Adaptive Architectures for Robust
and Efficient Computing

by

Shantanu Gupta

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2011

Doctoral Committee:

Associate Professor Scott A. Mahlke, Chair
Professor Todd M. Austin

Associate Professor Valeria M. Bertacco
Assistant Professor Zhengya Zhang
Michael D. Powell, Intel Corporation

© Shantanu Gupta 2011
All Rights Reserved

To my parents.

ACKNOWLEDGEMENTS

First, | would like to express my sincerest gratitude to myisak, Professor Scott
Mahlke, for his mentorship and unwavering support throughray doctoral research.
Scott’s enthusiasm for research and technical acumen legredn inspiration to everyone
in our group, and | consider myself truly fortunate to haveked under his able guidance.

| would also like to thank my dissertation committee, Pret@slodd Austin, Professor
Valeria Bertacco, Dr. Michael Powell, and Professor Zhengitang, for their time and
effort in reviewing my thesis, holding candid discussiobhswa my research, and encour-
aging me throughout this process. | have known Michael simgenternship at Intel in the
summer of 2008, and | must thank him for adding an industeaspective to my research,
and giving me every opportunity to learn details of Inte¥sgessors.

| am also indebted to my close research colleagues JasoreB®huguang Feng and
Amin Ansari. It has been a real pleasure working with all adrth and | can not imagine
having this thesis in its current form without their suppddson gave me the original idea
of the StageNet architecture, which forms the basis of mgisheShuguang and Amin
have been with me throughout this process, sitting pagightiough our long meetings
with Scott, giving excellent research insights, and alwagmg there for any help with

infrastructure development and writing papers.

| consider myself truly lucky to have worked with such inigdint and vibrant set of
people in our research lab, CCCP. All of you made coming te®ffjreat fun. Thank you
Nathan Clark, Rajiv Ravindran, Michael Chu, Hongtao Zhdf&yin Fan, Manjunath Kud-
lur, and Hyunchul Park for setting up a lively culture witldar group. | want to especially
thank my colleagues who surrounded me during the later hahfyoPhD: Ganesh Dasika,
Amir Hormati, Mark Woh (pseudo-CCCP), Mojtaba Mehrara, §fm Park, Hyoun Kyu
Cho, Jeff Hao, Po-Chun Hsu, Mehrzad Samadi, Gaurav ChadhArgkit Sethia.

My stay in Michigan has been enriched by a great set of friamdisroommates that sur-
rounded me. | would like to thank Sudherssen Kalaiselvamikinore Gandikota, Kavi-
raj Chopra, Sanjay Pant, Visvesh Sathe, Gauri Sathe, Madewvdlahato, Vivek Joshi,
Prashant Singh, Ashwini Kumar, Anurag Tripathi, Naveen @uprushal Chokshi and
Abhishek Kumar, who have all been my roommates at one poitother. | can not thank
you all enough for being great company, making excellentif@amd taking care of me in
times of need. Anurag, thank you for searching and playihtihake excellent movies and
television shows, that formed a bulk of our evening ententeint. My gratitude also goes
to countless other friends at Michigan, whom | have failechention in paragraphs above.

Finally and most importantly, my family deserves a majottigmde. My brothers were
a constant source of encouragement, and made all my vasatidmdia truly memorable.
And above all, | really appreciate the unconditional loved anpport of my parents. They

never let me doubt my abilities, and have been a guiding tigloughout this process.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS ii
LISTOFFIGURES iX
LISTOFTABLES XV
ABSTRACT e XVi
CHAPTER
[. Introduction 1
1.1 Technology Challenges 2
1.1.1 The Reliability Challenge. 3
1.1.2 The Performance Challenge. 4
1.1.3 The Energy-Efficiency Challenge 5
1.2 Adaptive Architectures. L. 6
1.2.1 Adaptivity for Defect Isolation 7
1.2.2 Adaptivity for Online Testing. 8
1.2.3 Adaptivity for Performance. 9
1.2.4 Adaptivity for Energy Efficiency 10
1.3 Contributions 11
1.4 Organization. e 11
[I. The StageNet Fabric for Constructing
Resilient Chip Multiprocessors. 13
2.1 Introduction. 13
2.2 Reconfiguration Granularity 17
2.2.1 ExperimentalSetup., 17
2.2.2 Granularity Trade-offs. 18
2.2.3 Harnessing Stage-level Reconfiguration 21

2.3

2.4

2.5

2.6
2.7

The StageNetSlice Architecture. 23
231 Overview. e 23
2.3.2 FunctionalNeeds 25
2.3.3 Performance Enhancement 29
2.3.4 Stage Modifications. 36

The StageNet Multicore 37
241 StageBorrowing. 39
242 StageSharing. 40
2.4.3 Fault Tolerance and Reconfiguration 41

Resultsand Discussion 41
25.1 SimulationSetup 41
2.5.2 SimulationResults 43

RelatedWork 46

SUMMaAry. o o e e e e e 49

[1l. A Scalable Architecture for Wearout and Process Variation Tolerance. 50

3.1 Introduction. 50
3.2 Background. 52
3.2.1 Limitationsof SN 53
3.2.2 Impact of Process Variation and Defects. 54
3.3 The StageWeb Architecture. 56
3.3.1 InterweavingRange. 57
3.3.2 Interweaving Candidates. 59
3.3.3 Configuration Algorithms. 63
3.3.4 Interconnection Reliability 67
3.3.5 \VariationTolerance 68
3.3.6 SystemlLevellssues 69
3.4 Evaluation. 70
3.4.1 Methodology. 70
3.4.2 StageWeb DesignSpace. 74
3.43 CumulativeWork 75
3.4.4 ThroughputBehavior. 76
3.4.5 \Variation Mitigation L. 78
346 PowerSaving 79
3.4.7 YieldAnalysis., 79
35 RelatedWork 81
3.6 Summary 82
IV. Adaptive Online Testing for Efficient Hard Fault Detection 83
4.1 Introduction. 83
42 Background. 86
42.1 WearoutSensors 87
422 OnlineTesting. 88

Vi

4.3 Adaptive OnlineTesting 89

4.3.1 Adaptive Test Framework 89

4.3.2 Adaptive Testing for StageNet. 97
4.4 Evaluation. 101
441 Methodology. 101
442 Results. 103
45 Summary . . . o. o e e 105

V. Erasing Core Boundaries for Robust

and Configurable Performance. 107
5.1 Introduction. 107
52 RelatedWork 111

5.2.1 Single-Thread Performance Techniques. 111

5.2.2 Multicore Reliability Solutions 113

5.2.3 Combining Performance and Reliability. 114

5.3 The CoreGenesis Architecture 115
531 Overview. 115

532 Challenges., 118

5.3.3 Microarchitectural Details 120

5.3.4 Interconnection 128

5.3.5 Instruction Steering. 130

5.3.6 Configuration Manager. 132

5.3.7 Instruction Flow Example. 132
54 Evaluation. 134
5.4.1 Methodology. 134

5.4.2 Single-thread performance. 137

5.4.3 Energy-efficiency Comparisan. 140

5.4.4 Multi-workload throughput 141

545 Faulttolerance. 143

54.6 Areaoverheads. 145

547 Poweroverheads 145

55 Summary 146

VI. Bundled Execution of Recurring Traces for Energy-Efficient General

Purpose Processing. e 148
6.1 Introduction. 148
6.2 A Case for Energy Efficient Trace Execution 151

6.2.1 Pipeline Energy Distribution 151
6.2.2 Opportunities for Energy Saving. 153
6.2.3 Limitations for Irregular Codes. 153
6.2.4 Energy Efficiency for Irregular Codes. 154
6.3 The BERET Architecture. 156
6.3.1 Overview. 156

Vil

6.3.3 Mapping TracestoBERET. 164
6.3.4 Design Space Exploration: SEBs and other paramet&ég&6

6.4 Evaluation. 168

6.4.1 Methodology. 168

6.42 Results. 0. 170

6.5 RelatedWork 175

6.6 Summary 178

VII. Conclusions e 180
BIBLIOGRAPHY 184

viii

Figure

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

LIST OF FIGURES

OpenRisc 1200 embedded microprocessor.
Gain in MTTF from the addition of cold spares at the grarity of
micro-architectural modules, pipeline stages, and psmresore. The
gains shown are cumulative, and spare modules are addeatédenith
markers) in the order they are expected tofail.
A StageNet assembly: group of slices connected togetBach Sta-
geNetSlice (SNS) is equivalent to a logical processing.cotes figure
shows M, N-stage slices. Broken stages can be easily isotgteout-
ing around them. Crossbar switch spares can also be magdtainthe
pipeline stage boundaries in order to tolerate rare, aflmsisible, switch
failures.
A StageNetSlice (SNS) pipeline. Stages are intercdadagsing a full
crossbar switch. The shaded portions highlight modulet dha not
present in a regular in-order pipeline.
SNS performance normalized to the baseline. Differenfigurations of
SNS are evaluated, both with and without the bypass cache.slbhv-
down reduces as the bypass cache size is increased (fewersisge
stalls).
A SNS pipeline, with variation in the transmission baidttv. The per-
formance improves with the increasing transmission badthyiand al-
most matches the base pipeline at unlimited bandwidth..
Structure ofamacro-op (MOP).
SNS with a bypass cache and the capability to handle McPspared
to the baseline in-order pipeline. The first bars are for M@Pssfixed
at 1, while the other bars have constraint on the number efifig and
live-outs..
Performance comparison with different budgets for sivas widths. A
budget of 150-bit implies that all interfaces can have a dostbwidth

of 150. The first bar is for static assignment of 64-bit cresskat all
interfaces, which is equivalent to a 320-kiti(x 5) budget. Optimized
assignment of 300-bits is able to deliver better perforreghan 320-bit
staticassignment.

24

2.10 Pipeline stages of SNS. Gray blocks highlight the mesladded for

transforming a traditional pipelineinto SNS.. 36
2.11 A SN multicore formed using four SNSs. As an exampleea&co with

five broken stages is shown (crosses indicate broken stagasgd with

a similar situation, a regular CMP will lose all its cores.wwver, SN is

able to salvage three operational SNSs, as highlighteddé¥yald lines

(note that these bold lines are not actual connections).cohiguration

manager is shown for illustrative purposes, and is not amehbardware

block. 38
2.12 Throughput and cumulative performance results fooré-€MP, 4-slice

SN and 4-slice SN with sharing. Plot (a) also shows (shadeibpdthe

expected number of failed modules (stages/switch) urdtl ploint in the

lifetime. e 45
3.1 The SN architecture with four slices interconnectedacheother. De-

spite four failed stages (marked by shading), SN is ableli@aga three

working pipelines, maintaining healthy system throughgiven a sim-

ilar fault map, a core-disabling approach for reliabilitpud lose all

WOrking reSOUrCeS. o o e e e 53
3.2 Impact of process variation on a 64-core CMP. The plotvsttbe distri-

bution of core frequencies at current technology nodesrd&mnd 32nm)

and the (next-to-arrive) future node. As the technologyg&ed, the dis-

tribution shifts towards the left (more slower cores) andewis out (more

disparity in core frequencies). This is a consequence geélaumber of

cores ending up with slower components, bringing down thygérational

frequencies.. 55
3.3 This plots shows the yield for a 100 core CMP at a range faftlelen-

sities. The yield is computed as the fractiorwadrking chips for a 1000

chip Monte-Carlo simulation (at each defect density poi#t)working

chip is one that has greater than 75/85/95 cores functiohlaé black

dotted line shows the currently observed defect densitgrdang to the

latest ITRSreportd3]. 56
3.4 The StageWeb (SW) architecture. The pipeline stagesraaeged in

form of a grid, surrounded by conventional memory hierardrhe inset

shows a part of the SW fabric. Note that the figure here is atraatis

representation and does not specify the actual numberafiress.. . . . 57
3.5 Cumulative work performed by a fixed size SW system witliéasing

SW island width. The results are normalized to an equallyigroned

regular CMP. These results are a theoretical upper boundeato not

model interconnection failures for the experiments here. 58
3.6 A single crossbar interconnect connectimglices. The diagram on the

right also shows the abstraction that we use henceforttefoesenting a

singlecrosshar.. 60

3.7 Overlapping crossbar connections. The overlap allomsdar set of
pipelines to share their resources. In this figure, the shatiges in
the middle have a reach éh pipelines. L. 61

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

3.17

3.18

Combined application of single crossbars in conjumctiith front-back
crossbars. The reverse connections, execute/memoryue &%l exe-
cute/memory to fetch, are not shown here for the sake of figraeability. 62
Combined application of overlapping crossbars in aoctjon front-back
crossbars. The reverse connections are not shown hereef@aite of
figurereadability. 62
Configuration of SW with single crossbars. The markadest and in-
terconnections are dead. Island 1 is not able to form angc&h@NS,
whereas island 2 forms only one logical SNS (SNS Q). 64
Configuration of SW with overlapping crossbars. Themedked stages

and interconnections are dead. The partially marked stagedead for

one island, but are available for use in the other. Islandribtsable to

form any logical SNS, island 2 forms one logical SNS (SNS @)iatand
3alsoformsonelogical SNS(SNS1).. 66
Configuration of SW with overlapping and front-backssioars. The
front-back crossbars adds one more logical SNS (SNS 2) bearanfig-
uration result of overlapping crossbars. 67
Cumulative work performed by the twelve SW configuratiormalized

to a CMP system. The cumulative work improves with the riati@ices

for interweaving, as well as with the more resilient crossbin the best
case, a SW system can achieve 70% more cumulative workvestatthe

CMP system. e 75
Cumulative work performed by the twelve SW configuratiormalized

to a CMP systemgfea-neutral study The cumulative work improves

with more resilient crossbar choice. However, richer weaving does

not map directly to better results. For instance, frontkbeossbars add

a lot of area overhead without delivering proportional antaf reliabil-

ity. In the best case, a SW system achieves 40% more cunaulatrk
relative tothe CMP system.. 77
This chart shows the throughput over the lifetime fer est SW con-
figurations and the baseline CMP. The throughput for the S$tesy de-
grades much more gradually than an equally provisioned Cj$kes.

In the best case (around the 8 year mark), SW delivers 4X tfimowt of

The distribution of core frequencies in 64-core CMP &tagjeWeb chips.
Facing the same level of process variation, SW enables eaadtie im-
provement in the frequency distribution.. 78
Power saving using SW relative to a CMP at differentesyattilization

levels. This saving is made possible due to SW’s ability tivdesame
performance as a CMP at a lower voltage, in the presence ckgso
variation. The plot also shows the break up between pipstiage power

and crossbarpower. L 80
Yield obtained for all the twelve SW configurations amel CMP at three
defect densities. The advantage of the SW becomes more peobhas

the defectdensityrises.o 81

Xi

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

5.1

5.2

Periodic testing for fault detection. The vertical g8 represent the
checkpoint start/release and the horizontal lines shovptbgression of
threads. At the end of every checkpoint interval, testingpisducted for

all processing cores, this is shown as solid horizontal.bars 85
Fault coverage achieved (in percentage) for varyingbmirof software
based selftestinstructions. 87

Adaptive testing framework. A generic CMP system is sihaleng with

the enhancements needed to enable adaptive testing. Feaktksment
is responsible for gathering sensor readings and prodacfaglt proba-
bility array (P). This array is taken up by the test allocator, along with the
target coverage, to generate appropriate tdstéof different processing

Checkpointing and adaptive testing for efficient fa@tedtion. Notice

that 1) the tests are applied after a new checkpoint is staated 2) old
checkpoint is released once the tests finish successfully. . Coe . 92
StageNet fabric with four in-order pipelines woven thge usmg 64- blt

full crossbar interconnects. The interconnection conéigan is man-
aged by the configuration manager. Within StageNet, logigalines,

can be constructed by joining any set of unique pipelineestag. 98
The shading intensity of stages represents their destion. Thus, a
darker stage has a higher failure probability and viceae®N flexibility
allows connecting stages with similar health, forming tadjpipelines. . 101
Number of test instructions for the adaptive onlineibgsin CMP and

SN with varying amount of sensor error. The number of testucions

are normalized to a regular CMP with fixed periodic testindgie plot

also shows the sensor area overhead used by the proposedepfor
health assessment. The coverage targéy (s fixed at 97.3%.. 102
Number of test instructions for the adaptive onlineitgsin CMP and

SN with varying system coverage targét({). The number of test in-
structions are normalized to that needed by a CMP with n@piace
testing.. 104
This plot shows the variation in the average number dfitessructions
executed in the CMP system over its lifetime for a range ofesyiscov-
eragetargets.. 106
Contemporary solutions for multicore challenges € 4md vision of this

work (d). In (a), centralized resources are used to assfsising neigh-
boring cores. In (b) and (d), different shapes/sizes denetierogeneity.

In (c) and (d), dark shading marks broken components.. 109
Area overhead projections (measured as number of dores)pporting
configurable performance (P) and throughput sustainglfii} in differ-

ent sized CMP systems. P+R curve shows the cumulative cagriier

this plot, throughput sustainability is defined as the gbiid maintain

50% of original chip’s throughput after three years of usagée field. . 114

Xil

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

An 8-core CoreGenesis (CG) chip with a detailed look at fightly
coupled cores. Stages with permanent faults are shaded.iiilne cores
within this architecture are connected by a high speeddatarection
network, allowing any set of stages to come together and #otagical
processor. In addition to the feed-forward connectionswshoere, there
exist two feedback paths: E/M to | for register writeback &i to F
for control updates. In CG processor 2 (conjoint pipelingstructions
(prior to reaching E/M stage) can switch pipelines midwayaaesult of
dynamicsteering.. 116
CG pipeline back-end with structures for detectingstagidata flow vi-
olations and initiating replays. The outstanding instarcbuffer (OIB)
and current flow tag (CFT) registers are the two additionsctorjoint
processors. Also shown here is the bypass cache (BP$) fofatatard-

ing within a single pipeline. 124
CG pipeline back-end with an emphasis on structuresteidaddandling
memory data flow violations. oL 126

Instruction steering. The white nodes indicate insions assigned to
the leader pipeline while the shaded nodes correspond téotosver
pipeline. The instruction fetch is perfectly balanced kedw the two

pipeline, but the execution is guided by the steering.. 130
A dual-issue CG processor executing a sample code uptieristic con-
ditions, i.e. no control, data or memory violation occurs.. 133

Single thread performance results for CG normalizedsingle-issue in-

order processor. The configurations are expressed as (nwhb@elinesconjoint
Xissuewidth_of_pipelinestages).. 139
Contribution of memory replay cycles, register flow egptycles and

normal operation cycles to the total computational time rafividual
benchmarks running on a 2-issue conjoint processor. Onenag®, the

replays contributed to about 15% of the executiontime.. 141
Comparing IPC and energy efficiendy/(PS? /watt). The baseline is a
single-issue in-order core (OR120Q).. 141

Throughput comparison of 8-core CMP, SN and CG syste¢nifferent

levels of system utilization. A utilization of 0.5 impliekdt 4 working
threads are assigned to the 8-core system. At this utbzaCG multi-

core delivers 46% throughput advantage over the baseline.CM. . . . 142
Lifetime reliability experiments for the various CMBIN and CG sys-

tems. Only wearout failures were considered for this expent.. 144
The distribution of energy dissipation across pipediiages in an in-order
PrOCESSOI.. o o i e e e e e e 152
Extracting a looped trace from an irregular control floaph. We refer

to these abot tracesand use them as a construct that runs on our energy-

efficienthardwaredesign.. 155
Deployment of BERET at multicore level and its integratwithin a
SiNgle ProcesSOrCore. v v v v e e e e e e e 156

Xiii

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12

The process of mapping hot traces in a program to the BERIEIware:
(a) shows a program segment with two hot traces, (b) a closdr at
a trace with instructions and two side exits, (c) illustsatiee break-up
of trace code into data flow subgraphs, and (d) mapping ofrsipibg to
subgraph execution blocks (SEBs) inside the BERET hardware . . . 157
The BERET Microarchitecture: (a) the block diagram of BERET
hardware, (b) logical stages in the microarchitecture,(ejd closer look

at a subgraph execution block (SEB). 159
The steps of identifying hot traces in a procedure andpmgphem to
the BERET hardware for energy-efficient execution.. 164

The top six specialized SEBs from the final set of eightdusethe
BERET design. The percentages indicate the frequency of dbeur-

rence inprogramtraces..o e 167
The percentage distribution of subgraph sizes acrbsme¢s when us-

ing the hypothetical SEBs and our final selection of spexaaliSEBs.

The average size of subgraphs for hypothetical SEBs at 3&&6only

marginally better than the same for our specialized SEBS&.2 167

Fraction of execution time spentin hottraces. 170
Energy consumption relative to the baseline.. 171
Execution time relative tothe baseline. 173
EDP relativetothe baseline. 174

Xiv

Table
2.1
2.2

3.1
3.2

5.1
5.2

5.3

5.4
5.5
5.6
5.7

6.1

LIST OF TABLES

Architectural attributes. 43
Area overhead of SN architecture.. 46
Architectural parameters. oo 71

Design space for SW. The rows span the different interection types

(F/B denotes front-back), and the columns span the cro$gbar cross-

bar w/o (without) sp (spares), crossbar w/ sp and faultaolig(FT) cross-

bar. Each cell in the table mentions the number of pipelimes) in each

SW configuration, given the overall chip area budgéd(mm?). 74
Comparisonto PriorWork. 111
CoreGenesis (CG) challenges. The challenges can ssfiddson the

basis of single and conjoint pipeline configurations. Thecghmarks

(v') are used for solutions that were straightforward extensioprior

work on decoupled architectures. Whereas the questionsri@jk are

open problems that are solved in thischapter. 119
Control cases. Each case represents a pair of conseputigram in-
structions in a 2-issue conjoint processor. The first andrsacows

in this table show the instructions fetched in the leader fontidwer

pipelines, respectively.. Lo oo 122
Memory flow cases. Each case represents a pair of insinedhat are
flowing together in a 2-issue conjoint processor. 127
Architectural parameters. oo 135
Area overheads from different design blocksinCG.. 146
Power overhead for CG. These overheads are reporte@®Rit200 power
consumptionasthe baseline.. 146
Comparisonto PriorWork. 175

XV

ABSTRACT

Adaptive Architectures for Robust and Efficient Computing

by

Shantanu Gupta

Chair: Scott A. Mahlke

Semiconductor technology scaling has long been a sourceaofatic gains in our com-
puting capabilities. However, as we test the physical Broitsilicon feature size, serious
reliability and computational efficiency challenges confrus. The supply voltage levels
have practically stagnated, resulting in increasing paYegrsities and operating tempera-
tures. Given that most semiconductor wearout mechanisenisighly dependent on these
parameters, significantly higher failure rates are prejgdor future technology genera-
tions. Further, the rise in power density is also limiting ttumber of resources that can be
kept active on chip simultaneously, motivating the neecefurgy-efficient computing.

In this landscape of technological challenges, incrememtditectural improvements
to existing designs are likely insufficient, motivating aedeto rethink the architectural
fabric from the ground up. Towards this end, this thesisgtssadaptive architecture and

compiler solutions that can effectively tackle relialyiliperformance and energy-efficiency

XVi

demands expected in future microprocessors.

For the reliability challenge, we present StageNet, a igatonfigurable multicore
architecture that is designed as a network of pipeline stagéher than isolated cores. The
interconnection flexibility in StageNet allows it to adadlly route around defective pieces
of a processor, and deliver graceful performance deg@uatithe face of failures. We fur-
ther complement the fault isolation ability of StageNethwanh adaptive testing framework
that significantly reduces the overhead of in-field fauled&on.

As a second contribution, we build upon the interconnediiexibility of StageNet to
develop a unified performance-reliability solution. Thidsequent design, named CoreGe-
nesis, relies on a set of microarchitectural innovatiorts@mpiler hints to merge proces-
sor cores for a higher single-thread performance. Thisleaanistomization of processing
ability (narrow or wide-issue pipelines) to the dynamic Woad requirements.

In the final work of this thesis, we investigate the sourcesoofiputational inefficiency
in general purpose processors, and propose a configurabfgite engine, named BERET,
for substantial energy savings. The insight here is to cutndon the redundant instruc-
tion fetch, decode and register file access energy by optighthe execution of recurring

instruction sequences.

Xvil

CHAPTER|

Introduction

Over the last few decades, the semiconductor industry Is4giead a staggering growth
in silicon integration levels. This aggressive scalingdmaossible by numerous tech-
nological breakthroughs, has been the driving force beprdormance and efficiency
milestones in computational systems. However, as theosiliechnology approaches its
fundamental limits, a variety of challenges confrontlif][The issues range from designs
nearing the power and thermal limitations to extreme pregasgation and wearout failures
in the manufactured parts. As device density grows, eacisistr gets smaller and more
fragile leading to an overall higher susceptibility of chifp hard faults. Hard faults result
in permanent silicon defects, and impact the yield, lifetiperformance, and reliability of
semiconductor parts.[]. Increasing transistor density also poses difficult thedrprob-
lems as heat cannot be efficiently dissipated, leading tatagl in clock frequencies. All
of these issues are detrimental to the semiconductor indssconomic model. Loss of
compelling performance gains reduces the incentive tdaggwpgrade machines, loss in
yield directly translates to loss in sales and in-field diefeould necessitate conservative

designs to avoid substantial performance degradation.

In this broad spectrum of technological concerns, powesithewas identified as an im-
mediate roadblock for technology scaling. In an effort tdrags this concern, the industry
has shifted its design philosophy from monolithic supdesgarocessors to multi-core pro-
cessors composed of relatively smaller cores. Some of tbstldesktop and server chips
range from 6-12 individual core$ 1, 4]. Further, many manufacturers have begun produc-
tion of many-core chips with simple in-order cores to tamgetrket segments that demand

throughput computing, e.g. SUN Niagaré&], Tilera TILE64 [109.

1.1 Technology Challenges

While the paradigm shift to multicore architectures hagedbaower and thermal con-
cerns to a certain extent, going forward, three major chgs still need to be addressed by
semiconductor manufacturers. The first challenge is thengasliability of transistors and
their increasing vulnerability to wearout, manufacturidedects and process variation. The
second, and a more direct ramification of adopting multispiethe saturation in single-
thread performance. This is especially of concern to appbas that are not amenable to
parallelization. The third and final challenge is power agnw/hich is a result of stagnat-
ing supply voltage levels. This is introducing tight powenstraints on the manufactured
parts, and limiting the number of resources that can be samebusly kept active on a

chip [114].

1.1.1 The Reliability Challenge

The sources of computer system failures are widespreagingfrom transient faults,
due to energetic particle strikes44] and electrical noise, to permanent faults, caused by
device wearout, manufacturing defects and extreme progasstion. In recent years,
industry designers and researchers have invested signiétfart in building architectures
resistant to transient faults®, 116. In transient faults (also referred to ssft errorg the
damage to a chip is never permanent, and a replay of inginscts typically sufficient
for recovery. In contrast, dealing with permanent faultsignificantly more involved,
and relatively little research has been conducted to efiiijid¢olerate the same. There
are numerous sources of permanent faults, ranging from factowing defects, process
variation, to in-field wearout phenomenas such as electg@tion 23], time dependent
dielectric breakdown (TDDB)11d, negative bias temperature instability (NBTI)Z,
etc.

The challenge of tolerating permanent faults can be broduiyled into three reg-
uisite tasks: fault detection, fault diagnosis, and systeocovery/reconfiguration. Fault
detection mechanismg.§, 71] are used to identify the presence of a fault, while fault
diagnosis techniques. §] are used to determine the source of the fault, i.e. the loroke
component(s). System reconfiguration needs to leverage $omm of a spatial or tem-
poral redundancy to keep the faulty component isolated fitwerdesign. The granularity
at which spares/redundancy is maintained determines tmbeuof failures a system can
tolerate.

As an example, many computer vendors provide the abilityepair faulty memory

and cache cells through the inclusion of spare memory elesn@&his technique of isolat-
ing broken structures or supplementing them with sparealsasbeen extended to logic
resources 8, 95, 103, and all the way to disabling entire cores [L05. While these
resource isolation and sparing techniques are reasonalblgoss, in a high failure rate
scenario, such systems will exhibit a rapid throughput @egtion and quick become un-
responsive.

A major thrust of this thesis is to understand the issuescea®a with system recon-
figuration and to design a fault tolerant architecture teatdpable of tolerating a large

number of manufacture-time and in-field failures.

1.1.2 The Performance Challenge

Recent years have witnessed a migration towards multicqoletectures by hardware
vendors. However, software developers have adopted &md more slowly, creating a dis-
parity between application requirements and the undeglgardware. Due to this inertia in

the software development cycles, applications today rémge heavily sequential legacy

workloads to throughput oriented parallel counterparisuch a diverse landscape of soft
ware products, a fixed multicore design cannot provide ogitiperformance, creating a
need for architecture level flexibility.

Generally speaking, multiple cores are effective wherdtiseare plentiful and through-
put computing is required, but they provide little or no gafar sequential applications.
Furthermore, the performance of sequential applicatioag suffer as cores get simpler
and smaller caches per core are provided. Despite a massitario application paral-

lelization, there are two significant reasons that makdsitigead performance important.

First, most applications today are single-threaded and baen written with a heavy bias
towards a monolithic processing model. Converting themnadl efficient parallel pro-
grams will be a phenomenal challenge. Second, even if a rtrajusition towards parallel
programming occurs in the future, Amdahl’s law dictates tha sequential component of
an application will present itself as a performance bo#ttn Thus, multicore solutions,
while being a natural fit for throughput computing, must diawe the flexibility to provide
high single-thread performance.

One way to provide this flexibility is to design heterogergeanulti-core architec-
tures p3], with a set of small (for throughput) and big cores (for sewfial programs).
However, this approach is very rigid, and makes strong agans about the set of appli-
cations that will be active at a given point in time. A part bistthesis is devoted to the
concept ofdynamic multicoresthat can reconfigure themselves as per workload require-
ments. When plenty of threads are available to work on, sysésources can be broken
up into individual cores, and in an opposing scenario, nessucan be coalesced to form

larger but fewer cores.

1.1.3 The Energy-Efficiency Challenge

Over the years, transistor densities and performance hasaed to increase as per
Moore’s Law, however, the threshold voltage has not keptitipthis trend. As a result, the
per-transistor switching power has not witnessed the hisnefiscaling, causing a steady
rise in power density. Overall, this limits the number ofoeces that can be kept active on
a die simultaneouslyl[L4]. An instance of this trend can be already seen in Intel'sestw

Nehalem generation of processors that boost the perfoenainone core, at the cost of

slowing down/shutting off the rest of them.

Given these circumstances, an improvement in computdteffiaiency is essential
to keep the power density, and hence the total chip-wide peweelope, under check.
Alternatively, a better computational efficiency also #slates into reduced energy per in-
struction, increasing the net amount of work done for a fixeekrgy budget. This is very
valuable in the context of server farms, where energy coesucaits both ways, i.e. for
computation as well as for cooling. Besides desktop andeseapace, the efficiency re-
guirement is also visible within the growing domain of pbitadevices §¢], that operate
under a strict energy budget due to their dependence orribatte

While there has been a lot of work to improve the efficiency mbedded systems,
such as specialized hardware units,[80, 93], acceleratorsd5, 127, and application
specific instruction extensions(7], the general purpose processor domain has largely
been ignored. This is partly influenced by the fact that galaurpose application space
is very diverse and constantly evolving making it hard tocgdeze architectures. In this
thesis, we investigate this challenge and propose a coabtpisubstrate to improve the

energy-efficiency of general purpose processors.

1.2 Adaptive Architectures

Given this landscape of increasing failure rates, dimingkingle-thread performance,
and tighter power constraints, computer architects havedspensable role to play. How-
ever, incremental improvements to existing architectaredikely insufficient for achiev-

ing these objective as legacy hardware imposes many testisc This motivates a re-

thinking of the architectural fabric from the ground up, mitynamic adaptivityandcon-
figurability as primary requirements. The overarching objective of tthesis is to design
and evaluate such adaptive architectures that can detitbast, configurable, and efficient
performance.

In the context of reliability, dynamic adaptivity refersttee system’s ability to actively
detect failures, isolate broken components and reconfigget. For being effective, the
fault isolation has to be at a granularity finer than brokereso Whereas, for single-
thread performance, dynamic adaptivity refers to the sy'stability to adequately allocate
compute resources to the active threads, i.e., more res®to@ high IPC thread and vice
versa. Finally, for energy efficiency, dynamic adaptivigfers to hardware substrate’s
ability to specialize itself for data flow patterns in an apation.

This thesis presents four efforts towards designing adajatichitectures: 1) the Sta-
geNet architecture for fine-grained fault isolation, 2) #uaptive test framework for effi-
cient fault detection/diagnosis, 3) the CoreGenesis tachire for enablinglynamic mul-
ticore capability, and 4) the Green BERET architecture for en@figient execution of

recurring instruction sequences.

1.2.1 Adaptivity for Defect Isolation

Permanent fault tolerance requires system reconfiguratiamder to isolate broken
components. The popular solution for this has been the usglohdancy at a coarse gran-
ularity, such as dual/triple modular redundancy. More mdgen the form of core disabling
within a multicore chip. In this work, we challenge the pregtof coarse-granularity re-

dundancy by identifying its inability to scale to high faikurate scenarios and investigating

the advantages of finer-grained configurations. As a solutie present and evaluates a
highly reconfigurable CMP architecture, named StageNe},(8I4dt is designed with reli-
ability as its first class design criteria.

SN is a multicore architecture designed as a network of ppipstages, rather than iso-
lated cores in a CMP. The network is formed by replacing theatliconnections at each
pipeline stage boundary by a crossbar switch interconmecWithin the SN architecture,
pipeline stages can be selected from the pool of availaétgestto act as logical processing
cores. A logical core in the StageNet architecture is reteto as é5tageNetSIicéSNS).

A SNS can easily isolate failures by adaptively routing ataulty stages. The inter-
connection flexibility in the system allows SNSs to salvagaltiny stages from adjacent
cores and even makes it possible for different SNSs to tirakhplex a scarce pipeline
resource. Because of this added flexibility, a SN systemgsses inherent redundancy
(through borrowing and sharing pipeline stages) and istbeg, all else being equal, ca-
pable of maintaining higher throughput over the duratioa sf/stem’s life compared to a
conventional multicore design.

As an extension, we also propose StageWeb (SW) architetttatesliminates three
limitations of the SN architecture: 1) scalability to 100&00f cores, 2) interconnection

reliability and 3) ability to address process variation.

1.2.2 Adaptivity for Online Testing

Detection and diagnosis of failures is a crucial componéatfault tolerant system. In
a scenario where in-field silicon defects (from wearout)doee commonplace, processors

would need to be equipped with online fault detection meigmas. Periodic online testing

is a popular technique to detect such failures; howevegnidi$ to impose a heavy testing
penalty. In this thesis, we propose an adaptive onlinengd$tamework to significantly
reduce the testing overhead. The proposed approach iseuimidts ability to assess the
hardware health and apply suitably detailed tests. Neasttre of a chip lifetime, most
components are relatively healthy, and do not need a fuiébaof tests. As time goes on,
and health sensors indicate deterioration in various comms (cores in this case), test
patterns can be made more rigorous. Using this approactnéisant chunk of the testing
time can be saved for the healthy components.
We further extend the framework to work with the SN fabricjethprovides the flexi-

bility to group together pipeline stages with similar healonditions, thereby reducing the

overall testing burden.

1.2.3 Adaptivity for Performance

The third design presented in this thesis proposal provadesitectural adaptivity for
performance, by realizing the concept of dynamic multisordhe solution presented,
named CoreGenesis, is an adaptive multiprocessor falaicém assemble variable-width
processors from a network of (potentially broken) pipebtege-level resources. CoreGe-
nesis relies on interconnection flexibility, coupled witbet of microarchitectural innova-
tions for decentralized instruction flow management, togagipeline resources for high
single-thread performance. The same flexibility enablé&s ibute around broken compo-
nents, achieving sub-core level defect isolation (sintdaBtageNet). Together, the result-
ing fabric consists of a pool of pipeline stage-level researthat can be fluidly allocated

for accelerating single-thread performance, throughpuotputing, or tolerating failures.

The concept of dynamic multicore has been studied in the wastsolutions like Core
Fusion pZ] and Federationl[0€ that can fuse neighboring cores with a help of shared
microarchitectural structures. However, none of thosatgmis can provide fine-grained
fault isolation. The novelty of CoreGenesis arises fronafiproach to co-design a perfor-

mance/reliability solution, while overlapping a majoraf/hardware overheads.

1.2.4 Adaptivity for Energy Efficiency

The fourth and final design presented in this thesis is a cardile compute engine for
energy-efficient execution. Efficiency solutions in thetgesre typically targeted embed-
ded systems by developing application specific hardwareaaodlerators. Unfortunately,
these approaches do not extend to general purpose appiicatile to their irregular and
diverse code base. In this work, we propose BERET, a novefgredficient co-processor
that targets general purpose programs and significantlycesdthe computational costs for
frequently repeated sequences of instructions.

The BERET architectures relies on two insights to meet fisiehcy goals. First, it
identifies recurring instruction traces in a given prograng buffers them internally to cut
down on redundant instruction fetch and decode energy.efiagythese traces also helps
BERET add a level ofemporal regularityto the otherwise irregular behavior of desktop
and server programs. Second, it uses a bundled executiosl toodduce register reads and
writes for temporary variables. These execution bundleseasentially sub-graphs from
the trace data flow graph. We consider this bundled executmutel a trade-off design that
lets us achieve efficiency gains close to an applicationiBpetata flow hardware while

maintaining application universality of regular Von Neumaexecution model.

10

1.3 Contributions

The contribution of this thesis can be summarized as follows

* It demonstrates that fault isolation can be conducted ave finer than processing

cores, without maintaining any cold spares.

» An adaptive architecture is proposed, named StageNedtgettables pipeline-stage
level fault isolation. The impact on single-thread perfarce is very nominal at

10%.

» A sensor guided adaptive testing solution is presentedhiproving the efficiency
of periodic online testing. The proposed solution is the fifsts kind to assess the

system health before assigning test vectors for hard fatdtation.

A unified performance / reliability solution, named Core@sis. This builds upon
the StageNet architecture, and adds capabilities for digziyn grouping together

pipelines for creating wider-issue machines.

A configurable compute engine, named BERET, for energgiefft execution. The
design leverages recurring instructions sequences anit axmcution model to sig-
nificantly reduce instruction fetch, decode and registerddcess energy.

1.4 Organization

The rest of this document is organized as follows:

Chapterl presents the StageNet architecture, a solution for fin@egdafiault isolation.

11

Chapterll takes the StageNet design forward, making it scalablesanteo intercon-
nection faults, and capable of mitigating process vanmatio

ChaptenV introduces our solution for making periodic online testngre efficient.

ChapterV presents the CoreGenesis architecture, which adds a penfice dimension
to the StageNet architecture.

ChapteVI presents the BERET architecture for bridging the efficiegay of general
purpose processors and application specific hardware.

ChapteVIl concludes this thesis.

