribution solution, the only input required to obtain 

the loads exerted by the rolling elements is the total applied load. 

Two-dimensional finite element analyses were conducted to validate the 

analytical solution.  The maximum contact pressures from the rolling elements that are in 

contact with the outer raceway obtained from the two-dimensional finite element analysis 

are compared with the contact pressures calculated from the analytical solution.  A 

comparison shows that the maximum error for the rolling elements having the largest 

maximum contact pressure is less than 3%. 
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A simplified method to estimate the fatigue of the bearing is also summarized.  

The method is based on the load exerted by the rolling element and the closed-form 

solution to calculate the subsurface Mises stress.  The Mises stress is then combined with 

the Goodman relation and the stress-life relation of the bearing material to estimate the 

number of cycle to failure under constant amplitude loading conditions.   

Based on the analytical solution, a software has been developed to estimate the 

fatigue life of a given bearing.  The proposed method will not be able to eliminate the 

experimental or computational validation process of the bearing but will be able to 

provide a quick assessment of the fatigue life of a given bearing.  Engineers can 

implement the software in the design and selection process of automotive wheel bearings 

in order to reduce cost and time by being able to have a guideline of fatigue properties of 

bearing candidates.    
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Table 4.1  Maximum contact pressure obtained from the approximate solution and the 
two-dimensional finite element analysis.   

i  (degrees) -70 -50 -30 -10 10 30 50 70 

 ip 
 0.526 0.779 0.925 0.992 0.992 0.925 0.779 0.526 

 2
ip 

 0.276 0.607 0.855 0.984 0.984 0.855 0.607 0.276 

 2 cosi ip  
 0.094 0.390 0.741 0.969 0.969 0.741 0.390 0.094 

ip  (N/m) 

(solution) 
1.89 4.15 5.85 6.73 6.73 5.85 4.15 1.89 

max,ip  (MPa) 

(solution) 
105.4 156.2 185.5 198.9 198.9 185.5 156.2 105.4 

max,ip  (MPa) 

(FEM) 
110.1 165.9 194.5 204.6 204.6 194.5 165.9 110.1 

Error (%) 4.27 5.85 4.63 2.79 2.79 4.63 5.85 4.27 
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(c) 

Fig. 4.1  (a) Contact between a cylinder and a flat surface due to a load per unit length.  
(b) The normalized elliptical contact pressure profile between a cylinder and a flat 
surface.  (c) Contact between two cylinders due to a load per unit length.  
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Fig. 4.2  Contact between an inner cylinder and an infinite outer body.   
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(d) 

Fig. 4.3.  (a) Contact to the outer cylinder due to multiple rolling elements.  (b) Contact to 
the outer cylinder due to a single smooth and continuous cylinder.  (c) Contact pressure 
profiles due to multiple cylinders.  (d) Contact pressure profile due to a single smooth and 
continuous cylinder.  
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(a) 

 

(b) 

Fig. 4.4.  (a) An idealized cylindrical roller bearing under a load and (b) the contact 
pressure profiles on the outer raceway due to the load.    

Z

X

Y

Ptotal

Outer cylinder

Rolling elements

Inner cylinder

+θ



 

144 
 

 

(a) 

 

(b) 

Fig. 4.5.  (a) Contact pressure profile for a conforming contact.  (b) The normalized 
contact pressure function due to the conforming contact.    
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Fig. 4.6.  The loads exerted by the rolling elements on the outer raceway.   
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(a) 

 

(b) 

Fig. 4.7.  (a) A two-dimensional finite element model.  The bold arrow indicates the 
applied load.  (b) A close-up view of the mesh refinement near the contact region of a 
roller and the outer raceway.  
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(c) 

Fig. 4.8.  (a) The maximum contact pressures obtained from the analytical solution and 
the two-dimensional finite element analysis.  (b) The normalized contact pressures 
obtained from the analytical solution and the two-dimensional finite element analysis.  (c) 
The contact pressure profiles for the rolling element at θ=10° from the finite element 
analysis and the Hertz solution.   
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(a) 

 

(b) 

Fig. 4.9.  (a) A three-dimensional finite element model based on the Gen3 automobile 
wheel bearing.  (b) A close-up and cut-away view of the rolling elements and the outer 
raceway in the three-dimensional model.  
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(a) 

 

(b) 

Fig. 4.10.  (a) The maximum contact pressures obtained from the analytical solution and 
the three-dimensional finite element analysis.  (b) The normalized contact pressures 
obtained from the analytical solution and the three-dimensional finite element analysis. 

  

0

50

100

150

200

250

300

350

400

450

500

-180 -135 -90 -45 0 45 90 135 180

M
ax

im
um

 c
on

ta
ct

 p
re

ss
ur

e 
(M

P
a)

Angle (Degrees)

Analytical solution

Finite element analysis

0

0.2

0.4

0.6

0.8

1

1.2

-180 -135 -90 -45 0 45 90 135 180

M
ax

im
um

 c
on

ta
ct

 p
re

ss
ur

e 
(M

P
a)

Angle (Degrees)

Analytical solution

Finite element analysis



 

151 
 

Chapter 5  
Geometric Effects on Contact Pressure Distribution and Fatigue Lives of Cam 

Follower Roller Bearings 

 

Introduction 

Cam followers are an essential component of internal combustion engines and are 

required to control air and fuel flow into the combustion chambers.  Previously and even 

in the current applications, cam followers with sliding contact have been and are still 

being used due to its simplicity.  The fatigue lives and wears of cam followers with 

sliding contact have been investigated [1], [2], [3].  However, due to the requirements for 

high performance engines [4], [5], engineers have sought design changes which demand 

valvetrains with higher speed and acceleration and thus more force applied to the cam 

follower system.  Since an increase in the normal force directly results in the increase of 

frictional force, the current trend is to use cam roller followers instead of cam followers 

with sliding contact to lower the frictional coefficient and thus minimize frictional forces.  

Cam roller followers are expected to soon replace most cam followers with sliding 

contact [6].  The advantages of using cam roller followers instead of cam followers with 

sliding contact also includes less wear and energy loss [7].  However, there are also 

disadvantages of cam roller followers due to the increase in contact stress, complex 

functional requirements and manufacturing processes [6].   

Studies have been conducted on the fatigue lives of cam roller followers both 

experimentally and analytically.  Gecim [8] investigated the lubrication characteristics 
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between the cam and cam roller follower, and derived a fatigue life equation.  Lee et al. 

[9] developed a method to calculate the normal force and contact stress between a cam 

and a cam roller follower.  Krepulat et al. [10] obtained the contact pressure between a 

cam and a cam roller follower with use of finite element analyses.  Hua et al. [11] 

conducted an investigation on the contact fatigue of the cam surface using a multi-scale 

system analysis.  Cheng et al. [12] have identified through experiments that the failure 

mode of cam roller follower bearings is subsurface crack initiation and propagation.  It 

should be noted that, an exhaustive review by Sadeghi et al. [13] on rolling contact 

fatigue can provide insight on the fatigue life assessment of cam roller follower bearings.   

A simple solution to increase the fatigue lives of bearings in general appears to 

utilize rollers with larger diameters.  A larger roller will increase the contact area and 

allow the applied load to spread out.  The maximum contact pressure is inversely 

proportional to the square of the radius of curvature.  Consequently, the contact pressures 

and the subsurface stresses are reduced.  However, for cam roller follower bearings, there 

exists is a trade-off between the increase in the roller diameter and the decrease in the 

outer ring thickness.  A larger roller must be accompanied by a decrease of the outer ring 

thickness or the inner pin diameter due to the geometric restriction of the bearings.  The 

outer ring thickness directly affects the compliance and the amount of deformation of the 

outer ring under a given load.  The effect of this increase of compliance has not been 

investigated previously.    

In this chapter, finite element analyses were conducted to understand the effects 

of the diameter and the number of rolling elements on the contact pressure distribution, 

maximum subsurface Mises stress and fatigue lives of the cam roller follower bearing.  
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Two groups of cam roller follower bearing models having different diameters and 

numbers of rolling elements are investigated using two-dimensional plane strain finite 

element analyses.  Based on the results of the finite element analyses, the fatigue lives of 

the cam roller follower bearings of theses bearing models are estimated and compared.  

Finally, conclusions are made.   

 

Finite element analyses 

A schematic of a cam and a cam follower roller bearing is shown in Fig. 5.1(a).  

In this investigation, finite element models were developed for the cam follower roller 

bearings.  As shown in the figure, the roller bearing has a outer ring, inner pin and rolling 

elements.  Finite element analyses were carried out to identify the influence of the 

bearing geometry on the contact pressure distribution, maximum subsurface Mises stress 

and fatigue lives of the cam roller follower bearing.  The major design parameters 

investigated in the finite element analyses are the diameter and number of rolling 

elements and the thickness of the outer ring.  

 

Main simplifications 

Several assumptions were made to simplify the finite element model.  Needle 

rollers in cam roller follower bearings have a large ratio of length to diameter of about 10. 

Therefore, the plane strain assumption will give good approximation near the middle 

portion of the contact area where most fatigue failures are initiated.  By using this 

assumption, the edge effect of the rollers on the contact surface is ignored [10].   
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Also, a concentrated force will be used to simulate the load applied to the cam 

follower roller bearing by the cam.  In fact, a finite contact area exists between the two 

elastically deformable bodies.  The cam will apply a distributed force to the cam follower 

over this contact area.  However, for simplicity, the distributed force on this finite contact 

area will be replaced with a single concentrated resultant force applied to a single node.  

