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êx, êx, êz Cartesian components of ê
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CHAPTER I

Introduction, Literature Review, and Objectives

During the last 15 years, there has been considerable interest in micro air vehicles

(MAVs) aimed at several low altitude, short duration, civilian and military missions

[1]. Based on operational requirements, MAVs typically have maximum geometric

dimensions of 15 cm, maximum weight of 100 grams, and an endurance of 30 min at

low forward flight speeds (< 18 m/s) [2]. The next generation MAVs, called nano air

vehicles (NAVs), are envisioned to have maximum geometric dimensions of 8 cm and

weight of 20 g. The specifications of MAVs and NAVs places them in a low Reynolds

number regime (O (102) < Re < O (104)) that is shared by smaller birds and larger

insects as depicted in Figure 1.1.

1.1 Existing Micro Air Vehicles

Existing MAVs may be based on fixed, rotary, or flapping wings [1]. While fixed and

rotary wing MAVs benefit from available fixed and rotary wing aircraft technologies,

flapping wing MAVs (FWMAVs) are fundamentally different and are inspired from

biological flyers such as insects, hummingbirds, and small bats.

1
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Figure 1.1: Insect, birds, and MAVs [3]

Fixed Wing Designs

The development of fixed wing MAVs has been significantly faster than rotary and

flapping wing MAVs due to the simplicity introduced by decoupling the thrust and lift

generating components in the vehicle. The success of several conventional designs [1],

such as the Black Widow [4] and the MicroSTAR 1, has spurred the development of

advanced designs that benefit from aeroelastic tailoring [5] or have improved low

speed capabilities [6]. Fixed wing designs are incapable of hovering flight and have

limited maneuverability in confined spaces; this has generated interest in hover

capable designs based rotary and flapping wings.

Rotary Wing Designs

A limited number of rotary wing MAVs (RWMAVs), such as the MICROR [7],

mesicopter [8], and the Hoverfly [1], have demonstrated hover endurance of 10 min

1http://www.janes.com/articles/Janes-Unmanned-Aerial-Vehicles-and-Targets/BAE-Systems-
MicroSTAR-United-States.html
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with no payload. The development of rotary wing designs has been impeded due to

several factors associated with the aerodynamic environment of micro rotors, such

as dominant boundary layers and separated flow [7, 9–11], due to which RWMAVs

suffer from lower lift-to-drag ratio and increased profile power losses compared to

conventional helicopters. The low hover efficiency of existing micro rotors indicates

that the aerodynamic mechanisms used by conventional rotors are less effective at

low Reynolds numbers, highlighting a need for unconventional design strategies.

Flapping Wing Designs

Biological flyers, which have exceptional flight capabilities, are based exclusively

on flapping wings. The goal of developing MAVs that offer the best performance at

low Reynolds number has led to considerable interest in bio-inspired FWMAVs.

Based on wing kinematics, FWMAVs may be broadly classified as ornithopters

and insect-based designs. Ornithopters, which are bird-like, utilize wing flapping

primarily for propulsion and the lift is generated due a combination of forward speed

and wing flapping. Consequently, ornithopters cannot hover. On the other hand,

insects flap their wings in a nearly horizontal plane and execute large changes in

wing pitch to produce lift in the absence of forward velocity. Similar wing motions are

observed in hover capable birds such as thrips and hummingbirds. Thus, insect-based

designs represent hover-capable and highly maneuverable solutions for FWMAVs.