12

CHAPTER I

The StageNet Fabric for Constructing

Resilient Chip Multiprocessors

2.1 Introduction

Technological trends into the nanometer regime have leadcteasing current and
power densities and rising on-chip temperatures, reguitirboth increasing transient, as
well as permanent, failures rates. Leading technologyrxeve warned designers that
device reliability will begin to deteriorate from the 65nmde onward [5]. Current pro-
jections indicate that future microprocessors will be cosga of billions of transistors,
many of which will be unusable at manufacture time, and manyemvhich will degrade
in performance (or even fail) over the expected lifetimeh#d processorl[/]. In an ef-
fort to assuage these concerns, industry has initiatedfateivards multicore and GPU
inspired designs that employ simpler cores to limit the poavel thermal envelope of the
chips |9, 67]. However, this paradigm shift also leads towards coregiestihat have little
inherent redundancy and are therefore incapable of peirfgrithe self-repair possible in

big superscalar core$%, 103. Thus, in the near future, architects must directly adslres

13

reliability in computer systems through innovative fatdkerance techniques.

There are two major sources of failures in computer hardwirset are transient faults
that can occur as a result of energetic particle strikeg][and electrical noise. By virtue
of being transient, their effect is temporary, and a systamaontinue normal operation
after recovering from them. The second category is pernidaghs resulting from wafer
defects, manufacturing-time variations, and wearout pheanon such as electromigra-
tion [23] and time dependent dielectric breakdowin. §]. In recent years, industry de-
signers and researchers have invested significant effdnilding architectures resistant
to transient faultsq6, 116. In contrast, much less attention has been paid to the @nobl
of permanent faults, specifically transistor wearout duthéodegradation of semiconduc-
tor materials over time. Traditional techniques for deghmith transistor wearout have
involved extra provisioning in logic circuits, known as gdidanding, to account for the
expected performance degradation of transistors over titowever, the increasing degra-
dation rate projected for future technology generationglies that traditional margining
techniques will be insufficient.

Permanent fault tolerance can be broadly divided into thteps: fault detection, fault
diagnosis, and system recovery/reconfiguration. Faudiatiein mechanismsLp, 71] are
used to identify the presence of a fault, while fault diagedschniques19] are used to
determine the source of the fault, i.e. the broken compdgserystem recovery needs to
leverage some form of a spatial or temporal redundancy tatesthe faulty component(s)
and perform the repair. For instance, many computer vertorgde the ability to repair
faulty memory and cache cells through the inclusion of spaeory elements. Recently,

researchers have begun to extend these techniques to ssipgang for additional on-chip

14

resources]0d, such as branch predictorsd] and registers{5]. The granularity at which
spares/redundancy is maintained determines the numbaiwfels a system can tolerate.
The focus of this work is to understand the issues associgtedsystem recovery and to
design a fault tolerant architecture that is capable of#ébieg a large number of failures.

Traditionally, system recovery in high-end servers andgiarscritical systems has been
addressed by using mechanisms such as dual and triple-araeédiundancy (DMR and
TMR) [14]. However, such approaches are too costly and thereforappbicable to desk-
top and embedded systems. With the recent popularity oficouvdt systems, these tradi-
tional core-level approaches have been able to leveragmlieeent redundancy present
in large chip multiprocessors (CMP<),[105. However, both the historical designs and
their modern incarnations, because of their emphasis atlewel redundancy, incur high
hardware overhead and can only tolerate a small number ettdefWith the increasing
defect rate in semiconductor technology, it will not be umooon to see a rapid degra-
dation in throughput for these systems as single devicar&slcause entire cores to be
decommissioned, often times with the majority of the coileistact and functional.

In contrast, this chapter argues the case for reconfigaratial redundancy at a finer
granularity. To this end, this work presents theageNe{(SN) fabric, a highly reconfig-
urable and adaptable computing substrate. SN is a multematdtecture designed as a
network of pipeline stages, rather than isolated cores iM&.('he network is formed by
replacing the direct connections at each pipeline stagadsy by a crossbar switch in-
terconnection. Within the SN architecture, pipeline stacpn be selected from the pool of
available stages to act as logical processing cores. Adbgare in the StageNet architec-

ture is referred to as@tageNetSIicéSNS). A SNS can easily isolate failures by adaptively

15

routing around faulty stages. The interconnection fleiibih the system allows SNSs to
salvage healthy stages from adjacent cores and even makessible for different SNSs
to time-multiplex a scarce pipeline resource. Becauseisfatided flexibility, a SN sys-
tem possesses inherent redundancy (through borrowinglearthg pipeline stages) and
is therefore, all else being equal, capable of maintainiggdr throughput over the dura-
tion of a system’s life compared to a conventional multicdesign. Over time as more
and more devices fail, such a system can gracefully degtageeiformance capabilities,
maximizing its useful lifetime.

The reconfiguration flexibility of the SN architecture hasatassociated with it. The
introduction of network switches into the heart of a proocegspeline will inevitably lead
to poor performance due to high communication latenciesl@anccommunication band-
width between stages. The key to creating an efficient SNydasire-thinking the organi-
zation of a basic processor pipeline to more effectiveljaitgothe operation of individual
stages. More specifically, inter-stage communicationgathst either be removed, namely
by breaking loops in the design, or the volume of data trattethmust be reduced. This
chapter starts off with the design of an efficient SNS (a lalg8tageNet core) that attacks
these problems and reduces the performance overhead ftamorkewitches to an accept-
able level. Further, it presents the SN multicore thatlstistogether multiple such SNSs to
form a highly reconfigurable architecture capable of tdlegaa large number of failures.
In this work, we take a simple in-order core design as theshzghe SN architecture. This
is motivated by the fact that thermal and power considenatére pushing designs towards
simpler cores. In fact, simple cores are being adopted higuaesargeting massively mul-

ticore chips and are suitable for low-latency and high tghgaut applicationsdz, 59). At

16

the same time, we believe that the proposed design methgpdofdine-grained reconfig-
uration can also be effectively applied to deeper and mogeeagive pipeline designs.
The primary contributions of this chapter include: 1) A dgsspace exploration of
reconfiguration granularities for resilient systems; 23ige, evaluation and performance
optimization of StageNetSlice, a networked pipeline macabitecture; and 3) design and

evaluation of StageNet, a resilient multicore architezstgomposed using multiple SNSs.

2.2 Reconfiguration Granularity

For tolerating permanent faults, architectures must Hasalbility to reconfigure, where
reconfiguration can refer to a variety of activities rangfingm decommissioning non-
functioning, non-critical processor structures to swaggn cold spare devices. In a re-
configurable architecture, recovery entails isolatingedé®fe module(s) and incorporating
spare structures as needed. Support for reconfiguratiobeachieved at various granu-
larities, from ultra-fine grain systems that have the abititreplace individual logic gates
to coarser designs that focus on isolating entire process@s. This choice presents a
trade-off between complexity of implementation and patdiifetime enhancement. This
section shows experiments studying this trade-off and sligvon these results to motivate

the design of the SN architecture.

2.2.1 Experimental Setup

In order to effectively model the reliability of differentedigns, a Verilog model of

the OpenRISC 1200 (OR1200) coré&] was used in lifetime reliability experiments. The

17

OR1200 is an open-source core with a conventional 5-staugipeé design, representative
of commercially available embedded processors. The cosesyathesized, placed and
routed using industry standard CAD tools with a library ettaerized for a 130nm process.
The final floorplan along with several attributes of the dessgshown in Figure.1

To study the impact of reconfiguration granularity on chiptimes, the mean-time-
to-failure (MTTF) was calculated for each individual moeluh the OR1200. MTTF was
determined by estimating the effects of a common wearouthargsm, time-dependent
dielectric breakdown (TDDB) on a OR1200 core running a repnéative workload. Em-
ploying an empirical model similar to that found in[1], Equation2.1presents the formula
used to calculate per-module MTTFs. The temperature nwribethe modules were gen-
erated using HotSpot[]. Given the MTTFs for individual modules, stage-level MTSTIR
our experiment were defined as the minimum MTTF of any modeleriging to the stage.
Similarly, core level MTTFs were defined as the minimum MT Ofoss all the modules.

L\
MTTFTDDB X (V)(a bT)e

(X+ 3 +2T)
kT

(2.1)

where V = operating voltage, T = temperature, k = Boltzmauooisstant, and a,b,X,Y,and

Z are all fitting parameters based drfl].

2.2.2 Granularity Trade-offs

The granularity of reconfiguration is used to describe theafrisolation/redundancy
for modules within a chip. Various options for reconfiguoatiin order of increasing gran-

ularity, are discussed below.

18

i

(a) Overlay of floorplan

OR1200 Core
Area 1.0 mn?
Power 123.9 mW

Clock Frequency 400 MHz
Data Cache Size 8 KB
Instruction Cache Size 8 KB
Technology Node 90nm

(b) Implementation details

Figure 2.1: OpenRisc 1200 embedded microprocessor.

1. Gate level: At this level of reconfiguration, a system can replace irdiiail logic
gates in the design as they fail. Unfortunately, such desaga typically impractical
because they require both precise fault diagnosis and tréoos overhead due to
redundant components and wire routing area.

2. Module level:In this scenario, a processor core can replace broken matribec-
tural structures such as an ALU or branch predictor. Suclgds$ave been active
topics of research’p, 95]. The biggest downside of this reconfiguration level is that
maintaining redundancy for full coverage is almost impgrait Additionally, for
the case of simple cores, even fewer opportunities exissédation since almost all

modules are unique in the design.

19

stagenet/figs/die_photo.eps

3. Stage level:Here, the entire pipeline stages are treated as single itiwnalnits
that can be replaced. Reconfiguration at this level is chgiig because: 1) pipeline
stages are tightly coupled with each other (reconfiguratem cause performance
loss), and 2) cold sparing pipeline stages is expensive (@arerhead).

4. Core level:This is the coarsest level of reconfiguration where entice@ssor cores
are isolated from the system in the event of a failure. Caorel leeconfiguration has
also been an active area of research 2], and from the perspective of a system
designer, it is probably the easiest technique to implentémivever, it has the poor-
est returns in terms of lifetime extension, and thereforghtnot be able to keep up
with increasing defect rates.

While multiple levels of reconfiguration granularity coddd utilized, Figur€.2demon-
strates the effectiveness of each applied in isolatiore{@gtel reconfiguration was not in-
cluded in this study). The figure shows the potential fottilifie enhancement (measured
as MTTF) as a function of how much area a designer is willingltocate to cold spares.
The MTTF of a n-way redundant structure is taken to:ld@nes its base MTTF. And, the
MTTF of the overall system is taken to be the MTTF of the fastading module in the
design. This is similar to the serial model of failure usefllin1]. The figure overlays three
separate plots, one for each level of reconfiguration. Tendant spares were allowed to
add as much as 300% area overhead.

The data shown in Figur2.2 demonstrates that going towards finer-grain reconfigura-
tion is categorically beneficial as far as gains in MTTF amneossned. But, it overlooks the
design complexity aspect of the problem. Finer-grain réiganation tends to exacerbate

the hardware challenges for supporting redundancy, e.xinguogic, wiring overhead,

20

700

T T T
Module-granularity replacement —@—
Stage-granularity replacement —ll—
Col i —L—

g ity r
600 »%’.

500

400 9@ - —l”‘

Percent Increase in MTTF

==
300 g = el
o
200 .,—‘.’; e gl - —
100 N -
Y =
-

o

i
0 50 100 150 200 250 300
Percent Area Overhead

Figure 2.2: Gain in MTTF from the addition of cold spares at the granularity of micro-
architectural modules, pipeline stages, and processor cer The gains shown are cumulative,
and spare modules are added (denoted with markers) in the ormer they are expected to fail.

circuit timing management, etc. At the same time, very agrained reconfiguration is
also not an ideal candidate since MTTF scales poorly wittatkea overhead. Therefore, a
compromise solution is desirable, one that has manageatefiguration hardware and a

better life expectancy.

2.2.3 Harnessing Stage-level Reconfiguration

Stage level reconfiguration is positioned as a good careliattsystem recovery as
it scales well with the increase in area available for redunog (Figure2.2). Logically,
stages are a convenient boundary because pipeline atangecivide work at the level of
stages (e.g., fetch, decode, etc.). Similarly, in termsreii@ implementation, stages are
an intuitive boundary because data signals typically gehkd at the end of every pipeline
stage. Both these factors are helpful when reconfiguragsothesired with a minimum
impact on the performance. However, there are two majorches that must be overcome

before stage level reconfiguration is practical:

21

stagenet/plots/mttf_incr.eps

1. Pipeline stages are tightly coupled with each other aedrarefore difficult to iso-

late/replace.

2. Maintaining spares at the pipeline stage granularitgery area intensive.

One of the ways to allow stage level reconfiguration is to dptmthe pipeline stages
from each other. In other words, remove all direct poinpteat communication between
the stages and replace them by a switch based interconmeetiavork. A conceptual pic-
ture of a chip multiprocessor using this philosophy is pnése in Figure2.3. We call
this designStageNe{SN). Processor cores within SN are designed as part of a higdtuspe
network-on-a-chip, where each stage in the processoripgebrresponds to a node in
the network. A horizontal slice of this architecture is elént to a logical processor
core, and we call it &tageNetSlicéSNS. The use of switches allows complete flexibility
for a pipeline stage at depth to communicate with any stage at depthl, even those
from a different SNS. The SN architecture overcomes both@hajor obstacles for stage
level reconfiguration. Pipeline stages are decoupled frach ether, and hence faulty ones
can be easily isolated. Furthermore, there is no need taigixely devote chip area for
cold sparing. The SN architecture exploits the inherenimeldncy present in a multicore
by borrowing/sharing stages from adjacent cores. As nostagds) wearout and eventu-
ally fail, SN will exhibit a graceful degradation in perfoamce, and a gradual decline in
throughput.

Along with its benefits, SN architecture has certain areaertbrmance overheads
associated with itself. Area overhead primarily arisesftbe switch interconnection net-
work between the stages. And depending upon the switch hdtidva variable number

of cycles will be required to transmit operations betweeamgss, leading to performance

22

penalties. The next section investigates the performanegeads when using a SNS and
also presents our microarchitectural solutions to redseséd losses. The remainder of the
chapter focuses on the design and evaluation of the SN acthie, and demonstrates its

ability to maintain high lifetime throughput in the face aflfires.

Pipeline 1 | Stage 1 Stage2 StageN-1 StageN
@
&
Pipeline 2 | Stage 1 Stage2 StageN-1 StageN %
A/ \V4 :
c
2
Pipeline 3 Stage 1 Stage2 StageN-1 StageN T
E)
=
c
o
©)
Pipeline M | stage 1 | Stage2 { StageN-1 | StageN

Figure 2.3: A StageNet assembly: group of slices connected together. &aStageNetSlice
(SNS) is equivalent to a logical processing core. This figurghows M, N-stage slices. Broken
stages can be easily isolated by routing around them. Crosab switch spares can also be
maintained at the pipeline stage boundaries in order to toleate rare, albeit possible, switch
failures.

2.3 The StageNetSlice Architecture

2.3.1 Overview

StageNetSlice (SNS) is a basic building block for the SN igcture. It consists of
a decoupled pipeline microarchitecture that allows comrdrreconfiguration at the gran-
ularity of stages. As a basis for the SNS design, a simple dddzkprocessor core is
used, consisting of five stages namely, fetch, decode, ,iexeeute/memory, and write-
back [B, 76]. Although the execute/memory block is sometimes sepdriat® multiple
stages, it is treated as a single stage in this work.

Starting with a basic in-order pipeline, we will go througle steps of its transformation

23

stagenet/figs/snet-abstract.eps

Branch Feedback

Register Writeback

]
|

° ° ° o | Register I . 2l
2y o= 2y 25 File 25 25lle
= Fetch |35 E % Decode |25 i3 Issue |3 % 3 % i| Execute/
Predictor S a & 2 @ I scoreboard a aall> em

M
ITo 1$ 1 To D$

Figure 2.4: A StageNetSlice (SNS) pipeline. Stages are interconnectading a full crossbar
switch. The shaded portions highlight modules that are not psent in a regular in-order
pipeline.

into SNS. As the first step, pipeline latches are replaced avitombination of a crossbar
switch and buffers. A graphical illustration of the resodfipipeline design is shown in
Figure2.4. The shaded boxes inside the pipeline stages are micrtestrial additions
that will be discussed in detail later in this section. To imize the performance loss
from inter-stage communications, we propose the use ofcfolésbar switches since a)
these allow non-blocking access to all of their inputs antbbia small number of inputs
and outputs they are not prohibitively expensive. The fudlssbar switches have a fixed
channel width and, as a result, transfer of an instructiomfone stage to the next can take
a variable number of cycles. However, this channel widtthefdrossbar can be varied to
trade-off performance with area. In addition to the forwdadla path connections, pipeline
feedback loops in SNS (branch mispredict, register writkpalso need to go through
similar switches. With the aid of these crossbars, diffeBMSs within a SN multicore can
share their stages with each other. For instance, the fesul} say, SNS A's execute stage,
might need to be directed to SNS B’s issue stage for the vaiebDue to the introduction
of crossbar switches, SNS has three fundamental challéoge®rcome:

1. Global Communication:Global pipeline stall/flush signals are fundamental to the

functionality of a pipeline. Stall signals are sent to ak thtages for cases such

24

stagenet/figs/sns.eps

as multi-cycle operations, memory access, and other haz&unilarly, flush sig-

nals are necessary to squash instructions that are fetéagl mispredicted control
paths. In SNS, all the stages are decoupled from each otiteglabal broadcast is
infeasible.

2. Forwarding: Data forwarding is a crucial technique used in a pipelinedoid-
ing frequent stalls that would otherwise occur because t&# dapendencies in the
instruction stream. The data forwarding logic relies orcigely timed (in an archi-
tectural sense) communication between execute and latggsstising combinational
links. With variable amounts of delay through the switchasd the presence of
intermediate buffers, forwarding logic within SNS is noasible.

3. Performance:Lastly, even if the above two problems are solved, commtioica
delay between stages is still expected to result in a heffyppeance penalty.

The rest of this section will discuss how the SNS design amees these challenges

(Section2.3.2 and propose techniques that can recover the expectedlpssformance

(Section2.3.3.

2.3.2 Functional Needs

Stream ldentification: The SNS pipeline lacks global communication signals. With-
out global stall/flush signals, traditional approachesusHing instructions upon a branch
mispredict are not applicable. The first addition to the bpgeline, a stream identification
register, targets this problem.

The SNS design shown in FiguBe4 has certain components that are shaded in order

to distinguish the ones that are not found in a traditionpéfne. One of these additional

25

components is atream identificatior{si d) register in all the stages. This is a single bit
register and can be arbitrarily (but consistently acroages) initialized to 0 or 1. Over
the course of program execution, this value changes whemelvench mispredict takes
place. Every in-flight instruction in SNS carries a strealyand this is used by the stages to
distinguish the instructions on the correctly predictethgfieom those on the incorrect path.
The former are processed and allowed to proceed, and tbe datt squashed. A single bit
suffices because the pipeline model is in-order and it cae baly one resolved branch
mispredict outstanding at any given time. All other instraas following this mispredicted
branch can be squashed. In other words, the stream-id werlesscheap and efficient
mechanism to replace the global branch mis-predict sighia details of how and when
thesi d register value is modified are discussed below on a stagsdne basis:

» Fetch: Every new instruction is stamped with the current valueestan thesi d
register. When a branch mis-predict is detected (using thedh update from ex-
ecute/memory stage), it toggles thed register and flushes the program counter.
From this point onwards, the instructions fetched are stampith the updated
stream-id.

» Decode: Thesi d register is updated from the stream-ids of the incoming st
tions. If at any cycle, the old stream-id stored in decodesahmd match the stream-id
of an incoming instruction, a branch mispredict is implied alecode flushes its
instruction buffer.

* Issue:lt maintains thesi d register along with an additional 1-biast - si d regis-
ter. Thesi d register is updated using the stream-id of the instructiam performs

register writeback. And, theast - si d value is updated from the stream-id of the

26

last successfully issued instruction. For an instructigaching the issue stage, its
stream-id is compared with the d register. If the values match, then it is eligi-
ble for issue. A mismatch implies that some branch was misgied, in the recent
past, and further knowledge is required to determine whethg new incoming in-
struction is on the correct path or the incorrect path. Thiwhere thd ast - si d
register becomes important. A mismatch of the new inston&istream-id with the

| ast - si d indicates that the new instruction is on the corrected patxecution
and hence it is eligible for issue. A match implies the othsevand the new instruc-
tion is squashed. The complete significancé a$t - si d will be made clear later
in this section.

Execute/Memorycompares the stream-id of the incoming instructions tosthé
register. In the event of a mismatch, the instruction is shaed. A mispredicted
branch instruction toggles its own stream-id along withghe register value stored
here. This branch resolution information is sent back tofé¢heh stage, initiating a
change in itssi d register value. The mispredicted branch instruction ajsdates

thesi d in the issue stage during writeback. Thus, the cycle of wgsdiatcompleted.

To summarize, under normal operating conditions (i.e. rgpneidicts), instructions go

through the switched interconnection fabric, get issurelceted and write back computed

results. When a mispredict occurs, using the stream-id amesin, instructions on the

incorrect execution path can be systematically squashich@

Scoreboard: The second component required for proper functionality NSSs a

scoreboard that resides in the issue stage. A scoreboassestel in this design be-

cause a forwarding unit (that normally handles registauevalependencies) is not feasible.

27

More often than not, a scoreboard is already present in dipgeissue stage for hazard
detection. In such a scenario, only minor modifications &eded to tailor a conventional
scoreboard to the needs of a SNS pipeline.

The SNS pipeline needs a scoreboard in order to keep tradleakgisters that have
results outstanding and are therefore invalid in the regfiie. Instructions for which one
or more input registers are invalid can be stalled in theeastage. The SNS scoreboard
table has two columns (see Figtd 09, the first to maintain @alid bit for each register,
and second to store tle of the last modifying instruction. In case of a branch misefct,
the scoreboard needs to be wiped clean since it gets polbytedstructions on the wrong
path of execution. To recognize a mis-predict, the issugestaaintains d ast - si d
register that stores the stream-id of the last issued ictsdru \Whenever the issue stage
finds out that the new incoming instruction’s stream-idetsffroml ast - si d, it knows
that a branch mis-predict has taken place. At this pointstoegeboard waits to receive the
writeback, if it hasn’t received it already, for the branobktruction that was the cause of the
mis-predict. This branch instruction can be easily idezdifoecause it will bear the same
stream-id as the new incoming instruction. Finally, aftes tvaiting period, the scoreboard
is cleared and the new instruction is issued.

Network Flow Issues: In SNS, the stalls are automatically handled by maintaining
network back pressure through the switched interconrmecAacrossbar does not forward
values to the buffer of a subsequent stage if the stage lectdlhis is similar to the way
network queues handle stalls. In our implementation, weaguae that an instruction is
never dropped (thrown away) by a buffer.

The transfer of operations between the stages of a SNS tlasqyer crossbar switches.

28

If an instruction along with its operand values is, say, 98 im size. Then, a crossbar
switch with the channel width of 32-bits, will take 3 cyclesttansfer this instruction from
stage A to B. While this instruction is being transmitteég& A cannot work on its next
instruction, and similarly stage B also sits idle waiting thee transfer to complete. A
straightforward solution to this problem is to use a widebypplar design known as dou-
ble buffer / ping-pong buffer. In this design, as the nameliesp two buffers are kept
and the producer (consumer) switches back-and-forth legtwee two buffers for storing

(retrieving) the value. We use double buffers at all staget® and outputs within a SNS.

2.3.3 Performance Enhancement

The additions to SNS discussed in the previous section $rilng design to a point
where it is functionally correct. In order to compare thefpenance of thidhasicSNS
design to an in-order pipeline, we conducted some expetsnasing a cycle accurate
simulator developed in the Liberty Simulation Environmgni3. Basichere implies a
SNS pipeline that is configured with the stream identificatagic, scoreboard, and double
buffering. Interested readers can find the details of ouukition setup and benchmarks
in Section2.5.1 The performance of a basic SNS pipeline (first bar) in comparto the
baseline is shown in Figur25. The results are normalized to the runtime of the baseline
in-order processor. On average, a 4X slowdown was obsewt@dh is a significant price
to pay in return for the reconfiguration flexibility. Howeyén this version of the SNS
design, much is left on the table in terms of performance. tMbthis performance is lost
in the stalls due to 1) the absence of forwarding paths anth@¥mission delay through

the switches.

29

BSNS BSNS +bp$2 BSNS +bp$4 DOSNS+bp$6 OSNS +bp$8

o 6

E 5

[

2 4

T 3

N 2

¥ L0

S, | ANLLT IO T I O I N
FFTFTTSFF IS & o
ng/\ Q/‘S\/\ {I?‘é @/& N >

Figure 2.5: SNS performance normalized to the baseline. Different corgurations of SNS
are evaluated, both with and without the bypass cache. The®lvdown reduces as the bypass
cache size is increased (fewer issue-stage stalls).

Bypass Cache: Due to the lack of forwarding logic in SNS, frequent stalle ax-
pected for instructions with register dependencies. Tevalte the performance loss, we
add abypass cachén the execute/memory stage (see Figlr&0d. This cache stores
values generated by recently executed instructions witterexecute/memory stage. The
instructions that follow can use these cached values arl matestall in issue waiting for
writeback. In fact, if this cache is large enough, resultsfevery instruction that has been
issued, but has not written back, can be retained. This wenritpletely eliminate the stalls
arising from register dependencies emulating forwardoggc.

A FIFO replacement policy is used for this cache becauser ahdéructions are less
likely to have produced a result for an incoming instructidrhe scoreboard unit in the
issue stage is made aware of the bypass cache size when tem sgdirst configured.
Whenever the number of outstanding registers in the scardbllecomes equal to this
cache size, instruction issue is stalled. In all other gabesinstruction can be issued as

all of its input dependencies are guaranteed to be pres#mhwvine bypass cache. Hence,

30

stagenet/plots/bp_opti.eps

Bbp$+ 32-bit Xbar Bbp$+ 64-bit Xbar Obp$+ Unlimited-bit Xbar

Normalized Runtime

Figure 2.6: A SNS pipeline, with variation in the transmission bandwidih. The performance
improves with the increasing transmission bandwidth, and &most matches the base pipeline
at unlimited bandwidth.

the scoreboard can accurately predict whether or not thadsypache will have a vacancy
to store the output from the current instruction. Furthemmnthe issue stage can perform
selective register operand fetch for only those valuesahanot going to be available in

the bypass cache. By doing this, the issue stage can redeioeiber of bits that it needs

to transfer to the execute/memory stage.

As evident from the experimental results (Fig@rB), the addition of the bypass cache
results in dramatic improvements in the overall perforneamfctSNS. The biggest improve-
ment comes between the SNS configuration without any byatedfirst bar) to the one
with a bypass cache of size 2 (second bar). This improveniemighes after a while, and
saturates beyond 8 entries. The average slowdown hovenscd#ol X with the addition of
the bypass cache.

Crossbar Width: The crossbar channel width is the number of bits that canaesr
ferred to/from the crossbar in a single cycle. In the cont#xENS, it determines the

number of cycles it will take to transfer an instruction beém the stages. The results

31

stagenet/plots/xbar_opti1.eps

Macro-op meta information filled entirely by the List of live=ins. The list is assembled by the dec

decode stage Macro-op ID (MID) Live-in0 <val> and the values are populated in the issue stage
Macro-op length Live-in 1 <val>
Branch information Uivein| <val>
Stream ID (SID) ve-in | <va

List of operations. Each operation has an opcode List of live—outs. The list is assembled by the de

Opl: opcode, dest, src(s) Live-out 0 <val>

i and the values are populated in the ex/mem sta
Live—out 1 <val>

destination, and a list of sources. The sources point
either to the live—in list or destination of a previous op©@P2: Opcode, dest, src(s)

Live-out J <val>
OpN: opcode, dest, src(s)

Figure 2.7: Structure of a macro-op (MOP).

presented so far in this section have been with a crossbanehaidth of 32-bits. Fig-
ure 2.6illustrates the impact of varying this width on performandéree data points are
presented for every benchmark: a 32-bit channel width, bitdhannel width, and infinite
channel width. A large performance gain is seen when goimg f82-bit width to 64-bit
width. Infinite bandwidth essentially means eliminatingtednsfer latency between the
stages, resulting in performance comparable to the basglowever, at a tremendous area
cost). With a 64-bit crossbar switch, SNS has an averagedsiaw of about 1.35X. The
crossbar-width discussion is revisited after the nextqgrerhnce enhancement.

Macro Operations: The performance of the SNS design suffers significantly from
the overhead of transferring instructions between stegjese every instruction has to go
through a switched network with a variable amount of delagre;la natural optimization
would be to increase the granularity of communication to radbeiof multiple operations,
that we call a macro-opMOP). There are two advantages of doing this:

1. More work (multiple instructions) is available for theages to work on while the

next MOP is being transmitted.

2. MOPs can eliminate the temporary intermediate valueergéed within small se-

guences of instructions, and therefore give an illusionathdcompression to the

underlying interconnection fabric.

32

stagenet/figs/macro-op.eps

Bbp$ Wbp$+ MOP3live-indouts Bbp$+ MOP4 liveiingouts @bp$+ MOP5 live-ingouts Obp$+ MOP6 live-insouts

Co00 PRk
ovhroFNAD
PR

Normalized Runtime

Figure 2.8: SNS with a bypass cache and the capability to handle MOPs, cqrared to the
baseline in-order pipeline. The first bars are for MOP sizes fied at 1, while the other bars
have constraint on the number of live-ins and live-outs.

These collections of operations can be identified bothcstliyi (at compile time) or
dynamically (in the hardware). To keep the overall hardveserhead low, we form these
statically in the compiler. Our approach involves selegtirsubset of instructions belong-
ing to a basic block, while bounding two parameters: 1) thaloer of live-ins and live-outs
and 2) the number of instructions. We use a simple greedgyaiimilar to 6], that max-
imizes the number of instructions, while minimizing the ranof live-ins and live-outs.
When forming MOPs, as long as the computation time in theestagn be brought closer
to the transfer time over the interconnection, it is a win.

The complete structure of a macro-op is shown in the FigufeThe compiler embeds
the MOP boundaries, internal data flow, and live-in/liveé-miormation in the program
binary. During runtime, the decode stagBackerstructure is responsible for identifying
and assembling MOPs. Leveraging hints for the boundaregsatte embedded in the pro-
gram binary, the Packer assigns a unique MOP id (MID) to eM&DP flowing through the
pipeline. All other stages in the SNS are also slightly mediin order to work with these
MOPs instead of simple instructions. This is particulanhetof the execute/memory stage

where a controller cycles across the individual instruwithat comprise a MOP, executing

33

stagenet/plots/mop_opti.eps

them in sequence. However, the bandwidth of the stages modified, and they continue
to process one instruction per cycle. This implies thatstegifile ports, execution units,
memory ports etc. are not increased in their number or chtyabi

The performance results shown in Fig@& are for a SNS pipeline with the bypass
cache, 64-bit switch channel width and MOPs. The various bathe plot are for dif-
ferent configurations of the MOP selection algorithm. Theuhes show that beyond a
certain limit, relaxing the MOP selection constraints€hlws and live-outs) does not re-
sult in performance improvement. Prior to reaching thistlinelaxing constraints helps in
forming longer MOPs, thereby balancing transfer time wamgputation time. Beyond this
limit, relaxing constraints does not result in longer MORPstead it produces wider MOPs
that have more live-ins/outs, which increases transfee twithout actually increasing the
number of distinct computations that are encoded. On aeetag best performance was
observed for live-ins/outs constraint of 4. This yieldet4X slowdown for a SNS pipeline
over the baseline. The worst performers were the benchntlask$iad very poor branch
prediction rates. In fact, the performance on SNS was foartstrongly correlated with
the number of mispredicts per thousand instructions. Thexpected because the use of
MOPs, and the additional cycles spent for data transfer d@tvstages, causes the SNS
pipeline to behave like a very deep pipeline.

Crossbar width optimization: The bandwidth requirement at each SNS switch inter-
face is not the same. For instance, macro-ops that are titd@drfrom decode to issue
stage do not have any operand values. But, the ones thatmgadsoie to execute/memory
stage hold the operand values read from the register filejngakem larger. This ob-

servation can be leveraged to optimize the crossbar widthgden every pair of stages,

34

m64-bit Xbar B150-bit budget B200-bit budget B250-bit budget 0 300-bit budget

Normalized Runtime

Figure 2.9: Performance comparison with different budgets for crossbawidths. A budget
of 150-bit implies that all interfaces can have a combined vdth of 150. The first bar is for
static assignment of 64-bit crossbars at all interfaces, wbh is equivalent to a 320-bit ¢4 x 5)
budget. Optimized assignment of 300-bits is able to delivebetter performance than 320-bit
static assignment.

resulting in an overall area saving.

A series of experiments were conducted to track the numbbiteftransmitted over
each crossbar interface (fetch-decode, decode-issue;&s®cute, execute-issue and execute-
fetch) for every MOP. The average number of bits transmittted from 32 to 87. Given
a fixed budget of total crossbar-width (across all intedqca good strategy is to allocate
width to each interface in proportion to the number of bitgansfers. The result of ap-
plying this optimization to the SNS pipeline is shown in Hig.9. For nearly the same
crossbar area (budget of 300-bits), the optimized assighoferossbar-widths is able to
deliver 3% performance improvement over uniform usage ebié4rossbars (equivalent
to 320-bits in total). With this final performance enhancatnthe SNS pipeline slowdown

stands at about 1.11X of the baseline.

35

stagenet/plots/xbar_opti2.eps

resolution

Fetch
Controller

|

Icache respon#e

(a) Fetch

Writeback Registers

Incoming OP

oP

l\cache reques

Incoming (Macro) OP
—+{ (Macro) OP latch

REG ID[Valid| Last Wr. i
0 [0 17

21

7

'SCOREBOARD

SID
Lastsig

Issue
Controller

REGISTER FIL|

Outgoing (Macro) OF

(c) Issue

SID

Instruction Buffer

Logic

Decoder || packer

Outgoing (Macro) OF

—

(b) Decode

Incoming (Macro) OP

(Macro) OP latch 0
I ToFe-

so_|!
‘OP Countdr 1

Ex/Mem
Controller

BYPASS §

Outgoing (Macro) OF

Dcache’ Resporise l Dcache Request

(d) Execute/Memory

Figure 2.10: Pipeline stages of SNS. Gray blocks highlight the modules déd for transform-
ing a traditional pipeline into SNS.

2.3.4 Stage Modifications

This section goes over the pipeline stages in SNS, and suzeadhe modules added

to each of them.

» Fetch: The modifications made here are restricted to the additien dfregister and

a small amount of logic to toggle it upon branch mis-prediEigure2.103.

» Decode:The decode stage (Figu2el0h collects the fetched instructions in a buffer.

An instruction buffer is a common structure found in mostgtiipe designs, and to

that we add ousi d register. For an incoming instruction with a different atre

id, this register is toggled and the instruction buffer isfflad. The decode stage is

also augmented with the Packer. The Packer logic readsiatisins from the buffer,

identifies the MOP boundaries, assigns them a MID, and fitgleeiMOP structure

36

stagenet/figs/sn-fetch.eps
stagenet/figs/sn-decode.eps
stagenet/figs/sn-issue.eps
stagenet/figs/sn-exmem.eps

attributes such as length, number of operations and lil@tmegister names.
Issue:The issue stage (Figu&10q9 is modified to include a Scoreboard that tracks
register dependencies. For a MOP that is ready for issuegetister file is read to
populate the live-ins. The issue stage also maintains twi fegisters:si d and

| ast - si d, in order to identify branch mis-predicts and flush the Soosed at
appropriate times.

Execute/MemoryT he execute/memory stage (Figar&0d houses the bypass cache
that emulates the job of forwarding logic. This stage is dlsofirst to update its
si d register upon a branch mis-predict. In order to handle MO&cetxon, the
execute/memory controller is modified to walk the MOP instians one at a time
(one execution per cycle). At the same time, the computadtseare saved into the

bypass cache for later use.

2.4 The StageNet Multicore

The SNS presented in the last section is in itself a compl&teoarchitectural solution

to allow pipeline stage level reconfiguration. By maintagicold spares for stages that

are most likely to fail, a SNS-based design can achieve fagnlie enhancement targets

projected in Figur€.2 However, these gains can be greatly amplified, without tie c

sparing cost, by using multiple SNSs as building blocks tmfa StageNet (SN) multicore.

The high level abstraction of SN (Figug3), in combination with the SNS design,

forms the basis of the SN multicore (Figu2ell). The resources within this are not

bound to any particular slice and can be connected in anyranpifashion to form log-

37

Pipeline 1

mmm Pipeline 24_Fe

Configuration Manager

mmm Pipeline 3* Fetch

mmm Pipeline 4

Figure 2.11: A SN multicore formed using four SNSs. As an example, a sceniarwith five
broken stages is shown (crosses indicate broken stages). cEd with a similar situation, a
regular CMP will lose all its cores. However, SN is able to sahge three operational SNSs,
as highlighted by the bold lines (note that these bold linesra not actual connections). The
configuration manager is shown for illustrative purposes, ad is not an actual hardware block.

ical pipelines. The SN multicore has two prominent addgitmglue SNSs together:

1. Interconnection SwitchThe role of the crossbar switch is to direct the incoming
MOP to the correct destination stage. For this task, it na@sta static routing table
that is addressed using the thread-id of the MOP. The thceadiquely determines
the destination stage for each thread. To circumvent thgataof having them as
single points of failure, multiple crossbars can be mairgdiby the SN multicore.

2. Configuration Manager:Given a pool of stage resources, the configuration man-
ager divides them into logical SNSs. The configuration managgic is better
suited for a software implementation since: 1) it is accgs&ey infrequently (only
when new faults occur), and 2) more flexibility is availablesoftware to experiment
with resource allocation policies. The configuration maratan be designed as a
firmware/kernel module. When failures occur, a trap can Ing ethe virtualiza-

tion/OS interface, which can then initiate updates for tigch routing tables.

38

stagenet/figs/stage-net-4.eps

In the event of any stage failure, the SN architecture camteirecovery by combining
live stages from different slices, i.e. salvaging healtlodoles to form logical SNSs. We
refer to this as thestage borrowingSection2.4.7). In addition to this, if the underlying
stage design permits, stages can be time-multiplexed bylistimct SNSs. For instance, a
pair of SNSs, even if one of them loseseatecutestage, can still run separate threads while

sharing the single livexecutestage. We refer to this atage sharingSection2.4.2.

2.4.1 Stage Borrowing

A pipeline stage failure in the system calls upon the conigan manager to determine
the maximum number dtill logical SNSs that can be formed using the pool of live stages.
Full SNS here implies a SNS with exclusive access to exactly @ye sif each type. The
number of such SNSs that can be formed by the configuratiorageains determined by
the stage with the fewest live instances. For example, iareig.11, the bottom two SNSs
have a minimum of one stage alive of each type, and, thus,agieal SNS is formed. The
logical slices are highlighted using the shaded path inidigahe flow of the instruction
streams.

