
Adaptive Architectures for Robust
and Efficient Computing

by

Shantanu Gupta

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Scott A. Mahlke, Chair
Professor Todd M. Austin
Associate Professor Valeria M. Bertacco
Assistant Professor Zhengya Zhang
Michael D. Powell, Intel Corporation

© Shantanu Gupta 2011

All Rights Reserved

To my parents.

ii

ACKNOWLEDGEMENTS

First, I would like to express my sincerest gratitude to my advisor, Professor Scott

Mahlke, for his mentorship and unwavering support throughout my doctoral research.

Scott’s enthusiasm for research and technical acumen have been an inspiration to everyone

in our group, and I consider myself truly fortunate to have worked under his able guidance.

I would also like to thank my dissertation committee, Professor Todd Austin, Professor

Valeria Bertacco, Dr. Michael Powell, and Professor Zhengya Zhang, for their time and

effort in reviewing my thesis, holding candid discussions about my research, and encour-

aging me throughout this process. I have known Michael sincemy internship at Intel in the

summer of 2008, and I must thank him for adding an industrial perspective to my research,

and giving me every opportunity to learn details of Intel’s processors.

I am also indebted to my close research colleagues Jason Blome, Shuguang Feng and

Amin Ansari. It has been a real pleasure working with all of them, and I can not imagine

having this thesis in its current form without their support. Jason gave me the original idea

of the StageNet architecture, which forms the basis of my thesis. Shuguang and Amin

have been with me throughout this process, sitting patiently through our long meetings

with Scott, giving excellent research insights, and alwaysbeing there for any help with

infrastructure development and writing papers.

iii

I consider myself truly lucky to have worked with such intelligent and vibrant set of

people in our research lab, CCCP. All of you made coming to office great fun. Thank you

Nathan Clark, Rajiv Ravindran, Michael Chu, Hongtao Zhong,Kevin Fan, Manjunath Kud-

lur, and Hyunchul Park for setting up a lively culture withinour group. I want to especially

thank my colleagues who surrounded me during the later half of my PhD: Ganesh Dasika,

Amir Hormati, Mark Woh (pseudo-CCCP), Mojtaba Mehrara, Yongjun Park, Hyoun Kyu

Cho, Jeff Hao, Po-Chun Hsu, Mehrzad Samadi, Gaurav Chadha and Ankit Sethia.

My stay in Michigan has been enriched by a great set of friendsand roommates that sur-

rounded me. I would like to thank Sudherssen Kalaiselvan, Ravikishore Gandikota, Kavi-

raj Chopra, Sanjay Pant, Visvesh Sathe, Gauri Sathe, Manavendra Mahato, Vivek Joshi,

Prashant Singh, Ashwini Kumar, Anurag Tripathi, Naveen Gupta, Trushal Chokshi and

Abhishek Kumar, who have all been my roommates at one point oranother. I can not thank

you all enough for being great company, making excellent food, and taking care of me in

times of need. Anurag, thank you for searching and playing all those excellent movies and

television shows, that formed a bulk of our evening entertainment. My gratitude also goes

to countless other friends at Michigan, whom I have failed tomention in paragraphs above.

Finally and most importantly, my family deserves a major gratitude. My brothers were

a constant source of encouragement, and made all my vacations in India truly memorable.

And above all, I really appreciate the unconditional love and support of my parents. They

never let me doubt my abilities, and have been a guiding lightthroughout this process.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . ix

LIST OF TABLES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Technology Challenges. 2
1.1.1 The Reliability Challenge. 3
1.1.2 The Performance Challenge. 4
1.1.3 The Energy-Efficiency Challenge. 5

1.2 Adaptive Architectures . 6
1.2.1 Adaptivity for Defect Isolation. 7
1.2.2 Adaptivity for Online Testing 8
1.2.3 Adaptivity for Performance. 9
1.2.4 Adaptivity for Energy Efficiency. 10

1.3 Contributions . 11
1.4 Organization. 11

II. The StageNet Fabric for Constructing
Resilient Chip Multiprocessors . 13

2.1 Introduction . 13
2.2 Reconfiguration Granularity. 17

2.2.1 Experimental Setup. 17
2.2.2 Granularity Trade-offs. 18
2.2.3 Harnessing Stage-level Reconfiguration. 21

v

2.3 The StageNetSlice Architecture. 23
2.3.1 Overview . 23
2.3.2 Functional Needs. 25
2.3.3 Performance Enhancement. 29
2.3.4 Stage Modifications. 36

2.4 The StageNet Multicore. 37
2.4.1 Stage Borrowing. 39
2.4.2 Stage Sharing. 40
2.4.3 Fault Tolerance and Reconfiguration. 41

2.5 Results and Discussion. 41
2.5.1 Simulation Setup. 41
2.5.2 Simulation Results. 43

2.6 Related Work . 46
2.7 Summary. 49

III. A Scalable Architecture for Wearout and Process Variation Tolerance . 50

3.1 Introduction . 50
3.2 Background . 52

3.2.1 Limitations of SN. 53
3.2.2 Impact of Process Variation and Defects. 54

3.3 The StageWeb Architecture. 56
3.3.1 Interweaving Range. 57
3.3.2 Interweaving Candidates. 59
3.3.3 Configuration Algorithms. 63
3.3.4 Interconnection Reliability. 67
3.3.5 Variation Tolerance. 68
3.3.6 System Level Issues. 69

3.4 Evaluation . 70
3.4.1 Methodology. 70
3.4.2 StageWeb Design Space. 74
3.4.3 Cumulative Work. 75
3.4.4 Throughput Behavior. 76
3.4.5 Variation Mitigation 78
3.4.6 Power Saving. 79
3.4.7 Yield Analysis . 79

3.5 Related Work . 81
3.6 Summary. 82

IV. Adaptive Online Testing for Efficient Hard Fault Detecti on 83

4.1 Introduction . 83
4.2 Background . 86

4.2.1 Wearout Sensors. 87
4.2.2 Online Testing . 88

vi

4.3 Adaptive Online Testing. 89
4.3.1 Adaptive Test Framework. 89
4.3.2 Adaptive Testing for StageNet. 97

4.4 Evaluation . 101
4.4.1 Methodology. 101
4.4.2 Results . 103

4.5 Summary. 105

V. Erasing Core Boundaries for Robust
and Configurable Performance. 107

5.1 Introduction . 107
5.2 Related Work . 111

5.2.1 Single-Thread Performance Techniques. 111
5.2.2 Multicore Reliability Solutions. 113
5.2.3 Combining Performance and Reliability. 114

5.3 The CoreGenesis Architecture. 115
5.3.1 Overview . 115
5.3.2 Challenges. 118
5.3.3 Microarchitectural Details. 120
5.3.4 Interconnection. 128
5.3.5 Instruction Steering. 130
5.3.6 Configuration Manager. 132
5.3.7 Instruction Flow Example. 132

5.4 Evaluation . 134
5.4.1 Methodology. 134
5.4.2 Single-thread performance. 137
5.4.3 Energy-efficiency Comparison. 140
5.4.4 Multi-workload throughput. 141
5.4.5 Fault tolerance. 143
5.4.6 Area overheads. 145
5.4.7 Power overheads. 145

5.5 Summary. 146

VI. Bundled Execution of Recurring Traces for Energy-Efficient General
Purpose Processing . 148

6.1 Introduction . 148
6.2 A Case for Energy Efficient Trace Execution. 151

6.2.1 Pipeline Energy Distribution. 151
6.2.2 Opportunities for Energy Saving. 153
6.2.3 Limitations for Irregular Codes. 153
6.2.4 Energy Efficiency for Irregular Codes. 154

6.3 The BERET Architecture. 156
6.3.1 Overview . 156

vii

6.3.2 Hardware Design. 159
6.3.3 Mapping Traces to BERET. 164
6.3.4 Design Space Exploration: SEBs and other parameters. 166

6.4 Evaluation . 168
6.4.1 Methodology. 168
6.4.2 Results . 170

6.5 Related Work . 175
6.6 Summary. 178

VII. Conclusions . 180

BIBLIOGRAPHY . 184

viii

LIST OF FIGURES

Figure

2.1 OpenRisc 1200 embedded microprocessor.. 19
2.2 Gain in MTTF from the addition of cold spares at the granularity of

micro-architectural modules, pipeline stages, and processor core. The
gains shown are cumulative, and spare modules are added (denoted with
markers) in the order they are expected to fail.. 21

2.3 A StageNet assembly: group of slices connected together. Each Sta-
geNetSlice (SNS) is equivalent to a logical processing core. This figure
shows M, N-stage slices. Broken stages can be easily isolated by rout-
ing around them. Crossbar switch spares can also be maintained at the
pipeline stage boundaries in order to tolerate rare, albeitpossible, switch
failures. 23

2.4 A StageNetSlice (SNS) pipeline. Stages are interconnected using a full
crossbar switch. The shaded portions highlight modules that are not
present in a regular in-order pipeline.. 24

2.5 SNS performance normalized to the baseline. Different configurations of
SNS are evaluated, both with and without the bypass cache. The slow-
down reduces as the bypass cache size is increased (fewer issue-stage
stalls). 30

2.6 A SNS pipeline, with variation in the transmission bandwidth. The per-
formance improves with the increasing transmission bandwidth, and al-
most matches the base pipeline at unlimited bandwidth.. 31

2.7 Structure of a macro-op (MOP).. 32
2.8 SNS with a bypass cache and the capability to handle MOPs,compared

to the baseline in-order pipeline. The first bars are for MOP sizes fixed
at 1, while the other bars have constraint on the number of live-ins and
live-outs.. 33

2.9 Performance comparison with different budgets for crossbar widths. A
budget of 150-bit implies that all interfaces can have a combined width
of 150. The first bar is for static assignment of 64-bit crossbars at all
interfaces, which is equivalent to a 320-bit (64 × 5) budget. Optimized
assignment of 300-bits is able to deliver better performance than 320-bit
static assignment.. 35

ix

2.10 Pipeline stages of SNS. Gray blocks highlight the modules added for
transforming a traditional pipeline into SNS.. 36

2.11 A SN multicore formed using four SNSs. As an example, a scenario with
five broken stages is shown (crosses indicate broken stages). Faced with
a similar situation, a regular CMP will lose all its cores. However, SN is
able to salvage three operational SNSs, as highlighted by the bold lines
(note that these bold lines are not actual connections). Theconfiguration
manager is shown for illustrative purposes, and is not an actual hardware
block. 38

2.12 Throughput and cumulative performance results for 4-core CMP, 4-slice
SN and 4-slice SN with sharing. Plot (a) also shows (shaded portion) the
expected number of failed modules (stages/switch) until that point in the
lifetime. 45

3.1 The SN architecture with four slices interconnected to each other. De-
spite four failed stages (marked by shading), SN is able to salvage three
working pipelines, maintaining healthy system throughput. Given a sim-
ilar fault map, a core-disabling approach for reliability would lose all
working resources. 53

3.2 Impact of process variation on a 64-core CMP. The plot shows the distri-
bution of core frequencies at current technology nodes (45nm and 32nm)
and the (next-to-arrive) future node. As the technology is scaled, the dis-
tribution shifts towards the left (more slower cores) and widens out (more
disparity in core frequencies). This is a consequence of large number of
cores ending up with slower components, bringing down theiroperational
frequencies.. 55

3.3 This plots shows the yield for a 100 core CMP at a range of defect den-
sities. The yield is computed as the fraction ofworkingchips for a 1000
chip Monte-Carlo simulation (at each defect density point). A working
chip is one that has greater than 75/85/95 cores functional.The black
dotted line shows the currently observed defect density according to the
latest ITRS report [53]. 56

3.4 The StageWeb (SW) architecture. The pipeline stages arearranged in
form of a grid, surrounded by conventional memory hierarchy. The inset
shows a part of the SW fabric. Note that the figure here is an abstract
representation and does not specify the actual number of resources.. . . . 57

3.5 Cumulative work performed by a fixed size SW system with increasing
SW island width. The results are normalized to an equally provisioned
regular CMP. These results are a theoretical upper bound, aswe do not
model interconnection failures for the experiments here.. 58

3.6 A single crossbar interconnect connectingn slices. The diagram on the
right also shows the abstraction that we use henceforth for representing a
single crossbar.. 60

3.7 Overlapping crossbar connections. The overlap allows awider set of
pipelines to share their resources. In this figure, the shaded stages in
the middle have a reach of3

2
n pipelines. 61

x

3.8 Combined application of single crossbars in conjunction with front-back
crossbars. The reverse connections, execute/memory to issue and exe-
cute/memory to fetch, are not shown here for the sake of figurereadability. 62

3.9 Combined application of overlapping crossbars in conjunction front-back
crossbars. The reverse connections are not shown here for the sake of
figure readability. 62

3.10 Configuration of SW with single crossbars. The marked stages and in-
terconnections are dead. Island 1 is not able to form any logical SNS,
whereas island 2 forms only one logical SNS (SNS 0).. 64

3.11 Configuration of SW with overlapping crossbars. The redmarked stages
and interconnections are dead. The partially marked stagesare dead for
one island, but are available for use in the other. Island 1 isnot able to
form any logical SNS, island 2 forms one logical SNS (SNS 0) and island
3 also forms one logical SNS (SNS 1).. 66

3.12 Configuration of SW with overlapping and front-back crossbars. The
front-back crossbars adds one more logical SNS (SNS 2) over the config-
uration result of overlapping crossbars.. 67

3.13 Cumulative work performed by the twelve SW configuration normalized
to a CMP system. The cumulative work improves with the richerchoices
for interweaving, as well as with the more resilient crossbars. In the best
case, a SW system can achieve 70% more cumulative work relative to the
CMP system. 75

3.14 Cumulative work performed by the twelve SW configuration normalized
to a CMP system (area-neutral study). The cumulative work improves
with more resilient crossbar choice. However, richer interweaving does
not map directly to better results. For instance, front-back crossbars add
a lot of area overhead without delivering proportional amount of reliabil-
ity. In the best case, a SW system achieves 40% more cumulative work
relative to the CMP system.. 77

3.15 This chart shows the throughput over the lifetime for the best SW con-
figurations and the baseline CMP. The throughput for the SW system de-
grades much more gradually than an equally provisioned CMP system.
In the best case (around the 8 year mark), SW delivers 4X throughput of
the CMP.. 77

3.16 The distribution of core frequencies in 64-core CMP andStageWeb chips.
Facing the same level of process variation, SW enables a noticeable im-
provement in the frequency distribution.. 78

3.17 Power saving using SW relative to a CMP at different system utilization
levels. This saving is made possible due to SW’s ability to deliver same
performance as a CMP at a lower voltage, in the presence of process
variation. The plot also shows the break up between pipelinestage power
and crossbar power.. 80

3.18 Yield obtained for all the twelve SW configurations and the CMP at three
defect densities. The advantage of the SW becomes more prominent as
the defect density rises.. 81

xi

4.1 Periodic testing for fault detection. The vertical stripes represent the
checkpoint start/release and the horizontal lines show theprogression of
threads. At the end of every checkpoint interval, testing isconducted for
all processing cores, this is shown as solid horizontal bars. 85

4.2 Fault coverage achieved (in percentage) for varying number of software
based self test instructions.. 87

4.3 Adaptive testing framework. A generic CMP system is shown along with
the enhancements needed to enable adaptive testing. Healthassessment
is responsible for gathering sensor readings and producinga fault proba-
bility array (P). This array is taken up by the test allocator, along with the
target coverage, to generate appropriate tests (T) for different processing
cores. 90

4.4 Checkpointing and adaptive testing for efficient fault detection. Notice
that 1) the tests are applied after a new checkpoint is started, and 2) old
checkpoint is released once the tests finish successfully.. 92

4.5 StageNet fabric with four in-order pipelines woven together using 64-bit
full crossbar interconnects. The interconnection configuration is man-
aged by the configuration manager. Within StageNet, logicalpipelines,
can be constructed by joining any set of unique pipeline stages. 98

4.6 The shading intensity of stages represents their deterioration. Thus, a
darker stage has a higher failure probability and vice-versa. SN flexibility
allows connecting stages with similar health, forming logical pipelines.. . 101

4.7 Number of test instructions for the adaptive online testing in CMP and
SN with varying amount of sensor error. The number of test instructions
are normalized to a regular CMP with fixed periodic testing. The plot
also shows the sensor area overhead used by the proposed approach for
health assessment. The coverage target (SC) is fixed at 97.3%.. 102

4.8 Number of test instructions for the adaptive online testing in CMP and
SN with varying system coverage target (SC). The number of test in-
structions are normalized to that needed by a CMP with non-adaptive
testing.. 104

4.9 This plot shows the variation in the average number of test instructions
executed in the CMP system over its lifetime for a range of system cov-
erage targets. 106

5.1 Contemporary solutions for multicore challenges (a,b,c) and vision of this
work (d). In (a), centralized resources are used to assist infusing neigh-
boring cores. In (b) and (d), different shapes/sizes denoteheterogeneity.
In (c) and (d), dark shading marks broken components.. 109

5.2 Area overhead projections (measured as number of cores)for supporting
configurable performance (P) and throughput sustainability (R) in differ-
ent sized CMP systems. P+R curve shows the cumulative overhead. For
this plot, throughput sustainability is defined as the ability to maintain
50% of original chip’s throughput after three years of usagein the field. . 114

xii

5.3 An 8-core CoreGenesis (CG) chip with a detailed look at four tightly
coupled cores. Stages with permanent faults are shaded in red. The cores
within this architecture are connected by a high speed interconnection
network, allowing any set of stages to come together and forma logical
processor. In addition to the feed-forward connections shown here, there
exist two feedback paths: E/M to I for register writeback andE/M to F
for control updates. In CG processor 2 (conjoint pipelines), instructions
(prior to reaching E/M stage) can switch pipelines midway, as a result of
dynamic steering.. 116

5.4 CG pipeline back-end with structures for detecting register data flow vi-
olations and initiating replays. The outstanding instruction buffer (OIB)
and current flow tag (CFT) registers are the two additions forconjoint
processors. Also shown here is the bypass cache (BP$) for data forward-
ing within a single pipeline.. 124

5.5 CG pipeline back-end with an emphasis on structures added for handling
memory data flow violations.. 126

5.6 Instruction steering. The white nodes indicate instructions assigned to
the leader pipeline while the shaded nodes correspond to thefollower
pipeline. The instruction fetch is perfectly balanced between the two
pipeline, but the execution is guided by the steering.. 130

5.7 A dual-issue CG processor executing a sample code under optimistic con-
ditions, i.e. no control, data or memory violation occurs.. 133

5.8 Single thread performance results for CG normalized to asingle-issue in-
order processor. The configurations are expressed as (number of pipelinesconjoint
X issuewidth of pipelinestages). 139

5.9 Contribution of memory replay cycles, register flow replay cycles and
normal operation cycles to the total computational time of individual
benchmarks running on a 2-issue conjoint processor. On an average, the
replays contributed to about 15% of the execution time.. 141

5.10 Comparing IPC and energy efficiency (BIPS3/watt). The baseline is a
single-issue in-order core (OR1200).. 141

5.11 Throughput comparison of 8-core CMP, SN and CG systems at different
levels of system utilization. A utilization of 0.5 implies that 4 working
threads are assigned to the 8-core system. At this utilization, CG multi-
core delivers 46% throughput advantage over the baseline CMP. 142

5.12 Lifetime reliability experiments for the various CMP,SN and CG sys-
tems. Only wearout failures were considered for this experiment. 144

6.1 The distribution of energy dissipation across pipelinestages in an in-order
processor. 152

6.2 Extracting a looped trace from an irregular control flow graph. We refer
to these ashot traces, and use them as a construct that runs on our energy-
efficient hardware design.. 155

6.3 Deployment of BERET at multicore level and its integration within a
single processor core.. 156

xiii

6.4 The process of mapping hot traces in a program to the BEREThardware:
(a) shows a program segment with two hot traces, (b) a closer look at
a trace with instructions and two side exits, (c) illustrates the break-up
of trace code into data flow subgraphs, and (d) mapping of subgraphs to
subgraph execution blocks (SEBs) inside the BERET hardware. 157

6.5 The BERET Microarchitecture: (a) the block diagram of the BERET
hardware, (b) logical stages in the microarchitecture, and(c) a closer look
at a subgraph execution block (SEB).. 159

6.6 The steps of identifying hot traces in a procedure and mapping them to
the BERET hardware for energy-efficient execution.. 164

6.7 The top six specialized SEBs from the final set of eight used in the
BERET design. The percentages indicate the frequency of their occur-
rence in program traces.. 167

6.8 The percentage distribution of subgraph sizes across all traces when us-
ing the hypothetical SEBs and our final selection of specialized SEBs.
The average size of subgraphs for hypothetical SEBs at 3.26 was only
marginally better than the same for our specialized SEBs at 2.56. 167

6.9 Fraction of execution time spent in hot traces.. 170
6.10 Energy consumption relative to the baseline.. 171
6.11 Execution time relative to the baseline.. 173
6.12 EDP relative to the baseline.. 174

xiv

LIST OF TABLES

Table

2.1 Architectural attributes.. 43
2.2 Area overhead of SN architecture.. 46
3.1 Architectural parameters.. 71
3.2 Design space for SW. The rows span the different interconnection types

(F/B denotes front-back), and the columns span the crossbartype: cross-
bar w/o (without) sp (spares), crossbar w/ sp and fault-tolerant (FT) cross-
bar. Each cell in the table mentions the number of pipeline slices, in each
SW configuration, given the overall chip area budget (100mm2). 74

5.1 Comparison to Prior Work. 111
5.2 CoreGenesis (CG) challenges. The challenges can be classified on the

basis of single and conjoint pipeline configurations. The check marks
(X) are used for solutions that were straightforward extension of prior
work on decoupled architectures. Whereas the question marks (?) are
open problems that are solved in this chapter.. 119

5.3 Control cases. Each case represents a pair of consecutive program in-
structions in a 2-issue conjoint processor. The first and second rows
in this table show the instructions fetched in the leader andfollower
pipelines, respectively.. 122

5.4 Memory flow cases. Each case represents a pair of instructions that are
flowing together in a 2-issue conjoint processor.. 127

5.5 Architectural parameters.. 135
5.6 Area overheads from different design blocks in CG.. 146
5.7 Power overhead for CG. These overheads are reported withOR1200 power

consumption as the baseline.. 146
6.1 Comparison to Prior Work.. 175

xv

ABSTRACT

Adaptive Architectures for Robust and Efficient Computing

by

Shantanu Gupta

Chair: Scott A. Mahlke

Semiconductor technology scaling has long been a source of dramatic gains in our com-

puting capabilities. However, as we test the physical limits of silicon feature size, serious

reliability and computational efficiency challenges confront us. The supply voltage levels

have practically stagnated, resulting in increasing powerdensities and operating tempera-

tures. Given that most semiconductor wearout mechanisms are highly dependent on these

parameters, significantly higher failure rates are projected for future technology genera-

tions. Further, the rise in power density is also limiting the number of resources that can be

kept active on chip simultaneously, motivating the need forenergy-efficient computing.

In this landscape of technological challenges, incremental architectural improvements

to existing designs are likely insufficient, motivating a need to rethink the architectural

fabric from the ground up. Towards this end, this thesis presents adaptive architecture and

compiler solutions that can effectively tackle reliability, performance and energy-efficiency

xvi

demands expected in future microprocessors.

For the reliability challenge, we present StageNet, a highly reconfigurable multicore

architecture that is designed as a network of pipeline stages, rather than isolated cores. The

interconnection flexibility in StageNet allows it to adaptively route around defective pieces

of a processor, and deliver graceful performance degradation in the face of failures. We fur-

ther complement the fault isolation ability of StageNet with an adaptive testing framework

that significantly reduces the overhead of in-field fault detection.

As a second contribution, we build upon the interconnectionflexibility of StageNet to

develop a unified performance-reliability solution. This subsequent design, named CoreGe-

nesis, relies on a set of microarchitectural innovations and compiler hints to merge proces-

sor cores for a higher single-thread performance. This enables customization of processing

ability (narrow or wide-issue pipelines) to the dynamic workload requirements.

In the final work of this thesis, we investigate the sources ofcomputational inefficiency

in general purpose processors, and propose a configurable compute engine, named BERET,

for substantial energy savings. The insight here is to cut down on the redundant instruc-

tion fetch, decode and register file access energy by optimizing the execution of recurring

instruction sequences.

xvii

CHAPTER I

Introduction

Over the last few decades, the semiconductor industry has sustained a staggering growth

in silicon integration levels. This aggressive scaling, made possible by numerous tech-

nological breakthroughs, has been the driving force behindperformance and efficiency

milestones in computational systems. However, as the silicon technology approaches its

fundamental limits, a variety of challenges confront it [15]. The issues range from designs

nearing the power and thermal limitations to extreme process variation and wearout failures

in the manufactured parts. As device density grows, each transistor gets smaller and more

fragile leading to an overall higher susceptibility of chips to hard faults. Hard faults result

in permanent silicon defects, and impact the yield, lifetime performance, and reliability of

semiconductor parts [17]. Increasing transistor density also poses difficult thermal prob-

lems as heat cannot be efficiently dissipated, leading to a plateau in clock frequencies. All

of these issues are detrimental to the semiconductor industry’s economic model. Loss of

compelling performance gains reduces the incentive to regularly upgrade machines, loss in

yield directly translates to loss in sales and in-field defects could necessitate conservative

designs to avoid substantial performance degradation.

1

In this broad spectrum of technological concerns, power density was identified as an im-

mediate roadblock for technology scaling. In an effort to address this concern, the industry

has shifted its design philosophy from monolithic superscalar processors to multi-core pro-

cessors composed of relatively smaller cores. Some of the latest desktop and server chips

range from 6-12 individual cores [51, 4]. Further, many manufacturers have begun produc-

tion of many-core chips with simple in-order cores to targetmarket segments that demand

throughput computing, e.g. SUN Niagara [75], Tilera TILE64 [109].

1.1 Technology Challenges

While the paradigm shift to multicore architectures has abated power and thermal con-

cerns to a certain extent, going forward, three major challenges still need to be addressed by

semiconductor manufacturers. The first challenge is the waning reliability of transistors and

their increasing vulnerability to wearout, manufacturingdefects and process variation. The

second, and a more direct ramification of adopting multicores, is the saturation in single-

thread performance. This is especially of concern to applications that are not amenable to

parallelization. The third and final challenge is power density, which is a result of stagnat-

ing supply voltage levels. This is introducing tight power constraints on the manufactured

parts, and limiting the number of resources that can be simultaneously kept active on a

chip [114].

2

1.1.1 The Reliability Challenge

The sources of computer system failures are widespread, ranging from transient faults,

due to energetic particle strikes [124] and electrical noise, to permanent faults, caused by

device wearout, manufacturing defects and extreme processvariation. In recent years,

industry designers and researchers have invested significant effort in building architectures

resistant to transient faults [96, 116]. In transient faults (also referred to assoft errors) the

damage to a chip is never permanent, and a replay of instructions is typically sufficient

for recovery. In contrast, dealing with permanent faults issignificantly more involved,

and relatively little research has been conducted to efficiently tolerate the same. There

are numerous sources of permanent faults, ranging from manufacturing defects, process

variation, to in-field wearout phenomenas such as electromigration [23], time dependent

dielectric breakdown (TDDB) [118], negative bias temperature instability (NBTI) [123],

etc.

The challenge of tolerating permanent faults can be broadlydivided into three req-

uisite tasks: fault detection, fault diagnosis, and systemrecovery/reconfiguration. Fault

detection mechanisms [16, 71] are used to identify the presence of a fault, while fault

diagnosis techniques [19] are used to determine the source of the fault, i.e. the broken

component(s). System reconfiguration needs to leverage some form of a spatial or tem-

poral redundancy to keep the faulty component isolated fromthe design. The granularity

at which spares/redundancy is maintained determines the number of failures a system can

tolerate.

As an example, many computer vendors provide the ability to repair faulty memory

3

and cache cells through the inclusion of spare memory elements. This technique of isolat-

ing broken structures or supplementing them with spares hasalso been extended to logic

resources [18, 95, 103], and all the way to disabling entire cores [2, 105]. While these

resource isolation and sparing techniques are reasonable solutions, in a high failure rate

scenario, such systems will exhibit a rapid throughput degradation and quick become un-

responsive.

A major thrust of this thesis is to understand the issues associated with system recon-

figuration and to design a fault tolerant architecture that is capable of tolerating a large

number of manufacture-time and in-field failures.

1.1.2 The Performance Challenge

Recent years have witnessed a migration towards multicore architectures by hardware

vendors. However, software developers have adopted this trend more slowly, creating a dis-

parity between application requirements and the underlying hardware. Due to this inertia in

the software development cycles, applications today rangefrom heavily sequential legacy

workloads to throughput oriented parallel counterparts. In such a diverse landscape of soft-

ware products, a fixed multicore design cannot provide optimal performance, creating a

need for architecture level flexibility.

Generally speaking, multiple cores are effective when threads are plentiful and through-

put computing is required, but they provide little or no gains for sequential applications.

Furthermore, the performance of sequential applications may suffer as cores get simpler

and smaller caches per core are provided. Despite a mass transition to application paral-

lelization, there are two significant reasons that make single-thread performance important.

4

First, most applications today are single-threaded and have been written with a heavy bias

towards a monolithic processing model. Converting them allinto efficient parallel pro-

grams will be a phenomenal challenge. Second, even if a majortransition towards parallel

programming occurs in the future, Amdahl’s law dictates that the sequential component of

an application will present itself as a performance bottleneck. Thus, multicore solutions,

while being a natural fit for throughput computing, must alsohave the flexibility to provide

high single-thread performance.

One way to provide this flexibility is to design heterogeneous multi-core architec-

tures [63], with a set of small (for throughput) and big cores (for sequential programs).

However, this approach is very rigid, and makes strong assumptions about the set of appli-

cations that will be active at a given point in time. A part of this thesis is devoted to the

concept ofdynamic multicores, that can reconfigure themselves as per workload require-

ments. When plenty of threads are available to work on, system resources can be broken

up into individual cores, and in an opposing scenario, resources can be coalesced to form

larger but fewer cores.

1.1.3 The Energy-Efficiency Challenge

Over the years, transistor densities and performance has continued to increase as per

Moore’s Law, however, the threshold voltage has not kept up with this trend. As a result, the

per-transistor switching power has not witnessed the benefits of scaling, causing a steady

rise in power density. Overall, this limits the number of resources that can be kept active on

a die simultaneously [114]. An instance of this trend can be already seen in Intel’s newest

Nehalem generation of processors that boost the performance of one core, at the cost of

5

slowing down/shutting off the rest of them.

Given these circumstances, an improvement in computational efficiency is essential

to keep the power density, and hence the total chip-wide power envelope, under check.

Alternatively, a better computational efficiency also translates into reduced energy per in-

struction, increasing the net amount of work done for a fixed energy budget. This is very

valuable in the context of server farms, where energy consumed cuts both ways, i.e. for

computation as well as for cooling. Besides desktop and server space, the efficiency re-

quirement is also visible within the growing domain of portable devices [68], that operate

under a strict energy budget due to their dependence on batteries.

While there has been a lot of work to improve the efficiency of embedded systems,

such as specialized hardware units [77, 80, 93], accelerators [35, 122], and application

specific instruction extensions [107], the general purpose processor domain has largely

been ignored. This is partly influenced by the fact that general purpose application space

is very diverse and constantly evolving making it hard to specialize architectures. In this

thesis, we investigate this challenge and propose a configurable substrate to improve the

energy-efficiency of general purpose processors.

1.2 Adaptive Architectures

Given this landscape of increasing failure rates, diminishing single-thread performance,

and tighter power constraints, computer architects have anindispensable role to play. How-

ever, incremental improvements to existing architecturesare likely insufficient for achiev-

ing these objective as legacy hardware imposes many restrictions. This motivates a re-

6

thinking of the architectural fabric from the ground up, with dynamic adaptivityandcon-

figurability as primary requirements. The overarching objective of thisthesis is to design

and evaluate such adaptive architectures that can deliver robust, configurable, and efficient

performance.

In the context of reliability, dynamic adaptivity refers tothe system’s ability to actively

detect failures, isolate broken components and reconfigureitself. For being effective, the

fault isolation has to be at a granularity finer than broken cores. Whereas, for single-

thread performance, dynamic adaptivity refers to the system’s ability to adequately allocate

compute resources to the active threads, i.e., more resources to a high IPC thread and vice

versa. Finally, for energy efficiency, dynamic adaptivity refers to hardware substrate’s

ability to specialize itself for data flow patterns in an application.

This thesis presents four efforts towards designing adaptive architectures: 1) the Sta-

geNet architecture for fine-grained fault isolation, 2) theadaptive test framework for effi-

cient fault detection/diagnosis, 3) the CoreGenesis architecture for enablingdynamic mul-

ticore capability, and 4) the Green BERET architecture for energy-efficient execution of

recurring instruction sequences.

1.2.1 Adaptivity for Defect Isolation

Permanent fault tolerance requires system reconfigurationin order to isolate broken

components. The popular solution for this has been the use ofredundancy at a coarse gran-

ularity, such as dual/triple modular redundancy. More recently in the form of core disabling

within a multicore chip. In this work, we challenge the practice of coarse-granularity re-

dundancy by identifying its inability to scale to high failure rate scenarios and investigating

7

the advantages of finer-grained configurations. As a solution, we present and evaluates a

highly reconfigurable CMP architecture, named StageNet (SN), that is designed with reli-

ability as its first class design criteria.

SN is a multicore architecture designed as a network of pipeline stages, rather than iso-

lated cores in a CMP. The network is formed by replacing the direct connections at each

pipeline stage boundary by a crossbar switch interconnection. Within the SN architecture,

pipeline stages can be selected from the pool of available stages to act as logical processing

cores. A logical core in the StageNet architecture is referred to as aStageNetSlice(SNS).

A SNS can easily isolate failures by adaptively routing around faulty stages. The inter-

connection flexibility in the system allows SNSs to salvage healthy stages from adjacent

cores and even makes it possible for different SNSs to time-multiplex a scarce pipeline

resource. Because of this added flexibility, a SN system possesses inherent redundancy

(through borrowing and sharing pipeline stages) and is therefore, all else being equal, ca-

pable of maintaining higher throughput over the duration ofa system’s life compared to a

conventional multicore design.

As an extension, we also propose StageWeb (SW) architecturethat eliminates three

limitations of the SN architecture: 1) scalability to 10/100s of cores, 2) interconnection

reliability and 3) ability to address process variation.

1.2.2 Adaptivity for Online Testing

Detection and diagnosis of failures is a crucial component of a fault tolerant system. In

a scenario where in-field silicon defects (from wearout) become commonplace, processors

would need to be equipped with online fault detection mechanisms. Periodic online testing

8

is a popular technique to detect such failures; however, it tends to impose a heavy testing

penalty. In this thesis, we propose an adaptive online testing framework to significantly

reduce the testing overhead. The proposed approach is unique in its ability to assess the

hardware health and apply suitably detailed tests. Near thestart of a chip lifetime, most

components are relatively healthy, and do not need a full battery of tests. As time goes on,

and health sensors indicate deterioration in various components (cores in this case), test

patterns can be made more rigorous. Using this approach, a significant chunk of the testing

time can be saved for the healthy components.

We further extend the framework to work with the SN fabric, which provides the flexi-

bility to group together pipeline stages with similar health conditions, thereby reducing the

overall testing burden.

1.2.3 Adaptivity for Performance

The third design presented in this thesis proposal providesarchitectural adaptivity for

performance, by realizing the concept of dynamic multicores. The solution presented,

named CoreGenesis, is an adaptive multiprocessor fabric that can assemble variable-width

processors from a network of (potentially broken) pipelinestage-level resources. CoreGe-

nesis relies on interconnection flexibility, coupled with aset of microarchitectural innova-

tions for decentralized instruction flow management, to merge pipeline resources for high

single-thread performance. The same flexibility enables itto route around broken compo-

nents, achieving sub-core level defect isolation (similarto StageNet). Together, the result-

ing fabric consists of a pool of pipeline stage-level resources that can be fluidly allocated

for accelerating single-thread performance, throughput computing, or tolerating failures.

9

The concept of dynamic multicore has been studied in the past, with solutions like Core

Fusion [52] and Federation [106] that can fuse neighboring cores with a help of shared

microarchitectural structures. However, none of those solutions can provide fine-grained

fault isolation. The novelty of CoreGenesis arises from itsapproach to co-design a perfor-

mance/reliability solution, while overlapping a majorityof hardware overheads.

1.2.4 Adaptivity for Energy Efficiency

The fourth and final design presented in this thesis is a configurable compute engine for

energy-efficient execution. Efficiency solutions in the past have typically targeted embed-

ded systems by developing application specific hardware andaccelerators. Unfortunately,

these approaches do not extend to general purpose applications due to their irregular and

diverse code base. In this work, we propose BERET, a novel energy-efficient co-processor

that targets general purpose programs and significantly reduces the computational costs for

frequently repeated sequences of instructions.

The BERET architectures relies on two insights to meet its efficiency goals. First, it

identifies recurring instruction traces in a given program,and buffers them internally to cut

down on redundant instruction fetch and decode energy. Targeting these traces also helps

BERET add a level oftemporal regularityto the otherwise irregular behavior of desktop

and server programs. Second, it uses a bundled execution model to reduce register reads and

writes for temporary variables. These execution bundles are essentially sub-graphs from

the trace data flow graph. We consider this bundled executionmodel a trade-off design that

lets us achieve efficiency gains close to an application specific data flow hardware while

maintaining application universality of regular Von Neumann execution model.

10

1.3 Contributions

The contribution of this thesis can be summarized as follows:

• It demonstrates that fault isolation can be conducted at a level finer than processing

cores, without maintaining any cold spares.

• An adaptive architecture is proposed, named StageNet, that enables pipeline-stage

level fault isolation. The impact on single-thread performance is very nominal at

10%.

• A sensor guided adaptive testing solution is presented forimproving the efficiency

of periodic online testing. The proposed solution is the first of its kind to assess the

system health before assigning test vectors for hard fault detection.

• A unified performance / reliability solution, named CoreGenesis. This builds upon

the StageNet architecture, and adds capabilities for dynamically grouping together

pipelines for creating wider-issue machines.

• A configurable compute engine, named BERET, for energy-efficient execution. The

design leverages recurring instructions sequences and a bulk execution model to sig-

nificantly reduce instruction fetch, decode and register file access energy.

1.4 Organization

The rest of this document is organized as follows:

ChapterII presents the StageNet architecture, a solution for fine grained fault isolation.

11

ChapterIII takes the StageNet design forward, making it scalable, tolerant to intercon-

nection faults, and capable of mitigating process variation.