Finite element model of the roller bearing model 18-1 as discussed later with a 

concentrated load and a distributed load applied to the roller bearings were developed.  

The results of the finite element analyses for the subsurface Mises stresses are plotted as 

a function of the normalized depth by the thickness of the outer ring as shown in Fig. 

5.14 for the critical contact region of the outer ring under the largest contact force from 

the rolling element.  As shown in the figure, the Mises stress distributions are quite close 

to each other and the error is quite small near the contact surface.  Therefore, the use of a 

concentrated force on the roller bearing is a feasible yet simple method to obtain the 

stresses near the critical contact region which is far away from the location of the applied 

force.  

Another assumption is the use of a constant load.  The cam follower is under a 

variable loading condition during normal operation.  However, the load applied to the 

cam roller follower bearing model is assumed to be at a constant maximum load.  The 

resulting contact pressures and subsurface stresses of the critical contact region will 

represent those of the cam roller follower bearing experienced at the constant maximum 

load of the cam and cam follower.  This assumption can underestimate the fatigue lives of 

the cam roller follower bearings.  However, a comparison between different models can 
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be nonetheless obtained to find the optimal geometry which gives the longest fatigue life 

for the given condition.   

 

Roller bearing models 

Two groups of roller bearing models mainly have been used for the analyses.  The 

first group has 18 rolling elements (denoted as the 18 roller model group) while the 

second group has 15 rolling elements (denoted as the 15 roller model group) with 

comparatively larger diameters of rolling elements than those of the 18 roller models.  

Each group has three models.  The six models have been labeled as 18-1, 18-2, 18-3, 15-1, 

15-2, and 15-3 with increasing diameters of rolling elements.  In order to continue to 

increase the diameter of the rolling elements beyond model 18-3, the number of rolling 

elements must be reduced from 18 to 15 to avoid overlap of the rolling elements.  The 

transition from model 18-3 to model 15-1 represents this process of reducing the number 

of rolling elements for increasing the diameter of the rolling elements.   

Roller bearing models in both 18 and 15 groups have the same inner pin diameter 

( id ) of 9 mm and outer diameter ( oD ) of 17.8 mm.  Here, the subscript i  refers to the 

inner pin whereas the subscript o  refers to the outer ring.  Note that the outer diameter 

for the cam follower ( oD ) is not a variable parameter and cannot be changed without a 

redesign of the cam system.  The dimensions of the roller models shown schematically in 

Figs. 5.1(b) and 5.1(c).  The location of the roller is shown as a function of θ as shown in 

Figs. 5.1(b) and 5.1(c).  The rolling element diameter is smallest for model 18-1 and 

largest for model 15-3 as listed in Tables 5.1(a) and 5.1(b).  The subscripts 18 and 15 

refer to the 18-roller and the 15-roller model groups, respectively.  Note the angle θ and 
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the numbering (only shown from 1 to 3) of the rolling elements are defined in Figs. 5.1(b) 

and 5.1(c).  The values of the inner pin diameter id , outer ring diameter oD , outer 

diameter and the relative radius of curvature R  (explained later) are also listed in Tables 

5.1(a) and 5.1(b). 

 

Finite element models 

Finite element analyses of the cam roller follower bearings based on the 

dimensions given in Tables 5.1(a) and 5.1(b) were carried out to obtain the contact 

pressures as well as the subsurface stresses on the inner surface of the outer ring and the 

surface of the inner pin.  Two-dimensional plane strain finite element models are used to 

simulate the middle portion of the cam roller follower bearings.  Figs. 5.2(a) and 5.2(b) 

show the finite element model for models 18-1 and 15-1, respectively.  The Cartesian 

coordinate X-Y system is also shown in the figures.  Second-order, isoparametric, plane 

strain, quadrilateral, reduced integration elements (CPE8R) are used in the models.   

The refined finite element mesh near the contact surface between the inner pin 

and the 1st rolling element is shown in Fig. 5.3.  A mesh sensitivity study was conducted 

in order to compare the maximum Mises stress and the contact pressure to those of the 

elastic Hertz solution [14].  The minimum element size is 31054.1  mm for the given 

load.  The elastic modulus E is taken as 200 GPa and the Poisson’s ratio ν is taken as 0.3 

for the outer ring, inner pin, and rolling elements.  Computations were performed using 

the commercial finite element software Abaqus v6.8 [15]. 

The outer surface of an actual cam roller follower bearing is free of contact except 

for the area of contact with the cam.  Therefore, in the finite element analyses, the outer 
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surface of the outer ring is absent of constraints.  For the cam contact region, a 

concentrated force is applied to simulate the distributed load between the cam and the 

cam follower as discussed earlier.  The magnitude of the concentrated force is 4200 N 

which represents a typical maximum load produced between the cam and the cam 

follower during a normal valvetrain operation.  Constraints for the displacements in all 

in-plane directions have been applied to a central region of the inner pin.  The rolling 

elements have no constraints except for the spring elements attached to the rolling 

elements, which prohibit the rigid body motion.  The spring constants for the spring 

elements are small that they do not affect the computational results of the stresses.   

 

Rotation of the outer ring and revolution of the rolling elements 

During the operation of the cam roller follower bearing, the outer ring rotates 

while following the cam.  The rotation of the outer ring, in turn, causes the cylindrical 

rolling elements to rotate about their longitudinal axes and simultaneously revolve around 

the inner pin.  A schematic defining rotation and revolution of a rolling element and the 

outer ring is shown in Fig. 5.4.  Assuming pure rolling condition between the outer ring, 

inner pin and the roller elements, the relationship between the rotation angular velocity of 

the outer ring, o , and the revolution angular velocity of the rolling elements, C , can 

be found to be 

 C
o

oi
o d

dd
 






 
 . (5.1) 

From Eq. (5.1), it can be seen that the outer ring will always rotate at a higher 

angular velocity than the revolution of the rolling elements.  This phenomenon is shown 
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sequentially in Figs. 5.5(a) to 5.5(d).  The shaded roller element, the outer and inner ring 

reference lines are initially positioned at θ = 180°.  At this initial state, the outer and inner 

ring reference lines are located vertically.  The material elements on the outer and inner 

ring reference lines will experience the largest possible subsurface stress at the initial 

positions.  As the cam follower roller bearing begins to follow the cam, the rotation of the 

outer ring will cause the rolling elements to rotate and revolve around the inner pin under 

pure rolling conditions.   

As shown in the figure, the reference line of the inner ring almost experience 

three high stress loading history due to nearly three rolling elements passing through the 

vertical load application line, whereas the reference line of the outer ring already moves 

away from the high stress region near the vertical load application line.   

This can be used to explain the observations that the failure in cam roller follower 

bearings occurs in the stationary inner pin [12].  The material elements located along the 

reference line at θ = 180° of the inner pin cannot escape from the high cyclic stresses 

caused by all rolling elements passing through θ = 180° whereas the material elements 

along the reference line of the outer ring can escape the high stress region by moving 

away from the load application line.  

 

Results of finite element analyses 

Stress history due to rotation and revolution 

The stress histories for two material elements of interest were obtained from the 

finite element methods for the 18-1 model.  The first material element of interest is 

located in the inner pin and the second in the outer ring as shown in Fig. 5.6.  These two 
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material elements of interest are located at the subsurfaces of their respective components 

at a fixed depth below the contact surfaces where the maximum Mises stresses due to 

contact are likely to occur.  As mentioned in the previous section, the material element of 

interest in the inner pin is stationary while the material element of interest in the outer 

ring rotates during the operation of the cam follower.  The material element of interest in 

the inner pin is located on the reference line which is located at θ = 180°.  The material 

element of interest in the outer ring is located on the reference line which is initially 

located at θ = 180°.   

In order to investigate the stress histories experienced by the two material 

elements of interest during the operation of the cam follower while taking into account 

the previously mentioned revolution and rotation, finite element analyses were conducted 

for every 1° of revolution of the rolling elements from 0° to 10°.  Finite element analyses 

were also conducted by using a smaller increment of rotation of 0.1° to mimic the 

continuous rotation.  The stress history obtained by using the rotational increment of 1° 

was shown to capture all the major stress peaks that influence the fatigue lives by 

comparing with that by using the rotational increment of 0.1°.  Figs 5.7(a) to 5.7(d) show 

the representative Mises stress distributions at the revolution of the 0°, 4°, 7° and 10° of 

the rolling elements.  Based on these 11 stress solutions, spanning every 1° from 0° to 

10°, the stress solution for a full rotation of the outer ring and revolution of the rolling 

elements can be obtained by use of symmetry.  

The arrows in Figs. 5.7(a) to 5.7(d) indicate the approximate locations of the two 

material elements of interest.  As mentioned earlier, the material element of interest is the 

inner pin remains stationary while the material element of interest on the outer pin rotates 
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at a higher angular velocity than that of the revolution of the rolling elements.  At 0° 

rotation and revolution as in Fig. 5.7(a), both material elements of interest are located at θ 

= 180° and are under the highest possible stress at this position.  In Fig. 5.7(b), the rolling 

elements have begun its departure by revolving 4° while the material element on the outer 

ring has rotated about 6°. The material element of interest on the outer ring will not 

encounter a stress peak due to contact until about a rotation of 45°.  