It is noteworthy that all four slices in Figur211 have at least one failed stage, and
therefore, a multicore system in a similar situation woudddnlost all working resources.
Hence, SN’s ability to efficiently borrow stages from diffet slices, gives it the competi-

tive edge over a traditional multicore.

39

2.4.2 Stage Sharing

Stage borrowing is good, but it is not enough in certain failsituations. For exam-
ple, the first stage failure in the SN fabric reduces the nunobbéogical SNSs by one.
However, if the stages can be time-multiplexed by multighSS, then the same number
of logical SNSs can be maintained. Fig@d1has the top two logical SNSs sharing an
executestage. The number of logical SNSs that can share a single séagpe tuned in our
implementation.

The sharing is beneficial only when the threads involvederespportunities to inter-
leave their execution. Therefore, threads with very hig@ [(mstructions per cycle) are
expected to derive lesser benefit compared to low IPC threBdghermore, as the de-
gree of stage sharing is increased, the benefits are exgectbdnk since more and more
threads will contend for the available stage. In order fergtages to be shareable, certain
hardware modifications are also required:

» Fetch: It needs to maintain a separate program counter for eachdtaed has to
time-multiplex the memory accesses. The instruction cachéurn, will also be
shared implicitly by the executing threads

» Decode:The instruction buffer has to be partitioned between diffethreads.

* Issue: The scoreboard and the register file are populated with g&diees specific
to a thread, and it is not trivial to share them. There are tvaysmo handle the
sharing for these structures: 1) compile the thread witrefesggisters or 2) use a
hardware structure for register cachiri¥]l In our evaluation, we implement the

register caching in hardware and share it across multipéatts.

40

» Execute/Memory:The bypass cache is statically partitioned between theadste

Similarly, the data cache gets shared by the threads.

2.4.3 Fault Tolerance and Reconfiguration

SN relies on a fault detection mechanism to identify brokeges and trigger reconfig-
uration. There are two possible solutions for detectioresfimanent failures: 1) continuous
monitoring using sensord §, 56] or 2) periodic testing for faults. The discussion of exact
mechanism for detection is beyond the scope of this chaptes. configuration manager
is invoked whenever any stage or crossbar switch is idedtifidbe defective. Depending
upon the availability of working resources, configuratioamager determines the number
of logical SNSs that can be formed. It also configures theestéigat need to be shared and
partitions their resources accordingly between threadsléMorking with higher degrees
of sharing, the configuration manager employs a fairnegsypfar resource allocation, so
that the work (threads) gets evenly divided among the st&gwsexample, if there are five
threads that need to share three live stages of same tydajriess policy prefers a 2-2-1
configuration (two threads each to stages 1 and 2 and rergainmto stage 3) over a 3-1-1

configuration (three threads to stage 1, one each to stages®@a

2.5 Results and Discussion

2.5.1 Simulation Setup

The evaluation infrastructure for the SN architecture iad of three major compo-

nents: 1) a compilation framework, 2) an architectural satar, and 3) a Monte Carlo

41

simulator for lifetime throughput estimations. A total of benchmarks were selected
from the embedded and desktop application domains. Foe s uations, the empha-
sis was on the embedded benchmarks because the SNS is bametheorder embedded

core. A variety of these were used including several enmggBdes, pcl, rc4, rijndael),

audio processing (g721encode, g721decode, rawcaudicaathudio), and image/video
processing (idct, sobel) benchmarks. In addition, fouktigsbenchmarks (181.mcf, eqgn,
grep, wc) were also included in order to exhibit the potémtiahis architecture for other

domains.

We use the Trimaran compilation systei [] as our first component. The MOP selec-
tion algorithm is implemented as a compiler pass on thenmeeliate code representation.
During this pass, the code is augmented with the MOP boueslarid other miscellaneous
attributes. The final code generated by the compiler usedfePD ISA [59)].

The architectural simulator for the SN evaluation was dgyedl using the Liberty Sim-
ulation Environment (LSE)1I13. A functional emulator was also developed for the HPL-
PD ISA within the LSE system. Two flavors of the microarchiteal simulator were im-
plemented in sufficient detail to provide cycle accurateltes The first simulator modeled
a simple five stage pipeline, which is also the baseline foresperiments. The second
simulator implemented the SN architecture with all the pig@l enhancements. Tablé
lists the common attributes for our simulations.

The third component of our simulation setup is the Monte €arigine that we em-
ploy for lifetime throughput study. Each iteration of the Me Carlo process simulates
the lifetime of the SN architecture. The configuration of 8¢ architecture is specified

in Table5.5. The MTTF for the various stages and switches in the systescatulated

42

using Equatior2.1t. The crossbar switch peak temperature was taken féafinthat per-
forms interconnection modeling for the RAW multicore chi{x][The stage temperatures
were extracted from HotSpot simulations of the OR1200 cdtk the ambient tempera-
ture normalized to the one used #Y]. The calculated MTTFs are used as the mean of the
Weibull distributions for generating a time to failure (T)fier every module (stage/switch)

in the system. For each iteration of the Monte Carlo, theesysiets reconfigured over its
lifetime whenever a failure is introduced. The instantarsethroughput of the system is
computed for each new configuration using the architectumalilator on multiple random
benchmark subsets. From this, we obtain the system thramgiver the lifetime. 1000

such iterations are run for conducting the Monte Carlo study

Table 2.1: Architectural attributes.

Base core 5-stage in-order pipeline

SNS 4-stage in-order, with double buffering
and all other performance enhancements
Branch pred.| global, 16-bit history, gshare predictor
BTB size of 2KB

L11$, D$ 4-way, 16 KB, 1 cycle hit latency

L2 $ unified | 8-way, 64 KB, 5 cycle hit latency
Memory 40 cycle hit latency

2.5.2 Simulation Results

Lifetime performance: Figure2.12ashows the lifetime throughput results for a 4-core
CMP compared against two equally provisioned configuratafrihe SN architecture. The
CMP system starts with a performance advantage over the Siltesture. However, as
failures accumulate over time, the throughput of SN oveake baseline performance

and thereafter remains dominant. For instance, at yeare@htioughput of SN is nearly

1The fetch stage was qualified to have a MTTF of 10 years. This@nservative estimate and no actual
module level MTTF values are available from any public seurc

43

3X the baseline CMP. The shaded portion in this figure depie@sumulative distribution
function (CDF) of the combined MTTF Weibull distributiorisor instance, this plot shows
that after 8 years, on average, there are 20 failed strigctnrie system. The difference
between SN configuration with and without sharing was fouméé almost negligible.
Remaining results in the chapter are for SN configuratiohevit sharing.

Figure2.12bshows the cumulative performance (total work done) for SNfigora-
tions compared against the baseline. By the end of thenfitstwe achieve as much as
37% improvement in the work done for the SN fabric. About 30Rthes is achieved by
stage borrowingnly, and the additional 7% benefit is a resulstdge sharingThe shar-
ing was not found to be very effective as the opportunitieSn@-multiplex stages were
very few and far between.

Area overhead: The area overhead in the SN arises from the additional michea
tectural structures that were added and the interconmefetimic composed of the crossbar
switches. Area overhead is shown using an OR1200 core aasedie (see Sectich2.]).
The area numbers for the bypass cache and register cachstiarated by taking similar
structures from the OR1200 core and resizing them apptepriaMore specifically, by-
pass cache and register cache areas are based on the TL®ladeis also an associative
look-up structure. And finally, the area of double bufferbased on the maximum macro-
op size they have to store. The sizing of all these structasedwne in accordance with the
SNS configuration that achieved the best performance. Tdesloar switch area is based
on the Verilog model from{1]. The total area overhead for the SN design (no sharing)
is ~15% (Table2.2). This was computed assuming six slices share a crosslatghat

each crossbar maintain two cold spares. Note that the szan@larea is ignored in this

44

3.5 T T T 35
, 4-coreCMP e -
‘s, 4-core (3/1) CCA S
3 [l ----4-glice SN without sharing cemen o 30
'3.“;,,,' 4-slice SN with sharing B -
*
25 Ty 25
k ()
2 Y :
et 2 *iﬂ 20 ®
> b
£ * Xy S
S 15 *ooxlm 15 2
e .":, xs”q'ﬂ [
< W, X mE_ 5
= s, X, ‘wB Z
1 s, ., =85 10
4, Ny uB
w,. *x_ 2@
», ®, ‘#Bg
0.5 Yy X, "R8g 5
U"'"o..’g*% h EE ﬂ'&g
0 *'*"*"""'%‘Wa EEE i,
0 2 4 6 8 10
Time (years)
(a) Throughput over time.
2 . .
4-core CMP —_—
4-core (3/1) CCA -
4-slice SN without sharing e
3 4-slice SN with sharing e
c
g 15
S
@
o
[}
=
g 1
£
3
(8]
o
Q
N
g o5
S
z
0

0 2 4 6 8
Time (years)

10

(b) Cumulative work done. Cumulative work represents the iratieaf through-
put over time.

Figure 2.12: Throughput and cumulative performance results for 4-core QVIP, 4-slice SN and
4-slice SN with sharing. Plot (a) also shows (shaded portigrihe expected number of failed
modules (stages/switch) until that point in the lifetime.

discussion, as the introduction of sufficiently sized bypeache eliminates the need for
them.

All the design blocks were synthesized, placed and routedusdustry standard CAD

45

stagenet/plots/tput4core.eps
stagenet/plots/cwork4core.eps

tools with a library characterized for a 130nm process. Tiea averhead for separate
modules, crossbar switches, and SN configurations is showalile2.2.

Timing overhead: Although, we have not investigated the impact of our miathar
tectural changes to the circuit critical paths, a measarafluence on the cycle time is not
expected in SNS, because: 1) our changes primarily impaqpifieline depth (due to the
additional buffers), and 2) all logic changes are local ® $kages, and do not introduce

any direct (wire) communication between them.

Table 2.2: Area overhead of SN architecture.

Design Blocks
Block name Area (mm?) | Percent overhead
Bypass cache 0.044 3.4%
Register cache 0.028 2.2%
Double buffers 0.067 5.3%
Miscellaneous logic 0.012 0.9%
64-bit crossbar switcl 0.028 2.1%
SN Configurations
Configuration Percent overhead
SN without sharing 15.1%
SN with sharing 17.3%

2.6 Related Work

Concern over reliability issues in future technology gatiens has spawned a new
wave of research in reliability-aware microarchitecturecent work has addressed the
entire spectrum of reliability topics, from fault detectiand diagnosis to system repair
and recovery. This section focuses on the most relevanesobsork, those that propose
architectures that tolerate and/or adapt to the preserfegilts.

High-end server systems designed with reliability as a-@irder design constraint have

been around for decades but have typically relied on coawse geplication to provide

46

a high degree of reliability 14, 100, such as Tandem NonStopZ], Teramac £0, 5],
Stratus [L17], and the IBM zSeries1[Z]. However, dual and triple modular redundant
systems incur significant overheads in terms of area andip&weghermore, these systems
still remain susceptible to wearout-induced failures sitiey cannot tolerate a high failure
rate.

Configurable Isolationd] is another high level solution that works by disabling kenk
cores as soon as they develop a fault. ElasilCg and Maestro $&] are more resource
conscious architectural vision for multiprocessor faaletance. Exploiting low-level cir-
cuit sensors for monitoring the health of individual cordsgse papers propose dynamic
reliability management that can throttle and eventualtg tff cores as they age over time.
Although effective in a limited failure rate scenario, afltbhese proposals need a large
number of redundant cores, without which they face the @otspf rapidly declining pro-
cessing throughput as faults lead to core disabling.

An alternative to core disabling is fine-grained redunddaocylefect tolerance. There
are numerous proposals for fine-grained redundancy mantensuch as Bulletproof§],
sparing in array structure&§], branch predictorsi[d], register files §5], functional units [L9,
109, and other such microarchitectural structures. Theserael typically rely on inher-
ent redundancy of superscalar cores or add cold spares lfserable microarchitectural
modules.

In a multicore chip, the concept of architectural core sgilvg [33] can partially mimic
the benefits of maintaining spares. Architectural coreagahg leverages natural cross-
core redundancy and migrates threads to a healthy core wéreaéroken core encounters

an instruction it cannot execute. However, given that acatlifraction of the core logic

a7

is non-redundantd3] (~80% in Intel Core2 like architectures), schemes thatedelpon
salvaging microarchitectural and architectural can mtewanly a limited fault coverage.

Much work has also been done in building reliable systems ff[édGA components.
The Teramac Configurable Computét [s one instance of this paradigm. The Teramac
Custom Computer is designed to tolerate defective resswsiag specialized algorithms
which identify legal mappings of user workloads that alsoid¥aulty components. Other
research has focused on building reliable substrates dutw nanotechnologies that are
expected to be inherently fault-prone. The NanoBox PraoeSsid [61] was designed as
a recursive system of black box devices, each employing tvan unique fault tolerance
mechanisms. While this project does boast a significant amotudefect tolerance, it
comes at a 9X overhead in terms of redundant structures.

SN differs dramatically from solutions previously propdse that our goal is to mini-
mize the amount of hardware used solely for redundancy. Igjeeeifically, we enable re-
configuration at the granularity of a pipeline stage, anoliapipelines to share their stages,
making it possible for a single core to tolerate multiplduggs at a much lower cost. In
parallel to our efforts, Romanescu et alg] have proposed a multicore architecture, Core
Cannibalization Architecture (CCA), that also exploitage level reconfigurability. CCA
allows only a subset of pipelines to lend their stages tordiheken pipelines, thereby
avoiding full crossbar interconnection. Unlike SN, CCA glipes maintain all feedback
links and avoid any major changes to the microarchitectitbough these design choices
reduce the overall complexity, fewer opportunities of r&cguration exist for CCA as

compared to SN.

48

2.7 Summary

As CMOS technology continues to evolve, so too must the tgcies that are em-
ployed to counter the effects of ever more demanding réiiplochallenges. Efforts in fault
detection, diagnosis, and recovery/reconfiguration miligtealeveraged together to form
a comprehensive solution to the problem of unreliable @ilicThis work contributes to
the area of recovery and reconfiguration by proposing a aadichitectural shift in pro-
cessor design. Motivated by the need for finer-grain recardiipn, networked pipeline
stages were identified as the effective trade-off betwesharad reliability enhancement.
Although performance suffered at first as a result of the ghamo the basic pipeline, a few
well-placed microarchitectural enhancements were abledl@im much of what was lost.
Ultimately, the SN fabric exchanged a modest amount of aveehead (15%) in return for
a highly resilient CMP fabric that yielded about 40% more kvduring its lifetime than a

traditional CMP.

49

CHAPTER Il

A Scalable Architecture for Wearout and Process

Variation Tolerance

3.1 Introduction

In an effort to combat the silicon reliability threat expadtn future technology gen-
erations, the previous chapter introduces a multicore evgdolerance solution name Sta-
geNet (SN). The basic idea of SN is to organize a multicored@gamically configurable
network of pipeline stages. Logical cores are created atim@ by connecting together
one instance of every pipeline stage. The underlying pipetiicroarchitecture is designed
to be completely decoupled at stage boundaries, providith§éxibility to construct log-
ical cores. In the event of stage failures, the SN architedtitiate recovery by salvaging
healthy stages to form logical cores. This ability of SN tolage failures at a finer granu-
larity (stages rather than cores) forms the basis of itabéity benefits.

Despite all the benefits SN architecture offers, it facesdlprincipal limitations. Firstly,
the original proposal was designed for a CMP with 4-8 corad, @oes not scale well to

a large number of cores (say, 100). The crossbar, that wasassthe SN interconnec-

50

tion, is notorious for steep increases in area and delayheaels as the number ports is
increased §1], and therefore limits the SN scaling. Secondly, the SN psap focuses
primarily on the stage failures and does not investigatéou for interconnection fault
tolerance. Thus, a scaled up SN system will waste all of itskimg stages if the shared
crossbar between them develops a failure. And finally, thed88ign was evaluated for
wearout related failures only. A more immediate concerntfar industry today is the
impact of process variation on the production yield andgtesificiency.

Process variationl|/, 91] is caused by the inability to precisely control the fabtica
process at small-feature technologies. This can lead tofisignt deviation of circuit pa-
rameters (channel length, threshold voltage, wire spadnogn the design specification.
These parametric deviations can create a wide distribati@perating characteristics for
components within/across chip(s), resulting in slow ptrét work at a low frequency to
those that are very fast but leaky (high static power). Eith@éreme is bad for efficient
computing.

This chapter introduces StageWeb (SW), a scalable CMPcfétriwearout and pro-
cess variation tolerance, that eliminates all the aforeimeed limitations of SN. The SW
system is optimized to determine the best degree of comitgdietween pipelines (that
can share their resources together), while incurring a stataount of overhead. A range
of interconnection alternatives, and corresponding caondigon algorithms, are explored
to enable scalable fault-tolerance using SW. The religinli the interconnection network
is also tackled in the SW design through the use of sparelzmossobust crossbar designs
and intelligent connectivity to give an illusion of redumdg. The underlying interconnec-

tion flexibility of SW is further leveraged to mitigate prasevariation. Using SW, the faster

51

components (pipeline stages) in the fabric can be selégtiveked, to form pipelines that
can operate at a higher frequency. This ability of SW lintis harmful effects of process
variation that intersperse slower components with fastesdahroughout a chip.
Contributions of this chapter are as follows:
1. SW, a comprehensive solution for the upcoming reliabidhiallenges - permanent
faults and process variation.
2. Exploration of robust and scalable interconnectionmaétives for building SW chips.
3. Configuration algorithms to a) maximize the SW systemughput in the face of
failures, and b) improve the distribution of core frequesan the presence of process
variation.
4. Comparisons of SW and traditional CMPs on the ground ofub)udative work a
chip can perform before being decommissioned, 2) througbparantees over the

lifetime, 3) distribution of core frequencies, 4) energiiaéncy, and 5) yield.

3.2 Background

The StageWeb architecture proposed in this chapter bupds BtageNet(SN)[3],
which is a solution for permanent fault tolerance in multeo SN creates a network
of pipeline stages using full crossbars, thereby allowingual exchange of working re-
sources between pipelines. Figuwd illustrates a SN multicore created out of four SNSs
that share a common crossbar network. The inherent symmiketing SN allows arbitrary
formation of a logical SNS by grouping together at least oipelpme stage of each type.

For instance, fetch, issue and execute stage from slice n&esl with the decode from

52

snso(CF)M @D l—| o —i (EM) stice 0

() |) I I (N (EM) stice 1
SNS 1 |@) I@I o |® G siice >

a2 (- @B - @@ o

Figure 3.1: The SN architecture with four slices interconnected to eaclother. Despite four
failed stages (marked by shading), SN is able to salvage theavorking pipelines, maintaining
healthy system throughput. Given a similar fault map, a coredisabling approach for reliabil-
ity would lose all working resources.

slice 1, to construct a working pipeline.

SN relies on a fault detection mechanism to identify brokaiges and trigger recon-
figuration. The manufacture time failures can be easilytified at the test time and SN
can be configured accordingly. However, an active mechaisisaquired to catch failures
in the field. There are two possible solutions for detectibpeymanent failures: 1) con-
tinuous monitoring using sensorsd 56] or 2) periodic testing for faults. SN can employ
either of these or use a hybrid approach. In the presencéufefs, SN can easily isolate
broken stages by adaptively routing around them. Given hgfcgiage resources, a soft-
ware based configuration manager can divide them into a iyofyatimal set of logical
SNSs. In this way, SN’s interconnection flexibility allovtgo salvage healthy stages from

interconnected cores.

3.2.1 Limitations of SN

The SN design and analysis, as presented in chéiptieran acceptable wearout toler-
ance solution for a small scale multicore system. HoweudrisSimited in three distinct

ways that prevent it from meeting the many-core reliabiitallenge:
* First, SN was designed for a CMP with 4-8 cores, and doesaad¢ svell to a large

53

stageweb/figs/snet.eps

number of cores. The crossbar, that was used as the SN int&rciion, is notorious
for steep growth in area and delay overheads as the numbertefipincreasedi1],

and therefore limits the SN scaling.

» Second, the SN proposal focuses primarily on stage failanel does not investigate
methods for interconnection fault tolerance. SN'’s robessrhinges on the link and
crossbar reliability. For instance, a SN chip will wasteddlits working stages if the

shared crossbar between them develops a failure.

» And finally, the SN design targets only wearout relatedufais, which constitutes
only a part of the reliability challenge. A more immediatencern for the industry
today is the accelerating rate of process variation and faatwring defects, and its

impact on the performance-efficiency of semiconductor potsl

3.2.2 Impact of Process Variation and Defects

Process variation is encountered at manufacturing time,irftuences almost every
chip manufactured from day one. The variations can be syteite.g., lithographic lens
aberrations) or random (e.g. dopant density fluctuati@rs),can manifest at different lev-
els — wafer-to-wafer (W2W), die-to-die (D2D) and withirediWID). Traditionally, D2D
has been the most visible form of variation, and was tackiethtvoducing the notion of
speed-binning (chips are partitioned based on their frecpuand sold accordingly). How-
ever, the increasing levels of WID variatiorisl[66, 109 has created newer challenges for
today’s multi-core designs. As a result of WID variationgemtional frequencies of CMP

cores can exhibit a wide distribution (see Fig8r8). To deal with this disparity, designers

54

Future node M32nm 0O45nm

35
30 —
25

15
10

Number of cores

o =B : : : : : : =
073 076 0.79 0.82 085 088 091 094 097 1

Frequency (normalized)

Figure 3.2: Impact of process variation on a 64-core CMP. The plot showshie distribution of
core frequencies at current technology nodes (45nm and 32nmand the (next-to-arrive) future
node. As the technology is scaled, the distribution shiftsoivards the left (more slower cores)
and widens out (more disparity in core frequencies). This is consequence of large number of
cores ending up with slower components, bringing down theioperational frequencies.

in upcoming technology generations may create overly agatee designs or introduce
large frequency guard-bands. Both of which are undesiralbdenatives for computing
efficiently.

An extreme case of process variation is manufacture-tinfiectie Defect-tolerance for
individual cores is a challenging problem. At one extremiiésoption to disable cores as
soon as they develop a faulj[we refer to this asore isolation However, with an increase
in defect rate, systems with core isolation can exhibitdaproughput degradation, and
quickly become useless. This challenge will manifest fitasla process yield problem
(fewer chips with an acceptable throughput). Thus, achgeain economically viable yield
will get harder with the rise in the manufacturing defectsign Figure3.3shows the yield
for a 100 core CMP at a range of defect densities. As evident this chart, any rise in

the defect densities seen today can have a catastrophictiopgield.

55

stageweb/plots/pvmotiv.eps

~®-95 cores -M-=85 cores ~A~75 cores

100 £ Bl .
TN
o ! N O
70 1 \ A\
e NV
'E 40 I \ \\
30 | \ A
. ! N\
10 1 \ .\\A
0 1 \; o — 77

0.0005 0.005 0.05 0.5

Defect Density (per mm?)

Figure 3.3: This plots shows the yield for a 100 core CMP at a range of defédensities. The
yield is computed as the fraction ofworking chips for a 1000 chip Monte-Carlo simulation
(at each defect density point). Aworking chip is one that has greater than 75/85/95 cores
functional. The black dotted line shows the currently obseved defect density according to the
latest ITRS report [53].

3.3 The StageWeb Architecture

SW is a scalable architecture for constructing dependaM®s SWinterweaves
pipeline stages and interconnection into an adaptiveddhat is capable of withstanding
wearout failures as well as mitigating process variatiohe ihterconnection is designed
to be flexible such that the system can react to local failuexonfiguring around them,
to maximize the computational potential of the system atiades. Figure3.4 shows a
graphical abstraction of a large scale CMP employing the &Nitcture. The processing
area of the chip in this figure consists of a grid of pipeliregsts, interconnected using a
scalable network of crossbars switches. The pipeline rarctotecture of SW is same as
that of a SNS. Any complete set of pipeline stages (reachabt®mmon interconnection)
can be assembled together to form a logical pipeline.

The fault-tolerance within SW can be divided into two subkgems. The first half is

to utilize as many working pipeline stages on a chip as ptessidnd the second half is

56

stageweb/plots/yield.ps

NoOoOO0000000000
P 000000000000 & ® ®
NOoooooooooooo o> I < Il an Il G0
] |:||:||:||:||:||:||:||:|||:||:||:||:|| N ———— ——
n EIDEIDDEIDEIEDEIDI'_ O ©O O e
oooooooooooo

N oooooooooooo I®®®®®®)
D oooooooocoooo =
o e e e N hgo» hglen |
b e e e e e e e e [[[L@ (D) (D)
NOOooooooooooO|d Vo — = — =— — =
T oooooooooooo (D) (D) (@D) EM

Figure 3.4: The StageWeb (SW) architecture. The pipeline stages are aanged in form of a

grid, surrounded by conventional memory hierarchy. The in®t shows a part of the SW fabric.

Note that the figure here is an abstract representation and des not specify the actual number
of resources.

to ensure interconnection reliability. A naive solutiom fbe first problem is to provide a
connection between all stages. However, as we will show ilatidis section, full connec-
tivity is not necessary between all stages on a chip to aetiierbulk of reliability benefits.
As a combined solution to both these problems, we exploegradtives for the intercon-
nection network, interconnection reliability and preseomfiguration algorithms for SW.
The underlying interconnection infrastructure is alselaged by SW to mitigate process

variation. This is accomplished by introducing a few minbaeges to the configuration

policy.

3.3.1 Interweaving Range

The reliability advantages of SW stem from the ability ofgiéoring slices (or pipelines)
to share their resources with one another. Thus, a direcbapp for scaling the original
SN proposal would be to allow full connectivity, i.e. a logicSNS can be formed by
combining stages from anywhere on the chip. However, sugibilgy is unnecessary,
since the bulk of the reliability benefits are garnered byrisiggamongst small groups of

stages. To verify this claim, we conducted an experimert witixed number of pipeline

57

stageweb/figs/sweb.eps

Normalized Cumulative Work

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Island size (numberof slices sharing stages)

Figure 3.5: Cumulative work performed by a fixed size SW system with incrasing SW island
width. The results are normalized to an equally provisionedregular CMP. These results are
a theoretical upper bound, as we do not model interconnectio failures for the experiments
here.

resources interwoven (grouped together) at a range of sak@ch fully connected group
of pipelines is referred to as$W island For instance, 16 pipelines can be interwoven at
granularity of 2 pipelines (leading to 8 SW islands), 4 pipes (4 islands), 8 pipelines (2
islands) or all 16 pipelines can be interwoven togetherufe@.5 shows the cumulative
work done by a large number of slices interwoven at a rangaMistand sizes. All SW
configurations in this figure have same the amount of pipeéseurces. Cumulative work
metric, as defined in Sectidh4.3 measures the amount of useful work done by a system
in its entire lifetime. Note that the interconnection faldnere is kept fault free for the sake
of estimating the upper bound on the throughput offered by SW

As evident from Figure8.5, a significant amount of defect tolerance is accomplished
with just a few slices sharing their resources. The relighikturns diminish with the in-
creasing number of pipelines, and beyond 10-12 pipelimgsyweaving has a marginal
impact. This is so because, as a SW island spans more and hoess the variation in
time to failure of its components gets smaller and smalldiis Tactors into the amount

of gains that the flexibility of interconnection can garmecombining working stages, re-

58

stageweb/plots/snet_scaling.eps

sulting in a diminishing return with an increase in islandithii Thus, a two-tier design
can be employed for SW by dividing the chip into SW islandsereha full interconnect is
provided between stages within the island and no (or perlvajted) interconnect exists
between islands. In this manner, the wiring overhead carxplécély managed by exam-
ining more intelligent system organizations, while gammgmear-optimal benefits of the

SW architecture.

3.3.2 Interweaving Candidates

Interweaving a set of 10-12 pipelines together, as seergumr€3.5, achieves a majority
of the SW reliability benefits (assuming failure immune mt@nection). However, using a
single crossbar switch might not be a practical choice foneating all the 10-12 pipelines
together because: 1) area overhead of crossbars scalestigaly with the number of
input/output ports, 2) stage to crossbar wire delay ina@gagth the number of pipelines
connected together, at some point this can become theatqath for the design, 3) and
lastly, failure of the single crossbar shared by all the lnifes can compromise usability of
all of them.

In light of the above reasons, there is a need to explore magkigent interconnections
that can reach a wider set of pipelines while keeping thehmagts under check. Reaching
a wider set of pipelines enables salvaging of more stageiress from farther ends of the
chip. The rest of this section introduces four interconio@calternatives for improving the
range of pipelines that can share their stages togetheddmi@n, some sort of fault tol-
erance also needs to be incorporated into the intercommmeeétwork, which is addressed

later in this section.

59

Single Crossbars The most basic interconnection option is to use the one gragim
the original SN proposal, a single full crossbar switch {ééss). Figure3.6 shows a
full crossbar connecting fetch and decode stages slices. The figure also shows an
abstraction for a crossbar (a bold vertical line) that wdlsed hereafter in this chapter.
By virtue of being bufferless, this crossbar’s delay has tteviihin a single CPU cycle,

thus, the value of (slices connected) is bounded by this delay.

((@)
—_ (ECD)

n ¢ nT>
out Ol®
. ©

Figure 3.6: A single crossbar interconnect connectingp slices. The diagram on the right also
shows the abstraction that we use henceforth for representg a single crossbar.

Overlapping Crossbars The overlapping crossbar interconnection builds upon iie s
gle crossbar design, while enabling a wider number of pigslito share their resources
together. As the name implies, adjacent crossbars ovedHmhtheir territories in this
interweaving setup. Figur®.7 illustrates the deployment of overlapping crossbars over
%n slices. Unlike the single crossbar interconnection, @pging crossbars have a fuzzy
boundary for the SW islands. The shaded stages in the figgraidgint a repetitive inter-
connection pattern here. Note that th€setages can connect to the stages above them
using crossbars Xbar 1,4,7, and to the stages below themy asiesbar Xbar 2,5,8. Thus,
overall these stages have a reac@rm‘slices. The overlapping crossbars configuration has
two distinct advantages over the single crossbars: 1) itatlaw up to 50% more slices

to share their resources together, and 2) it introducestamative crossbar link at every

60

stageweb/figs/sxbar.eps

stage interface, improving the interconnection robustifgmges can choose an alternative

crossbar in case one of them fails) without additional cplarmg.

() e 4 EM
g g . e ° W2
=k " ks
() @ (] (D)
. T . T . . . n/2
() D) c EM
. J1 e A1 - J e (2
() 5 (D) g () E EM

Figure 3.7: Overlapping crossbar connections. The overlap allows a wet set of pipelines
to share their resources. In this figure, the shaded stages ithe middle have a reach of%n
pipelines.

Single and Front-Back Crossbars The primary limitation of single crossbars is the in-
terweaving range they can deliver. This value is boundedcbyektent of connectivity a
single-cycle crossbar can provide. However, if this castris relaxed by introducing
two-cycle crossbars, virtually twice the number of slicae communicate with one an-
other. Unfortunately, the two cycle latency between evexy pf stages can introduce a
significant slowdown on the single thread performance ofltiggcal SNSs (~25%). A
compromise solution would be to apply two cycle crossbar ebaser granularity than
pipeline stages. One way to accomplish this is by clasgifyeich-decode pair as one
block (front-end), and issue-exmem pair as the other (lgack- The single thread per-
formance loss when using this is about 7%. Connecting ugettves blocks would need
one front-end to back-end crossbar, and the other in thesewirection. We call such

two-cycle interconnections front-back crossbars. FigliBshows2n slices divided into

61

stageweb/figs/oxbar.eps

front-end and back-end blocks, which are connected by &-fvack crossbar (FB-Xbar 0).

Front-End Back-End

E/M
L] L] L] L]
e o o o n
o LI * °
O @il | ol
Ol ® (S [
L] L] L] L]

o
° o 5 ° ° n
e o o o § o < o
5 I 5

=l Nusk N [Nask N

Figure 3.8: Combined application of single crossbars in conjunction wth front-back cross-
bars. The reverse connections, execute/memory to issue aexkecute/memory to fetch, are not
shown here for the sake of figure readability.

Overlapping and Front-Back Crossbars The single and front-back crossbar combina-
tion benefits from the interweaving range it obtains from filo@t-back crossbar, but, at
the expense of single thread performance loss. An altematito combine the overlap-
ping crossbars with the front-back crossbars. Figu@shows this style of interconnection
applied overn slices. In this scenaricg,n slices can be reached without losing any per-

formance, and the remaining/2 bordering slices can be reached using the front-back

crossbars.

Front-End Back-End
() () () EW
. 2 . E * % .

el Q) el
o % e X o X ° n
o o e © .
O @: il &=
O JI&® . (G I | |
. 5 . § o ® g .
° ° 5 e . n
) o) ol g [) o []
® io o i

Figure 3.9: Combined application of overlapping crossbars in conjunadbn front-back cross-
bars. The reverse connections are not shown here for the sake figure readability.

62

stageweb/figs/fbsxbar.eps
stageweb/figs/fboxbar.eps

3.3.3 Configuration Algorithms

The faults in a SW chip can manifest as broken stages, cnogslia or interconnection
links. Each of these scenarios demand a reconfiguratioreaytbtem such that the defec-
tive components are isolated. A good configuration algorithould guarantee formation
of a maximum number of logical pipelines (or SNSs), thus eadhg the highest possible
system throughput. This section presents three configuratgorithms for handling each
type of crossbar deployment, namely, single crossbars]appng crossbars and front-
back configurations. All four interweaving alternativesalissed in the Sectid3.2can
be successfully configured by using a combination of theseethlgorithms. For the sake
of avoiding complicated interactions of different typesfailures when forming logical
SNSs, the algorithm we propose here abstracts all faillgetage failures. For instance, a
crossbar port failure can be accounted for by declaring tédoigesconnecting to it as dead.

The same abstraction can be applied to interconnectioridihkes.

Single Crossbar Configuration The input to this algorithm is the fault map of the entire
SW chip, and it is explained here using a simple example.rEigu.0shows a four-wide
SW system. The SW islands are formed using the top two andrhdtvo slices. There
are eight defects in this system, four stage failures anddoassbar port/interconnection
link failures. The dead stages are marked using a solid sif&jé4, 13, E4) and the in-
terconnection as crosses. The stages connected to a deldinmtection are also declared
dead, and are lightly shaded (D1, D2, 12). This is to distisguhem from the physically
defective stages. For illustration purposes, the backwarshections are not shown here

and are assumed fault-free.

63

L pueis|

2z puels|

Figure 3.10: Configuration of SW with single crossbars. The marked stageand intercon-
nections are dead. Island 1 is not able to form any logical SNSvhereas island 2 forms only
one logical SNS (SNS 0).

Given the updated fault-map (with interconnection faituneodeled as stage failures),
the single crossbar configuration is conducted for one Svidsat a time. The first step is
to create a list of working stages of each type. For the exampFigure3.10, this results
in - fetch {F1}, decode{}, issue{l1} and execute/memor{El, EZ - for SW island 1,
and - fetch{F3, F4, decode{D3}, issue{l4} and execute/memoryE3} - for SW island
2. The second step groups unique working stages within andsbnd sets them aside as a
logical SNS. In our example, this results in having oaheworking SNS: F3, D3, 14, E3,

and the configuration is complete.

Overlapping Crossbar Configuration The overlapping crossbars provide additional con-
nectivity for resources from two neighboring SW islandst the explanation of this algo-
rithm, we will use the same SW example from before. Figdifelis almost the same as
before, with the exception of a new overlapping crossbagrlay the middle. This layer
makes the tally for the number of logical SN islands threesaAhote the change in shading
used for stages D2 and 12. The top half of these stages at¥ylgjfaded, and the bottom
half is clear. This is to denote that these stages are deadédn island 1, but are available
for use in island 2.

The core of the overlapping crossbar configuration algorith same as the one used

64

stageweb/figs/sconf.eps

for the single crossbar configuration. Given the fault-meapj the proper abstraction of
interconnection faults as stage faults, the single crassiodiguration algorithm is used to
form logical SNSs for one island at a time. This process idesieat one end of the SW
fabric, and is swept across the entire SW. When this prosesarited at the top of the fabric,
working stages from the top of the pile within each island giken preference to form
logical SNSs. This heuristic helps in keeping more resaufoee when the succeeding
islands are configured. Figufell illustrates this logical progression from island 1 to
island 3 in our example. The steps for each island confiqamadre detailed below, and
result in a total otwo logical SNSs.

Island 1:

1. Free working stages: fetdlir1}, decode{ }, issue{l1}, execute/memoryE1l,E2.

2. Logical SNSsnone.

Island 2:

1. Free working stages: fetcfF3}, decode{D2, D3}, issue{l2}, execute/memory

{E2, E3.

2. Logical SNSs: F3, D2, 12, E2.

Island 3:

1. Free working stages: fetdlr4}, decode{D3}, issue{l4}, execute/memoryE3}.

2. Logical SNSs: F4, D3, 14, E3.

Front-Back Crossbar Configuration The front-back crossbars are only used to connect
the front-end (fetch-decode pair) with the back-end (issxecute/memory pair). This

requires their use to be in conjunction with some other trassonfiguration (see Sec-

65

Figure 3.11: Configuration of SW with overlapping crossbars. The red marked stages and
interconnections are dead. The partially marked stages ardead for one island, but are avail-
able for use in the other. Island 1 is not able to form any logial SNS, island 2 forms one logical
SNS (SNS 0) and island 3 also forms one logical SNS (SNS 1).

tion 3.3.2. Henceforth, we will refer to thisther crossbar configuratioas the first-level
interconnection. Nevertheless, the configuration algoritor front-back crossbars is inde-
pendent of the choice made for the first-level interconoectirhe running example from
the previous algorithms will again be employed in this s@tiisee Figure.12). In our
example (Figure8.12) front-back crossbars are assumed to be fault-free. The-back
algorithm can be divided into three phases:

1. First-level Interconnection: Prior to configuring front-back crossbars, the maxi-
mum potential of the first-level interconnection should kpleited. In our example,
we employ overlapping crossbars as the first-level intereotion. This results in
forming two logical SNSs: F3, D2, 12, E2 and F4, D3, 14, E3.

2. Front-back Bundling: In this step, the resources remaining in the SW fabric are
individually bundled up in the front-end and the back-endyuFe 3.12forms one
front-end bundle (F1, D1) and one back-end bundles (11, E1).

3. Front-back Integration: The last phase in the configuration is to combine pairs
of front-end and back-end bundles and form logical SNSsur€ig.12 forms one

logical SNS using the front-back crossbars: F1, D1, 11, E1.

66

stageweb/figs/oconf.eps

: Front-End Back-End .

Figure 3.12: Configuration of SW with overlapping and front-back crossbas. The front-
back crossbars adds one more logical SNS (SNS 2) over the cagpuiiiation result of overlapping
crossbars.

In summary, front-back crossbar configuration, along witertapping crossbar as the
first-level interconnection, is able to fortireelogical SNSs. The configuration algorithms
discussed in this section can cover all possible interwepeandidates discussed in Sec-
tion 3.3.2 It is noteworthy that the algorithms presented here are@pbinal (in specific,
the latter two), and are based on heuristics. This was dooagler to keep their run-times

linear and, thus, minimize the overhead of in-field recomfgjons.