Numerous FWMAVs are in currently in development; some examples include the

ornithopter Microbat [12], and hover capable concepts such as the Mentor [13], the

Delfly [14], and the Microrobotic fly [15]. While several hover capable concepts have

demonstrated flight, the utility of these designs in realistic missions has been severely

limited due to low force generation capacity and hover endurance (< 5 min). This has

motivated research on understanding and improving the aerodynamic performance of

bio-inspired wings.
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A Comparison of Rotary and Flapping Wings

Rotary and flapping wing vehicles represent competing hover capable designs

for MAV missions; however, a comparative evaluation of these vehicles has received

limited attention. Preliminary comparisons of the power requirements of micro rotors

and representative flapping wings were presented in Refs. [16,17]. The induced and

profile power were computed using available data for micro rotors, aerodynamic calcu-

lations for flapping wings using an unsteady panel method [16], and geometric scaling

laws [17]. Calculations indicate that power requirements of the rotary and flapping

wing vehicles are somewhat similar. However, these studies [16, 17] highlighted

the simplicity of the analysis tools used, and emphasized that refined aerodynamic

analysis tools are needed to draw meaningful quantitative comparisons.

1.2 The Aeroelastic Analysis of Flapping Wings

Membrane

Reinforcing skeleton
Root

Typical insect wing Bio-inspired wing
(http://park.org/Canada/Museum/insects/flight/flight.html)

Figure 1.2: Insect and bio-inspired wings

Improving the aerodynamic performance of flapping wings is essential to the devel-

opment of hover capable FWMAVs. Practical bio-inspired wings, which are based on

insect wings as depicted in Figure 1.2, are expected to be light-weight anisotropic con-

structions that deform during flight. Therefore, the design of bio-inspired wings based
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on aeroelastic considerations is an important goal; since designs that benefit from

flexibility are preferred, a crucial step in achieving this goal involves understanding

the influence of wing flexibility on the performance of flapping wings. The aeroelas-

tic problem associated with flapping wings involves several kinematic, structural,

and aerodynamic variables. Computational approaches, which allow a more rapid

exploration of the parameter space, are better suited for this problem than experi-

mental approaches. Therefore, the emphasis of this dissertation is on the aeroelastic

analysis of flapping wings using computational tools. The important structural and

aerodynamic considerations for flapping wing problems, which influence the selection

of modeling tools, are identified in this section.

1.2.1 Structural Dynamic Considerations

Typical bio-inspired wings, composed of membrane reinforced by a skeleton as

depicted in Figure 1.2, are actuated at the root and deform during flapping. Therefore,

the structural dynamic modeling of flapping wings requires the treatment of wing

kinematics combined with the flexibility in anisotropic wings.

Wing Kinematics

Experiments on hover capable biological flyers [18–26], where the wings and

bodies of flyers are tracked using high speed photo or video equipment, show that

the wings are actuated using a time dependent rotation that is imposed at the root.

The kinematics, typically represented using Euler angles [18–26], may be described

as the combination of a predominant flapping or sweep motion that describes a

stroke plane (SP), a feathering motion that produces wing pitch, and a comparatively

small elevation motion that describes the movement of the feathering axis out of the

SP as indicated in Figure 1.3. Each flapping cycle is composed of two translatory

strokes, called the upstroke and downstroke, and two rotations, called supination and
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pronation, respectively. In particular, hover kinematics are characterized by a nearly

horizontal SP and large changes in the wing pitch angle.

Stroke plane inclination

Stroke plane (SP)

Body axis

Horizontal plane
Body inclination

Direction
of flight

(Horizontal)

Feathering axis
Flapping axis

upstroke

downstroke

pronation

supination

Vertical

Figure 1.3: Insect flapping stroke

Note that the kinematic data of live flyers are obtained by tracking, and subse-

quently averaging, the motions of various wing sections. Therefore, the measured

stroke amplitudes include the effect of wing flexibility. The data obtained from flyers

in hover and forward flight [19–21,26] indicates: (1) the flapping frequency, which is

typically specific to a given flyer, is nearly constant (variation < 5%) for the range of

kinematics exhibited by the flyer; (2) the flapping amplitude decreases with increase

in forward flight speed; however the decrease is minor (< 15%); and (3) the SP and

body inclinations, indicated in Figure 1.3, increase and decrease respectively with

increase in forward flight speed. These trends suggest that a transition from hover to

forward flight includes tilting the SP while flapping at constant frequency.
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Wing Flexibility

Insect wings, composed of veins and membranes, are known to undergo moderate-

to-large flexible deformation during flight [27]. Preliminary attempts to assess the

importance of flexibility in biological wings, based on simple physical models [28]

and experiments using insect wings [29], indicate that inertia loads are important.