ChapterIV introduces our solution for making periodic online testingmore efficient.

ChapterV presents the CoreGenesis architecture, which adds a performance dimension

to the StageNet architecture.

ChapterVI presents the BERET architecture for bridging the efficiencygap of general

purpose processors and application specific hardware.

ChapterVII concludes this thesis.

12

CHAPTER II

The StageNet Fabric for Constructing

Resilient Chip Multiprocessors

2.1 Introduction

Technological trends into the nanometer regime have lead toincreasing current and

power densities and rising on-chip temperatures, resulting in both increasing transient, as

well as permanent, failures rates. Leading technology experts have warned designers that

device reliability will begin to deteriorate from the 65nm node onward [15]. Current pro-

jections indicate that future microprocessors will be composed of billions of transistors,

many of which will be unusable at manufacture time, and many more which will degrade

in performance (or even fail) over the expected lifetime of the processor [17]. In an ef-

fort to assuage these concerns, industry has initiated a shift towards multicore and GPU

inspired designs that employ simpler cores to limit the power and thermal envelope of the

chips [59, 62]. However, this paradigm shift also leads towards core designs that have little

inherent redundancy and are therefore incapable of performing the self-repair possible in

big superscalar cores [95, 103]. Thus, in the near future, architects must directly address

13

reliability in computer systems through innovative fault-tolerance techniques.

There are two major sources of failures in computer hardware. First are transient faults

that can occur as a result of energetic particle strikes [124] and electrical noise. By virtue

of being transient, their effect is temporary, and a system can continue normal operation

after recovering from them. The second category is permanent faults resulting from wafer

defects, manufacturing-time variations, and wearout phenomenon such as electromigra-

tion [23] and time dependent dielectric breakdown [118]. In recent years, industry de-

signers and researchers have invested significant effort inbuilding architectures resistant

to transient faults [96, 116]. In contrast, much less attention has been paid to the problem

of permanent faults, specifically transistor wearout due tothe degradation of semiconduc-

tor materials over time. Traditional techniques for dealing with transistor wearout have

involved extra provisioning in logic circuits, known as guard-banding, to account for the

expected performance degradation of transistors over time. However, the increasing degra-

dation rate projected for future technology generations implies that traditional margining

techniques will be insufficient.

Permanent fault tolerance can be broadly divided into threesteps: fault detection, fault

diagnosis, and system recovery/reconfiguration. Fault detection mechanisms [16, 71] are

used to identify the presence of a fault, while fault diagnosis techniques [19] are used to

determine the source of the fault, i.e. the broken component(s). System recovery needs to

leverage some form of a spatial or temporal redundancy to isolate the faulty component(s)

and perform the repair. For instance, many computer vendorsprovide the ability to repair

faulty memory and cache cells through the inclusion of sparememory elements. Recently,

researchers have begun to extend these techniques to support sparing for additional on-chip

14

resources [103], such as branch predictors [18] and registers [95]. The granularity at which

spares/redundancy is maintained determines the number of failures a system can tolerate.

The focus of this work is to understand the issues associatedwith system recovery and to

design a fault tolerant architecture that is capable of tolerating a large number of failures.

Traditionally, system recovery in high-end servers and mission critical systems has been

addressed by using mechanisms such as dual and triple-modular redundancy (DMR and

TMR) [14]. However, such approaches are too costly and therefore notapplicable to desk-

top and embedded systems. With the recent popularity of multicore systems, these tradi-

tional core-level approaches have been able to leverage theinherent redundancy present

in large chip multiprocessors (CMPs) [2, 105]. However, both the historical designs and

their modern incarnations, because of their emphasis on core-level redundancy, incur high

hardware overhead and can only tolerate a small number of defects. With the increasing

defect rate in semiconductor technology, it will not be uncommon to see a rapid degra-

dation in throughput for these systems as single device failures cause entire cores to be

decommissioned, often times with the majority of the core still intact and functional.

In contrast, this chapter argues the case for reconfiguration and redundancy at a finer

granularity. To this end, this work presents theStageNet(SN) fabric, a highly reconfig-

urable and adaptable computing substrate. SN is a multicorearchitecture designed as a

network of pipeline stages, rather than isolated cores in a CMP. The network is formed by

replacing the direct connections at each pipeline stage boundary by a crossbar switch in-

terconnection. Within the SN architecture, pipeline stages can be selected from the pool of

available stages to act as logical processing cores. A logical core in the StageNet architec-

ture is referred to as aStageNetSlice(SNS). A SNS can easily isolate failures by adaptively

15

routing around faulty stages. The interconnection flexibility in the system allows SNSs to

salvage healthy stages from adjacent cores and even makes itpossible for different SNSs

to time-multiplex a scarce pipeline resource. Because of this added flexibility, a SN sys-

tem possesses inherent redundancy (through borrowing and sharing pipeline stages) and

is therefore, all else being equal, capable of maintaining higher throughput over the dura-

tion of a system’s life compared to a conventional multicoredesign. Over time as more

and more devices fail, such a system can gracefully degrade its performance capabilities,

maximizing its useful lifetime.

The reconfiguration flexibility of the SN architecture has a cost associated with it. The

introduction of network switches into the heart of a processor pipeline will inevitably lead

to poor performance due to high communication latencies andlow communication band-

width between stages. The key to creating an efficient SN design is re-thinking the organi-

zation of a basic processor pipeline to more effectively isolate the operation of individual

stages. More specifically, inter-stage communication paths must either be removed, namely

by breaking loops in the design, or the volume of data transmitted must be reduced. This

chapter starts off with the design of an efficient SNS (a logical StageNet core) that attacks

these problems and reduces the performance overhead from network switches to an accept-

able level. Further, it presents the SN multicore that stitches together multiple such SNSs to

form a highly reconfigurable architecture capable of tolerating a large number of failures.

In this work, we take a simple in-order core design as the basis of the SN architecture. This

is motivated by the fact that thermal and power considerations are pushing designs towards

simpler cores. In fact, simple cores are being adopted by designs targeting massively mul-

ticore chips and are suitable for low-latency and high throughput applications [62, 59]. At

16

the same time, we believe that the proposed design methodology of fine-grained reconfig-

uration can also be effectively applied to deeper and more aggressive pipeline designs.

The primary contributions of this chapter include: 1) A design space exploration of

reconfiguration granularities for resilient systems; 2) design, evaluation and performance

optimization of StageNetSlice, a networked pipeline microarchitecture; and 3) design and

evaluation of StageNet, a resilient multicore architecture, composed using multiple SNSs.

2.2 Reconfiguration Granularity

For tolerating permanent faults, architectures must have the ability to reconfigure, where

reconfiguration can refer to a variety of activities rangingfrom decommissioning non-

functioning, non-critical processor structures to swapping in cold spare devices. In a re-

configurable architecture, recovery entails isolating defective module(s) and incorporating

spare structures as needed. Support for reconfiguration canbe achieved at various granu-

larities, from ultra-fine grain systems that have the ability to replace individual logic gates

to coarser designs that focus on isolating entire processorcores. This choice presents a

trade-off between complexity of implementation and potential lifetime enhancement. This

section shows experiments studying this trade-off and draws upon these results to motivate

the design of the SN architecture.

2.2.1 Experimental Setup

In order to effectively model the reliability of different designs, a Verilog model of

the OpenRISC 1200 (OR1200) core [76] was used in lifetime reliability experiments. The

17

OR1200 is an open-source core with a conventional 5-stage pipeline design, representative

of commercially available embedded processors. The core was synthesized, placed and

routed using industry standard CAD tools with a library characterized for a 130nm process.

The final floorplan along with several attributes of the design is shown in Figure2.1.

To study the impact of reconfiguration granularity on chip lifetimes, the mean-time-

to-failure (MTTF) was calculated for each individual module in the OR1200. MTTF was

determined by estimating the effects of a common wearout mechanism, time-dependent

dielectric breakdown (TDDB) on a OR1200 core running a representative workload. Em-

ploying an empirical model similar to that found in [101], Equation2.1presents the formula

used to calculate per-module MTTFs. The temperature numbers for the modules were gen-

erated using HotSpot [47]. Given the MTTFs for individual modules, stage-level MTTFs in

our experiment were defined as the minimum MTTF of any module belonging to the stage.

Similarly, core level MTTFs were defined as the minimum MTTF across all the modules.

MTTFTDDB ∝ (
1

V
)(a−bT)e

(X+Y

T
+ZT)

kT (2.1)

where V = operating voltage, T = temperature, k = Boltzmann’sconstant, and a,b,X,Y,and

Z are all fitting parameters based on [101].

2.2.2 Granularity Trade-offs

The granularity of reconfiguration is used to describe the unit of isolation/redundancy

for modules within a chip. Various options for reconfiguration, in order of increasing gran-

ularity, are discussed below.

18

(a) Overlay of floorplan

OR1200 Core
Area 1.0 mm2

Power 123.9 mW
Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size8 KB
Technology Node 90nm

(b) Implementation details

Figure 2.1: OpenRisc 1200 embedded microprocessor.

1. Gate level: At this level of reconfiguration, a system can replace individual logic

gates in the design as they fail. Unfortunately, such designs are typically impractical

because they require both precise fault diagnosis and tremendous overhead due to

redundant components and wire routing area.

2. Module level: In this scenario, a processor core can replace broken microarchitec-

tural structures such as an ALU or branch predictor. Such designs have been active

topics of research [29, 95]. The biggest downside of this reconfiguration level is that

maintaining redundancy for full coverage is almost impractical. Additionally, for

the case of simple cores, even fewer opportunities exist forisolation since almost all

modules are unique in the design.

19

stagenet/figs/die_photo.eps

3. Stage level:Here, the entire pipeline stages are treated as single monolithic units

that can be replaced. Reconfiguration at this level is challenging because: 1) pipeline

stages are tightly coupled with each other (reconfigurationcan cause performance

loss), and 2) cold sparing pipeline stages is expensive (area overhead).

4. Core level:This is the coarsest level of reconfiguration where entire processor cores

are isolated from the system in the event of a failure. Core level reconfiguration has

also been an active area of research [105, 2], and from the perspective of a system

designer, it is probably the easiest technique to implement. However, it has the poor-

est returns in terms of lifetime extension, and therefore might not be able to keep up

with increasing defect rates.

While multiple levels of reconfiguration granularity couldbe utilized, Figure2.2demon-

strates the effectiveness of each applied in isolation (gate-level reconfiguration was not in-

cluded in this study). The figure shows the potential for lifetime enhancement (measured

as MTTF) as a function of how much area a designer is willing toallocate to cold spares.

The MTTF of a n-way redundant structure is taken to ben times its base MTTF. And, the

MTTF of the overall system is taken to be the MTTF of the fastest failing module in the

design. This is similar to the serial model of failure used in[101]. The figure overlays three

separate plots, one for each level of reconfiguration. The redundant spares were allowed to

add as much as 300% area overhead.

The data shown in Figure2.2demonstrates that going towards finer-grain reconfigura-

tion is categorically beneficial as far as gains in MTTF are concerned. But, it overlooks the

design complexity aspect of the problem. Finer-grain reconfiguration tends to exacerbate

the hardware challenges for supporting redundancy, e.g. muxing logic, wiring overhead,

20

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

P
er

ce
nt

 In
cr

ea
se

 in
 M

T
T

F

Percent Area Overhead

Module-granularity replacement
Stage-granularity replacement
Core-granularity replacement

Figure 2.2: Gain in MTTF from the addition of cold spares at the granulari ty of micro-
architectural modules, pipeline stages, and processor core. The gains shown are cumulative,
and spare modules are added (denoted with markers) in the order they are expected to fail.

circuit timing management, etc. At the same time, very coarse grained reconfiguration is

also not an ideal candidate since MTTF scales poorly with thearea overhead. Therefore, a

compromise solution is desirable, one that has manageable reconfiguration hardware and a

better life expectancy.

2.2.3 Harnessing Stage-level Reconfiguration

Stage level reconfiguration is positioned as a good candidate for system recovery as

it scales well with the increase in area available for redundancy (Figure2.2). Logically,

stages are a convenient boundary because pipeline architectures divide work at the level of

stages (e.g., fetch, decode, etc.). Similarly, in terms of circuit implementation, stages are

an intuitive boundary because data signals typically get latched at the end of every pipeline

stage. Both these factors are helpful when reconfiguration is desired with a minimum

impact on the performance. However, there are two major obstacles that must be overcome

before stage level reconfiguration is practical:

21

stagenet/plots/mttf_incr.eps

1. Pipeline stages are tightly coupled with each other and are therefore difficult to iso-

late/replace.

2. Maintaining spares at the pipeline stage granularity is very area intensive.

One of the ways to allow stage level reconfiguration is to decouple the pipeline stages

from each other. In other words, remove all direct point-to-point communication between

the stages and replace them by a switch based interconnection network. A conceptual pic-

ture of a chip multiprocessor using this philosophy is presented in Figure2.3. We call

this designStageNet(SN). Processor cores within SN are designed as part of a high speed

network-on-a-chip, where each stage in the processor pipeline corresponds to a node in

the network. A horizontal slice of this architecture is equivalent to a logical processor

core, and we call it aStageNetSlice(SNS). The use of switches allows complete flexibility

for a pipeline stage at depthN to communicate with any stage at depthN+1, even those

from a different SNS. The SN architecture overcomes both of the major obstacles for stage

level reconfiguration. Pipeline stages are decoupled from each other, and hence faulty ones

can be easily isolated. Furthermore, there is no need to exclusively devote chip area for

cold sparing. The SN architecture exploits the inherent redundancy present in a multicore

by borrowing/sharing stages from adjacent cores. As nodes (stages) wearout and eventu-

ally fail, SN will exhibit a graceful degradation in performance, and a gradual decline in

throughput.

Along with its benefits, SN architecture has certain area andperformance overheads

associated with itself. Area overhead primarily arises from the switch interconnection net-

work between the stages. And depending upon the switch bandwidth, a variable number

of cycles will be required to transmit operations between stages, leading to performance

22

penalties. The next section investigates the performance overheads when using a SNS and

also presents our microarchitectural solutions to regain these losses. The remainder of the

chapter focuses on the design and evaluation of the SN architecture, and demonstrates its

ability to maintain high lifetime throughput in the face of failures.

Pipeline 2

Pipeline 3

Pipeline M

Pipeline 1 StageN−1

StageN−1

StageN−1

StageN−1

C
on

fig
ur

at
io

n
M

an
ag

er

Stage 1 Stage2 StageN

Stage 1 Stage2 StageN

Stage 1 Stage2 StageN

Stage 1 Stage2 StageN

Figure 2.3: A StageNet assembly: group of slices connected together. Each StageNetSlice
(SNS) is equivalent to a logical processing core. This figureshows M, N-stage slices. Broken
stages can be easily isolated by routing around them. Crossbar switch spares can also be
maintained at the pipeline stage boundaries in order to tolerate rare, albeit possible, switch
failures.

2.3 The StageNetSlice Architecture

2.3.1 Overview

StageNetSlice (SNS) is a basic building block for the SN architecture. It consists of

a decoupled pipeline microarchitecture that allows convenient reconfiguration at the gran-

ularity of stages. As a basis for the SNS design, a simple embedded processor core is

used, consisting of five stages namely, fetch, decode, issue, execute/memory, and write-

back [8, 76]. Although the execute/memory block is sometimes separated into multiple

stages, it is treated as a single stage in this work.

Starting with a basic in-order pipeline, we will go through the steps of its transformation

23

stagenet/figs/snet-abstract.eps

Decode

D
o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

P
a
c
k
e
rGen PC

Branch
Predictor

Fetch

D
o
u
b
le

B
u
ff
e
r

SID Register
File

Scoreboard

Issue

D
o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

Execute/
Mem D

o
u
b
le

B
u
ff
e
r

SID

D
o
u
b
le

B
u
ff
e
r

B
y
p
a
s
s
$

Branch Feedback

Register Writeback

To I$ To D$

Figure 2.4: A StageNetSlice (SNS) pipeline. Stages are interconnectedusing a full crossbar
switch. The shaded portions highlight modules that are not present in a regular in-order
pipeline.

into SNS. As the first step, pipeline latches are replaced with a combination of a crossbar

switch and buffers. A graphical illustration of the resulting pipeline design is shown in

Figure2.4. The shaded boxes inside the pipeline stages are microarchitectural additions

that will be discussed in detail later in this section. To minimize the performance loss

from inter-stage communications, we propose the use of fullcrossbar switches since a)

these allow non-blocking access to all of their inputs and b)for a small number of inputs

and outputs they are not prohibitively expensive. The full crossbar switches have a fixed

channel width and, as a result, transfer of an instruction from one stage to the next can take

a variable number of cycles. However, this channel width of the crossbar can be varied to

trade-off performance with area. In addition to the forwarddata path connections, pipeline

feedback loops in SNS (branch mispredict, register writeback) also need to go through

similar switches. With the aid of these crossbars, different SNSs within a SN multicore can

share their stages with each other. For instance, the resultfrom, say, SNS A’s execute stage,

might need to be directed to SNS B’s issue stage for the writeback. Due to the introduction

of crossbar switches, SNS has three fundamental challengesto overcome:

1. Global Communication:Global pipeline stall/flush signals are fundamental to the

functionality of a pipeline. Stall signals are sent to all the stages for cases such

24

stagenet/figs/sns.eps

as multi-cycle operations, memory access, and other hazards. Similarly, flush sig-

nals are necessary to squash instructions that are fetched along mispredicted control

paths. In SNS, all the stages are decoupled from each other, and global broadcast is

infeasible.

2. Forwarding: Data forwarding is a crucial technique used in a pipeline foravoid-

ing frequent stalls that would otherwise occur because of data dependencies in the

instruction stream. The data forwarding logic relies on precisely timed (in an archi-

tectural sense) communication between execute and later stages using combinational

links. With variable amounts of delay through the switches,and the presence of

intermediate buffers, forwarding logic within SNS is not feasible.

3. Performance:Lastly, even if the above two problems are solved, communication

delay between stages is still expected to result in a hefty performance penalty.

The rest of this section will discuss how the SNS design overcomes these challenges

(Section2.3.2) and propose techniques that can recover the expected loss in performance

(Section2.3.3).

2.3.2 Functional Needs

Stream Identification: The SNS pipeline lacks global communication signals. With-

out global stall/flush signals, traditional approaches to flushing instructions upon a branch

mispredict are not applicable. The first addition to the basic pipeline, a stream identification

register, targets this problem.

The SNS design shown in Figure2.4 has certain components that are shaded in order

to distinguish the ones that are not found in a traditional pipeline. One of these additional

25

components is astream identification(sid) register in all the stages. This is a single bit

register and can be arbitrarily (but consistently across stages) initialized to 0 or 1. Over

the course of program execution, this value changes whenever a branch mispredict takes

place. Every in-flight instruction in SNS carries a stream-id, and this is used by the stages to

distinguish the instructions on the correctly predicted path from those on the incorrect path.

The former are processed and allowed to proceed, and the latter are squashed. A single bit

suffices because the pipeline model is in-order and it can have only one resolved branch

mispredict outstanding at any given time. All other instructions following this mispredicted

branch can be squashed. In other words, the stream-id works as a cheap and efficient

mechanism to replace the global branch mis-predict signal.The details of how and when

thesid register value is modified are discussed below on a stage-by-stage basis:

• Fetch: Every new instruction is stamped with the current value stored in thesid

register. When a branch mis-predict is detected (using the branch update from ex-

ecute/memory stage), it toggles thesid register and flushes the program counter.

From this point onwards, the instructions fetched are stamped with the updated

stream-id.

• Decode:Thesid register is updated from the stream-ids of the incoming instruc-

tions. If at any cycle, the old stream-id stored in decode does not match the stream-id

of an incoming instruction, a branch mispredict is implied and decode flushes its

instruction buffer.

• Issue:It maintains thesid register along with an additional 1-bitlast-sid regis-

ter. Thesid register is updated using the stream-id of the instruction that performs

register writeback. And, thelast-sid value is updated from the stream-id of the

26

last successfully issued instruction. For an instruction reaching the issue stage, its

stream-id is compared with thesid register. If the values match, then it is eligi-

ble for issue. A mismatch implies that some branch was mispredicted, in the recent

past, and further knowledge is required to determine whether this new incoming in-

struction is on the correct path or the incorrect path. This is where thelast-sid

register becomes important. A mismatch of the new instruction’s stream-id with the

last-sid indicates that the new instruction is on the corrected path of execution

and hence it is eligible for issue. A match implies the otherwise and the new instruc-

tion is squashed. The complete significance oflast-sid will be made clear later

in this section.

• Execute/Memory:compares the stream-id of the incoming instructions to thesid

register. In the event of a mismatch, the instruction is squashed. A mispredicted

branch instruction toggles its own stream-id along with thesid register value stored

here. This branch resolution information is sent back to thefetch stage, initiating a

change in itssid register value. The mispredicted branch instruction also updates

thesid in the issue stage during writeback. Thus, the cycle of updates is completed.

To summarize, under normal operating conditions (i.e. no mispredicts), instructions go

through the switched interconnection fabric, get issued, executed and write back computed

results. When a mispredict occurs, using the stream-id mechanism, instructions on the

incorrect execution path can be systematically squashed intime.

Scoreboard: The second component required for proper functionality of SNS is a

scoreboard that resides in the issue stage. A scoreboard is essential in this design be-

cause a forwarding unit (that normally handles register value dependencies) is not feasible.

27

More often than not, a scoreboard is already present in a pipeline’s issue stage for hazard

detection. In such a scenario, only minor modifications are needed to tailor a conventional

scoreboard to the needs of a SNS pipeline.

The SNS pipeline needs a scoreboard in order to keep track of the registers that have

results outstanding and are therefore invalid in the register file. Instructions for which one

or more input registers are invalid can be stalled in the issue stage. The SNS scoreboard

table has two columns (see Figure2.10c), the first to maintain avalid bit for each register,

and second to store theid of the last modifying instruction. In case of a branch mis-predict,

the scoreboard needs to be wiped clean since it gets pollutedby instructions on the wrong

path of execution. To recognize a mis-predict, the issue stage maintains alast-sid

register that stores the stream-id of the last issued instruction. Whenever the issue stage

finds out that the new incoming instruction’s stream-id differs fromlast-sid, it knows

that a branch mis-predict has taken place. At this point, thescoreboard waits to receive the

writeback, if it hasn’t received it already, for the branch instruction that was the cause of the

mis-predict. This branch instruction can be easily identified because it will bear the same

stream-id as the new incoming instruction. Finally, after this waiting period, the scoreboard

is cleared and the new instruction is issued.

Network Flow Issues: In SNS, the stalls are automatically handled by maintaining

network back pressure through the switched interconnection. A crossbar does not forward

values to the buffer of a subsequent stage if the stage is stalled. This is similar to the way

network queues handle stalls. In our implementation, we guarantee that an instruction is

never dropped (thrown away) by a buffer.

The transfer of operations between the stages of a SNS takes place over crossbar switches.

28

If an instruction along with its operand values is, say, 90 bits in size. Then, a crossbar

switch with the channel width of 32-bits, will take 3 cycles to transfer this instruction from

stage A to B. While this instruction is being transmitted, stage A cannot work on its next

instruction, and similarly stage B also sits idle waiting onthe transfer to complete. A

straightforward solution to this problem is to use a widely popular design known as dou-

ble buffer / ping-pong buffer. In this design, as the name implies, two buffers are kept

and the producer (consumer) switches back-and-forth between the two buffers for storing

(retrieving) the value. We use double buffers at all stage inputs and outputs within a SNS.

2.3.3 Performance Enhancement

The additions to SNS discussed in the previous section brings the design to a point

where it is functionally correct. In order to compare the performance of thisbasicSNS

design to an in-order pipeline, we conducted some experiments using a cycle accurate

simulator developed in the Liberty Simulation Environment[113]. Basichere implies a

SNS pipeline that is configured with the stream identification logic, scoreboard, and double

buffering. Interested readers can find the details of our simulation setup and benchmarks

in Section2.5.1. The performance of a basic SNS pipeline (first bar) in comparison to the

baseline is shown in Figure2.5. The results are normalized to the runtime of the baseline

in-order processor. On average, a 4X slowdown was observed,which is a significant price

to pay in return for the reconfiguration flexibility. However, in this version of the SNS

design, much is left on the table in terms of performance. Most of this performance is lost

in the stalls due to 1) the absence of forwarding paths and 2) transmission delay through

the switches.

29

0

1

2

3

4

5

6

N
or

m
al

iz
ed

 R
un

tim
e

SNS SNS + bp$ 2 SNS + bp$ 4 SNS + bp$ 6 SNS + bp$ 8

Figure 2.5: SNS performance normalized to the baseline. Different configurations of SNS
are evaluated, both with and without the bypass cache. The slowdown reduces as the bypass
cache size is increased (fewer issue-stage stalls).

Bypass Cache: Due to the lack of forwarding logic in SNS, frequent stalls are ex-

pected for instructions with register dependencies. To alleviate the performance loss, we

add abypass cachein the execute/memory stage (see Figure2.10d). This cache stores

values generated by recently executed instructions withinthe execute/memory stage. The

instructions that follow can use these cached values and need not stall in issue waiting for

writeback. In fact, if this cache is large enough, results from every instruction that has been

issued, but has not written back, can be retained. This wouldcompletely eliminate the stalls

arising from register dependencies emulating forwarding logic.

A FIFO replacement policy is used for this cache because older instructions are less

likely to have produced a result for an incoming instruction. The scoreboard unit in the

issue stage is made aware of the bypass cache size when the system is first configured.

Whenever the number of outstanding registers in the scoreboard becomes equal to this

cache size, instruction issue is stalled. In all other cases, the instruction can be issued as

all of its input dependencies are guaranteed to be present within the bypass cache. Hence,

30

stagenet/plots/bp_opti.eps

0

0.5

1

1.5

2

2.5

3

N
or

m
al

iz
ed

 R
un

tim
e

bp$ + 32-bit Xbar bp$ + 64-bit Xbar bp$ + Unlimited-bit Xbar

Figure 2.6: A SNS pipeline, with variation in the transmission bandwidth. The performance
improves with the increasing transmission bandwidth, and almost matches the base pipeline
at unlimited bandwidth.

the scoreboard can accurately predict whether or not the bypass cache will have a vacancy

to store the output from the current instruction. Furthermore, the issue stage can perform

selective register operand fetch for only those values thatare not going to be available in

the bypass cache. By doing this, the issue stage can reduce the number of bits that it needs

to transfer to the execute/memory stage.

As evident from the experimental results (Figure2.5), the addition of the bypass cache

results in dramatic improvements in the overall performance of SNS. The biggest improve-

ment comes between the SNS configuration without any bypass cache (first bar) to the one

with a bypass cache of size 2 (second bar). This improvement diminishes after a while, and

saturates beyond 8 entries. The average slowdown hovers around 2.1X with the addition of

the bypass cache.

Crossbar Width: The crossbar channel width is the number of bits that can be trans-

ferred to/from the crossbar in a single cycle. In the contextof SNS, it determines the

number of cycles it will take to transfer an instruction between the stages. The results

31

stagenet/plots/xbar_opti1.eps

...

Live−out 0 <val>
Live−out 1 <val>

Live−out J <val>

....

Live−in 0 <val>
Live−in 1 <val>

Live−in I <val>
Branch information
Stream ID (SID)

Macro−op ID (MID)
Macro−op length

Op1: opcode, dest, src(s)

Op2: opcode, dest, src(s)
....

OpN: opcode, dest, src(s)

List of live−ins. The list is assembled by the decode
and the values are populated in the issue stage

List of operations. Each operation has an opcode
destination, and a list of sources. The sources point
either to the live−in list or destination of a previous op

Macro−op meta information filled entirely by the
decode stage

List of live−outs. The list is assembled by the decode
and the values are populated in the ex/mem stage

Figure 2.7: Structure of a macro-op (MOP).

presented so far in this section have been with a crossbar channel width of 32-bits. Fig-

ure2.6 illustrates the impact of varying this width on performance. Three data points are

presented for every benchmark: a 32-bit channel width, a 64-bit channel width, and infinite

channel width. A large performance gain is seen when going from 32-bit width to 64-bit

width. Infinite bandwidth essentially means eliminating all transfer latency between the

stages, resulting in performance comparable to the baseline (however, at a tremendous area

cost). With a 64-bit crossbar switch, SNS has an average slowdown of about 1.35X. The

crossbar-width discussion is revisited after the next performance enhancement.

Macro Operations: The performance of the SNS design suffers significantly from

the overhead of transferring instructions between stages,since every instruction has to go

through a switched network with a variable amount of delay. Here, a natural optimization

would be to increase the granularity of communication to a bundle of multiple operations,

that we call a macro-op (MOP). There are two advantages of doing this:

1. More work (multiple instructions) is available for the stages to work on while the

next MOP is being transmitted.

2. MOPs can eliminate the temporary intermediate values generated within small se-

quences of instructions, and therefore give an illusion of data compression to the

underlying interconnection fabric.

32

stagenet/figs/macro-op.eps

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

N
or

m
al

iz
ed

 R
un

ti
m

e

bp$ bp$ + MOP 3 live-ins/outs bp$ + MOP 4 live-ins/outs bp$ + MOP 5 live-ins/outs bp$ + MOP 6 live-ins/outs

Figure 2.8: SNS with a bypass cache and the capability to handle MOPs, compared to the
baseline in-order pipeline. The first bars are for MOP sizes fixed at 1, while the other bars
have constraint on the number of live-ins and live-outs.

These collections of operations can be identified both statically (at compile time) or

dynamically (in the hardware). To keep the overall hardwareoverhead low, we form these

statically in the compiler. Our approach involves selecting a subset of instructions belong-

ing to a basic block, while bounding two parameters: 1) the number of live-ins and live-outs

and 2) the number of instructions. We use a simple greedy policy, similar to [26], that max-

imizes the number of instructions, while minimizing the number of live-ins and live-outs.

When forming MOPs, as long as the computation time in the stages can be brought closer

to the transfer time over the interconnection, it is a win.

The complete structure of a macro-op is shown in the Figure2.7. The compiler embeds

the MOP boundaries, internal data flow, and live-in/live-out information in the program

binary. During runtime, the decode stage’sPackerstructure is responsible for identifying

and assembling MOPs. Leveraging hints for the boundaries that are embedded in the pro-

gram binary, the Packer assigns a unique MOP id (MID) to everyMOP flowing through the

pipeline. All other stages in the SNS are also slightly modified in order to work with these

MOPs instead of simple instructions. This is particularly true of the execute/memory stage

where a controller cycles across the individual instructions that comprise a MOP, executing

33

stagenet/plots/mop_opti.eps

them in sequence. However, the bandwidth of the stages is notmodified, and they continue

to process one instruction per cycle. This implies that register file ports, execution units,

memory ports etc. are not increased in their number or capability.

The performance results shown in Figure2.8 are for a SNS pipeline with the bypass

cache, 64-bit switch channel width and MOPs. The various bars in the plot are for dif-

ferent configurations of the MOP selection algorithm. The results show that beyond a

certain limit, relaxing the MOP selection constraints (live-ins and live-outs) does not re-

sult in performance improvement. Prior to reaching this limit, relaxing constraints helps in

forming longer MOPs, thereby balancing transfer time with computation time. Beyond this

limit, relaxing constraints does not result in longer MOPs.Instead it produces wider MOPs

that have more live-ins/outs, which increases transfer time without actually increasing the

number of distinct computations that are encoded. On average, the best performance was

observed for live-ins/outs constraint of 4. This yielded 1.14X slowdown for a SNS pipeline

over the baseline. The worst performers were the benchmarksthat had very poor branch

prediction rates. In fact, the performance on SNS was found to be strongly correlated with

the number of mispredicts per thousand instructions. This is expected because the use of

MOPs, and the additional cycles spent for data transfer between stages, causes the SNS

pipeline to behave like a very deep pipeline.

Crossbar width optimization: The bandwidth requirement at each SNS switch inter-

face is not the same. For instance, macro-ops that are transmitted from decode to issue

stage do not have any operand values. But, the ones that go from issue to execute/memory

stage hold the operand values read from the register file, making them larger. This ob-

servation can be leveraged to optimize the crossbar widths between every pair of stages,

34

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

N
or

m
al

iz
ed

 R
un

tim
e

64-bit Xbar 150-bit budget 200-bit budget 250-bit budget 300-bit budget

Figure 2.9: Performance comparison with different budgets for crossbar widths. A budget
of 150-bit implies that all interfaces can have a combined width of 150. The first bar is for
static assignment of 64-bit crossbars at all interfaces, which is equivalent to a 320-bit (64× 5)
budget. Optimized assignment of 300-bits is able to deliverbetter performance than 320-bit
static assignment.

resulting in an overall area saving.

A series of experiments were conducted to track the number ofbits transmitted over

each crossbar interface (fetch-decode, decode-issue, issue-execute, execute-issue and execute-

fetch) for every MOP. The average number of bits transmittedvaried from 32 to 87. Given

a fixed budget of total crossbar-width (across all interfaces), a good strategy is to allocate

width to each interface in proportion to the number of bits ittransfers. The result of ap-

plying this optimization to the SNS pipeline is shown in Figure 2.9. For nearly the same

crossbar area (budget of 300-bits), the optimized assignment of crossbar-widths is able to

deliver 3% performance improvement over uniform usage of 64-bit crossbars (equivalent

to 320-bits in total). With this final performance enhancement, the SNS pipeline slowdown

stands at about 1.11X of the baseline.

35

stagenet/plots/xbar_opti2.eps

M
U PC

Mispredict
Handler

X

Icache request

Update BP

Controller
Fetch

Predictor
Branch

S

D
I

Exec Next PC

Predicted Next PC

Mispredict ?

Icache response

resolution
Branch

OP

(a) Fetch

Logic
Decoder Packer

MID

SID

Incoming OP

Outgoing (Macro) OP

Instruction Buffer

(b) Decode

REG ID Valid Last Wr. MID

0

1

2

62

63

59

60

61

0

1

1

0

0

1

1

1

17

21

17

−

−

−

−

−

REGISTER FILE

SID

Last SID

SCOREBOARD

Incoming (Macro) OP

Outgoing (Macro) OP

Writeback Registers

(Macro) OP latch

Controller
Issue

(c) Issue

REG ID REG Value

Branch Resolution

SID

Ex / Mem

Dcache RequestDcache Response

Incoming (Macro) OP

Outgoing (Macro) OP

(Macro) OP latch

Functional Unit

BYPASS $

Controller

OP Counter

(d) Execute/Memory

Figure 2.10: Pipeline stages of SNS. Gray blocks highlight the modules added for transform-
ing a traditional pipeline into SNS.

2.3.4 Stage Modifications

This section goes over the pipeline stages in SNS, and summarizes the modules added

to each of them.

• Fetch:The modifications made here are restricted to the addition ofsid register and

a small amount of logic to toggle it upon branch mis-predicts(Figure2.10a).

• Decode:The decode stage (Figure2.10b) collects the fetched instructions in a buffer.

An instruction buffer is a common structure found in most pipeline designs, and to

that we add oursid register. For an incoming instruction with a different stream-

id, this register is toggled and the instruction buffer is flushed. The decode stage is

also augmented with the Packer. The Packer logic reads instructions from the buffer,

identifies the MOP boundaries, assigns them a MID, and fills out the MOP structure

36

stagenet/figs/sn-fetch.eps
stagenet/figs/sn-decode.eps
stagenet/figs/sn-issue.eps
stagenet/figs/sn-exmem.eps

attributes such as length, number of operations and live-in/out register names.

• Issue:The issue stage (Figure2.10c) is modified to include a Scoreboard that tracks

register dependencies. For a MOP that is ready for issue, theregister file is read to

populate the live-ins. The issue stage also maintains two 1-bit registers:sid and

last-sid, in order to identify branch mis-predicts and flush the Scoreboard at

appropriate times.

• Execute/Memory:The execute/memory stage (Figure2.10d) houses the bypass cache

that emulates the job of forwarding logic. This stage is alsothe first to update its

sid register upon a branch mis-predict. In order to handle MOP execution, the

execute/memory controller is modified to walk the MOP instructions one at a time

(one execution per cycle). At the same time, the computed results are saved into the

bypass cache for later use.

2.4 The StageNet Multicore

The SNS presented in the last section is in itself a complete microarchitectural solution

to allow pipeline stage level reconfiguration. By maintaining cold spares for stages that

are most likely to fail, a SNS-based design can achieve the lifetime enhancement targets

projected in Figure2.2. However, these gains can be greatly amplified, without the cold

sparing cost, by using multiple SNSs as building blocks to form a StageNet (SN) multicore.

The high level abstraction of SN (Figure2.3), in combination with the SNS design,

forms the basis of the SN multicore (Figure2.11). The resources within this are not

bound to any particular slice and can be connected in any arbitrary fashion to form log-

37

C
on

fig
ur

at
io

n
M

an
ag

er

Pipeline 3

Pipeline 2

Pipeline 1

Pipeline 4

Issue ExecuteDecode

Fetch

Fetch

Decode

Decode

Decode

Issue

Issue

Issue

Execute

Execute

ExecuteFetch

Fetch

Figure 2.11: A SN multicore formed using four SNSs. As an example, a scenario with five
broken stages is shown (crosses indicate broken stages). Faced with a similar situation, a
regular CMP will lose all its cores. However, SN is able to salvage three operational SNSs,
as highlighted by the bold lines (note that these bold lines are not actual connections). The
configuration manager is shown for illustrative purposes, and is not an actual hardware block.

ical pipelines. The SN multicore has two prominent additions to glue SNSs together:

1. Interconnection Switch:The role of the crossbar switch is to direct the incoming

MOP to the correct destination stage. For this task, it maintains a static routing table

that is addressed using the thread-id of the MOP. The thread-id uniquely determines

the destination stage for each thread. To circumvent the danger of having them as

single points of failure, multiple crossbars can be maintained by the SN multicore.

2. Configuration Manager:Given a pool of stage resources, the configuration man-

ager divides them into logical SNSs. The configuration manager logic is better

suited for a software implementation since: 1) it is accessed very infrequently (only

when new faults occur), and 2) more flexibility is available in software to experiment

with resource allocation policies. The configuration manager can be designed as a

firmware/kernel module. When failures occur, a trap can be sent to the virtualiza-

tion/OS interface, which can then initiate updates for the switch routing tables.

38

stagenet/figs/stage-net-4.eps

In the event of any stage failure, the SN architecture can initiate recovery by combining

live stages from different slices, i.e. salvaging healthy modules to form logical SNSs. We

refer to this as thestage borrowing(Section2.4.1). In addition to this, if the underlying

stage design permits, stages can be time-multiplexed by twodistinct SNSs. For instance, a

pair of SNSs, even if one of them loses itsexecutestage, can still run separate threads while

sharing the single liveexecutestage. We refer to this asstage sharing(Section2.4.2).