Based on the results of the finite element analyses obtained with consideration of 

the rotation of the outer ring and the revolution of the rolling elements, the stress histories 

for the material elements of interest are plotted in Figs. 5.8(a) and 5.8(b).  Fig. 5.8(a) 

shows the stress history for the material element of interest located in the inner pin while 

Fig. 5.8(b) shows the stress history for the material element located in the outer ring of 

the 18-1 model.  Note that Figs. 5.8(a) and 5.8(b) show the stress histories that the two 

materials elements experience during the same time period as the outer ring rotates two 

full cycles (720°) for both material elements initially located at θ  = 180°.  From Eq. (5.1), 

the rolling elements only revolve about 413° while the outer ring rotates 720° for the 

dimensions given for the 18-1 model.  The stationary material element in the inner pin 

experiences a cyclic stress history with constant stress amplitude and mean stress with a 

peak at every 20° of revolution of the rolling elements.  During the same time period, the 

material element in the outer ring experiences a stress cycle which is drastically different 

than the stress history that material element in the inner pin experiences.  The stress 

history for the material element in the outer ring contains much fewer high stress peaks 

since the material element moves away from the high stress region near the load 

application line as the outer ring rotates.  Also shown in Fig. 5.8(b) is the smooth low 
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stress curve with peaks, for example, at 180° and 540° of 40 MPa caused by the 

deformation of the outer ring.  Based on this observation, it is evident that the inner pin 

will fail earlier than the outer ring. 

 

Effect of the radius of curvature 

Figs. 5.9(a), 5.10 and 5.11 show the contact pressure, percentage of the load 

carried by the 1st rolling element, and the maximum subsurface Mises stress in the inner 

pin under the 1st rolling element from the three 18 roller models and the three 15 roller 

models as a function of the relative radius of curvature.  The relative radius of curvature, 

R  is defined as  

 
2/

1

2/

11

ir ddR
  (5.2) 

where rd  is the diameter of the rolling elements and id  is the diameter of the inner pin.  

Note that a larger relative radius of curvature represents a larger rolling element diameter 

since the diameter of the inner pin is maintained to be constant.  

Fig. 5.9(a) shows the maximum contact pressure between the 1st rolling element 

and the inner pin as a function of the relative radius of curvature when the 1st rolling 

element is located at θ = 180°.  In general, the use of a larger rolling element will 

decrease the contact pressure due to the increase in the contact area based on the elastic 

Hertz solution.  This is true for the 18 roller model group because the maximum contact 

pressure decreases from model 18-1 to 18-3.  However, the maximum contact pressures 

for all three models in the 15 roller model group are larger than the maximum contact 

pressures in the 18 roller model group even though the smallest rolling element in the 15 

roller model group is larger than the largest rolling element in the 18 roller model group.  
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Also, the maximum contact pressure within the 15 roller model group does not decrease 

with the increase of the relative radius of curvature.  The 15-2 model has the smallest 

maximum contact pressure among the three 15 roller models.  The apparent deviation 

from the expectation that the contact pressure should decrease with the use of larger 

rolling elements can be explained by calculating the percentage of the total load carried 

by the 1st rolling element.  Figs. 5.9(b) and 5.9(c) show the contact pressure on the 

raceway of the inner pin between model 18-1 and model 15-3.  Five contact pressure 

peaks can be seen in Fig. 5.9(b) while that number reduces to three in Fig. 5.9(c).  This 

indicates that the while the total applied load is distributed among five rolling elements in 

model 18-1, the same total applied load is distributed among only three rolling elements.  

Fig. 5.10 shows the percentage of the total load carried by the 1st rolling element 

as a function of the relative radius of curvature when the 1st rolling element is located at 

θ = 180°.  The load carried by the 1st rolling element can be calculated by  

 2
max,1*1 p

E

R
P


  (5.3) 

where 1P  is the load carried by the 1st rolling element, max,1p  is the maximum contact 

pressure for the 1st rolling element as presented in Fig. 5.9.  *E  is the equivalent elastic 

modulus given by  

 






 


EE

2

*

1
2

1 
. (5.4) 

Substituting the values of the maximum contact pressure in Fig. 5.9 to Eq. (5.3) gives the 

load carried by the 1st rolling element for each model.  The percentage of the total load 

carried by the 1st rolling element is simply 
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 100element rolling1st by  carried load  totalof % 1 
P

P
 (5.5) 

where P  is the total applied load.  As can be seen in Fig. 5.10, the percentage of the total 

load carried by the 1st rolling element increases with the increase in the relative radius of 

curvature.  Therefore, the 1st rolling element tends to carry more load with an increase in 

the diameter of the rolling elements.  The increase of the percentage is due to the increase 

of compliance in the outer ring.  As the diameter of the rolling element increases, the 

outer ring must become thinner since the diameter of the inner pin ( id ) and the outer 

diameter of the outer ring ( oD ) must remain constant.  The ring becomes increasingly 

compliant as the outer ring becomes thinner.  Within the 18 roller model group, the 

increases in the relative radius of curvature are 6.2% from models 18-1 to 18-2 and 5.6% 

from models 18-2 to 18-3.  Similarly, the increases in the percentage of the total load 

carried by the 1st rolling element are 3.9% from models 18-1 to 18-2 and 4% from 

models 18-2 to 18-3.  Based on the elastic Hertz solution [14], the contact pressure is 

given by  

 
R

EP
p



*
1

0  . (5.6) 

If the increase in the relative radius of curvature R  in the denominator is larger 

than the increase of the applied load 1P  in the numerator, the contact pressure 0p  should 

decrease.  However, from models 18-3 to 15-1, the increase of the relative curvature is 8% 

while the increase of the percentage of the total load carried by the 1st rolling element is 

21%.  Therefore, the contact pressure of the 15-1 model is larger than that of the 18-3 

model.  Also, the increases of the relative radius of curvature within the 15 roller model 
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group are 6.3% and 5.7% while the increases of the percentage of the total load carried by 

the 1st rolling element are 5.4% and 5.8%.  Therefore, the contact pressure does not 

decrease as the rolling element diameter increases within the 15 roller model group.  The 

benefit expected from the use of rolling elements with larger diameters cannot be 

achieved due to the larger load that the 1st rolling element has to carry.   

For bearings with a constrained outer raceway unlike the cam follower roller 

bearings, the % of total load carried by the 1st rolling element is a constant value which 

can be determined by the number of rolling elements and does not depend on the 

geometry.  For the 18 roller models, the % of total load carried by the first 1st rolling 

element is 27% based on the formula by Stribeck [4] and 23% based on the solution by 

Lee and Pan [17].  For the 15 roller models, the % of total load carried by the first 1st 

rolling element is 33% based on the formula by Stribeck [4] and 28% based on the 

solution by Lee and Pan [17]. 

Fig. 5.11 shows the maximum subsurface Mises stress in the inner pin as a 

function of the relative radius of curvature.  Since the total load carried by the 1st rolling 

element also increases by using larger rolling elements, the contact stress and, 

consequently, the maximum subsurface Mises stresses of the 15 roller models are higher 

than those of the 18 roller models.   

 

Fatigue analysis of the inner pin 

The algorithm to calculate fatigue lives of the cam follower components is 

presented in Fig. 5.12.  When the load histories, material properties and geometric 

information of the components are available, finite element models can be developed and 
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the stress histories at the critical locations of the component can be obtained from the 

computations.  Applying the rainflow counting method gives the closed hysteresis loops 

for the stress history.  The fatigue damage of the closed stress loop resulting from the 

rainflow counting is calculated for the cam follower loads using Goodman's relation and 

Miner's linear damage rule.  The fatigue life of the cam follower in terms of the load 

events is the inverse of the accumulative fatigue damage of each revolution.  Rainflow 

counting is not necessary for the material elements of the inner pin since the material 

element is subject to constant amplitude cyclic loading conditions. 

  

Goodman relation and damage accumulation 

For each model, the equivalent fully reversed stress nS  under the given Mises 

stress amplitude a  and the mean stress m  can be calculated using the Goodman 

relation as 

 1a m

n uS S

 
   (5.7) 

where uS  is the tensile strength.  The fatigue properties for the inner pin are based on the 

experimental study by Smith et al. [18] for AISI 52100 steel.  The S-N relation of the 

AISI 52100 steel which is shown in Fig. 5.13 has been curve fitted to follow the power 

law relation as 

 0.0932372n fS N   (5.8) 

where fN  is the number of cycles to failure.  Using Miner's rule, the accumulated 

damage of the inner pin at the depth where the Mises stress is maximum can be 

calculated by 
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 
fN

D
1

. (5.9) 

 

Fatigue life estimation of the inner pin 

Based on the stress history the finite element model 18-1 in Fig. 5.8(a), a  is 633 

MPa and m  is also 633 MPa.  Using uS  of 2013 MPa with Eq. (5.7), the completely 

reversed stress nS  is calculated to be 924 MPa.  The life to failure corresponding to this 

completely reversed stress is 25,147 cycles based on the fNS   relationship of Eq. (5.8).  

The damage per cycle is thus 1/25147.  Since the inner pin experiences a peak in the 

stress history every 20° of revolution of the rolling elements which corresponds to 34.7° 

of rotation of the outer ring, the material element of interest will fail after 2500 rotations 

of the outer ring.  This number of rotations is an unrealistic low number due to the 

assumption that the cam roller follower bearing model is under the constant maximum 

load during the engine operations.  However, the rotation to failure can be compared 

between the models to find the geometry which gives the largest cycles to failure.  