Reference [28] estimated the bending moment acting at the root of insect wings

assuming that the aerodynamic loads are equal to the weight of the insect. An

important finding of this study [28] was that a dominant component of the loading on

biological flapping wings is due to inertia loads. Experiments [29], conducted using

hawkmoth wings that were actuated using representative hover kinematics, showed

that the spatial and temporal deformation patterns of wings in air were identical to

those in helium. Since the densities of air and helium are substantially different, this

observation implies that the effect of aerodynamic loads on the deformation pattern

may be negligible. The findings of Refs. [28, 29] were corroborated by the flapping

tests in air and vacuum using bio-inspired wings [30]. Wings composed of membranes

reinforced by metal frames were actuated using a combined flap-pitch motion up to

a frequency of 12 Hz [30]. Measurements, using a load cell at the root, showed that

aerodynamic loads were small compared to inertia loads.

These studies [28–30], which highlight the importance of inertia loads, indicate

that the development of accurate structural dynamic models is essential for the

aeroelastic analysis of flapping wings. In particular, the treatment of moderate-to-

large deformation of anisotropic flapping wings is an important consideration.

1.2.2 Unsteady Aerodynamic Mechanisms

A significant portion of the research on hover capable flapping wing vehicles has

focused on understanding the mechanisms that generate unsteady aerodynamic forces.

This research [2, 31–37] has identified leading edge vortices (LEVs), clap and fling,
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wing rotation, and wake capture, as the primary force generating mechanisms. The

following summary of these mechanisms is based on the descriptions provided in

Ref. [37].

Leading edge vortices are formed following the separation of flow from the leading

edge (LE) of a flapping wing. Stable LEVs, which form over the span and remain

attached to the wing during the flapping stroke, have been observed for several

biological flyers in hover and low speed forward flight as well as on rigid scaled

insect and representative flapping wings undergoing hover kinematics. Experimental

investigations using the rigid scaled insect wings show that stable LEVs are formed for

Reynolds numbers between O (102) and O (104), which represents the range relevant to

FWMAV flight. These LEVs are stabilized by a variety of mechanisms which include

spanwise flow and downwash due to tip vortices. The presence of dominant LEVs for

a wide range of kinematics, wing configurations, and Reynolds numbers, has led to

the hypothesis that LEVs are the primary unsteady aerodynamic force generating

mechanism in hover capable flyers.

The clap and fling, which is modified to a clap and peel for flexible wings, is a

two step kinematic pattern that is employed by various insects, either during regular

flight or rapid maneuvers, to increase the force output at the beginning or ends of

the stroke. This mechanism involves clapping the wings together, which produces a

downward jet, followed by flinging the wings open, which augments the circulation of

the LEV that is formed during the fling.

Rapid wing rotation, which occurs in most insect wings at the end of each flapping

stroke, has a two fold effect on the generation of aerodynamic forces: (1) the rapid

rotation increases the quasi-steady (wake-independent) circulation developed by the

wing; (2) the phase difference between the wing translation and rotation influences

the extent of the wake capture.



9

Wake capture, which occurs immediately following stroke reversal, is an unsteady

force augmentation mechanism that involves the interaction of a wing with the LEVs

generated during the previous cycle. The extent and effectiveness of wake capture

depends on the wing configuration, kinematics, and Reynolds number. However, no

clear trends have been identified.

The work presented in this dissertation examines the aerodynamic and aeroelastic

performance of an isolated flapping wing. Therefore, the clap and fling, which involves

two wings executing a set of synchronized motions, is considered. Thus, the selection

of the aerodynamic analysis tool is based on its ability to model the effects of LEVs,

wing rotation, and wake capture respectively.