2.4.1 Stage Borrowing

A pipeline stage failure in the system calls upon the configuration manager to determine

the maximum number offull logical SNSs that can be formed using the pool of live stages.

Full SNS here implies a SNS with exclusive access to exactly one stage of each type. The

number of such SNSs that can be formed by the configuration manager is determined by

the stage with the fewest live instances. For example, in Figure2.11, the bottom two SNSs

have a minimum of one stage alive of each type, and, thus, one logical SNS is formed. The

logical slices are highlighted using the shaded path indicating the flow of the instruction

streams.

It is noteworthy that all four slices in Figure2.11 have at least one failed stage, and

therefore, a multicore system in a similar situation would have lost all working resources.

Hence, SN’s ability to efficiently borrow stages from different slices, gives it the competi-

tive edge over a traditional multicore.

39

2.4.2 Stage Sharing

Stage borrowing is good, but it is not enough in certain failure situations. For exam-

ple, the first stage failure in the SN fabric reduces the number of logical SNSs by one.

However, if the stages can be time-multiplexed by multiple SNSs, then the same number

of logical SNSs can be maintained. Figure2.11has the top two logical SNSs sharing an

executestage. The number of logical SNSs that can share a single stage can be tuned in our

implementation.

The sharing is beneficial only when the threads involved present opportunities to inter-

leave their execution. Therefore, threads with very high IPC (instructions per cycle) are

expected to derive lesser benefit compared to low IPC threads. Furthermore, as the de-

gree of stage sharing is increased, the benefits are expectedto shrink since more and more

threads will contend for the available stage. In order for the stages to be shareable, certain

hardware modifications are also required:

• Fetch: It needs to maintain a separate program counter for each thread and has to

time-multiplex the memory accesses. The instruction cache, in turn, will also be

shared implicitly by the executing threads

• Decode:The instruction buffer has to be partitioned between different threads.

• Issue: The scoreboard and the register file are populated with statevalues specific

to a thread, and it is not trivial to share them. There are two ways to handle the

sharing for these structures: 1) compile the thread with fewer registers or 2) use a

hardware structure for register caching [82]. In our evaluation, we implement the

register caching in hardware and share it across multiple threads.

40

• Execute/Memory:The bypass cache is statically partitioned between the threads.

Similarly, the data cache gets shared by the threads.

2.4.3 Fault Tolerance and Reconfiguration

SN relies on a fault detection mechanism to identify broken stages and trigger reconfig-

uration. There are two possible solutions for detection of permanent failures: 1) continuous

monitoring using sensors [16, 56] or 2) periodic testing for faults. The discussion of exact

mechanism for detection is beyond the scope of this chapter.The configuration manager

is invoked whenever any stage or crossbar switch is identified to be defective. Depending

upon the availability of working resources, configuration manager determines the number

of logical SNSs that can be formed. It also configures the stages that need to be shared and

partitions their resources accordingly between threads. While working with higher degrees

of sharing, the configuration manager employs a fairness policy for resource allocation, so

that the work (threads) gets evenly divided among the stages. For example, if there are five

threads that need to share three live stages of same type, thefairness policy prefers a 2-2-1

configuration (two threads each to stages 1 and 2 and remaining one to stage 3) over a 3-1-1

configuration (three threads to stage 1, one each to stages 2 and 3).

2.5 Results and Discussion

2.5.1 Simulation Setup

The evaluation infrastructure for the SN architecture consisted of three major compo-

nents: 1) a compilation framework, 2) an architectural simulator, and 3) a Monte Carlo

41

simulator for lifetime throughput estimations. A total of 14 benchmarks were selected

from the embedded and desktop application domains. For these evaluations, the empha-

sis was on the embedded benchmarks because the SNS is based onan in-order embedded

core. A variety of these were used including several encryption (3des, pc1, rc4, rijndael),

audio processing (g721encode, g721decode, rawcaudio and rawdaudio), and image/video

processing (idct, sobel) benchmarks. In addition, four desktop benchmarks (181.mcf, eqn,

grep, wc) were also included in order to exhibit the potential of this architecture for other

domains.

We use the Trimaran compilation system [111] as our first component. The MOP selec-

tion algorithm is implemented as a compiler pass on the intermediate code representation.

During this pass, the code is augmented with the MOP boundaries and other miscellaneous

attributes. The final code generated by the compiler uses theHPL-PD ISA [58].

The architectural simulator for the SN evaluation was developed using the Liberty Sim-

ulation Environment (LSE) [113]. A functional emulator was also developed for the HPL-

PD ISA within the LSE system. Two flavors of the microarchitectural simulator were im-

plemented in sufficient detail to provide cycle accurate results. The first simulator modeled

a simple five stage pipeline, which is also the baseline for our experiments. The second

simulator implemented the SN architecture with all the proposed enhancements. Table5.5

lists the common attributes for our simulations.

The third component of our simulation setup is the Monte Carlo engine that we em-

ploy for lifetime throughput study. Each iteration of the Monte Carlo process simulates

the lifetime of the SN architecture. The configuration of theSN architecture is specified

in Table5.5. The MTTF for the various stages and switches in the system was calculated

42

using Equation2.11. The crossbar switch peak temperature was taken from [94] that per-

forms interconnection modeling for the RAW multicore chip [65]. The stage temperatures

were extracted from HotSpot simulations of the OR1200 core with the ambient tempera-

ture normalized to the one used in [94]. The calculated MTTFs are used as the mean of the

Weibull distributions for generating a time to failure (TTF) for every module (stage/switch)

in the system. For each iteration of the Monte Carlo, the system gets reconfigured over its

lifetime whenever a failure is introduced. The instantaneous throughput of the system is

computed for each new configuration using the architecturalsimulator on multiple random

benchmark subsets. From this, we obtain the system throughput over the lifetime. 1000

such iterations are run for conducting the Monte Carlo study.

Table 2.1: Architectural attributes.

Base core 5-stage in-order pipeline
SNS 4-stage in-order, with double buffering

and all other performance enhancements
Branch pred. global, 16-bit history, gshare predictor

BTB size of 2KB
L1 I$, D$ 4-way, 16 KB, 1 cycle hit latency
L2 $ unified 8-way, 64 KB, 5 cycle hit latency
Memory 40 cycle hit latency

2.5.2 Simulation Results

Lifetime performance: Figure2.12ashows the lifetime throughput results for a 4-core

CMP compared against two equally provisioned configurations of the SN architecture. The

CMP system starts with a performance advantage over the SN architecture. However, as

failures accumulate over time, the throughput of SN overtakes the baseline performance

and thereafter remains dominant. For instance, at year 6, the throughput of SN is nearly

1The fetch stage was qualified to have a MTTF of 10 years. This isa conservative estimate and no actual
module level MTTF values are available from any public source.

43

3X the baseline CMP. The shaded portion in this figure depictsthe cumulative distribution

function (CDF) of the combined MTTF Weibull distributions.For instance, this plot shows

that after 8 years, on average, there are 20 failed structures in the system. The difference

between SN configuration with and without sharing was found to be almost negligible.

Remaining results in the chapter are for SN configuration without sharing.

Figure2.12bshows the cumulative performance (total work done) for SN configura-

tions compared against the baseline. By the end of the lifetime, we achieve as much as

37% improvement in the work done for the SN fabric. About 30% of this is achieved by

stage borrowingonly, and the additional 7% benefit is a result ofstage sharing. The shar-

ing was not found to be very effective as the opportunities totime-multiplex stages were

very few and far between.

Area overhead: The area overhead in the SN arises from the additional microarchi-

tectural structures that were added and the interconnection fabric composed of the crossbar

switches. Area overhead is shown using an OR1200 core as the baseline (see Section2.2.1).

The area numbers for the bypass cache and register cache are estimated by taking similar

structures from the OR1200 core and resizing them appropriately. More specifically, by-

pass cache and register cache areas are based on the TLB area,which is also an associative

look-up structure. And finally, the area of double buffers isbased on the maximum macro-

op size they have to store. The sizing of all these structure was done in accordance with the

SNS configuration that achieved the best performance. The crossbar switch area is based

on the Verilog model from [81]. The total area overhead for the SN design (no sharing)

is ~15% (Table2.2). This was computed assuming six slices share a crossbars, and that

each crossbar maintain two cold spares. Note that the scoreboard area is ignored in this

44

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 2 4 6 8 10
 0

 5

 10

 15

 20

 25

 30

 35

T
hr

ou
gh

pu
t (

IP
C

)

N
um

be
r

of
 fa

ilu
re

s

Time (years)

4-core CMP
4-core (3/1) CCA
4-slice SN without sharing
4-slice SN with sharing

(a) Throughput over time.

 0

 0.5

 1

 1.5

 2

 0 2 4 6 8 10

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

pe
rf

or
m

an
ce

Time (years)

4-core CMP
4-core (3/1) CCA
4-slice SN without sharing
4-slice SN with sharing

(b) Cumulative work done. Cumulative work represents the integral of through-
put over time.

Figure 2.12: Throughput and cumulative performance results for 4-core CMP, 4-slice SN and
4-slice SN with sharing. Plot (a) also shows (shaded portion) the expected number of failed
modules (stages/switch) until that point in the lifetime.

discussion, as the introduction of sufficiently sized bypass cache eliminates the need for

them.

All the design blocks were synthesized, placed and routed using industry standard CAD

45

stagenet/plots/tput4core.eps
stagenet/plots/cwork4core.eps

tools with a library characterized for a 130nm process. The area overhead for separate

modules, crossbar switches, and SN configurations is shown in Table2.2.

Timing overhead: Although, we have not investigated the impact of our microarchi-

tectural changes to the circuit critical paths, a measurable influence on the cycle time is not

expected in SNS, because: 1) our changes primarily impact the pipeline depth (due to the

additional buffers), and 2) all logic changes are local to the stages, and do not introduce

any direct (wire) communication between them.

Table 2.2: Area overhead of SN architecture.

Design Blocks
Block name Area (mm2) Percent overhead
Bypass cache 0.044 3.4%
Register cache 0.028 2.2%
Double buffers 0.067 5.3%
Miscellaneous logic 0.012 0.9%
64-bit crossbar switch 0.028 2.1%

SN Configurations
Configuration Percent overhead
SN without sharing 15.1%
SN with sharing 17.3%

2.6 Related Work

Concern over reliability issues in future technology generations has spawned a new

wave of research in reliability-aware microarchitectures. Recent work has addressed the

entire spectrum of reliability topics, from fault detection and diagnosis to system repair

and recovery. This section focuses on the most relevant subset of work, those that propose

architectures that tolerate and/or adapt to the presence offaults.

High-end server systems designed with reliability as a first-order design constraint have

been around for decades but have typically relied on coarse grain replication to provide

46

a high degree of reliability [14, 100], such as Tandem NonStop [12], Teramac [30, 5],

Stratus [117], and the IBM zSeries [12]. However, dual and triple modular redundant

systems incur significant overheads in terms of area and power. Furthermore, these systems

still remain susceptible to wearout-induced failures since they cannot tolerate a high failure

rate.

Configurable Isolation [2] is another high level solution that works by disabling broken

cores as soon as they develop a fault. ElastIC [105] and Maestro [38] are more resource

conscious architectural vision for multiprocessor fault tolerance. Exploiting low-level cir-

cuit sensors for monitoring the health of individual cores,these papers propose dynamic

reliability management that can throttle and eventually turn off cores as they age over time.

Although effective in a limited failure rate scenario, all of these proposals need a large

number of redundant cores, without which they face the prospect of rapidly declining pro-

cessing throughput as faults lead to core disabling.

An alternative to core disabling is fine-grained redundancyfor defect tolerance. There

are numerous proposals for fine-grained redundancy maintenance such as Bulletproof [29],

sparing in array structures [18], branch predictors [18], register files [95], functional units [19,

103], and other such microarchitectural structures. These schemes typically rely on inher-

ent redundancy of superscalar cores or add cold spares for vulnerable microarchitectural

modules.

In a multicore chip, the concept of architectural core salvaging [83] can partially mimic

the benefits of maintaining spares. Architectural core salvaging leverages natural cross-

core redundancy and migrates threads to a healthy core whenever a broken core encounters

an instruction it cannot execute. However, given that a critical fraction of the core logic

47

is non-redundant [83] (~80% in Intel Core2 like architectures), schemes that depend on

salvaging microarchitectural and architectural can provide only a limited fault coverage.

Much work has also been done in building reliable systems from FPGA components.

The Teramac Configurable Computer [5] is one instance of this paradigm. The Teramac

Custom Computer is designed to tolerate defective resources using specialized algorithms

which identify legal mappings of user workloads that also avoid faulty components. Other

research has focused on building reliable substrates out offuture nanotechnologies that are

expected to be inherently fault-prone. The NanoBox Processor Grid [61] was designed as

a recursive system of black box devices, each employing their own unique fault tolerance

mechanisms. While this project does boast a significant amount of defect tolerance, it

comes at a 9X overhead in terms of redundant structures.

SN differs dramatically from solutions previously proposed in that our goal is to mini-

mize the amount of hardware used solely for redundancy. Morespecifically, we enable re-

configuration at the granularity of a pipeline stage, and allow pipelines to share their stages,

making it possible for a single core to tolerate multiple failures at a much lower cost. In

parallel to our efforts, Romanescu et al. [88] have proposed a multicore architecture, Core

Cannibalization Architecture (CCA), that also exploits stage level reconfigurability. CCA

allows only a subset of pipelines to lend their stages to other broken pipelines, thereby

avoiding full crossbar interconnection. Unlike SN, CCA pipelines maintain all feedback

links and avoid any major changes to the microarchitecture.Although these design choices

reduce the overall complexity, fewer opportunities of reconfiguration exist for CCA as

compared to SN.

48

2.7 Summary

As CMOS technology continues to evolve, so too must the techniques that are em-

ployed to counter the effects of ever more demanding reliability challenges. Efforts in fault

detection, diagnosis, and recovery/reconfiguration must all be leveraged together to form

a comprehensive solution to the problem of unreliable silicon. This work contributes to

the area of recovery and reconfiguration by proposing a radical architectural shift in pro-

cessor design. Motivated by the need for finer-grain reconfiguration, networked pipeline

stages were identified as the effective trade-off between cost and reliability enhancement.

Although performance suffered at first as a result of the changes to the basic pipeline, a few

well-placed microarchitectural enhancements were able toreclaim much of what was lost.

Ultimately, the SN fabric exchanged a modest amount of area overhead (15%) in return for

a highly resilient CMP fabric that yielded about 40% more work during its lifetime than a

traditional CMP.

49

CHAPTER III

A Scalable Architecture for Wearout and Process

Variation Tolerance

3.1 Introduction

In an effort to combat the silicon reliability threat expected in future technology gen-

erations, the previous chapter introduces a multicore wearout tolerance solution name Sta-

geNet (SN). The basic idea of SN is to organize a multicore as adynamically configurable

network of pipeline stages. Logical cores are created at run-time by connecting together

one instance of every pipeline stage. The underlying pipeline microarchitecture is designed

to be completely decoupled at stage boundaries, providing full flexibility to construct log-

ical cores. In the event of stage failures, the SN architecture initiate recovery by salvaging

healthy stages to form logical cores. This ability of SN to isolate failures at a finer granu-

larity (stages rather than cores) forms the basis of its reliability benefits.

Despite all the benefits SN architecture offers, it faces three principal limitations. Firstly,

the original proposal was designed for a CMP with 4-8 cores, and does not scale well to

a large number of cores (say, 100). The crossbar, that was used as the SN interconnec-

50

tion, is notorious for steep increases in area and delay overheads as the number ports is

increased [81], and therefore limits the SN scaling. Secondly, the SN proposal focuses

primarily on the stage failures and does not investigate methods for interconnection fault

tolerance. Thus, a scaled up SN system will waste all of its working stages if the shared

crossbar between them develops a failure. And finally, the SNdesign was evaluated for

wearout related failures only. A more immediate concern forthe industry today is the

impact of process variation on the production yield and design efficiency.

Process variation [17, 91] is caused by the inability to precisely control the fabrication

process at small-feature technologies. This can lead to significant deviation of circuit pa-

rameters (channel length, threshold voltage, wire spacing) from the design specification.

These parametric deviations can create a wide distributionof operating characteristics for

components within/across chip(s), resulting in slow partsthat work at a low frequency to

those that are very fast but leaky (high static power). Either extreme is bad for efficient

computing.

This chapter introduces StageWeb (SW), a scalable CMP fabric for wearout and pro-

cess variation tolerance, that eliminates all the aforementioned limitations of SN. The SW

system is optimized to determine the best degree of connectivity between pipelines (that

can share their resources together), while incurring a modest amount of overhead. A range

of interconnection alternatives, and corresponding configuration algorithms, are explored

to enable scalable fault-tolerance using SW. The reliability of the interconnection network

is also tackled in the SW design through the use of spare crossbars, robust crossbar designs

and intelligent connectivity to give an illusion of redundancy. The underlying interconnec-

tion flexibility of SW is further leveraged to mitigate process variation. Using SW, the faster

51

components (pipeline stages) in the fabric can be selectively picked, to form pipelines that

can operate at a higher frequency. This ability of SW limits the harmful effects of process

variation that intersperse slower components with faster ones throughout a chip.

Contributions of this chapter are as follows:

1. SW, a comprehensive solution for the upcoming reliability challenges - permanent

faults and process variation.

2. Exploration of robust and scalable interconnection alternatives for building SW chips.

3. Configuration algorithms to a) maximize the SW system throughput in the face of

failures, and b) improve the distribution of core frequencies in the presence of process

variation.

4. Comparisons of SW and traditional CMPs on the ground of 1) cumulative work a

chip can perform before being decommissioned, 2) throughput guarantees over the

lifetime, 3) distribution of core frequencies, 4) energy efficiency, and 5) yield.

3.2 Background

The StageWeb architecture proposed in this chapter builds upon StageNet(SN) [43],

which is a solution for permanent fault tolerance in multicores. SN creates a network

of pipeline stages using full crossbars, thereby allowing mutual exchange of working re-

sources between pipelines. Figure3.1 illustrates a SN multicore created out of four SNSs

that share a common crossbar network. The inherent symmetryof the SN allows arbitrary

formation of a logical SNS by grouping together at least one pipeline stage of each type.

For instance, fetch, issue and execute stage from slice 0 arelinked with the decode from

52

SNS 0

SNS 1

SNS 2

F

F

F

F

D

D

D

D

I

I

I

I

Slice 0

Slice 1

Slice 2

Slice 3

E/M

E/M

E/M

E/M

Figure 3.1: The SN architecture with four slices interconnected to eachother. Despite four
failed stages (marked by shading), SN is able to salvage three working pipelines, maintaining
healthy system throughput. Given a similar fault map, a core-disabling approach for reliabil-
ity would lose all working resources.

slice 1, to construct a working pipeline.

SN relies on a fault detection mechanism to identify broken stages and trigger recon-

figuration. The manufacture time failures can be easily identified at the test time and SN

can be configured accordingly. However, an active mechanismis required to catch failures

in the field. There are two possible solutions for detection of permanent failures: 1) con-

tinuous monitoring using sensors [16, 56] or 2) periodic testing for faults. SN can employ

either of these or use a hybrid approach. In the presence of failures, SN can easily isolate

broken stages by adaptively routing around them. Given a pool of stage resources, a soft-

ware based configuration manager can divide them into a globally optimal set of logical

SNSs. In this way, SN’s interconnection flexibility allows it to salvage healthy stages from

interconnected cores.

3.2.1 Limitations of SN

The SN design and analysis, as presented in chapterII , is an acceptable wearout toler-

ance solution for a small scale multicore system. However, SN is limited in three distinct

ways that prevent it from meeting the many-core reliabilitychallenge:

• First, SN was designed for a CMP with 4-8 cores, and does not scale well to a large

53

stageweb/figs/snet.eps

number of cores. The crossbar, that was used as the SN interconnection, is notorious

for steep growth in area and delay overheads as the number of ports is increased [81],

and therefore limits the SN scaling.

• Second, the SN proposal focuses primarily on stage failures and does not investigate

methods for interconnection fault tolerance. SN’s robustness hinges on the link and

crossbar reliability. For instance, a SN chip will waste allof its working stages if the

shared crossbar between them develops a failure.

• And finally, the SN design targets only wearout related failures, which constitutes

only a part of the reliability challenge. A more immediate concern for the industry

today is the accelerating rate of process variation and manufacturing defects, and its

impact on the performance-efficiency of semiconductor products.

3.2.2 Impact of Process Variation and Defects

Process variation is encountered at manufacturing time, and influences almost every

chip manufactured from day one. The variations can be systematic (e.g., lithographic lens

aberrations) or random (e.g. dopant density fluctuations),and can manifest at different lev-

els – wafer-to-wafer (W2W), die-to-die (D2D) and within-die (WID). Traditionally, D2D

has been the most visible form of variation, and was tackled by introducing the notion of

speed-binning (chips are partitioned based on their frequency and sold accordingly). How-

ever, the increasing levels of WID variations [91, 66, 108] has created newer challenges for

today’s multi-core designs. As a result of WID variations, operational frequencies of CMP

cores can exhibit a wide distribution (see Figure3.2). To deal with this disparity, designers

54

5

10

15

20

25

30

35

N
u

m
b

er
 o

f
c
o
re

s

Future node 32nm 45nm

0

5

10

15

20

25

30

35

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1
N

u
m

b
er

 o
f

c
o
re

s

Frequency (normalized)

Future node 32nm 45nm

Figure 3.2: Impact of process variation on a 64-core CMP. The plot shows the distribution of
core frequencies at current technology nodes (45nm and 32nm) and the (next-to-arrive) future
node. As the technology is scaled, the distribution shifts towards the left (more slower cores)
and widens out (more disparity in core frequencies). This isa consequence of large number of
cores ending up with slower components, bringing down theiroperational frequencies.

in upcoming technology generations may create overly conservative designs or introduce

large frequency guard-bands. Both of which are undesirablealternatives for computing

efficiently.

An extreme case of process variation is manufacture-time defects. Defect-tolerance for

individual cores is a challenging problem. At one extreme isthe option to disable cores as

soon as they develop a fault [2], we refer to this ascore isolation. However, with an increase

in defect rate, systems with core isolation can exhibit rapid throughput degradation, and

quickly become useless. This challenge will manifest itself as a process yield problem

(fewer chips with an acceptable throughput). Thus, achieving an economically viable yield

will get harder with the rise in the manufacturing defect density. Figure3.3shows the yield

for a 100 core CMP at a range of defect densities. As evident from this chart, any rise in

the defect densities seen today can have a catastrophic impact on yield.

55

stageweb/plots/pvmotiv.eps

Figure 3.3: This plots shows the yield for a 100 core CMP at a range of defect densities. The
yield is computed as the fraction ofworking chips for a 1000 chip Monte-Carlo simulation
(at each defect density point). Aworking chip is one that has greater than 75/85/95 cores
functional. The black dotted line shows the currently observed defect density according to the
latest ITRS report [53].

3.3 The StageWeb Architecture

SW is a scalable architecture for constructing dependable CMPs. SW interweaves

pipeline stages and interconnection into an adaptive fabric that is capable of withstanding

wearout failures as well as mitigating process variation. The interconnection is designed

to be flexible such that the system can react to local failures, reconfiguring around them,

to maximize the computational potential of the system at alltimes. Figure3.4 shows a

graphical abstraction of a large scale CMP employing the SW architecture. The processing

area of the chip in this figure consists of a grid of pipeline stages, interconnected using a

scalable network of crossbars switches. The pipeline microarchitecture of SW is same as

that of a SNS. Any complete set of pipeline stages (reachableby common interconnection)

can be assembled together to form a logical pipeline.

The fault-tolerance within SW can be divided into two sub-problems. The first half is

to utilize as many working pipeline stages on a chip as possible. And the second half is

56

stageweb/plots/yield.ps

D IF E/M

D IF E/M

D IF E/M

D IF E/M

L2 $ L2 $ L2 $

L2 $ L2 $ L2 $

L
2
$

L
2
$

L
2
$

L
2
$

L
2
$

L
2
$

Figure 3.4: The StageWeb (SW) architecture. The pipeline stages are arranged in form of a
grid, surrounded by conventional memory hierarchy. The inset shows a part of the SW fabric.
Note that the figure here is an abstract representation and does not specify the actual number
of resources.

to ensure interconnection reliability. A naive solution for the first problem is to provide a

connection between all stages. However, as we will show later in this section, full connec-

tivity is not necessary between all stages on a chip to achieve the bulk of reliability benefits.

As a combined solution to both these problems, we explore alternatives for the intercon-

nection network, interconnection reliability and presentconfiguration algorithms for SW.

The underlying interconnection infrastructure is also leveraged by SW to mitigate process

variation. This is accomplished by introducing a few minor changes to the configuration

policy.

3.3.1 Interweaving Range

The reliability advantages of SW stem from the ability of neighboring slices (or pipelines)

to share their resources with one another. Thus, a direct approach for scaling the original

SN proposal would be to allow full connectivity, i.e. a logical SNS can be formed by

combining stages from anywhere on the chip. However, such flexibility is unnecessary,

since the bulk of the reliability benefits are garnered by sharing amongst small groups of

stages. To verify this claim, we conducted an experiment with a fixed number of pipeline

57

stageweb/figs/sweb.eps

1.8

k

1.5

1.6

1.7

1.8

la
tiv

e
W

or
k

1.2

1.3

1.4

1.5

1.6

1.7

1.8

iz
ed

 C
um

ul
at

iv
e

W
or

k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
or

m
al

iz
ed

 C
um

ul
at

iv
e

W
or

k

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
or

m
al

iz
ed

 C
um

ul
at

iv
e

W
or

k

Island size (number of slices sharing stages)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
or

m
al

iz
ed

 C
um

ul
at

iv
e

W
or

k

Island size (number of slices sharing stages)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

N
or

m
al

iz
ed

 C
um

ul
at

iv
e

W
or

k

Island size (number of slices sharing stages)

Figure 3.5: Cumulative work performed by a fixed size SW system with increasing SW island
width. The results are normalized to an equally provisionedregular CMP. These results are
a theoretical upper bound, as we do not model interconnection failures for the experiments
here.

resources interwoven (grouped together) at a range of values. Each fully connected group

of pipelines is referred to as aSW island. For instance, 16 pipelines can be interwoven at

granularity of 2 pipelines (leading to 8 SW islands), 4 pipelines (4 islands), 8 pipelines (2

islands) or all 16 pipelines can be interwoven together. Figure 3.5 shows the cumulative

work done by a large number of slices interwoven at a range of SW island sizes. All SW

configurations in this figure have same the amount of pipelineresources. Cumulative work

metric, as defined in Section3.4.3, measures the amount of useful work done by a system

in its entire lifetime. Note that the interconnection fabric here is kept fault free for the sake

of estimating the upper bound on the throughput offered by SW.

As evident from Figure3.5, a significant amount of defect tolerance is accomplished

with just a few slices sharing their resources. The reliability returns diminish with the in-

creasing number of pipelines, and beyond 10-12 pipelines, interweaving has a marginal

impact. This is so because, as a SW island spans more and more slices, the variation in

time to failure of its components gets smaller and smaller. This factors into the amount

of gains that the flexibility of interconnection can garner in combining working stages, re-

58

stageweb/plots/snet_scaling.eps

sulting in a diminishing return with an increase in island width. Thus, a two-tier design

can be employed for SW by dividing the chip into SW islands, where a full interconnect is

provided between stages within the island and no (or perhapslimited) interconnect exists

between islands. In this manner, the wiring overhead can be explicitly managed by exam-

ining more intelligent system organizations, while garnering near-optimal benefits of the

SW architecture.

3.3.2 Interweaving Candidates

Interweaving a set of 10-12 pipelines together, as seen in Figure3.5, achieves a majority

of the SW reliability benefits (assuming failure immune interconnection). However, using a

single crossbar switch might not be a practical choice for connecting all the 10-12 pipelines

together because: 1) area overhead of crossbars scales quadratically with the number of

input/output ports, 2) stage to crossbar wire delay increases with the number of pipelines

connected together, at some point this can become the critical path for the design, 3) and

lastly, failure of the single crossbar shared by all the pipelines can compromise usability of

all of them.

In light of the above reasons, there is a need to explore more intelligent interconnections

that can reach a wider set of pipelines while keeping the overheads under check. Reaching

a wider set of pipelines enables salvaging of more stage resources from farther ends of the

chip. The rest of this section introduces four interconnection alternatives for improving the

range of pipelines that can share their stages together. In addition, some sort of fault tol-

erance also needs to be incorporated into the interconnection network, which is addressed

later in this section.

59

Single Crossbars The most basic interconnection option is to use the one employed in

the original SN proposal, a single full crossbar switch (bufferless). Figure3.6 shows a

full crossbar connecting fetch and decode stages ofn slices. The figure also shows an

abstraction for a crossbar (a bold vertical line) that will be used hereafter in this chapter.

By virtue of being bufferless, this crossbar’s delay has to fit within a single CPU cycle,

thus, the value ofn (slices connected) is bounded by this delay.

IN

OUT

n

n

D

D

F

F

DF

F

D

n

D

D

F

D

DF

F

F

Figure 3.6: A single crossbar interconnect connectingn slices. The diagram on the right also
shows the abstraction that we use henceforth for representing a single crossbar.

Overlapping Crossbars The overlapping crossbar interconnection builds upon the sin-

gle crossbar design, while enabling a wider number of pipelines to share their resources

together. As the name implies, adjacent crossbars overlap half of their territories in this

interweaving setup. Figure3.7 illustrates the deployment of overlapping crossbars over

3
2
n slices. Unlike the single crossbar interconnection, overlapping crossbars have a fuzzy

boundary for the SW islands. The shaded stages in the figure highlight a repetitive inter-

connection pattern here. Note that thesen
2

stages can connect to the stages above them

using crossbars Xbar 1,4,7, and to the stages below them using crossbar Xbar 2,5,8. Thus,

overall these stages have a reach of3
2
n slices. The overlapping crossbars configuration has

two distinct advantages over the single crossbars: 1) it canallow up to 50% more slices

to share their resources together, and 2) it introduces an alternative crossbar link at every

60

stageweb/figs/sxbar.eps

stage interface, improving the interconnection robustness (stages can choose an alternative

crossbar in case one of them fails) without additional cold sparing.

D

D

D

D

D

D

F

F

F

F

F

X
b
a
r
0

X
b
a
r
1

X
b
a
r
2

F

n/2

n/2

n/2

E/M

E/M

E/M

E/M

E/M

E/M

I

I

I

I

I

X
b
a
r
6

X
b
a
r
7

X
b
a
r
8

I

X
b
a
r
3

X
b
a
r
4

X
b
a
r
5

Figure 3.7: Overlapping crossbar connections. The overlap allows a wider set of pipelines
to share their resources. In this figure, the shaded stages inthe middle have a reach of32n
pipelines.

Single and Front-Back Crossbars The primary limitation of single crossbars is the in-

terweaving range they can deliver. This value is bounded by the extent of connectivity a

single-cycle crossbar can provide. However, if this constraint is relaxed by introducing

two-cycle crossbars, virtually twice the number of slices can communicate with one an-

other. Unfortunately, the two cycle latency between every pair of stages can introduce a

significant slowdown on the single thread performance of thelogical SNSs (~25%). A

compromise solution would be to apply two cycle crossbar at acoarser granularity than

pipeline stages. One way to accomplish this is by classifying fetch-decode pair as one

block (front-end), and issue-exmem pair as the other (back-end). The single thread per-

formance loss when using this is about 7%. Connecting up these two blocks would need

one front-end to back-end crossbar, and the other in the reverse direction. We call such

two-cycle interconnections front-back crossbars. Figure3.8 shows2n slices divided into

61

stageweb/figs/oxbar.eps

front-end and back-end blocks, which are connected by a front-back crossbar (FB-Xbar 0).

n

F
B
-X
b
a
r
0

F

F

F

F

D

D

D

DX
b
a
r
0

I

I

I

I

E/M

E/M

E/M

E/M

n

X
b
a
r
2

X
b
a
r
4

X
b
a
r
1

X
b
a
r
3

X
b
a
r
5

Front-End Back-End

Figure 3.8: Combined application of single crossbars in conjunction with front-back cross-
bars. The reverse connections, execute/memory to issue andexecute/memory to fetch, are not
shown here for the sake of figure readability.

Overlapping and Front-Back Crossbars The single and front-back crossbar combina-

tion benefits from the interweaving range it obtains from thefront-back crossbar, but, at

the expense of single thread performance loss. An alternative is to combine the overlap-

ping crossbars with the front-back crossbars. Figure3.9shows this style of interconnection

applied over2n slices. In this scenario,3
2
n slices can be reached without losing any per-

formance, and the remainingn/2 bordering slices can be reached using the front-back

crossbars.

X
b
a
r
0

F

F

F

F

D

D

D

D

I

I

I

I

E/M

E/M

E/M

E/M

n

n

F
B
-X
b
a
r
0

X
b
a
r
4

X
b
a
r
8

X
b
a
r
1

X
b
a
r
2

X
b
a
r
3

X
b
a
r
5

X
b
a
r
6

X
b
a
r
7

X
b
a
r
9

X
b
a
r
1
0

X
b
a
r
1
1

Front-End Back-End

Figure 3.9: Combined application of overlapping crossbars in conjunction front-back cross-
bars. The reverse connections are not shown here for the sakeof figure readability.

62

stageweb/figs/fbsxbar.eps
stageweb/figs/fboxbar.eps

3.3.3 Configuration Algorithms

The faults in a SW chip can manifest as broken stages, crossbar ports or interconnection

links. Each of these scenarios demand a reconfiguration of the system such that the defec-

tive components are isolated. A good configuration algorithm would guarantee formation

of a maximum number of logical pipelines (or SNSs), thus achieving the highest possible

system throughput. This section presents three configuration algorithms for handling each

type of crossbar deployment, namely, single crossbars, overlapping crossbars and front-

back configurations. All four interweaving alternatives discussed in the Section3.3.2can

be successfully configured by using a combination of these three algorithms. For the sake

of avoiding complicated interactions of different types offailures when forming logical

SNSs, the algorithm we propose here abstracts all failures as stage failures. For instance, a

crossbar port failure can be accounted for by declaring the stage connecting to it as dead.

The same abstraction can be applied to interconnection linkfailures.

Single Crossbar Configuration The input to this algorithm is the fault map of the entire

SW chip, and it is explained here using a simple example. Figure 3.10shows a four-wide

SW system. The SW islands are formed using the top two and bottom two slices. There

are eight defects in this system, four stage failures and four crossbar port/interconnection

link failures. The dead stages are marked using a solid shade(F2, D4, I3, E4) and the in-

terconnection as crosses. The stages connected to a dead interconnection are also declared

dead, and are lightly shaded (D1, D2, I2). This is to distinguish them from the physically

defective stages. For illustration purposes, the backwardconnections are not shown here

and are assumed fault-free.

63

SNS 0

F1

F2

F3

F4

D1

D2

D3

D4

I1

I2

I3

I4

E1

E2

E3

E4

Is
la
n
d
1

Is
la
n
d
2

Figure 3.10: Configuration of SW with single crossbars. The marked stagesand intercon-
nections are dead. Island 1 is not able to form any logical SNS, whereas island 2 forms only
one logical SNS (SNS 0).

Given the updated fault-map (with interconnection failures modeled as stage failures),

the single crossbar configuration is conducted for one SW island at a time. The first step is

to create a list of working stages of each type. For the example in Figure3.10, this results

in - fetch{F1}, decode{}, issue{I1} and execute/memory{E1, E2} - for SW island 1,

and - fetch{F3, F4}, decode{D3}, issue{I4} and execute/memory{E3} - for SW island

2. The second step groups unique working stages within an island, and sets them aside as a

logical SNS. In our example, this results in having onlyoneworking SNS: F3, D3, I4, E3,

and the configuration is complete.

Overlapping Crossbar Configuration The overlapping crossbars provide additional con-

nectivity for resources from two neighboring SW islands. For the explanation of this algo-

rithm, we will use the same SW example from before. Figure3.11is almost the same as

before, with the exception of a new overlapping crossbar layer in the middle. This layer

makes the tally for the number of logical SN islands three. Also, note the change in shading

used for stages D2 and I2. The top half of these stages are lightly shaded, and the bottom

half is clear. This is to denote that these stages are dead foruse in island 1, but are available

for use in island 2.

The core of the overlapping crossbar configuration algorithm is same as the one used

64

stageweb/figs/sconf.eps

for the single crossbar configuration. Given the fault-map,and the proper abstraction of

interconnection faults as stage faults, the single crossbar configuration algorithm is used to

form logical SNSs for one island at a time. This process is started at one end of the SW

fabric, and is swept across the entire SW. When this process is started at the top of the fabric,

working stages from the top of the pile within each island aregiven preference to form

logical SNSs. This heuristic helps in keeping more resources free when the succeeding

islands are configured. Figure3.11 illustrates this logical progression from island 1 to

island 3 in our example. The steps for each island configuration are detailed below, and

result in a total oftwo logical SNSs.

Island 1:

1. Free working stages: fetch{F1}, decode{}, issue{I1}, execute/memory{E1,E2}.

2. Logical SNSs:none.

Island 2:

1. Free working stages: fetch{F3}, decode{D2, D3}, issue{I2}, execute/memory

{E2, E3}.

2. Logical SNSs: F3, D2, I2, E2.

Island 3:

1. Free working stages: fetch{F4}, decode{D3}, issue{I4}, execute/memory{E3}.

2. Logical SNSs: F4, D3, I4, E3.

Front-Back Crossbar Configuration The front-back crossbars are only used to connect

the front-end (fetch-decode pair) with the back-end (issue-execute/memory pair). This

requires their use to be in conjunction with some other crossbar configuration (see Sec-

65

F1

F2

F3

F4

D1

D3

D4

I1

I3

I4

E1

E2

E3

E4

D2 I2

SNS 0

SNS 1

Is
la
n
d
1

Is
la
n
d
2

Is
la
n
d
3

Figure 3.11: Configuration of SW with overlapping crossbars. The red marked stages and
interconnections are dead. The partially marked stages aredead for one island, but are avail-
able for use in the other. Island 1 is not able to form any logical SNS, island 2 forms one logical
SNS (SNS 0) and island 3 also forms one logical SNS (SNS 1).

tion 3.3.2). Henceforth, we will refer to thisother crossbar configurationas the first-level

interconnection. Nevertheless, the configuration algorithm for front-back crossbars is inde-

pendent of the choice made for the first-level interconnection. The running example from

the previous algorithms will again be employed in this section (see Figure3.12). In our

example (Figure3.12) front-back crossbars are assumed to be fault-free. The front-back

algorithm can be divided into three phases:

1. First-level Interconnection: Prior to configuring front-back crossbars, the maxi-

mum potential of the first-level interconnection should be exploited. In our example,

we employ overlapping crossbars as the first-level interconnection. This results in

forming two logical SNSs: F3, D2, I2, E2 and F4, D3, I4, E3.