3.3.4 Interconnection Reliability

Interconnection reliability can be divided into link rdbiity and crossbar reliability.
The link reliability is accounted for, to a certain exteny,the interconnection alternatives
which introduce redundancy. Further, they are not as vabierto wearout and variation
as logic. For crossbar reliability, SW can use three alteres:

1. Simple CrossbarThis is the simplest scenario with a single crossbar swisdduat

each interconnection spot. No redundancy is maintaineusrcase.
2. Simple Crossbar with spare(s)n this set-up, one spare is maintained for every
crossbar in the system. This doubles the area required byrdlssbar switches, but

significantly improves the interconnection reliabilityh& cold spare corresponding

67

stageweb/figs/fbconf.eps

to a crossbar switch is only brought into use when the lateelbps a certain number
of port failures.

3. Fault-Tolerant Crossbar (no spares)the third and final option is to deploy one-
sided fault-tolerant (FT) crossbarsl[H that nearly eliminate the chances of crossbar
failures. Note that in a FT crossbar, multiple paths exisirfra given input port to
the output port. This is unlike a regular crossbar that hauaigue path for every
input-output pair. The biggest downside of these crossbahat they tend to have a

2-3X area overhead compared to regular crossbars.

3.3.5 Variation Tolerance

Process variation introduces slower circuit componermnsuifhout a chip. This pres-
ence of slower components results in a wide distribution perational frequencies for
different structures on the die. For instance, in a coneaali CMP, the slowest structure
within each core would determine the best frequency achlevay that core. Similarly,
in the case of SW, this impact can be observed at the gratyutdrpipeline stages, a few
of which will be much slower than others. However, unlike awntional CMP, SW can
selectively salvage faster pipeline stages from the gricesburces and construct logical
pipelines that can operate at a higher frequency. This asllitt in an improved distribution
of core frequencies as compared to a traditional CMP witlaied cores.

The configuration methodology of SW in the presence of poeasation builds upon
the algorithms discussed earlier. The key observationasftr a given frequency target
(and fixed supply voltage), pipeline stages can be markecdtiumal or non-functional.

Once this level of abstraction is reached, the non-funetistages can treated in the same

68

manner as broken stages were earlier in this section. Gig&M ehip with a wide variation
in pipeline stage frequencies, the algorithm proceeds lasv®. It start with the highest
possible frequency, and marks the working stages in the §tahdard configuration algo-
rithm is used to form logical pipelines. The frequency is meduced by a unit step, and
the process is repeated. This is continued until the corstgur is defined for the lowest
operational frequency of the system. At this point, the neirmdd cores functional at each
frequency point can be tabulated.

Apart from enhancing the performance, the improvement e deequencies using
SW can also be translated into energy savings relative tanaectional CMP. The insight
here is that given a system utilization level (fraction ofeoccupied) of less than one,
SW can form the fastest cores from its pool of stages and rheetré¢quency target at
a lower operational voltage than a CMP. Since the CMP lackdléxibility to combine
faster stages across its cores, it will be forced to run aghdrivoltage to meet the same
frequency target. This difference in voltage translatggt@adratic) dynamic power savings
and (cubic) static power saving%4]. As both systems operate at the same frequency, these

power savings map directly to energy savings.

3.3.6 System Level Issues

Wearout detection: In-field detection of wearout failures is crucial in ordentaintain
fault-free working of a SW chip. As in the case of SN (see secti3.2.]), SW can also
employ a continuousl, 56] or periodic 28, 41] fault detection mechanism. For the sake
of our evaluations in this chapter, we assume the presereeaitinuous fault monitoring

system.

69

Manufacture time testing: The presence of process variation makes every SW chip
unique by introducing a fair bit of non-determinism acrdssdie. SW's variation tolerance
technique requires measurement of this non-determinisrdier to mitigate it. In specific,

a standard test flow is needed to determine the frequencyeoy @ipeline stage on the
chip. The present day manufacturing tests are already pedifm measure processor core
frequencies, and can be augmented to provide frequencydatkevel deeper. Further, it
is likely that testing methodologies will also adapt in figulesigns as process variability
increases{q).

Configuration manager: SW requires a software level configuration manager for su-
pervising the system-wide reliability and performancefumation. The inputs to this
manager are a list of working resources, the best workirguiacy for each resource and
the system utilization. Upon receiving this input, the cgafation manager assembles the
desired number of pipelines with the fastest availableestagrhe application of fastest
stages saves the maximum amount of energy (as voltage caaled slown). The config-
uration manager is re-invoked every time a failure occuthemworkload set changes. As
the run-time of configuration algorithms is linear, its inapan system performance is very

limited.

3.4 Evaluation

3.4.1 Methodology

The evaluation methodology for SW encompasses four diffetemponents: 1) mi-

croarchitectural simulator for pipeline performance, 2anout and process variation mod-

70

eling, 3) overhead computation, and finally, 4) CMP throughgnd lifetime Monte-Carlo

simulations.

3.4.1.1 Microarchitectural Simulation

The microarchitectural simulator for the SW evaluation Waseloped using the Lib-
erty Simulation Environment (LSE)L[L. Two flavors of the microarchitectural simulator
were implemented in sufficient detail to provide cycle aeteiresults for single thread
performance. The first simulator models a five stage pipglirech is used as the base-
line. The second simulator models the decoupled SNS pipaticroarchitecture with all
its enhancements (see SectwB.2.]). Table5.5lists the parameters for the core and the
memory hierarchy used for the simulations. These parasatef the baseline microarchi-
tecture pipeline stages are modeled after the OR1200 mocEs], an open source RISC

microprocessor.

Table 3.1: Architectural parameters.

Pipeline 4-stage in-order OR1200 RISC]

Frequency 400 MHz

Area 1mm?

Branch predictor] Global, 16-bit history, gshare predictor
BTB size - 2KB

L11$, D$ 4-way, 16 KB, 1 cycle hit latency

L2$ 8-way, 64 KB (per core), 5 cycle hit latenay

Memory 40 cycle hit latency

3.4.1.2 Wearout and Process Variation Modeling

The evaluation of SW involves both lifetime wearout expes and process variation

modeling. For the wearout failures, the mean-time-tasfal(MTTF) was calculated for

71

the various stages and crossbars in the system using thei@hmodels found in]03.
The entire core was qualified to have a MTTF of 10 years. Thasdsnservative estimate
for future technologies as this value is expected to get nmwhr. These wearout models
heavily depend on the module (stages and crossbar) temapesdhat were generated using
HotSpot [7]. A customized floorplan was created for StageWeb to acclmuribe lateral
heat transfer on the die. Finally, the calculated MTTFs aetllas the mean of the Weibull
distributions for generating times to failure (TTF) for banodule (stage/crossbar) in the
system. The stages are considered dead as a whole when adeuts, whereas, the
crossbar failures are modeled at the crossbar-port gnatyula

Process variation was modeled using VARIUS][Given a chip’s floorplan, and/u
for a technology process, VARIUS can be used to obtain thesshof operational frequen-
cies for all structures on the die. In our experiments, wesygeof 0.25, as a representative

value for technologies beyors@nm.

3.4.1.3 Area, Power and Timing

Industry standard CAD tools with a library characterizedg®0nm processare used
for estimating the area, power and timing for all design kéoc A Verilog description
for the OR1200 microprocessor was obtained froffi].[All other design blocks, SNS
enhancements, and crossbar configurations were hand-aodé&dilog. The procedure
adopted for each of the ELSI overheads is summarized below:

1. Area: All blocks were synthesized using Synopsys Design Comgfieicement and

routing was conducted using Cadence First Encounter. deefar the interconnec-

1The use of an older process technology is a limitation of @adamic research setup. However, it is
not catastrophic as all overhead comparisons are relative.

72

tion links between stages and crossbars was estimated thersgme methodology
as in p4] with intermediate wiring-pitch at 90nm taken from the ITRf&d map $3).

2. Power: The power consumption for all structures was computed uSiymppsys
Power Compiler. For the power saving experiments, we asshatelynamic power
scales quadratically with supply voltage, and linearlyhvirequency §6].

3. Timing: The synthesis tool chain (used for area) was also employdithdothe
target frequency for the design. The interconnection lialag between stages and

crossbars was estimated using the intermediate wiringydigom the ITRS road

map p3].

3.4.1.4 CMP Simulations

A thorough simulation infrastructure was developed to $ateua variable-size regular
CMP system and SW system. This infrastructure integrateoaiponents of our evalu-
ation methodology and SW design: single thread performanearout modeling, inter-
weaving alternatives, configuration algorithms and crasstodels. To obtain statistically
significant results, 1000 Monte-Carlo runs were conductedelery lifetime reliability
experiment.

For lifetime reliability experiments, the stages/crosshail as they reach their respec-
tive time-to-failures (TTFs). The system gets reconfiguoedr its lifetime whenever a
failure is introduced. The instantaneous throughput ofsystem is computed for each
new configuration using the number of logical SNSs. This wagy,can obtain the chip’s

throughput over its lifetime.

73

3.4.2 StageWeb Design Space

For the latest generation Intel Core 2 processors, aliyatdie area is occupied by the
processing cores. With that estimate, in order to accomted@bOR1200 RISC cores (our
baseline in-order core) we assumsamm? die (a typical size for current multicore parts).
We use this die area as the basis for constructing various I8jVconfigurations. There
are a total of twelve SW configurations that we evaluate,jrajsished by their choice
of interweaving candidates (single, single with frontdaoverlap, overlap with front-
back) and the crossbars (no spare, with spare, fault-tdjerdable3.2 shows the twelve
configurations that form the SW design space. The cap on teegsing area guarantees
an area-neutral comparison in our results. In the base CM@, ¢he entire processing
area can be devoted to the cores, giving it a full 64 cores. é¥ew depending upon the
interconnection complexity, SW configurations can haverging number of cores.

The interconnection (crossbar + link) delay acts as a Ihgifactor while connecting a
single crossbar to a group of slices. As per our timing amglyge maximum number of
slices that can be connected using a single crossbar is 6.idfar the 90nm technology
node and a single-cycle crossbar. A two-cycle crossbat {ghased as the Front-Back

crossbar) can connect up to 12 slices together. The ovénigppossbar also uses a single-

Table 3.2: Design space for SW. The rows span the different interconn¢ion types (F/B de-
notes front-back), and the columns span the crossbar type:rossbar w/o (without) sp (spares),
crossbar w/ sp and fault-tolerant (FT) crossbar. Each celln the table mentions the number of
pipeline slices, in each SW configuration, given the overatihip area budget (100mm?).

Interweaving Xbar (w/o sp)| Xbar (w/ sp)| FT Xbar
Single Xbar 56 55 54
Single + F/B Xbar 55 53 52
Overlap Xbar 55 53 52
Overlap + F/B Xbar 54 51 50

74

OSingle Xbar OSingle + F/B Xbar HEOverlap Xbar M Overlap + F/B Xbar
1.8 1

1.6 —
1.4
1.2 A

1 i

0.8 -

Normalized Cumulative Work

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

Figure 3.13: Cumulative work performed by the twelve SW configuration normalized to a

CMP system. The cumulative work improves with the richer chaces for interweaving, as well

as with the more resilient crossbars. In the best case, a SWsgm can achieve 70% more
cumulative work relative to the CMP system.

cycle crossbar, so it can give an illusion of connecejmgslices, which is 9 in this case.

3.4.3 Cumulative Work

The lifetime reliability experiments, as discussed in thale@ation methodology, track
the system throughput over its lifetime. The cumulative kyarsed in this section, is
defined as the total work a system can accomplish duringfitedifietime, while operating
at its peak throughput. In simpler terms, one can think of &8 the total number of
instructions committed by a CMP during its lifetime. Thistneis same as the one used
in [43]. All results shown in this section are for 1000 iteration i@®-Carlo simulations.

Figure3.13shows the normalized cumulative work results for all twedW¥ configura-
tions. The cumulative work for all configurations is norraelil to what is achievable using
a 64 core traditional CMP. The results categorically imgrawth increasing interweaving
richness, and better crossbar reliability. The biggesigjare achieved when transitioning
from the regular crossbar to the fault-tolerant crossbhis iE due to the ability of the fault-

tolerant crossbar to effectively use its internal fine-geai cross-point redundancy14,

75

stageweb/plots/cwork_regular.eps

while maintaining fault-free performance.

Between the four interweaving candidates, the richer cot@mection options perform
consistently better. This is independent from the choicdenfar the crossbars. The over-
lapping crossbar configuration tends to do almost as wellasverlapping with front-back
crossbars. When using the fault-tolerant crossbars, SWrsysan deliver up to 70% more
cumulative work over a regular CMP.

The same set of experiments (as above) were repeated in ameuwgal fashion for
the twelve SW configurations (using the data from Teh®. Figure3.14shows the cu-
mulative work results for the same. The trend of improvingdfgs while transitioning
to a more reliable crossbar remains true here as well. Haw#hechoice of the best in-
terweaving candidate is not as obvious as before. Sincerd@ded each interconnection
alternative is factored-in, the choice to use a richer aaenect has to be made at the cost
of losing computational resources (pipelines). For instathe (fault-tolerant) overlapping
crossbar configuration (column 11) fares better than thdt{falerant) overlapping with
front-back crossbar configuration (column 12). The besiltes this plot (fault-tolerant

overlapping crossbar) achieves 40% more cumulative wak the baseline CMP.

3.4.4 Throughput Behavior

The cumulative work done by the system is a useful metricidomisufficient in show-
ing the quality of system’s behavior during its lifetime.rRbis purpose, we conducted an
experiment to track the system throughput over its lifetiifigure3.15, as wearout fail-
ures occur. Three systems configurations are comparedibdaehd: SW's best configura-

tion fault-tolerant overlapping crossbararea-neutral version édult-tolerant overlapping

76

OSingle Xbar O Single + F/B Xbar BOverlap Xbar M Overlap + F/B Xbar

1.5 4
1.4 -
1.3 A
1.2 A
1.1 A

1 4
0.9 -
0.8

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar

Normalized Cumulative Work

Figure 3.14: Cumulative work performed by the twelve SW configuration normalized to a
CMP system @rea-neutral study). The cumulative work improves with more resilient crossba
choice. However, richer interweaving does not map directlyto better results. For instance,
front-back crossbars add a lot of area overhead without deliering proportional amount of
reliability. In the best case, a SW system achieves 40% moraimulative work relative to the
CMP system.

CMP =—=StageWeb ====StageWeb (area neutral)
60 1
50 4
40 -
30 -
20 A
10 -
[o o o o o o o B 0 B e B L B

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28

Peak Throughput (IPC)

Time (in years)

Figure 3.15: This chart shows the throughput over the lifetime for the be$ SW configurations
and the baseline CMP. The throughput for the SW system degraels much more gradually than
an equally provisioned CMP system. In the best case (aroundhé 8 year mark), SW delivers
4X throughput of the CMP.

crossbarsand the baseline CMP. As evident from Fig@té&5 the throughput for the SW
system exhibits a very graceful degradation with the pregjom of time. At the beginning
of life, the CMP system has an edge over the SW system. Thiseisadthe higher number
of pipeline resources a CMP system initially possesses.dderythe SW catches up soon
enough into the lifetime, and maintains its advantage ferrémaining lifetime. The life-
time range, shown here as 24 years, is expected to shrinkureftechnology generations,

making the case for SW-like systems even stronger.

1

stageweb/plots/cwork_neutral.eps
stageweb/plots/tput.eps

OTraditional CMP B StageWeb CMP
20

15

10

073 076 079 082 085 0.88 091 094 0.97 1

Number of cores

Frequency (normalized)

Figure 3.16: The distribution of core frequencies in 64-core CMP and StagWeb chips. Fac-
ing the same level of process variation, SW enables a notidda improvement in the frequency
distribution.

3.4.5 Variation Mitigation

In addition to wearout tolerance, the interconnection Haity of SW can also be lever-
aged to mitigate process variation. As discussed in Se8tibf the basic idea is to group
together faster pipeline stages to form pipelines that canat higher frequencies. This
way, the slower resources are isolated, reducing theirativeerformance impact. Fig-
ure 3.16 shows the distribution of core frequencies for a regular Gygtem and a SW
CMP with overlapping configuration. In this experiment, lbeistems contain 64 cores
each, and process variation is injected witty = 0.25. The results confirm that the distri-
bution of core frequencies in a SW CMP are considerably bttt that of a conventional
CMP. The mean increase in the core frequencié¥is It is noteworthy that the slowest
cores in both systems operate at the same frequeéntcy)(This is true by construction,
since even in a SW CMP, some logical pipeline has to absorsltieest stage and operate

at that frequency.

78

stageweb/plots/pvsweb.eps

3.4.6 Power Saving

The better distribution of frequencies, as discussed iri@e8.4.5 can also trans-
late into power/energy savings. For a given system utibratSW can scale down the
supply voltage (reducing power quadratically) and stib\pde the same level of perfor-
mance as a baseline CMP. Note that a single global supplggmlis assumed in all our
experiments. This is a commonly accepted practice as nribiygoply sources introduce
significant noise. Figur8.17shows the power savings obtained at different levels of sys-
tem utilization (fraction of cores occupied) when using $&ch bar is normalized to the
CMP power at that utilization level. The results range froB¥dpower saving at 12.5%
utilization to a small loss in power at 100% utilization. \Wihthe utilization is low, more
opportunity exists for SW to gather faster stages, and bvattthe slowest ones. But, at
full utilization, everything (including the slowest stgdmeas to be switched on, requiring the
global supply voltage to be scaled back to its original ledist commercial servers have
time-varying utilization §] (segments of high and low utilization), and can be expetied
create many opportunities where SW saves power. Since ¢knsips saved without any

accompanying loss in performance (frequency), it trapsldirectly to energy savings.

3.4.7 Yield Analysis

Manufacturing yield is a indispensable metric when evahgaa defect-tolerant sys-
tem. A principal objective of the SW architecture was to depea system that can meet
the challenging goal of high defect density scenarios. Tdwéhis claim, we evaluated

the yield for all twelve SW configurations. This study wasoakept area-neutral. One

79

B SW pipeline stage power OSW crossbar power

105 +
100 +

95 4
90 -
85 A
80 -
75 4
70 - \ \ ‘ T
12.5 25 50 75 100

% system utilization (number of threads / number of cores)

Normalized Power

Figure 3.17: Power saving using SW relative to a CMP at different system Lilization levels.
This saving is made possible due to SW’s ability to deliver sae performance as a CMP at a
lower voltage, in the presence of process variation. The pl@lso shows the break up between
pipeline stage power and crossbar power.

thousand chips were generated, and chips with at least 1@Kingocores were rated as
good. Figure3.18shows the results for three different defect densities.defect density
values lower than 0.2 defects/n?, all configuration yielded 100%. It is noteworthy that
unlike lifetime wearout experiments, the crossbar typesdus have a major influence on
the results. Fault-tolerant crossbar area is significdatlyer than the regular crossbars,
increasing the number of defects that will manifest in themge more area translates to
more defects). This negates the benefits it can provide beereigular crossbars that are
much smaller and face fewer defects. In contrast, weardutda occur based on the usage
of structures, and not their area. Thus, the fault-tolecesgsbar fares better in lifetime ex-
periments. As far as the interweaving alternatives are ewmal, a richer interconnection
goes noticeably farther in delivering better yields, witledapping and front-back crossbar

together giving the best result.

80

stageweb/plots/pvpower.eps

B Single Xbar M Single + F/B Xbar B Overlap Xbar @Overlap + F/B Xbar OCMP

—

= E N

Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant Xbar (w/o spare) Xbar (w/ spare) Fault-Tolerant
Xbar Xbar Xbar

Yield (Percentage)

defect rate = 0.2 (per mm?) defect rate = 0.4 (per mm?) defect rate = 0.6 (per mm?)

Figure 3.18: Yield obtained for all the twelve SW configurations and the CMP at three defect
densities. The advantage of the SW becomes more prominent tee defect density rises.

3.5 Related Work

StageWeb, the architecture proposed in this chapter,dgesrthe concept of stage-
level reconfiguration introduced by StageNet (Chagitgerand extends it to build many-
core systems resilient to wearout failures as well as pseasation. To the best of our
knowledge, SW is the first work to study concepts such asdaterection scalability and
crossbar reliability at the sub-core granularity.

The prior research efforts on tolerating process variatiame mostly relied on us-
ing fine-grained VLSI techniques such as adaptive body mgasiadaptive supply volt-
age [L1(, voltage interpolation§7], and frequency tuning. Although effective, all such
solutions can have high overheads, and their feasibilisyriat been established in mass
productions. SW stays clear of any such dependence ontdechiniques, and mitigates
process variation with a fixed global supply voltage anduesey.

Please refer to Sectidh6for a summary of past work in reliable architecture design.

81

stageweb/plots/yield_defect.ps

3.6 Summary

With the looming reliability challenge in the future techogy generations, mitigating
process variation and tolerating in-field silicon defectd lhecome necessities in future
computing systems. In this chapter we proposed a scalatielative to the tiled CMP
design, named StageWeb (SW). SW fades out the inter-coredlaoies and applies a scal-
able interconnection between all the pipeline stages o€CitH®. This allows it to salvage
healthy stages from different parts of the chip to createkimgrpipelines. In our proposal,
the flexibility of SW is further enhanced by exploring a rarajenterconnection alterna-
tives and the corresponding configuration algorithms. lhitezh to tolerating failures, the
flexibility of SW is also used to create more power-efficieipgtines, by assembling faster
stages and scaling down the supply voltage. The best imeemtion configuration for
the SW architecture was shown to achieve 70% more cumulativie over a regular CMP
containing equal number of cores. Even in an area-neutrdysEW system delivered 40%
more cumulative work than a regular CMP. And lastly, in lowtgyn utilization phases, its
variation mitigation capabilities enable SW to achieveaft®% energy savings.

In summary, SW provides the basis for constructing depdedata efficient CMPs by

adding new dimensions of adaptability and configurability.

82

CHAPTER IV

Adaptive Online Testing for Efficient Hard Fault Detection

4.1 Introduction

The challenge of tolerating such permanent hardware féudts silicon defects) en-
countered in-field can be divided into three tasks 1) defetéation and diagnosis, 2)
recovery to a correct system state after a failure and 3)nfeparation/repair mechanism
to prepare the system for future computation. The focus isf ¢hapter is on improv-
ing the efficiency of the first task: defect detection and dasjs. Recovery techniques
(second task) typically employ a checkpointing mechanismoliback the system after a
failure. These checkpoints are created periodically sbith¢he event of a failure, not
much useful work is lost. SafetyNe®j] and ReVive B4] are two good examples of CMP
checkpointing solutions. Finally, the solutions for th@aw (third task) typically lever-
age hardware redundancy to replace broken componentfssonie cases, merely isolate
them. The Replacement/isolation techniques exist for gea granularities: core<’],
pipeline stages/[3] (more discussion in ChaptehlisandlIll) and modules within a proces-

sor [95].

83

Defect detection and diagnosis mechanisms can be broadtiediinto two broad cat-
egories: 1)continuous those that constantly monitor the logic blocks for errongl &)
periodic those that periodically check the processor’s logic. A tewamples of theon-
tinuousdetection mechanisms are dual modular redundancy (DMRDévid [10]. The
common idea between all these solutions is to have some smtlondant computation
(in time or in space) to validate the execution. Howeveroélthem impose significant
overheads for area, latency, power and energy. Another srfeacontinuous detection is
through sensors that can estimate the amount of devicewsaiout. Although a variety
of low level sensors have been proposedis, 16], they are limited in their capability to
accurately predict/detect a failure.

In contrastperiodicdetection does not require redundant execution and carsgived
guarantees on the fault coverage. These techniques palilydest the system for defects
and in case of a failure, they rely on checkpointing and reppmechanisms. Figurel
shows snapshot of a system where the tests are conductesleitdiof every checkpoint
interval. Some of the recent proposals of periodic detaatni@chanisms are ACE anal-
ysis [28] and VAST [£€]. Unfortunately, in these proposals, the periodic testinge
constitutes as much as 5%-30% of the total system tindg [This sort of overhead is
unacceptable for a high end server that typically applytairmachine) consolidation to
maintain 100% utilization levels. Even in the case of emleeldslystems, a great deal of
time and energy can be saved by reducing the overhead ofipetésting.

In this work, we propose an adaptive testing framework (Ah&} significantly reduces
the overhead of periodic testing in a CMP system. The keghisn ATF is to adapt the

testing process to the state of the underlying hardware.insteince, a healthy processor

84

work ‘ test‘ ‘ work ‘ test‘
R [~ R
Corel [}==========-= S N EEEET R PR i \ EEEETEE
Core2 [}=====m=n-u-- S N EEEET R PR e N CEEEETEE
Core3 [R}==========-- S N EEEE PP PR e N CEEEETEE
Core4 N==========-= S N EEEETEEP PR e N CEEEETEE
[N N

create chkpt 1

release chkpt 1

release chkpt 2

create chkpt 2 create chkpt 3

Figure 4.1: Periodic testing for fault detection. The vertical stripesrepresent the checkpoint
start/release and the horizontal lines show the progressioof threads. At the end of every
checkpoint interval, testing is conducted for all processig cores, this is shown as solid hori-
zontal bars.

within a CMP can be lightly tested, whereas a weaker couateneeds thorough testing.
In specific, this adaptivity is applicable in three differsnenarios:
1. The health of a system varies over its lifetime due to dewviearout. Thus, all
processors are relatively healthy in the beginning and tlederiorate over time.
2. Manufacture time process variation can form componeiits differing health lev-
els.
3. Different amounts of stress are experienced by the psocgslepending up on the
workloads assigned.
In all the aforementioned cases, the proposed ATF can ddigaificant savings on the
periodic testing effort while providing the same level ofifftacoverage. Essentially, our
system assesses the health of different processors in a @&MRappropriately conducts
tests. To enable the assessment of processor health, weyeanpbpulation of low level
sensors6, 57]. These sensors can predict the mean time to failure (MTTiE) about

25% error for less than a 3% area overhead. We further extendiltF for application to the

85

adaptivetest/figs/chkpt_normal.eps

StageNet (SN) CMP fabric¢![3], a highly flexible computing substrate. SN allows arbigrar
grouping of stage-level resources from different pipdit@ form logical pipelines. We
exploit this feature of SN to group together weaker resaifam different pipelines and
conduct concurrent testing.
The main contributions of this work can be summarized aswst
1. The proposed ATF introduces the use of low level sensagsitie the online testing
process.
2. The ATF achieves a significant reduction in the overhegmkdbdic testing by adap-
tively matching the testing process to the underlying hadvg health.
3. An extension of the ATF to StageNet, a flexible CMP fabrar, dchieving larger
benefits.
4. Lifetime reliability experiments to measure the frantif time devoted to periodic
testing. This setup models process variation, sensor, éewvice wearout, and testing

overhead.

4.2 Background

Here we provide a brief overview of the latest techniquesaBsessing system health
and conducting online tests. Both of these form integrai piathe adaptive testing frame-

work proposed later in Sectigh3.

86

100

90 1

80 1

701 : : 1

60 1

50 1

Fault Coverage

40t :

30t » : .

20 1

101 1

0 1 2 3 4 5 6 7
Number of Instructions x 10°

Figure 4.2: Fault coverage achieved (in percentage) for varying numbeof software based
self test instructions.

4.2.1 Wearout Sensors

Wearout monitoring for on-chip devices is a challengindatea and has been an active
area of research. Circuit-level designs have been proposed-situ sensors that detect
the progress of various wearout mechanisms with a reaseaablracy56, 72]. A trade-
off exists between their accuracy and the area overhead diging them. These sensors
are usually designed with area efficiency as a primary desigeria, allowing a large
number of them to be deployed throughout the chip for momitpoverall system health.
A different approach to sensor design has been to examirteetleh of on-chip resources
at a coarser granularity. Research has involved simple éeaityre sensors, two dozen
on the POWER63Y], to more complex designs such as the wearout detectior Ljit
These sensors can effectively approximate the usefuldifeaining in a microarchitectural

module.

87

adaptivetest/plots/coverage_plot.eps

4.2.2 Online Testing

The goal of online testing is to detect fault effects, or esyavhile the system is in-field.
A number of test methodologies exist for online testing, tim@e important categories
being: 1) built-in self test (BIST) based, 2) functionaltiesd 3) software based self-test
(SBST). While BIST addresses the testing problem comptely by providing a high
fault coverage, it introduces significant hardware ovedsda”]. For low-cost embedded
systems, such an overhead can not be justified. On the othdr fumctional tests use a
software program to conduct the testing. The challengetisehe generation of high fault
coverage program instructions and automating the procedbd same. Most functional
testing solutions achieve low fault coverage because tb@pticonsider the RTL structure
and are not based on a gate-level fault model (like s-a)fpLi.

SBST links the instruction-level tests with low-level famodels to achieve good fault
coverage while introducing no hardware overhead. SBSTsstdirby generating module
specific deterministic tests patterns and then uses prarcesgructions as a vehicle for
delivering the patterns to module inputs and collectingrthesponses. The processor
simply executes the test program at-speed from the on-ckimary. The test program
length is chiefly determined by the module/structure thaidsehe maximum number of
tests. The advantages of SBST are its low cost, ease of apphcand extensibility. A
variety of proposals have been made for SBSZ, [/8, 69 with a considerable success.
The latest beingd9] that reports up to 97.3% fault coverage. The test generatgorithms
(for SBST and functional testing) can comfortably tradetbé test size with the amount

of fault coverage. Figuré.2illustrates this trade-off between the amount of fault cage

88

and the number of software test instructions executed foRM®8-v4 compatible RISC
processor using data fron®j]. As seen in the figure, the last few percentages of the

coverage require the maximum testing effort (number ofitesttuctions).

4.3 Adaptive Online Testing

Periodic test based fault detection approaches suffer fhenconstant overhead of the
full test application for all available processing compatse In view of the increasing
process variation, and the differing amounts of componezdarout over the lifetime, an
effective optimization is to match the testing thorougtnsgh the health of a component.
We propose an adaptive online testing methodology thati®wipon this key insight. Our
technique leverages low level sensors to assess the plibpabfailure in various system
components, and appropriately decides the quality of eggblied. The primary benefits
from this strategy are the savings in the test time and enémggddition to the traditional
CMP, we extend this adaptive testing philosophy to StageWet[43], a highly flexible
CMP fabric. The advantages of the proposed technique atteefumagnified while using
the SN architecture. The rest of this section provides thaildeof the adaptive testing

framework and discusses its application to a traditionaFCiid the SN architecture.

4.3.1 Adaptive Test Framework

A conceptual illustration of the adaptive test framewor A is shown in the Fig-
ure4.3. The baseline CMP system is enhanced with the capabildiessess component

health, apply suitable tests, recover from faults (if anging a checkpointing mecha-

89

Coverage Target —»[Test Allocator

T —test array

e

P —failur
probability

|

Core || Core || Core || Core

Core || Core || Core || Core

—)
e Health
Core || Core || Core || Core Assessment
>
% Core || Core || Core || Core —[
Q 4

Figure 4.3: Adaptive testing framework. A generic CMP system is shown ang with the en-
hancements needed to enable adaptive testing. Health assegnt is responsible for gathering
sensor readings and producing a fault probability array (P) This array is taken up by the
test allocator, along with the target coverage, to generatappropriate tests (T) for different

processing cores.

nism [34], and, finally, isolate the faulty core (if and when found)t the end of every
periodic checkpoint interval, a health assessment is adaduor all the components in
the system, and the corresponding probabilities of fai{B)eare determined. This array is
in turn used by the test allocator to generate suitable {&3tfor all components. In the
early lifetime, when most of the components are healthydhaw probability of failure),

a fewer number of tests are required to make sure the systematep correctly. As the
components grow older, their failure probabilities areeotpd to rise, resulting in a need
for more thorough tests. Later in this section, we use tHigtime argument to derive a
fault coverage metric({), that measures the probability of the system to besafa state
Given a system-wide fault coverage targétthe ATF decides the optimal number of tests
required at a per component level (core in this case). Thig teating effort is reduced
for the healthy components in the system. The functionintdhefimportant blocks in the

Figure4.3is detailed below:

90

adaptivetest/figs/system.eps

Health AssessmentThe lack of knowledge of the underlying component healthés t
primary reason for applying full tests throughout the comgrtt’s lifetime. We alleviate
this problem by deploying low level sensors that can meadegeadation at the transistor
level. The primary requirement for such a sensor is to atelyraneasure the device level
characteristics taking into account the process variatiahthe wearout accumulated over
its lifetime. Furthermore, a single sensor won't be enowagirovide statistically significant
results for an entire core health, and therefore 10-100s¢dvmeed to be deployed. In such
a scenario, low area overhead becomes a favorable featusadb sensors. In this work,
for the purpose of illustration, we use the oxide breakdoemssrs proposed by E. Karl
et al. 56, 57]. These are close to ideal sensors in behavior and have esmesty small
area footprint. The results ithJ] demonstrate that 500 such sensors are enough to estimate
the MTTF (mean time to failure) for an entire chip with lesarhi0% error. Note that
the proposed methodology is not tied to any one sensor tyygea ariety of other sensor
designs [, 16] are equally applicable to the methodology proposed heige dnhgoing
research on NBTI sensors and IDDQ based wearout sensordscabeaeasily integrated
within the ATF. Nevertheless, our choice here was directedhk available data on the
accuracy of the oxide breakdown sensoi[

All cores in our system are enhanced with these sensors. dthdrdm these sensors is
gathered and processed in software to generate the MI A B§] with an error based on
the number of sensors. Using the current mean sensor reddengrojected MTTF, and
the error in MTTF, we calculate the probability of failurer fa core. Note that a higher
error in the MTTF estimation translates into a more consawaalue of the probability

of failure. The discussion of this derivation has been lettia the interest of space. This

91

release chkpt 0 release chkpt 1 release chkpt
| | |

™ N
Core 1 I (T URRRPRRRRUN Ny s [RIDUPRRR T
Core 2 :I-->--_— ------- - -==-mmmmmmmad -
variable test
times
]

Core 3 I e R EE LT TR Py [P S
Core 4 I} -lmmmmmmmmenan R PR --t---
b b b
i ! i
create chkpt 1 create chkpt 2 create chkpt 3

(a) No fault scenario

rollback
release chkpt 0 release chkpt 1 test failed
| |

™ R N
Core 1 | CEEECEEEEERELEIN EREEEE L GEEEEE I
Core 2 Hl----=====cce=a= | CEEEEELEEELEELE! -
Core3 [flm-dmmmmmnnenan-- e e ELEEEE g---
IS YN s T R | R R - -
[} [N} [}
createTchkpt 1 creage chkpt 2 cre;te chkpt 3
(b) Fault occurrence, test failure and rollback sce-
nario

Figure 4.4: Checkpointing and adaptive testing for efficient fault detetion. Notice that 1) the
tests are applied after a new checkpoint is started, and 2) dicheckpoint is released once the
tests finish successfully.

process is repeated for all the cores in the system to gentbeaprobability of failure array
(P).

Test Allocator: The task of the test allocator is to prepare suitable tegiraras for
all the cores in the system. At every checkpoint intervad,tést allocator is provided with
two inputs: 1) a coverage targét (ranges from 0 to 1), and 2) a probability of failure
arrayP. Using these two values, it determines the tasit coveragd /'C') needed by each
individual core, such that the coverage targes always met for that core. Here, the term

fault coveragemplies the fraction of hardware faults covered by testgrat.

92

adaptivetest/figs/chkpt_adaptest.eps
adaptivetest/figs/chkpt_adaptest_2.eps

For a given core, and a checkpoint interva] if the:

probability of failure = Pi(t), and
fault coverage = FC;(t), then

1-C = PM)[1—FC(t)]

In other words, the probability of the periodic test not batg a faultl — C' in corei
is the product of fault occurring;(¢) and not getting coveretl — F'C;(t). From this, we

can solve for the required test fault coverage:

1
FCi(t) = 1- Tg, placing bounds on coverage :
» 1-C
FCi(t) = Min{ best_coverage, Max { 0,1 — B

Thus, given a coverage targét a higher probability of failure’;(¢) necessitates an
increase in the fault coverage and vice versa. The final equabove also adds bounds to
the possible values of the fault coveragdyeing the minimum andest_coverage being
the best possible coverage using the test generation tpahemployed. In this work,
we propose the use of software based self test (SBST) to cotttkionline testingd9).
The advantage of the software based testing is two fold:)andware overhead, and 2)
the fault coverage level is flexible. The proposed methagipia [69] allows generation
of test programs to meet different levels of fault coveragjge number of software test

instructions are thus tuned on a per core basis to match titectaverage desired for the

93

same. Figurel.2 shows the (single stuck at) fault coverage achievable fohARM9-v4
compatible RISC core for a range of number of software testuictions. A full set of test
instructions is stored in the main memory. The test allacases this set of instructions
to prepare an array of test prograndg for all the cores. As in the case of sensors, our
proposed methodology is not tied to any specific onlinengggchnique.

Checkpoint and Recovery: In the event of a failure, a recovery system is needed to
get the system back into an operational state and isolatbrti@n component(s). This
can be achieved by deploying a CMP checkpoint solution. iBmiork, we use the ReVive
checkpoint systemB]. Revive has a very minimal hardware overhead and mainthas
checkpoint in the main memory. The checkpoint interval targan be tuned based on the
availability of storage in the targeted system.

Figure4.4 shows two scenarios of the ATF in action. The first scenallisstrated in
the Figure4.4(a), is for a case with no failures. The horizontal lines shbe progres-
sion of thread execution, interspersed by the regular gm@nkcreations (shaded vertical
stripes). The testing phases are shown by solid horizoatal following each checkpoint
creation. The test times vary from core to core, depictimgatiaptive nature of the online
tests. In this example core 1 runs the longest test (wordtheand core 3 the shortest
(best health). The previous checkpoint is released onctetite for all the cores complete
successfully. Notice that unlike the traditional practiééesting and then forming a check-
point (Figure4.1), we do the reverse. This design choice is a result of varitddt times
of the cores in our system. In order to run variable lengthtsten all the cores before a
checkpoint, they have to be started at different times. &tigs to the complexity of health

assessment, test allocation and test scheduling. Thu3fnal tests start concurrently af-

94

ter a new checkpoint is created. Over time, as the cores finehtests, they are released
by the ATF and are made available for job scheduling. Howdwecreating an additional
checkpoint just before running the tests, ATF necessitateutstanding checkpoints to
co-exist while the tests run on the cores. Fortunately, miostkpoint systems, including
ReVive, maintain checkpoints as a log of system-wide ugdates the testing phase is
very short in length, the additional updates saved in thellogjto the second checkpoint
are very few, leading to a negligible memory burden. The séazenario, illustrated in
the Figure4.4(b), shows a case with a failure in core 1 while running a jole Tailure is
detected during the tests following the creation of thedtbiveckpoint, and system is rolled
back to an operational state using the second checkpoint.

System Coverage (SC) MetricFor a system that is periodically tested for faults, there
are three distinct categories of events:

1. No failure occurs in the last completed interval

2. Failure occurs and is detected by the test program

3. Failure occurs and isot covered by the test program
The first two events maintain the system in fade stateand represent the scenarios where
no fault escapes the test. However, the third event is an leowme scenario where a
fault occurs without being caught. Let us say we have a neolte chip withn cores.
As discussed above, probability of a carenissing a fault in a checkpoint intervalis
Pi(t)[1 — FC;(t)]. In other words, the fault occurs and the test is not able poss it.