Fatigue life estimations for all six roller models are shown in Tables 5.2(a) and 5.2(b).  

As listed in the tables, the fatigue life increases within both groups with increasing 

relative radius of curvature.  However, the 15 roller models, even with the larger rolling 

elements, have fatigue lives which are shorter than those of the 18 roller models. 
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Conclusion 

The contact pressures, maximum subsurface Mises stresses, and fatigue lives of 

cam roller follower bearings with different diameters and numbers of rolling elements 

have been obtained and compared based on the results of the finite element analyses.   

A kinematic analysis under pure rolling conditions indicates that the material 

elements in the inner pin experiences higher stresses compared to the material elements 

in the outer ring.    

The results of the finite element analyses indicate that the contact pressure and 

maximum subsurface Mises stress generally decrease with an increase in the rolling 

element diameter.  However, reducing the number of rolling elements and decreasing the 

outer ring thickness to accommodate larger rollers may not be beneficial to the contact 

pressure and maximum subsurface Mises stress due to the increase of the outer ring 

compliance.  

Once the maximum subsurface Mises stresses are obtained through finite element 

analyses, the fatigue lives are estimated.  The fatigue lives of the 15 roller models are 

determined to be shorter than those of the 18 roller models.  The increased compliance of 

the outer ring for the 15 roller models causes a significant deformation of the outer ring 

and the applied load is carried by a fewer number of rolling elements.  Consequently, the 

fatigue lives of the inner pin decrease.  The 15 roller models have rollers with larger 

diameters compared to the 18 roller models.  However, due to the increase of the 

percentage of the total load carried by the 1st rolling element originating from the 

increase of the outer ring compliance, the contact pressures and the maximum subsurface 

Mises stresses are higher for the 15 roller models.  It is recommended that a parametric 

study based on the finite element analyses should be conducted to obtain the optimum 
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geometry which gives the lowest contact pressure and maximum subsurface Mises stress 

which results in the longest fatigue life of cam follower roller bearings.  
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Table 5.1  Dimensions for (a) the 18-roller and (b) 15-roller models (mm). 

(a) 

 18-1 18-2 18-3 

Inner pin diameter, id  9 9 9 

Inner diameter of outer ring, od  12.174 12.408 12.639 

Outer diameter, oD  17.8 17.8 17.8 

Rolling element diameter, rd   1.587 1.704 1.82 

Relative radius of curvature 0.675 0.716 0.757 

 

(b) 

 15-1 15-2 15-3 

Inner pin diameter, id  9 9 9 

Inner diameter of outer ring, od  13 13.312 13.624 

Outer diameter, oD  17.8 17.8 17.8 

Rolling element diameter, rd   2 2.156 2.312 

Relative radius of curvature 0.818 0.870 0.920 
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Table 5.2  Fatigue lives of the inner pin for (a) the 18-roller and (b) 15-roller model.  

(a) 

 
18-1 18-2 18-3 

Peak stress (MPa) 1267 1243 1222 

Minimum stress (MPa) 0 0 0 

Su (MPa) 2013 2013 2013 

σm (MPa) 633.5 621.5 611 

σa (MPa) 633.5 621.5 611 

Sn (MPa) 924 899 877 

Nf  25147 33904 44149 

 

(b) 

 
15-1 15-2 18-3 

Peak stress (MPa) 1342 1334 1331 

Minimum stress (MPa) 0 0 0 

Su (MPa) 2013 2013 2013 

σm (MPa) 671 667 665.5 

σa (MPa) 671 667 665.5 

Sn (MPa) 1007 998 994 

Nf 10075 11093 11502 
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(c) 

Fig. 5.1  Schematics of (a) the cam and the cam roller follower bearings and (b) 18-1 of 
the 18 roller models and (c) 15-1 of the 15 roller models.  
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(a) 

   

(b) 

Fig. 5.2  Finite element models for (a) 18-1 of the 18 roller models and (b) 15-1 of the 15 
roller models. 
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Fig. 5.3  A close-up view of the finite element mesh near the contact surfaces between the 
inner pin and the 1st rolling element.  
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Fig. 5.4  A schematic showing the definition of revolution and rotation of the rolling 
element and the rotation of the outer ring.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.5  A sequential schematic of the rotation of the outer ring and the revolution of a 
rolling element with the outer ring rotation of (a) 0°, (b) 20°, (c) 40° and (d) 60°. 
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Fig. 5.6  Approximate locations for the material elements of interest in the inner pin and 
the outer ring.  
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(a) 

 

(b) 
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(c) 

 

(d) 

Fig. 5.7  The Mises stress distributions from finite element analyses for the revolution 
angle of (a) 0°, (b) 4°, (c) 7° and (d) 10° for the rolling elements.  The arrows indicate the 
approximate locations of the material elements of interest.   
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(a) 

 

(b) 

Fig. 5.8  The Mises stress histories for the 18-1 model for the material elements of 
interest in (a) the inner pin and (b) the outer ring.  
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(c) 

Fig. 5.9  (a) The maximum contact pressure between the 1st rolling element and inner pin 
as a function of the relative radius of curvature. The contact pressure distributions on the 
inner pin due to the rolling elements for (b) model 18-1 and (c) model 15-3.   
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Fig. 5.10  The percentage of the total load carried by the 1st rolling element as a function 
of the relative radius of curvature.  

15-1
15-2

15-3

18-1
18-2

18-3

30

40

50

60

70

80

0.6 0.7 0.8 0.9 1

%
 o

f l
oa

d 
ca

rr
ie

d 
by

 1
st

 r
ol

le
r

Relative radius of curvature (mm)

15 roller model

18 roller model



 

187 
 

 

Fig. 5.11  The maximum subsurface Mises stress under the 1st rolling element in the 
inner pin as a function of the relative radius of curvature.  
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Fig. 5.12  An algorithm for fatigue analysis of structural components.  
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Fig. 5.13  The stress vs. cycles to failure curve for AISI 52100.  
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Fig. 5.14  The subsurface Mises stress distributions in the outer ring under a concentrated 
load and a distributed load.    
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Chapter 6  
A closed-form solution for calculation of load and contact pressure in cylindrical 

roller bearings with consideration of interference fit of rollers 

 

Introduction 

Wheel bearings are an essential component of vehicles and contribute 

significantly to the overall performance of vehicles by allowing the wheels to rotate with 

minimal friction.  Wheel bearings also have to withstand the weight of the vehicle and the 

dynamic loading caused by acceleration, deceleration and directional changes of vehicles.  

The expected lives of automotive bearings are set to outlast the expected lives of vehicles.  

However, the constant loading on the bearings due to the weight of a vehicle combined 

with the large cyclic external loads due to the operation of the vehicle will tend to shorten 

the lives of the bearings.  If a failure occurs in a wheel bearing, the bearing must be 

replaced.  The replacement results in a warranty issue for the automaker and a 

maintenance cost issue for the vehicle owner.  Therefore, the bearing should remain in a 

near perfect condition from the time of installation to the retirement of the vehicle. 

To ensure that the bearing life outlasts the vehicle life, certain mechanical and 

environmental conditions should be maintained.  The bearing should be designed to 

withstand both the constant load due to the vehicle weight as well as the cyclic loads 

caused by the operation of the vehicle.  The mechanical stresses caused by these loads 

within the bearing along the raceway and in the balls or the rollers should be within the 

elastic range of the materials.  Also, the seals should prevent the lubricant from leaking 
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out while at the same time preventing dirt and moisture from coming inside.  The bearing 

components should be well lubricated and the lubricants contaminant-free.  If the bearing 

is maintained in a well lubricated condition, the cyclic stresses caused by the normal 

operation may ultimately cause the bearing components to fail by fatigue.  Therefore, the 

mechanical stresses within the bearing components should be well studied during the 

design process to maximize the fatigue life of a bearing.   

Once bearings are manufactured based on the design processes, the bearings are 

usually put into a test equipment and rotated while external loads are applied to test the 

failure lives of the bearings [1], [2].  These external loadings are programmed to 

represent the actual customer vehicle usage.  However, an extensive testing time is 

necessary to duplicate the failure modes of bearings installed in vehicles [3].  An 

accelerated test might be suggested in order to reduce the required testing time but 

previous investigations [4], [5] showed that the fatigue damage characteristics will be 

changed such that the failure mode will not be representative of those from actual 

customer usage.  In addition to the time related issues, there is also cost issue due to the 

fact that the laboratory test equipments are expensive to operate continuously.  Also, the 

process becomes inefficient due to the long testing time compared to the demand for 

short vehicle development schedule.  Finite element analyses may be proposed as a 

reasonable alternative but have their own limitations.  Solving multiple simultaneous 

contact problems using finite element analyses, as is the case for the wheel bearing 

analysis, require a tremendous amount of computing power which again creates time and 

cost related issues. 
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In order to overcome these issues, a closed-form solution is proposed to calculate 

the loads exerted by the rolling elements in a bearing with consideration of interference 

fit under a radial load.  Similar approach was proposed in the industry [6].  Once the 

loads exerted by the rolling elements are obtained, the contact pressures, the subsurface 

contact stresses and the fatigue lives of roller bearings can be obtained analytically.  The 

proposed solution to obtain the loads exerted by the rolling elements is a closed-form 

solution which has been derived based on the previous well known analytical solutions 

by Hertz [8] and Persson [8] and the approximate closed-form interference load of the 

rolling element from finite analyses for a given set of geometric parameters for bearings.  