2. Front-back Bundling: In this step, the resources remaining in the SW fabric are

individually bundled up in the front-end and the back-end. Figure 3.12 forms one

front-end bundle (F1, D1) and one back-end bundles (I1, E1).

3. Front-back Integration: The last phase in the configuration is to combine pairs

of front-end and back-end bundles and form logical SNSs. Figure 3.12 forms one

logical SNS using the front-back crossbars: F1, D1, I1, E1.

66

stageweb/figs/oconf.eps

F1

F2

F3

F4

D3

D4

I1

I3

I4

E1

E2

E3

E4

D2 I2

SNS 0

SNS 1

Front-End Back-End

SNS 2 D1

Figure 3.12: Configuration of SW with overlapping and front-back crossbars. The front-
back crossbars adds one more logical SNS (SNS 2) over the configuration result of overlapping
crossbars.

In summary, front-back crossbar configuration, along with overlapping crossbar as the

first-level interconnection, is able to formthreelogical SNSs. The configuration algorithms

discussed in this section can cover all possible interweaving candidates discussed in Sec-

tion 3.3.2. It is noteworthy that the algorithms presented here are notoptimal (in specific,

the latter two), and are based on heuristics. This was done inorder to keep their run-times

linear and, thus, minimize the overhead of in-field reconfigurations.

3.3.4 Interconnection Reliability

Interconnection reliability can be divided into link reliability and crossbar reliability.

The link reliability is accounted for, to a certain extent, by the interconnection alternatives

which introduce redundancy. Further, they are not as vulnerable to wearout and variation

as logic. For crossbar reliability, SW can use three alternatives:

1. Simple Crossbar:This is the simplest scenario with a single crossbar switch used at

each interconnection spot. No redundancy is maintained in this case.

2. Simple Crossbar with spare(s):In this set-up, one spare is maintained for every

crossbar in the system. This doubles the area required by thecrossbar switches, but

significantly improves the interconnection reliability. The cold spare corresponding

67

stageweb/figs/fbconf.eps

to a crossbar switch is only brought into use when the latter develops a certain number

of port failures.

3. Fault-Tolerant Crossbar (no spares):The third and final option is to deploy one-

sided fault-tolerant (FT) crossbars [115] that nearly eliminate the chances of crossbar

failures. Note that in a FT crossbar, multiple paths exist from a given input port to

the output port. This is unlike a regular crossbar that have aunique path for every

input-output pair. The biggest downside of these crossbarsis that they tend to have a

2-3X area overhead compared to regular crossbars.

3.3.5 Variation Tolerance

Process variation introduces slower circuit components throughout a chip. This pres-

ence of slower components results in a wide distribution of operational frequencies for

different structures on the die. For instance, in a conventional CMP, the slowest structure

within each core would determine the best frequency achievable by that core. Similarly,

in the case of SW, this impact can be observed at the granularity of pipeline stages, a few

of which will be much slower than others. However, unlike a conventional CMP, SW can

selectively salvage faster pipeline stages from the grid ofresources and construct logical

pipelines that can operate at a higher frequency. This will result in an improved distribution

of core frequencies as compared to a traditional CMP with isolated cores.

The configuration methodology of SW in the presence of process variation builds upon

the algorithms discussed earlier. The key observation is that for a given frequency target

(and fixed supply voltage), pipeline stages can be marked functional or non-functional.

Once this level of abstraction is reached, the non-functional stages can treated in the same

68

manner as broken stages were earlier in this section. Given aSW chip with a wide variation

in pipeline stage frequencies, the algorithm proceeds as follows. It start with the highest

possible frequency, and marks the working stages in the grid. Standard configuration algo-

rithm is used to form logical pipelines. The frequency is nowreduced by a unit step, and

the process is repeated. This is continued until the configuration is defined for the lowest

operational frequency of the system. At this point, the number of cores functional at each

frequency point can be tabulated.

Apart from enhancing the performance, the improvement in core frequencies using

SW can also be translated into energy savings relative to a conventional CMP. The insight

here is that given a system utilization level (fraction of cores occupied) of less than one,

SW can form the fastest cores from its pool of stages and meet the frequency target at

a lower operational voltage than a CMP. Since the CMP lacks the flexibility to combine

faster stages across its cores, it will be forced to run at a higher voltage to meet the same

frequency target. This difference in voltage translates to(quadratic) dynamic power savings

and (cubic) static power savings [34]. As both systems operate at the same frequency, these

power savings map directly to energy savings.

3.3.6 System Level Issues

Wearout detection: In-field detection of wearout failures is crucial in order tomaintain

fault-free working of a SW chip. As in the case of SN (see section 4.3.2.1), SW can also

employ a continuous [16, 56] or periodic [28, 41] fault detection mechanism. For the sake

of our evaluations in this chapter, we assume the presence ofa continuous fault monitoring

system.

69

Manufacture time testing: The presence of process variation makes every SW chip

unique by introducing a fair bit of non-determinism across the die. SW’s variation tolerance

technique requires measurement of this non-determinism inorder to mitigate it. In specific,

a standard test flow is needed to determine the frequency of every pipeline stage on the

chip. The present day manufacturing tests are already equipped to measure processor core

frequencies, and can be augmented to provide frequency dataone level deeper. Further, it

is likely that testing methodologies will also adapt in future designs as process variability

increases [66].

Configuration manager: SW requires a software level configuration manager for su-

pervising the system-wide reliability and performance configuration. The inputs to this

manager are a list of working resources, the best working frequency for each resource and

the system utilization. Upon receiving this input, the configuration manager assembles the

desired number of pipelines with the fastest available stages. The application of fastest

stages saves the maximum amount of energy (as voltage can be scaled down). The config-

uration manager is re-invoked every time a failure occurs orthe workload set changes. As

the run-time of configuration algorithms is linear, its impact on system performance is very

limited.

3.4 Evaluation

3.4.1 Methodology

The evaluation methodology for SW encompasses four different components: 1) mi-

croarchitectural simulator for pipeline performance, 2) wearout and process variation mod-

70

eling, 3) overhead computation, and finally, 4) CMP throughput and lifetime Monte-Carlo

simulations.

3.4.1.1 Microarchitectural Simulation

The microarchitectural simulator for the SW evaluation wasdeveloped using the Lib-

erty Simulation Environment (LSE) [113]. Two flavors of the microarchitectural simulator

were implemented in sufficient detail to provide cycle accurate results for single thread

performance. The first simulator models a five stage pipeline, which is used as the base-

line. The second simulator models the decoupled SNS pipeline microarchitecture with all

its enhancements (see Section4.3.2.1). Table5.5 lists the parameters for the core and the

memory hierarchy used for the simulations. These parameters and the baseline microarchi-

tecture pipeline stages are modeled after the OR1200 processor [76], an open source RISC

microprocessor.

Table 3.1: Architectural parameters.

Pipeline 4-stage in-order OR1200 RISC [76]
Frequency 400 MHz
Area 1mm2

Branch predictor Global, 16-bit history, gshare predictor
BTB size - 2KB

L1 I$, D$ 4-way, 16 KB, 1 cycle hit latency
L2 $ 8-way, 64 KB (per core), 5 cycle hit latency
Memory 40 cycle hit latency

3.4.1.2 Wearout and Process Variation Modeling

The evaluation of SW involves both lifetime wearout experiments and process variation

modeling. For the wearout failures, the mean-time-to-failure (MTTF) was calculated for

71

the various stages and crossbars in the system using the empirical models found in [103].

The entire core was qualified to have a MTTF of 10 years. This isa conservative estimate

for future technologies as this value is expected to get muchlower. These wearout models

heavily depend on the module (stages and crossbar) temperatures that were generated using

HotSpot [47]. A customized floorplan was created for StageWeb to accountfor the lateral

heat transfer on the die. Finally, the calculated MTTFs are used as the mean of the Weibull

distributions for generating times to failure (TTF) for each module (stage/crossbar) in the

system. The stages are considered dead as a whole when a faultoccurs, whereas, the

crossbar failures are modeled at the crossbar-port granularity.

Process variation was modeled using VARIUS [91]. Given a chip’s floorplan, andσ/µ

for a technology process, VARIUS can be used to obtain the spread of operational frequen-

cies for all structures on the die. In our experiments, we useσ/µ of 0.25, as a representative

value for technologies beyond32nm.

3.4.1.3 Area, Power and Timing

Industry standard CAD tools with a library characterized for a 90nm process1 are used

for estimating the area, power and timing for all design blocks. A Verilog description

for the OR1200 microprocessor was obtained from [76]. All other design blocks, SNS

enhancements, and crossbar configurations were hand-codedin Verilog. The procedure

adopted for each of the ELSI overheads is summarized below:

1. Area: All blocks were synthesized using Synopsys Design Compiler. Placement and

routing was conducted using Cadence First Encounter. The area for the interconnec-

1The use of an older process technology is a limitation of our academic research setup. However, it is
not catastrophic as all overhead comparisons are relative.

72

tion links between stages and crossbars was estimated usingthe same methodology

as in [64] with intermediate wiring-pitch at 90nm taken from the ITRSroad map [53].

2. Power: The power consumption for all structures was computed usingSynopsys

Power Compiler. For the power saving experiments, we assumethat dynamic power

scales quadratically with supply voltage, and linearly with frequency [86].

3. Timing: The synthesis tool chain (used for area) was also employed tofind the

target frequency for the design. The interconnection link delay between stages and

crossbars was estimated using the intermediate wiring-delay from the ITRS road

map [53].

3.4.1.4 CMP Simulations

A thorough simulation infrastructure was developed to simulate a variable-size regular

CMP system and SW system. This infrastructure integrates all components of our evalu-

ation methodology and SW design: single thread performance, wearout modeling, inter-

weaving alternatives, configuration algorithms and crossbar models. To obtain statistically

significant results, 1000 Monte-Carlo runs were conducted for every lifetime reliability

experiment.

For lifetime reliability experiments, the stages/crossbars fail as they reach their respec-

tive time-to-failures (TTFs). The system gets reconfiguredover its lifetime whenever a

failure is introduced. The instantaneous throughput of thesystem is computed for each

new configuration using the number of logical SNSs. This way,we can obtain the chip’s

throughput over its lifetime.

73

3.4.2 StageWeb Design Space

For the latest generation Intel Core 2 processors, about60% die area is occupied by the

processing cores. With that estimate, in order to accommodate 64 OR1200 RISC cores (our

baseline in-order core) we assume a100mm2 die (a typical size for current multicore parts).

We use this die area as the basis for constructing various SW chip configurations. There

are a total of twelve SW configurations that we evaluate, distinguished by their choice

of interweaving candidates (single, single with front-back, overlap, overlap with front-

back) and the crossbars (no spare, with spare, fault-tolerant). Table3.2 shows the twelve

configurations that form the SW design space. The cap on the processing area guarantees

an area-neutral comparison in our results. In the base CMP case, the entire processing

area can be devoted to the cores, giving it a full 64 cores. However, depending upon the

interconnection complexity, SW configurations can have a varying number of cores.

The interconnection (crossbar + link) delay acts as a limiting factor while connecting a

single crossbar to a group of slices. As per our timing analysis, the maximum number of

slices that can be connected using a single crossbar is 6. This is for the 90nm technology

node and a single-cycle crossbar. A two-cycle crossbar (that is used as the Front-Back

crossbar) can connect up to 12 slices together. The overlapping crossbar also uses a single-

Table 3.2: Design space for SW. The rows span the different interconnection types (F/B de-
notes front-back), and the columns span the crossbar type: crossbar w/o (without) sp (spares),
crossbar w/ sp and fault-tolerant (FT) crossbar. Each cell in the table mentions the number of
pipeline slices, in each SW configuration, given the overallchip area budget (100mm2).

Interweaving Xbar (w/o sp) Xbar (w/ sp) FT Xbar
Single Xbar 56 55 54
Single + F/B Xbar 55 53 52
Overlap Xbar 55 53 52
Overlap + F/B Xbar 54 51 50

74

0.8

1

1.2

1.4

1.6

1.8

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

N
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

0.8

1

1.2

1.4

1.6

1.8

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

N
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

Figure 3.13: Cumulative work performed by the twelve SW configuration normalized to a
CMP system. The cumulative work improves with the richer choices for interweaving, as well
as with the more resilient crossbars. In the best case, a SW system can achieve 70% more
cumulative work relative to the CMP system.

cycle crossbar, so it can give an illusion of connecting3
2
n slices, which is 9 in this case.

3.4.3 Cumulative Work

The lifetime reliability experiments, as discussed in the evaluation methodology, track

the system throughput over its lifetime. The cumulative work, used in this section, is

defined as the total work a system can accomplish during its entire lifetime, while operating

at its peak throughput. In simpler terms, one can think of this as the total number of

instructions committed by a CMP during its lifetime. This metric is same as the one used

in [43]. All results shown in this section are for 1000 iteration Monte-Carlo simulations.

Figure3.13shows the normalized cumulative work results for all twelveSW configura-

tions. The cumulative work for all configurations is normalized to what is achievable using

a 64 core traditional CMP. The results categorically improve with increasing interweaving

richness, and better crossbar reliability. The biggest gains are achieved when transitioning

from the regular crossbar to the fault-tolerant crossbar. This is due to the ability of the fault-

tolerant crossbar to effectively use its internal fine-grained cross-point redundancy [115],

75

stageweb/plots/cwork_regular.eps

while maintaining fault-free performance.

Between the four interweaving candidates, the richer interconnection options perform

consistently better. This is independent from the choice made for the crossbars. The over-

lapping crossbar configuration tends to do almost as well as the overlapping with front-back

crossbars. When using the fault-tolerant crossbars, SW system can deliver up to 70% more

cumulative work over a regular CMP.

The same set of experiments (as above) were repeated in an area-neutral fashion for

the twelve SW configurations (using the data from Table3.2). Figure3.14shows the cu-

mulative work results for the same. The trend of improving benefits while transitioning

to a more reliable crossbar remains true here as well. However, the choice of the best in-

terweaving candidate is not as obvious as before. Since the area of each interconnection

alternative is factored-in, the choice to use a richer interconnect has to be made at the cost

of losing computational resources (pipelines). For instance, the (fault-tolerant) overlapping

crossbar configuration (column 11) fares better than the (fault-tolerant) overlapping with

front-back crossbar configuration (column 12). The best result in this plot (fault-tolerant

overlapping crossbar) achieves 40% more cumulative work than the baseline CMP.

3.4.4 Throughput Behavior

The cumulative work done by the system is a useful metric, butis insufficient in show-

ing the quality of system’s behavior during its lifetime. For this purpose, we conducted an

experiment to track the system throughput over its lifetime(Figure3.15), as wearout fail-

ures occur. Three systems configurations are compared head-to-head: SW’s best configura-

tion fault-tolerant overlapping crossbars, area-neutral version offault-tolerant overlapping

76

1

1.1

1.2

1.3

1.4

1.5

ed
 C

u
m

u
la

ti
v

e
W

o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant XbarN
o
rm

a
li

ze
d

 C
u

m
u

la
ti

v
e

W
o
rk

Single Xbar Single + F/B Xbar Overlap Xbar Overlap + F/B Xbar

Figure 3.14: Cumulative work performed by the twelve SW configuration normalized to a
CMP system (area-neutral study). The cumulative work improves with more resilient crossbar
choice. However, richer interweaving does not map directlyto better results. For instance,
front-back crossbars add a lot of area overhead without delivering proportional amount of
reliability. In the best case, a SW system achieves 40% more cumulative work relative to the
CMP system.

10

20

30

40

50

60

k
 T

h
r
o
u

g
h

p
u

t
(I

P
C

)

CMP StageWeb StageWeb (area neutral)

0

10

20

30

40

50

60

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

P
ea

k
 T

h
r
o
u

g
h

p
u

t
(I

P
C

)

Time (in years)

CMP StageWeb StageWeb (area neutral)

Figure 3.15: This chart shows the throughput over the lifetime for the best SW configurations
and the baseline CMP. The throughput for the SW system degrades much more gradually than
an equally provisioned CMP system. In the best case (around the 8 year mark), SW delivers
4X throughput of the CMP.

crossbars, and the baseline CMP. As evident from Figure3.15, the throughput for the SW

system exhibits a very graceful degradation with the progression of time. At the beginning

of life, the CMP system has an edge over the SW system. This is due to the higher number

of pipeline resources a CMP system initially possesses. However, the SW catches up soon

enough into the lifetime, and maintains its advantage for the remaining lifetime. The life-

time range, shown here as 24 years, is expected to shrink in future technology generations,

making the case for SW-like systems even stronger.

77

stageweb/plots/cwork_neutral.eps
stageweb/plots/tput.eps

20

Traditional CMP StageWeb CMP

15

20

f
co

re
s

Traditional CMP StageWeb CMP

5

10

15

20

u
m

b
er

 o
f

co
re

s

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1
N

u
m

b
er

 o
f

co
re

s

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1
N

u
m

b
er

 o
f

co
re

s

Frequency (normalized)

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1
N

u
m

b
er

 o
f

co
re

s

Frequency (normalized)

Traditional CMP StageWeb CMP

0

5

10

15

20

0.73 0.76 0.79 0.82 0.85 0.88 0.91 0.94 0.97 1
N

u
m

b
er

 o
f

co
re

s

Frequency (normalized)

Traditional CMP StageWeb CMP

Figure 3.16: The distribution of core frequencies in 64-core CMP and StageWeb chips. Fac-
ing the same level of process variation, SW enables a noticeable improvement in the frequency
distribution.

3.4.5 Variation Mitigation

In addition to wearout tolerance, the interconnection flexibility of SW can also be lever-

aged to mitigate process variation. As discussed in Section3.4.5, the basic idea is to group

together faster pipeline stages to form pipelines that can run at higher frequencies. This

way, the slower resources are isolated, reducing their overall performance impact. Fig-

ure 3.16shows the distribution of core frequencies for a regular CMPsystem and a SW

CMP with overlapping configuration. In this experiment, both systems contain 64 cores

each, and process variation is injected withσ/µ = 0.25. The results confirm that the distri-

bution of core frequencies in a SW CMP are considerably better than that of a conventional

CMP. The mean increase in the core frequencies is7%. It is noteworthy that the slowest

cores in both systems operate at the same frequency (0.73). This is true by construction,

since even in a SW CMP, some logical pipeline has to absorb theslowest stage and operate

at that frequency.

78

stageweb/plots/pvsweb.eps

3.4.6 Power Saving

The better distribution of frequencies, as discussed in Section 3.4.5, can also trans-

late into power/energy savings. For a given system utilization, SW can scale down the

supply voltage (reducing power quadratically) and still provide the same level of perfor-

mance as a baseline CMP. Note that a single global supply voltage is assumed in all our

experiments. This is a commonly accepted practice as multiple supply sources introduce

significant noise. Figure3.17shows the power savings obtained at different levels of sys-

tem utilization (fraction of cores occupied) when using SW.Each bar is normalized to the

CMP power at that utilization level. The results range from 16% power saving at 12.5%

utilization to a small loss in power at 100% utilization. When the utilization is low, more

opportunity exists for SW to gather faster stages, and switch off the slowest ones. But, at

full utilization, everything (including the slowest stage) has to be switched on, requiring the

global supply voltage to be scaled back to its original level. Most commercial servers have

time-varying utilization [6] (segments of high and low utilization), and can be expectedto

create many opportunities where SW saves power. Since this power is saved without any

accompanying loss in performance (frequency), it translates directly to energy savings.

3.4.7 Yield Analysis

Manufacturing yield is a indispensable metric when evaluating a defect-tolerant sys-

tem. A principal objective of the SW architecture was to develop a system that can meet

the challenging goal of high defect density scenarios. To verify this claim, we evaluated

the yield for all twelve SW configurations. This study was also kept area-neutral. One

79

80

85

90

95

100

105

rm
a

li
ze

d
 P

o
w

er

SW pipeline stage power SW crossbar power

70

75

80

85

90

95

100

105

12.5 25 50 75 100

N
o
rm

a
li

ze
d

 P
o
w

er

% system utilization (number of threads / number of cores)

SW pipeline stage power SW crossbar power

Figure 3.17: Power saving using SW relative to a CMP at different system utilization levels.
This saving is made possible due to SW’s ability to deliver same performance as a CMP at a
lower voltage, in the presence of process variation. The plot also shows the break up between
pipeline stage power and crossbar power.

thousand chips were generated, and chips with at least 100 working cores were rated as

good. Figure3.18shows the results for three different defect densities. Fordefect density

values lower than 0.2 defects/mm2, all configuration yielded 100%. It is noteworthy that

unlike lifetime wearout experiments, the crossbar type does not have a major influence on

the results. Fault-tolerant crossbar area is significantlylarger than the regular crossbars,

increasing the number of defects that will manifest in them (since more area translates to

more defects). This negates the benefits it can provide over the regular crossbars that are

much smaller and face fewer defects. In contrast, wearout failures occur based on the usage

of structures, and not their area. Thus, the fault-tolerantcrossbar fares better in lifetime ex-

periments. As far as the interweaving alternatives are concerned, a richer interconnection

goes noticeably farther in delivering better yields, with overlapping and front-back crossbar

together giving the best result.

80

stageweb/plots/pvpower.eps

Figure 3.18: Yield obtained for all the twelve SW configurations and the CMP at three defect
densities. The advantage of the SW becomes more prominent asthe defect density rises.

3.5 Related Work

StageWeb, the architecture proposed in this chapter, leverages the concept of stage-

level reconfiguration introduced by StageNet (ChapterII), and extends it to build many-

core systems resilient to wearout failures as well as process variation. To the best of our

knowledge, SW is the first work to study concepts such as interconnection scalability and

crossbar reliability at the sub-core granularity.

The prior research efforts on tolerating process variationhave mostly relied on us-

ing fine-grained VLSI techniques such as adaptive body biasing / adaptive supply volt-

age [110], voltage interpolation [67], and frequency tuning. Although effective, all such

solutions can have high overheads, and their feasibility has not been established in mass

productions. SW stays clear of any such dependence on circuit techniques, and mitigates

process variation with a fixed global supply voltage and frequency.

Please refer to Section2.6for a summary of past work in reliable architecture design.

81

stageweb/plots/yield_defect.ps

3.6 Summary

With the looming reliability challenge in the future technology generations, mitigating

process variation and tolerating in-field silicon defects will become necessities in future

computing systems. In this chapter we proposed a scalable alternative to the tiled CMP

design, named StageWeb (SW). SW fades out the inter-core boundaries and applies a scal-

able interconnection between all the pipeline stages of theCMP. This allows it to salvage

healthy stages from different parts of the chip to create working pipelines. In our proposal,

the flexibility of SW is further enhanced by exploring a rangeof interconnection alterna-

tives and the corresponding configuration algorithms. In addition to tolerating failures, the

flexibility of SW is also used to create more power-efficient pipelines, by assembling faster

stages and scaling down the supply voltage. The best interconnection configuration for

the SW architecture was shown to achieve 70% more cumulativework over a regular CMP

containing equal number of cores. Even in an area-neutral study, SW system delivered 40%

more cumulative work than a regular CMP. And lastly, in low system utilization phases, its

variation mitigation capabilities enable SW to achieve up to 16% energy savings.

In summary, SW provides the basis for constructing dependable and efficient CMPs by

adding new dimensions of adaptability and configurability.

82

CHAPTER IV

Adaptive Online Testing for Efficient Hard Fault Detection

4.1 Introduction

The challenge of tolerating such permanent hardware faults(i.e., silicon defects) en-

countered in-field can be divided into three tasks 1) defect detection and diagnosis, 2)

recovery to a correct system state after a failure and 3) reconfiguration/repair mechanism

to prepare the system for future computation. The focus of this chapter is on improv-

ing the efficiency of the first task: defect detection and diagnosis. Recovery techniques

(second task) typically employ a checkpointing mechanism to rollback the system after a

failure. These checkpoints are created periodically so that in the event of a failure, not

much useful work is lost. SafetyNet [99] and ReVive [84] are two good examples of CMP

checkpointing solutions. Finally, the solutions for the repair (third task) typically lever-

age hardware redundancy to replace broken component(s) or in some cases, merely isolate

them. The Replacement/isolation techniques exist for a range of granularities: cores [2],

pipeline stages [43] (more discussion in ChaptersII andIII) and modules within a proces-

sor [95].

83

Defect detection and diagnosis mechanisms can be broadly divided into two broad cat-

egories: 1)continuous: those that constantly monitor the logic blocks for errors and 2)

periodic: those that periodically check the processor’s logic. A fewexamples of thecon-

tinuousdetection mechanisms are dual modular redundancy (DMR) andDIVA [10]. The

common idea between all these solutions is to have some sort of redundant computation

(in time or in space) to validate the execution. However, allof them impose significant

overheads for area, latency, power and energy. Another means for continuous detection is

through sensors that can estimate the amount of device levelwearout. Although a variety

of low level sensors have been proposed [1, 56, 16], they are limited in their capability to

accurately predict/detect a failure.

In contrast,periodicdetection does not require redundant execution and can givesound

guarantees on the fault coverage. These techniques periodically test the system for defects

and in case of a failure, they rely on checkpointing and recovery mechanisms. Figure4.1

shows snapshot of a system where the tests are conducted at the end of every checkpoint

interval. Some of the recent proposals of periodic detection mechanisms are ACE anal-

ysis [28] and VAST [48]. Unfortunately, in these proposals, the periodic testingtime

constitutes as much as 5%-30% of the total system time [28]. This sort of overhead is

unacceptable for a high end server that typically apply (virtual machine) consolidation to

maintain 100% utilization levels. Even in the case of embedded systems, a great deal of

time and energy can be saved by reducing the overhead of periodic testing.

In this work, we propose an adaptive testing framework (ATF)that significantly reduces

the overhead of periodic testing in a CMP system. The key insight in ATF is to adapt the

testing process to the state of the underlying hardware. Forinstance, a healthy processor

84

testwork testwork

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

create chkpt 1 release chkpt 1
create chkpt 2

release chkpt 2
create chkpt 3

Core 1

Core 2

Core 3

Core 4

Figure 4.1: Periodic testing for fault detection. The vertical stripesrepresent the checkpoint
start/release and the horizontal lines show the progression of threads. At the end of every
checkpoint interval, testing is conducted for all processing cores, this is shown as solid hori-
zontal bars.

within a CMP can be lightly tested, whereas a weaker counterpart needs thorough testing.

In specific, this adaptivity is applicable in three different scenarios:

1. The health of a system varies over its lifetime due to device wearout. Thus, all

processors are relatively healthy in the beginning and thendeteriorate over time.

2. Manufacture time process variation can form components with differing health lev-

els.

3. Different amounts of stress are experienced by the processors depending up on the

workloads assigned.

In all the aforementioned cases, the proposed ATF can deliver significant savings on the

periodic testing effort while providing the same level of fault coverage. Essentially, our

system assesses the health of different processors in a CMP,and appropriately conducts

tests. To enable the assessment of processor health, we employ a population of low level

sensors [56, 57]. These sensors can predict the mean time to failure (MTTF) with about

25% error for less than a 3% area overhead. We further extend the ATF for application to the

85

adaptivetest/figs/chkpt_normal.eps

StageNet (SN) CMP fabric [43], a highly flexible computing substrate. SN allows arbitrary

grouping of stage-level resources from different pipelines to form logical pipelines. We

exploit this feature of SN to group together weaker resources from different pipelines and

conduct concurrent testing.

The main contributions of this work can be summarized as follows:

1. The proposed ATF introduces the use of low level sensors toguide the online testing

process.

2. The ATF achieves a significant reduction in the overhead ofperiodic testing by adap-

tively matching the testing process to the underlying hardware’s health.

3. An extension of the ATF to StageNet, a flexible CMP fabric, for achieving larger

benefits.

4. Lifetime reliability experiments to measure the fraction of time devoted to periodic

testing. This setup models process variation, sensor error, device wearout, and testing

overhead.

4.2 Background

Here we provide a brief overview of the latest techniques forassessing system health

and conducting online tests. Both of these form integral part of the adaptive testing frame-

work proposed later in Section4.3.

86

0 1 2 3 4 5 6 7

x 10
5

0

10

20

30

40

50

60

70

80

90

100

Number of Instructions

F
au

lt
C

ov
er

ag
e

Figure 4.2: Fault coverage achieved (in percentage) for varying numberof software based
self test instructions.

4.2.1 Wearout Sensors

Wearout monitoring for on-chip devices is a challenging problem and has been an active

area of research. Circuit-level designs have been proposedfor in-situ sensors that detect

the progress of various wearout mechanisms with a reasonable accuracy [56, 72]. A trade-

off exists between their accuracy and the area overhead fromusing them. These sensors

are usually designed with area efficiency as a primary designcriteria, allowing a large

number of them to be deployed throughout the chip for monitoring overall system health.

A different approach to sensor design has been to examine thehealth of on-chip resources

at a coarser granularity. Research has involved simple temperature sensors, two dozen

on the POWER6 [39], to more complex designs such as the wearout detection unit[16].

These sensors can effectively approximate the useful life remaining in a microarchitectural

module.

87

adaptivetest/plots/coverage_plot.eps

4.2.2 Online Testing

The goal of online testing is to detect fault effects, or errors, while the system is in-field.

A number of test methodologies exist for online testing, thethree important categories

being: 1) built-in self test (BIST) based, 2) functional test, and 3) software based self-test

(SBST). While BIST addresses the testing problem comprehensively by providing a high

fault coverage, it introduces significant hardware overheads [32]. For low-cost embedded

systems, such an overhead can not be justified. On the other hand, functional tests use a

software program to conduct the testing. The challenge there is the generation of high fault

coverage program instructions and automating the process for the same. Most functional

testing solutions achieve low fault coverage because they do not consider the RTL structure

and are not based on a gate-level fault model (like s-a-fault) [13].

SBST links the instruction-level tests with low-level fault models to achieve good fault

coverage while introducing no hardware overhead. SBST starts off by generating module

specific deterministic tests patterns and then uses processor instructions as a vehicle for

delivering the patterns to module inputs and collecting their responses. The processor

simply executes the test program at-speed from the on-chip memory. The test program

length is chiefly determined by the module/structure that needs the maximum number of

tests. The advantages of SBST are its low cost, ease of application and extensibility. A

variety of proposals have been made for SBST [22, 78, 69] with a considerable success.

The latest being [69] that reports up to 97.3% fault coverage. The test generation algorithms

(for SBST and functional testing) can comfortably trade-off the test size with the amount

of fault coverage. Figure4.2illustrates this trade-off between the amount of fault coverage

88

and the number of software test instructions executed for a ARM9-v4 compatible RISC

processor using data from [69]. As seen in the figure, the last few percentages of the

coverage require the maximum testing effort (number of testinstructions).

4.3 Adaptive Online Testing

Periodic test based fault detection approaches suffer fromthe constant overhead of the

full test application for all available processing components. In view of the increasing

process variation, and the differing amounts of component wearout over the lifetime, an

effective optimization is to match the testing thoroughness with the health of a component.

We propose an adaptive online testing methodology that builds upon this key insight. Our

technique leverages low level sensors to assess the probability of failure in various system

components, and appropriately decides the quality of testsapplied. The primary benefits

from this strategy are the savings in the test time and energy. In addition to the traditional

CMP, we extend this adaptive testing philosophy to StageNet(SN) [43], a highly flexible

CMP fabric. The advantages of the proposed technique are further magnified while using

the SN architecture. The rest of this section provides the details of the adaptive testing

framework and discusses its application to a traditional CMP and the SN architecture.

4.3.1 Adaptive Test Framework

A conceptual illustration of the adaptive test framework (ATF) is shown in the Fig-

ure4.3. The baseline CMP system is enhanced with the capabilities to assess component

health, apply suitable tests, recover from faults (if any) using a checkpointing mecha-

89

Figure 4.3: Adaptive testing framework. A generic CMP system is shown along with the en-
hancements needed to enable adaptive testing. Health assessment is responsible for gathering
sensor readings and producing a fault probability array (P). This array is taken up by the
test allocator, along with the target coverage, to generateappropriate tests (T) for different
processing cores.

nism [84], and, finally, isolate the faulty core (if and when found). At the end of every

periodic checkpoint interval, a health assessment is conducted for all the components in

the system, and the corresponding probabilities of failure(P) are determined. This array is

in turn used by the test allocator to generate suitable tests(T) for all components. In the

early lifetime, when most of the components are healthy (have low probability of failure),

a fewer number of tests are required to make sure the system operates correctly. As the

components grow older, their failure probabilities are expected to rise, resulting in a need

for more thorough tests. Later in this section, we use this intuitive argument to derive a

fault coverage metric (C), that measures the probability of the system to be in asafe state.

Given a system-wide fault coverage targetC, the ATF decides the optimal number of tests

required at a per component level (core in this case). This way, testing effort is reduced

for the healthy components in the system. The functioning ofthe important blocks in the

Figure4.3is detailed below:

90

adaptivetest/figs/system.eps

Health Assessment:The lack of knowledge of the underlying component health is the

primary reason for applying full tests throughout the component’s lifetime. We alleviate

this problem by deploying low level sensors that can measuredegradation at the transistor

level. The primary requirement for such a sensor is to accurately measure the device level

characteristics taking into account the process variationand the wearout accumulated over

its lifetime. Furthermore, a single sensor won’t be enough to provide statistically significant

results for an entire core health, and therefore 10-100s would need to be deployed. In such

a scenario, low area overhead becomes a favorable feature for such sensors. In this work,

for the purpose of illustration, we use the oxide breakdown sensors proposed by E. Karl

et al. [56, 57]. These are close to ideal sensors in behavior and have an extremely small

area footprint. The results in [57] demonstrate that 500 such sensors are enough to estimate

the MTTF (mean time to failure) for an entire chip with less than 10% error. Note that

the proposed methodology is not tied to any one sensor type, and a variety of other sensor

designs [1, 16] are equally applicable to the methodology proposed here. The ongoing

research on NBTI sensors and IDDQ based wearout sensors can also be easily integrated

within the ATF. Nevertheless, our choice here was directed by the available data on the

accuracy of the oxide breakdown sensor [57].

All cores in our system are enhanced with these sensors. The data from these sensors is

gathered and processed in software to generate the MTTF [57, 55] with an error based on

the number of sensors. Using the current mean sensor reading, the projected MTTF, and

the error in MTTF, we calculate the probability of failure for a core. Note that a higher

error in the MTTF estimation translates into a more conservative value of the probability

of failure. The discussion of this derivation has been left out in the interest of space. This

91

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

create chkpt 1 create chkpt 2 create chkpt 3

release chkpt 1 release chkpt 2release chkpt 0

variable test
times

Core 1

Core 2

Core 3

Core 4

(a) No fault scenario

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

create chkpt 1 create chkpt 2 create chkpt 3

test failedrelease chkpt 1release chkpt 0

rollback

Core 1

Core 2

Core 3

Core 4

(b) Fault occurrence, test failure and rollback sce-
nario

Figure 4.4: Checkpointing and adaptive testing for efficient fault detection. Notice that 1) the
tests are applied after a new checkpoint is started, and 2) old checkpoint is released once the
tests finish successfully.

process is repeated for all the cores in the system to generate the probability of failure array

(P).

Test Allocator: The task of the test allocator is to prepare suitable test programs for

all the cores in the system. At every checkpoint interval, the test allocator is provided with

two inputs: 1) a coverage targetC (ranges from 0 to 1), and 2) a probability of failure

arrayP. Using these two values, it determines the testfault coverage(FC) needed by each

individual core, such that the coverage targetC is always met for that core. Here, the term

fault coverageimplies the fraction of hardware faults covered by test patterns.

92

adaptivetest/figs/chkpt_adaptest.eps
adaptivetest/figs/chkpt_adaptest_2.eps

For a given corei, and a checkpoint intervalt, if the:

probability of failure = Pi(t), and

fault coverage = FCi(t), then

1− C = Pi(t)[1− FCi(t)]

In other words, the probability of the periodic test not catching a fault1 − C in corei

is the product of fault occurringPi(t) and not getting covered1 − FCi(t). From this, we

can solve for the required test fault coverage:

FCi(t) = 1−
1− C

Pi(t)
, placing bounds on coverage :

FCi(t) = Min

{

best coverage,Max

{

0, 1−
1− C

Pi(t)

}}

Thus, given a coverage targetC, a higher probability of failurePi(t) necessitates an

increase in the fault coverage and vice versa. The final equation above also adds bounds to

the possible values of the fault coverage,0 being the minimum andbest coverage being

the best possible coverage using the test generation technique employed. In this work,

we propose the use of software based self test (SBST) to conduct the online testing [69].

The advantage of the software based testing is two fold: 1) nohardware overhead, and 2)

the fault coverage level is flexible. The proposed methodology in [69] allows generation

of test programs to meet different levels of fault coverage.The number of software test

instructions are thus tuned on a per core basis to match the fault coverage desired for the

93

same. Figure4.2 shows the (single stuck at) fault coverage achievable for anARM9-v4

compatible RISC core for a range of number of software test instructions. A full set of test

instructions is stored in the main memory. The test allocator uses this set of instructions

to prepare an array of test programs (T) for all the cores. As in the case of sensors, our

proposed methodology is not tied to any specific online testing technique.

Checkpoint and Recovery: In the event of a failure, a recovery system is needed to

get the system back into an operational state and isolate thebroken component(s). This

can be achieved by deploying a CMP checkpoint solution. In this work, we use the ReVive

checkpoint system [84]. Revive has a very minimal hardware overhead and maintainsthe

checkpoint in the main memory. The checkpoint interval length can be tuned based on the

availability of storage in the targeted system.