1.3 Review of Literature

The following topics are reviewed in this section: (1) treatment of wing flexibility,

(2) aerodynamic analysis tools, and (3) aeroelastic studies that examine the importance

of wing flexibility in flapping wings.

1.3.1 Modeling Wing Flexibility

Early attempts to model flexibility in flapping wings included experimental studies

that used geometrically scaled wings and computational studies that used simple

physical models [28,38]. These studies suggested that wing flexibility is an important

factor in enhancing the aerodynamic efficiency of a flapping wing. Previous treatment

of wing flexibility of anisotropic flapping wings using numerical approaches has been

based on linear [39–41], and nonlinear finite element (FE) formulations based on

commercial FE packages [29,42,43] or in-house codes [44–48]. The wing models used

in these studies are summarized in Table 1.1.

References [39–41], which examined the aeroelastic behavior of flexible flapping



10

Reference Wing Model based on Software Type of finite

elements used

[39,40] hawkmoth in-house beam and membrane

[41] bio-inspired in-house plate

[42] dragonfly ABAQUS 6.5 beam and shell

[29,43] hawkmoth MSC MARC 2001 shell

[44] dragonfly in-house shell

[45,46] bio-inspired in-house and shell

(Zimmerman) MSC MARC 2007

[47,48] dragonfly in-house shell

Table 1.1: Summary of finite element wing models

wings, considered structural models in which wing flexibility was incorporated either

using linear strain-displacement relations [39,40] or free vibration modes for order

reduction [41]. Structural models of hawkmoth wings, in which the geometric and

material properties were obtained from available experimental data, were considered

in Refs. [39, 40]. The structural model developed in Ref. [41] was validated with

experiments conducted on an aluminum plate undergoing sinusoidal flapping motion.

This study noted that linear approaches do not capture the centrifugal stiffening

effect due to flapping, and incorporated this effect in the formulation by modifying

the expressions that pertain to in-plane deformation. The tip displacements obtained

using the modified model showed good agreement with a previously published result

for the case of a flexible plate undergoing prescribed rotational acceleration.

The treatment of flexibility using nonlinear approaches [29,42–48] has been based

on formulations that utilize geometrically nonlinear strain displacement relations

and the assumption of small strains.

Finite element models of dragonfly wings, based on detailed geometric measure-
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ments using a micro computed tomography (micro-CT) technique, were developed

in Ref. [42]; the material properties of various components of the wing were ob-

tained from previously published data on insect wings. The FE models, developed in

ABAQUS 6.5, were used to examine the deformation of flapping wings under several

applied loading conditions that crudely approximated inertia and aerodynamic loads;

in these simulations, the wings were actuated using a sinusoidal flap motion wherein

the amplitude and frequency were close to realistic values of hovering dragonflies.

This study mentions that the wing deformations obtained using linear and nonlinear

structural dynamic models were nearly the same; consequently, it is emphasized that

a linear structural model is adequate for the cases considered.

In Refs. [29,43], structural models based on MSC MARC were developed to com-

plement experimental studies conducted using insect wings. These studies attempted

to approximate the aeroelastic response of flapping hawkmoth wings using structural

dynamic models that incorporated suitable modifications in the material properties.

In particular, Ref. [29] considered structurally damped wings to simulate the effect

of aerodynamic damping, and Ref. [43] considered several spanwise distributions of

elastic properties to obtain the bending patterns observed in real insect wings. The

results suggest that the coupled aeroelastic problem of flapping wings may be reason-

ably approximated by uncoupled simulations using equivalent structural dynamic

models.

An anisotropic shell model based on the updated Lagrangian approach is described

in Ref. [44]. The primary focus of Ref. [44] was the formulation and implementation

of the shell model. However, this study discussed a preliminary qualitative study in

which the tip displacements of isotropic wings, which have varying Young’s moduli,

undergoing dragonfly kinematics were compared; specifically, the results showed that

increasing the elastic modulus decreased the magnitude of wing deformation.