The proposed solution requires a minimal amount of effort, cost and time while still 

maintaining a reliable accuracy and does not require finite element analyses or trial-and-

error iterations.   

By using the proposed solution, the bearing design process to obtain the contact 

pressures and contact forces of the rolling elements can be accomplished analytically 

with a closed-form equation and it gives engineers a preliminary assessment of a given 

bearing design without long pre-processing time and significant CPU time of the 

corresponding finite element analysis.  Also, certain geometric parameters such as the 

inner and outer raceway diameters, the size/number of the rolling elements and the 

applied load can be adjusted to decide which design combination gives the optimum 

fatigue life for the wheel bearing before initiating costly experiments or computations. 

In this investigation, the elastic contact theory by Hertz for cylindrical contact is first 

reviewed.  The solution by Persson for conforming contact with interference is also 

reviewed.  Based on the solutions of Hertz and Persson, a closed-form solution to 
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calculate the loads exerted by the rolling elements on the outer raceway is proposed.  

Two-dimensional finite element analyses were conducted to validate the applicability of 

the closed-form solution.  The limitations for the closed-form solution are also discussed.  

Finally, conclusions are made. 

 

Theoretical background 

Hertz solution for non-conforming contact 

The solution for the contact between elastic cylindrical bodies was derived by 

Hertz [8]. As shown in Fig. 6.1(a), a long cylinder with the radius R is pressed onto a flat 

surface by a load per unit length, P.  The Cartesian X, Y and Z coordinates are shown in 

the figure.  The cylinder makes contact with the flat surface over a long strip of area with 

a width of 2a parallel to the Y axis.  Here, a is defined as the half contact width.  Due to 

the contact, an elliptical contact pressure profile p(x) is created on the flat surface along 

the long strip of area. 

For the cylinder pressed in contact with the flat surface by a load per unit length P 

as in Fig. 6.1(a), the contact pressure profile p(x) can be expressed as 

   2/122

2

2
)( xa

a

P
xp 


, axa   (6.1) 

where x  denotes a location within the contact area.  Fig. 6.1(b) shows the normalized 

contact pressure max/)( pxp  as a function of the normalized distance from the symmetry 

plane of contact, ax/ .  The relationship between the load per unit length P  and the half 

contact width a  is given by  
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where 
*E  is the equivalent elastic modulus defined as 
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Here, 1E , 1 , 2E  and 2  are the elastic moduli and the Poisson's ratios for the cylinder 

and the flat surface, respectively.  When two elastic cylinders in contact with each other 

as shown in Fig. 6.1(c), the contact pressure profile p(x) and the half contact width a still 

follow Eqns. (6.1) and (6.2).  However, R  becomes the relative radius of curvature 

defined by the radii of curvature of the two contacting bodies as  

 
21

111

RRR
 . (6.4) 

For the cylinder and flat surface problem, R  is equal to 1R  as the radius of curvature of 

the flat surface, 2R  becomes infinity.  The maximum contact pressure can be found by 

substituting 0x  into Eq. (6.1) and combining with Eq. (6.2) as 

 
R

PE
p



*

max  . (6.5) 

Eq. (6.5) can be rearranged in terms of the maximum contact pressure such that,  

 2
max *

R
P p

E


 . (6.6) 

 

Persson solution for non-conforming contact with interference 

A short description of the solution of Persson [8] with consideration of 

interference is provided in this section.  Two elastic bodies are in contact with a 
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concentrated force Q applied to the center of the circular inner body as shown in Fig. 

6.2(a).  The inner body is a cylinder with a radius of 
inR .  The outer body is assumed to 

be an infinite body with a circular hole with a radius of 
outR .  The stress becomes zero at 

infinity for the outer body.  The two body establish contact over an angle of  .  Fig. 

6.2(b) shows the interference case where 
inR  is larger than 

outR .  Since the difference in 

the radius (
inout RRR  ) is negative for the interference condition, the small contact 

area assumption of Eq. (6.1) is no longer valid.  For a given R  which is negative, the 

pressure  p   is constant which is expressed as  

  
*

2 out

E R
p

R
 

   (6.7) 

where *E  is the equivalent elastic modulus in Eq. (6.4).  The top left figure in Fig. 6.2(c) 

schematically shows that the pressure distribution is uniform along the circumference 

when the magnitude of Q is zero.  As the force Q increases, the contact pressure is given 

by  

  
*

cos
2 out out

E R Q
p

R R
 




  . (6.8) 

Note that the contact angle is 360° when Eq. (6.8) is applicable.  As indicated in Eq. (6.8), 

when Q increases to a critical value separationQ  , the condition  

   0p     (6.9) 

can be satisfied.  Here, the critical separationQ  is expressed as  

 
*

2separation

E R
Q

 
  . (6.10) 
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When Q is less than or equal to separationQ , the pressure distributions are schematically 

shown in the top right and the bottom left figures in Fig. 6.2(c).  When Q is larger than 

separationQ  as shown in the bottom right figure in Fig. 6.2(c), the pressure distribution can 

be obtained numerical from the solution provided by Persson [8].  Here, separationQ  can be 

thought of the separation load when the contact pressure between the inner and outer 

surfaces at    becomes zero.  As Q increases, the contact angle decreases from 360°.  

When Q approaches to infinity, the contact angle approaches to 169.83°.   

 

The loads exerted by the rolling elements 

Now, an idealized cylindrical roller bearing is considered as shown in Fig. 6.3.  

For the idealized roller bearings, the rolling elements, outer and inner cylinders are 

prismatic and infinitely long in the axial direction.  The outer cylinder is stationary to 

represent the constraint condition of wheel bearings.  The outer surface of the outer 

cylinder is fixed in the X, Y and Z directions and the inner cylinder is free to rotate with 

respect to the Y axis.  All axial motion in the Y axis direction is prohibited.  A vertical 

load 
totalP  is applied to the center of the inner cylinder in the Z axis direction.  The 

bearing model shown in Fig. 6.3 has 18 rolling elements.  However, the number of rolling 

elements can vary as long as a reasonable number of rolling elements are present to 

sustain the function of the bearing.  It can be shown that the outer raceway experiences a 

comparably harsher stress state then the inner raceway.  Therefore, only the contact 

pressures on the stationary outer raceway are investigated.  The magnitude of the applied 

load is low such that the stresses in the bearing components remain in the elastic range. 
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Interference load 

Interference between the rolling elements and raceways are introduced either 

intentionally in order to minimize rolling element play or due the press-fit of the bearings 

to a shaft or housing [9], [10].  That is, the diametral clearance of the rolling elements 

becomes negative.  This is to ensure that all rolling elements maintain contact with the 

both raceways during normal operation.  The interference d  is defined as  

 rio dddd 2  (6.11) 

where od  is the outer raceway diameter, id  is the inner raceway diameter and rd  is the 

rolling element diameter as shown in Fig. 6.4.   

Due to the interference d , the rolling elements create elliptical contact pressures 

profiles on the inner and outer raceway as in Fig. 6.5.  Note that only the contact 

pressures on the outer raceway are depicted in Fig. 6.5.  The contact pressure profiles due 

to interference have the same maximum values and can be considered as identical under 

the idealized condition.   This maximum contact pressure exerted on the outer raceway by 

the rolling elements due to the interference prior to the application of an external load 

will be defined as the interference pressure interferencep .   

The interference pressure can be estimated analytically by using the solutions 

listed in Johnson [8].  First, the compression of the diameter of a rolling element, cylinder , 

is given by  

 
*

4 4
ln ln 1i o

cylinder
i o

R RF

E a a



           
     

. (6.12) 
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Here, F  is the load created between the rolling element and the raceways due to the 

interference.  Also, iR  and oR  are the relative radii of curvature between the rolling 

elements and the inner and the outer raceways, respectively, and ia  and oa  are the half 

contact width between the rolling elements and the inner and the outer raceways, 

respectively.  It should be noted that ia  and oa  are functions of F .   

Based on the Hertz solution of a cylinder on a half-space, the compressions of the 

inner and outer raceways, inner  and outer , can be estimated by 

 
*

2
2 ln

2 1
i

inner
i

rF

E a


 

          
 (6.13) 

and 

 
*

2
2 ln

2 1outer
o

F T

E a


 

          
 (6.14) 

where ir  is the radius of the inner cylinder and T  is the radial thickness of the outer 

cylinder.  The sum of these compressions should be equal to the interference such that 

  
2 cylinder inner outer

d
f F  

    . (6.15) 

The load between the rolling element and the raceways due to the interference, F , 

can be found by inverting Eq. (6.15).  This load can be used with Eq. (6.5) to find the 

interference pressure.  However, due to the complexity of Eqns. (6.12), (6.13) and (6.14), 

the load created between the rolling element and the raceway can only be computed 

numerically.  Also, Eqns. (6.13) and (6.14) has been derived based on the solution for a 

cylinder indenting on a half-space.  Therefore, the relatively small values of the radius of 

the inner cylinder and the thickness of the outer cylinder tend to give estimations of the 
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interference pressures that are as much as twice of those obtained from finite element 

analyses.   

Therefore, the interference pressure will be obtained from the first term of Eq. 