Figure4.4 shows two scenarios of the ATF in action. The first scenario, illustrated in

the Figure4.4(a), is for a case with no failures. The horizontal lines showthe progres-

sion of thread execution, interspersed by the regular checkpoint creations (shaded vertical

stripes). The testing phases are shown by solid horizontal bars following each checkpoint

creation. The test times vary from core to core, depicting the adaptive nature of the online

tests. In this example core 1 runs the longest test (worst health), and core 3 the shortest

(best health). The previous checkpoint is released once thetests for all the cores complete

successfully. Notice that unlike the traditional practiceof testing and then forming a check-

point (Figure4.1), we do the reverse. This design choice is a result of variable test times

of the cores in our system. In order to run variable lengths tests on all the cores before a

checkpoint, they have to be started at different times. Thisadds to the complexity of health

assessment, test allocation and test scheduling. Thus, in ATF, all tests start concurrently af-

94

ter a new checkpoint is created. Over time, as the cores finishtheir tests, they are released

by the ATF and are made available for job scheduling. However, by creating an additional

checkpoint just before running the tests, ATF necessitatestwo outstanding checkpoints to

co-exist while the tests run on the cores. Fortunately, mostcheckpoint systems, including

ReVive, maintain checkpoints as a log of system-wide updates. As the testing phase is

very short in length, the additional updates saved in the logdue to the second checkpoint

are very few, leading to a negligible memory burden. The second scenario, illustrated in

the Figure4.4(b), shows a case with a failure in core 1 while running a job. The failure is

detected during the tests following the creation of the third checkpoint, and system is rolled

back to an operational state using the second checkpoint.

System Coverage (SC) Metric:For a system that is periodically tested for faults, there

are three distinct categories of events:

1. No failure occurs in the last completed interval

2. Failure occurs and is detected by the test program

3. Failure occurs and isnot covered by the test program

The first two events maintain the system in thesafe state, and represent the scenarios where

no fault escapes the test. However, the third event is an unwelcome scenario where a

fault occurs without being caught. Let us say we have a multi-core chip withn cores.

As discussed above, probability of a corei missing a fault in a checkpoint intervalt is

Pi(t)[1 − FCi(t)]. In other words, the fault occurs and the test is not able to expose it.

Continuing along the same lines, the average probability ofmissing a fault in the entiren

95

core system, within a given checkpoint intervalt:

Probability of missing fault =
1

n

n
∑

i=1

Pi(t)[1− FCi(t)]

If we sum this over the entire system lifetime, the average probability for the system to

miss a fault can be written as:

1

nT

T
∑

t=1

n
∑

i=1

Pi(t)[1− FCi(t)]

Therefore, the average probability (over the lifetime) of the systemnot missing any

faults, i.e. the probability of system being in asafe stateis:

SC = 1−
1

nT

T
∑

t=1

n
∑

i=1

Pi(t)[1− FCi(t)]

We refer toSC as the probability of the system being in a safe state. This can also

be understood as the effective fault coverage of the system,since it represents the average

probability of not missing a fault. We useSC as the metric to specify the target fault

coverage in our evaluations.

ATF Summary: The ATF primarily benefits in terms of the test application efficiency.

In the early lifetime, when the processing cores are healthy, a lot fewer tests suffice for

achieving a given fault coverage targetSC. With time, and device wearout, this testing

overhead gradually rises. Overall, the application of fewer tests has multiple advantages:

96

1) more time available for actual job execution, 2) power/energy saving, and 3) low fault

detection cost visible to the end user. The intended application of the ATF is to detect

permanent faults. Another possible application is its use in systems that have variable

reliability modes. For instance, a server can tune the coverage targetSC of the system

based on the job it is running (higherSC for a financial transaction, and lowerSC for a

regular web page request).

The discussion of the ATF so far has been in the context of a traditional CMP. The

key observation that helps the adaptive online testing is the variation in the health of CMP

cores (spatially and temporally). The following subsection applies an extension of this to

the StageNet CMP fabric, a highly flexible computing substrate.

4.3.2 Adaptive Testing for StageNet

This section introduces the StageNet (SN) fabric [43], an architectural concept that de-

couples stages of a pipeline for the purpose of fault tolerance. The real strength of SN

fabric is in its ability to isolate broken stages within pipelines. Nevertheless, its flexibility

can also assist in forming cores with an even greater variation in their health, thereby mag-

nifying the benefits of the adaptive online testing. The restof this subsection is broken into

two parts, 1) introduction to the SN fabric and 2) application of adaptive testing to the SN.

4.3.2.1 StageNet CMP Fabric

The SN design is a highly reconfigurable and adaptable multi-core computing substrate.

It is designed as a network of pipeline stages, rather than isolated cores (Figure4.5). A

logical core in the SN architecture is referred to as a StageNetSlice (SNS). It is formed

97

C
on

fig
ur

at
io

n
M

an
ag

er

Pipeline 3

Pipeline 2

Pipeline 1

Pipeline 4

Issue ExecuteDecode

Fetch

Fetch

Decode

Decode

Decode

Issue

Issue

Issue

Execute

Execute

Execute

Fetch

Fetch

Figure 4.5: StageNet fabric with four in-order pipelines woven together using 64-bit full
crossbar interconnects. The interconnection configuration is managed by the configuration
manager. Within StageNet, logical pipelines, can be constructed by joining any set of unique
pipeline stages.

by grouping together at lease one pipeline stage of each type. A SNS can easily isolate

failures by adaptively routing around faulty stages. In theevent of any stage failure, the

SN architecture can initiate recovery by combining live stages from different slices, i.e.

salvaging healthy modules to form logical SNSs. We refer to this asstage borrowing. In

addition to this, if the underlying stage design permits, stages can be time-multiplexed by

two distinct SNSs. For instance, a pair of SNSs, even if one ofthem loses itsissuestage, can

still run separate threads while sharing the remainingissuestage. We refer to this asstage

sharing. Thus, a SN system possesses natural redundancy (through borrowing and sharing

pipeline stages) and is, all else being equal, capable of maintaining higher throughput over

the duration of a system’s life compared to a conventional multi-core design.

The SN architecture consists of three prominent components:

a) StageNetSlice (SNS):The SNS is a basic building block for the SN architecture. It

consists of a decoupled pipeline microarchitecture that allows convenient reconfiguration at

the granularity of stages. The decoupling of stages makes the data forwarding and control

98

adaptivetest/figs/stage-net-4.eps

handling infeasible. Furthermore, the introduction of switches into the heart of a processor

pipeline leads to significantly worse performance (4X slowdown over the baseline) due

to high communication latencies between the stages. Fortunately, each of these problems

can be solved with a few well placed microarchitectural additions (see [43]). With the

application of the following optimizations, the performance of the SNS is within 11% of

the baseline in-order pipeline.

- Stream Identification:Eliminates control hazard.

- Scoreboard:Tracks data hazards.

- Bypass Cache:Emulates data forwarding.

- Macro Operations:Amortizes transfer time of the interconnection network.

b) Interconnection Switch:The role of the switch is to direct the incoming instruction

bundle to the correct destination stage using a routing table. The crossbar switches allows

complete flexibility for a pipeline stage at depthN to communicate with any stage at depth

N+1.

c) Configuration Manager:Given a pool of stage resources, the configuration manager

divides them into a globally optimal set of logical SNSs.

The lifetime reliability results for SN demonstrated nearly 50% improvement in the

cumulative work compared to a traditional CMP [43]. Furthermore, the high resiliency of

the SN fabric can be leveraged to combat process variation and manufacture time defects,

in addition to the wearout failures.

99

4.3.2.2 Adaptive Testing

At any point in the lifetime, because of the manufacture timeprocess variation and

the device wearout, different pipeline stages within the SNfabric would exhibit different

amounts of degradation. A snapshot of the SN fabric in Figure4.6 shows the varying de-

grees of degradation between pipeline stages of the system.For the sake of illustration,

four health levels are shown from lightest shade (best health) to the darkest shade (worst

health). Let us say that the health assessments (that provide probability of failure) map to

levels 1-4 of test thoroughness (test fault coverage). In the case of a traditional CMP, the

ATF decides the test thoroughness on the basis of weakest component in a core/pipeline.

For instance, even if only one stage within a pipeline is badly worn out, ATF for a tra-

ditional CMP assigns a thorough test program to that pipeline. Going by this principle,

pipeline 1 would apply level 2 test, pipeline 2 - level 3 test,and pipelines 3,4 - level 4 tests.

In contrast, the SN can make the testing more efficient by grouping together stronger com-

ponents separately from weaker components. The bold lines in the figure show the pipeline

stages that are combined to formed logical SNSs. First logical SNS (P1) would need to

apply level 1 test, P2 - level 2, P3 - level 3 and P4 - level 4. Thus, SN achieves a reasonable

amount of test reduction over a traditional CMP.

In order to separate out the stronger pipeline resources from the weaker ones, we sort

stages of each type on the basis of their health. For instance, in Figure4.6, fetchstages

are already sorted based on their health (from the top to the bottom pipeline). The stages

with equal health ranks are connected to form logical pipelines. These health rankings of

the stages can vary over the lifetime depending up on the stress experienced by different

100

Health Spectrum

Probability

P4

P3

P2

P1

Failure P4<P3<P2<P1

Fetch

Fetch

Fetch

Fetch

Decode

Decode

Decode

Decode

Issue

Issue

Issue

Issue

Execute

Execute

Execute

Execute

Figure 4.6: The shading intensity of stages represents their deterioration. Thus, a darker
stage has a higher failure probability and vice-versa. SN flexibility allows connecting stages
with similar health, forming logical pipelines.

stages in the system. Fortunately, the flexibility in the SN system allows it to dynamically

segregate stronger and weaker components at will (after every checkpoint interval).

4.4 Evaluation

4.4.1 Methodology

For evaluating the potential of the proposed approach in reducing the testing overhead,

we conduct lifetime reliability experiments. This is required in order to measure the cu-

mulative reduction in the amount of test instructions over the system’s lifetime. A CMP

is modeled consisting of 16 ARM9-v4 compatible RISC processors. The SN CMP is con-

figured as four group of 4-pipeline wide SN blocks. The operating frequency was set to

1GHz at 130nm IBM process. The systematic and random processvariations were mod-

eled using VARIUS [91]. Oxide breakdown (OBD) was used as the representative wearout

mechanism with degradation equations from [102, 55]. This choice was motivated by the

101

adaptivetest/figs/stage-net-adaptest.eps

 0

 0.2

 0.4

 0.6

 0.8

 1

0.05
0.15

0.25
0.35

0.45

 0

 10

 20

 30

 40

 50

N
or

m
al

iz
ed

 N
um

be
r

of
 T

es
t I

ns
tr

uc
tio

ns

A
re

a
O

ve
rh

ea
d

of
 S

en
so

rs

Sensor Error Value

Adaptive-CMP Adaptive-SN Sensor Area

Figure 4.7: Number of test instructions for the adaptive online testingin CMP and SN with
varying amount of sensor error. The number of test instructions are normalized to a regular
CMP with fixed periodic testing. The plot also shows the sensor area overhead used by the
proposed approach for health assessment. The coverage target (SC) is fixed at 97.3%.

presence of accuracy data for the low level OBD sensors [56]. A variable number of these

OBD sensors were deployed within the cores for the health assessment.

The lifetime experiments are conducted as a series of interval simulations. Each in-

terval simulation updates the sensor readings, and allocates the appropriate size of tests

to the cores based on their probabilities of failure (Pi). For a given fault coverage (FCi)

(as determined by the test allocator), the number of test instructions executed is extracted

from the data plotted in Figure4.2. The maximum achievable fault coverage for testing is

97.3% and is bounded by the SBST scheme that we employ [69]. The presented results

use the system fault coverage metricSC as derived in the Section4.3wherever we refer to

coverage target.

102

adaptivetest/plots/sensor-error.eps

4.4.2 Results

Figure4.7shows the number of instructions used (over the CMP’s lifetime) by the ATF,

normalized to a baseline CMP system which applies a constantamount of test (given a

coverage target). The target system coverage is set to 97.3%(best achievable by the chosen

SBST scheme [69]), and the test instructions reported are accumulated overthe lifetime.

For a 5% sensor error in the health assessment, about 96% of the test instructions are saved

while using the proposed ATF. As the number of sensors is reduced (thereby making the

reading less accurate), only a more conservative estimate of failure probability is possible,

forcing the adaptive system into assigning bigger tests to all system processors. However,

even with the higher levels of sensor error, the benefits erode gradually, and the proposed

scheme can deliver up to 82% test time saving with 25% sensor error. We believe this point

offers a good trade-off between the sensor area overhead (2.6%) and the saving in the test

instruction count (82%). Thus, our scheme does not depend onhigh sensor accuracy levels

to achieve test reduction.

Figure4.8 uses the similar terms as the one before, and presents the test instruction

savings for a range of system coverage targets. The sensor error is fixed at 25% for these

results. Depending upon the reliability requirements of a system, the coverage target can

be dynamically tuned. For instance, a move lower to 88% coverage target can result in an

over 90% test instructions saving. The increasing divergence (when going towards higher

coverage) between the saving obtained using adaptive CMP and adaptive SN is also note-

worthy. We expect the adaptive SN to well surpass the benefitsof adaptive CMP in high

coverage target scenarios. For future technology nodes, with higher levels of process vari-

103

 0

 0.05

 0.1

 0.15

 0.2

 0.25

0.525
0.762

0.881
0.940

0.973

N
or

m
al

iz
ed

 N
um

be
r

of
 T

es
t I

ns
tr

uc
tio

ns

System Coverage Value

Adaptive-CMP Adaptive-SN

Figure 4.8: Number of test instructions for the adaptive online testingin CMP and SN with
varying system coverage target (SC). The number of test instructions are normalized to that
needed by a CMP with non-adaptive testing.

ation, a SN based system would be capable of extracting even bigger gains by segregating

stronger resources from the weaker ones. That way, much fewer pipelines would need a

thorough testing.

The result plots so far have presented a cumulative value forthe number of test instruc-

tions over the entire lifetime, in this next result, we present the data of test thoroughness

over time. Figure4.9plots a three dimensional plot with average number of test instruction

executed in consecutive simulation intervals for a range ofcoverage target values. This plot

is for the SN system with25% sensor error. Here, the trend of the number of test instruc-

tions over time reveals an interesting behavior of the proposed scheme. For extremely low

coverage targets, say 0.5 (or 50%), hardly any test instructions are applied. However, for

higher values of coverage target, there is a rhythmic pattern of the test instruction count

over the lifetime. The number of test instructions rise to a peak, and then fall-off. This

peak formation is representative of a core nearing its time to failure, and then failing sub-

104

adaptivetest/plots/c-value.eps

sequently. As a core reaches close to its failure time, the adaptive system ramps up the

number of test instructions to guarantee the coverage target. Once the core fails, the sys-

tem returns to a nominal state since most of the other cores are healthy. There are 16 such

peaks in this plot, each representing dying time of a core. Overall average for the number

of test instructions is higher later in the lifetime due to the poorer health of many cores in

the system. This plot is a clear demonstration of the proposed adaptive testing framework

in tuning the testing time with the probability of failure. In contrast, a traditional periodic

testing approach will exhibit a flat surface with constant testing intensity.

All the savings that we have reported for the test instructions, can translate into a range

of benefits in a target system: 1)performancegain from spending less time for test; and 2)

powerandenergysaving from running fewer instructions. For the system thatwe simulate

(16 core CMP) with a checkpoint interval of 10ms, the performance overheads are 7%,

1.85% and 1.6% for CMP testing, CMP adaptive testing and SN adaptive testing, respec-

tively. According to Revive [84], a 10ms checkpoint interval would require 20MB storage

on an average and up to 100MB peak storage requirement. A smaller allocation of storage

to the checkpoint mechanism can force the checkpoint intervals to be even shorter, making

the testing time even more significant.

4.5 Summary

With the looming reliability challenges in future technology generations, in-field tol-

erance to silicon defects will be a necessity in future computing systems. Periodic online

testing, although a good fit to this problem, imposes heavy test time overheads. The pro-

105

 0
 1

 2
 3

 4
 5

 6
Time (Years)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

System
Coverage

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

Average Number of Test
Instructions (Thousands)

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Figure 4.9: This plot shows the variation in the average number of test instructions executed
in the CMP system over its lifetime for a range of system coverage targets.

posed adaptive test framework significantly reduces this testing overhead. The key insight

is to leverage low level sensors to assess failure probability of various system resources,

and suitably apply the tests. This way, a healthy system usesa fraction of resources for

testing compared to another one nearing its time to failure.Over the lifetime, testing de-

tail is adaptively managed by the proposed solution. The lifetime simulation for a system

with 2.6% area devoted to health assessment sensors, resulted in an 80% reduction in the

software test instructions while delivering the same faultcoverage. We further extend this

reduction by 12% when applying the adaptive testing to the StageNet architecture. This test

time reduction can translate to varying levels of benefits inpower, performance and energy

depending up on the attributes of the targeted system. Overall, we believe, that the adaptive

online testing offers an economical solution to the challenge of online fault detection.

106

adaptivetest/plots/time-c-value.eps

CHAPTER V

Erasing Core Boundaries for Robust

and Configurable Performance

5.1 Introduction

The introduction of this thesis lists the three major challenges that need addressing by

the semiconductor manufacturers: reliability, performance, and energy-efficiency. In this

landscape of multicore challenges, prior research effortshave focused on addressing these

issues in isolation. For example, to tackle single-thread performance, a recent article by

Hill and Marty [46] introduces the concept ofdynamic multicores(Figure5.1(a)) that can

allow multiple cores on a chip to work in unison while executing sequential codes. This

notion of configurable performanceallows chips to efficiently address scenarios requir-

ing throughput computing, high sequential performance, and anything in between. Core

Fusion [52], Composable Lightweight Processors [60] and Federation [106] are represen-

tative works with this objective. However, the scope of present daydynamic multicore

solutions is limited as they cannot provide customized processing, as in [63, 74], or better

throughput sustainability, as achieved by techniques in [88, 43]. The customized process-

107

ing in [63] (Figure5.1(b)) is typically accommodated by introducing heterogeneity of types

and number of functional units, execution models (in-order, OoO), etc., into different cores.

Whereas, better throughput sustainability can be providedby fine-grained reliability solu-

tions like CCA [88] and StageNet [43] (ChapterII), that disable broken pipeline stages,

instead of entire cores (Figure5.1(c)), within a multicore.

Unfortunately, by virtue of being independent efforts, combining existing performance,

power and reliability solutions for multicores is neither cost-effective nor straightforward.

The overheads quickly become prohibitive as the changes required for each solution are

introduced, with very little that can be amortized across multiple techniques. Configurable

performance requires dedicated centralized structures (adding drawbacks such as access

contention/latency, global wiring), customization requires a variety of static core designs,

and fine-grained reliability requires either large amountsarea for cold spares or the flex-

ibility to share resources across cores. Apart from excessive overheads, a direct attempt

to combine these solution also faces engineering hurdles. For instance, when combining

CoreFusion [52] (a configurable performance solution) and StageNet (Chapter II) (a fine-

grained reliability solution), two prominent issues arise: 1) CoreFusion requires centralized

structures for co-ordinating fetch, steering, commit across fused pipelines. These struc-

tures become single points of failure and limit reliabilitybenefits of StageNet. 2) StageNet

requires a decoupled microarchitecture for its sub-core defect tolerance. This is not com-

patible with CoreFusion, as resources within a single CoreFusion core are tightly coupled

together.

Instead of targeting one challenge at a time, the goal of thischapter is to devise a

design philosophy that can naturally be extended to handle amultitude of multicore chal-

108

C C C C

C C C C

C C C C

C C C C

B0

B0

B1

B1

B2

B2

Bn

Bn

(a) Dynamic multicore with
centralized resources

Distributed resources

(d) CoreGenesis: A sea of building blocks (B) that can be
configured for throughput computing, single-thread

performance, fault tolerance, customized processing, etc.

B: A block can be a pipeline stage
or a group of pipeline stages

C C C

C C C

C C C

(c) Core disabling for
fault tolerance

C C C

CC

C

C

C C

(b) Static design for a
heterogeneous multicore

C: core Centralized
resources

BnB0 B1 B2

B0 B2

B0 B1

B1B0 B2

B2

Bn

Bn

B1 Bn

H
et

er
o

g
en

o
u

s
C

o
re

2-
w

id
e

C
o

re
1-

w
id

e
C

o
re

Adaptive Multipurpose SubstrateTargeted Single-point Solutions

Figure 5.1: Contemporary solutions for multicore challenges (a,b,c) and vision of this work
(d). In (a), centralized resources are used to assist in fusing neighboring cores. In (b) and
(d), different shapes/sizes denote heterogeneity. In (c) and (d), dark shading marks broken
components.

lenges seamlessly, while overlapping costs, maintaining efficiency and avoiding centralized

structures. Towards this end, this chapter proposes the CoreGenesis (CG) architecture (see

Figure 5.1(d)), an adaptive computing substrate that is inherently flexible, and can best

align itself to the immediate system needs. CG eliminates the traditional core boundaries

and organizes the chip multiprocessor as a dynamically configurable network of building

blocks. This sea of building blocks can be symmetric or heterogeneous in nature, while

varying in granularity from individual pipeline stages to groups of stages. Further, the CG

pipeline microarchitecture is decoupled at block boundaries, providing full flexibility to

construct logical processors from any complete set of building blocks. Another key feature

of the CG proposal is the use of distributed resources to coordinate instruction execution

across decoupled blocks, without any significant changes tothe ISA or the execution model.

This is a major advancement over prior configurable performance works, and addresses the

shortcomings of centralized resources.

Resources from CG’s sea of blocks can be fluidly allocated fora number of perfor-

mance, power and reliability requirements. Throughput computing can be optimized by

109

coregenesis/figs/cgvision.eps

forming many single-issue pipelines, whereas sequential performance can be accelerated

by forming wider-issue pipelines. Power and performance characteristics can be further

improved by introducing heterogeneous building blocks in the fabric, and appropriately

configuring them (dynamically or statically) for active program phases or entire workloads.

This enables a dynamic approach to customized processing. Finally, fault tolerance in CG

can be administered at the block granularity, by disabling the broken components over time.

Guided by this architectural vision, in this chapter, we present a CG instance that targets

configurable performance and fine-grained reliability. Forthe fabric, an in-order pipeline

model is used with single pipeline stages as its building blocks. As a first step, we define

mechanisms for decoupling pipeline stages from one another(inspired by the StageNet

architecture [43]). This enables salvaging of working stages from differentrows of the

fabric to form logical processors, thereby tackling the throughput sustainability challenge.

To address configurable performance, we generalize the notion of logical processors to

form processors of varying issue widths.

The engineering of distributed resources to support the assembly of decoupled pipeline

stages into a wide-issue processor is especially hard due tothe heavy co-ordination and

communication requirements of an in-order superscalar. Our solution adopts a best ef-

fort strategy here, speculating on control and data dependencies across pipeline ways, and

falling back to a light-weight replay in case of a violation.To register these violations,

hardware schemes were formulated for distributed control,register and memory data flow

management. The frequency of data flow violations from instructions executing on two

different pipeline ways was found to be a leading cause of performance loss. We address

this by incorporating compiler hints for instruction steering in the program binary. This

110

Table 5.1: Comparison to Prior Work

Configurable Fine-grained No centralized Supports Supports
Performance Reliability structures in-order model heterogeneity

CG (this chapter) X X X X X

CLP [60] X X X

Core Fusion [52], Federation [106]
X

Multiscalar [98]
StageNet [43], CCA [88] X X X

Heterogeneous CMPs [63] X X X

circumvents the hurdles in fusing in-order cores, as presented in [89], while also achieving

a near-optimal pipeline way assignment. Overall, the manifestation of CG presented in this

chapter relies on interconnection flexibility, microarchitectural innovations, and compiler

directed instruction steering, to provide a unified performance-reliability solution.

5.2 Related Work

Within the framework of multicore chips, efficient solutions that can deliver config-

urable performance and throughput sustainability are desirable. This section gives an

overview of prior works targeting these issues. Table6.1 summarizes the key aspects of

CG in comparison to the relevant prior proposals. CG stands out by simultaneously of-

fering configurable performance and fine-grained reliability while eliminating centralized

structures. This section also presents a study that motivates a need for unified performance-

reliability solutions for the sake of efficiency.

5.2.1 Single-Thread Performance Techniques

Dynamic multicores. Dynamic multicore processors consists of a collection of homoge-

neous cores that can work independently to provide throughput computing, or a subset of

them can be fused together to provide better single-thread performance. Core Fusion [52]

111

is a dynamic multicore design that enables the fusion of adjacent OoO cores to form wider-

issue OoO processors. Federation [106], on the other hand, combines neighboring in-order

cores to form an OoO superscalar. Both these approaches employ centralized structures (for

fetch management, register renaming, instruction steering, etc.) to assist in aggregation of

pipeline resources. In contrast, Composable Lightweight Processors (CLP) [60] leverages

the EDGE ISA and compiler support to eliminate centralized structures, enabling it to scale

up to 64-cores. CG also eliminates centralized structures,but its compiler support is limited

to generating hints for instruction steering, and ISA is modified to include this hint carrying

instruction. Multiscalar [98] is a seminal work that can compose a large logical processor

from many smaller processing elements. It uses an instruction sequencer to distribute task

sub-graphs among the processing elements, and relies on hardware to satisfy dependencies.

However, in all these prior schemes, resources within individual cores are tightly coupled

together, dismissing the opportunity for fine-grained reliability.

Another distinction of CG is that it fuses in-order pipelines to form wider-issue in-order

processors. While out-of-order fusion provides opportunities for hiding latency (large in-

struction window sizes), in-order fusion is made harder dueto the negligible room for

inefficiency. In fact, Salverda et al. [89] argue that in-order pipeline fusion is impracti-

cal because of the associated hardware overheads for interleaving active data flow chains

(instruction steering). CG circumvents these challenges by using compiler hints to guide

instruction steering, and employing simple mechanisms to detect and recover from data

flow violations.

Heterogeneous CMPs.Heterogeneous designs exhibit good power and performance char-

112

acteristics for their targeted class of applications. However, being a static design, its effec-

tiveness is limited outside this set or when flexibility is desired. For instance, in a scenario

where all applications prefer throughput computing, a heterogeneous CMP will operate

sub-optimally.

In addition to static scheduling of jobs on heterogeneous CMP cores, there have also

been dynamic scheduling approaches to match program phase behaviors to cores. Core

contesting [74] is one such example, but it runs the same program redundantly on different

cores to allow a faster transfer of state between them. In CG,inclusion of heterogeneous

blocks can allow static, dynamic as well as fine-grained dynamic exploitation of program

phase to architecture mapping. This is possible due to CG’s inherent flexibility to swap

resources between pipelines.

Clustered Architectures. The early research in clustered architectures was to enablewider

issue capabilities, without adding sophisticated hardware support. The Multicluster [37]

architecture is a good example of this, and it uses static instruction scheduling from com-

pile time. CG, on the other hand, uses a compiler clustering algorithm [33] to generate

hints that are used for dynamic instruction steering. This is also in contrast to past works

that solely use hardware support [11] to implement heuristics for distributing instructions

among clusters in a superscalar.

5.2.2 Multicore Reliability Solutions

Coarse-Grained Reconfiguration.All reliability solutions that administer reconfiguration

at the granularity larger than or equal to a processor core fall into this category. Some of

113

1

2

3

4

5

6

7

A
re

a
O

ve
rh

ea
d

(#
 o

f c
or

es
)

Configurable Performance (P) Throughput Sustainability (R) P + R

12.1%

27.1%

39.2%

0

1

2

3

4

5

6

7

2 4 8 16

A
re

a
O

ve
rh

ea
d

(#
 o

f
co

re
s)

Number of cores in the CMP

Configurable Performance (P) Throughput Sustainability (R) P + R

12.1%

27.1%

39.2%

Figure 5.2: Area overhead projections (measured as number of cores) forsupporting con-
figurable performance (P) and throughput sustainability (R) in different sized CMP systems.
P+R curve shows the cumulative overhead. For this plot, throughput sustainability is defined
as the ability to maintain 50% of original chip’s throughput after three years of usage in the
field.

the prominent works being [12, 105, 2]. Details and discussions in Section2.6.

Fine-Grained Reconfiguration.A newer category of techniques use stage-level reconfig-

uration (isolates broken stages, not cores) for reliability. The StageNet design in ChapterII

is a leading example of fine-grained reconfiguration. It groups together a small set of

pipelines stages with a simple crossbar interconnect. By enabling reconfiguration at the

granularity of a pipeline stage, StageNet can tolerate a considerable number of failures. In

CG, fine-grained reconfiguration is supported in the same wayas StageNet. More examples

of fine-grained reconfiguration appear in Section2.6.

5.2.3 Combining Performance and Reliability

All prior works target the multicore challenges separately, either configurable perfor-

mance or throughput sustainability (reliability). The central problem here is that solutions

for each of these require new hardware to be incorporated into existing CMPs. This turns

out to be an expensive proposition, as the hardware costs areadditive. We conducted a small

114

coregenesis/plots/motivation.eps

study to assess this cost. Figure5.2shows the results from this study using Core Fusion [60]

as the configurable performance solution, and standard coredisabling for throughput sus-

tainability. The line plot shows the cumulative overhead ofperformance (Core Fusion)

and reliability (core disabling) solutions (P+R). Resulting overhead is almost 40% addi-

tional area. There are two factors at play here: 1) costs are additive, as the two solutions

share nothing in common, 2) reliability is administered at core level (instead of being fine-

grained). On top of this, the design, test, verification and validation efforts need to be

duplicated for performance and reliability separately. The next section presents CG, our

unified performance-reliability solution, that overcomesthese issues to a large extent.

5.3 The CoreGenesis Architecture

5.3.1 Overview

The manifestation of CoreGenesis (CG) architecture presented here is a unified performance-

reliability solution that allows fusion of standalone cores for accelerating single-thread per-

formance as well as isolation of defective pipeline stages for sustainable throughput. The

CG fabric consists of a large group of pipeline stages connected using non-blocking cross-

bar switches, yielding a highly configurable multiprocessor fabric. These switches replace

all direct wire links that exist between the pipeline stagesincluding the bypass network,

branch mis-prediction signals and stall signals. The pipeline microarchitecture within CG

is completelydecoupled, and all pipeline stages are standalone entities. The symmetric

crossbar interconnection allows any set of unique stages toassemble as a logical pipeline.

115

CORE

CORE

CORE

CORE

CORE

CORE

CORE

CORE

F

D

D

D

I

I

E/MI

E/M

E/M

E/MF

F

F

I

D

CG Processor 1 (single pipeline)

CG Processor 2 (conjoint pipelines)

8-core CoreGenesis Chip

Thread 1
(low ILP)

Thread 2
(high ILP)

L2$

F/D
Xbar

D/I
Xbar I/E

Xbar

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

I$ D
$

Figure 5.3: An 8-core CoreGenesis (CG) chip with a detailed look at four tightly coupled
cores. Stages with permanent faults are shaded in red. The cores within this architecture are
connected by a high speed interconnection network, allowing any set of stages to come together
and form a logical processor. In addition to the feed-forward connections shown here, there
exist two feedback paths: E/M to I for register writeback and E/M to F for control updates.
In CG processor 2 (conjoint pipelines), instructions (prior to reaching E/M stage) can switch
pipelines midway, as a result of dynamic steering.

As a basis for the CG design, an in-order core is used1, consisting of five stages namely,

fetch (F), decode (D), issue (I), execute/memory (E/M) and writeback [9]. Figure5.3shows

the arrangement of pipeline stages across four interconnected cores and a conceptual floor-

plan of an 8-core CG chip. Note that all modifications introduced within CG are limited

to the core microarchitecture, leaving the memory hierarchy (private L1 / unified L2) un-

touched. Further, the caches are assumed to have their own protection mechanism (like [7]),

while CG tolerates faults within the core microarchitecture.

In Figure5.3, despite having one stage failure (shaded) per core, CG is able to salvage

three working pipelines. Further, given a set of active threads, CG can judiciously allocate

these pipeline resource to them in proportion to their instruction level parallelism. For

instance, in the figure, thread 1 (low ILP) is allocated one pipeline and thread 2 (high ILP)

is allocated the remaining two pipelines.

1Deeper and more complex pipelines can be segmented at logical boundaries of elementary pipeline
stages (F,D,I,E,W) to benefit from the CG approach.

116

coregenesis/figs/scoach_system.eps

Configurable performance helps CG in dealing with the software diversity present in

modern day CMP systems. It keeps pipelines separate for throughput computing and dy-

namically configures two (or more) pipelines into a multi-issue processor for sequential

workloads. This morphing of individual pipelines into aconjoint processorrequires no

centralized structures, maintains reliability benefits, and is transparent to the programmer.

In Figure5.3, CG processor 2 is an example of a conjoint processor assimilated using two

pipeline stages of each type. As part of a conjoint processor, the two pipelines cooperatively

execute a single thread. The instruction stream is fetched alternately by the two pipelines -

odd numbered ops by one pipeline and the even numbered ops by the other. All instructions

are tagged with anageto maintain the program order during execution and instruction com-

mit. Regardless of where an instruction is fetched, it can beexecuted on either of the two

pipelines depending upon its source operands. We refer to this asinstruction steering. An

instruction executing on the same pipeline that fetches it is said to be straight-steered, while

that executing on some other pipeline is said to be cross-steered. This dynamic instruction

steering is performed with an objective of minimizing data dependency violations, and is

critical for achieving true multi-issue performance. CG employs a compiler level analysis

for statically identifying data dependency chains (Section 5.3.5) and the issue stage applies

this knowledge (during run-time) to steer instructions to the most suitable pipeline.

The natural support for fine-grained reconfiguration allowsCG to achieve its second

objective of throughput sustainability. For instance, in Figure5.3, CG is able to efficiently

salvage the working stages from the pool of defective components to form functional pro-

cessors. By the virtue of losing resources at a smaller granularity, isolation of broken

pipeline stages reaps far better rewards than traditional core disabling. To realize its reliabil-

117

ity benefits, the CG system relies on a fault detection mechanism to identify broken stages

and a software configuration manager to consolidate the working ones (by reprogramming

the crossbars). Fault detection can be achieved using a combination of manufacture-time

and in-field periodic testing. ChapterIV discusses an instance of periodic testing solution

for in-field fault detection.

5.3.2 Challenges

Although the performance and reliability benefits of its configuration flexibility are

substantial, there are a number of hurdles faced by the CG architecture. There are four

principal challenges, and they span correctness and performance issues for both single

pipeline processors as well as conjoint pipelines processors:

Control flow management: The decoupled nature of the CG pipeline makes global sig-

nals such as pipeline flush and stall infeasible. In the context of a single pipelines,

the control flow management is crippled by the absence of a global flush signal. The

problem is even more severe in the case of conjoint processors. Pipeline fetch stages

need to read complementary instructions from a single program stream, and make

consistent decisions about the control flow (i.e., whether to take a branch or not).

Register data flow management:Back-to-back register data dependencies are typically

handled by the operand bypass network, which relies on timely inter-stage commu-

nication. Unfortunately, the decoupled design of CG pipelines makes the bypass

network impractical. In the case of conjoint processors, this problem is further ag-

gravated by the presence of cross pipeline register dependencies. The decentralized

118

Table 5.2: CoreGenesis (CG) challenges. The challenges can be classified on the basis of single
and conjoint pipeline configurations. The check marks (X) are used for solutions that were
straightforward extension of prior work on decoupled architectures. Whereas the question
marks (?) are open problems that are solved in this chapter.

Control Register Memory Instruction
flow data flow data flow steering

Single pipeline X X N/A N/A

Conjoint pipelines ? ? ? ?

instruction execution needs a mechanism to track dependencies, detect violations,

and replay instructions for guaranteeing correctness.

Memory data flow management: Memory instructions are naturally serialized in the case

of a single pipeline CG processor, as all of them reach the same memory stage. How-

ever, similar to register data flow violations, memory data flow violations can also

occur between pipelines of a conjoint processor, leading toa corruption in global

state.

Instruction steering: In a conjoint processor, issue stages have the option to straight steer

the instructions to same pipeline or cross steer it to the other pipeline. This deci-

sion has to be dynamically made for every instruction such that the number of cross

pipeline data dependencies is minimized. A recent study by Salverda et. al [89]

establishes that steering is central to the challenge of in-order pipeline fusion, and

further concludes that a hardware-only steering solution is impractical.

Table5.2summarizes all the challenges in the context of single and multiple pipelines

working as a logical processor. A subset of these challengeshave been solved (marked with

aX) by a prior work, StageNet(SN) [43]. SN is a decoupled pipeline microarchitecture for

fine-grained fault tolerance. The interconnection bandwidth solution from SN is generic

119

and applies to both single/conjoint scenarios.

The control, register data flow, memory data flow, and instruction steering solutions for

conjoint processors are contributions of this chapter (marked with a?). All of these are

new mechanisms, and were made harder by the fact that unlike atrue multi-issue machine

(and even Core Fusion [52]), CG does not have centralized structures, and needs to get

performance by combining very loosely coupled resources. For the sake of completeness,

in the descriptions that follow, we also provide a quick overview of the solutions for single

pipeline case from [43].

5.3.3 Microarchitectural Details

This section describes microarchitectural changes neededby the CG architecture, a

majority of which are clever tricks to detect control and data flow violations in a distributed

fashion. The relatively complex task of instruction steering is off-loaded to the compiler

(Section5.3.5).

5.3.3.1 Control Flow

Single Pipeline.For a single pipeline CG processor, the absence of a global pipeline flush

signal complicates the control flow management. In the eventof a branch mis-prediction,

the decoupled pipeline needs a mechanism to squash the instructions fetched along the

incorrect path. The introduction of a 1-bit stream identification (SID) to all the in-flight

instructions targets this problem [43]. The basic idea is to use the SID for distinguishing

instructions on the correct path from those on the incorrectpath. The fetch and the execute

stages maintain single bit SID registers, both of which are initialized to the same value

(the discussion here is simplified, the actual scheme adds a SID register to every stage).

120

The fetch SID is used to tag all incoming instructions. And, the execute stage matches

an instruction’s SID tag against the execute SID before letting it run. If at any point in

time, a branch instruction is resolved as a mis-prediction by the execute stage, the execute

SID is toggled and the update is sent to the fetch stage. All in-flight instructions that are

tagged with the stale SID are recognized (by the execute) to be on the incorrect path and

are systematically squashed over time. In parallel to this squashing, after receiving the

branch update from the execute, the fetch toggles its own SIDand starts fetching correct

path instructions. Note that a single bit suffices here because the pipeline execution model

is in-order and can have only one resolved branch mis-predict outstanding at any given time

(since all instructions following it become invalid).

Conjoint Pipelines. In a dual-pipeline conjoint processor, one pipeline is designated as

the leaderand other as thefollower. To balance the usage, both pipelines fetch alternate

instructions from the program stream, i.e., if leader fetches fromPC, follower fetches from

PC+4. The logical program order is maintained by tagging every instruction with a unique

(monotonically increasing)age tag. Fetch stages are augmented with age counters (offset

by 1) that are incremented in steps of two whenever an instruction is fetched and tagged.