The formulation and implementation of an isotropic shell model based on a co-
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rotational approach is described in Ref. [45]. The shell model, which was subsequently

employed to simulate the aeroelastic behavior of plunging wings, was verified by

comparing the tip displacements with previously published results and computations

using a nonlinear shell model based on MSC MARC. The test cases included plates

subjected to static end moments and lateral loads, and those undergoing sinusoidal

flap motion with an amplitude of 17◦ for a range of frequencies. For all cases, the shell

formulation showed excellent agreement with independently obtained computational

results. Reference [46] extended the isotropic formulation [45] to incorporate compos-

ite materials. This study, which simulated anisotropic wings undergoing prescribed

flap motion in vacuum, noted that the tip deformations computed using the extended

shell model showed reasonable correlation with the experimental results published in

Ref. [49]. An important conclusion of this work [46] was that the extended formulation

was suitable for subsequent aeroelastic studies of anisotropic wings.

In Refs. [47,48], shell formulations based on the total Lagrangian approach were

used to simulate the aeroelastic behavior of dragonfly based wings undergoing pre-

scribed sinusoidal motion. These studies considered isotropic wing models in which

the thickness distribution was modified so as to simulate the experimentally mea-

sured spanwise and chordwise bending stiffness of insect wings; additional verifica-

tion/validation of the structural models was not discussed.

1.3.2 Aerodynamic Modeling

As mentioned, the primary force generating aerodynamic mechanisms in flapping

wings have been identified. Recent emphasis has been on investigating the interaction

of the various mechanisms with kinematics. For example, water tunnel experiments

conducted using airfoils undergoing combined pitch-plunge motion showed that the

behavior of LEVs was dependent on the reduced frequency for a given effective

angle of attack [50]; in these tests flow field measurements were done using particle
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induced velocimetry (PIV), and the effective angle of attack was defined based on the

combined pitch-plunge motion. Attempts to model the aerodynamic environment in

a quantitative manner have been based on two approaches: (1) computational fluid

dynamics (CFD) simulations based on the solution of the Navier Stokes (NS) equations

and (2) approximate modeling based on surrogates and potential flow solutions.

Simulations using CFD, which yield the best resolution of the unsteady flow field,

have shown good qualitative and quantitative agreement with experimental mea-

surements for rigid airfoils and wings undergoing prescribed motion. Consequently,

CFD based approaches have been employed to conduct numerous follow-up as well as

independent investigations into the aerodynamics of flapping wings [2,31,36,37]. The

present study is focused on approximate aerodynamic models. Therefore, the review

presented in this section is limited to a summary of select references and general

observations/conclusions that are relevant to the work presented in this dissertation.

Investigations using CFD based tools have examined constrained [51] and uncon-

strained flight of hover capable flyers [52], and isolated wings [53], using rigid body

models. Reference [51], which presented a comparative study of the hovering aerody-

namics of various biological flyers (O (10)< Re <O (103)), noted that the mechanisms

that stabilized the LEVs were dependent on Re. Specifically, increased spanwise flow

gradients and stronger tip vortices were observed as Re increased. The importance of

rapid wing rotation in augmenting the forces was more prominent at lower Re than

at higher Re. Reference [53] examined the effect of wing rotation using fruit-fly wing

models (Re =O (102)) undergoing prescribed hover kinematics. Calculations showed

that the forces generated were sensitive to wing rotation, indicating that an insect

could easily maneuver by changing the timing of its wing rotation. In Ref. [52], hover

and rapid maneuvering of fruit flies was simulated using a six degree of freedom

model; the wing and body kinematics were obtained via experiments on free flying

fruit flies. The forces generated were sensitive to wing kinematics, suggesting that a

subtle change in wing and body kinematics was sufficient to allow an insect to execute
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rapid maneuvers.