(6.8) with a geometric function   to take into account the effects of the bearing 

geometries of interest as 

  







 


2/4

*

o
ceinterferen d

dE
p  . (6.16) 

Here,   is expressed as a function of the relative radius of curvature and the interference 

normalized by the diameter of the outer raceway as 

 1 2 3

2 o

o o

R d

d d
    
    (6.17) 

where  

 1 164.3   (6.18) 

 2 175.9    (6.19) 

 3 31969.2   . (6.20) 

for the bearings with a given ranges of id , od  and rd  investigated here.   

The load exerted on the outer raceway by the rolling elements due to the 

interference prior to the application of an external load will be defined as the interference 

load interferenceP  as shown in Fig. 6.6(a).  The magnitudes of the interference loads for all 

rolling elements are equal under the idealized symmetry conditions since the rolling 

elements are assumed to be uniformly spaced along the circumference.  The sum of the 

interference loads must be zero in order to satisfy the self force equilibrium conditions.  
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The interference load interferenceP  can be obtained by substituting Eq. (6.16) into Eq. (6.6) 

as 

 2
*
o

interference interference

R
P p

E


 . (6.21) 

When the geometries of roller bearings are significantly different from the 

geometries of the bearing models considered in this study, Eq. (6.15) may be used for 

estimation of the interference load of rolling elements cautiously to avoid time 

consuming finite element analyses.  It should be noted that when the inner cylinder radius 

and outer cylinder thickness are much larger than the contact length, the estimations from 

Eq. (6.15) should be more accurate.   

 

Separation load  

A downwards vertical load totalP  is applied at the center of the inner cylinder as 

shown in Fig. 6.6(b).  The horizontal sum of the loads exerted by the rolling elements on 

the outer raceway remains zero because the total applied load does not have a horizontal 

component.  The vertical sum of the loads exerted by the rolling elements on the outer 

raceway should be of equal and opposite to the total applied load in order to satisfy the 

force equilibrium condition.  The loads exerted by the rolling elements on the lower half 

of the outer raceway will increase while the loads exerted by the rolling elements on the 

upper half of the outer raceway will decrease as the total applied load is increased as 

shown in Fig. 6.6(b).  As the total applied load is increased to a certain value, the load 

exerted by the rolling elements on or near the outer raceway at 180    will become 

zero as schematically shown in Fig. 6.6(c).  This phenomenon will be defined as the 
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separation as the zero load between the rolling element and the outer raceway at 

180   .  The separation indicates that the two bodies are not in a full 360° contact.  

The magnitude of the total applied load at which separation occurs will be defined as the 

separation load separationP .  The separation load can be found based on the following 

observations.  First, the vertical sum of the loads exerted by the rolling elements on the 

outer raceway should equal the total applied load such that 

   total

n

i
ii PP 

1

cos  (6.22) 

where iP  is the load exerted on the outer raceway by the i-th rolling element, i  is the 

angular location of the i-th rolling element, and n  is the number of the rolling elements.  

The loads exerted by the rolling elements on the outer raceway are assumed in the form 

similar to the solution by Persson as in Eq. (6.8) as  

 cosi iP A B  , 1 i n   (6.23) 

where A and B  are constants to be determined.  Finally, the average of the magnitudes 

of the loads exerted by the rolling elements on the outer raceway is equal to the 

interference load such that 

 ceinterferen

n

i
i

P
n

P



1 . (6.24) 

The constant A can be found by substituting Eq. (6.23) into Eq. (6.22) as 

 
n

PA total

2
 . (6.25) 

When Eq. (25) is substituted back into Eqns. (6.23) and (6.24) with 0totalP  , the 

constant B  can be identified to be  
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 ceinterferenPB . (6.26) 

Then, the separation load can be found by the definition such that  

   0i iP     (6.27) 

which gives 

 
2

0separation interferenceA B P P
n

       (6.28) 

Therefore, the total applied load at which separation occurs is found to be 

 
 

2
*

*2 2 4 / 2separation interference
o

n n E d R
P P

d E


 

    
 

. (6.29) 

 

Loads exerted by rolling elements on the outer raceway 

The load exerted by the i-th rolling element on the outer raceway is found by 

substituting the constants in Eqns. (6.16), (6.25) and (6.26) into Eq. (6.23) as  

 
 

2
*

*

2
cos

4 / 2i total i
o

E d R
P P

n d E

 
 

   
 

, ni1  (6.30) 

when 

 separationtotal PP  . (6.31) 

The largest possible load exerted by a rolling element on the outer raceway can be 

obtained by setting 0i   in Eq. (6.30) as 

   *

2*

max 2/4

2

E

R

d

dE

n
PP

o
total

 






 
 . (6.32) 

When totalP  is larger than separationP , a similar procedure can be used to find the load iP  of 

the rolling elements.  However, since the number of the rolling elements in contact 
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depends on the totalP  and the geometric parameters such as id , od  and rd , the solution 

will be quite complex and is not in the closed-form as presented in this section.   

 

Validation of the closed-form solution 

Two-dimensional finite element analyses were carried out to validate the 

applicability of the closed-form solution to calculate the loads exerted by the rolling 

elements on the outer raceway.  Since the finite element analyses give the contact 

pressures rather than the loads exerted by the rolling element on the outer raceway, the 

load exerted by the i-th rolling element calculated from Eq. (6.30) will be converted to 

the maximum contact pressure by the i-th rolling element by using Eq. (6.5) as 

 
*

max,i i
o

E
p P

R
 . (6.33) 

Two-dimensional plane strain finite element models were developed to simulate 

the middle portion of the idealized cylindrical roller bearing.  Two representative finite 

element models based on the geometries of typical wheel bearings and cam follower 

roller bearings are shown in Figs. 6.7(a) and 6.8(a).  The finite element model in Fig. 

6.7(a) has 18 rolling elements while the model in Fig. 6.8(a) has 15 rolling elements.  The 

X-Y Cartesian coordinates are shown in the figures.  Figs. 6.7(a) and 6.8(a) show the 

three components in the finite element model; an outer cylinder, an inner cylinder and the 

rolling elements.  Second-order, isoparametric, plane strain, quadrilateral, reduced 

integration elements (CPE8R) are used in the models.  The minimum element size is 10.0 

x10-3 mm.  Figs. 6.7(b) and 6.8(b) show close-up views of the mesh refinement near the 

contact regions boxed in Figs. 6.7(a) and 6.8(a), respectively.  The elastic modulus E is 
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200 GPa and the Poisson’s ratio ν is 0.3 for all material elements in the finite element 

models.  The steel used for manufacturing bearing components usually have a high yield 

stress of more than 1200 MPa.  For the load range investigated here, the stresses on the 

contact surface and in the subsurface near the contact regions are within the elastic range.   

Finite element models with different magnitudes of interference, relative radius of 

curvature and outer raceway diameter have been used to validate the applicability of the 

closed-form solution.  The dimensions for the models used in the finite element analyses 

are shown in Table 6.1.  Table 6.1 shows the values for the outer raceway diameter, the 

inner raceway diameter, the rolling element diameter, the relative radius of curvature, the 

thickness of the outer cylinder, the interference, the number of rolling elements and the 

separation load for eight finite element models.   

The finite element analyses were conducted in two separate steps.  Figs. 6.9(a) 

and 6.9(b) show the boundary conditions for the finite element analyses for the first and 

second steps, respectively.  The Cartesian and polar coordinate systems are also shown.  

The interference pressure is calculated in the first step and the vertical load is applied in 

the second step.  The outer surface of the outer cylinder is constrained in all X and Y 

directions during both steps.  Also, the horizontal motion in the X direction of the central 

region of the inner cylinder is constrained during both steps.  For the first step, the rolling 

elements are constrained in the tangential direction in the polar coordinate system.  For 

the second step, the tangential constraints of the rolling elements and the vertical 

constraint of the central regions of the inner cylinder are removed.  Uniformly distributed 

vertical loads are applied to a group of nodes in the central portion of the inner cylinder.  
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The arrows in Fig. 6.9(b) show the direction of the applied load.  Computations were 

performed using the commercial finite element software Abaqus v6.8 [11].   

Fig. 6.10(a) show the contact pressure profile from the finite element analysis for 

model 1 from the first step (the total applied load is zero).  The contact pressure shown in 

Fig. 6.10(a) is therefore the interference pressure.  As expected, 18 almost equally 

distributed contact pressure profiles with the almost same maximum contact pressure are 

shown in Fig. 6.10(a).  Each contact pressure profile in general follows Eq. (6.1).  One 

contact pressure profile is shown in Fig. 6.10(b).   

Figs. 6.11, 6.12 and 6.13 show the contact pressures obtained from the finite 

element analyses and the closed-form solution in Eq. (6.33) for models 1, 5 and 8 from 

the second step.  The contact pressures from the finite element analyses are shown in 

solid lines while the contact pressures obtained from the closed-form solution are shown 

in dashed lines.  It should be noted that the results from the other models show similar 

results as shown in Figs. 6.11, 6.12 and 6.13 and therefore are not shown here.   

Figs. 6.11(a), 6.11(b) and 6.11(c) show the contact pressures obtained from the 

finite element analysis and the closed-form solution for model 1.  The estimated 

separation load for model 1 is 562 N/mm.  The ratios of the total applied load to the 

separation load are 0, 0.47 and 0.93 for Figs. 6.11(a), 6.11(b) and 6.11(c), respectively.   