Continuing along the same lines, the average probabilityiséing a fault in the entire

95

core system, within a given checkpoint interval

1 n
Probability of missing fault = - Z P(t)[1 — FC;(t)]

i=1

If we sum this over the entire system lifetime, the averagbability for the system to

miss a fault can be written as:

n

T
1
—= > B[l - FCi()

t=1 =1

Therefore, the average probability (over the lifetime) lnd systenmnot missing any

faults, i.e. the probability of system being irsafe states:

T n

1
SC=1-—3 > P(t)l - FCi(t)

t=1 i=1

We refer toSC' as the probability of the system being in a safe state. Thsatso
be understood as the effective fault coverage of the systee it represents the average
probability of not missing a fault. We us&C' as the metric to specify the target fault
coverage in our evaluations.

ATF Summary: The ATF primarily benefits in terms of the test applicatioficgéncy.

In the early lifetime, when the processing cores are heatthgt fewer tests suffice for
achieving a given fault coverage target’. With time, and device wearout, this testing

overhead gradually rises. Overall, the application of fetests has multiple advantages:

96

1) more time available for actual job execution, 2) powesfgg saving, and 3) low fault
detection cost visible to the end user. The intended agpitaf the ATF is to detect
permanent faults. Another possible application is its ussyistems that have variable
reliability modes. For instance, a server can tune the emeetargetSC of the system
based on the job it is running (high8C' for a financial transaction, and lowsiC' for a
regular web page request).

The discussion of the ATF so far has been in the context ofditimaal CMP. The
key observation that helps the adaptive online testingawé#riation in the health of CMP
cores (spatially and temporally). The following subsatipplies an extension of this to

the StageNet CMP fabric, a highly flexible computing sultetra

4.3.2 Adaptive Testing for StageNet

This section introduces the StageNet (SN) fabfig[an architectural concept that de-
couples stages of a pipeline for the purpose of fault tolsranThe real strength of SN
fabric is in its ability to isolate broken stages within pipes. Nevertheless, its flexibility
can also assist in forming cores with an even greater vanati their health, thereby mag-
nifying the benefits of the adaptive online testing. The oé¢his subsection is broken into

two parts, 1) introduction to the SN fabric and 2) applicatid adaptive testing to the SN.

4.3.2.1 StageNet CMP Fabric

The SN design is a highly reconfigurable and adaptable roate-computing substrate.
It is designed as a network of pipeline stages, rather thaatexd cores (Figurd.5). A

logical core in the SN architecture is referred to as a Stag@lte (SNS). It is formed

97

11

Issue

Pipeline 1

Decode

Pipeline 2

Fetch 3
Pipeline 3 Fetch

Pipeline 4 Fetch

®

e ——

Decode

‘ Issue

T

Issue

Configuration Manager

Decode

Decode

Figure 4.5. StageNet fabric with four in-order pipelines woven togethe using 64-bit full
crossbar interconnects. The interconnection configuratio is managed by the configuration
manager. Within StageNet, logical pipelines, can be consicted by joining any set of unique
pipeline stages.

by grouping together at lease one pipeline stage of each 8BNS can easily isolate
failures by adaptively routing around faulty stages. Inekient of any stage failure, the
SN architecture can initiate recovery by combining livegssfrom different slices, i.e.
salvaging healthy modules to form logical SNSs. We refehis asstage borrowing In
addition to this, if the underlying stage design permitagss can be time-multiplexed by
two distinct SNSs. For instance, a pair of SNSs, even if ottlearh loses itsssuestage, can
still run separate threads while sharing the remaimgsgestage. We refer to this atage
sharing Thus, a SN system possesses natural redundancy (througiwba and sharing
pipeline stages) and is, all else being equal, capable aftaiaing higher throughput over
the duration of a system’s life compared to a conventiondtiroare design.

The SN architecture consists of three prominent components

a) StageNetSlice (SNSJhe SNS is a basic building block for the SN architecture. It
consists of a decoupled pipeline microarchitecture thatal convenient reconfiguration at

the granularity of stages. The decoupling of stages malkedata forwarding and control

98

adaptivetest/figs/stage-net-4.eps

handling infeasible. Furthermore, the introduction oftstves into the heart of a processor
pipeline leads to significantly worse performance (4X slowd over the baseline) due
to high communication latencies between the stages. Fatelyn each of these problems
can be solved with a few well placed microarchitectural adds (see 43]). With the
application of the following optimizations, the perforntanof the SNS is within 11% of
the baseline in-order pipeline.

Stream ldentificationEliminates control hazard.

ScoreboardTracks data hazards.

Bypass CacheEmulates data forwarding.

Macro Operations Amortizes transfer time of the interconnection network.

b) Interconnection SwitchThe role of the switch is to direct the incoming instruction
bundle to the correct destination stage using a routingtalihe crossbar switches allows
complete flexibility for a pipeline stage at depito communicate with any stage at depth
N+1.

c¢) Configuration ManagerGiven a pool of stage resources, the configuration manager
divides them into a globally optimal set of logical SNSs.

The lifetime reliability results for SN demonstrated ngaD% improvement in the
cumulative work compared to a traditional CM#P3[. Furthermore, the high resiliency of
the SN fabric can be leveraged to combat process variatidmemufacture time defects,

in addition to the wearout failures.

99

4.3.2.2 Adaptive Testing

At any point in the lifetime, because of the manufacture tpnecess variation and
the device wearout, different pipeline stages within thef&itic would exhibit different
amounts of degradation. A snapshot of the SN fabric in FiguBeshows the varying de-
grees of degradation between pipeline stages of the sydtemthe sake of illustration,
four health levels are shown from lightest shade (best Inetdtthe darkest shade (worst
health). Let us say that the health assessments (that prpuidbability of failure) map to
levels 1-4 of test thoroughness (test fault coverage). énctise of a traditional CMP, the
ATF decides the test thoroughness on the basis of weakegiarwnt in a core/pipeline.
For instance, even if only one stage within a pipeline is padbrn out, ATF for a tra-
ditional CMP assigns a thorough test program to that pipeli@oing by this principle,
pipeline 1 would apply level 2 test, pipeline 2 - level 3 testd pipelines 3,4 - level 4 tests.
In contrast, the SN can make the testing more efficient bygngutogether stronger com-
ponents separately from weaker components. The bold imeifigure show the pipeline
stages that are combined to formed logical SNSs. First&@dS (P1) would need to
apply level 1 test, P2 - level 2, P3 - level 3 and P4 - level 4.ST18N achieves a reasonable
amount of test reduction over a traditional CMP.

In order to separate out the stronger pipeline resources fihe weaker ones, we sort
stages of each type on the basis of their health. For instamd¢ggure4.6, fetch stages
are already sorted based on their health (from the top todttern pipeline). The stages
with equal health ranks are connected to form logical pifgsli These health rankings of

the stages can vary over the lifetime depending up on thessexperienced by different

100

Failure Probability Pl< P2<P3<P4 —
® ®6® E
Fetch Decode Issue
L I

Execute‘ |
1

P1

®®
Execute
L 7

P2

®
Execute

S E——

P3

P4

Health Spectrum

Figure 4.6: The shading intensity of stages represents their deterioteéon. Thus, a darker
stage has a higher failure probability and vice-versa. SN fbability allows connecting stages
with similar health, forming logical pipelines.

stages in the system. Fortunately, the flexibility in the §5tam allows it to dynamically

segregate stronger and weaker components at will (aftey ebheckpoint interval).

4.4 Evaluation

4.4.1 Methodology

For evaluating the potential of the proposed approach ingied the testing overhead,
we conduct lifetime reliability experiments. This is remad in order to measure the cu-
mulative reduction in the amount of test instructions over system’s lifetime. A CMP
is modeled consisting of 16 ARM9-v4 compatible RISC prooessThe SN CMP is con-
figured as four group of 4-pipeline wide SN blocks. The opegafrequency was set to
1GHz at 130nm IBM process. The systematic and random proegggions were mod-
eled using VARIUS §1]. Oxide breakdown (OBD) was used as the representativeonear

mechanism with degradation equations fram3, 55]. This choice was motivated by the

101

adaptivetest/figs/stage-net-adaptest.eps

Adaptive-CMP Adaptive-SN === Sensor Area s

1 T T T T T 50
0.8 [- 40

I =

Area Overhead of Sensors

0.2 |

Normalized Number of Test Instructions

Sensor Error Value

Figure 4.7: Number of test instructions for the adaptive online testingin CMP and SN with
varying amount of sensor error. The number of test instructions are normalized to a regular
CMP with fixed periodic testing. The plot also shows the sensarea overhead used by the
proposed approach for health assessment. The coverage tatgSC) is fixed at 97.3%.

presence of accuracy data for the low level OBD senddijs A variable number of these
OBD sensors were deployed within the cores for the healtbsassent.

The lifetime experiments are conducted as a series of mitemnnulations. Each in-
terval simulation updates the sensor readings, and alledhte appropriate size of tests
to the cores based on their probabilities of failuf&)(For a given fault coverage (C;)

(as determined by the test allocator), the number of testuicisons executed is extracted
from the data plotted in Figur¢.2 The maximum achievable fault coverage for testing is
97.3% and is bounded by the SBST scheme that we empldy The presented results
use the system fault coverage mef$iC as derived in the Sectioch3wherever we refer to

coverage target.

102

adaptivetest/plots/sensor-error.eps

4.4.2 Results

Figure4.7 shows the number of instructions used (over the CMP’s tifejiby the ATF,
normalized to a baseline CMP system which applies a conataount of test (given a
coverage target). The target system coverage is set to {b&8tachievable by the chosen
SBST schemedY]), and the test instructions reported are accumulated tineelifetime.
For a 5% sensor error in the health assessment, about 96% tefsthinstructions are saved
while using the proposed ATF. As the number of sensors iscexti(thereby making the
reading less accurate), only a more conservative estiniddwe probability is possible,
forcing the adaptive system into assigning bigger testdl yatem processors. However,
even with the higher levels of sensor error, the benefitseegvddually, and the proposed
scheme can deliver up to 82% test time saving with 25% semsor &/e believe this point
offers a good trade-off between the sensor area overhe@b)2and the saving in the test
instruction count (82%). Thus, our scheme does not depemiyrsensor accuracy levels
to achieve test reduction.

Figure 4.8 uses the similar terms as the one before, and presents thageaction
savings for a range of system coverage targets. The semsoliefixed at 25% for these
results. Depending upon the reliability requirements ofstesm, the coverage target can
be dynamically tuned. For instance, a move lower to 88% @mestarget can result in an
over 90% test instructions saving. The increasing divesggwhen going towards higher
coverage) between the saving obtained using adaptive CR@amptive SN is also note-
worthy. We expect the adaptive SN to well surpass the beradfaslaptive CMP in high

coverage target scenarios. For future technology nodés higher levels of process vari-

103

Adaptive-CMP Adaptive-SN ===

0.25 T T T T T

0.2

0.15

0.1

0.05

Normalized Number of Test Instructions

o 1% %
Ke> ‘Q ‘9
cS’\, % .

System Coverage Value

Figure 4.8: Number of test instructions for the adaptive online testingin CMP and SN with
varying system coverage target{C’). The number of test instructions are normalized to that
needed by a CMP with non-adaptive testing.

ation, a SN based system would be capable of extracting aggergains by segregating
stronger resources from the weaker ones. That way, muchr feipelines would need a
thorough testing.

The result plots so far have presented a cumulative valudaéonumber of test instruc-
tions over the entire lifetime, in this next result, we prasthe data of test thoroughness
over time. Figuret.9plots a three dimensional plot with average number of testtuiction
executed in consecutive simulation intervals for a rangmuérage target values. This plot
is for the SN system witB5% sensor error. Here, the trend of the number of test instruc-
tions over time reveals an interesting behavior of the psedscheme. For extremely low
coverage targets, say 0.5 (or 50%), hardly any test insbngare applied. However, for
higher values of coverage target, there is a rhythmic pattéthe test instruction count
over the lifetime. The number of test instructions rise toeaky and then fall-off. This

peak formation is representative of a core nearing its torfaiture, and then failing sub-

104

adaptivetest/plots/c-value.eps

sequently. As a core reaches close to its failure time, tla@tacg system ramps up the
number of test instructions to guarantee the coveragetta@ece the core fails, the sys-
tem returns to a nominal state since most of the other coeeseaithy. There are 16 such
peaks in this plot, each representing dying time of a coreer@laverage for the number
of test instructions is higher later in the lifetime due te fhoorer health of many cores in
the system. This plot is a clear demonstration of the prapasaptive testing framework
in tuning the testing time with the probability of failuren €ontrast, a traditional periodic
testing approach will exhibit a flat surface with constastitey intensity.

All the savings that we have reported for the test instrustj@an translate into a range
of benefits in a target system: gg¢rformancegain from spending less time for test; and 2)
powerandenergysaving from running fewer instructions. For the system wmasimulate
(16 core CMP) with a checkpoint interval of 10ms, the perfance overheads are 7%,
1.85% and 1.6% for CMP testing, CMP adaptive testing and Siptack testing, respec-
tively. According to Revive§4], a 10ms checkpoint interval would require 20MB storage
on an average and up to 100MB peak storage requirement. Aesratdbcation of storage
to the checkpoint mechanism can force the checkpoint iatete be even shorter, making

the testing time even more significant.

4.5 Summary

With the looming reliability challenges in future techngogenerations, in-field tol-
erance to silicon defects will be a necessity in future cotimgusystems. Periodic online

testing, although a good fit to this problem, imposes heastytime overheads. The pro-

105

Average Number of Test
Instructions (Thousands)

200
180
160

0.9

System
0.6 Coverage

3

Time (Years)

Figure 4.9: This plot shows the variation in the average number of test istructions executed
in the CMP system over its lifetime for a range of system covexge targets.

posed adaptive test framework significantly reduces tisisng overhead. The key insight
is to leverage low level sensors to assess failure probabilivarious system resources,
and suitably apply the tests. This way, a healthy system aidesction of resources for
testing compared to another one nearing its time to fail@reer the lifetime, testing de-
tail is adaptively managed by the proposed solution. Theiife simulation for a system
with 2.6% area devoted to health assessment sensorsgecesulin 80% reduction in the
software test instructions while delivering the same faalterage. We further extend this
reduction by 12% when applying the adaptive testing to thg&\let architecture. This test
time reduction can translate to varying levels of benefitsawer, performance and energy
depending up on the attributes of the targeted system. Dugecbelieve, that the adaptive

online testing offers an economical solution to the chgéaf online fault detection.

106

adaptivetest/plots/time-c-value.eps

CHAPTER YV

Erasing Core Boundaries for Robust

and Configurable Performance

5.1 Introduction

The introduction of this thesis lists the three major chajles that need addressing by
the semiconductor manufacturers: reliability, perforecgmnd energy-efficiency. In this
landscape of multicore challenges, prior research eff@at® focused on addressing these
issues in isolation. For example, to tackle single-threadgomance, a recent article by
Hill and Marty [46] introduces the concept afynamic multicore¢Figure5.1(a)) that can
allow multiple cores on a chip to work in unison while exengtsequential codes. This
notion of configurable performancallows chips to efficiently address scenarios requir-
ing throughput computing, high sequential performance, amything in between. Core
Fusion 2], Composable Lightweight Processofs]] and Federationl[0q are represen-
tative works with this objective. However, the scope of preasdaydynamic multicore
solutions is limited as they cannot provide customized @seimg, as ing3, 74], or better

throughput sustainability, as achieved by technique§in43]. The customized process-

107

ing in [63] (Figure5.1(b)) is typically accommodated by introducing heteroggnei types
and number of functional units, execution models (in-ar@&0), etc., into different cores.
Whereas, better throughput sustainability can be provijeiine-grained reliability solu-
tions like CCA B¢ and StageNet43] (Chapterll), that disable broken pipeline stages,
instead of entire cores (Figugel(c)), within a multicore.

Unfortunately, by virtue of being independent efforts, dmning existing performance,
power and reliability solutions for multicores is neithest-effective nor straightforward.
The overheads quickly become prohibitive as the changaesresfjfor each solution are
introduced, with very little that can be amortized acros#tiple techniques. Configurable
performance requires dedicated centralized structuddii@ drawbacks such as access
contention/latency, global wiring), customization regsia variety of static core designs,
and fine-grained reliability requires either large amowaresa for cold spares or the flex-
ibility to share resources across cores. Apart from excessierheads, a direct attempt
to combine these solution also faces engineering hurdlesinBtance, when combining
CoreFusion $7] (a configurable performance solution) and StageNet (Gndipt(a fine-
grained reliability solution), two prominent issues ari$gCoreFusion requires centralized
structures for co-ordinating fetch, steering, commit asrtused pipelines. These struc-
tures become single points of failure and limit reliabilitgnefits of StageNet. 2) StageNet
requires a decoupled microarchitecture for its sub-cofeati¢olerance. This is not com-
patible with CoreFusion, as resources within a single Qas&fn core are tightly coupled
together.

Instead of targeting one challenge at a time, the goal ofdhé&pter is to devise a

design philosophy that can naturally be extended to handialatude of multicore chal-

108

Distributed resources B: A block can be a pipeline stage

Centralized Rl
or a group of pipeline stages

resources

C: core | —|
[c J[c[€
<c][c]
[c]el[c]

|

1

1

1

]

:

c c c '
I 1
o 1
1

C C C :
(b) Static design fora |

1

1

1

1

1

1

1

1

1

1

1

1

1

i

7

Core

2-wide Heterogenous

Core

@ -
BZ]—-I Bn]—

(d) CoreGenesis: A sea of building blocks (B) that can be
conflgured for throughput computlng single- thread

C
C
— heterogeneous multicore
C C C C
-
cllc] el]ec
—

(a) Dynamic multicore with (c) Core disabling for
centralized resources fault tolerance

1-wide
Core

Figure 5.1: Contemporary solutions for multicore challenges (a,b,c) ad vision of this work
(d). In (a), centralized resources are used to assist in fusj neighboring cores. In (b) and
(d), different shapes/sizes denote heterogeneity. In (chd (d), dark shading marks broken
components.

lenges seamlessly, while overlapping costs, maintairfigency and avoiding centralized
structures. Towards this end, this chapter proposes theGamresis (CG) architecture (see
Figure 5.1(d)), an adaptive computing substrate that is inherentkilfle, and can best
align itself to the immediate system needs. CG eliminategrditional core boundaries
and organizes the chip multiprocessor as a dynamically garable network of building
blocks. This sea of building blocks can be symmetric or logfeneous in nature, while
varying in granularity from individual pipeline stages tmgps of stages. Further, the CG
pipeline microarchitecture is decoupled at block bouregarproviding full flexibility to
construct logical processors from any complete set of mgllocks. Another key feature
of the CG proposal is the use of distributed resources todioate instruction execution
across decoupled blocks, without any significant changegttSA or the execution model.
This is a major advancement over prior configurable perfogeavorks, and addresses the
shortcomings of centralized resources.

Resources from CG’s sea of blocks can be fluidly allocatecafaumber of perfor-

mance, power and reliability requirements. Throughput patimg can be optimized by

109

coregenesis/figs/cgvision.eps

forming many single-issue pipelines, whereas sequengidbpnance can be accelerated
by forming wider-issue pipelines. Power and performancaatteristics can be further
improved by introducing heterogeneous building blockshie fabric, and appropriately
configuring them (dynamically or statically) for active gram phases or entire workloads.
This enables a dynamic approach to customized processimglyk-fault tolerance in CG
can be administered at the block granularity, by disablirgaroken components over time.

Guided by this architectural vision, in this chapter, wesprg a CG instance that targets
configurable performance and fine-grained reliability. tar fabric, an in-order pipeline
model is used with single pipeline stages as its buildinghkdo As a first step, we define
mechanisms for decoupling pipeline stages from one andthspired by the StageNet
architecture 43]). This enables salvaging of working stages from differews of the
fabric to form logical processors, thereby tackling thetlghput sustainability challenge.
To address configurable performance, we generalize themofilogical processors to
form processors of varying issue widths.

The engineering of distributed resources to support thenalsty of decoupled pipeline
stages into a wide-issue processor is especially hard dtreetbeavy co-ordination and
communication requirements of an in-order superscalamr lution adopts a best ef-
fort strategy here, speculating on control and data depeneieacross pipeline ways, and
falling back to a light-weight replay in case of a violatiofo register these violations,
hardware schemes were formulated for distributed contegister and memory data flow
management. The frequency of data flow violations from utdions executing on two
different pipeline ways was found to be a leading cause dbpmance loss. We address

this by incorporating compiler hints for instruction steegrin the program binary. This

110

Table 5.1: Comparison to Prior Work

Configurable | Fine-grained | No centralized Supports Supports
Performance Reliability structures in-order model | heterogeneity

CG (this chapter) v v v v v

CLP [6]] v v v

Core Fusion 2], Federation [0q v

Multiscalar Pg]

StageNet43], CCA [89] v v v

Heterogeneous CMP5§{] v v v

circumvents the hurdles in fusing in-order cores, as pteskdn [39], while also achieving
a near-optimal pipeline way assignment. Overall, the nestation of CG presented in this
chapter relies on interconnection flexibility, microateletural innovations, and compiler

directed instruction steering, to provide a unified perfance-reliability solution.

5.2 Related Work

Within the framework of multicore chips, efficient solut®that can deliver config-
urable performance and throughput sustainability areralelel. This section gives an
overview of prior works targeting these issues. Tahlesummarizes the key aspects of
CG in comparison to the relevant prior proposals. CG stamti®y simultaneously of-
fering configurable performance and fine-grained religbilihile eliminating centralized
structures. This section also presents a study that mesieaheed for unified performance-

reliability solutions for the sake of efficiency.

5.2.1 Single-Thread Performance Techniques

Dynamic multicores. Dynamic multicore processors consists of a collection ghbge-
neous cores that can work independently to provide throutgt@mputing, or a subset of

them can be fused together to provide better single-threddnmance. Core Fusioih]

111

is a dynamic multicore design that enables the fusion ofcaaieO00 cores to form wider-
issue O00 processors. Federatiofid], on the other hand, combines neighboring in-order
cores to form an OoO superscalar. Both these approachesogpitralized structures (for
fetch management, register renaming, instruction stggeitt.) to assist in aggregation of
pipeline resources. In contrast, Composable Lightweigbt&ssors (CLP){] leverages
the EDGE ISA and compiler support to eliminate centralizedcsures, enabling it to scale
up to 64-cores. CG also eliminates centralized structbrests compiler support is limited
to generating hints for instruction steering, and ISA is ified to include this hint carrying
instruction. Multiscalar§€] is a seminal work that can compose a large logical processor
from many smaller processing elements. It uses an insbrusgquencer to distribute task
sub-graphs among the processing elements, and reliesawdrarto satisfy dependencies.
However, in all these prior schemes, resources within iddsi cores are tightly coupled
together, dismissing the opportunity for fine-grainedatality.

Another distinction of CG is that it fuses in-order pipebrte form wider-issue in-order
processors. While out-of-order fusion provides oppottasifor hiding latency (large in-
struction window sizes), in-order fusion is made harder ttuéhe negligible room for
inefficiency. In fact, Salverda et al3{] argue that in-order pipeline fusion is impracti-
cal because of the associated hardware overheads foemtary active data flow chains
(instruction steering). CG circumvents these challengesding compiler hints to guide
instruction steering, and employing simple mechanismsetea and recover from data

flow violations.

Heterogeneous CMPsHeterogeneous designs exhibit good power and performdrace ¢

112

acteristics for their targeted class of applications. Hmvebeing a static design, its effec-
tiveness is limited outside this set or when flexibility isated. For instance, in a scenario
where all applications prefer throughput computing, a togfeneous CMP will operate

sub-optimally.

In addition to static scheduling of jobs on heterogeneousPGidres, there have also
been dynamic scheduling approaches to match program pleaseibrs to cores. Core
contesting T4] is one such example, but it runs the same program reduydamdifferent
cores to allow a faster transfer of state between them. InidBysion of heterogeneous
blocks can allow static, dynamic as well as fine-grained dyinaxploitation of program
phase to architecture mapping. This is possible due to Gerent flexibility to swap

resources between pipelines.

Clustered Architectures. The early research in clustered architectures was to enddbs
issue capabilities, without adding sophisticated hardveupport. The Multicluster3[/]
architecture is a good example of this, and it uses stattouctson scheduling from com-
pile time. CG, on the other hand, uses a compiler clusteriggrithm [33] to generate
hints that are used for dynamic instruction steering. Téiagl$o in contrast to past works
that solely use hardware supportl] to implement heuristics for distributing instructions

among clusters in a superscalar.

5.2.2 Multicore Reliability Solutions

Coarse-Grained Reconfiguration.All reliability solutions that administer reconfiguration

at the granularity larger than or equal to a processor cdirenta this category. Some of

113

= Configurable Peformance(P) T Throughput Sistanability (R) e=m=P +R

39.2%

27.1%
/. {

; -

2 4 8 5
Number of coresin the CMP

Figure 5.2: Area overhead projections (measured as number of cores) fasupporting con-
figurable performance (P) and throughput sustainability (R) in different sized CMP systems.
P+R curve shows the cumulative overhead. For this plot, thraghput sustainability is defined

as the ability to maintain 50% of original chip’s throughput after three years of usage in the
field.

Area Overhead (# of cores)
O B N W 01 O N

the prominent works being P, 105 2]. Details and discussions in Secti@r6.

Fine-Grained Reconfiguration. A newer category of techniques use stage-level reconfig-
uration (isolates broken stages, not cores) for religbilihe StageNet design in Chapter

is a leading example of fine-grained reconfiguration. It gotogether a small set of
pipelines stages with a simple crossbar interconnect. Bylerg reconfiguration at the
granularity of a pipeline stage, StageNet can tolerate aiderable number of failures. In
CG, fine-grained reconfiguration is supported in the sameag&@tageNet. More examples

of fine-grained reconfiguration appear in Sectzo@

5.2.3 Combining Performance and Reliability

All prior works target the multicore challenges separatelther configurable perfor-
mance or throughput sustainability (reliability). The tahproblem here is that solutions
for each of these require new hardware to be incorporatedexisting CMPs. This turns

out to be an expensive proposition, as the hardware cosasidieve. We conducted a small

114

coregenesis/plots/motivation.eps

study to assess this cost. Fig&.2shows the results from this study using Core Fusiaij [
as the configurable performance solution, and standarddisabling for throughput sus-
tainability. The line plot shows the cumulative overheadpefformance (Core Fusion)
and reliability (core disabling) solutions (P+R). Resujtioverhead is almost 40% addi-
tional area. There are two factors at play here: 1) costsddiivze, as the two solutions
share nothing in common, 2) reliability is administeredaedevel (instead of being fine-
grained). On top of this, the design, test, verification aatidation efforts need to be
duplicated for performance and reliability separately.e Tiext section presents CG, our

unified performance-reliability solution, that overcontiesse issues to a large extent.

5.3 The CoreGenesis Architecture

5.3.1 Overview

The manifestation of CoreGenesis (CG) architecture pteddrere is a unified performance-
reliability solution that allows fusion of standalone cofer accelerating single-thread per-
formance as well as isolation of defective pipeline stagestistainable throughput. The
CG fabric consists of a large group of pipeline stages caedassing non-blocking cross-
bar switches, yielding a highly configurable multiprocedabric. These switches replace
all direct wire links that exist between the pipeline stagesuding the bypass network,
branch mis-prediction signals and stall signals. The mppahicroarchitecture within CG
is completelydecoupled and all pipeline stages are standalone entities. The symeme

crossbar interconnection allows any set of unique stagasgemble as a logical pipeline.

115

8-core CoreGenesis Chip

[l o=
EREAE
1 CORE -

L2$
B CORE

Figure 5.3: An 8-core CoreGenesis (CG) chip with a detailed look at fourightly coupled
cores. Stages with permanent faults are shaded in red. The @s within this architecture are
connected by a high speed interconnection network, allowmnany set of stages to come together
and form a logical processor. In addition to the feed-forwad connections shown here, there
exist two feedback paths: E/M to | for register writeback and E/M to F for control updates.
In CG processor 2 (conjoint pipelines), instructions (pria to reaching E/M stage) can switch
pipelines midway, as a result of dynamic steering.

CG Processor 1 (single pipeline)

Thread 1
(low ILP)

F F/D D/l 1 | E/M
Xbar ﬁ/ VE]

Xbar

N
2
-®

7 ”,

CG Processor 2 (conjoint pipelines)

Thread 2
(high ILP) .
.

_®

S 13
m

|___________|____.|

As a basis for the CG design, an in-order core is Useohnsisting of five stages namely,
fetch (F), decode (D), issue (1), execute/memory (E/M) antklvack P]. Figure5.3shows
the arrangement of pipeline stages across four intercoetheores and a conceptual floor-
plan of an 8-core CG chip. Note that all modifications introeld within CG are limited
to the core microarchitecture, leaving the memory hienafghivate L1 / unified L2) un-
touched. Further, the caches are assumed to have their otecpon mechanism (like]),
while CG tolerates faults within the core microarchiteetur

In Figure5.3, despite having one stage failure (shaded) per core, CGag@balvage
three working pipelines. Further, given a set of activeddss CG can judiciously allocate
these pipeline resource to them in proportion to their uttion level parallelism. For
instance, in the figure, thread 1 (low ILP) is allocated oneefiine and thread 2 (high ILP)

is allocated the remaining two pipelines.

1Deeper and more complex pipelines can be segmented at libginadaries of elementary pipeline
stages (F,D,l,E,W) to benefit from the CG approach.

116

coregenesis/figs/scoach_system.eps

Configurable performance helps CG in dealing with the saftwdhversity present in
modern day CMP systems. It keeps pipelines separate fanghput computing and dy-
namically configures two (or more) pipelines into a mulstis processor for sequential
workloads. This morphing of individual pipelines intocanjoint processorequires no
centralized structures, maintains reliability benefitg] & transparent to the programmer.
In Figure5.3, CG processor 2 is an example of a conjoint processor assadilising two
pipeline stages of each type. As part of a conjoint proces®two pipelines cooperatively
execute a single thread. The instruction stream is fetchierhately by the two pipelines -
odd numbered ops by one pipeline and the even numbered ops byhter. All instructions
are tagged with aageto maintain the program order during execution and insimaaom-
mit. Regardless of where an instruction is fetched, it capxseuted on either of the two
pipelines depending upon its source operands. We refeig@asinstruction steeringAn
instruction executing on the same pipeline that fetchessaid to be straight-steered, while
that executing on some other pipeline is said to be crogsesle This dynamic instruction
steering is performed with an objective of minimizing dagpéndency violations, and is
critical for achieving true multi-issue performance. CGpboys a compiler level analysis
for statically identifying data dependency chains (Sech@.5 and the issue stage applies
this knowledge (during run-time) to steer instructionstte inost suitable pipeline.

The natural support for fine-grained reconfiguration all@ to achieve its second
objective of throughput sustainability. For instance, igufe 5.3, CG is able to efficiently
salvage the working stages from the pool of defective coraptato form functional pro-
cessors. By the virtue of losing resources at a smaller ¢maty isolation of broken

pipeline stages reaps far better rewards than traditiamaldisabling. To realize its reliabil-

117

ity benefits, the CG system relies on a fault detection mashato identify broken stages
and a software configuration manager to consolidate theingdnes (by reprogramming
the crossbars). Fault detection can be achieved using aicatidn of manufacture-time
and in-field periodic testing. ChaptBr discusses an instance of periodic testing solution

for in-field fault detection.

5.3.2 Challenges

Although the performance and reliability benefits of its figuration flexibility are
substantial, there are a number of hurdles faced by the Clidtecture. There are four
principal challenges, and they span correctness and paafare issues for both single

pipeline processors as well as conjoint pipelines proeesso

Control flow management: The decoupled nature of the CG pipeline makes global sig-
nals such as pipeline flush and stall infeasible. In the comtiea single pipelines,
the control flow management is crippled by the absence oflzagiftush signal. The
problem is even more severe in the case of conjoint procesBgreline fetch stages
need to read complementary instructions from a single pragstream, and make

consistent decisions about the control flow (i.e., whetbé¢ake a branch or not).

Register data flow management:Back-to-back register data dependencies are typically
handled by the operand bypass network, which relies on yié&tr-stage commu-
nication. Unfortunately, the decoupled design of CG pipedi makes the bypass
network impractical. In the case of conjoint processors, pinoblem is further ag-

gravated by the presence of cross pipeline register depeigde The decentralized

118

Table 5.2: CoreGenesis (CG) challenges. The challenges can be classifon the basis of single
and conjoint pipeline configurations. The check marks {) are used for solutions that were
straightforward extension of prior work on decoupled architectures. Whereas the question
marks (?) are open problems that are solved in this chapter.

Control | Register | Memory | Instruction
flow data flow | data flow | steering

Single pipeline v v N/A N/A

Conjoint pipelines ? ? ? ?

instruction execution needs a mechanism to track deperefgrdetect violations,

and replay instructions for guaranteeing correctness.

Memory data flow management: Memory instructions are naturally serialized in the case
of a single pipeline CG processor, as all of them reach the saemory stage. How-
ever, similar to register data flow violations, memory datavflviolations can also
occur between pipelines of a conjoint processor, leading ¢orruption in global

State.

Instruction steering: In a conjoint processor, issue stages have the option tglstisteer
the instructions to same pipeline or cross steer it to thergbipeline. This deci-
sion has to be dynamically made for every instruction suehttie number of cross
pipeline data dependencies is minimized. A recent study dlye®da et. al §9
establishes that steering is central to the challenge ofde+ pipeline fusion, and

further concludes that a hardware-only steering solusampractical.

Table5.2 summarizes all the challenges in the context of single anitipteupipelines
working as a logical processor. A subset of these challehgesbeen solved (marked with
av’) by a prior work, StageNet(SN).E]. SN is a decoupled pipeline microarchitecture for

fine-grained fault tolerance. The interconnection banttwsblution from SN is generic

119

and applies to both single/conjoint scenarios.

The control, register data flow, memory data flow, and insimacsteering solutions for
conjoint processors are contributions of this chapter kedmwith a?). All of these are
new mechanisms, and were made harder by the fact that uniike anulti-issue machine
(and even Core Fusiorbf]), CG does not have centralized structures, and needs to get
performance by combining very loosely coupled resources ttie sake of completeness,
in the descriptions that follow, we also provide a quick ev@w of the solutions for single

pipeline case fromA3].

5.3.3 Microarchitectural Details

This section describes microarchitectural changes nebgdtie CG architecture, a
majority of which are clever tricks to detect control andadféw violations in a distributed
fashion. The relatively complex task of instruction stegris off-loaded to the compiler

(Section5.3.5.

5.3.3.1 Control Flow

Single Pipeline.For a single pipeline CG processor, the absence of a glopalipe flush
signal complicates the control flow management. In the eskatbranch mis-prediction,
the decoupled pipeline needs a mechanism to squash thecinsitis fetched along the
incorrect path. The introduction of a 1-bit stream iderdificn (SID) to all the in-flight
instructions targets this problenij]. The basic idea is to use the SID for distinguishing
instructions on the correct path from those on the incopatit. The fetch and the execute
stages maintain single bit SID registers, both of which argalized to the same value

(the discussion here is simplified, the actual scheme addb ae§ister to every stage).

120

The fetch SID is used to tag all incoming instructions. Arite execute stage matches
an instruction’s SID tag against the execute SID beforenigtit run. If at any point in
time, a branch instruction is resolved as a mis-predictipthle execute stage, the execute
SID is toggled and the update is sent to the fetch stage. Allght instructions that are
tagged with the stale SID are recognized (by the executeg tonbthe incorrect path and
are systematically squashed over time. In parallel to thisashing, after receiving the
branch update from the execute, the fetch toggles its ownadlDstarts fetching correct
path instructions. Note that a single bit suffices here beedue pipeline execution model
is in-order and can have only one resolved branch mis-gredtstanding at any given time

(since all instructions following it become invalid).

Conjoint Pipelines. In a dual-pipeline conjoint processor, one pipeline is giegsied as
theleaderand other as thllower. To balance the usage, both pipelines fetch alternate
instructions from the program stream, i.e., if leader fescliomPC', follower fetches from
PC+4. The logical program order is maintained by tagging evesyrurction with a unique
(monotonically increasinggge tag. Fetch stages are augmented with age counters (offset
by 1) that are incremented in steps of two whenever an instrucs fetched and tagged.
Thus, the leader pipeline will tag instructions with age2,81, and so on; and follower will
tag them with ages 1, 3, 5, and so on. By virtue of interleayrggram counter values,
both pipelines together fetch the complete program streaarecord the program order

in theage tags. These tags are later used by the exeeutesue crossbar (El xbar) to
commit instructions in the program order.

The above description of distributed fetch works fine untdranch instruction is en-

121

Table 5.3: Control cases. Each case represents a pair of consecutiveogram instructions
in a 2-issue conjoint processor. The first and second rows irhis table show the instructions
fetched in the leader and follower pipelines, respectively

Case 1 Case 2 Case 3 Case 4
branch not taken| branch not taken| branch taken| branch taken
OP BR OoP BR
BR OP BR OoP

countered. For proper operation, CG needs a decentral@ettot handling mechanism
that keeps both pipelines in sync when making a control aetisThe control flow can
encounter four distinct cases shown in Tebl&

Cases 1 and 2 are the most straightforward ones, as the bisamci taken. Both
pipelines continue as normal as the branch has no impacteocotttrol flow. For case 3,
we need both pipelines to take the branch simultaneouslis ddn be achieved if their
branch predictors completely mirror each other and sameeaddook-up is performed by
both pipelines. We maintain this mirroring by sending alifech prediction updates (from
execute/memory stage) to both fetch stages. For consisikups, the leader pipeline
addresses its branch predictor usingider _PC + 4, and the follower addresses it using
Follower_PC' (and by desigrifollower_PC = Leader_PC' + 4). As both the predictors
are synchronized, they will return the same prediction angktt address. Finally, for case
4, we again need both pipelines to take the branch. In additidhe mechanism for case
3, the follower pipeline must also invalidate {&&” which is on the wrong path. A simple
logic is added to the decode stage to carry this out. The destafe invalidates any
operation that is 1) in the follower pipelirend 2) is predicted as a taken branch by the
fetchand 3) is not a real branch instruction.

In the case of a branch mis-predict, the squashing of instnsfor conjoint processors

is a direct extension of the SID scheme presented for singidipes. In conjoint proces-

122

sors, both pipelines maintain a single logical value for$te, and all branch resolution

updates are sent back concurrently to the fetch stages.