Thus, the leader pipeline will tag instructions with ages 0,2, 4, and so on; and follower will

tag them with ages 1, 3, 5, and so on. By virtue of interleavingprogram counter values,

both pipelines together fetch the complete program stream and record the program order

in theage tags. These tags are later used by the execute→ issue crossbar (EI xbar) to

commit instructions in the program order.

The above description of distributed fetch works fine until abranch instruction is en-

121

Table 5.3: Control cases. Each case represents a pair of consecutive program instructions
in a 2-issue conjoint processor. The first and second rows in this table show the instructions
fetched in the leader and follower pipelines, respectively.

Case 1 Case 2 Case 3 Case 4
branch not taken branch not taken branch taken branch taken

OP BR OP BR
BR OP BR OP

countered. For proper operation, CG needs a decentralized control handling mechanism

that keeps both pipelines in sync when making a control decision. The control flow can

encounter four distinct cases shown in Table5.3.

Cases 1 and 2 are the most straightforward ones, as the branchis not taken. Both

pipelines continue as normal as the branch has no impact on the control flow. For case 3,

we need both pipelines to take the branch simultaneously. This can be achieved if their

branch predictors completely mirror each other and same address look-up is performed by

both pipelines. We maintain this mirroring by sending all branch prediction updates (from

execute/memory stage) to both fetch stages. For consistentlook-ups, the leader pipeline

addresses its branch predictor usingLeader PC + 4, and the follower addresses it using

Follower PC (and by designFollower PC = Leader PC + 4). As both the predictors

are synchronized, they will return the same prediction and target address. Finally, for case

4, we again need both pipelines to take the branch. In addition to the mechanism for case

3, the follower pipeline must also invalidate itsOP which is on the wrong path. A simple

logic is added to the decode stage to carry this out. The decode stage invalidates any

operation that is 1) in the follower pipelineand 2) is predicted as a taken branch by the

fetchand3) is not a real branch instruction.

In the case of a branch mis-predict, the squashing of instructions for conjoint processors

is a direct extension of the SID scheme presented for single pipelines. In conjoint proces-

122

sors, both pipelines maintain a single logical value for theSID, and all branch resolution

updates are sent back concurrently to the fetch stages.

5.3.3.2 Register Data Flow

Single Pipeline. The data forwarding within a single pipeline can be emulatedusing a

smallbypasscache in the execute stage. The key idea is to use this bypass cache for storing

results from recently executed instructions, and supplying them to later instructions. The

experiments in [43] show that a bypass cache that holds last six results is sufficient.

Conjoint Pipelines. For conjoint processors, the data flow management gets involved due

to the distributed nature of execution. The instructions are issued and executed on different

pipelines, and cross-pipeline register data dependenciescan occur frequently (instruction

fetched by pipeline X, but needs register produced by pipeline Y). In an ideal scenario,

we would like issue stages to always steer the dependent instructions to the execute which

most recently produced the source values. More of this discussion on instruction steering

follows later in Section5.3.5. Nevertheless, in a practical design, the steering mechanism

is bound to make some mistakes as each pipeline’s issue stagehas incomplete information

about the in-flight instructions. Our solution, in a nutshell, is to have each pipeline maintain

a local version of the outstanding data dependencies, and monitor write-backs by the other

pipelines to detect any data flow violations that might have occurred. Upon detecting such

a violation, a replay is initiated.

The first requirement for data flow management is proper maintenance of the register

file. The register files for all pipelines (that constitute a conjoint processor) are kept co-

herent with each other. This is achieved by sending all register write-backs to both issue

123

Buffer
head

Buffer
tail

OP Pending
Replay

Exec
Alloc

Dest Age

CAM

Src

`

RF

OIB

CFT

FUs

BP$

SID

CFT

Issue Execute/Memory

Outstanding Instruction Buffer (OIB) F E/MID

I/E
XBAR

E/I
XBAR

Figure 5.4: CG pipeline back-end with structures for detecting register data flow violations
and initiating replays. The outstanding instruction buffer (OIB) and current flow tag (CFT)
registers are the two additions for conjoint processors. Also shown here is the bypass cache
(BP$) for data forwarding within a single pipeline.

stages simultaneously, similar to the way Alpha 21364 [3] kept its two clusters consistent.

Further, the write-backs from the two pipelines are serialized by the network interface be-

tween the execute and the issues stages. The crossbar switchprioritizes the write-back

based on the age tag of the instructions, maintaining correct program commit order. This

way, cross-pipeline data dependencies, which are sufficiently far away in the program, go

through the register file. However, all the instructions that are issued before their producers

have written back to the register file remain vulnerable to undetected data flow violations.

To catch such undetected data flow violations, each pipelinecan track locally issued (in-

flight) instructions and monitor the write-backs to detect any data dependency violations.

We accomplish this using a new structure in the issue stage namedoutstanding instruction

buffer (OIB) (see Figure5.4). The OIB is similar in concept to the reorder buffer in an

OoO processor. However, it is much smaller in size, and needsto store only 5 (pipeline

depth from issue to write-back) instructions in the worst case. Each instruction entry in

the OIB stores: (1) op code, (2) sources, (3) destination, (4) age tag, (5) execute stage

allocation (execute stage where the instruction was steered), and (6) pending replay bits

(one per source operand). The OIB behaves as a CAM for its second field (instruction

source). Pending replay bit for a source operand denotes whether it can cause a data flow

124

coregenesis/figs/datadep.eps

violation. Instructions are inserted into the OIB at the time they are issued. At the time of

an instruction write-back, following actions take place:

• The destination value (Rdest) of the instruction writing-back (Iwb) updates the register

file. The corresponding OIB entry forIwb is also freed.

• Rdest is used to do a CAM look-up in the OIB. This returns any in-flight instruction

(Iin flight) that usesRdest as a source.

• If Iin flight was sent to the same execute stage whereIwb executed, then the bypass

cache would have successfully forwarded the register value. The pending replay bit

is reset (to 0) for this source operand ofIin flight.

• If Iin flight was sent to some other execute stage, then a data flow violation is possible

and the pending replay bit for this source is set (to 1).

Over time, the replay bit for a source operand can get set/reset multiple times, with the

final write to it made by the closest producer operation for every consumer. If an issue stage

receives a write-back for an instruction with a pending replay bit set for any of its source

operands, it implies that the producer of value(s) for this instruction has executed on an

execute stage different from where this instruction was steered. And, therefore, a data flow

violation has occurred. A replay is initiated at this point (replay mechanism is discussed

later in this section).

5.3.3.3 Memory Data Flow

To provide correct memory ordering behavior in a conjoint pipelines processor, we use a

local store queue in the issue stages that monitors load operations performing write-back for

store-to-load forwarding violations, and a speculative store buffer in the execute/memory

125

Issue
Age EX # State

CAM

Address

RF

OIB

CFT

SQueue

Execute/Memory

FUs

BP$

SID

CFT

StoreBuffer

AddrValue

FIFO

F E/MID

I/E
XBAR

E/I
XBAR

Figure 5.5: CG pipeline back-end with an emphasis on structures added for handling mem-
ory data flow violations.

stage to allow delayed release of memory store operations (to save against accidental mem-

ory corruption). Note that cache hierarchy is left unmodified in CG. L1 caches are private

to the pipelines, single ported and naturally kept coherentby standard cache coherence

protocols.

Figure5.5shows the back-end of a CG pipeline with an emphasis on structures needed

for proper memory handling. A store buffer (StoreBuffer) is added to the execute/memory

stage to hold onto the store values before they are released to the memory hierarchy. Al-

though a common structure in many processors, in CG, the store buffer also serves the pur-

pose of keeping speculative stores from corrupting memory state. A store queue (SQueue)

is added to the issue stages to tabulate the outstanding store instructions, and their present

states. Every store instruction can have two possible states. All issued store instructions

are entered into the local store queue and get into thestore sentstate. Write-back for this

store instruction confirms that it is not on an incorrect execution path. At this point, a

pseudo commitsignal is sent (over the same crossbar switch) to the execute/memory stage

that executed this store, and the store instruction state becomespseudo commit sent. Upon

receiving this signal, the execute releases the store valueat the head of the store buffer to

the memory. This way, only stores on the correct path of execution update the memory.

126

coregenesis/figs/memdep.eps

There are three possible cases involving the memory operations that need a closer scrutiny

(see Table5.4).

Table 5.4: Memory flow cases. Each case represents a pair of instructions that are flowing
together in a 2-issue conjoint processor.

Case 1 Case 2 Case 3

Leader pipeline
BR

ST1 ST
(mis-predicted)

Follower pipeline ST ST2 LD

In case 1, a mis-predicted branch occurs right before a storein the program order. Since

this store is already executed by the execute/memory stage,its value is entered into the store

buffer. Fortunately, in accordance to the commit order, thebranch operation writes back

before the store. Thus, the store never gets to write-back and does not release a pseudo

commit for itself. Eventually this store is removed from thestore buffer when the mis-

predicted branch flushes the pipeline. In case 2, the pseudo-commit is released forST1

beforeST2. Thus, to the memory hierarchy, the correct ordering is presented. In case 3,

when the load is about to commit, both issue stages check if any of the outstanding stores

conflicts with this load (using the store queues). If there isindeed such a store that precedes

the load in the program order (based on age), and was sent to a different execution stage,

then a replay is initiated starting from this load.

5.3.3.4 Replay Mechanism

The replay mechanism adds a single bit of state in the issue and execute/memory stage

called thecurrent flow tag(CFT), and leverages the OIB in the issue stage for re-streaming

instructions (see Figure5.4). The CFT is a single bit (similar to the SID for branches) to

identify the old (wrong) instructions from the new (replaying) instructions in the back-end.

127

All issued instructions are tagged with the CFT bit. Theheadand thetail pointers in the

OIB mark the window of in-flight instructions, which are replayed in the event of a register

or memory data flow violation. The violation is first identified by any one issue stage,

which consequently sends out aflushinstruction to both execute stages. This flips the CFT

bit, resets the bypass cache and clears the store buffer. Following this, other issue stages are

sent replay signals, and all of them start re-issuing instructions from their respective OIBs

(starting at the head pointer) and tagged with an updated CFTbit. The old instructions,

tagged with a stale CFT, are uniformly discarded by both issues during the write-back.

5.3.4 Interconnection

CG interconnection network is a simple, one-hop connection. It employs bufferless,

non-blocking crossbars to connect adjacent levels of pipeline stages. This allows all pairs

of stages, that share a crossbar, to communicate simultaneously. As an interface to the

interconnection network, pipeline stages maintain a latchon both inputs and outputs. This

makes the interconnection network a separate stage, and thus, it does not interfere with

critical paths in the main processor stages.

In order to make the basic crossbar design suitable for the CGarchitecture, three fea-

tures are required:

Multicast: The CG depends on the capability of the interconnection to send one value to

multiple receivers. For instance, write-backs are sent to both issue stage register files

simultaneously.

Instruction steering: CG requires capability to steer instructions from issue to the ap-

propriate execute stage. A single (header) bit in the instruction payload is added to

128

specify the output (execute stage) an instruction wants to reach.

Age prioritization: In the case of write-backs, older instructions have to be given priority.

This requires an addition to the router to let it prioritize packets (instructions in our

case) on the basis of their age.

Synchronized transfer: Within CG, a pair of instructions is transferred from one level of

stages to the next level synchronously. Thus, the interconnection crossbars need to

wait for data to be available on both input ports, before transmitting it.

Crossbar switch fabrics with crosspoints can support multicast by setting the crosspoint

gate logic to high for multiple outputs. A recently proposedSRAM based crossbar archi-

tecture, named XRAM [92], demonstrates this ability with a low power and area overhead.

The instruction steering and age prioritization can be added in the wrapping logic around

the crossbars. However, the XRAM paper suggests that these features can also be imple-

mented using circuits.

Crossbar reliability, power and timing: In order to protect the interconnection network,

fault tolerant version of the crossbars are used in CG. This is similar to the approach in [42].

The interconnection power can be broken into crossbar powerand interconnection link

power. Both of these are accounted for in our evaluations, asper the methodology in [119].

The absence of buffers in our network significantly cuts downon this overhead. And finally,

we model interconnection link latency using intermediate pitch wire model from ITRS

2008 in 65nm technology, and make sure that it does not exceedcritical paths of pipeline

stages.

129

1 : r1 <- MEM[r1]

2 : r4 <- r3 + r4

3 : r4 <- r5 - r4

4 : r2 <- r1 + r2

5 : r2 <- r2 << 2

6 : r0 <- r0 >> 2

7 : r2 <- MEM[r2]

8 : MEM[r2] <- r4

9 : r0 <- r0 + 4

10: MEM[r0] <- r1

8

1

10

6

9

4

5

7

2

3
Leader (L) pipeline
assignment

Follower (F)
pipeline assignment

Cross pipeline
dependency

- : STEER_OP LFLLF

- : STEER_OP FLFLF

1 :r1 <- MEM[r1]

2 :r4 <- r3 + r4

3 :r4 <- r5 - r4

4 :r2 <- r1 + r2

5 :r2 <- r2 << 2

6 :r0 <- r0 >> 2

7 :r2 <- MEM[r2]

8 :MEM[r2] <- r4

9 :r0 <- r0 + 4

10:MEM[r0] <- r1Original code

Final code with STEER ops

Step 1. Pipeline
assignment hints
from compiler

Step 2. STEER
ops inserted with
compiler hints

Fetch Pipeline Execution
Pipeline

Figure 5.6: Instruction steering. The white nodes indicate instructions assigned to the leader
pipeline while the shaded nodes correspond to the follower pipeline. The instruction fetch is
perfectly balanced between the two pipeline, but the execution is guided by the steering.

5.3.5 Instruction Steering

CG depends upon intelligent steering of instructions between conjoint pipelines in or-

der to minimize performance degradation from data dependency replays. The instruction

steering decisions need to be made at the time of instructionissue. Broadly speaking,

the objectives of instruction steering are two-fold: 1) balance the workload on the two

pipelines, and 2) minimize the number of replays. Our experiments showed that using a

purely hardware based solution for dynamic steering is neither cheap nor effective for in-

order pipeline fusion. This concurs with the conclusion of [89]. Thus, CG adopts a hybrid

software/hardware approach for instruction steering. In anutshell, a compiler pass is used

to assign instruction streams to the pipelines. These hintsare then encoded intosteeringin-

structions that are made part of the compiled application binary. The hardware recognizes

these special steering instructions and uses them to effectively conduct dynamic steering.

Steering instructions between different pipelines in a conjoint processor is analogous to

data-flow graph (DFG) partitioning for clustered VLIWs. Thegoal is to obtain a balanced

workload that takes advantage of hardware parallelism (multiple clusters) and reduces the

130

coregenesis/figs/steering.eps

need for inter-cluster moves (transferring values betweenclusters). Leveraging generic

clustering algorithms to form instruction streams for CG isfairly straightforward. When

cross-pipeline dependencies cannot be avoided, the CG equivalent of an inter-cluster move

is the replay mechanism described in the previous section. Further, CG’s broadcast-based

write-back ensures that any dependent instructions that are separated by more thann in-

tervening instructions will not incur a replay even if they are steered to different execute

stages, wheren is the issue-to-writeback latency. Therefore, the two mainobjectives of

clustering algorithms, minimizing inter-cluster moves and overlapping moves with other

computation, naturally result in instruction streams thatare amenable to the CG architec-

ture. For our evaluations, we used the well known Bottom-Up Greedy (BUG) [33] cluster-

ing algorithm to generate hints for steering.

A STEEROP instruction is introduced in order to encode this compiler-generated steer-

ing information. Two such instructions are inserted (for leader and follower pipelines) at

the beginning of every instruction block (basic block / super block). STEEROP instruc-

tions are simply bit encoding of the pipeline assignment forevery instruction within that

block (multiple instructions are inserted for large code blocks).

Figure5.6shows an example of the complete hybrid steering setup in action. The first

step consists of performing the BUG clustering algorithm inthe compiler. The second

step encodes the clustering algorithm suggested pipeline assignments and embeds them

asSTEEROP (top two instructions in the final code, ’L’ here stands for leader pipeline

assignment and ’F’ for follower pipeline assignment). Whenthe leader pipeline fetches its

STEEROP LFLLF, it learns the steering directions for instruction 1 (L), 3 (F), 5 (L), 7 (L)

and 9 (F). The follower pipeline behaves analogously.

131

5.3.6 Configuration Manager

CG requires a software level configuration manager for supervising the system-wide

reliability and performance configuration. The inputs to this manager are: a) list of working

components (pipeline stages and interconnection crossbars) and b) profile of jobs active in

the system. When invoked, the configuration manager first assesses the maximum number

of logical pipelines it can salvage out of the system. Following this, it distribute the working

pipelines to the active workloads. In our evaluation, we assume a simple policy where:

1) all workloads are assigned a single pipeline, 2) any remaining pipelines are allocated

to the threads on the basis of ILP (instruction-level parallelism) available in the same.

The configuration manager is re-invoked every time a failureoccurs or the workload set

changes. The frequency of the former is in the order of months, whereas that of the latter

is in seconds.

5.3.7 Instruction Flow Example

Figure5.7 shows a generic code snippet accompanied by a set of instruction position

tables showing the execution progress in a 2-wide CG processor (at some representative

clock ticks). The example presented here has three implicitassumptions: 1) one-cycle

instruction transfer time over the interconnection, 2) five-cycle delay for communicating

values produced in one pipeline to the other, and 3) single instructions flow in the pipeline,

instead of bundles of operations to amortize network transmission costs [43]. All of these

assumptions are only for the sake of the example, and actual values can differ in a real

program execution. The discussion of the CG processor stateat the representative clock

ticks is provided below:

132

Figure 5.7: A dual-issue CG processor executing a sample code under optimistic conditions,
i.e. no control, data or memory violation occurs.

Time 0: Leader and follower pipelines fetchop1 andop2 respectively. This mechanism

can be easily realized in hardware by keeping the follower pipeline’s PC at an offset

of single instruction width.

Time 5: Assuming all instruction cache hits, after five cycles, bothpipelines would be full.

The follower pipeline (P1) gets a branch operation (op12) in this cycle. The branch

is taken, and both pipelines jump to the target program location, while maintaining

their PC offset.

Time 8: By this time, the processor has successfully jumped to the new location and both

pipelines are filled up with more instructions (op21-26). The older instructions have

been retired in-order. A register flow dependency exists betweenop21 → op23 for

R4 andop22 → op25 for R6. The dependency forR4 is shared by operations in the

same (leader) pipeline, whereas the dependency forR6 is cross-pipeline.

Time 12: Op23 is at the input latch of the execute block in the leader pipeline. The value

for R4 from op21 gets forwarded toop23 through the bypass cache that exists within

133

coregenesis/figs/scoach_example.eps

each pipeline. However, the cross pipeline dependency ofop25 for R6 requires it to

be cross steered to pipeline P1. Thus,op25 andop26 both compete for P1’s execute

stage.

Time 13: Op25 is cross steered to the follower pipeline, and is thus successfully able to ob-

tain theR6 value forwarded fromop22. No operation is issued to the leader pipeline

during this cycle, and a pipeline bubble is introduced.

Time 15: Op29 and op28 (store operations) are issued to the leader and the follower

pipelines, respectively. The store addresses for these twooperations do not conflict.

The above example is a collection of fortunate cases where the CG architecture operates

at full dual-issue bandwidth without running into any correctness issues or performance

bottlenecks. In reality, the decentralized nature of the two pipelines, and consequently the

local decision made by each of them could lead to several instruction replays.

5.4 Evaluation

5.4.1 Methodology

A comprehensive set of tools are used for the evaluation of CG. The evaluation setup

spans program compilation and microarchitecture level simulation, down to area, power

and wearout modeling.

Compilation for instruction steering. The Trimaran compilation system [111] is used

to perform the BUG clustering algorithm [33] for instruction steering. Inter-cluster move

latency of five cycles is used as an input to the algorithm.

134

Table 5.5: Architectural parameters.

Baseline architecture
Pipeline 4-stage in-order OR1200 RISC [76]
Frequency 400 MHz
Area 0.71mm2 (65nm process)
Power (baseline OR1200 core) 94mW

Branch predictor Global, 16-bit history,
gshare predictor, BTB size - 2KB

L1 I$, D$ 4-way, 16 KB, 1 cycle hit latency
L2 $ 8-way, 64 KB (per core), 5 cycles
Memory 40 cycle hit latency

CG specific parameters
Interconnection full non-blocking crossbars,

64-bit wide, bufferless
Outstanding instruction buffer (OIB) 5 entries
Store queue, store buffer sizes 3, 3
Bypass cache size 6

Microarchitectural simulation. The microarchitectural simulator for CG models a group

of 4-stage in-order pipelines (similar to the OR1200 core [76]) interconnected to form a

network of stages. The simulator was developed using the Liberty Simulation Environ-

ment [113] from Princeton. The architectural attributes are detailed in Table5.5. The L2

cache is unified and its size is64KB× the number of cores. The original OR1200 pipeline

is also used as the baseline for single-thread performance.The architectural simulations

are conducted for benchmarks chosen from three sources: SPEC2000int, SPEC2000fp and

multimedia kernels.

Area overhead (for design blocks and wires).Industry standard CAD tools with a li-

brary characterized for a 65nm process are used for estimating the area of design blocks.

A Verilog description for the OR1200 microprocessor was obtained from [76]. Most CG

modifications: OIB, SQ, SB, bypass cache, etc., are essentially small memory structures,

and their areas are estimated using similar sized CAM structures. All non-memory struc-

tures, such as replay logic, stream identification control,and crossbars, are implemented as

Verilog modules to obtain accurate area numbers. The area for the interconnection wires

135

between stages and crossbars is estimated using the same methodology as in [64, 52], with

the intermediate wiring-pitch (at 65nm) taken from the ITRSroad map [53].

Power and thermal modeling.Power dissipation for various modules in the design is sim-

ulated using Synopsys Primepower an execution trace of OR1200 running media kernels.

The crossbar power dissipation was simulated separately using a representative activity

trace. The crossbar Verilog was placed and routed using Cadence Encounter before running

it through Primepower. The stage to crossbar interconnection power was calculated using

standard power equations [119] with capacitance from Predictive Technology Model [85]

and intermediate wiring-pitch from 65nm node (ITRS [53]). The thermal modeling was

conducted using HotSpot 3.0 [47].

Wearout modeling. For wearout modeling, mean-time-to-failure (MTTF) was calculated

for various components in the system using the empirical models found in [101]. An en-

tire core was qualified to have an MTTF of 10 years. The calculated MTTFs are used as

the mean of the Weibull distributions for generating times to failure (TTF) for every mod-

ule (stage/crossbar) in the system. For the sake of consistency in comparisons, wearout

modeling makes assumptions similar to those in [43].

The MTTF of 10 years was chosen as a rough estimate for the future technologies:

22nm and beyond. Note that the 65nm technology node was only used to get power and

area overheads for comparisons.

Quantitative comparison against other schemes.For experiments involving multicores,

CG is compared against two other systems: 1) A conventional CMP chip where, a core

is considered to be faulty when any of its modules fail; 2) a SNchip [43], as it shares

136

similarities with CG in the way it tackles reliability.

5.4.2 Single-thread performance

Configurable performance in CG relies on its ability to accelerate single-thread perfor-

mance by conjoiningin-order pipelines. Figure5.8 shows a plot comparing the perfor-

mance of four CG configurations normalized to the 1-issue in-order baseline (OR1200).

The plot also includes a 2-issue in-order baseline for the sake of comparisons. The CG

configurations are expressed as:

numberof pipelinesconjoint× issuewidth of pipelinestages.

The following configurations are examined: 1-issue (1x1) CGsingle pipeline, 2-issue (2x1)

CG conjoint pipelines, 2-issue (1x2) CG single pipeline, and 4-issue (2x2) CG conjoint

pipelines.

Conjoining single-issue stages.This compares a (1x1) CG pipeline and a (2x1) CG con-

joint pipeline against the two baselines. All pipeline stages are inherently single-issue in

this set up. The 1-issue CG pipeline (1x1) performs roughly 10% worse than the 1-issue

baseline, primarily due to the inter-stage transfer inefficiencies from decoupling (this is

similar to results in the SN work [43]). On the other hand, the (2x1) CG conjoint pipeline

was found to deliver a consistent performance advantage over the 1-issue baseline, while

lagging behind the 2-issue baseline. The gains are most prominent for the SPECfp and

kernel benchmarks. In fact, for some of the kernel benchmarks, almost a 2X performance

gain was seen while using the conjoint processor. The availability of long and independent

data dependence chains in these benchmarks made this resultpossible.

In contrast, a few of the benchmarks showed negligible to negative performance im-

137

provements while using the conjoint processor, namely 176.gcc, 197.parser and 177.mesa.

This was due to the lack of independent streams of instructions in these workloads. In-

structions in these benchmarks typically formed long dependence chains, and the compiler

pass (for steering) ended up allocating most instructions to the same pipeline (to minimize

the replay cost). This resulted in a nearly complete serialization of the program, rendering

half of the execution resources useless. The few cases whereinstructions were steered to

different pipelines lead to data flow violations and worsened the overall performance by

initiating the replay. Barring these three benchmarks, therest of the results strongly favor

the conjoint pipelines CG processor design. On average, a 48% IPC gain is seen over the

single pipeline CG processor.

Conjoining dual-issue stages.This compares a (1x2) CG single pipeline processor, a (2x2)

CG conjoint pipeline processor and a 2-issue baseline processor. All pipeline stages are

inherently dual-issue in this set up. A single logical pipeline in this system would behave

as a dual-issue processor. Using the CG conjoining principles, any two dual-issue pipelines

can be then combined to form a quad-issue CG processor. The (2x2) 4-issue conjoint

pipeline shows a 35% improvement in performance over the (1x2) 2-issue pipeline, and a

25% improvement in over the 2-issue baseline. Note that by making the pipeline stages

dual-issue, the fault isolation granularity for the systemis reduced by half. This discussion

is continued later in this section along with the reliability implications.

Our experiments with conjoining more than two pipelines (both single and dual-issue)

at a time did not show very favorable results. The two main reasons for this were: 1) the

limited availability of independent data-flow chains, and 2) the constraints placed by an

138

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 IP
C

Baseline (1 issue) 1x1 CG single pipeline (1 issue) 2x1 CG conjoint pipelines (2 issue)

Baseline (2 issue) 1x2 CG single pipeline (2 issue) 2x2 CG conjoint pipelines (4 issue)

0

0.5

1

1.5

2

2.5

3

3.5

N
or

m
al

iz
ed

 IP
C

Baseline (1 issue) 1x1 CG single pipeline (1 issue) 2x1 CG conjoint pipelines (2 issue)

Baseline (2 issue) 1x2 CG single pipeline (2 issue) 2x2 CG conjoint pipelines (4 issue)

Figure 5.8: Single thread performance results for CG normalized to a single-issue in-order processor. The configurations are expressed as
(number of pipelines conjoint X issue width of pipeline stages).

1
3

9

coregenesis/plots/perf.eps

in-order issue architecture.

Replay costs.The performance advantage of a conjoint CG processor is largely determined

by the efficiency of instruction steering in balancing the load between the two pipelines,

while minimizing replays. Here, we analyze the cost of thesereplays in a 2-issue (2x1)

CG conjoint pipelines processor. Figure5.9shows three components of the total execution

time for all the benchmarks: memory flow (MemFlow) violationreplay cycles, register

flow (RegFlow) violation replay cycles and normal operationcycles. A majority of the

benchmarks devote a small fraction of their execution time to the replay cycles, with an

average of 15%. Out of the total replay cycles, memory replaycontributes a negligible

fraction. This is an expected result because memory replay only happens when a store

to load forwarding is missed by the system, which by itself isa rare event for in-order

processors. From the perspective of power efficiency, theseresults are encouraging because

only a very small percentage of the work performed by the system goes to waste. Note that

a low number of replay cycles does not necessarily imply goodbenchmark performance.

For instance, all instructions in a conjoint processor can be steered to the same pipeline

resulting in zero replays (no cross-pipeline dependency).However, no speedup compared

to the baseline would be observed.

5.4.3 Energy-efficiency Comparison

Energy-efficiency of designs can be compared usingBIPS3/watt as a metric [20].

This metric is more sensitive to performance changes, and optimizing for it yields the

same results as optimizing forED2 (energy times delay squared). Figure5.10shows the

average IPC andBIPS3/watt comparisons for the four CG configurations normalized to

140

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MemFlow replay cycles RegFlow replay cycles Normal operation cycles

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MemFlow replay cycles RegFlow replay cycles Normal operation cycles

Figure 5.9: Contribution of memory replay cycles, register flow replay cycles and normal
operation cycles to the total computational time of individual benchmarks running on a 2-
issue conjoint processor. On an average, the replays contributed to about 15% of the execution
time.

0

0.5

1

1.5

2

2.5

3

3.5

Baseline 1x1 CG pipeline
(1 issue)

2x1 CG
conjoint
pipelines
(2 issue)

1x2 CG pipeline
(2 issue)

2x2 CG
conjoint
pipelines
(4 issue)

IPC BIPŜ 3/watt
5.3X

Figure 5.10: Comparing IPC and energy efficiency (BIPS3/watt). The baseline is a single-
issue in-order core (OR1200).

the single-issue baseline processor. When going from the baseline to the single-issue CG

pipeline, about 20% energy efficiency is sacrificed. However, the superior performance in

wider-issue configurations, significantly improves CG’s energy efficiency.

5.4.4 Multi-workload throughput

Performance of a CMP system can be measured either as the latency of thread execution

(single-thread performance, prior experiment) or the rateat which jobs complete (system

throughput). For the throughput comparison, three systemswere compared against one

141

coregenesis/plots/replay.eps
coregenesis/plots/energyeff.eps

2

3

4

5

6

7

8

hr
ou

gh
pu

t (
IP

C
)

8 Core CMP 8 Core SN 8 Core CG

0

1

2

3

4

5

6

7

8

0.25 0.5 0.75 1

T
hr

ou
gh

pu
t (

IP
C

)

System util ization (number threads / number of cores)

8 Core CMP 8 Core SN 8 Core CG

Figure 5.11: Throughput comparison of 8-core CMP, SN and CG systems at different levels
of system utilization. A utilization of 0.5 implies that 4 working threads are assigned to the
8-core system. At this utilization, CG multicore delivers 46% throughput advantage over the
baseline CMP.

another: an 8-core CMP, an 8-core SN [43] and an 8-core CG. A core here refers to a sin-

gle issue in-order pipeline resource, thus an 8-core SN and CG would have eight pipelines

interconnected. The system utilization was varied from 0.25 occupancy to 1.0 occupancy.

This refers to the number of threads assigned to the system versus its capacity (measured as

number of cores). Monte-Carlo experiments were conducted by varying the set of threads

allocated to the system at each utilization level. Figure5.11 shows the final throughput

results from this experiment. At the peak utilization level(1.0), the 8-core CMP deliv-

ers the best throughput. This is due to the performance advantage the baseline processor

has over both single pipeline SN and CG processors (see single-thread performance results

above). Further, the throughput of SN and CG are identical because CG defaults to using

one pipeline per thread in this peak utilization scenario. As the system utilization is low-

ered, CG is able to leverage the idle pipeline resources to form conjoint processors. Thus,

the CG system consistently delivers the best throughput at all utilization levels< 1, which

is a realistic expectation for over-provisioned systems.

142

coregenesis/plots/utilization.eps

5.4.5 Fault tolerance

The experiments so far have targeted the performance aspectof the CG architecture.

In order to evaluate its reliability in the face of wearout failures, we conducted some ex-

periments that track the throughput of the system over the course of its lifetime. For these

experiments, the stages/crossbars fail as they reach theirrespective time-to-failures (TTFs).

The system gets reconfigured over its lifetime whenever a failure is introduced. Broken

stages are isolated using interconnection flexibility, andfault tolerant crossbars naturally

handle crosspoint failures. A software configuration manager is re-invoked every time a

failure occurs or the workload set changes. We assume a simple reconfiguration policy

where: 1) all workloads are assigned a single pipeline, 2) any remaining pipelines are

allocated to the threads on the basis of available ILP. The throughput of the system is com-

puted for each new configuration based on the number of working logical pipelines and the

workloads assigned to them. Monte-Carlo simulations are run for 1000 chips to get statis-

tically significant results. The average system utilization for these experiments is kept at

0.75. Since the throughput delivered by the CG system improves asthe system utilization

is lowered (see Figure5.11), the CG results reported here are conservative.

Figure5.12(a) shows the throughput over the lifetime for three systems: an 8-core CMP,

an 8-core SN and an 8-core CG. CG clearly outperforms both of the other systems for the

entire lifetime. Early on, CG achieves a throughput advantage by utilizing the idle pipelines

(only 6 threads are active, leaving 2 pipelines free) to formconjoint processors. The reg-

ular CMP and SN systems cannot benefit from this. Later in the lifetime, CG sustains a

throughput advantage over the CMP by effectively salvagingthe working stages and main-

143

1
2
3
4
5
6
7

T
hr

ou
gh

pu
t

(I
P

C
)

8 core CMP 8 core SN 8 core CG

0
1
2
3
4
5
6
7

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

T
hr

ou
gh

pu
t

(I
P

C
)

Time (years)

8 core CMP 8 core SN 8 core CG

(a) Throughput over the lifetime of 8-core CMP, SN and CG at a fixed
utilization of 0.75. After a few initial years, CG’s throughput settles
down to that of a SN system.

1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t (

IP
C

)

10 core CMP 4 core dual-issue CG 8 core CG

0
1
2
3
4
5
6
7
8

0

0
.5 1

1
.5 2

2
.5 3

3
.5 4

4
.5 5

5
.5 6

6
.5 7

7
.5 8

8
.5 9

T
h

ro
ug

hp
ut

 (
IP

C
)

Time (years)

10 core CMP 4 core dual-issue CG 8 core CG

(b) Throughput over the lifetime of 10-core CMP, 4-core dual-issue CG
and 8-core CG at a fixed utilization of 0.75. CG system shows the most
convincing results among all the three configurations considered.

Figure 5.12: Lifetime reliability experiments for the various CMP, SN and CG systems. Only
wearout failures were considered for this experiment.

taining a higher number of working pipelines. For instance,the CMP system’s throughput

drops below 2IPC around the3.5 year mark, whereas the CG system throughput breaches

that level around the6 year mark. The gains add up over the lifetime, andcumulative work

done(integral of throughput over the lifetime) advantage of CG is 68% over the baseline

CMP. Also note that CG’s throughput converges with that of SNin the later part of the life-

time. This happens when the number of threads assigned to thesystem exceeds the number

of working pipelines, and CG is left with no option but to default back to single pipeline

processors.

144

coregenesis/plots/tput_regular.eps
coregenesis/plots/tput_area_neutral.eps

Figure5.12(b) compares two more system configurations to the 8-core CG:a 10-core

CMP and a 4-core dual-issue CG. The 10-core CMP is chosen to have an area-neutral

comparison with the CG system. The area overhead for CG is about 20% (discussed later),

translating to roughly two cores for an 8-core CG system. Theresults show that early in

the lifetime, the 10-core CMP dominates the other two configurations. This is expected as

it starts off with the maximum amount of resources. However,as the failures accumulate,

it quickly loses its advantage. Beyond the two year mark, the8-core CG consistently

dominates the system throughput. The 4-core dual-issue CG system performs the worst

among the three. There are two reasons for this: 1) it can run fewer threads concurrently

(4-cores instead of 8/10), and 2) failures in stages result in a bigger resource loss (as each

stage is dual-issue).

5.4.6 Area overheads

The area for various structures that are part of the CG architecture is shown in Table5.6.

The overhead percentages are relative to our baseline processor - the OR1200 core. A total

of five interconnection crossbars are present in the CG architecture, but since the pipelines

share crossbars, its overhead is not attributable to just one pipeline. For a case where eight

pipelines are connected together to form CG, each of them bears 5/8th of the crossbar

overhead. With this assumption, the total area overhead forthe CG architecture is 19.6%

over a traditional CMP (containing OR1200 cores).

5.4.7 Power overheads

The power overhead in CG comes from three sources: crossbars, stage/crossbar in-

terconnection and miscellaneous logic (extra latches, newmodules). Table5.7 shows the

145

Table 5.6: Area overheads from different design blocks in CG.

Design block Area Percent
(mm2) overhead

Outstanding instructions 0.037 5.7%
buffer (OIB) (5 entries)
Store buffer (SB) (3 entries) 0.015 2.3%
Store queue (SQ) (3 entries) 0.021 3.4%
Bypass cache (6 entries) 0.02 3.1%
Extra stage latches (input and output) 0.0115 1.8%
Miscellaneous logic 0.055 0.9%
8x8 fault tolerant crossbar (with 0.025 3.9%
interconnection wires) five such crossbars
are shared between eight pipelines
Total area overhead of CG 19.6%

breakdown, with total power overhead at16.9%. The actual power numbers in the table

are overheads for one CG pipeline while it is part of a 2-issueCG conjoint processor. Note

that a part of this overhead will be there even in a traditional 2-way superscalar (relative to

having 2 independent 1-way pipelines).

Table 5.7: Power overhead for CG. These overheads are reported with OR1200 power con-
sumption as the baseline.

Component Power overhead Percent overhead
pipeline (mW) Percent overhead

Crossbars 4.0 4.26%
Interconnection links 5.8 6.19%
Other design blocks 6.1 6.38%
Total power overhead 16.9%

5.5 Summary

In the multicore era, where on one hand abundant throughput capabilities are being in-

corporated on die, single-thread performance and power efficiency challenges still confront

the designers. Further, the increasing process variation and thermal densities are stressing

the limits of CMOS scaling. To efficiently address all these solutions, designers can no

longer rely on an evolutionary design process. Further, simply combining existing research

solutions for performance and reliability is neither easy nor cost-effective. In this chap-

ter, we presented CoreGenesis, a highly adaptive multiprocessor fabric that was designed

146

with performance and reliability targets from the ground up. The interconnection flexibility

within CoreGenesis not only ensures impressive fault-tolerance, but coupled with the addi-

tion of decentralized instruction flow management, it can also merge pipeline resources to

accommodate dynamically changing application requirements. Our experiments demon-

strate that merging of two pipelines within CoreGenesis candeliver on average 1.5X IPC

gain with respect to a standalone pipeline. In a CMP, with only half of its cores occupied,

this merging can enhance throughput performance by 46%. Finally, the lifetime reliability

experiments show that an 8-core CoreGenesis chip increasesthe cumulative work done by

68% over a traditional 8-core CMP.