Figs. 6.12(a), 6.12(b) and 6.12(c) show the contact pressures obtained from the 

finite element analysis and the closed-form solution for model 5.  The estimated 

separation load for model 5 is 982 N/mm.  The ratios of the total applied load to the 

separation load are 0, 0.50 and 0.96 for Figs. 6.12(a), 6.12(b) and 6.12(c), respectively.   
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Figs. 6.13(a), 6.13(b) and 6.13(c) show the contact pressures obtained from the 

finite element analysis and the closed-form solution for model 8.  The estimated 

separation load for model 8 is 288 N/mm.  The ratios of the total applied load to the 

separation load are 0, 0.43 and 0.81 for Figs. 6.13(a), 6.13(b) and 6.13(c), respectively.   

Fig. 6.14 shows the error of the maximum contact pressures obtained from the 

closed-form solution at 10    when compared with those from the finite element 

analyses as a function of the ratio of the total applied load to the separation load.  The 

contact pressures at 10    are selected for comparison since the rolling element at this 

locations experienced the largest pressure and load from the finite element analyses.  As 

can be seen, the error is below 1% for the given total applied load range.  The 

fluctuations seem to have negligible meaning and the error does not increase nor decrease 

with the increase of the total applied load when below the separation load.   

 

Discussion 

The loads exerted by the rolling elements on the outer raceway given by Eq. (6.30) 

may not be directly used during bearing design and selection processes.  Rather, bearing 

life or rating life is used by most manufacturers as an estimate for the life for a given 

bearing.  However, the load values calculated from Eq. (6.30) can be combined with the 

stress solutions in [12] and [13] to obtain the subsurface stresses of the raceway as in Lee 

et al. [14].  The subsurface stresses can then be combined with the existing fatigue 

theories, for example, see [15] and [16].  The fatigue life obtained from this process can 

be used to compare design changes of the geometry and the number of rolling elements 

or the applied load for the bearings of interest.   
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Based on the validation, the loads obtained from Eqns. (6.30) and (6.33) are in 

good agreement with the finite element results for the given geometries of bearings and 

the total applied load.  However, Eqns. (6.30) and (6.33) have an upper limit set by the 

separation load in Eq. (6.31).  When the total load is larger than the separation load, the 

contact angle is less than 360 ° or the number of the rolling elements in contact is less 

than the total number of the rolling elements.  Fig. 6.15 shows the normalized load 

exerted by the rolling element located at 10    obtained from the finite element 

analysis for model 1 and from the closed-form solution in Eq. (6.30) as a function of the 

normalized total load.  The loads are normalized by the separation load as shown in the 

figure.  

As the ratio of the total applied load to the separation load exceeds 1, the result of 

the finite element analysis becomes higher than that from the closed-form solution.  

Therefore, Eqns. (6.30) and (6.33) should be used when the total applied load is less than 

the separation load.  When the total applied load exceeds the separation load, the overall 

contact angle is no longer 360° and the assumption of Eq. (6.23) is no longer valid.  

Persson has obtained the solution for the non-conforming contact of cylinders and thus a 

further study should be conducted to find the corresponding solutions applicable to a 

bearing model when the total applied load is larger than the separation load.   

The separation load can also be used as a design limit for the applied load for 

bearing operation.  Separation of the rolling elements and the raceways is not beneficial 

toward the overall fatigue life of the bearing since the equivalent stress amplitude for 

fully reversed loading increases as the mean stress decreases when a fatigue theory based 
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on the Goodman relation and the Mises stress amplitude as the equivalent stress 

amplitude is adopted.   

Additional considerations for using Eq. (6.30) should be listed.  First, the 

proposed method is based on the force equilibrium condition under static loading 

conditions and does not consider rolling of the rolling elements.  Rolling contact fatigue 

has been studied by numerous researchers [17], [18], [19] and is shown to have different 

results compared to cyclic standing contact fatigue conditions in terms of subsurface 

stress distributions, crack location and fatigue lives [20].   

The closed-form solution is derived on the assumption that the outer and inner 

cylinders and the rolling elements have the same material properties with the same elastic 

moduli when the outer and inner cylinders and the rolling elements have different elastic 

moduli and may even show plastic and shakedowns behaviors [21], [22].  The subsurface 

stresses must be evaluated such that they do not meet the yield condition prior to the use 

of Eq. (6.30).  Different elastic moduli and Poisson's ratios between the outer or inner 

cylinders and the rolling elements can be taken into account by using Eq. (6.4) to obtain 

the equivalent elastic modulus of the contact solution.   

 

Conclusion 

In this chapter, a closed-form solution to calculate the loads exerted by the rolling 

elements in cylindrical roller bearings with consideration of interference fit of rollers is 

proposed in this chapter.  The non-conforming Hertz solution and the conforming 

Persson solution are first briefly reviewed.  The interference loads by the rolling elements 

due to the interference are derived and then approximated for a given set of geometric 
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parameters of bearings.  With the solution for the interference load, the loads exerted by 

the rolling elements on the outer raceway are obtained when the total load is less than the 

separation load where a rolling element possibly start to lose contact with the cylinders.  

These loads of the rolling elements can be calculated by a closed-form equation with the 

total applied load, the number of rolling elements, the angular locations of the rolling 

elements, the equivalent elastic modulus, the interference, the outer raceway diameter and 

the thickness of the outer cylinder as the input parameters.  Two-dimensional finite 

element analyses were conducted to verify the applicability of the closed-form solution.  

Finite element models with different diameters of the outer and inner cylinders, diameters 

of the rolling element, number of rolling elements, and the thickness of the outer cylinder 

were considered for the validation.  The results of the finite element analyses show that 

the maximum contact pressures of the rolling elements obtained from the closed-form 

solution are within 1% of those of the finite element analyses when the total load is less 

than the separation load.  
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Table 6.1  Dimensions, number of rolling elements and the separation load for the finite 
element models used for verification. All length dimensions in mm. 

 

Model  
 

Outer 
raceway 
diameter 

od  

Inner 
raceway 
diameter 

id  

Rolling 
element 
diameter 

rd  

Relative 
radius of 
curvature 

R  

Outer 
cylinder 
thickness 

T  

Inter-
ference 

d  

Number 

of rolling 

elements 
n  

Separ-
ation  
load 

separationP

 

1 76 55.4 10.3 5.95 10.3 
-4.12 × 

10-3 
18 562 

2 38 27.7 5.15 2.98 5.15 
-2.06 × 

10-3 
18 281 

3 57 41.6 7.72 4.47 7.72 
-3.09 × 

10-3 
18 425 

4 76 57.5 9.27 5.28 9.27 
-4.12 × 

10-3 
18 546 

5 76 55.4 10.3 5.95 10.3 
-6.90 × 

10-3 
18 982 

6 76 55.4 10.3 5.95 10.3 
-3.89 × 

10-3 
18 529 

7 76 55.4 10.3 5.95 10.3 
-3.68 × 

10-3 
15 431 

8 50.7 36.9 6.87 3.97 6.87 
-2.47 × 

10-3 
15 288 
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(a) 

 

(b) 

Fig. 6.1  (a) Contact between a long cylinder with radius of R and a flat surface due to a 
load per unit length, P.  (b) The normalized elliptical contact pressure profile between the 
cylinder and the flat surface as a function of the normalized distance from the symmetry 
plane.    
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(c) 

Fig. 6.2  Contact between an inner cylinder and an infinite outer body where (a) inR  is 

smaller than outR  and (b) inR  is larger than outR .  (c) The change in contact pressure 

distribution on the surface of the outer body with increasing applied load Q.   
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Fig. 6.3  A schematic of an idealized cylindrical roller bearing with an outer cylinder, 
inner cylinder and rolling elements with a load of Ptotal applied to the inner cylinder.
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Fig. 6.4  The axial view of an idealized cylindrical roller bearing with interference.
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Fig. 6.5  The contact pressures exerted on the outer raceway by the rolling elements due 
to the interference.    
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(c) 

Fig. 6.6  The loads exerted by the rolling elements on the outer raceway due to the 
interference under (a) no applied load, (b) an applied load smaller than the separation 
load and (c) an applied load equal to the separation load.   
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(a) 

 

(b) 

Fig. 6.7  (a) A 18 roller finite element model used in the two-dimensional finite element 
analysis.  The large arrow indicates the direction and the location of the applied load.  (b) 
A close-up view showing the mesh refinement near a contact region.  
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(a) 

 

(b) 

Fig. 6.8  (a) A 15 roller finite element model used in the two-dimensional finite element 
analysis.  The large arrow indicates the direction and the location of the applied load.  (b) 
A close-up view showing the mesh refinement near a contact region.   
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(a) 

 

(b) 

Fig. 6.9  Boundary conditions in the finite element models for (a) the first step when the 
interference is introduced and (b) the second step when the vertical load is applied.  
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(a) 

 

(b) 

Fig. 6.10  The results of the contact pressures exerted by the rolling elements on the outer 
raceway due to the interference from the finite element analysis of model 1 for (a) all 18 
rolling elements and (b) a single rolling element.  
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(c) 

Fig. 6.11  The contact pressures from the finite element analysis and the closed-form 
solution for model 1 for the ratio Ptotal/Pseparation of (a) 0, (b) 0.47 and (c) 0.93. 
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(c) 