5.3.3.2 Register Data Flow

Single Pipeline. The data forwarding within a single pipeline can be emulatsitig a
smallbypasscache in the execute stage. The key idea is to use this byaetss for storing
results from recently executed instructions, and supplyfrem to later instructions. The

experiments in43] show that a bypass cache that holds last six results is iguffic

Conjoint Pipelines. For conjoint processors, the data flow management getsvenalue
to the distributed nature of execution. The instructiorsissued and executed on different
pipelines, and cross-pipeline register data dependenaie®ccur frequently (instruction
fetched by pipeline X, but needs register produced by mpeX). In an ideal scenario,
we would like issue stages to always steer the dependenidtisins to the execute which
most recently produced the source values. More of this d&on on instruction steering
follows later in Sectiorb.3.5 Nevertheless, in a practical design, the steering meshmani
is bound to make some mistakes as each pipeline’s issuelsiagecomplete information
about the in-flight instructions. Our solution, in a nutghislto have each pipeline maintain
a local version of the outstanding data dependencies, andanavrite-backs by the other
pipelines to detect any data flow violations that might haveuored. Upon detecting such
a violation, a replay is initiated.

The first requirement for data flow management is proper reaaice of the register
file. The register files for all pipelines (that constituteamjoint processor) are kept co-

herent with each other. This is achieved by sending all tegisrite-backs to both issue

123

Outstanding Instruction Buffer (OIB) I F II 0 I[0][E/M]

Issue_l Execute/Memory

En

Figure 5.4: CG pipeline back-end with structures for detecting registe data flow violations
and initiating replays. The outstanding instruction buffer (OIB) and current flow tag (CFT)
registers are the two additions for conjoint processors. Ado shown here is the bypass cache
(BP$) for data forwarding within a single pipeline.

stages simultaneously, similar to the way Alpha 213§4gpt its two clusters consistent.
Further, the write-backs from the two pipelines are sexaliby the network interface be-
tween the execute and the issues stages. The crossbar gwidlizes the write-back
based on the age tag of the instructions, maintaining copregram commit order. This
way, cross-pipeline data dependencies, which are suffigitar away in the program, go
through the register file. However, all the instructiond Hra issued before their producers
have written back to the register file remain vulnerable tdatacted data flow violations.
To catch such undetected data flow violations, each pipetindgrack locally issued (in-
flight) instructions and monitor the write-backs to detety data dependency violations.
We accomplish this using a new structure in the issue stagedautstanding instruction
buffer (OIB) (see Figures.4). The OIB is similar in concept to the reorder buffer in an
000 processor. However, it is much smaller in size, and needtore only 5 (pipeline
depth from issue to write-back) instructions in the worstecaEach instruction entry in
the OIB stores: (1) op code, (2) sources, (3) destinationa@® tag, (5) execute stage
allocation (execute stage where the instruction was sigeamd (6) pending replay bits
(one per source operand). The OIB behaves as a CAM for itsdefeld (instruction

source). Pending replay bit for a source operand denotethetie can cause a data flow

124

coregenesis/figs/datadep.eps

violation. Instructions are inserted into the OIB at thedithey are issued. At the time of
an instruction write-back, following actions take place:

* The destination value,.,;) of the instruction writing-backi(,;,) updates the register

file. The corresponding OIB entry fdy,, is also freed.
* Ry.s is used to do a CAM look-up in the OIB. This returns any in-ftigistruction
(Lin_f1ignt) that usesi., as a source.

 If L,_nigne Was sent to the same execute stage whigyexecuted, then the bypass
cache would have successfully forwarded the register valbe pending replay bit
is reset (to 0) for this source operandiof f;yn:.

* If I;,,_s1i0ne Was sent to some other execute stage, then a data flow violafossible

and the pending replay bit for this source is set (to 1).

Over time, the replay bit for a source operand can get set/masltiple times, with the
final write to it made by the closest producer operation f@rgeonsumer. If an issue stage
receives a write-back for an instruction with a pending agit set for any of its source
operands, it implies that the producer of value(s) for thigruction has executed on an
execute stage different from where this instruction wasrstt And, therefore, a data flow
violation has occurred. A replay is initiated at this poirgglay mechanism is discussed

later in this section).

5.3.3.3 Memory Data Flow

To provide correct memory ordering behavior in a conjoipgtines processor, we use a
local store queue in the issue stages that monitors loadtipes performing write-back for

store-to-load forwarding violations, and a speculativeestbuffer in the execute/memory

125

))& E=d)

Issue Execute/Memory

XBAR
RF —>®—>

[
)

Figure 5.5: CG pipeline back-end with an emphasis on structures added fchandling mem-
ory data flow violations.

stage to allow delayed release of memory store operatiosse against accidental mem-
ory corruption). Note that cache hierarchy is left unmodifie CG. L1 caches are private

to the pipelines, single ported and naturally kept cohebgnstandard cache coherence
protocols.

Figure5.5shows the back-end of a CG pipeline with an emphasis on stegheeded
for proper memory handling. A store buffestpreBuffey is added to the execute/memory
stage to hold onto the store values before they are releasbe tnemory hierarchy. Al-
though a common structure in many processors, in CG, the btdfer also serves the pur-
pose of keeping speculative stores from corrupting memtaitg SA store queueSQueul
is added to the issue stages to tabulate the outstandireisstructions, and their present
states. Every store instruction can have two possiblessta# issued store instructions
are entered into the local store queue and get intethie senstate. Write-back for this
store instruction confirms that it is not on an incorrect exen path. At this point, a
pseudo commi#ignal is sent (over the same crossbar switch) to the execemeory stage
that executed this store, and the store instruction staterbespseudo commit sentypon
receiving this signal, the execute releases the store dltiee head of the store buffer to

the memory. This way, only stores on the correct path of ei@twpdate the memory.

126

coregenesis/figs/memdep.eps

There are three possible cases involving the memory opesatihat need a closer scrutiny

(see Tablé.4).

Table 5.4. Memory flow cases. Each case represents a pair of instructisnthat are flowing
together in a 2-issue conjoint processor.

Case 1l Case 2| Case 3
Leader pipeline BR ST ST
pip (mis-predicted) !
Follower pipeline ST STy LD

In case 1, a mis-predicted branch occurs right before a stéine program order. Since
this store is already executed by the execute/memory stagejue is entered into the store
buffer. Fortunately, in accordance to the commit order,lirench operation writes back
before the store. Thus, the store never gets to write-badkdaes not release a pseudo
commit for itself. Eventually this store is removed from ttere buffer when the mis-
predicted branch flushes the pipeline. In case 2, the psenwhorit is released fo67}
beforeST,. Thus, to the memory hierarchy, the correct ordering isgaedl. In case 3,
when the load is about to commit, both issue stages checlyibftihe outstanding stores
conflicts with this load (using the store queues). If theliadeed such a store that precedes
the load in the program order (based on age), and was sentiffer@ot execution stage,

then a replay is initiated starting from this load.
5.3.3.4 Replay Mechanism

The replay mechanism adds a single bit of state in the issdiex@tute/memory stage
called thecurrent flow tag(CFT), and leverages the OIB in the issue stage for re-sirepm

instructions (see Figurg.4). The CFT is a single bit (similar to the SID for branches) to

identify the old (wrong) instructions from the new (replag) instructions in the back-end.

127

All issued instructions are tagged with the CFT bit. Threadand thetail pointers in the
OIB mark the window of in-flight instructions, which are rapéd in the event of a register
or memory data flow violation. The violation is first identdidy any one issue stage,
which consequently sends outlashinstruction to both execute stages. This flips the CFT
bit, resets the bypass cache and clears the store bufféswhag this, other issue stages are
sent replay signals, and all of them start re-issuing isioas from their respective OIBs
(starting at the head pointer) and tagged with an updated [€#=TThe old instructions,

tagged with a stale CFT, are uniformly discarded by bothasgluring the write-back.

5.3.4 Interconnection

CG interconnection network is a simple, one-hop connectibemploys bufferless,
non-blocking crossbars to connect adjacent levels of pipaitages. This allows all pairs
of stages, that share a crossbar, to communicate simultalyecAs an interface to the
interconnection network, pipeline stages maintain a lattbhoth inputs and outputs. This
makes the interconnection network a separate stage, asditidoes not interfere with
critical paths in the main processor stages.

In order to make the basic crossbar design suitable for theChitecture, three fea-

tures are required:

Multicast: The CG depends on the capability of the interconnectionrnad sae value to
multiple receivers. For instance, write-backs are senbth [ssue stage register files

simultaneously.

Instruction steering: CG requires capability to steer instructions from issuehi® ap-

propriate execute stage. A single (header) bit in the in8trn payload is added to

128

specify the output (execute stage) an instruction wantsdolr.

Age prioritization: In the case of write-backs, older instructions have to bemgjriority.
This requires an addition to the router to let it prioritiz&cgets (instructions in our

case) on the basis of their age.

Synchronized transfer: Within CG, a pair of instructions is transferred from onedleof
stages to the next level synchronously. Thus, the interettion crossbars need to

wait for data to be available on both input ports, beforednaitting it.

Crossbar switch fabrics with crosspoints can support wastiby setting the crosspoint
gate logic to high for multiple outputs. A recently propossRAM based crossbar archi-
tecture, named XRAMYZ], demonstrates this ability with a low power and area ovadhe
The instruction steering and age prioritization can be dddehe wrapping logic around
the crossbars. However, the XRAM paper suggests that teasarés can also be imple-

mented using circuits.

Crossbar reliability, power and timing: In order to protect the interconnection network,
fault tolerant version of the crossbars are used in CG. Fhasnilar to the approach i@ p].
The interconnection power can be broken into crossbar pawdrinterconnection link
power. Both of these are accounted for in our evaluationgeathe methodology ini[L9].
The absence of buffers in our network significantly cuts dowthis overhead. And finally,
we model interconnection link latency using intermediatelpwire model from ITRS
2008 in 65nm technology, and make sure that it does not exa#ezhl paths of pipeline

stages.

129

N\ Cross pipeline Fetch Pipeline Execution
depend Piveli
- " PE——— \ Jependency O - : STEER OP LFLLF peline
Pr - r) @ - : STEER OP FLFLF
2: r4 <= T3 + x4 O1:r1 T o< MEM[rl] O
3: r4 <- 5 - r4 Step2.STEER | @ 2 .ra <~ 3 + r4 (5}
4 : r2 <- rl + r2 ops ins_erted_with O 3 :ra <- r5 - r4 [0)
5 : r2 <- r2 << 2 compiler hints @2 :r2 < 21 + 2 b
e = ST 20 > 2 step 1. Pipeline O 5 :r2 <- T2 <2 O
7 r2 <= MEM[r2] [e @ 6 :x0 <- 0 > 2 @
8 : MEM[r2] < 4 assignment hints :
N from compiler O 7 :x2 <- MEM[r2] O
i : ro0 <- rg + 4 @ 8 :MEM[r2] <- r4 O
0: MEM[r0] < r O Leader (L) pipeline O 9 :ro <- 0 + 4 (]
L. i t . -
Original code assignmen (@) 10:MEM[r0] < rl Q@

Final code with STEER ops

Follower (F)
pipeline assignment

Figure 5.6: Instruction steering. The white nodes indicate instructions assigned to the leader
pipeline while the shaded nodes correspond to the followeripeline. The instruction fetch is
perfectly balanced between the two pipeline, but the execigin is guided by the steering.

5.3.5 Instruction Steering

CG depends upon intelligent steering of instructions betweonjoint pipelines in or-
der to minimize performance degradation from data deperydesplays. The instruction
steering decisions need to be made at the time of instrugtgre. Broadly speaking,
the objectives of instruction steering are two-fold: 1)dwele the workload on the two
pipelines, and 2) minimize the number of replays. Our expents showed that using a
purely hardware based solution for dynamic steering iseeitheap nor effective for in-
order pipeline fusion. This concurs with the conclusion&si[Thus, CG adopts a hybrid
software/hardware approach for instruction steering. hatghell, a compiler pass is used
to assign instruction streams to the pipelines. These aretthen encoded inBieeringin-
structions that are made part of the compiled applicatioafyi The hardware recognizes
these special steering instructions and uses them toigéfgctonduct dynamic steering.

Steering instructions between different pipelines in g@omhprocessor is analogous to
data-flow graph (DFG) partitioning for clustered VLIWSs. Theal is to obtain a balanced

workload that takes advantage of hardware parallelismt{pheliclusters) and reduces the

130

coregenesis/figs/steering.eps

need for inter-cluster moves (transferring values betwdaesters). Leveraging generic
clustering algorithms to form instruction streams for CQaisly straightforward. When
cross-pipeline dependencies cannot be avoided, the C@adgpuii of an inter-cluster move
is the replay mechanism described in the previous sectiorth&r, CG’s broadcast-based
write-back ensures that any dependent instructions tleaseparated by more thanin-
tervening instructions will not incur a replay even if theg ateered to different execute
stages, where is the issue-to-writeback latency. Therefore, the two nuddjectives of
clustering algorithms, minimizing inter-cluster movegaverlapping moves with other
computation, naturally result in instruction streams #r&t amenable to the CG architec-
ture. For our evaluations, we used the well known Bottom-Uee@y (BUG) B3] cluster-
ing algorithm to generate hints for steering.

A STEEROPInstructionis introduced in order to encode this compgenerated steer-
ing information. Two such instructions are inserted (fader and follower pipelines) at
the beginning of every instruction block (basic block / supeck). STEEROP instruc-
tions are simply bit encoding of the pipeline assignmentefigery instruction within that
block (multiple instructions are inserted for large codechk).

Figure5.6 shows an example of the complete hybrid steering setup ioracthe first
step consists of performing the BUG clustering algorithrihia compiler. The second
step encodes the clustering algorithm suggested pipedisigranents and embeds them
as STEEROP (top two instructions in the final code, 'L’ here stands foader pipeline
assignment and 'F’ for follower pipeline assignment). Whigsleader pipeline fetches its
STEEROP LFLLF, it learns the steering directions for instruction 1 (L)F3,(5 (L), 7 (L)

and 9 (F). The follower pipeline behaves analogously.

131

5.3.6 Configuration Manager

CG requires a software level configuration manager for sugiag the system-wide
reliability and performance configuration. The inputs tis thanager are: a) list of working
components (pipeline stages and interconnection crasshad b) profile of jobs active in
the system. When invoked, the configuration manager firgisass the maximum number
of logical pipelines it can salvage out of the system. Foitaythis, it distribute the working
pipelines to the active workloads. In our evaluation, weuass a simple policy where:
1) all workloads are assigned a single pipeline, 2) any reimgipipelines are allocated
to the threads on the basis of ILP (instruction-level patfislin) available in the same.
The configuration manager is re-invoked every time a faiboeurs or the workload set
changes. The frequency of the former is in the order of monthereas that of the latter

is in seconds.

5.3.7 Instruction Flow Example

Figure5.7 shows a generic code snippet accompanied by a set of instrymsition
tables showing the execution progress in a 2-wide CG procéas some representative
clock ticks). The example presented here has three implgstmptions: 1) one-cycle
instruction transfer time over the interconnection, 2)-fiyele delay for communicating
values produced in one pipeline to the other, and 3) singkeuntions flow in the pipeline,
instead of bundles of operations to amortize network trassion costs43]. All of these
assumptions are only for the sake of the example, and acaha¢y can differ in a real
program execution. The discussion of the CG processor atdtee representative clock

ticks is provided below:

132

(Dual-issue StageCoach (SC) Processor

~

Code 4 toFeten w | F D I EX/IMEM

q, uT N ouT N out
1 Fetch Decode Issue EX/MEM PO (L)| op25 op23 op2l opll op9 op7 op5

e (F0) (D0) (10) (E0)

°P P1 (F)| op26 op24 op22 BR opl0 op8 Op6

op3 Leader

op4

.

. Fetch FD Decode oAl Issue VE EX/MEM En T-12 F D 1 EX/MEM
op9 (F1) xbar (D1) xbar) xbar (E1) xbar IN ouT IN ouT IN ouT
opl0 PO (L)| op33 op31 op29 op27 op25 op23 op2l
opll Follower ito Fetch N

/| op12-BR L) Pl (F)| op34 op32 op30 op28 cp‘26 op24 op22
Alop13 T
\
Execution Flow
.
¥ < F D 1 EX/MEM F D 1 EX/MEM
T=0 T=13
<p2l x4 r2,rl IN OUT IN OUT IN OuT IN OUT IN OUT IN OuUT
dp22 r6v-s- r3,ri2
op23 23\\5_\)”:4,:1 PO (L)| opl PO (L)| op35 op33 op3l op29 op27 —--- op23
op24 Sl
op25 2 « ‘rs,rl Pl (F)| op2 Pl (F)| op34 op32 op30 op28 op26 op25 op24
op26
op27
op28 MEM[OXFF] <- R4 Tes F D 1 EX/MEM To15 F D 1 EX/MEM
MEM[OxOA] <- R5 IN OuT IN ouT N out IN OuT IN ouT N our
PO (L)| opll op9 op7 op5 op3 opl PO (L) -——— —-—— op35 op33 op3l op29 op27
Pl (F)| BR opl0 op8 op6 op4 op2 Pl (F)| === =-- op34 op32 op30 op28 op26
\ J/

Figure 5.7: A dual-issue CG processor executing a sample code under optistic conditions,
i.e. no control, data or memory violation occurs.

Time 0: Leader and follower pipelines fetelpl andop2 respectively. This mechanism
can be easily realized in hardware by keeping the followeelpie’s PC at an offset
of single instruction width.

Time 5: Assuming all instruction cache hits, after five cycles, hmfrelines would be full.
The follower pipeline (P1) gets a branch operationl) in this cycle. The branch
is taken, and both pipelines jump to the target program iocatvhile maintaining
their PC offset.

Time 8: By this time, the processor has successfully jumped to tiheloeation and both
pipelines are filled up with more instructiong@1-26). The older instructions have
been retired in-order. A register flow dependency exista/éehop21 — op23 for
R4 andop22 — op25 for R6. The dependency faR4 is shared by operations in the
same (leader) pipeline, whereas the dependenciéas cross-pipeline.

Time 12: Op23is at the input latch of the execute block in the leader pigeliThe value

for R4 from op21 gets forwarded top23 through the bypass cache that exists within

133

coregenesis/figs/scoach_example.eps

each pipeline. However, the cross pipeline dependenoy2if for R6 requires it to
be cross steered to pipeline P1. Thyw5 andop26 both compete for P1’s execute
stage.

Time 13: Op25is cross steered to the follower pipeline, and is thus sstelgable to ob-
tain the R6 value forwarded fronap22. No operation is issued to the leader pipeline
during this cycle, and a pipeline bubble is introduced.

Time 15: Op29 and op28 (store operations) are issued to the leader and the follower
pipelines, respectively. The store addresses for thesemtions do not conflict.

The above example is a collection of fortunate cases wher€@architecture operates
at full dual-issue bandwidth without running into any caetreess issues or performance
bottlenecks. In reality, the decentralized nature of the pwpelines, and consequently the

local decision made by each of them could lead to severalictsdn replays.

5.4 Evaluation

5.4.1 Methodology

A comprehensive set of tools are used for the evaluation af @@ evaluation setup
spans program compilation and microarchitecture levelktion, down to area, power

and wearout modeling.

Compilation for instruction steering. The Trimaran compilation system 1] is used
to perform the BUG clustering algorithmd] for instruction steering. Inter-cluster move

latency of five cycles is used as an input to the algorithm.

134

Table 5.5: Architectural parameters.

Baseline architecture

Pipeline 4-stage in-order OR1200 RISC(]
Frequency 400 MHz
Area 0.71mm? (65nm process)

Power (baseline OR1200 core)

94AmW

Branch predictor

Global, 16-bit history,
gshare predictor, BTB size - 2KB

L11$, D$ 4-way, 16 KB, 1 cycle hit latency
L2$ 8-way, 64 KB (per core), 5 cycles
Memory 40 cycle hit latency

CG specific

parameters

Interconnection

full non-blocking crossbars,
64-bit wide, bufferless

Outstanding instruction buffer (OIB

5 entries

Store queue, store buffer sizes

3,3

Bypass cache size

6

multimedia kernels.

Microarchitectural simulation. The microarchitectural simulator for CG models a group
of 4-stage in-order pipelines (similar to the OR1200 caot@)[interconnected to form a
network of stages. The simulator was developed using thertjilSimulation Environ-
ment [L13 from Princeton. The architectural attributes are dethiteTable5.5. The L2
cache is unified and its sizeGd¢ K B x the number of coresThe original OR1200 pipeline
is also used as the baseline for single-thread performanice.architectural simulations

are conducted for benchmarks chosen from three source<CZ®Rint, SPEC2000fp and

Area overhead (for design blocks and wires).Industry standard CAD tools with a li-
brary characterized for a 65nm process are used for estightite area of design blocks.
A Verilog description for the OR1200 microprocessor wasaotgd from [/6]. Most CG
modifications: OIB, SQ, SB, bypass cache, etc., are esigrgimall memory structures,
and their areas are estimated using similar sized CAM strest All non-memory struc-
tures, such as replay logic, stream identification congmod, crossbars, are implemented as

Verilog modules to obtain accurate area numbers. The ardaddnterconnection wires

135

between stages and crossbars is estimated using the sahwolegy as in§4, 57, with

the intermediate wiring-pitch (at 65nm) taken from the ITR&d map 3.

Power and thermal modeling.Power dissipation for various modules in the design is sim-
ulated using Synopsys Primepower an execution trace of ORithning media kernels.
The crossbhar power dissipation was simulated separatéhyg @srepresentative activity
trace. The crossbar Verilog was placed and routed usingr@adencounter before running

it through Primepower. The stage to crossbar interconme@ower was calculated using
standard power equations1[9 with capacitance from Predictive Technology Modeb|
and intermediate wiring-pitch from 65nm node (ITRS]). The thermal modeling was

conducted using HotSpot 3.07].

Wearout modeling. For wearout modeling, mean-time-to-failure (MTTF) wasccdted
for various components in the system using the empiricaletsofund in L01]. An en-
tire core was qualified to have an MTTF of 10 years. The caledlMTTFs are used as
the mean of the Weibull distributions for generating time&iilure (TTF) for every mod-
ule (stage/crossbar) in the system. For the sake of consisia comparisons, wearout
modeling makes assumptions similar to thoseli#].|

The MTTF of 10 years was chosen as a rough estimate for theeftghnologies:
22nm and beyond. Note that the 65nm technology node was @ely to get power and

area overheads for comparisons.

Quantitative comparison against other schemed-or experiments involving multicores,
CG is compared against two other systems: 1) A conventioMiP Chip where, a core

is considered to be faulty when any of its modules fail; 2) a@®Mp [43], as it shares

136

similarities with CG in the way it tackles reliability.

5.4.2 Single-thread performance

Configurable performance in CG relies on its ability to aecatle single-thread perfor-
mance by conjoiningn-order pipelines. Figures.8 shows a plot comparing the perfor-
mance of four CG configurations normalized to the 1-issuerder baseline (OR1200).
The plot also includes a 2-issue in-order baseline for tike £h comparisons. The CG
configurations are expressed as:
numberof_pipelinesconjoint x issuewidth_of_pipeline stages.

The following configurations are examined: 1-issue (1x1)St@le pipeline, 2-issue (2x1)
CG conjoint pipelines, 2-issue (1x2) CG single pipelined dnissue (2x2) CG conjoint

pipelines.

Conjoining single-issue stagesThis compares a (1x1) CG pipeline and a (2x1) CG con-
joint pipeline against the two baselines. All pipeline gs@re inherently single-issue in
this set up. The 1-issue CG pipeline (1x1) performs rouglBtvorse than the 1-issue
baseline, primarily due to the inter-stage transfer inigfficies from decoupling (this is
similar to results in the SN workl[3]). On the other hand, the (2x1) CG conjoint pipeline
was found to deliver a consistent performance advantagetbgel-issue baseline, while
lagging behind the 2-issue baseline. The gains are mostipeninfor the SPECfp and
kernel benchmarks. In fact, for some of the kernel benchmaknost a 2X performance
gain was seen while using the conjoint processor. The dititijeof long and independent
data dependence chains in these benchmarks made thispessille.

In contrast, a few of the benchmarks showed negligible tatneg performance im-

137

provements while using the conjoint processor, namelydct6.197.parser and 177.mesa.
This was due to the lack of independent streams of instnugtio these workloads. In-
structions in these benchmarks typically formed long ddpane chains, and the compiler
pass (for steering) ended up allocating most instructiorise same pipeline (to minimize
the replay cost). This resulted in a nearly complete segtbn of the program, rendering
half of the execution resources useless. The few cases wigtrections were steered to
different pipelines lead to data flow violations and worskttee overall performance by
initiating the replay. Barring these three benchmarksydisé of the results strongly favor
the conjoint pipelines CG processor design. On average%alB& gain is seen over the

single pipeline CG processor.

Conjoining dual-issue stagesThis compares a (1x2) CG single pipeline processor, a (2x2)
CG conjoint pipeline processor and a 2-issue baseline psoce All pipeline stages are
inherently dual-issue in this set up. A single logical pipelin this system would behave
as a dual-issue processor. Using the CG conjoining priesj@ny two dual-issue pipelines
can be then combined to form a quad-issue CG processor. 2@ 42issue conjoint
pipeline shows a 35% improvement in performance over th2)(2xssue pipeline, and a
25% improvement in over the 2-issue baseline. Note that bingahe pipeline stages
dual-issue, the fault isolation granularity for the sysismeduced by half. This discussion
is continued later in this section along with the reliailinplications.

Our experiments with conjoining more than two pipelinestifteingle and dual-issue)
at a time did not show very favorable results. The two maisaga for this were: 1) the

limited availability of independent data-flow chains, andtfZe constraints placed by an

138

6ET

m Basdine (1 issug m 1x1 CG single pipdine (1 issug B 2x1 CG conjoint pipdines (2 issug
E Basdine (2 issug 0 1x2 CG single pipdine (2 issug 02x2 CG conjoint pipdines (4 issug
35

3

Normalized IPC

Figure 5.8: Single thread performance results for CG normalized to a sigle-issue in-order processor. The configurations are expssed as
(number_of_pipelines.conjoint X issue_width _of_pipeline_stages).

coregenesis/plots/perf.eps

in-order issue architecture.

Replay costs.The performance advantage of a conjoint CG processor isliadgtermined
by the efficiency of instruction steering in balancing thaddetween the two pipelines,
while minimizing replays. Here, we analyze the cost of thesggays in a 2-issue (2x1)
CG conjoint pipelines processor. Figus® shows three components of the total execution
time for all the benchmarks: memory flow (MemFlow) violaticeplay cycles, register
flow (RegFlow) violation replay cycles and normal operatoycles. A majority of the
benchmarks devote a small fraction of their execution timéhe replay cycles, with an
average of 15%. Out of the total replay cycles, memory reptaytributes a negligible
fraction. This is an expected result because memory reptlyy lappens when a store
to load forwarding is missed by the system, which by itselfigare event for in-order
processors. From the perspective of power efficiency, ttessdts are encouraging because
only a very small percentage of the work performed by thessggjoes to waste. Note that
a low number of replay cycles does not necessarily imply doemathmark performance.
For instance, all instructions in a conjoint processor carsteered to the same pipeline
resulting in zero replays (no cross-pipeline dependertdgjvever, no speedup compared

to the baseline would be observed.
5.4.3 Energy-efficiency Comparison

Energy-efficiency of designs can be compared usiig’S? /watt as a metric 10].
This metric is more sensitive to performance changes, atichiging for it yields the

same results as optimizing fétD? (energy times delay squared). Figird0shows the

average IPC andB 1 PS?/watt comparisons for the four CG configurations normalized to

140

OMemFlow redaycycles B RegFlow redaycycles ®Normal opaationcycles

100% -
90% -
80% |
70% -
60% -
50% -
40% -
30% |
20% -
10% -

0%

Figure 5.9: Contribution of memory replay cycles, register flow replay g¢/cles and normal
operation cycles to the total computational time of individual benchmarks running on a 2-
issue conjoint processor. On an average, the replays conliwited to about 15% of the execution
time.

B|PC OBIPS*3/watt
5.3X
35

2.5 T

15 -

‘e :

Baselire 1x1CGpipeline 2x1CG 1x2CG pipeline 2x2CG

(issue) conjoint (2issue) conjoint
pipelines pipelines
(2issue) (4 issue)

Figure 5.10: Comparing IPC and energy efficiency B1PS? /watt). The baseline is a single-
issue in-order core (OR1200).

the single-issue baseline processor. When going from theliba to the single-issue CG
pipeline, about 20% energy efficiency is sacrificed. Howeter superior performance in

wider-issue configurations, significantly improves CG’srgy efficiency.

5.4.4 Multi-workload throughput

Performance of a CMP system can be measured either as theylatehread execution
(single-thread performance, prior experiment) or the attehich jobs complete (system

throughput). For the throughput comparison, three systeere compared against one

141

coregenesis/plots/replay.eps
coregenesis/plots/energyeff.eps

08 Core CMP m8 Core SN m8 Coe CG

Throughput (IPC)
O R, N W H T O N

il

0.25 05 0.75 1

Systemutilization (humber threads / number of cores)

Figure 5.11: Throughput comparison of 8-core CMP, SN and CG systems at diérent levels
of system utilization. A utilization of 0.5 implies that 4 waking threads are assigned to the
8-core system. At this utilization, CG multicore delivers 6% throughput advantage over the
baseline CMP.

another: an 8-core CMP, an 8-core SNj[and an 8-core CG. A core here refers to a sin-
gle issue in-order pipeline resource, thus an 8-core SN &@Quld have eight pipelines
interconnected. The system utilization was varied fronb@@cupancy to 1.0 occupancy.
This refers to the number of threads assigned to the systeuvis capacity (measured as
number of cores). Monte-Carlo experiments were conducyedtying the set of threads
allocated to the system at each utilization level. FigbuEl shows the final throughput
results from this experiment. At the peak utilization le¢&l0), the 8-core CMP deliv-
ers the best throughput. This is due to the performance salyanhe baseline processor
has over both single pipeline SN and CG processors (seesimglad performance results
above). Further, the throughput of SN and CG are identicedhibge CG defaults to using
one pipeline per thread in this peak utilization scenaris.tie system utilization is low-
ered, CG is able to leverage the idle pipeline resourcesrio émnjoint processors. Thus,
the CG system consistently delivers the best throughput atil&zation levels< 1, which

is a realistic expectation for over-provisioned systems.

142

coregenesis/plots/utilization.eps

5.45 Faulttolerance

The experiments so far have targeted the performance asptwt CG architecture.
In order to evaluate its reliability in the face of wearoutuees, we conducted some ex-
periments that track the throughput of the system over theseoof its lifetime. For these
experiments, the stages/crossbars fail as they reachéspective time-to-failures (TTFs).
The system gets reconfigured over its lifetime wheneverlaré&is introduced. Broken
stages are isolated using interconnection flexibility, andt tolerant crossbars naturally
handle crosspoint failures. A software configuration manag re-invoked every time a
failure occurs or the workload set changes. We assume aesirapbnfiguration policy
where: 1) all workloads are assigned a single pipeline, &) ramaining pipelines are
allocated to the threads on the basis of available ILP. Treutfhput of the system is com-
puted for each new configuration based on the number of wgikijical pipelines and the
workloads assigned to them. Monte-Carlo simulations angau1000 chips to get statis-
tically significant results. The average system utilizatior these experiments is kept at
0.75. Since the throughput delivered by the CG system improvéiseasystem utilization
is lowered (see Figurg.11), the CG results reported here are conservative.

Figure5.12a) shows the throughput over the lifetime for three systean$-core CMP,
an 8-core SN and an 8-core CG. CG clearly outperforms botheobther systems for the
entire lifetime. Early on, CG achieves a throughput advgetay utilizing the idle pipelines
(only 6 threads are active, leaving 2 pipelines free) to feonjoint processors. The reg-
ular CMP and SN systems cannot benefit from this. Later initagéme, CG sustains a

throughput advantage over the CMP by effectively salvatiiegvorking stages and main-

143

——8 core CMP +—8 coeSN -=-8caeCG

e e

~—~
O
o
=
5 4 -
2_4
2>
o 2
£
= 1
OIIIIIIWIII\ L L L L L L LML
O HL N MLLTLWWLWOLWMN~NILWOoOLWOO
o — N ™ < To) © ~ ©

Time (years)

(a) Throughput over the lifetime of 8-core CMP, SN and CG at a fixed

utilization of 0.75. After a few initial years, CG’s througit settles
down to that of a SN system.
——10cae CMP +—4 coedual-issleCG -=—8 wmreCG

Throughput (IPC)
OFRLNWMAMUOITONO®

Time (years)

(b) Throughput over the lifetime of 10-core CMP, 4-core dualissCG
and 8-core CG at a fixed utilization of 0.75. CG system showsbst
convincing results among all the three configurations aersid.

Figure 5.12: Lifetime reliability experiments for the various CMP, SN and CG systems. Only

wearout failures were considered for this experiment.

processaors.

taining a higher number of working pipelines. For instarthe, CMP system’s throughput
drops below Z PC' around the3.5 year mark, whereas the CG system throughput breaches
that level around thé year mark. The gains add up over the lifetime, anchulative work
done(integral of throughput over the lifetime) advantage of G&3% over the baseline
CMP. Also note that CG’s throughput converges with that ofistie later part of the life-
time. This happens when the number of threads assigned sy$hem exceeds the number

of working pipelines, and CG is left with no option but to defeback to single pipeline

144

coregenesis/plots/tput_regular.eps
coregenesis/plots/tput_area_neutral.eps

Figure5.12b) compares two more system configurations to the 8-coreaCI®-core
CMP and a 4-core dual-issue CG. The 10-core CMP is chosenvi® dra area-neutral
comparison with the CG system. The area overhead for CG it @086 (discussed later),
translating to roughly two cores for an 8-core CG system. fEsealts show that early in
the lifetime, the 10-core CMP dominates the other two comdéiions. This is expected as
it starts off with the maximum amount of resources. Howesaerthe failures accumulate,
it quickly loses its advantage. Beyond the two year mark, &wore CG consistently
dominates the system throughput. The 4-core dual-issueyStera performs the worst
among the three. There are two reasons for this: 1) it canewerfthreads concurrently
(4-cores instead of 8/10), and 2) failures in stages resutbigger resource loss (as each

stage is dual-issue).

5.4.6 Areaoverheads

The area for various structures that are part of the CG a&athite is shown in Table.6.
The overhead percentages are relative to our baselinegsmcethe OR1200 core. A total
of five interconnection crossbars are present in the CGtauthire, but since the pipelines
share crossbars, its overhead is not attributable to juesspgeline. For a case where eight
pipelines are connected together to form CG, each of themsl3¢a’ of the crossbar
overhead. With this assumption, the total area overheathé&CG architecture is 19.6%

over a traditional CMP (containing OR1200 cores).

5.4.7 Power overheads

The power overhead in CG comes from three sources: crosstiage/crossbar in-

terconnection and miscellaneous logic (extra latches, medules). Tabl&.7 shows the

145

Table 5.6: Area overheads from different design blocks in CG.

Design block Area Percent
(mm?2) | overhead

Outstanding instructions 0.037 5.7%

buffer (OIB) (5 entries)

Store buffer (SB) (3 entries) 0.015 2.3%

Store queue (SQ) (3 entries) 0.021 3.4%

Bypass cache (6 entries) 0.02 3.1%

Extra stage latches (input and output) 0.0115 1.8%

Miscellaneous logic 0.055 0.9%

8x8 fault tolerant crossbar (with 0.025 3.9%

interconnection wires) five such crossbars

are shared between eight pipelines

Total area overhead of CG 19.6%

breakdown, with total power overhead @t 9%. The actual power numbers in the table
are overheads for one CG pipeline while it is part of a 2-i$<8Geconjoint processor. Note
that a part of this overhead will be there even in a traditi@raay superscalar (relative to
having 2 independent 1-way pipelines).

Table 5.7: Power overhead for CG. These overheads are reported with ORZDO power con-
sumption as the baseline.

Component Power overhead | Percent overhead

pipeline (mW) | Percent overhead
Crossbars 4.0 4.26%
Interconnection links 5.8 6.19%
Other design blocks 6.1 6.38%
Total power overhead 16.9%

5.5 Summary

In the multicore era, where on one hand abundant througtapatizslities are being in-
corporated on die, single-thread performance and poweresftly challenges still confront
the designers. Further, the increasing process variatidriteermal densities are stressing
the limits of CMOS scaling. To efficiently address all thes&ugons, designers can no
longer rely on an evolutionary design process. Furthemplimombining existing research
solutions for performance and reliability is neither easy cost-effective. In this chap-

ter, we presented CoreGenesis, a highly adaptive mulgssmr fabric that was designed

146

with performance and reliability targets from the ground Tpe interconnection flexibility
within CoreGenesis not only ensures impressive faultrémlee, but coupled with the addi-
tion of decentralized instruction flow management, it cao aherge pipeline resources to
accommodate dynamically changing application requirgme®ur experiments demon-
strate that merging of two pipelines within CoreGenesisaeliver on average 1.5X IPC
gain with respect to a standalone pipeline. In a CMP, witly dwallf of its cores occupied,
this merging can enhance throughput performance by 46%li¥;ithe lifetime reliability
experiments show that an 8-core CoreGenesis chip incréasesimulative work done by

68% over a traditional 8-core CMP.

147

CHAPTER VI

Bundled Execution of Recurring Traces for
Energy-Efficient General Purpose Processing

6.1 Introduction

The traditional microprocessor was designed with an obedf running general pur-
pose programs at a good performance, while treating theesftig as a second order crite-
ria. However, with the growing demand for higher perform@aaad efficiency in modern
day devices, there is an emerging need for architecturé $eletions to tackle computa-
tional energy efficiency. The trend in the silicon integpatis also reinforcing this need
for energy-efficient architectures. Over the years, tstosidensities and performance has
continued to increase as per Moore’s Law, however, the liotdsvoltage has not kept
up with this trend. As a result, the per-transistor switghpower has not witnessed the
benefits of scaling, causing a steady rise in power densitgrdll, this limits the number
of resources that can be kept active on a die simultaneoisl].[An instance of this
trend can be already seen in Intel's newest Nehalem geoem@itprocessors that boost the
performance of one core, at the cost of slowing down/shyitifhthe rest of them.

Long before designers of server farms and desktop machiasdcaring about energy-

efficiency, it has been actively pursued by embedded sysésigiaers. The concerns such

148

as a longer battery life and tolerable heat dissipation Ipasghed the embedded architec-
tures to take extreme steps for saving energy. In this dgraainmmon practice has been
to design specialized hardware units’[80, 93], acceleratorsd5, 127, and application
specific instruction extension&(7] to save energy for their stable application set (various
kernels for audio/video processing, compression, sigradgssing, etc). The computation
in these applications is regularly structured, highly daeallel, and concentrated in tight
inner-most loops, making it well suited to hardware spé&zaion.

Unfortunately, this hardware specialization approachsdu# directly extend to pro-
grams such as desktop applications, SPEC integer suitefil@i®s) etc., for two primary
reasons. First, these programs are highly irregular, aoatéot of control divergence and
exhibit little data parallelism. Henceforth, we refer t@sle asrregular codes The char-
acteristics of irregular codes make them unsuitable faliticmal accelerator designs. For
instance, the large, unstructured, uncounted loops irethpplications can not be mapped
to the loop accelerators$, 25 which can only support modulo-schedulable loops. Sec-
ond, the general purpose application space is much moresdiand constantly evolv-
ing. Designing a custom hardware for each of these programeither cost-effective
nor practical. Despite these challenges, a recent wiork] [makes a case for application
specific hardware in the context of irregular codes, clagmire large availability of dark
silicon. However, once the targeted applications gets fiemlbeyond a certain degree,
the approach reverts back to software emulation on the nraepsor pipeline losing the
efficiency benefits of the ASIC (application specific integdacircuit).