147

CHAPTER VI

Bundled Execution of Recurring Traces for
Energy-Efficient General Purpose Processing

6.1 Introduction

The traditional microprocessor was designed with an objective of running general pur-

pose programs at a good performance, while treating the efficiency as a second order crite-

ria. However, with the growing demand for higher performance and efficiency in modern

day devices, there is an emerging need for architecture level solutions to tackle computa-

tional energy efficiency. The trend in the silicon integration is also reinforcing this need

for energy-efficient architectures. Over the years, transistor densities and performance has

continued to increase as per Moore’s Law, however, the threshold voltage has not kept

up with this trend. As a result, the per-transistor switching power has not witnessed the

benefits of scaling, causing a steady rise in power density. Overall, this limits the number

of resources that can be kept active on a die simultaneously [114]. An instance of this

trend can be already seen in Intel’s newest Nehalem generation of processors that boost the

performance of one core, at the cost of slowing down/shutting off the rest of them.

Long before designers of server farms and desktop machines started caring about energy-

efficiency, it has been actively pursued by embedded system designers. The concerns such

148

as a longer battery life and tolerable heat dissipation havepushed the embedded architec-

tures to take extreme steps for saving energy. In this domain, a common practice has been

to design specialized hardware units [77, 80, 93], accelerators [35, 122], and application

specific instruction extensions [107] to save energy for their stable application set (various

kernels for audio/video processing, compression, signal processing, etc). The computation

in these applications is regularly structured, highly dataparallel, and concentrated in tight

inner-most loops, making it well suited to hardware specialization.

Unfortunately, this hardware specialization approach does not directly extend to pro-

grams such as desktop applications, SPEC integer suite, OS utilities, etc., for two primary

reasons. First, these programs are highly irregular, contain a lot of control divergence and

exhibit little data parallelism. Henceforth, we refer to these asirregular codes. The char-

acteristics of irregular codes make them unsuitable for traditional accelerator designs. For

instance, the large, unstructured, uncounted loops in these applications can not be mapped

to the loop accelerators [35, 25] which can only support modulo-schedulable loops. Sec-

ond, the general purpose application space is much more diverse and constantly evolv-

ing. Designing a custom hardware for each of these programs is neither cost-effective

nor practical. Despite these challenges, a recent work [114] makes a case for application

specific hardware in the context of irregular codes, claiming the large availability of dark

silicon. However, once the targeted applications gets modified beyond a certain degree,

the approach reverts back to software emulation on the main processor pipeline losing the

efficiency benefits of the ASIC (application specific integrated circuit).

Another class of solutions to target irregular codes is the work on programmable func-

tional units [24, 87]. However, their energy efficiency gains are small due to their program

149

scope (acyclic chain of operations), and architectural focus (processor back-end). Studies

have shown that a large fraction of application energy is consumed by the processor front-

end (fetch and decode) [31]. Thus, given the state of the current art, no clear path exists

to design a reasonable energy-efficient architecture that can support irregular codes while

also offering a flexibility to work across applications.

As a solution to energy-efficiency problem in this general purpose processing domain,

this chapter proposes Green BERET (Bundled Execution of REcurring Traces). The BERET

architecture is a configurable compute engine that achievessignificant energy savings for

the program regions mapped onto it, without sacrificing any performance. The first insight

of this architecture is the use ofrecurring tracesas a program construct for tackling ir-

regular codes. A recurring trace [79, 40, 70] is a sequence of program instructions that

repeatedly execute back-to-back with a high likelihood, despite the presence of intervening

control divergences. As their first advantage, these tracesgive an appearance of structure

to the irregular codes. Further, as these traces are significantly shorter than the original

unstructured loops, BERET buffers them internally to eliminate redundant fetches and de-

codes for repeating instructions.

The second insight of this work is the use ofbundled executionfor these traces. In-

stead of executing one instruction at a time, BERET uses compiler analysis to break down

traces into bundles of instructions. These bundles are essentially subgraphs from the trace-

wide data flow graph. A major advantage of this bundled execution is that it significantly

cuts down on the redundant register reads and writes for the temporary variables. Further,

our analysis of application traces demonstrated that many subgraph structures are common

across applications. Thus, given a diverse enough collection of subgraph execution blocks,

150

our compilation scheme is able to break down an application trace into constituent sub-

graphs from this collection. Overall, we consider this bundled execution model a trade-off

design that lets us achieve efficiency gains close to an application specific data flow hard-

ware while maintain application universality of regular Von Neumann execution model.

Leveraging these two insights, the BERET is designed as a subgraph-level compute

engine for recurring traces. For the program traces offloaded to BERET, the energy savings

primarily come from a) eliminating redundant fetches, decodes, and control management,

and b) significantly reducing register reads and writes for temporary variables. The key

contributions of this chapter can be summarized as follows:

1. A programmable compute engine for energy-efficient general purpose processing

2. Insight to exploit recurring instruction sequences (traces) as a means to tackle irreg-

ular codes

3. Compiler flow to map arbitrary program traces on a heterogeneous collection of sub-

graph execution blocks

6.2 A Case for Energy Efficient Trace Execution

In this section, we investigate the sources of inefficiency in a simple in-order RISC

processor core, explore opportunities for energy savings,and propose our insights on de-

signing a general purpose, energy-efficient compute engine. For a detailed comparison of

our work to prior schemes, please refer to Section6.5and Table6.1.

6.2.1 Pipeline Energy Distribution

In a conventional Von Neumann architecture, the processor spends a large amount of

effort in supplying instructions and data values to the actual execution units [31]. For a

151

Fetch

37%

Decode

18%

Issue

14%

Execute

9%

Memory

15%

Writeback

7%

Figure 6.1: The distribution of energy dissipation across pipeline stages in an in-order pro-
cessor.

better understanding of this behavior, we analyzed the per-stage energy distribution in a

simple in-order RISC processor (modeled after an ARM core).Figure 1 shows this result,

highlighting the large majority of energy dissipation attributable to the instruction supply

(Fetch and Decode). The major component behind this was the instruction cache, which is

not only a large structure, but needs to be accessed for everysingle dynamic instruction in a

program. The second biggest energy draw was from the combined register read (Issue) and

write back (Writeback) cost. This is representative of the data supply cost, along with the

datapath memory access (Memory). The last stage in this tally, surprisingly enough, is the

data computation (Execute). Once the instructions and dataare delivered to an execution

unit, only a small amount of energy is required to compute theresult.

This analysis clearly highlights that a regular in-order pipeline has a severe imbalance

in terms of where the energy is being spent. For a small fraction of compute energy, almost

8X more energy is taken up to deliver the instruction and datato the execute stage. On a

positive note, this also indicates that methods targeting instruction and data supply energy

152

gberet/figs/p_core_energy.eps

can achieve substantial savings.

6.2.2 Opportunities for Energy Saving

A significant source of this biased energy consumption is thelack of understanding a

general purpose processor has for the underlying program structure. The hardware is typ-

ically agnostic of the presence of loops, live data values, data flow between instructions,

chains of frequently occurring operations, and so on. This results in wasted effort for re-

dundant instruction fetches and decodes (for repeating sequences such as loops), redundant

register file reads and writes (for temporary / intermediatevalues), redundant forwarding

and dependency checks for unrelated instructions, etc. Each of these redundant actions

present an opportunity for energy savings.

A popular approach for reducing this wasted effort has been to introduce hardware

specialization, in the form of ASICs [77, 80, 93], loop accelerators [35, 122], custom func-

tional units, etc. The attempt here is to encode the program structure in the hardware, such

that it can avoid wasted effort during execution. For instance, loop accelerators buffer the

instructions in a loop, thereby avoiding the redundant instruction cache accesses [35]. The

hardware specialization solutions work particularly wellfor applications that have regular

structure, data parallel computations, and limited control divergence. Prime examples of

this are media kernels, encoders, compression engines, image processing, etc. Henceforth,

we refer to such applications asregular codes.

6.2.3 Limitations for Irregular Codes

In addition to regular codes, energy-efficiency is equally important for applications

in desktop computing, SPEC integer suite, OS utilities, libraries, etc. Unfortunately, the

153

concept of hardware specialization, does not scale to this application class because:

1. Large and irregular loops: The programs are highly irregular and contain a lot of

control divergence. More specifically, the loops are usually large, uncounted (while

loops), and contain deeply nested if-then-else statements. These characteristics are

unfavorable for a specialized hardware design because: a) an ASIC designed for this

will be very large (due to code divergence / loop size), and have a very low utilization

(only single execution path would be taken); b) on the other hand, loop accelerators

would fail to work as they can only handle modulo-schedulable loops.

2. Too many applications that are also regularly modified:Even if one could some-

how design ASICs for theseirregular codes, a large number of such ASICs will be

required to keep up with the application diversity and code modifications. This is

unlike embedded systems that have a limited number of relatively stable, well struc-

tured kernels.

6.2.4 Energy Efficiency for Irregular Codes

Due to the aforementioned reasons, achieving general purpose, energy-efficiency for

irregular codes has long remained a tough challenge. In thiswork, we build upon two

insights for solving this problem:

1. Structuring the Irregular Code using Traces: Often times, the dynamic behavior

of irregular codes exhibits a regular structure. In the literature, this regular structure

has been referred to astraces[40], frames[79] andsuperblocks[70] (in compilers).

Traces are defined as sequences of instructions that have a high likelihood of exe-

cuting back to back, despite the presence of intervening control divergences. These

can be identified both statically and dynamically, coveringroughly 70% of dynamic

instructions [79].

In the scope of this work, we focus on a subset of traces that also loop around with a

154

BB 1

BB 2

BB 5

BB 0

BB 20

BB 1

BB 2

BB 5

BB 3 exit?

Side branches trigger
an exit to the original
control-flow graph

BB 3

BB 4

BB 7BB 6

85% 15%

90%10%

50% 50%

BB 20

Hot basic blocks

BB 4 exit?

Control Flow Graph (CFG)
Hot Trace

Figure 6.2: Extracting a looped trace from an irregular control flow grap h. We refer to these
ashot traces, and use them as a construct that runs on our energy-efficienthardware design.

high probability, and refer to them ashot traces. Figure6.2shows an example of an

irregular CFG, with the extracted hot trace. These hot traces not only render a regular

structure to the CFG, but in addition, their looping nature is favorable to instruction

supply energy savings.

2. Generalizing Across Applications: Working with hot traces eliminates the differ-

ences due to control flow between application codes, leavingbehind only data flow

variations. Further, we observed that hot traces can be segmented into small data

flow subgraphs, many of which are common across applications. Consequently, as

we demonstrate later, given a diverse enough collection of subgraph execution units,

a compilation scheme can be formulated to break down a trace into constituent sub-

graphs from this collection. The use of subgraph-based computation is also favorable

for data supply energy savings.

The next section uses these two insights to design a general purpose, energy-efficient

trace execution engine.

155

gberet/figs/trace_example.eps

CPU CPU CPU CPU B
E

R
E

T

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

L1 D$L1 I$

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU ch co
de

ue cu
te

ba
ck

m
or

y

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

F
et

c

R
F

D
ec Is
su

E
xe

c

W
rit

e

M
em

Trigger Entry Exit1 3 56
CPU

I$ D$

CPU

I$ D$

CPU

I$ D$

CPU

I$ D$
L1 Instruction

Cache
L1 Data
Cache

BERET (Bundled Execution
of Recurring Traces)

2

4

Figure 6.3: Deployment of BERET at multicore level and its integration within a single pro-
cessor core.

6.3 The BERET Architecture

6.3.1 Overview

The proposed design, named BERET, is a configurable co-processor optimized for

energy-efficient execution of hot traces from a program flow.These hot traces are short,

logically atomic, single-entry, single-exit program regions with a high probability to loop

back. Further, the BERET hardware executes these traces in bundles of instructions rather

than individual instructions. One can think of these instruction bundles as data flow sub-

graphs from the trace. As a result of these high level design choices, several avenues of

energy savings follow. First, the short program traces are stored inside BERET hardware,

this eliminates redundant instruction fetches as traces loop around. Second, the instruction

bundles from traces are encoded as BERET microcode, eliminating the need for decode.

Third, use of instruction bundles helps in reducing unnecessary storage and retrieval of

temporary values. And finally, the simplified design due to small storage structures, fewer

pipeline latches, no control flow, also contributes towardsenergy savings.

Conceptually, every core in a system can be augmented with aninstance of BERET

execution engine. Figure6.3shows this setup, and integration of BERET within a pipeline

156

gberet/figs/caf_arch.eps

Program

Hot Traces
(with high loop
back probability)

MPY
ADD
SUB
BR

LD
AND
SHIFT
ST

ADD
ADD
OR
BR

+

|

&

<<

ST

×

-

BR

LD

+ +

BR

1

2

3

1

2

3

SEB 0

SEB 1

SEB 2

SEB 3

Configuration

C
ontrol

R
F

Hot Trace
Data flow
subgraphs BERET with Subgraph

Execution Blocks (SEBs)
(a)

(b)
(c)

(d)

exit

exit

Figure 6.4: The process of mapping hot traces in a program to the BERET hardware: (a)
shows a program segment with two hot traces, (b) a closer lookat a trace with instructions
and two side exits, (c) illustrates the break-up of trace code into data flow subgraphs, and (d)
mapping of subgraphs to subgraph execution blocks (SEBs) inside the BERET hardware.

while sharing the same cache hierarchy. During a program’s execution, whenever a (stat-

ically marked) hot trace is encountered, the fetch stage transfers control to the BERET

hardware (Step 1 in Figure6.3). BERET loads the configuration corresponding to this

trace from the instruction cache (Step 2), and reads register live-ins for this region of code

(Step 3). At this point, the execution control has successfully transferred to BERET and it

acts as an independent entity (Step 4). Internally, BERET executes the trace at the granu-

larity of data-flow subgraphs, and repeats the sequence until a trace exit is flagged. More

discussion about the BERET microarchitecture, challengesfor trace exits, and correspond-

ing solutions, follow in Section6.3.2. Once a trace exit is identified, the live-outs from this

execution are written back to the pipeline register file (Step 5). And finally, a trigger is sent

to the pipeline fetch stage, to start the regular program execution (Step 6).

Utilizing the BERET hardware involves identifying hot traces in a program’s execution,

and appropriately mapping them to the underlying BERET execution engine. Figure6.4

shows a high level view of this process. The first step is to identify hot traces (Figure6.4(a))

157

gberet/figs/caf_system.eps

from the program execution that are good candidates for using BERET. The selected traces

are frequently occurring sequence of program instructionsthat loop around, and rarely take

a side exit. For every such hot trace, the instruction sequence is broken down into data flow

subgraphs (Figure6.4(b,c)). The subgraphs, if desired, can span across control instructions

within a trace. In fact, the larger window of instructions visible in a trace supports this

notion, and helps in identifying longer chains of connectedoperations. Finally, these sub-

graphs are mapped onto a heterogeneous set of subgraph execution blocks (SEBs) within

the BERET hardware (Figure6.4(d)).

In the above discussion, the latter few steps of dividing up atrace into subgraphs and

mapping them to SEBs are interdependent, and thus, need to behandled concurrently. Sec-

tion 6.3.3details our compiler analysis and mapping algorithms for a near-optimal break-

down of traces into subgraphs supported by the BERET hardware. In order to decide this set

of SEBs, we performed detailed analysis on traces from SPEC integer benchmarks, Linux

utilities, encryption and media kernels. Section6.3.4discusses this procedure and also uses

trace analysis to guide sizing of various microarchitectural sub-components within BERET

(internal register file, configuration RAM, etc.).

The above described execution model of the BERET microarchitecture is quite effec-

tive at saving energy. These savings can be broadly attributed to reducing: 1) instruction

fetch, decode cost and 2) register access cost. First, once BERET is initialized with a

trace to execute, there is no further instruction cache access. This eliminates redundant

instruction cache access, fetch stage logic, and decode logic for the repeated sequence of

instructions within a trace. Second, the register file accesses are cheaper as well as less fre-

quent in the BERET design. The small size of the BERET internal register file makes the

158

Control
Logic

C
o

n
fi

g
u

ra
ti

o
n

 R
A

M

(C
R

A
M

)

Internal
Register File

SEB 1 SEB 2 SEB N

Writeback Bus

MUX

S
to

re

B
u

ff
er

w/ mem

Data
Cache

Trigger from / to the
Processor Fetch stage

From / to
Processor RF

ALU LD

<<

ALU

Subgraph Execution
Block (SEB)

Register File index bits

Instruction
Cache

Input Latch

Output Latch

co
nf

ig
. b

its

BERET Logical Stages

Configure
SEB

Execute
SEB

Writeback

(a) BERET Microarchitecture

(b)

(c)1 ± 2 cycles 1 ± 5 cycles 1 ± 2 cycles

bypass

SEB
config.

Figure 6.5: The BERET Microarchitecture: (a) the block diagram of the BERET hardware,
(b) logical stages in the microarchitecture, and (c) a closer look at a subgraph execution block
(SEB).

accesses cheaper, while the subgraph execution model minimizes register reads and writes

for intermediate values in a program data flow.

6.3.2 Hardware Design

Unlike a regular pipeline, the BERET hardware deals with theexecution of a small

snippet of code (∼20 instructions), containing a small number of a live registers (∼6),

and no internal control divergence. Further, the executionis conducted at the granularity

of data-flow subgraphs, instead of individual instructions. These differences guide the

following discussion about the design and working of BERET.

6.3.2.1 Basic Microarchitecture

Once a trace is configured on BERET, it acts as an independent execution engine. Given

the small size of a trace, and no internal control divergence, the BERET microarchitecture

has a simplified front-end. However, it allocates significantly more resources to the exe-

159

gberet/figs/caf_uarch.eps

cution back-end for running a wide variety of data-flow subgraphs. Figure6.5(a) shows a

block diagram of the BERET microarchitecture. Here, the configuration RAM (CRAM)

stores the microcode for subgraphs in a trace, register file is for the internal data state, sub-

graph execution blocks (SEBs) are the equivalent of functional units, and control logic is to

orchestrate the operation. In reality, the control logic isdistributed across the entire fabric,

with connections to virtually every component. The block diagram hides these connections

for the sake of clarity.

Logically, BERET execution can be divided into three stages: 1) Configure SEB, 2)

Execute SEB, and 3) Writeback results (Figure6.5(b)). For every subgraph in the trace, the

first step is sending (microcode) configuration bits to the mapped SEB. During this con-

figuration stage, the register file inputs are also read into the input latch of an SEB. In the

second stage (execute SEB), the SEB that has its inputs latched, configuration defined, and

is in possession of the execution token, fires its functionalunits. The execution can take

multiple cycles depending upon the subgraph depth (longestchain of instruction dependen-

cies). Once the execution completes, the SEB sends the result on the writeback bus, and

broadcasts an execution token. This token is now taken up by some other ready-to-execute

SEB, and the pipelined execution continues. A more detailedstage-by-stage description

follows below:

1. Configure SEB: The task of this stage is to sequence through the subgraphs ina trace,

and configure SEBs to execute them. The configuration for the entire trace is stored on the

CRAM. For each subgraph, this contains the SEB mapping, the register live-ins and live-

outs, literal inputs, and mode bits for functional units within the SEB. In the first cycle,

160

configuration bits are sent to the corresponding SEB, and register file access is made for

two live-in values. In the second (optional) cycle, two moreregister live-ins can be read,

or, when needed, the values are bypassed from the last executed subgraph.

2. Execute SEB: The second stage is responsible for the actual data computation on the

SEBs. A SEB starts its execution when all the inputs are latched, configuration bits are

available, and it possesses the execution token. The execution token is used as a serializing

method to enforce in-order execution of subgraphs, and it keeps shuttling between SEBs.

The execution can take multiple cycles, depending upon the subgraph depth, and concludes

with values recorded in the output latch. In the event of cache miss, just like a regular

pipeline, the SEB also stalls while waiting for the value.

Each SEB or subgraph execution block (Figure6.5(c)) is an interconnected set of func-

tional units (ALU, shifter, multipliers, etc), that represent a data-flow pattern. The number

of functional units per SEB vary from two to six in our design space exploration (Sec-

tion 6.3.4). The SEB structure has an input latch for live-ins, an output latch for live-outs,

and a latch to store configuration bits. For every subgraph mapped, these bits decide the

active functional units, their modes (add, subtract, etc),and flow of values between them.

The selection of a good set of SEBs is central to the efficiencygains from mapping traces

to BERET, and the pertaining discussion is presented in Section 6.3.4.

3. Writeback: This third and final stage is responsible for writing back theresults from

the last concluded subgraph execution to the BERET registerfile. All SEBs share a com-

mon writeback bus for this purpose, and any SEB that has its outputs ready, can request it.

161

Due to the enforcement of in-order subgraph execution, there can never be a contention for

this bus.

6.3.2.2 Handling Trace Exits

The microarchitectural description in the previous section assumes a straightforward

execution scenario with indefinitely looping traces. However, in reality, the trace conditions

would eventually dictate an exit, and a consistent program state has to be transferred back

to the main processor. This is even more challenging when a side exit is taken in the

middle of trace execution, because 1) the subgraphs are formed across control divergence

boundaries, and assume that all instructions in the trace window execute in every iteration;

2) temporary register variables are excluded when mapping atrace to BERET, hence some

of the live-ins required on the exit edge might not even be available.

There are two parts to resolving this challenge. First, BERET needs a mechanism to

detect when a side exit is taken by a trace. Second, BERET is required to maintain a

committed state (at iteration boundaries) as well as per iteration speculative state. In the

case of a side exit, the committed state (from last trace iteration) is copied back to main

processor, which resumes execution from the trace head.

Detecting Side Exits: We first convert all the branches in the trace with assert operations

(similar to [79]). The functional units within SEBs recognize this operation, and raise an

exit flag whenever an assert computes to a true condition. Whenever any of the SEBs flag

an exit, the control logic initiates the copying out of the committed state.

162

Maintain Speculative and Committed State: For recovering from early trace exits,

BERET needs to maintain a committed state from the last completed trace iteration. There

are two parts of this state maintenance: register file state and memory state. For register

files, BERET uses a design similar to the concept of shadow register files. Essentially, ev-

ery logical register maintains two physical versions in theregister file. The even iterations

of the trace write back to version 0 of registers, and odd iterations write back to version

1. As the code is linear within a trace, every iteration will produce exactly the same set of

live-outs. Thus, at any point in time, the committed register state from the last iteration is

available for recovery.

To maintain the memory state from the end of previous iteration, BERET buffers the

stores from the current iteration. The store buffer releases them when the current iteration

successfully completes. The size of this store buffer is relatively small, as the number of

stores in most traces stayed around four (Section6.3.4).

6.3.2.3 Processor Interfacing

The main processor requires two modifications to interface with BERET. First, the

fetch stage maintains a table of trace header addresses in the loaded program. Whenever

the program counter hits any of these locations, the fetch sends anentry trigger and the

corresponding trace configuration address to BERET. The BERET hardware loads the con-

figuration using the instruction cache, runs through the trace, and returns with anexit trigger

to the fetch stage. The second modification allows the main processor’s register file to be

directly addressed by the BERET. This is required by the BERET to read the trace live-ins

(at entry) and write back the trace live-outs (at exit). Notethat no extra read / write ports

163

FIND TRACES
Identify

Hot trace

ENUMERATE
Enumerate
data flow
subgraphs

MAP
Map subgraphs
to SEBs, prune

remaining

SELECT
Select subgraphs

that cover
the entire trace

GROUP
Group small
subgraphs to

fit on one SEB

Input: A procedure
from the targeted
benchmark

Output: Procedure
annotated with
configuration

Figure 6.6: The steps of identifying hot traces in a procedure and mapping them to the
BERET hardware for energy-efficient execution.

are necessary in the register file, as it is accessed in an exclusive manner (either by main

processor or by BERET).

6.3.3 Mapping Traces to BERET

We use a comprehensive compiler flow to identify and map hot traces from a program

onto the BERET hardware. While mapping, the objective is to segment an identified hot

trace into a minimum number of subgraphs, each of which can execute on a SEB in the

BERET hardware. Figure6.6shows the discrete steps involved in this flow, each of which

is elaborated below:

Find Traces: Given a procedure, the objective of this step is to identify traces that have

a very high probability to loop back, and rarely take side exits. For this step, we leverage

the previously proposed Superblock identification heuristic [70]. Superblock formation is a

static compiler analysis that groups together program basic blocks with a high likelihood of

executing one after another. This gives the compiler opportunity to perform optimizations

on a larger window of instructions. From the set of Superblocks composed in a procedure,

for BERET mapping, we select the ones that have a looped structure (branch from the last

basic block to the first basic block), with an 80% probabilityto loop back.

164

gberet/figs/caf_mapping.eps

Enumerate: In this step, all data-flow subgraphs are enumerated from thegiven trace.

The subgraphs can range in size from one operation, all the way to a pattern of 4-6 inter-

connected operations. Since we are enumerating all subgraphs, an operation can appear in

more than one subgraph.

Map: This steps checks the feasibility of which data-flow subgraphs can actually run on

the BERET hardware, and prunes away the rest. The mapping phase iterates over the enu-

merated subgraphs, and attempts to map each of them to a SEB inBERET. If the subgraphs

can map to multiple SEBs, the mapping to the smallest SEB is recorded. On the other hand,

if the subgraph does not map to any SEB, it is discarded.

Select: The input to this step is a set of SEB executable data-flow subgraphs from a

hot trace. The selection phase is responsible for choosing the smallest subset of these

subgraphs, while covering all instructions in the trace. This is equivalent to the set covering

problem, which is NP-hard. We model it as a unate covering problem, and solve it using a

branch and bound heuristic.

Group: Many of the subgraphs under utilize the SEB where they are mapped. This phase

coalesces disconnected subgraphs, wherever it is possible, and places them on a single SEB.

After these steps for mapping, the compiler generates a configuration RAM code for

this trace, and embeds it into the program binary. For ISA compatibility reasons, this

configuration can be added as a part of the global data segment. Note that the compiler does

not replace the original set of basic blocks in the program, as the execution reverts back to

them in cases of early trace exit. Further, this keeps the code compatible on machines that

165

do not have the BERET hardware.

6.3.4 Design Space Exploration: SEBs and other parameters

The previous sections assume a fixed hardware design for BERET, including the set of

SEBs and sizes for different structures within the microarchitecture. This section explains

our methodology to arrive at these design specifics. All experiments here were conducted

on traces from SPEC integer benchmarks, Linux utilities, encryption kernels, and media

kernels.

6.3.4.1 Determining SEB Collection

The objective of this study was to define the smallest collection of SEBs that exhibit a

good mapping behavior for the traces in our benchmarks. Where, a good mapping implies

that traces get divided into a small number of large subgraphs (say, subgraphs contain-

ing four to five instructions on average). Large subgraphs are better as they imply fewer

CRAM accesses, more internal data forwarding, less number of register file accesses, and

overall better energy savings. However, SEBs that can handle large subgraphs are also

more inflexible, forcing the need to have a bigger collectionof the same.

We resolve this situation by performing a subgraph exploratory study. First, we defined

a set ofhypothetical SEBsranging in sizes from two execution units, all the way to six

execution units. The execution units for this study were assumed to be universal, which

can support any instruction type. Several interconnectionpatterns between these execution

units were also incorporated, including linear chain, triangular formation and diamond for-

mation. Next, the entire set of program traces were compiledfor this collection of SEBs,

gathering statistics on the frequency and instruction pattern of different subgraphs mapped

166

A

A

A

M

X

A

S

M

SA

A

S

AS

A

A

MM M

M

A

A

A
Legend

A : ALU
M : MEM
X : MPY
S : SHF

36%

6%

12%

8%

6%
8.5%

Figure 6.7: The top six specialized
SEBs from the final set of eight used
in the BERET design. The percent-
ages indicate the frequency of their
occurrence in program traces.

0

10

20

30

40

50

1 2 3 4 5 6

P
er

ce
nt

ag
e

of
 s

ub
gr

ap
hs

subgraph size (in number of operations)

Hypothetical SEBs Specialized SEBs

Figure 6.8: The percentage distribution of sub-
graph sizes across all traces when using the hypo-
thetical SEBs and our final selection of specialized
SEBs. The average size of subgraphs for hypothet-
ical SEBs at 3.26 was only marginally better than
the same for our specialized SEBs at 2.56.

to each SEB. From this list, we selected top eightspecialized SEBsbased on their frequency

of occurrence across all traces, while maintaining a diversity in their sizes. The execution

units specialization was limited to four types: ALU, Shifter, Multiplier or Memory Access

Unit. Figure6.7shows top six specialized SEBs from our set of eight.

Figure6.8 shows the distribution of subgraph sizes (across all traces) when using hy-

pothetical SEBs and finally chosen specialized SEBs. The average subgraph size is 2.56

for our specialized SEBs, which is reasonably close to the best possible 3.26 in the case of

hypothetical SEBs.

6.3.4.2 Microarchitectural Parameters

Some of the important design parameters in the BERET hardware are the sizes of the

CRAM, register file and store buffer. To determine a reasonable value for these parameters,

we collected various statistics from the traces across all benchmarks. For CRAM size, we

analyzed the distribution of number of subgraphs per trace.As much as 90% of the traces

had number of subgraphs less 12. Consequently, we fixed the CRAM size at16 × 64 bits

167

gberet/figs/special_seb.eps
gberet/figs/p_subgraph_sizes.eps

(our subgraph encoding fits in roughly 64 bits). For registerfile size, we analyzed the

distribution of maximum live values per trace. This led to a register file with 8 entries.

Finally, for the store buffer sizing, we looked at the distribution of store operations per

trace, leading us to a store buffer with 6 entries.

6.4 Evaluation

6.4.1 Methodology

In order to evaluate the potential of the BERET design, we developed a comprehensive

methodology involving compiler analysis for the identification and mapping of traces, an

architectural simulator for performance, CAD tools for synthesis, place and route, power,

area and finally, an energy simulator for computing total energy consumption while running

a trace on BERET. Details about each of these components, along with benchmarks and

baseline description follows below.

Benchmarks: A unique attribute of the BERET architecture is its relevance to both regu-

lar as well as irregular code based applications. The benchmark set was chosen to represent

both these classes. We selected nine benchmarks from the SPEC integer suite (164.gzip,

175.vpr, 181.mcf, 197.parser, 254.gap, 256.bzip2, 401.bzip2, 429.mcf, 445.gobmk), three

linux utilities (grep, cmp, lex), two encryption kernels (rc4, pc1) and five benchmarks from

the MediaBench suite (cjpeg, gdmdecode, gsmencode, pgpdecode, pgpencode).

Baseline Processor: The ARM1176 [8] was chosen to be the baseline processor for

comparison, a widely used processor in smart phones and portable electronics. Being a

single-issue in-order pipeline, we consider the ARM1176 tobe an aggressive baseline for

showing energy efficiency improvements. According to the ARM website [8], an 800MHz

168

ARM1176 synthesized at 65nm technology node consumes roughly 160mW, which in-

cludes 16 KB level 1 instruction and data caches.

Compiler Infrastructure: The Trimaran compilation system [111] was used to imple-

ment the compiler flow that identifies hot traces and maps themto the BERET hardware.

The trace identification component was implemented in OpenIMPACT (the front-end and

profiling engine of Trimaran), whereas, the hardware mapping algorithms were imple-

mented under ELCOR (back-end of Trimaran).

Performance Simulation: Cycle accurate simulators were used to model the perfor-

mance of the baseline processor, as well as the execution time of traces mapped onto

BERET. For the baseline single-issue in-order processor, we used SIMU, a performance

simulator which is a part of the Trimaran package. A separatetrace-based performance

simulator was developed to measure the runtime of traces on the BERET hardware. This

also accounted for the cost of execution control transfers between the main processor and

BERET.

Power and Area Estimation: We implemented the BERET hardware in Verilog, and

used a full CAD flow to synthesize (Synopsys Design Compiler), place and route (Cadence

Encounter) and estimate power (Primetime PX). This was performed at the IBM 65nm

technology node, while targeting a clock period of 1.25ns. This analysis gave us the power

and area for all structures in the BERET hardware. Cache access power was estimated

separately using CACTI [73] on a 16 KB, 4-way set associative cache.

Energy Simulator: The energy simulator was modeled after the BERET performance

simulator. During the execution of a trace, it accumulates the energy consumed based on

169

0
10
20
30
40
50
60
70
80

%
 T

ot
al

 e
xe

cu
ti

on
 ti

m
e Traces with 70% loop back Traces with 80% loop back

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

98% 99% 90%

Figure 6.9: Fraction of execution time spent in hot traces.

the number of activations for structures within BERET. For every activation, the average

power for the structure is extracted from the CAD synthesis.

6.4.2 Results

6.4.2.1 Execution Time Coverage of Traces

The fraction of a program’s execution time spent in the hot traces determines the overall

benefits from utilizing the BERET hardware. In our experiments, we used a static compiler

analysis implemented in the Trimaran Compiler to identify hot traces. The results are

shown in Figure6.9. The first set of bars is for traces that loop back in 7 out of the10

cases, whereas the second set is for traces that loop back in 8out of the 10 cases. Almost

all the benchmarks were found to spend at least 15% of their execution time in hot traces,

with many spending as much as 70%. These results are especially encouraging as the

benchmarks from SPEC2006 integer suite, which were compatible with our compilation

flow, exhibit a large trace coverage. Also note that while we use a static compilation flow

in our evaluation, it is our belief that a better hot trace coverage can be garnered by a

dynamic compilation framework. That would translate into even higher energy savings.

170

gberet/figs/p_trace_coverage.eps

0.
28

0.
29

0.
29

0.
27 0.
29

0.
24

0.
25 0.

28 0.
30

0.
25

0.
23

0.
29

0.
27 0.
28

0.
21

0.
20 0.

25 0.
27

0.
25 0.
26

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

N
or

m
al

iz
ed

 E
ne

rg
y

fo
r

tr
ac

es

m
ap

pe
d

to
 B

E
R

E
T

CRAM Access Register File Read Functional Units Memory Access Register File Writeback

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(a) Hot trace energy consumption while they ran on the BERET hardware (normalized to main processor).

0.
80

0.
98

0.
81 0.
86

0.
87

0.
67

0.
40

0.
71

0.
31

0.
74

0.
23 0.

35 0.
51

0.
83

0.
40

0.
37 0.
41

0.
89

0.
79

0.
63

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 E
ne

rg
y

fo
r

th
e

fu
ll

be
nc

hm
ar

k

BERET Energy Baseline Processor Energy

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(b) Full benchmark energy savings while using the BERET hardware in conjunction with the main processor.

Figure 6.10: Energy consumption relative to the baseline.

6.4.2.2 Energy Savings

Figure6.10ashows the normalized energy dissipation for the program regions running

on BERET. The numbers shown also take into account the energyfor transferring data and

control in/out of the BERET hardware. On average, the proposed design reduces energy

by a factor of 4X over a single-issue in-order core. For reference, a carefully designed

ASIC can give anywhere between 10-50X energy reduction for regular codes. However,

unlike BERET, they are not programmable across applications. Further, for irregular codes,

ASICs cannot be expected to reach the same level of efficiencydue to their diverse control

and memory access patterns. The absolute energy dissipation by the BERET hardware was

roughly 50pJ per instruction.

171

gberet/figs/p_caf_energy.eps
gberet/figs/p_full_energy.eps

The breakdown in the bars depicts the energy spent by variousstructures within BERET.

On average, the distribution of energy between structures was found to be relatively uni-

form with the exception of memory access, which also dominates the total energy dissipa-

tion. Energy savings in BERET are focused around the instruction supply (fetch, decode)

and register data supply (fewer registers, reduced temporary variable accesses), with pe-

ripheral benefits from eliminating pipeline latches. Giventhat memory data supply is not

really targeted by the BERET design, it is not surprising that it dissipates the maximum

energy.

Figure6.10bshows the energy numbers for the complete application runs.As expected,

the overall benefits are correlated to the fraction of a program covered by the hot traces6.9.

The program portions that get mapped to the BERET hardware (black) garner significant

energy savings, while the rest of them (white) dissipate thestandard energy on the main

processor. The full benchmark energy savings ranged from 2%on 175.vpr to 77% on cmp,

with an average of 37%.

6.4.2.3 Performance Comparison

The primary objective of the BERET design was to target energy savings in irregular

codes, without sacrificing any performance. Fortunately, the use of a bulk execution model,

using subgraphs instead of isolated instructions, gives a performance edge to BERET in

addition to its energy benefits. Figure6.11ashows the normalized execution time for code

regions mapped to the BERET hardware. Some of the benchmark traces exhibit as high as

29% performance improvement, with an average of 17%. This improvement stems from

the instruction level parallelism (ILP) achieved within anSEB as it executes data flow

172

0.
95

0.
87

0.
78 0.
84

0.
86

0.
86

0.
85

0.
78

0.
71 0.

88

0.
69 0.

81

0.
77 0.

89

0.
74

0.
91

1.
09

0.
71

0.
71 0.

83

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 E
xe

cu
tio

n
tim

e
fo

r
tr

ac
es

 m
ap

pe
d

to
 B

E
R

E
T

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(a) Hot trace execution time while they ran on the BERET hardware(normalized to the main processor).

0.
99

1.
0

0

0.
9

4

0.
97

0.
98

0.
94

0.
88

0.
91

0.
7

2 0.
96

0.
69 0.

82

0.
8

5 0.
9

7

0.
80 0.

93 1.
07

0.
96

0.
9

2

0.
91

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 E
xe

cu
tio

n
tim

e
fo

r
th

e
fu

ll
b

en
ch

m
ar

k

BERET Execution Baseline Processor Execution

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(b) Full benchmark execution time while using the BERET hardware in conjunction with the main processor.

Figure 6.11: Execution time relative to the baseline.

subgraphs. For instance, a subgraph containing twoadd instructions feeding their outputs

to axor instruction would finish in two cycles, resulting in an IPC of1.5. Prior schemes

on custom instruction execution [87, 27, 24, 107] depend on this exact behavior for their

sizable performance improvements.

Figure 6.11b shows the execution time improvement for the entire benchmark exe-

cution. As in the case of energy savings, the performance improvements get diluted in

accordance with the fraction of hot trace coverage. Overall, the execution time for the

benchmarks evaluated is reduced by 9%.

173

gberet/figs/p_caf_performance.eps
gberet/figs/p_full_performance.eps

0.
27

0.
25

0.
22

0.
23 0.

25

0.
21

0.
21

0.
2

1

0.
2

1

0.
22

0.
1

6

0.
23

0.
21 0.

2
5

0.
1

6

0.
18

0.
2

8

0.
19

0.
18 0.

22

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

N
or

m
al

iz
ed

 E
D

P
fo

r
tr

ac
es

m

ap
pe

d t
o

B
ER

ET

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(a) Hot trace EDP while they ran on the BERET hardware (normalized to the main processor).