Fig. 6.12  The contact pressures from the finite element analysis and the closed-form 
solution for model 5 for the ratio Ptotal/Pseparation of (a) 0, (b) 0.5 and (c) 0.96. 
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(c) 

Fig. 6.13  The contact pressures from the finite element analysis and the closed-form 
solution for model 8 for the ratio Ptotal/Pseparation of (a) 0, (b) 0.43 and (c) 0.81. 
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Fig. 6.14  The errors of the maximum contact pressures at 10    obtained from the 
closed-form solution when compared with those from the finite element analyses as a 
function of the ratio of the total applied load to the separation load.   
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Fig. 6.15  The normalized load exerted by the rolling elements at 10    on the outer 
raceway from the finite element analysis for model 1 and the closed-form solution as a 
function of the normalized total applied load. 
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Chapter 7  
Conclusions 

 

In chapter 2, the experiments for laser welds in lap-shear specimens under quasi-

static loading conditions are briefly reviewed first.  The experimental results showed that 

the laser welds failed in a ductile necking/shear failure mode and the ductile failure was 

initiated at a distance away from the crack tip near the boundary of the base metal and 

heat affected zone.  Two-dimensional plane strain finite element analyses were then 

carried out to understand the failure mode of laser welds in lap-shear specimens under 

quasi-static loading conditions.  The results of the reference finite element analysis based 

on the homogeneous material model suggest a possible middle surface shear failure mode 

in the weld, which does not match with the experimental results.  Therefore, the multi-

zone models are developed to take into account the higher hardness values and the higher 

stress-strain curves of the heat affected and weld zones.  The results of the finite element 

analyses based on the multi-zone non-homogeneous material models show that the higher 

effective stress-plastic strain curves of the weld and heat affected zones and the geometry 

of the weld protrusion can result in the necking/shear failure mode in the load carrying 

sheet.  The results of the finite element analyses closely match with the experimental 

observations.  Although lap-shear specimens are used to investigate the strength of the 

weld under shear dominant loading conditions, the load carrying sheets near the weld are 

subjected to dominant tensile deformation due to large plastic deformation.   
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A two-dimensional plane strain finite element analysis of the lap-shear specimen 

with consideration of void nucleation and growth was also conducted.  Initially, the 

material elements located near the two crack tips exhibit a high rate of void nucleation 

and growth.  As the applied displacement increases, the plastic strains of the material 

elements of the base metal near the heat affected zone begin to exceed the plastic strains 

of the material elements near the crack tips due to the higher stress-strain behavior of the 

material elements in the heat affected zone.  The location of the large void volume 

fraction gradually shifts from the material elements near the two crack tips to the material 

elements in the base metal near the heat affected zone.  With the absence of the round 

protrusion, the void volume fraction is thought to be equal in the base metal regions for 

both the lower left and the upper right load carrying sheets due to symmetry.  However, 

the round protrusion imposes additional geometric constraint to the lower left sheet and 

thus the computational results show that the void volume fractions are larger for the 

material elements on the base metal side of the boundary of the base metal and the heat 

affected zone.  The location of the material elements with the larger void volume fraction 

matches well with that of the crack formation as observed in the experiment.  With the 

adoption of the Gurson yield function, the location of the initiation of ductile fracture can 

be clearly correlated with the experimental observation.  It should be emphasized that the 

conclusions of this investigation are applicable to the laser welds in lap-shear specimens 

under quasi-static loading conditions.   

In chapter 3, the experiments for ultrasonic welds in dog-bone shaped lap-shear 

specimens of magnesium and steel sheets under quasi-static loading conditions are 

reviewed first.  The micrograph of the fracture surface of a failed lap-shear specimen 
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shows two distinct intersecting surfaces which were initiated from the pre-existing crack 

tip and from the indentation corner created due to the sonotrode tip and.  Two-

dimensional plane strain and plane stress finite element analyses were then carried out to 

understand the plastic flow patterns and the failure modes of ultrasonic welds in lap-shear 

specimens under quasi-static loading conditions.   

The results of finite element analyses based on the weld model with and without 

indentation suggest that the plastic flow initiation site from the indentation corner, in 

addition to the pre-existing crack tip, is mainly responsible for dominant plastic flow 

patterns to occur.  Finite element analyses for models with and without indentation and 

with different weld widths were developed with two-zone and multi-zone material 

schemes.  The results of the finite element analyses show that the weld indentation corner 

can trigger the unique fracture surface shown in Fig. 3.4(c).  The plastic flow pattern 

from the results of the finite element analyses closely matches the fracture surface profile 

form experimental observations.  Additionally, finite element analyses based on the 

multi-zone material models with different weld widths were conducted to obtain the J 

integral solutions for the pre-existing crack and a kinked crack with a small kink length.  

The result of the finite element analyses are used to explain the crack kinking out of the 

interface.  It should be emphasized that the conclusions of this investigation are 

applicable to the ultrasonic welds in lap-shear specimens under quasi-static loading 

conditions.   

In chapter 4, an analytical load distribution solution to calculate the loads exerted 

by the rolling elements in cylindrical bearings without interference is proposed based on 

the analytical solutions by Hertz and Persson.  The analytical solution is based on the 
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assumption that the profiles of the maximum contact pressure between the multiple 

rolling elements and the opposing surface is the same as the contact pressure profile 

between the continuous body and the opposing surface.  This assumption combined with 

the force equilibrium condition forms the basis to derive the analytical solution.  With the 

normalized load distribution solution, the only input required to obtain the loads exerted 

by the rolling elements is the total applied load. 

Two-dimensional finite element analyses were conducted to validate the 

analytical solution.  The maximum contact pressures from the rolling elements that are in 

contact with the outer raceway obtained from the two-dimensional finite element analysis 

are compared with the contact pressures calculated from the analytical solution.  A 

comparison shows that the maximum error for the rolling elements having the largest 

maximum contact pressure is less than 3%. 

A simplified method to estimate the fatigue of the bearing is also summarized.  

The method is based on the load exerted by the rolling element and the closed-form 

solution to calculate the subsurface Mises stress.  The Mises stress is then combined with 

the Goodman relation and the stress-life relation of the bearing material to estimate the 

number of cycle to failure under constant amplitude loading conditions.  Based on the 

analytical solution, a software has been developed to estimate the fatigue life of a given 

bearing.  The proposed method will not be able to eliminate the experimental or 

computational validation process of the bearing but will be able to provide a quick 

assessment of the fatigue life of a given bearing.  Engineers can implement the software 

in the design and selection process of automotive wheel bearings in order to reduce cost 

and time by being able to have a guideline of fatigue properties of bearing candidates.   
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In chapter 5, the contact pressures, maximum subsurface Mises stresses, and 

fatigue lives of cam roller follower bearings with different diameters and numbers of 

rolling elements have been obtained and compared based on the results of the finite 

element analyses.  A kinematic analysis under pure rolling conditions indicates that the 

material elements in the inner pin experiences higher stresses compared to the material 

elements in the outer ring.   The results of the finite element analyses indicate that the 

contact pressure and maximum subsurface Mises stress generally decrease with an 

increase in the rolling element diameter.  However, reducing the number of rolling 

elements and decreasing the outer ring thickness to accommodate larger rollers may not 

be beneficial to the contact pressure and maximum subsurface Mises stress due to the 

increase of the outer ring compliance.  

Once the maximum subsurface Mises stresses are obtained through finite element 

analyses, the fatigue lives are estimated.  The fatigue lives of the 15 roller models are 

determined to be shorter than those of the 18 roller models.  The increased compliance of 

the outer ring for the 15 roller models causes a significant deformation of the outer ring 

and the applied load is carried by a fewer number of rolling elements.  Consequently, the 

fatigue lives of the inner pin decrease.  The 15 roller models have rollers with larger 

diameters compared to the 18 roller models.  However, due to the increase of the 

percentage of the total load carried by the 1st rolling element originating from the 

increase of the outer ring compliance, the contact pressures and the maximum subsurface 

Mises stresses are higher for the 15 roller models.  It is recommended that a parametric 

study based on the finite element analyses should be conducted to obtain the optimum 
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geometry which gives the lowest contact pressure and maximum subsurface Mises stress 

which results in the longest fatigue life of cam follower roller bearings. 

In chapter 6, a closed-form solution to calculate the loads exerted by the rolling 

elements in cylindrical roller bearings with consideration of interference fit of rollers is 

proposed in this chapter.  The non-conforming Hertz solution and the conforming 

Persson solution are first briefly reviewed.  The interference loads by the rolling elements 

due to the interference are derived and then approximated for a given set of geometric 

parameters of bearings.  With the solution for the interference load, the loads exerted by 

the rolling elements on the outer raceway are obtained when the total load is less than the 

separation load where a rolling element possibly start to lose contact with the cylinders.  

These loads of the rolling elements can be calculated by a closed-form equation with the 

total applied load, the number of rolling elements, the angular locations of the rolling 

elements, the equivalent elastic modulus, the interference, the outer raceway diameter and 

the thickness of the outer cylinder as the input parameters.  Two-dimensional finite 

element analyses were conducted to verify the applicability of the closed-form solution.  

Finite element models with different diameters of the outer and inner cylinders, diameters 

of the rolling element, number of rolling elements, and the thickness of the outer cylinder 

were considered for the validation.  The results of the finite element analyses show that 

the maximum contact pressures of the rolling elements obtained from the closed-form 

solution are within 1% of those of the finite element analyses when the total load is less 

than the separation load. 