Another class of solutions to target irregular codes is thekwon programmable func-

tional units P4, 87]. However, their energy efficiency gains are small due tar fr@gram

149

scope (acyclic chain of operations), and architectural$gprocessor back-end). Studies
have shown that a large fraction of application energy isaared by the processor front-
end (fetch and decode}]]. Thus, given the state of the current art, no clear pathtexis
to design a reasonable energy-efficient architecture Hrasapport irregular codes while
also offering a flexibility to work across applications.

As a solution to energy-efficiency problem in this generappsge processing domain,
this chapter proposes Green BERET (Bundled Execution otiRleg Traces). The BERET
architecture is a configurable compute engine that achsgesficant energy savings for
the program regions mapped onto it, without sacrificing agygymance. The first insight
of this architecture is the use aécurring tracesas a program construct for tackling ir-
regular codes. A recurring traceq, 40, 70] is a sequence of program instructions that
repeatedly execute back-to-back with a high likelihoodpite the presence of intervening
control divergences. As their first advantage, these trgivesan appearance of structure
to the irregular codes. Further, as these traces are sigmifjcshorter than the original
unstructured loops, BERET buffers them internally to efiate redundant fetches and de-
codes for repeating instructions.

The second insight of this work is the uselfndled executioffior these traces. In-
stead of executing one instruction at a time, BERET uses dengnalysis to break down
traces into bundles of instructions. These bundles aregale subgraphs from the trace-
wide data flow graph. A major advantage of this bundled exewcus that it significantly
cuts down on the redundant register reads and writes foethpdrary variables. Further,
our analysis of application traces demonstrated that malngraph structures are common

across applications. Thus, given a diverse enough caleadti subgraph execution blocks,

150

our compilation scheme is able to break down an applicat@acetinto constituent sub-
graphs from this collection. Overall, we consider this Hdeddexecution model a trade-off
design that lets us achieve efficiency gains close to ancagijan specific data flow hard-
ware while maintain application universality of regulamvMdeumann execution model.

Leveraging these two insights, the BERET is designed as grapb-level compute
engine for recurring traces. For the program traces offld&a8ERET, the energy savings
primarily come from a) eliminating redundant fetches, aky and control management,
and b) significantly reducing register reads and writes éongorary variables. The key
contributions of this chapter can be summarized as follows:

1. A programmable compute engine for energy-efficient gammirpose processing

2. Insight to exploit recurring instruction sequencesc@gs) as a means to tackle irreg-

ular codes
3. Compiler flow to map arbitrary program traces on a hetaregas collection of sub-

graph execution blocks

6.2 A Case for Energy Efficient Trace Execution

In this section, we investigate the sources of inefficientya isimple in-order RISC
processor core, explore opportunities for energy saviagg,propose our insights on de-
signing a general purpose, energy-efficient compute endioea detailed comparison of

our work to prior schemes, please refer to Secidiand Tables. 1

6.2.1 Pipeline Energy Distribution

In a conventional Von Neumann architecture, the procegsemds a large amount of

effort in supplying instructions and data values to the alcaxecution unitsj1]. For a

151

Memory
15%

Execute
9%

Figure 6.1: The distribution of energy dissipation across pipeline stges in an in-order pro-
cessor.

better understanding of this behavior, we analyzed thestazagye energy distribution in a
simple in-order RISC processor (modeled after an ARM cdfgure 1 shows this result,
highlighting the large majority of energy dissipation #itable to the instruction supply
(Fetch and Decode). The major component behind this wasigiieiction cache, which is
not only a large structure, but needs to be accessed for swvaylg dynamic instruction in a
program. The second biggest energy draw was from the comhbéggster read (Issue) and
write back (Writeback) cost. This is representative of taeadsupply cost, along with the
datapath memory access (Memory). The last stage in thys saltprisingly enough, is the
data computation (Execute). Once the instructions andatataelivered to an execution
unit, only a small amount of energy is required to computadseilt.

This analysis clearly highlights that a regular in-ordgrghine has a severe imbalance
in terms of where the energy is being spent. For a small racf compute energy, almost
8X more energy is taken up to deliver the instruction and tatae execute stage. On a

positive note, this also indicates that methods targetisguction and data supply energy

152

gberet/figs/p_core_energy.eps

can achieve substantial savings.

6.2.2 Opportunities for Energy Saving

A significant source of this biased energy consumption iddbk of understanding a
general purpose processor has for the underlying prognarctste. The hardware is typ-
ically agnostic of the presence of loops, live data valuesa low between instructions,
chains of frequently occurring operations, and so on. Téssilts in wasted effort for re-
dundant instruction fetches and decodes (for repeatingesegs such as loops), redundant
register file reads and writes (for temporary / intermediatiees), redundant forwarding
and dependency checks for unrelated instructions, etch Bathese redundant actions
present an opportunity for energy savings.

A popular approach for reducing this wasted effort has beemttoduce hardware
specialization, in the form of ASICS'|, 80, 93], loop accelerators3p, 127, custom func-
tional units, etc. The attempt here is to encode the progtarotare in the hardware, such
that it can avoid wasted effort during execution. For ins&aroop accelerators buffer the
instructions in a loop, thereby avoiding the redundantrutdion cache accesses]. The
hardware specialization solutions work particularly wel applications that have regular
structure, data parallel computations, and limited cdrdicergence. Prime examples of
this are media kernels, encoders, compression enginegeipracessing, etc. Henceforth,

we refer to such applications eegular codes

6.2.3 Limitations for Irregular Codes

In addition to regular codes, energy-efficiency is equathportant for applications

in desktop computing, SPEC integer suite, OS utilitiegaliles, etc. Unfortunately, the

153

concept of hardware specialization, does not scale to gbcation class because:

1. Large and irregular loops: The programs are highly irregular and contain a lot of
control divergence. More specifically, the loops are ugualige, uncounted (while
loops), and contain deeply nested if-then-else statemdimsse characteristics are
unfavorable for a specialized hardware design because: ABEC designed for this
will be very large (due to code divergence / loop size), anafzavery low utilization
(only single execution path would be taken); b) on the otlaerdh loop accelerators
would fail to work as they can only handle modulo-scheddadbbps.

2. Too many applications that are also regularly modified:Even if one could some-
how design ASICs for theseregular codes a large number of such ASICs will be
required to keep up with the application diversity and codsifications. This is
unlike embedded systems that have a limited number ofvelgtstable, well struc-

tured kernels.

6.2.4 Energy Efficiency for Irregular Codes

Due to the aforementioned reasons, achieving general pey@mergy-efficiency for
irregular codes has long remained a tough challenge. Inwbik, we build upon two

insights for solving this problem:

1. Structuring the Irregular Code using Traces: Often times, the dynamic behavior
of irregular codes exhibits a regular structure. In theditere, this regular structure
has been referred to &mces[40)], frameg[79| and superblockg 7] (in compilers).
Traces are defined as sequences of instructions that hag dikelihood of exe-
cuting back to back, despite the presence of intervening@logivergences. These
can be identified both statically and dynamically, coverimgghly 70% of dynamic
instructions [9.

In the scope of this work, we focus on a subset of traces teatl@abp around with a

154

:] Hot basic blocks

BB 1

i &
BB 3 exit?) BB 2
BB 4 exit?

BB 5

BB 20|

Side branches trigger
an exit to the original
control-flow graph

Hot Trace
Control Flow Graph (CFG)

Figure 6.2: Extracting a looped trace from an irregular control flow grap h. We refer to these

ashot traces, and use them as a construct that runs on our energy-efficieritardware design.
high probability, and refer to them &t traces Figure6.2 shows an example of an
irregular CFG, with the extracted hot trace. These hot sact¢only render a regular
structure to the CFG, but in addition, their looping natwéavorable to instruction
supply energy savings.

2. Generalizing Across Applications: Working with hot traces eliminates the differ-
ences due to control flow between application codes, leadwiignd only data flow
variations. Further, we observed that hot traces can be esggioh into small data
flow subgraphs, many of which are common across applicatiGosisequently, as
we demonstrate later, given a diverse enough collectionlediph execution units,
a compilation scheme can be formulated to break down a treceonstituent sub-
graphs from this collection. The use of subgraph-based otatipn is also favorable

for data supply energy savings.
The next section uses these two insights to design a geneabge, energy-efficient

trace execution engine.

155

gberet/figs/trace_example.eps

cPU cPU cpPu cPU

1$ |D$ 1$ lns \$|Ds \sIDs

cPU cPU

1$ |D$ 1$ 'Ds I$|D$ IID

cPU cPU

Execute

1$ IDs 1$ 'DS Iles Iles

cPU

cPU

L1 Instruction [2) BERET i L1 Data
Cache of Recurring Traces) 9 Cache

1$ IDs 1$ IDS 1$ le 1$ I DS

Figure 6.3: Deployment of BERET at multicore level and its integration within a single pro-
cessor core.

6.3 The BERET Architecture

6.3.1 Overview

The proposed design, named BERET, is a configurable co-gsoceptimized for
energy-efficient execution of hot traces from a program fladlese hot traces are short,
logically atomig single-entry, single-exit program regions with a highlability to loop
back. Further, the BERET hardware executes these tracemdids of instructions rather
than individual instructions. One can think of these insian bundles as data flow sub-
graphs from the trace. As a result of these high level desigices, several avenues of
energy savings follow. First, the short program traces emesd inside BERET hardware,
this eliminates redundant instruction fetches as tracgs &mound. Second, the instruction
bundles from traces are encoded as BERET microcode, eliminthe need for decode.
Third, use of instruction bundles helps in reducing unnemgsstorage and retrieval of
temporary values. And finally, the simplified design due t@Bistorage structures, fewer
pipeline latches, no control flow, also contributes towamaergy savings.

Conceptually, every core in a system can be augmented withstance of BERET

execution engine. Figuig3shows this setup, and integration of BERET within a pipeline

156

gberet/figs/caf_arch.eps

(c) Data flow
subgraphs

(b) Hot Trace (d) BERET with Subgraph

Execution Blocks (SEBs)

(a) Program

- Configuration
~

KBS
SEB 0
- SEB 1
—————————— -
SEB 2

aaaa >~

/ =

Hot Traces
(with high loop
back probability)

N

N

.
.
|
.
.
|
.
.
|
.

Go-2N

Bug

B @ O

SEB 3

Figure 6.4: The process of mapping hot traces in a program to the BERET halware: (a)

shows a program segment with two hot traces, (b) a closer loo#tt a trace with instructions

and two side exits, (c) illustrates the break-up of trace cod into data flow subgraphs, and (d)
mapping of subgraphs to subgraph execution blocks (SEBs) side the BERET hardware.

while sharing the same cache hierarchy. During a prograr@sigion, whenever a (stat-
ically marked) hot trace is encountered, the fetch stagesteas control to the BERET
hardware (Step 1 in Figure.3). BERET loads the configuration corresponding to this
trace from the instruction cache (Step 2), and reads redjigeins for this region of code
(Step 3). At this point, the execution control has succdigditansferred to BERET and it
acts as an independent entity (Step 4). Internally, BEREEC&bes the trace at the granu-
larity of data-flow subgraphs, and repeats the sequencleaunéice exit is flagged. More
discussion about the BERET microarchitecture, challefmesace exits, and correspond-
ing solutions, follow in Sectio®.3.2 Once a trace exit is identified, the live-outs from this
execution are written back to the pipeline register file §& And finally, a trigger is sent
to the pipeline fetch stage, to start the regular prograroui@n (Step 6).

Utilizing the BERET hardware involves identifying hot tescin a program’s execution,
and appropriately mapping them to the underlying BERET etten engine. Figuré.4

shows a high level view of this process. The first step is totifiehot traces (Figuré.4(a))

157

gberet/figs/caf_system.eps

from the program execution that are good candidates foguBHRET. The selected traces
are frequently occurring sequence of program instructibasloop around, and rarely take
a side exit. For every such hot trace, the instruction sezpisnbroken down into data flow
subgraphs (Figuré.4(b,c)). The subgraphs, if desired, can span across consiolictions
within a trace. In fact, the larger window of instructionsibie in a trace supports this
notion, and helps in identifying longer chains of conneaipdrations. Finally, these sub-
graphs are mapped onto a heterogeneous set of subgraphiexddacks (SEBs) within
the BERET hardware (Figui@4(d)).

In the above discussion, the latter few steps of dividing faee into subgraphs and
mapping them to SEBs are interdependent, and thus, needhemioéed concurrently. Sec-
tion 6.3.3details our compiler analysis and mapping algorithms foear+toptimal break-
down of traces into subgraphs supported by the BERET hasdv@prder to decide this set
of SEBs, we performed detailed analysis on traces from SREQer benchmarks, Linux
utilities, encryption and media kernels. Sectt8.4discusses this procedure and also uses
trace analysis to guide sizing of various microarchitegtsub-components within BERET
(internal register file, configuration RAM, etc.).

The above described execution model of the BERET microsctire is quite effec-
tive at saving energy. These savings can be broadly atdbiat reducing: 1) instruction
fetch, decode cost and 2) register access cost. First, oB&EB is initialized with a
trace to execute, there is no further instruction cachesscc&his eliminates redundant
instruction cache access, fetch stage logic, and decodeftogthe repeated sequence of
instructions within a trace. Second, the register file asegare cheaper as well as less fre-

qguent in the BERET design. The small size of the BERET infenegister file makes the

158

Processor Fetch stage Processor RF

Trigger from / to the ' [crom /o (a) BERET Microarchitecture

Data

3 I Cache
Instruction Control Internal
Cache Logic Register File bypass e 3
s Register File index bits I % 3
<
2 |
C =~
£2 { ¥ |2
55 Input Latch
27 = SEB 1 SEB2|--=-=----- SEB N
g config. — @
° T)) (D)
Writeback Bus] E“‘a ﬂ)
g
3
(b) BERET Logical Stages @
Configure Execute :
SEB SEB Writeback) Output Latch
12 cycles 15 cycles 1-2 cycles (c) subgraph Execution

Block (SEB)

Figure 6.5: The BERET Microarchitecture: (a) the block diagram of the BERET hardware,
(b) logical stages in the microarchitecture, and (c) a closdook at a subgraph execution block
(SEB).

accesses cheaper, while the subgraph execution model ingsimegister reads and writes

for intermediate values in a program data flow.

6.3.2 Hardware Design

Unlike a regular pipeline, the BERET hardware deals withdkecution of a small
snippet of code~20 instructions), containing a small number of a live regist~6),
and no internal control divergence. Further, the execusaonducted at the granularity
of data-flow subgraphs, instead of individual instructiornEhese differences guide the

following discussion about the design and working of BERET.

6.3.2.1 Basic Microarchitecture

Once atrace is configured on BERET, it acts as an indepenxiecion engine. Given
the small size of a trace, and no internal control divergetieeBERET microarchitecture

has a simplified front-end. However, it allocates signifttamore resources to the exe-

159

gberet/figs/caf_uarch.eps

cution back-end for running a wide variety of data-flow s#mirs. Figurés.5a) shows a
block diagram of the BERET microarchitecture. Here, thefigomation RAM (CRAM)
stores the microcode for subgraphs in a trace, registesfita ithe internal data state, sub-
graph execution blocks (SEBs) are the equivalent of funefianits, and control logic is to
orchestrate the operation. In reality, the control logidigributed across the entire fabric,
with connections to virtually every component. The blockgtam hides these connections
for the sake of clarity.

Logically, BERET execution can be divided into three stagBsConfigure SEB, 2)
Execute SEB, and 3) Writeback results (Figar&b)). For every subgraph in the trace, the
first step is sending (microcode) configuration bits to theopeal SEB. During this con-
figuration stage, the register file inputs are also read mdriput latch of an SEB. In the
second stage (execute SEB), the SEB that has its inputgtjtcanfiguration defined, and
is in possession of the execution token, fires its functiamats. The execution can take
multiple cycles depending upon the subgraph depth (loraiesih of instruction dependen-
cies). Once the execution completes, the SEB sends the ogstiie writeback bus, and
broadcasts an execution token. This token is now taken upiie ®ther ready-to-execute
SEB, and the pipelined execution continues. A more detatade-by-stage description

follows below:

1. Configure SEB: The task of this stage is to sequence through the subgrapltsane,
and configure SEBs to execute them. The configuration forrtisedrace is stored on the
CRAM. For each subgraph, this contains the SEB mapping,efister live-ins and live-

outs, literal inputs, and mode bits for functional unitshintthe SEB. In the first cycle,

160

configuration bits are sent to the corresponding SEB, andtegdile access is made for
two live-in values. In the second (optional) cycle, two moggister live-ins can be read,

or, when needed, the values are bypassed from the last edexutigraph.

2. Execute SEB: The second stage is responsible for the actual data congutat the
SEBs. A SEB starts its execution when all the inputs are é&tcleonfiguration bits are
available, and it possesses the execution token. The éxetoken is used as a serializing
method to enforce in-order execution of subgraphs, andep&ehuttling between SEBs.
The execution can take multiple cycles, depending uponubgraph depth, and concludes
with values recorded in the output latch. In the event of eactiss, just like a regular
pipeline, the SEB also stalls while waiting for the value.

Each SEB or subgraph execution block (Figar&c)) is an interconnected set of func-
tional units (ALU, shifter, multipliers, etc), that repesg a data-flow pattern. The number
of functional units per SEB vary from two to six in our desigmase exploration (Sec-
tion 6.3.4. The SEB structure has an input latch for live-ins, an oulgich for live-outs,
and a latch to store configuration bits. For every subgrapbped, these bits decide the
active functional units, their modes (add, subtract, eto}l flow of values between them.
The selection of a good set of SEBs is central to the efficigyaigs from mapping traces

to BERET, and the pertaining discussion is presented in@e613.4

3. Writeback: This third and final stage is responsible for writing back bgults from
the last concluded subgraph execution to the BERET reditgerAll SEBs share a com-

mon writeback bus for this purpose, and any SEB that has iitsiready, can request it.

161

Due to the enforcement of in-order subgraph executionetban never be a contention for

this bus.

6.3.2.2 Handling Trace EXxits

The microarchitectural description in the previous sectigsumes a straightforward
execution scenario with indefinitely looping traces. Hoerin reality, the trace conditions
would eventually dictate an exit, and a consistent prograte $1as to be transferred back
to the main processor. This is even more challenging whemle exit is taken in the
middle of trace execution, because 1) the subgraphs arestbatross control divergence
boundaries, and assume that all instructions in the trandaw execute in every iteration;
2) temporary register variables are excluded when mappiraga to BERET, hence some
of the live-ins required on the exit edge might not even bdaivie.

There are two parts to resolving this challenge. First, BEREeds a mechanism to
detect when a side exit is taken by a trace. Second, BERETgisresl to maintain a
committed state (at iteration boundaries) as well as pedatiten speculative state. In the
case of a side exit, the committed state (from last tracatiter) is copied back to main

processor, which resumes execution from the trace head.

Detecting Side Exits: We first convert all the branches in the trace with assertaijmars
(similar to [79])). The functional units within SEBs recognize this opeyatiand raise an
exit flag whenever an assert computes to a true condition.nélles any of the SEBs flag

an exit, the control logic initiates the copying out of therouitted state.

162

Maintain Speculative and Committed State: For recovering from early trace exits,
BERET needs to maintain a committed state from the last ceteglrace iteration. There
are two parts of this state maintenance: register file staden@emory state. For register
files, BERET uses a design similar to the concept of shadoistezdiles. Essentially, ev-
ery logical register maintains two physical versions inribgister file. The even iterations
of the trace write back to version O of registers, and oddiiens write back to version
1. As the code is linear within a trace, every iteration withguce exactly the same set of
live-outs. Thus, at any point in time, the committed registate from the last iteration is
available for recovery.

To maintain the memory state from the end of previous iteretBERET buffers the
stores from the current iteration. The store buffer relsdlsem when the current iteration
successfully completes. The size of this store buffer iatredly small, as the number of

stores in most traces stayed around four (Se@iGr).

6.3.2.3 Processor Interfacing

The main processor requires two modifications to interfade WERET. First, the
fetch stage maintains a table of trace header addresses ioatied program. Whenever
the program counter hits any of these locations, the fetodsanentry trigger and the
corresponding trace configuration address to BERET. ThelBHERardware loads the con-
figuration using the instruction cache, runs through theetrand returns with agxittrigger
to the fetch stage. The second modification allows the maingssor’s register file to be
directly addressed by the BERET. This is required by the BEREead the trace live-ins

(at entry) and write back the trace live-outs (at exit). Nibt&t no extra read / write ports

163

Input: A procedure
from the targeted

benchmark ENUMERATE MAP SELECT GROUP

annotated with

3 FIND TRACES E ¢ Map subgraph Select subgraphs | S| & I °°”ﬁg”'a;°”
. numerate ap subgraphs elect subgraphs roup sma
&%‘:?gze > data flow > to SEBs, prune > that cover subgraphs to

subgraphs remaining the entire trace fit on one SEB

Figure 6.6: The steps of identifying hot traces in a procedure and mappig them to the
BERET hardware for energy-efficient execution.

are necessary in the register file, as it is accessed in ansgxelmanner (either by main

processor or by BERET).

6.3.3 Mapping Traces to BERET

We use a comprehensive compiler flow to identify and map laees from a program
onto the BERET hardware. While mapping, the objective isegnsent an identified hot
trace into a minimum number of subgraphs, each of which cacw® on a SEB in the
BERET hardware. Figuré.6 shows the discrete steps involved in this flow, each of which

is elaborated below:

Find Traces: Given a procedure, the objective of this step is to identidigés that have
a very high probability to loop back, and rarely take sidasexor this step, we leverage
the previously proposed Superblock identification heiar[$tJ]. Superblock formationis a
static compiler analysis that groups together progranchadscks with a high likelihood of
executing one after another. This gives the compiler opdtst to perform optimizations
on a larger window of instructions. From the set of Supetkdazomposed in a procedure,
for BERET mapping, we select the ones that have a loopedstautbranch from the last

basic block to the first basic block), with an 80% probabildyoop back.

164

Output: Procedure

gberet/figs/caf_mapping.eps

Enumerate: In this step, all data-flow subgraphs are enumerated frongitren trace.
The subgraphs can range in size from one operation, all tyetava pattern of 4-6 inter-
connected operations. Since we are enumerating all sutgjrap operation can appear in

more than one subgraph.

Map: This steps checks the feasibility of which data-flow subgsagan actually run on
the BERET hardware, and prunes away the rest. The mappirsg fileaates over the enu-
merated subgraphs, and attempts to map each of them to a SHRIBT. If the subgraphs
can map to multiple SEBs, the mapping to the smallest SER @ ded. On the other hand,

if the subgraph does not map to any SEB, it is discarded.

Select: The input to this step is a set of SEB executable data-flow rehg from a

hot trace. The selection phase is responsible for choosi@gmallest subset of these
subgraphs, while covering all instructions in the traceisThequivalent to the set covering
problem, which is NP-hard. We model it as a unate coveringlpro, and solve it using a

branch and bound heuristic.

Group: Many of the subgraphs under utilize the SEB where they argoe@pr his phase
coalesces disconnected subgraphs, wherever it is passildl@laces them on a single SEB.
After these steps for mapping, the compiler generates agroation RAM code for
this trace, and embeds it into the program binary. For ISA gatibility reasons, this
configuration can be added as a part of the global data seghetatthat the compiler does
not replace the original set of basic blocks in the prograsriha execution reverts back to

them in cases of early trace exit. Further, this keeps the cothpatible on machines that

165

do not have the BERET hardware.

6.3.4 Design Space Exploration: SEBs and other parameters

The previous sections assume a fixed hardware design for BER&uding the set of
SEBs and sizes for different structures within the micrbaecture. This section explains
our methodology to arrive at these design specifics. All @rpents here were conducted
on traces from SPEC integer benchmarks, Linux utilitiegrgption kernels, and media

kernels.

6.3.4.1 Determining SEB Collection

The objective of this study was to define the smallest cabeadf SEBs that exhibit a
good mapping behavior for the traces in our benchmarks. &/laegood mapping implies
that traces get divided into a small number of large subgrdply, subgraphs contain-
ing four to five instructions on average). Large subgrapbsbatter as they imply fewer
CRAM accesses, more internal data forwarding, less numiregester file accesses, and
overall better energy savings. However, SEBs that can bdadje subgraphs are also
more inflexible, forcing the need to have a bigger collectbthe same.

We resolve this situation by performing a subgraph exptoyadtudy. First, we defined
a set ofhypothetical SEBsanging in sizes from two execution units, all the way to six
execution units. The execution units for this study wereuaes] to be universal, which
can support any instruction type. Several interconnegiaiterns between these execution
units were also incorporated, including linear chainigialar formation and diamond for-
mation. Next, the entire set of program traces were compdethis collection of SEBs,

gathering statistics on the frequency and instructiorepatbf different subgraphs mapped

166

-#-Hypothetical SEBs —#=Specialized SEBs

£
® @"@ g 50
40
@ 36% g 12% % 20
Q ;) 20
c 10
@ @'@ Legend c 0
® Q A ALU 8
6% 8% X : MPY Q 1 2 3 4 5 6
® S s subgraph size(in number of operatiors)

Figure 6.8: The percentage distribution of sub-
graph sizes across all traces when using the hypo-
thetical SEBs and our final selection of specialized
SEBs. The average size of subgraphs for hypothet-
ical SEBs at 3.26 was only marginally better than
the same for our specialized SEBs at 2.56.

Figure 6.7: The top six specialized
SEBs from the final set of eight used
in the BERET design. The percent-
ages indicate the frequency of their
occurrence in program traces.

to each SEB. From this list, we selected top egpecialized SERsased on their frequency
of occurrence across all traces, while maintaining a ditsens their sizes. The execution
units specialization was limited to four types: ALU, Shift®lultiplier or Memory Access
Unit. Figure6.7 shows top six specialized SEBs from our set of eight.

Figure 6.8 shows the distribution of subgraph sizes (across all tyaghen using hy-
pothetical SEBs and finally chosen specialized SEBs. Theageesubgraph size is 2.56
for our specialized SEBs, which is reasonably close to tls¢ p@ssible 3.26 in the case of

hypothetical SEBs.

6.3.4.2 Microarchitectural Parameters

Some of the important design parameters in the BERET hasdasa the sizes of the
CRAM, register file and store buffer. To determine a reastenaddue for these parameters,
we collected various statistics from the traces acrossestbmarks. For CRAM size, we
analyzed the distribution of number of subgraphs per trAsemuch as 90% of the traces

had number of subgraphs less 12. Consequently, we fixed tAdVCize at16 x 64 bits

167

gberet/figs/special_seb.eps
gberet/figs/p_subgraph_sizes.eps

(our subgraph encoding fits in roughly 64 bits). For regisiersize, we analyzed the
distribution of maximum live values per trace. This led toegister file with 8 entries.
Finally, for the store buffer sizing, we looked at the disttion of store operations per

trace, leading us to a store buffer with 6 entries.

6.4 Evaluation

6.4.1 Methodology

In order to evaluate the potential of the BERET design, weslibgped a comprehensive
methodology involving compiler analysis for the identifioa and mapping of traces, an
architectural simulator for performance, CAD tools for #esis, place and route, power,
area and finally, an energy simulator for computing totafg@yeonsumption while running
a trace on BERET. Details about each of these componentsg alidh benchmarks and

baseline description follows below.

Benchmarks: A unique attribute of the BERET architecture is its relevateboth regu-
lar as well as irregular code based applications. The beadhset was chosen to represent
both these classes. We selected nine benchmarks from thé BRger suite (164.g9zip,
175.vpr, 181.mcf, 197.parser, 254.gap, 256.bzip2, 4qd2bA29.mcf, 445.gobmk), three
linux utilities (grep, cmp, lex), two encryption kernels4; pcl) and five benchmarks from

the MediaBench suite (cjpeg, gdmdecode, gsmencode, popeeegpencode).

Baseline Processor: The ARM1176 f] was chosen to be the baseline processor for
comparison, a widely used processor in smart phones andhp@relectronics. Being a
single-issue in-order pipeline, we consider the ARM1176d@an aggressive baseline for

showing energy efficiency improvements. According to theVARebsite (], an 800MHz

168

ARM1176 synthesized at 65nm technology node consumes pd@oOmWw, which in-

cludes 16 KB level 1 instruction and data caches.

Compiler Infrastructure: The Trimaran compilation system [1] was used to imple-
ment the compiler flow that identifies hot traces and maps tleetne BERET hardware.
The trace identification component was implemented in OA@AICT (the front-end and
profiling engine of Trimaran), whereas, the hardware mappilgorithms were imple-

mented under ELCOR (back-end of Trimaran).

Performance Simulation: Cycle accurate simulators were used to model the perfor-
mance of the baseline processor, as well as the executiandfntraces mapped onto
BERET. For the baseline single-issue in-order processerysed SIMU, a performance
simulator which is a part of the Trimaran package. A sepdrate-based performance
simulator was developed to measure the runtime of traces@BERET hardware. This
also accounted for the cost of execution control transfet&éen the main processor and

BERET.

Power and Area Estimation: We implemented the BERET hardware in Verilog, and
used a full CAD flow to synthesize (Synopsys Design Compifggce and route (Cadence
Encounter) and estimate power (Primetime PX). This wasoped at the IBM 65nm
technology node, while targeting a clock period of 1.25rnssRnalysis gave us the power
and area for all structures in the BERET hardware. Cachesaquewer was estimated

separately using CACTI7[] on a 16 KB, 4-way set associative cache.

Energy Simulator: The energy simulator was modeled after the BERET perforeanc

simulator. During the execution of a trace, it accumulabtesenergy consumed based on

169

B Traceswith 70% loop bad O Traceswith 80% loopbadk
98% 99% 90%

Utilities and Encryption
Mediabench

% Total exeaution time
B
o
SPECint

5 S QS i N @ A0 AZ A%)
Q@q")bﬁf\o(& @\Q s w‘& q}@Q cﬁ& e C'J\Q@% o°b F S S o

o

’ S S NN
S B 0 QT N Y ¥ L
\é\ '\"\?D&Q b(bb

§&EE
Figure 6.9: Fraction of execution time spent in hot traces.
the number of activations for structures within BERET. Feerg activation, the average

power for the structure is extracted from the CAD synthesis.

6.4.2 Results
6.4.2.1 Execution Time Coverage of Traces

The fraction of a program’s execution time spent in the raatds determines the overall
benefits from utilizing the BERET hardware. In our experitsewe used a static compiler
analysis implemented in the Trimaran Compiler to identift lraces. The results are
shown in Figure6.9. The first set of bars is for traces that loop back in 7 out oft@e
cases, whereas the second set is for traces that loop baakuindd the 10 cases. Almost
all the benchmarks were found to spend at least 15% of thegudbon time in hot traces,
with many spending as much as 70%. These results are es$peaniaburaging as the
benchmarks from SPEC2006 integer suite, which were cobipatiith our compilation
flow, exhibit a large trace coverage. Also note that while we a static compilation flow
in our evaluation, it is our belief that a better hot trace erage can be garnered by a

dynamic compilation framework. That would translate intere higher energy savings.

170

gberet/figs/p_trace_coverage.eps

BCRAMAcces BERgjisterFileRead BFunctionalUnits OMemory Acces ORegsterFile Writeback

]
8 0.4
< ’ I) 8 I oe]
== g &8 8 & . N Q s N ©
sw %18 5 5 8 5 g 49 § S Q s & § 8 8 3 9 N
< x 03] S RN S g o 5 o
o O o 3 c N g © o =

Y 025 o g o s
o m g € frr o 8
2o 02 ! E 2
w5 e b 2

T 0.15 @ 9 s
=] 2
o5 o1 £
S g 005 >
£ 0
o
b & o

R & & SIIPAA N R R & > D G A A A8 a8
(obv(\} (\‘).AQ%\SQO Q&% 6b‘$b~9‘\}<2\~.0‘\»\<2 q;q*oo QOO“Q<§~ Q‘éc SN L Qo & 005 Ob' & ch R e}fb%
N AN \o”\- ¥ "\(? be N b‘&.).

(a) Hot trace energy consumption while they ran on the BERETWare (normalized to main processor).

° B BERET Eneigy OBasline Pracesor Energy
<
=1

1.2 & o
=

? © I~

2 x g ° 8 & 2 8 g 3 e
> Y o O S = o
og © ° s S & 8
5 H HES
uw c ° 2
= & 5
Q n 7]
N 2 s
—_ = 2
=3 £
=]
IS
=
S
zZ

: s S 5 >N

i ‘)'AQ ¥ @é _o(?Q JL\QW 4}& & Noi& %‘R 06& &8 § .ngo Qoba cp& c)o&) Qo& @%@
Rl \%\ «\9% qj)b‘ & &P b’f’ $ F & &S «©
s SR Y §&ES

(b) Full benchmark energy savings while using the BERET hardwaconjunction with the main processor.

Figure 6.10: Energy consumption relative to the baseline.
6.4.2.2 Energy Savings

Figure6.10ashows the normalized energy dissipation for the progranonsgunning
on BERET. The numbers shown also take into account the ef@rgyansferring data and
control in/out of the BERET hardware. On average, the pregaiesign reduces energy
by a factor of 4X over a single-issue in-order core. For eiee, a carefully designed
ASIC can give anywhere between 10-50X energy reductiondgular codes. However,
unlike BERET, they are not programmable across applicatibarther, for irregular codes,
ASICs cannot be expected to reach the same level of efficidneyo their diverse control
and memory access patterns. The absolute energy dissipgtibe BERET hardware was

roughly 50pJ per instruction.

171

gberet/figs/p_caf_energy.eps
gberet/figs/p_full_energy.eps

The breakdown in the bars depicts the energy spent by vastausures within BERET.
On average, the distribution of energy between structugesfaund to be relatively uni-
form with the exception of memory access, which also dores#te total energy dissipa-
tion. Energy savings in BERET are focused around the instmusupply (fetch, decode)
and register data supply (fewer registers, reduced tempueaiable accesses), with pe-
ripheral benefits from eliminating pipeline latches. Gitkat memory data supply is not
really targeted by the BERET design, it is not surprising thdissipates the maximum
energy.

Figure6.10bshows the energy numbers for the complete application Amexpected,
the overall benefits are correlated to the fraction of a @ogcovered by the hot tracé<.
The program portions that get mapped to the BERET hardwaael(bgarner significant
energy savings, while the rest of them (white) dissipatestaedard energy on the main
processor. The full benchmark energy savings ranged froror2%’5.vpr to 77% on cmp,

with an average of 37%.

6.4.2.3 Performance Comparison

The primary objective of the BERET design was to target ensayings in irregular
codes, without sacrificing any performance. Fortunatbbyuse of a bulk execution model,
using subgraphs instead of isolated instructions, givesrtopnance edge to BERET in
addition to its energy benefits. Figuel Lashows the normalized execution time for code
regions mapped to the BERET hardware. Some of the benchnaadstexhibit as high as
29% performance improvement, with an average of 17%. Th@aorement stems from

the instruction level parallelism (ILP) achieved within &&EB as it executes data flow

172

1.4
12 4

1.09

8
o

0.87
0.84
0.86
0.86
0.85
0.88

0.89

0.91

0.83

0.74

0.8
0.6
0.4 -
0.2

0.71
0.71

SPECint
Utilities and Encryption
Mediabench

Normalized Executian time for
traces mappedto BERET

KR & & .»55
G oA
SNSRI D S
N SV 02 '\fjb Qb‘bb%

5 RN vy

bﬁo \me\}Q 4 “0(§~ & & &g 0\0&06 obb@oob&\
&

FEFE v

(a) Hot trace execution time while they ran on the BERET hardy@aoemalized to the main processor).

_ B BERET Executon O Baseline Processor Execttion
S
© 1.4 =
Ev 12/ g 8 S &5 3 b S P 8 > 5 R 3 8 « b=
TR S8 2330 B S Sy e
8 2 0.8 _ué _§
535 04 g
85 o2 5
TS 1
S ’ & &
S NI @ &%e* %q,Q & & & & oéeﬁ K& & Qo\ go F F ¥ F &
»¥ «\‘>' & P VoY P N F & & &
NCRNRN f\Q i SN FEFS W
v w g ¢ ¥ P

(b) Full benchmark execution time while using the BERET hardwarconjunction with the main processor.
Figure 6.11: Execution time relative to the baseline.
subgraphs. For instance, a subgraph containingahainstructions feeding their outputs
to axor instruction would finish in two cycles, resulting in an IPC106. Prior schemes
on custom instruction executioi], 27, 24, 107] depend on this exact behavior for their
sizable performance improvements.
Figure 6.11b shows the execution time improvement for the entire benckrage-

cution. As in the case of energy savings, the performanceavements get diluted in
accordance with the fraction of hot trace coverage. Ovettadl execution time for the

benchmarks evaluated is reduced by 9%.

173

gberet/figs/p_caf_performance.eps
gberet/figs/p_full_performance.eps

o
~

Q
g 03 &
S 03 g S
°ff 025 - g §
o : z sl ©
S © 02 Z 5
58 015 3 2
ﬁ S o1 g g
£ & oos 3
CHENCE
. S 5 < V) K I & J & &)
‘obxf’g)&,\‘j'AQ%\-‘& Q‘bé) c)b‘?éiﬁ‘)& “04’& ,\9&0 %50&‘7 %@Q é& ¥ c'a\Q@QoSzPob &‘& bzf"ob &‘eb 40&%
< A RS . ¢ g
MR B F&ESs T
(a) Hot trace EDP while they ran on the BERET hardware (normdlize¢he main processor).
= 1.2 8 . .
=] 1 ° Q@)
é %) g S § s ©
0.8 - -1
WE 06 5 H
Q - 2
g < g 5
S & 047 3 2
E o2 g
b4 o0-
Q& 5 R . .o & R R & >N D X R R W 4
bﬁg} (\5.& < ¢ be‘%@ ‘?"Qéb @’VQ ~o("& q.&o 60& Qf' A I é)\Q?‘ QPob &06 6006 Qch < é@%
NI AR I RN @& & Q@b & v

(b) Full benchmark EDP while using the BERET hardware in cortjienmovith the main processor.

Figure 6.12: EDP relative to the baseline.

6.4.2.4 Energy-Delay Product Improvement

The last comparative result we investigated is the EnergiagpProduct (EDP). Though

architectural solutions often have the ability to tradef@@anance for energy, improving

both simultaneously is a difficult problem. EDP is a neutratma for evaluating whether

an architectural solution is an overall win while considgrboth performance and energy
impact. Figures.12ashows the EDP improvement for the regions mapped to the BERET

hardware, and Figur@ 12bis for the full benchmark execution. Amongst the SPEC intege

benchmarks, 401.bzip2 and 445.gobmk stand out in terms & Biprovements. Both

these benchmarks spend a majority of their time in the BER&@iaare, gathering energy

as well as performance benefits. Across all benchmarks,viiage EDP improvement

was observed to be 43%.