0.
79

0.
98

0.
7

6

0.
8

3

0.
85

0.
63

0.
3

5

0.
64

0.
2

3

0.
70

0.
16 0.

29

0.
43

0.
80

0.
32

0.
34 0.

44

0.
86

0.
73

0.
57

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 E
D

P
fo

r
fu

ll
be

nc
hm

ar
ks

S
P

E
C

in
t

U
ti

li
ti

e
s

a
n

d
 E

n
cr

y
p

ti
o

n

M
e

d
ia

b
e

n
ch

(b) Full benchmark EDP while using the BERET hardware in conjunction with the main processor.

Figure 6.12: EDP relative to the baseline.

6.4.2.4 Energy-Delay Product Improvement

The last comparative result we investigated is the Energy-Delay Product (EDP). Though

architectural solutions often have the ability to trade performance for energy, improving

both simultaneously is a difficult problem. EDP is a neutral metric for evaluating whether

an architectural solution is an overall win while considering both performance and energy

impact. Figure6.12ashows the EDP improvement for the regions mapped to the BERET

hardware, and Figure6.12bis for the full benchmark execution. Amongst the SPEC integer

benchmarks, 401.bzip2 and 445.gobmk stand out in terms of EDP improvements. Both

these benchmarks spend a majority of their time in the BERET hardware, gathering energy

as well as performance benefits. Across all benchmarks, the average EDP improvement

was observed to be 43%.

174

gberet/figs/p_caf_edp.eps
gberet/figs/p_full_edp.eps

Table 6.1: Comparison to Prior Work.

BERET ASIC [77, 93] Loop Accelerators C-Cores [114] ELM [31] Programmable
ASIP [44] [36, 35, 121] FUs [24, 87]

Energy Savings High V.High V.High High V.High Low
Multiple Applications Yes No No No Yes Yes
Irregular Codes Yes No No Yes No Yes
Area Medium Large Medium Large Large Small
Processor Integration Co-processor Stand-alone Co-processor Stand-alone Stand-alone In-pipeline
Program Scope Traces Full Loops Functions Full Op-chains
Performance Medium V.High High Medium Medium High

6.4.2.5 Area Overhead

The final design of the BERET architecture consisted of a 128 byte CRAM, 8-entry

register file, 6-entry store buffer, a heterogeneous set of 8SEBs, and miscellaneous logic

and interconnects. The total area for this in the 65nm technology node (after place and

route) was0.396mm2. In the same technology node, the area of an ARM1176 core is

1.94mm2.

6.5 Related Work

The architectural designs for performance and energy have been an active area research

for a long time. In this landscape (see Table6.1), BERET stands out by being a general pur-

pose compute engine that provides high energy-efficiency for regular (e.g., media kernels)

as well as irregular codes (e.g., desktop applications and SPEC int). Further, the BERET

design is a low cost engine that can be attached as a co-processor to the main pipeline,

without any elaborate hardware or programming paradigm changes.

Specialized hardware designs [77, 80, 93] and instruction set extensions [44, 107] have

long been a source of performance and energy efficiency for computations such as me-

dia kernels [54], encryption, signal processing [49]. ASIC designs are a good example of

this, and get on the order of 40-50X energy efficiency improvements over simple RISC

175

processors. Loop accelerator (LA) [36] designs are a limited form of ASICs that target

modulo-schedulable, regular loop bodies with highly predictable memory access patterns.

More recently, some flexibility has also been incorporated in these LAs [35, 122, 25] to

generalize them for more than one application. BERET differs from such LAs and tradi-

tional ASICs in two ways: 1) it targetsirregular codes, that are heavily control divergent,

hard-to-parallelize, and not well-suited to modulo scheduling; 2) it is general purpose and

not application specific.

Irregular codes have also been targeted by a recent work titled Conservation Cores (C-

Cores) [114]. C-cores borrows insights from prior spatial computationsolutions [21] and

synthesizes application-specific hardware for energy-efficiency improvements. However,

this scheme requires an independent co-processor for everyapplication, imposing heavy

area and design time costs. In contrast, BERET engine is general purpose and not tied to

any application or domain.

Another approach for irregular codes has been the use of subgraph accelerators like

CCA [24], PRISC [87] to improve their performance. These solutions propose adding a

customizable functional unit within the processor, that can improve performance for a range

of data flow subgraphs encountered during a benchmark run. Unfortunately, the efficiency

gains from these schemes are limited as they target only the back-end energy savings (data

supply). The instruction supply still does all the redundant fetches and decodes. On the

other hand, BERET targets both instruction and data supply savings.

ELM [31] is a programmable processor design dedicated to both instruction and data

supply energy savings. Although it achieves considerable efficiency improvements, the

targeted applications are regular kernels from the embedded systems.

176

The BERET design bears some resemblance to data flow machines, as it breaks down

the recurring traces from a benchmark into constituent dataflow subgraphs. However, the

full blown data flow designs such as WaveScalar [104] and TRIPS [90] are more perfor-

mance centric, and introduce large area and complexity costs. Another related effort is

the Braids [112] architecture, that converts the pipeline back-end into a series of (homo-

geneous) subgraph execution units, called braid executionunits (BEUs). However, unlike

BERET, the Braids architecture is performance centric, andworks towards achieving ag-

gressive issue-widths in simple in-order cores.

Processor energy savings have also been actively pursued bymajor chip manufacturers.

Some of the popular solutions have been Trace Caches [50] introduced by Intel Pentium 4

line of chips, and Loop Stream Detector (LSD) [97] introduced in the recent Intel Nehalem

microarchitecture. Trace Caches buffers the sequence of instructions in a pre-decoded

form, and for the addresses available in Trace Cache, the back-end directly reads them from

there. This removes branch predictor and decoder activation cost, while also garnering

execution speed-up. The LSD design is conceptually very similar. However, instead of

storing traces, it can buffer loops with fewer than 28 micro-ops (compare this to Trace

Cache that can store 12-K micro-ops). For any program loop that can be accommodated

within LSD, instruction fetch and decode energy is saved. Unfortunately, a large fraction

of loops in irregular codes are large, and cannot benefit fromLSD. Further, both these

solutions still incur the energy expenses from inefficiencies in the processor back-end.

Finally, reconfigurable architectures have been used in thepast for performance and

energy improvements. Garp [45] and Chimaera [120] use an FPGA-like substrate to map

instruction sequences. Garp can also handle tight inner-most loops from an application.

177

However, the use of a reconfigurable fabric, and dependence on regular code behavior

limits their overall usability and impact on general purpose energy efficiency.

6.6 Summary

With the growing importance of energy conservation in all domains of computing, there

is a clear need for architects to develop efficiency solutions that apply to general purpose

computing. This is especially true given that the embedded systems approach of design-

ing special purpose hardware does not scale to the requirements of irregular and diverse

code base in general purpose application space. Towards this end, this chapter identified

the challenges posed by irregular codes, and developed BERET, an energy-efficient archi-

tecture for general purpose programs. Further, the BERET architecture is not application

specific and can be programmed to deliver efficiency improvements for virtually any re-

curring trace of instructions. Fundamentally, BERET relies on these recurring traces to cut

down on redundant instruction fetch and decode energy, and abundled execution model to

reduce register file access energy. We applied BERET on a variety of benchmarks from

SPEC integer suite, Linux utilities, and MediaBench. On average, we found that BERET

can reduce energy by a factor of 4X for the program regions it executes. The average energy

savings for the entire application was 37% over a single-issue in-order processor.

Going forward, there are several avenues to improve the capability of BERET archi-

tecture. The current system relies on static compiler analysis to identify traces that can be

mapped to BERET. Using a dynamic compiler analysis can significantly improve the code

regions found, benefiting the energy savings for the full applications. Further, a perfor-

mance side can also be added to BERET design. Presently, the system enforces serial exe-

178

cution of instruction bundles (subgraphs). By relaxing this constraint, a significant amount

of ILP can be derived. Overall, we believe that BERET is well positioned as an execution

engine for energy and performance gains in future computingsystems.

179

CHAPTER VII

Conclusions

Performance has long been the primary design criteria for microprocessor architects. In

the past decade, however, aggressive technology scaling has introduced newer dimensions

and constraints to the processor design challenge. The issues range from designs near-

ing the power/thermal limitations to extreme process variation and wearout failures in the

manufactured parts. The paradigm shift to multicore architectures has countered power and

thermal issues to a certain extent, but the reliability against process variation and wearout

has not benefited by much. Furthermore, good single-thread performance, a requirement

for most applications, has suffered from this transition towards multicore designs. The

confluence of these issues is creating an urgent demand for architectural innovations to

efficiently address them.

The adaptive architectures presented in this thesis are ourattempt in this direction.

As part of this work, we have explored a variety of architectural solutions, supplemented

by compiler techniques, to tackle reliability, performance and energy-efficiency demands

expected in future systems. A common philosophy across all the solutions presented here

has been their ability to adapt and reconfigure as per any static and/or dynamic variations

180

in the targeted system.

The first architecture presented in this thesis, StageNet, tackles the problem of unreli-

able silicon. This work contributes to the area of permanentfault recovery and reconfigura-

tion by proposing a radical architectural shift in processor design. Motivated by the need for

finer-grain defect isolation, networked pipeline stages were identified as an effective trade-

off between cost and reliability enhancement. StageNet is also the first work to introduce

a fully stage-by-stage decoupled pipeline microarchitecture. This allows flexible sharing

of stage level resources between individual cores, withoutany significant performance loss

(less than 10%).

For upcoming technology generations, StageNet can be employed for combating wearout

failures as well as yield improvements. Even in scenarios without failures, the interconnec-

tion flexibility can be exploited to mitigate process variation. For instance, slower and

faster stages can be connected together to balance off theirtiming requirements. Finally,

for more distant future technologies (such as carbon nanotubes), StageNet will likely need

to be used in conjunction with other methods to combat high failure rates.

More generally speaking, the decoupled microarchitectureof StageNet is a unique ad-

dition to the inventory of concepts applied by chip architects today. In addition to fault iso-

lation, the decoupling techniques developed have broader applications. First, the stream-id

concept can be extended for speculation in aggressive superscalar processors. Multiple

execution paths can be tracked and squashed selectively forhigher instruction level paral-

lelism. Second, the bypass caches can be used to avoid globalforwarding logic in deep

pipelines. And finally, macro-ops can be effectively used for power/energy savings as they

amortize the cost of instruction flow throughout the pipeline.

181

Alongside repair, detection of a failure is an equally important reliability challenge.

This was the focus of our adaptive online testing framework.The key insight here was

to leverage low level sensors to assess failure probabilityof various system resources, and

suitably apply the tests. This way, a healthy system uses a fraction of resources for testing

compared to another one nearing its time to failure. This scheme showed as much as 80%

reduction in test cost. Overall, our efforts in reliabilitysuggest that systematic introspection

and architectural flexibility go a long way in saving fault tolerance costs.

While the original StageNet design was a reliability only solution, we soon observed

that its interconnection flexibility is capable of providing more than just fault-tolerance. In

the third architectural solution, named CoreGenesis, we built upon the StageNet design to

form a unified performance-reliability solution. CoreGenesis enhances the base reliability

architecture of StageNet with mechanisms to merge individual pipelines and form wider-

issue processors. This adds a capacity for a higher single-thread performance to the base-

line architecture. The CoreGenesis architecture, apart from achieving key milestones such

as unified performance-reliability solution, configurableperformance for in-order cores, no

centralized structures, etc., also demonstrates that hardware costs (interconnection flexibil-

ity, in this case) can be effectively amortized across multiple challenges.

The last contribution of this thesis deals with the energy-efficiency challenge in the

context of general purpose computing. Traditionally, the approach for improving efficiency

has been through domain-specific and application-specific hardware design. However, this

does not scale to the requirements of irregular and diverse code base in general purpose

application space. In the proposed solution, named BERET, we leverage the recurring

traces in irregular codes, and a bulk execution model to develop an energy-efficient co-

182

processing engine. The use of recurring traces allows BERETto cut down on redundant

instruction fetch and decode energy, while the bulk execution model reduces register file

accesses. With the major sources of inefficiencies covered in general purpose computing,

BERET garners up to 4X savings for targeted program regions.Further, this demonstrates

that a notable fraction of processor energy spending can be eliminated for program regions

that exhibit (temporal) phases of regular and predictable behavior.

To conclude, it is our belief that future architectures haveto look beyond evolutionary

changes to sustain the benefits from technology scaling. Thesolutions presented in this

thesis are a bold step forward in that direction.

183

BIBLIOGRAPHY

184

BIBLIOGRAPHY

[1] M. Agarwal, B. Paul, and S. Mitra. Circuit failure prediction and its application to

transistor aging. InProc. of the 2007 IEEE VLSI Test Symposium, Apr. 2007.84, 91

[2] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable isolation:

building high availability systems with commodity multi-core processors. InProc.

of the 34th Annual International Symposium on Computer Architecture, pages 470–

481, 2007.4, 15, 20, 47, 55, 83, 114

[3] Alpha. 21364 family, 2001. http://www.alphaprocessors.com/21364.htm.124

[4] AMD. Amd 12-core opteron 6174 processor, 2011.

http://www.amd.com/us/products/server/processors/6000-series-

platform/Pages/6000-series-platform.aspx.2

[5] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, andG. Snider. Teramac –

configurable custom computing. InProc. of the 1995 International Symposium on

FPGA’s for Custom Computing Machines, pages 32–38, 1995.47, 48

[6] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resource sav-

ings of utility computing models, Dec. 2002. HP Laboratories,

http://www.hpl.hp.com/techreports/2002/HPL-2002-339.html. 79

185

[7] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcache: Armoring cache architec-

tures in high defect density technologies. InProc. of the 42nd Annual International

Symposium on Microarchitecture, pages 100–110, 2009.116

[8] ARM. Arm11.

http://www.arm.com/products/CPUs/families/ARM11Family.html. 23, 168

[9] ARM. Arm9. http://www.arm.com/products/CPUs/families/ARM9Family.html.

116

[10] T. Austin. Diva: a reliable substrate for deep submicron microarchitecture design.

In Proc. of the 32nd Annual International Symposium on Microarchitecture, pages

196–207, 1999.84

[11] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for quad-cluster,

dynamically-scheduled, superscalar processors. InProc. of the 33rd Annual Inter-

national Symposium on Microarchitecture, pages 337–347, 2000.113

[12] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of two systems.

IEEE Transactions on Dependable and Secure Computing, 1(1):87–96, 2004.47,

114

[13] K. Batcher and C. Papachristou. Instruction randomization self test for processor

cores. InProc. of the 1999 IEEE VLSI Test Symposium, page 34, Washington, DC,

USA, 1999. IEEE Computer Society.88

[14] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and

186

J. Smullen. Nonstop advanced architecture. InInternational Conference on De-

pendable Systems and Networks, pages 12–21, June 2005.15, 47

[15] K. Bernstein. Nano-meter scale cmos devices (tutorialpresentation), 2004.1, 13

[16] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibrating online wearout de-

tection. InProc. of the 40th Annual International Symposium on Microarchitecture,

pages 109–120, 2007.3, 14, 41, 53, 69, 84, 87, 91

[17] S. Borkar. Designing reliable systems from unreliablecomponents: The challenges

of transistor variability and degradation.IEEE Micro, 25(6):10–16, 2005.1, 13, 51

[18] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating hard faults in mi-

croprocessor array structures. InProc. of the 2004 International Conference on

Dependable Systems and Networks, page 51, 2004.4, 15, 47

[19] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for online diagnosis of hard

faults in microprocessors. InProc. of the 38th Annual International Symposium on

Microarchitecture, pages 197–208, 2005.3, 14, 47

[20] D. Brooks, V. Tiwari, and M. Martonosi. A framework for architectural-level power

analysis and optimizations. InProc. of the 27th Annual International Symposium on

Computer Architecture, pages 83–94, June 2000.140

[21] M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Goldstein. Spatial computa-

tion. In 12th International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 14–26, 2004.176

187

[22] L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalable software-based self-test

methodology for programmable processors.Proc. of the 40th Design Automation

Conference, pages 548–553, June 2003.88

[23] A. Christou.Electromigration and Electronic Device Degradation. John Wiley and

Sons, Inc., 1994.3, 14

[24] N. Clark et al. Application-specific processing on a general-purpose core via trans-

parent instruction set customization. InProc. of the 37th Annual International Sym-

posium on Microarchitecture, pages 30–40, Dec. 2004.149, 173, 175, 176

[25] N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualized execution accelerator for

loops. InProc. of the 35th Annual International Symposium on Computer Architec-

ture, pages 389–400, June 2008.149, 176

[26] N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalable subgraph mapping for

acyclic computation accelerators. InProc. of the 2006 International Conference on

Compilers, Architecture, and Synthesis for Embedded Systems, pages 147–157, Oct.

2006.33

[27] N. Clark, H. Zhong, and S. Mahlke. Processor acceleration through automated in-

struction set customization. InProc. of the 36th Annual International Symposium

on Microarchitecture, pages 129–140, Dec. 2003.173

[28] K. Constantinides, O. Mutlu, T. Austin, and V. Bertacco. Software-based online

detection of hardware defects: Mechanisms, architecturalsupport, and evaluation.

188

In Proc. of the 40th Annual International Symposium on Microarchitecture, pages

97–108, 2008.69, 84

[29] K. Constantinides, S. Plaza, J. A. Blome, B. Zhang, V. Bertacco, S. Mahlke,

T. Austin, and M. Orshansky. Bulletproof: A defect-tolerant CMP switch architec-

ture. InProc. of the 12th International Symposium on High-Performance Computer

Architecture, pages 3–14, Feb. 2006.19, 47

[30] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Defect tolerance on

the teramac custom computer. InProc. of the 5th IEEE Symposium on FPGA-Based

Custom Computing Machines, pages 116–123, 1997.47

[31] W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R. Harting, V. Parikh, J. Park, and

D. Sheffield. Efficient embedded computing.IEEE Computer, 41(7):27–32, July

2008.150, 151, 175, 176

[32] R. Das, I. L. Markov, and J. P. Hayes. On-chip test generation using linear subspaces.

In Proc. of the 2006 IEEE European Test Symposium, pages 111–116, Washington,

DC, USA, 2006. IEEE Computer Society.88

[33] J. Ellis. Bulldog: A Compiler for VLIW Architectures. MIT Press, Cambridge, MA,

1985.113, 131, 134

[34] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw,

T. Austin, and T. Mudge. Razor: A low-power pipeline based oncircuit-level timing

speculation. InProc. of the 36th Annual International Symposium on Microarchi-

tecture, pages 7–18, 2003.69

189

[35] K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging thecomputation gap be-

tween programmable processors and hardwired accelerators. In Proc. of the 15th

International Symposium on High-Performance Computer Architecture, pages 313–

322, Feb. 2009.6, 149, 153, 175, 176

[36] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Compiler-directed synthesis of multi-

function loop accelerators. InProc. of the 2005 Workshop on Application Specific

Processors, pages 91–98, Sept. 2005.175, 176

[37] K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The multicluster architecture: Re-

ducing cycle time through partitioning. InProc. of the 30th Annual International

Symposium on Microarchitecture, pages 149–159, Dec. 1997.113

[38] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Maestro: Orchestrating lifetime reli-

ability in chip multiprocessors. InProc. of the 2010 International Conference on

High Performance Embedded Architectures and Compilers, pages 186–200, Jan.

2010.47

[39] J. Friedrich et al. Desing of the power6 microprocessor, Feb. 2007. InProc. of

ISSCC. 87

[40] D. Friendly, S. Patel, and Y. Patt. Putting the fill unit to work: Dynamic optimiza-

tions for trace cache microprocessors. InProc. of the 25th Annual International

Symposium on Computer Architecture, pages 173–181, June 1998.150, 154

[41] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Adaptive online testing for efficient

190

hard fault detection. InProc. of the 2009 International Conference on Computer

Design, 2009.69

[42] S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Stageweb: Interweaving pipeline

stages into a wearout and variation tolerant cmp fabric. InProc. of the 2010 Inter-

national Conference on Dependable Systems and Networks, June 2010.129

[43] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlke. The stagenet fabric for

constructing resilient multicore systems. InProc. of the 41st Annual International

Symposium on Microarchitecture, pages 141–151, 2008.52, 75, 83, 86, 89, 97, 99,

107, 108, 110, 111, 119, 120, 123, 132, 136, 137, 142

[44] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding sources of ineffi-

ciency in general-purpose chips. InProc. of the 37th Annual International Sympo-

sium on Computer Architecture, pages 37–47, 2010.175

[45] J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor with a reconfigurable

coprocessor. InProc. of the 5th IEEE Symposium on Field-Programmable Custom

Computing Machines, pages 12–21, Apr. 1997.177

[46] M. D. Hill and M. R. Marty. Amdahl’s law in the multicore era. IEEE Computer,

41(1):33–38, 2008.107

[47] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, and S. Ghosh. Hotspot:

A compact thermal modeling method for cmos vlsi systems.IEEE Transactions on

191

Very Large Scale Integration (VLSI) Systems, 14(5):501–513, May 2006.18, 72,

136

[48] H. Inoue, Y. Li, and S. Mitra. Vast: Virtualization-assisted concurrent autonomous

self-test. InProc. of the 2008 International Test Conference, Sept. 2008.84

[49] T. Instruments. Tms320c2x user’s guide, Jan. 1993.175

[50] Intel. Intel xeon processor with 512 kb l2 cache, 2004.177

[51] Intel. 6-core intel core i7-970 processor, 2011.

http://ark.intel.com/Product.aspx?id=47933.2

[52] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommodating

software diversity in chip multiprocessors. InProc. of the 34th Annual International

Symposium on Computer Architecture, pages 186–197, 2007.10, 107, 108, 111,

120, 136

[53] ITRS. International technology roadmap for semiconductors 2008, 2008.

http://www.itrs.net/.x, 56, 73, 136

[54] H. Kalva. The H.264 video coding standard.IEEE MultiMedia, 13(4):86–90, 2006.

175

[55] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-mechanism reliability mod-

eling and management in dynamic systems.IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 16(4):476–487, Apr. 2008.91, 101

192

[56] E. Karl, P. Singh, D. Blaauw, and D. Sylvester. Compact in situ sensors for moni-

toring nbti and oxide degradation. In2008 IEEE International Solid-State Circuits

Conference, Feb. 2008.41, 53, 69, 84, 85, 87, 91, 102

[57] E. Karl, D. Sylvester, and D. Blaauw. Analysis of system-level reliability factors and

implications on real-time monitoring methods for oxide breakdown device failures.

In Proc. of the 2008 International Symposium on Quality of Electronic Design, pages

391–395, Washington, DC, USA, 2008. IEEE Computer Society.85, 91

[58] V. Kathail, M. Schlansker, and B. Rau. HPL-PD architecture specification: Version

1.1. Technical Report HPL-93-80(R.1), Hewlett-Packard Laboratories, Feb. 2000.

42

[59] T. Kgil, S. D’Souza, A. Saidi, N. Binkert, R. Dreslinski, T. Mudge, S. Reinhardt, and

K. Flautner. Picoserver: using 3d stacking technology to enable a compact energy

efficient chip multiprocessor.ACM SIGPLAN Notices, 41(11):117–128, 2006.13,

16

[60] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,D. Gulati, D. Burger,

and S. W. Keckler. Composable lightweight processors. InProc. of the 40th Annual

International Symposium on Microarchitecture, pages 381–393, Dec. 2007.107,

111, 112, 115

[61] A. KleinOsowski, K. KleinOsowski, and V. Rangarajan. The recursive nanobox pro-

cessor grid: A reliable system architecture for unreliablenanotechnology devices.

193

In International Conference on Dependable Systems and Networks, page 167, June

2004.48

[62] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-way multithreaded

SPARC processor.IEEE Micro, 25(2):21–29, Feb. 2005.13, 16

[63] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, andD. M. Tullsen. Single-

ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power

Reduction. InProc. of the 36th Annual International Symposium on Microarchitec-

ture, pages 81–92, Dec. 2003.5, 107, 108, 111

[64] R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-core chip multiprocessing. InProc.

of the 37th Annual International Symposium on Microarchitecture, pages 195–206,

2004.73, 136

[65] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and S. Amaras-

inghe. Space-time scheduling of instruction-level parallelism on a RAW machine.

In Eighth International Conference on Architectural Supportfor Programming Lan-

guages and Operating Systems, pages 46–57, Oct. 1998.43

[66] X. Liang and D. Brooks. Mitigating the impact of processvariations on processor

register files and execution units. InProc. of the 39th Annual International Sympo-

sium on Microarchitecture, pages 504–514, 2006.54, 70

[67] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacing 6t srams with 3t1d drams

in the l1 data cache to combat process variability.IEEE Micro, 28(1):60–68, 2008.

81

194

[68] Y. Lin et al. Soda: A low-power architecture for software radio. InProc. of the 33rd

Annual International Symposium on Computer Architecture, pages 89–101, June

2006.6

[69] T.-H. Lu, C.-H. Chen, and K.-J. Lee. A hybrid software-based self-testing method-

ology for embedded processor. In2008 ACM symposium on Applied computing,

pages 1528–1534, New York, NY, USA, 2008. ACM.88, 89, 93, 102, 103

[70] W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-

mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.

Lavery. The superblock: An effective technique for vliw andsuperscalar compila-

tion. Journal of Supercomputing, 7(1):229–248, May 1993.150, 154, 164

[71] A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, comprehensive error detec-

tion in simple cores.IEEE Micro, 28(1):52–59, 2008.3, 14

[72] S. Mishra and M. P. adn Douglas L. Goodman. In-situ sensors for product reliability

monitoring, 2006. http://www.ridgetop-group.com/.87

[73] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Optimizing nuca organi-

zations and wiring alternatives for large caches with cacti6.0. InIEEE Micro, pages

3–14, 2007.169

[74] H. H. Najaf-abadi and E. Rotenberg. Architectural contesting. InProc. of the 15th

International Symposium on High-Performance Computer Architecture, pages 189–

200, 2009.107, 113

195

[75] U. Nawathe et al. An 8-core, 64-thread, 64-bit, power efficient SPARC SoC (Nia-

gara2), Feb. 2007. InProc. of ISSCC. 2

[76] OpenCores. OpenRISC 1200, 2006. http://www.opencores.org/projects.cgi/web/

or1k/openrisc1200.17, 23, 71, 72, 135

[77] M. Papadonikolakis et al. Efficient high-performance ASIC implementation of

JPEG-LS encoder. InProc. of the 2007 Design, Automation and Test in Europe,

pages 159–164, Apr. 2007.6, 149, 153, 175

[78] A. Paschalis and D. Gizopoulos. Effective software-based self-test strategies for

on-line periodic testing of embedded processors.IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 24(1):88–99, Jan. 2005.88

[79] S. J. Patel and S. S. Lumetta. rePLay: A hardware framework for dynamic opti-

mization. IEEE Transactions on Computers, 50(6):590–608, June 2001.150, 154,

162

[80] P. G. Paulin and J. P. Knight. Force-directed scheduling for the behavorial synthesis

of ASICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 8(6):661–679, June 1989.6, 149, 153, 175

[81] L.-S. Peh and W. Dally. A delay model and speculative architecture for pipelined

routers. InProc. of the 7th International Symposium on High-Performance Com-

puter Architecture, pages 255–266, Jan. 2001.44, 51, 54

[82] M. Postiff, D. Greene, S. Raasch, and T. Mudge. Integrating superscalar proces-

196

sor components to implement register caching. InProc. of the 2001 International

Conference on Supercomputing, pages 348–357, 2001.40

[83] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core sal-

vaging in a multi-core processor for hard-error tolerance.In Proc. of the 36th Annual

International Symposium on Computer Architecture, June 2009.47, 48

[84] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: cost-effective architectural support

for rollback recovery in shared-memory multiprocessors.Proc. of the 29th Annual

International Symposium on Computer Architecture, pages 111–122, 2002.83, 90,

94, 105

[85] PTM. Predictive technology model. http://ptm.asu.edu/. 136

[86] J. Rabaey, A. Chandrakasan, and B. Nikolic.Digital Integrated Circuits, 2nd Edi-

tion. Prentice Hall, 2003.73

[87] R. Razdan and M. D. Smith. A high-performance microarchitecture with hardware-

programmable function units. InProc. of the 27th Annual International Symposium

on Microarchitecture, pages 172–180, Dec. 1994.149, 173, 175, 176

[88] B. F. Romanescu and D. J. Sorin. Core cannibalization architecture: Improving life-

time chip performance for multicore processor in the presence of hard faults. In

Proc. of the 17th International Conference on Parallel Architectures and Compila-

tion Techniques, 2008.48, 107, 108, 111

[89] P. Salverda and C. Zilles. Fundamental performance constraints in horizontal fu-

197

sion of in-order cores. InProc. of the 14th International Symposium on High-

Performance Computer Architecture, Feb. 2008.111, 112, 119, 130

[90] K. Sankaralingam et al. Exploiting ILP, TLP, and DLP using polymorphism in

the TRIPS architecture. InProc. of the 30th Annual International Symposium on

Computer Architecture, pages 422–433, June 2003.177

[91] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.

Varius: A model of process variation and resulting timing errors for microarchitects.

In IEEE Transactions on Semiconductor Manufacturing, pages 3–13, Feb. 2008.51,

54, 72, 101

[92] S. Satpathy, Z. Foo, B. Giridhar, D. Sylvester, T. Mudge, and D. Blaauw. A 1.07

tbit/s 128128 swizzle network for simd processors. InProc. of the 2010Symposium

on VLSI Technology, 2010.129

[93] R. Schreiber et al. PICO-NPA: High-level synthesis of nonprogrammable hardware

accelerators.Journal of VLSI Signal Processing, 31(2):127–142, 2002.6, 149, 153,

175

[94] L. Shang, L. Peh, A. Kumar, and N. K. Jha. Temperature-aware on-chip networks.

IEEE Micro, 2006.43

[95] P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Exploiting microarchitectural

redundancy for defect tolerance. InProc. of the 2003 International Conference on

Computer Design, page 481, Oct. 2003.4, 13, 15, 19, 47, 83

198

[96] D. Siewiorek and R. Swarz.Reliable Computer Systems: Design and Evaluation,

3rd Edition. AK Peters, Ltd., 1998.3, 14

[97] R. Singhal. Inside intel next generation nehalem microarchitecture, 2008.

http://software.intel.com/file/18976.177

[98] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. InProc.

of the 22nd Annual International Symposium on Computer Architecture, pages 414–

425, June 1995.111, 112

[99] D. Sorin, M. Martin, M. Hill, and D. Wood. Safetynet: improving the availability of

shared memory multiprocessors with global checkpoint/recovery. Proc. of the 29th

Annual International Symposium on Computer Architecture, pages 123–134, 2002.

83

[100] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tol-

erance: A Historical Perspective.IBM Journal of Research and Development,

43(6):863–873, 1999.47

[101] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Thecase for lifetime reliability-

aware microprocessors. InProc. of the 31st Annual International Symposium on

Computer Architecture, pages 276–287, June 2004.18, 20, 136

[102] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Theimpact of technology scaling

on lifetime reliability. InProc. of the 2004 International Conference on Dependable

Systems and Networks, pages 177–186, June 2004.101

199

[103] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting structural duplica-

tion for lifetime reliability enhancement. InProc. of the 32nd Annual International

Symposium on Computer Architecture, pages 520–531, June 2005.4, 13, 15, 47, 72

[104] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Wavescalar. InProc. of

the 36th Annual International Symposium on Microarchitecture, page 291. IEEE

Computer Society, 2003.177

[105] D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adaptive self-healing architecture

for unpredictable silicon.IEEE Journal of Design and Test, 23(6):484–490, 2006.

4, 15, 20, 47, 114

[106] D. Tarjan, M. Boyer, and K. Skadron. Federation: Repurposing scalar cores for out-

of-order instruction issue. InProc. of the 45th Design Automation Conference, June

2008.10, 107, 111, 112

[107] Tensilica Inc. Diamond Standard Processor Core Family Architecture, July 2007.

http://www.tensilica.com/pdf/Diamond WP.pdf.6, 149, 173, 175

[108] R. Teodorescu and J. Torrellas. Variation-aware application scheduling and power

management for chip multiprocessors. InProc. of the 35th Annual International

Symposium on Computer Architecture, pages 363–374, June 2008.54

[109] Tilera. Tile64 processor - product brief, 2008. http://www.tilera.com/

pdf/. 2

[110] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores.

200

In Proc. of the 41st Annual International Symposium on Microarchitecture, pages

129–140, Dec. 2008.81

[111] Trimaran. An infrastructure for research in ILP, 2000. http://www.trimaran.org/.

42, 134, 169

[112] F. Tseng and Y. N. Patt. Achieving out-of-order performance with almost in-order

complexity. InProc. of the 35th Annual International Symposium on Computer

Architecture, pages 3–12, June 2008.177

[113] M. Vachharajani, N. Vachharajani, D. A. Penry, J. A. Blome, S. Malik, and D. I.

August. The liberty simulation environment: A deliberate approach to high-level

system modeling.ACM Transactions on Computer Systems, 24(3):211–249, 2006.

29, 42, 71, 135

[114] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,

S. Swanson, and M. B. Taylor. Conservation cores: reducing the energy of mature

computations. In18th International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 205–218, 2010.2, 5, 148, 149,

175, 176

[115] K. Wang and C.-K. Wu. Design and implementation of fault-tolerant and cost effec-

tive crossbar switches for multiprocessor systems.IEE Proceedings on Computers

and Digital Techniques, 146(1):50–56, Jan. 1999.68, 75

[116] C. Weaver and T. M. Austin. A fault tolerant approach tomicroprocessor design. In

201

Proc. of the 2001 International Conference on Dependable Systems and Networks,

pages 411–420, Washington, DC, USA, 2001. IEEE Computer Society. 3, 14

[117] D. Wilson. The stratus computer system.Resilient Computing Systems, 1:208–231,

1986.47

[118] E. Wu, J. M. McKenna, W. Lai, E. Nowak, and A. Vayshenker. Interplay of voltage

and temperature acceleration of oxide breakdown for ultra-thin gate oxides.Solid-

State Electronics, 46:1787–1798, 2002.3, 14

[119] T. T. Ye, L. Benini, and G. D. Micheli. Analysis of powerconsumption on switch

fabrics in network routers. InProc. of the 39th Design Automation Conference,

pages 524–529, 2002.129, 136

[120] Z. A. Ye et al. CHIMAERA: a high-performance architecture with a tightly-coupled

reconfigurable functional unit. InProc. of the 27th Annual International Symposium

on Computer Architecture, pages 225–235, 2000.177

[121] S. Yehia et al. Exploring the design space of LUT-basedtransparent accelerators. In

Proc. of the 2005 International Conference on Compilers, Architecture, and Synthe-

sis for Embedded Systems, pages 11–21, Sept. 2005.175

[122] S. Yehia, S. Girbal, H. Berry, and O. Temam. Reconciling specialization and flexi-

bility through compound circuits. InProc. of the 15th International Symposium on

High-Performance Computer Architecture, pages 277–288, 2009.6, 149, 153, 176

[123] S. Zafar et al. A model for negative bias temperature instability (nbti) in oxide and

high k pfets. InSymposium on VLSI Technology, pages 45–50, 2004.3

202

[124] J. Zeigler. Terrestrial cosmic ray intensities.IBM Journal of Research and Develop-

ment, 42(1):117–139, 1998.3, 14

203

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Technology Challenges
	The Reliability Challenge
	The Performance Challenge
	The Energy-Efficiency Challenge

	Adaptive Architectures
	Adaptivity for Defect Isolation
	Adaptivity for Online Testing
	Adaptivity for Performance
	Adaptivity for Energy Efficiency

	Contributions
	Organization

	The StageNet Fabric for Constructing Resilient Chip Multiprocessors
	Introduction
	Reconfiguration Granularity
	Experimental Setup
	Granularity Trade-offs
	Harnessing Stage-level Reconfiguration

	The StageNetSlice Architecture
	Overview
	Functional Needs
	Performance Enhancement
	Stage Modifications

	The StageNet Multicore
	Stage Borrowing
	Stage Sharing
	Fault Tolerance and Reconfiguration

	Results and Discussion
	Simulation Setup
	Simulation Results

	Related Work
	Summary

	A Scalable Architecture for Wearout and Process Variation Tolerance
	Introduction
	Background
	Limitations of SN
	Impact of Process Variation and Defects

	The StageWeb Architecture
	Interweaving Range
	Interweaving Candidates
	Configuration Algorithms
	Interconnection Reliability
	Variation Tolerance
	System Level Issues

	Evaluation
	Methodology
	Microarchitectural Simulation
	Wearout and Process Variation Modeling
	Area, Power and Timing
	CMP Simulations

	StageWeb Design Space
	Cumulative Work
	Throughput Behavior
	Variation Mitigation
	Power Saving
	Yield Analysis

	Related Work
	Summary

	Adaptive Online Testing for Efficient Hard Fault Detection
	Introduction
	Background
	Wearout Sensors
	Online Testing

	Adaptive Online Testing
	Adaptive Test Framework
	Adaptive Testing for StageNet
	StageNet CMP Fabric
	Adaptive Testing

	Evaluation
	Methodology
	Results

	Summary

	Erasing Core Boundaries for Robust and Configurable Performance
	Introduction
	Related Work
	Single-Thread Performance Techniques
	Multicore Reliability Solutions
	Combining Performance and Reliability

	The CoreGenesis Architecture
	Overview
	Challenges
	Microarchitectural Details
	Control Flow
	Register Data Flow
	Memory Data Flow
	Replay Mechanism

	Interconnection
	Instruction Steering
	Configuration Manager
	Instruction Flow Example

	Evaluation
	Methodology
	Single-thread performance
	Energy-efficiency Comparison
	Multi-workload throughput
	Fault tolerance
	Area overheads
	Power overheads

	Summary

	Bundled Execution of Recurring Traces for Energy-Efficient General Purpose Processing
	Introduction
	A Case for Energy Efficient Trace Execution
	Pipeline Energy Distribution
	Opportunities for Energy Saving
	Limitations for Irregular Codes
	Energy Efficiency for Irregular Codes

	The BERET Architecture
	Overview
	Hardware Design
	Basic Microarchitecture
	Handling Trace Exits
	Processor Interfacing

	Mapping Traces to BERET
	Design Space Exploration: SEBs and other parameters
	Determining SEB Collection
	Microarchitectural Parameters

	Evaluation
	Methodology
	Results
	Execution Time Coverage of Traces
	Energy Savings
	Performance Comparison
	Energy-Delay Product Improvement
	Area Overhead

	Related Work
	Summary

	Conclusions
	BIBLIOGRAPHY