174

gberet/figs/p_caf_edp.eps
gberet/figs/p_full_edp.eps

Table 6.1: Comparison to Prior Work.

BERET ASIC [77,93] | Loop Accelerators| C-Cores [14] ELM [31] Programmable

ASIP [44] [36, 35, 12]] FUs [24, 87]
Energy Savings High V.High V.High High V.High Low
Multiple Applications Yes No No No Yes Yes
Irregular Codes Yes No No Yes No Yes
Area Medium Large Medium Large Large Small
Processor Integration || Co-processor| Stand-alone Co-processor Stand-alone | Stand-alone| In-pipeline
Program Scope Traces Full Loops Functions Full Op-chains
Performance Medium V.High High Medium Medium High

6.4.2.5 Area Overhead

The final design of the BERET architecture consisted of a 328 BRAM, 8-entry
register file, 6-entry store buffer, a heterogeneous setQEBs, and miscellaneous logic
and interconnects. The total area for this in the 65nm tdogyonode (after place and
route) was0.396mm?. In the same technology node, the area of an ARM1176 core is

1.94mm?.

6.5 Related Work

The architectural designs for performance and energy hese &n active area research
for along time. In this landscape (see Tabl®), BERET stands out by being a general pur-
pose compute engine that provides high energy-efficiencgefpular (e.g., media kernels)
as well as irregular codes (e.g., desktop applications &#CSint). Further, the BERET
design is a low cost engine that can be attached as a co-povdesthe main pipeline,
without any elaborate hardware or programming paradigmgés

Specialized hardware designs/[80, 93] and instruction set extension$/, 107] have
long been a source of performance and energy efficiency fmpaotations such as me-
dia kernels $4], encryption, signal processing{]. ASIC designs are a good example of

this, and get on the order of 40-50X energy efficiency impnogsts over simple RISC

175

processors. Loop accelerator (LA)q] designs are a limited form of ASICs that target
modulo-schedulable, regular loop bodies with highly pceahle memory access patterns.
More recently, some flexibility has also been incorporatethese LAs §5, 122, 25] to
generalize them for more than one application. BERET diffesm such LAs and tradi-
tional ASICs in two ways: 1) it targeisregular codes that are heavily control divergent,
hard-to-parallelize, and not well-suited to modulo schiedy) 2) it is general purpose and
not application specific.

Irregular codes have also been targeted by a recent wall titbnservation Cores (C-
Cores) [L14. C-cores borrows insights from prior spatial computatofutions 1] and
synthesizes application-specific hardware for energgieffcy improvements. However,
this scheme requires an independent co-processor for apgtication, imposing heavy
area and design time costs. In contrast, BERET engine is@gmerpose and not tied to
any application or domain.

Another approach for irregular codes has been the use ofrapibgccelerators like
CCA [24], PRISC B7] to improve their performance. These solutions proposenada
customizable functional unit within the processor, thaticaprove performance for a range
of data flow subgraphs encountered during a benchmark rufortunately, the efficiency
gains from these schemes are limited as they target onlyatie &d energy savings (data
supply). The instruction supply still does all the redurtda@tches and decodes. On the
other hand, BERET targets both instruction and data su@siyngs.

ELM [3]] is a programmable processor design dedicated to bothutigin and data
supply energy savings. Although it achieves considerafhie@ency improvements, the

targeted applications are regular kernels from the emlzbsggtems.

176

The BERET design bears some resemblance to data flow machsgdreaks down
the recurring traces from a benchmark into constituent fi@asubgraphs. However, the
full blown data flow designs such as WaveScal&i4 and TRIPS 0] are more perfor-
mance centric, and introduce large area and complexityscoshother related effort is
the Braids [17 architecture, that converts the pipeline back-end interées of (homo-
geneous) subgraph execution units, called braid executiga (BEUs). However, unlike
BERET, the Braids architecture is performance centric,\&warks towards achieving ag-
gressive issue-widths in simple in-order cores.

Processor energy savings have also been actively pursuadjby chip manufacturers.
Some of the popular solutions have been Trace Cactigsntroduced by Intel Pentium 4
line of chips, and Loop Stream Detector (LSB)Tintroduced in the recent Intel Nehalem
microarchitecture. Trace Caches buffers the sequencestiugtions in a pre-decoded
form, and for the addresses available in Trace Cache, thedratdirectly reads them from
there. This removes branch predictor and decoder activatst, while also garnering
execution speed-up. The LSD design is conceptually verylaimHowever, instead of
storing traces, it can buffer loops with fewer than 28 miops (compare this to Trace
Cache that can store 12-K micro-ops). For any program loapdan be accommodated
within LSD, instruction fetch and decode energy is savedfodanately, a large fraction
of loops in irregular codes are large, and cannot benefit it@D. Further, both these
solutions still incur the energy expenses from inefficieadn the processor back-end.

Finally, reconfigurable architectures have been used ip#se for performance and
energy improvements. Garg] and Chimaeral2(] use an FPGA-like substrate to map

instruction sequences. Garp can also handle tight innet-foops from an application.

177

However, the use of a reconfigurable fabric, and dependenaegular code behavior

limits their overall usability and impact on general purpesergy efficiency.

6.6 Summary

With the growing importance of energy conservation in athdins of computing, there
is a clear need for architects to develop efficiency solstithiat apply to general purpose
computing. This is especially true given that the embedgstems approach of design-
ing special purpose hardware does not scale to the requitsro&irregular and diverse
code base in general purpose application space. Towaslsrtj this chapter identified
the challenges posed by irregular codes, and developed BE&REenergy-efficient archi-
tecture for general purpose programs. Further, the BERERitacture is not application
specific and can be programmed to deliver efficiency imprem@mfor virtually any re-
curring trace of instructions. Fundamentally, BERET =& these recurring traces to cut
down on redundant instruction fetch and decode energy, &nddled execution model to
reduce register file access energy. We applied BERET on atyaf benchmarks from
SPEC integer suite, Linux utilities, and MediaBench. Onrage, we found that BERET
can reduce energy by a factor of 4X for the program regionsitetes. The average energy
savings for the entire application was 37% over a singleeiss-order processor.

Going forward, there are several avenues to improve thebdégaf BERET archi-
tecture. The current system relies on static compiler anatp identify traces that can be
mapped to BERET. Using a dynamic compiler analysis can fsognitly improve the code
regions found, benefiting the energy savings for the fullliappons. Further, a perfor-

mance side can also be added to BERET design. Presentlysteersenforces serial exe-

178

cution of instruction bundles (subgraphs). By relaxing tonstraint, a significant amount
of ILP can be derived. Overall, we believe that BERET is wekitioned as an execution

engine for energy and performance gains in future compsystems.

179

CHAPTER VII

Conclusions

Performance has long been the primary design criteria foraprocessor architects. In
the past decade, however, aggressive technology scalinigtnaduced newer dimensions
and constraints to the processor design challenge. Thesgssmge from designs near-
ing the power/thermal limitations to extreme process vVianeand wearout failures in the
manufactured parts. The paradigm shift to multicore aechitres has countered power and
thermal issues to a certain extent, but the reliability agigprocess variation and wearout
has not benefited by much. Furthermore, good single-threddmmance, a requirement
for most applications, has suffered from this transitiowaods multicore designs. The
confluence of these issues is creating an urgent demanddboiteantural innovations to
efficiently address them.

The adaptive architectures presented in this thesis arattempt in this direction.
As part of this work, we have explored a variety of architegfisolutions, supplemented
by compiler techniques, to tackle reliability, performarand energy-efficiency demands
expected in future systems. A common philosophy acrossalsolutions presented here

has been their ability to adapt and reconfigure as per ang stad/or dynamic variations

180

in the targeted system.

The first architecture presented in this thesis, Stagelek|es the problem of unreli-
able silicon. This work contributes to the area of permafeaunit recovery and reconfigura-
tion by proposing a radical architectural shift in procesisign. Motivated by the need for
finer-grain defect isolation, networked pipeline stagesvidentified as an effective trade-
off between cost and reliability enhancement. StageNdsstae first work to introduce
a fully stage-by-stage decoupled pipeline microarchitect This allows flexible sharing
of stage level resources between individual cores, withaytsignificant performance loss
(less than 10%).

For upcoming technology generations, StageNet can be gagbfor combating wearout
failures as well as yield improvements. Even in scenaridBaut failures, the interconnec-
tion flexibility can be exploited to mitigate process vaonat For instance, slower and
faster stages can be connected together to balance oftitheig requirements. Finally,
for more distant future technologies (such as carbon naesy StageNet will likely need
to be used in conjunction with other methods to combat highrfarates.

More generally speaking, the decoupled microarchiteatfifitageNet is a unique ad-
dition to the inventory of concepts applied by chip archgegoday. In addition to fault iso-
lation, the decoupling techniques developed have broguj#ications. First, the stream-id
concept can be extended for speculation in aggressive suglar processors. Multiple
execution paths can be tracked and squashed selectiveljgfoer instruction level paral-
lelism. Second, the bypass caches can be used to avoid dgtobalrding logic in deep
pipelines. And finally, macro-ops can be effectively usedpmwver/energy savings as they

amortize the cost of instruction flow throughout the pipelin

181

Alongside repair, detection of a failure is an equally intpat reliability challenge.
This was the focus of our adaptive online testing framewodrke key insight here was
to leverage low level sensors to assess failure probabilityarious system resources, and
suitably apply the tests. This way, a healthy system useactidn of resources for testing
compared to another one nearing its time to failure. Thigsehshowed as much as 80%
reduction in test cost. Overall, our efforts in reliabil#yggest that systematic introspection
and architectural flexibility go a long way in saving faullaxance costs.

While the original StageNet design was a reliability onlyusion, we soon observed
that its interconnection flexibility is capable of providimore than just fault-tolerance. In
the third architectural solution, named CoreGenesis, vile lgpon the StageNet design to
form a unified performance-reliability solution. CoreGsiseenhances the base reliability
architecture of StageNet with mechanisms to merge indaligipelines and form wider-
issue processors. This adds a capacity for a higher sihgdad performance to the base-
line architecture. The CoreGenesis architecture, apamt fichieving key milestones such
as unified performance-reliability solution, configurapégformance for in-order cores, no
centralized structures, etc., also demonstrates thaiaaedcosts (interconnection flexibil-
ity, in this case) can be effectively amortized across mldtchallenges.

The last contribution of this thesis deals with the enerffigiency challenge in the
context of general purpose computing. Traditionally, theraach for improving efficiency
has been through domain-specific and application-spe@fiviare design. However, this
does not scale to the requirements of irregular and divesde base in general purpose
application space. In the proposed solution, named BERET|ewerage the recurring

traces in irregular codes, and a bulk execution model toldpvan energy-efficient co-

182

processing engine. The use of recurring traces allows BERENt down on redundant
instruction fetch and decode energy, while the bulk exeouthodel reduces register file
accesses. With the major sources of inefficiencies covergemeral purpose computing,
BERET garners up to 4X savings for targeted program regibugher, this demonstrates
that a notable fraction of processor energy spending cafirbaated for program regions
that exhibit (temporal) phases of regular and predictableafior.
To conclude, it is our belief that future architectures heveok beyond evolutionary

changes to sustain the benefits from technology scaling. sbheions presented in this

thesis are a bold step forward in that direction.

183

BIBLIOGRAPHY

184

[1]

[2]

BIBLIOGRAPHY

M. Agarwal, B. Paul, and S. Mitra. Circuit failure preticn and its application to

transistor aging. IfProc. of the 2007 IEEE VLSI Test Symposiépr. 2007.84, 91

N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Sr@itimfigurable isolation:
building high availability systems with commodity multpie processors. IRroc.
of the 34th Annual International Symposium on Computer ifgcture pages 470—

481, 2007 4, 15, 20, 47, 55, 83, 114

[3] Alpha. 21364 family, 2001. http://www.alphaprocessoom/21364.html24

[4] AMD. Amd 12-core opteron 6174 processor, 2011.

[5]

http://www.amd.com/us/products/server/processotdl&teries-

platform/Pages/6000-series-platform.aspx.

R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, @n&nider. Teramac —
configurable custom computing. Proc. of the 1995 International Symposium on

FPGA's for Custom Computing Machingsmges 32—-38, 19947, 48

[6] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the resoce sav-

ings of utility computing models, Dec. 2002. HP Laboratsyie

http://mwww.hpl.hp.com/techreports/2002/HPL-2002-38&l. 79

185

[7] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcacheloting cache architec-

tures in high defect density technologies.Aroc. of the 42nd Annual International

Symposium on Microarchitecturpages 100-110, 200216

[8] ARM. Arm11.

http://www.arm.com/products/CPUs/families/ARM11Fanhitml. 23, 168

[9] ARM. Arm9. http://www.arm.com/products/CPUs/fanei/ ARM9Family.html.

[10]

[11]

[12]

[13]

[14]

116

T. Austin. Diva: a reliable substrate for deep subnmicnoicroarchitecture design.
In Proc. of the 32nd Annual International Symposium on Miccbéecture pages

196-207, 199984

A. Baniasadi and A. Moshovos. Instruction distributioeuristics for quad-cluster,
dynamically-scheduled, superscalar processor®rde. of the 33rd Annual Inter-

national Symposium on Microarchitectyumages 337-347, 200013

W. Bartlett and L. Spainhower. Commercial fault toleca: A tale of two systems.
IEEE Transactions on Dependable and Secure Computi(i:87-96, 2004 .47,

114

K. Batcher and C. Papachristou. Instruction randotronaself test for processor
cores. InProc. of the 1999 IEEE VLSI Test Symposipage 34, Washington, DC,

USA, 1999. IEEE Computer Societ§8

D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jarelj J. Klecka, and

186

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. Smullen. Nonstop advanced architecture.International Conference on De-

pendable Systems and Netwqniages 12—-21, June 20085, 47

K. Bernstein. Nano-meter scale cmos devices (tutpriesentation), 20041, 13

J. A. Blome, S. Feng, S. Gupta, and S. Mahlke. Self-calibg online wearout de-
tection. InProc. of the 40th Annual International Symposium on Micobétecture

pages 109-120, 2003, 14, 41, 53, 69, 84, 87,91

S. Borkar. Designing reliable systems from unreliatdenponents: The challenges

of transistor variability and degradatiofEEE Micro, 25(6):10-16, 20051, 13, 51

F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Taoiegahard faults in mi-
croprocessor array structures. Bmoc. of the 2004 International Conference on

Dependable Systems and Netwopage 51, 20044, 15, 47

F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for maldiagnosis of hard
faults in microprocessors. IRAroc. of the 38th Annual International Symposium on

Microarchitecture pages 197-208, 2008, 14, 47

D. Brooks, V. Tiwari, and M. Martonosi. A framework forchitectural-level power
analysis and optimizations. Proc. of the 27th Annual International Symposium on

Computer Architecturgrages 83-94, June 200140

M. Budiu, G. Venkataramani, T. Chelcea, and S. C. Geldst Spatial computa-
tion. In 12th International Conference on Architectural SupportReogramming

Languages and Operating Systemages 14—-26, 2004.76

187

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L. Chen, S. Ravi, A. Raghunathan, and S. Dey. A scalatiisvare-based self-test
methodology for programmable processoRoc. of the 40th Design Automation

Conferencepages 548-553, June 208

A. Christou. Electromigration and Electronic Device Degradatiadohn Wiley and

Sons, Inc., 19943, 14

N. Clark et al. Application-specific processing on a get-purpose core via trans-
parent instruction set customization.Pnoc. of the 37th Annual International Sym-

posium on Microarchitecturgpages 30—-40, Dec. 200449, 173 175 176

N. Clark, A. Hormati, and S. Mahlke. VEAL: Virtualizedkecution accelerator for
loops. InProc. of the 35th Annual International Symposium on CompArtehitec-

ture, pages 389-400, June 200819 176

N. Clark, A. Hormati, S. Mahlke, and S. Yehia. Scalabldgraph mapping for
acyclic computation accelerators. Pnoc. of the 2006 International Conference on
Compilers, Architecture, and Synthesis for Embedded Bgspages 147-157, Oct.

2006.33

N. Clark, H. Zhong, and S. Mahlke. Processor accelenatrough automated in-
struction set customization. IRroc. of the 36th Annual International Symposium

on Microarchitecturepages 129-140, Dec. 200B73

K. Constantinides, O. Mutlu, T. Austin, and V. Bertacc&oftware-based online

detection of hardware defects: Mechanisms, architectuport, and evaluation.

188

[29]

[30]

[31]

[32]

[33]

[34]

In Proc. of the 40th Annual International Symposium on Micobéecture pages

97-108, 200869, 84

K. Constantinides, S. Plaza, J. A. Blome, B. Zhang, Vrt&eco, S. Mahlke,
T. Austin, and M. Orshansky. Bulletproof: A defect-toler&@MP switch architec-
ture. InProc. of the 12th International Symposium on High-PerfonceComputer

Architecture pages 3—14, Feb. 20089, 47

W. Culbertson, R. Amerson, R. Carter, P. Kuekes, andle3. Defect tolerance on
the teramac custom computer.Proc. of the 5th IEEE Symposium on FPGA-Based

Custom Computing Machingsages 116-123, 19947

W. J. Dally, J. Balfour, D. Black-Shaffer, J. Chen, R.rtitag, V. Parikh, J. Park, and
D. Sheffield. Efficient embedded computinEEE Computer41(7):27-32, July

2008.150, 151,175 176

R. Das, I. L. Markov, and J. P. Hayes. On-chip test getit@raising linear subspaces.
In Proc. of the 2006 IEEE European Test Symposipages 111-116, Washington,

DC, USA, 2006. IEEE Computer Sociei§8

J. Ellis. Bulldog: A Compiler for VLIW ArchitecturesMIT Press, Cambridge, MA,

1985.113 131,134

D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, Cslgie D. Blaauw,
T. Austin, and T. Mudge. Razor: A low-power pipeline basecaiocuit-level timing
speculation. IrProc. of the 36th Annual International Symposium on Micob&r

tecture pages 7-18, 200%9

189

[35]

[36]

[37]

[38]

[39]

[40]

[41]

K. Fan, M. Kudlur, G. Dasika, and S. Mahlke. Bridging tbemputation gap be-
tween programmable processors and hardwired acceleratiBroc. of the 15th
International Symposium on High-Performance Computehidecture pages 313—

322, Feb. 20096, 149, 153 175,176

K. Fan, M. Kudlur, H. Park, and S. Mahlke. Compiler-daited synthesis of multi-
function loop accelerators. IRroc. of the 2005 Workshop on Application Specific

Processorspages 91-98, Sept. 200b/5 176

K. Farkas, P. Chow, N. Jouppi, and Z. Vranesic. The rolulsiter architecture: Re-
ducing cycle time through partitioning. Iroc. of the 30th Annual International

Symposium on Microarchitecturpages 149-159, Dec. 199713

S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Maestro:h@strating lifetime reli-
ability in chip multiprocessors. IRroc. of the 2010 International Conference on
High Performance Embedded Architectures and Compilpegyes 186—-200, Jan.

2010.47

J. Friedrich et al. Desing of the power6 microprocess@b. 2007. InProc. of

ISSCC 87

D. Friendly, S. Patel, and Y. Patt. Putting the fill urdtwork: Dynamic optimiza-
tions for trace cache microprocessors. Aroc. of the 25th Annual International

Symposium on Computer Architectupages 173-181, June 199%K0, 154

S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Adaptiverentesting for efficient

190

[42]

[43]

[44]

[45]

[46]

[47]

hard fault detection. IfProc. of the 2009 International Conference on Computer

Design 2009.69

S. Gupta, A. Ansari, S. Feng, and S. Mahlke. Stagewekenieaving pipeline
stages into a wearout and variation tolerant cmp fabrid?ryc. of the 2010 Inter-

national Conference on Dependable Systems and Netwhrke 2010129

S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlkbe $tagenet fabric for
constructing resilient multicore systems. Rnoc. of the 41st Annual International
Symposium on Microarchitectyrpages 141-151, 20082, 75, 83, 86, 89, 97, 99,

107,108 110 111, 119,120,123 132 136, 137, 142

R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatajk8. C. Lee,
S. Richardson, C. Kozyrakis, and M. Horowitz. Understagdinurces of ineffi-
ciency in general-purpose chips. Proc. of the 37th Annual International Sympo-

sium on Computer Architecturpages 37-47, 201Q.75

J. R. Hauser and J. Wawrzynek. GARP: A MIPS processdn witeconfigurable
coprocessor. IfProc. of the 5th IEEE Symposium on Field-Programmable Gusto

Computing Machinepages 12-21, Apr. 199177

M. D. Hill and M. R. Marty. Amdahl’s law in the multicorera. IEEE Computer

41(1):33-38, 2008107

W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanad,& Ghosh. Hotspot:

A compact thermal modeling method for cmos visi systetBEE Transactions on

191

Very Large Scale Integration (VLSI) Systerhd(5):501-513, May 200618, 72,

136

[48] H. Inoue, Y. Li, and S. Mitra. Vast: Virtualization-asted concurrent autonomous

self-test. InProc. of the 2008 International Test ConferenSept. 200884

[49] T. Instruments. Tms320c2x user’s guide, Jan. 1995

[50] Intel. Intel xeon processor with 512 kb 12 cache, 20047

[51] Intel. 6-core intel core i7-970 processor, 2011.

http://ark.intel.com/Product.aspx?id=47923.

[52] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core foisi Accommodating
software diversity in chip multiprocessors. Pnoc. of the 34th Annual International
Symposium on Computer Architectupages 186-197, 200710, 107, 108 111,

120,136

[53] ITRS. International technology roadmap for semicartdis 2008, 2008.

http://lwww.itrs.net/x, 56, 73, 136

[54] H. Kalva. The H.264 video coding standatBEE MultiMedig 13(4):86—90, 2006.

175

[55] E. Karl, D. Blaauw, D. Sylvester, and T. Mudge. Multi-anism reliability mod-
eling and management in dynamic systehi£E Transactions on Very Large Scale

Integration (VLSI) System&6(4):476—487, Apr. 20081, 101

192

[56]

[57]

[58]

[59]

[60]

[61]

E. Karl, P. Singh, D. Blaauw, and D. Sylvester. Compacsitu sensors for moni-
toring nbti and oxide degradation. #9008 IEEE International Solid-State Circuits

ConferenceFeb. 200841, 53, 69, 84, 85, 87, 91, 102

E. Karl, D. Sylvester, and D. Blaauw. Analysis of syst&wel reliability factors and
implications on real-time monitoring methods for oxidedkdown device failures.
In Proc. of the 2008 International Symposium on Quality of &tedc Design pages

391-395, Washington, DC, USA, 2008. IEEE Computer Sockiy91

V. Kathail, M. Schlansker, and B. Rau. HPL-PD architeetspecification: Version
1.1. Technical Report HPL-93-80(R.1), Hewlett-Packardratories, Feb. 2000.

42

T. Kgil, S. D’'Souza, A. Saidi, N. Binkert, R. Dreslinski. Mudge, S. Reinhardt, and
K. Flautner. Picoserver: using 3d stacking technology @mbéma compact energy
efficient chip multiprocessorACM SIGPLAN Notices41(11):117-128, 200613,

16

C. Kim, S. Sethumadhavan, M. Govindan, N. RanganatBarGulati, D. Burger,
and S. W. Keckler. Composable lightweight processor®rat. of the 40th Annual
International Symposium on Microarchitectuggages 381-393, Dec. 2002.07,

111,112 115

A. KleinOsowski, K. KleinOsowski, and V. Rangarajarhélrecursive nanobox pro-

cessor grid: A reliable system architecture for unreliatde@otechnology devices.

193

[62]

[63]

[64]

[65]

[66]

[67]

In International Conference on Dependable Systems and Netwmage 167, June

2004.48

P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: 2-®ay multithreaded

SPARC processoftEEE Micro, 25(2):21-29, Feb. 2004.3, 16

R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,@nil. Tullsen. Single-
ISA Heterogeneous Multi-Core Architectures: The Potéritia Processor Power
Reduction. InProc. of the 36th Annual International Symposium on Micobéec-

ture, pages 81-92, Dec. 2008, 107,108 111

R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-corgahnultiprocessing. IProc.
of the 37th Annual International Symposium on Microardttites, pages 195-206,

2004.73, 136

W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V.Kéar and S. Amaras-
inghe. Space-time scheduling of instruction-level patalin on a RAW machine.
In Eighth International Conference on Architectural SupgdortProgramming Lan-

guages and Operating Systemages 46-57, Oct. 19983

X. Liang and D. Brooks. Mitigating the impact of processiations on processor
register files and execution units. Broc. of the 39th Annual International Sympo-

sium on Microarchitecturgpages 504-514, 20064, 70

X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacingfams with 3t1d drams
in the 11 data cache to combat process variabiliBEE Micro, 28(1):60-68, 2008.

81

194

[68]

[69]

[70]

[71]

[72]

[73]

[74]

Y. Lin et al. Soda: A low-power architecture for softwearadio. InProc. of the 33rd
Annual International Symposium on Computer Architectypeges 89-101, June

2006.6

T.-H. Lu, C.-H. Chen, and K.-J. Lee. A hybrid softwarased self-testing method-
ology for embedded processor. 2008 ACM symposium on Applied computing

pages 1528-1534, New York, NY, USA, 2008. ACBB, 89, 93, 102 103

W. mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. Jri®¢g R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab,. H&m, and D. M.
Lavery. The superblock: An effective technique for vliw asuperscalar compila-

tion. Journal of Supercomputing(1):229-248, May 1993150, 154, 164

A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, cprahensive error detec-

tion in simple coreslEEE Micro, 28(1):52-59, 20083, 14

S. Mishra and M. P. adn Douglas L. Goodman. In-situ sesi&w product reliability

monitoring, 2006. http://www.ridgetop-group.cor8il

N. Muralimanohar, R. Balasubramonian, and N. P. Jou@pitimizing nuca organi-
zations and wiring alternatives for large caches with da€ti InlIEEE Micro, pages

3-14, 2007.169

H. H. Najaf-abadi and E. Rotenberg. Architectural esting. InProc. of the 15th
International Symposium on High-Performance Computehi®ecture pages 189—

200, 2009.107,113

195

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

U. Nawathe et al. An 8-core, 64-thread, 64-bit, powdicefnt SPARC SoC (Nia-

gara2), Feb. 2007. IRroc. of ISSCC2

OpenCores. OpenRISC 1200, 2006. http://www.operscorg/projects.cgi/web/

orlk/openriscl200.17, 23,71, 72,135

M. Papadonikolakis et al. Efficient high-performanc&I& implementation of
JPEG-LS encoder. IRroc. of the 2007 Design, Automation and Test in Europe

pages 159-164, Apr. 2008, 149,153 175

A. Paschalis and D. Gizopoulos. Effective softwarsdshself-test strategies for
on-line periodic testing of embedded processtEEE Transactions on Computer-

Aided Design of Integrated Circuits and Syste¥1):88—-99, Jan. 20088

S. J. Patel and S. S. Lumetta. rePLay: A hardware frame¥ay dynamic opti-
mization. IEEE Transactions on Computers0(6):590-608, June 200150, 154,

162

P. G. Paulin and J. P. Knight. Force-directed schedulin the behavorial synthesis
of ASICs. IEEE Transactions on Computer-Aided Design of Integrateduits and

Systems3(6):661-679, June 1988, 149, 153 175

L.-S. Peh and W. Dally. A delay model and speculativehdecture for pipelined
routers. InProc. of the 7th International Symposium on High-Perforocecom-

puter Architecturepages 255-266, Jan. 2004, 51, 54

M. Postiff, D. Greene, S. Raasch, and T. Mudge. Intéggasuperscalar proces-

196

sor components to implement register caching.Ptac. of the 2001 International

Conference on Supercomputjmages 348-357, 20040

[83] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee.chtectural core sal-
vaging in a multi-core processor for hard-error tolerarind?roc. of the 36th Annual

International Symposium on Computer Architeciuiene 200947, 48

[84] M. Prvulovic, Z. Zhang, and J. Torrellas. Revive: ceffective architectural support
for rollback recovery in shared-memory multiprocessdtsoc. of the 29th Annual
International Symposium on Computer Architeciyrages 111-122, 20033, 90,

94, 105

[85] PTM. Predictive technology model. http://ptm.asued 36

[86] J. Rabaey, A. Chandrakasan, and B. Nikolgital Integrated Circuits, 2nd Edi-

tion. Prentice Hall, 200373

[87] R. Razdan and M. D. Smith. A high-performance microgecture with hardware-
programmable function units. Broc. of the 27th Annual International Symposium

on Microarchitecturepages 172-180, Dec. 199849, 173 175,176

[88] B. F. Romanescu and D. J. Sorin. Core cannibalizatiohisecture: Improving life-
time chip performance for multicore processor in the presesf hard faults. In
Proc. of the 17th International Conference on Parallel Atebtures and Compila-

tion Techniques2008.48, 107, 108 111

[89] P. Salverda and C. Zilles. Fundamental performancestcaimts in horizontal fu-

197

[90]

[91]

[92]

[93]

[94]

[95]

sion of in-order cores. IdProc. of the 14th International Symposium on High-

Performance Computer Architectufiéeb. 2008111, 112 119 130

K. Sankaralingam et al. Exploiting ILP, TLP, and DLP ngipolymorphism in
the TRIPS architecture. IRroc. of the 30th Annual International Symposium on

Computer Architecturgpages 422—-433, June 20037

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, Wari,i and J. Torrellas.
Varius: A model of process variation and resulting timingpes for microarchitects.
In IEEE Transactions on Semiconductor Manufacturipages 3—13, Feb. 20081,

54,72,101

S. Satpathy, Z. Foo, B. Giridhar, D. Sylvester, T. Mudged D. Blaauw. A 1.07
tbit/s 128128 swizzle network for simd processorsPtoc. of the 2010Symposium

on VLSI Technology2010.129

R. Schreiber et al. PICO-NPA: High-level synthesis ohprogrammable hardware
acceleratorsJournal of VLSI Signal Processing1(2):127-142, 2003, 149, 153

175

L. Shang, L. Peh, A. Kumar, and N. K. Jha. Temperaturaravon-chip networks.

IEEE Micro, 2006.43

P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Bxpig microarchitectural
redundancy for defect tolerance. Bmoc. of the 2003 International Conference on

Computer Designpage 481, Oct. 2003, 13, 15, 19, 47, 83

198

[96]

[97]

[98]

[99]

[100]

[101]

[102]

D. Siewiorek and R. SwarzReliable Computer Systems: Design and Evaluation,

3rd Edition AK Peters, Ltd., 19983, 14

R. Singhal. Inside intel next generation nehalem nacchitecture, 2008.

http://software.intel.com/file/18978.77

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiszgbrocessors. IRroc.
of the 22nd Annual International Symposium on Computerifecture pages 414—

425, June 1995111, 112

D. Sorin, M. Martin, M. Hill, and D. Wood. Safetynet: impving the availability of
shared memory multiprocessors with global checkpointirery. Proc. of the 29th
Annual International Symposium on Computer Architectpeges 123-134, 2002.

83

L. Spainhower and T. Gregg. IBM S/390 Parallel EntesgiServer G5 Fault Tol-
erance: A Historical PerspectivelBM Journal of Research and Development

43(6):863-873, 199947

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. ddse for lifetime reliability-
aware microprocessors. Froc. of the 31st Annual International Symposium on

Computer Architecturgpages 276—287, June 208, 20, 136

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. ifirtpact of technology scaling
on lifetime reliability. InProc. of the 2004 International Conference on Dependable

Systems and Networksages 177-186, June 20041

199

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. |&#pg structural duplica-
tion for lifetime reliability enhancement. IRroc. of the 32nd Annual International

Symposium on Computer Architectupages 520-531, June 2005.13, 15, 47, 72

S. Swanson, K. Michelson, A. Schwerin, and M. Oskin. Vééealar. InProc. of
the 36th Annual International Symposium on Microarchilegt page 291. IEEE

Computer Society, 200377

D. Sylvester, D. Blaauw, and E. Karl. Elastic: An adepself-healing architecture
for unpredictable siliconlEEE Journal of Design and Tes23(6):484—490, 2006.

4,15,20,47,114

D. Tarjan, M. Boyer, and K. Skadron. Federation: R@psing scalar cores for out-
of-order instruction issue. IRroc. of the 45th Design Automation Conferentgne

2008.10, 107,111, 112

Tensilica Inc. Diamond Standard Processor Core Family Architecfuhely 2007.

http://www.tensilica.com/pdf/Diamond WP.pd, 149, 173 175

R. Teodorescu and J. Torrellas. Variation-awareiapfpbn scheduling and power
management for chip multiprocessors. Rroc. of the 35th Annual International

Symposium on Computer Architectupages 363-374, June 200!

Tilera. Tile64 processor - product brief, 2008. hifpww.tilera.com/

pdf/. 2

A. Tiwari and J. Torrellas. Facelift: Hiding and slowg down aging in multicores.

200

In Proc. of the 41st Annual International Symposium on Mictbéecture pages

129-140, Dec. 20081

[111] Trimaran. An infrastructure for research in ILP, 2000ttp://www.trimaran.org/.

42,134,169

[112] F. Tseng and Y. N. Patt. Achieving out-of-order penfiance with almost in-order
complexity. InProc. of the 35th Annual International Symposium on Conrpute

Architecture pages 3-12, June 200877

[113] M. Vachharajani, N. Vachharajani, D. A. Penry, J. AoBle, S. Malik, and D. I.
August. The liberty simulation environment: A deliberafgpeoach to high-level
system modeling ACM Transactions on Computer Syste24(3):211-249, 2006.

29,42,71, 135

[114] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, Yk&n, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor. Conservation cores: redutiaghergy of mature
computations. Irl8th International Conference on Architectural Support Roo-
gramming Languages and Operating Systgmagies 205-218, 201Q, 5, 148 149,

175176

[115] K. Wang and C.-K. Wu. Design and implementation of faalerant and cost effec-
tive crossbar switches for multiprocessor systefis Proceedings on Computers

and Digital Techniquesl46(1):50-56, Jan. 19988, 75

[116] C. Weaver and T. M. Austin. A fault tolerant approackmtiroprocessor design. In

201

[117]

[118]

[119]

[120]

[121]

[122]

[123]

Proc. of the 2001 International Conference on Dependabste®ys and Networks

pages 411-420, Washington, DC, USA, 2001. IEEE Computee§og, 14

D. Wilson. The stratus computer systeResilient Computing Systenis208-231,

1986.47

E. Wu, J. M. McKenna, W. Lai, E. Nowak, and A. VayshenKeterplay of voltage
and temperature acceleration of oxide breakdown for titimgate oxides.Solid-

State Electronics46:1787-1798, 2003, 14

T. T. Ye, L. Benini, and G. D. Micheli. Analysis of powebonsumption on switch
fabrics in network routers. IfProc. of the 39th Design Automation Conference

pages 524-529, 200229, 136

Z. A. Ye etal. CHIMAERA: a high-performance architeat with a tightly-coupled
reconfigurable functional unit. IRroc. of the 27th Annual International Symposium

on Computer Architecturgpages 225-235, 200Q77

S. Yehia et al. Exploring the design space of LUT-basaasparent accelerators. In
Proc. of the 2005 International Conference on Compilergj#ecture, and Synthe-

sis for Embedded Systenpmges 11-21, Sept. 200675

S. Yehia, S. Girbal, H. Berry, and O. Temam. Recongipecialization and flexi-
bility through compound circuits. IRroc. of the 15th International Symposium on

High-Performance Computer Architectymages 277-288, 2008, 149, 153 176

S. Zafar et al. A model for negative bias temperatustahility (nbti) in oxide and

high k pfets. InSymposium on VLSI Technologyages 45-50, 2004.

202

[124] J. Zeigler. Terrestrial cosmic ray intensitié8M Journal of Research and Develop-

ment 42(1):117-139, 19983, 14

203

	DEDICATION
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	Introduction
	Technology Challenges
	The Reliability Challenge
	The Performance Challenge
	The Energy-Efficiency Challenge

	Adaptive Architectures
	Adaptivity for Defect Isolation
	Adaptivity for Online Testing
	Adaptivity for Performance
	Adaptivity for Energy Efficiency

	Contributions
	Organization

	The StageNet Fabric for Constructing Resilient Chip Multiprocessors
	Introduction
	Reconfiguration Granularity
	Experimental Setup
	Granularity Trade-offs
	Harnessing Stage-level Reconfiguration

	The StageNetSlice Architecture
	Overview
	Functional Needs
	Performance Enhancement
	Stage Modifications

	The StageNet Multicore
	Stage Borrowing
	Stage Sharing
	Fault Tolerance and Reconfiguration

	Results and Discussion
	Simulation Setup
	Simulation Results

	Related Work
	Summary

	A Scalable Architecture for Wearout and Process Variation Tolerance
	Introduction
	Background
	Limitations of SN
	Impact of Process Variation and Defects

	The StageWeb Architecture
	Interweaving Range
	Interweaving Candidates
	Configuration Algorithms
	Interconnection Reliability
	Variation Tolerance
	System Level Issues

	Evaluation
	Methodology
	Microarchitectural Simulation
	Wearout and Process Variation Modeling
	Area, Power and Timing
	CMP Simulations

	StageWeb Design Space
	Cumulative Work
	Throughput Behavior
	Variation Mitigation
	Power Saving
	Yield Analysis

	Related Work
	Summary

	Adaptive Online Testing for Efficient Hard Fault Detection
	Introduction
	Background
	Wearout Sensors
	Online Testing

	Adaptive Online Testing
	Adaptive Test Framework
	Adaptive Testing for StageNet
	StageNet CMP Fabric
	Adaptive Testing

	Evaluation
	Methodology
	Results

	Summary

	Erasing Core Boundaries for Robust and Configurable Performance
	Introduction
	Related Work
	Single-Thread Performance Techniques
	Multicore Reliability Solutions
	Combining Performance and Reliability

	The CoreGenesis Architecture
	Overview
	Challenges
	Microarchitectural Details
	Control Flow
	Register Data Flow
	Memory Data Flow
	Replay Mechanism

	Interconnection
	Instruction Steering
	Configuration Manager
	Instruction Flow Example

	Evaluation
	Methodology
	Single-thread performance
	Energy-efficiency Comparison
	Multi-workload throughput
	Fault tolerance
	Area overheads
	Power overheads

	Summary

	Bundled Execution of Recurring Traces for Energy-Efficient General Purpose Processing
	Introduction
	A Case for Energy Efficient Trace Execution
	Pipeline Energy Distribution
	Opportunities for Energy Saving
	Limitations for Irregular Codes
	Energy Efficiency for Irregular Codes

	The BERET Architecture
	Overview
	Hardware Design
	Basic Microarchitecture
	Handling Trace Exits
	Processor Interfacing

	Mapping Traces to BERET
	Design Space Exploration: SEBs and other parameters
	Determining SEB Collection
	Microarchitectural Parameters

	Evaluation
	Methodology
	Results
	Execution Time Coverage of Traces
	Energy Savings
	Performance Comparison
	Energy-Delay Product Improvement
	Area Overhead

	Related Work
	Summary

	Conclusions
	BIBLIOGRAPHY