General comments, which may be gleaned from the substantial amount of litera-

ture on CFD based studies, are:

1. The unsteady aerodynamic forces obtained from CFD simulations have shown

good quantitative correlation with experimental results for a variety of configu-

rations, kinematics, and flow conditions. Therefore, results obtained from CFD

based computations may be used in the absence of experimental data to examine

the accuracy of approximate approaches.

2. Simulations using CFD support the hypothesis that LEVs are the most prevalent

unsteady mechanism in hover capable flyers for Reynolds number in the range

of O (102) to O (104).

3. Quantitative trends pertaining to the effect of wing geometry, kinematics, and

Reynolds number, on the behavior of LEVs, spanwise flow, and tip vortices, have

not been identified. This highlights a need for continued parametric studies on

flapping wings.

4. Increasing the Reynolds number from O (102) to O (103) will increase in the

intensity of spanwise flow and yield an increased contribution of tip vortices to

forces generated by the wing.

Computations based on CFD require substantial amounts of computer time and

are not suitable for parametric studies. Therefore approximate approaches, which

offer a compromise between accuracy and computational efficiency, are important

for trend and design studies. Approximate approaches that have been employed to

model flapping wings include surrogate modeling based on CFD data and unsteady

aerodynamic formulations based on potential flow.

Surrogate modeling involves the construction of computationally efficient approxi-

mations, called surrogates, of an expensive system by interpolating the input/output
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data obtained from a limited number of full order evaluations. The surrogates replace

the expensive computations to predict loads at points that were not included in the

initial set of fitting points. In the context of flapping wing aerodynamics, surrogate

models based on CFD data were used to investigate the impact of LEVs and tip

vortices on the lift and thrust generated by a rectangular wing undergoing prescribed

translation and pitching motions [54,55]. The surrogates were constructed by interpo-

lating the time averaged forces generated by the wing as a function of the amplitudes

and phase difference of wing motions at Re = 100. These studies [54,55] noted that the

impact of tip vortices on force generation is dependent on kinematics, and identified

regions of the parameter space where tip vortices had a beneficial effect.

The approximate unsteady aerodynamic theories, based on potential flow, used for

flapping wing problems can be classified as assumed (or prescribed) wake and free

wake models. Formulations that have practical value have to be able to model the effect

of LEVs and wake capture. It is important to note that these approximate models are

incapable of representing the physics of flow separation and re-attachment. Therefore,

they are based on an ad hoc assumption regarding the onset of flow separation as well

as the location of the separation point.

Assumed wake models are classical unsteady models such as Theodorsen’s theory

[56]. In Ref. [30], the effect of the LEVs in Theodorsen’s theory was incorporated by

modifying the unsteady aerodynamic lift and moment expressions using the Polhamus

leading edge suction analogy [57] that was originally proposed for steady separated

flow on delta wings. This model [30], which was compared to experiments, was capable

of predicting the trends in aerodynamic forces.

Free wake models account for evolution of the wake, thereby providing a reasonable

approximation to the development of the unsteady wake during a flapping cycle. Free

wake models that account for LEVs are two-dimensional formulations that are based

on a discrete vortex representation of the wake [58–62]. These formulations are
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applied in a strip theory manner, and are suitable for flapping wings in hover following

simplifying assumptions on the geometry of the shed wake.

In Ref. [58] the flow field around a rigid thin airfoils was obtained by solving the

boundary integral associated with the velocity field. The velocity field was expressed

as a linear combination of Chebyshev polynomials, wherein the corresponding coef-

ficients are determined during the solution process. This model showed reasonable

agreement with previously published experimental data for plunging airfoils; how-

ever, numerical instabilities were encountered in simulations when a pitching airfoil

interacted with its own wake. Reference [60] extended the approach described in

Ref. [58] to include flexible airfoils undergoing prescribed rigid body plunge motion

and prescribed deformation. It was noted that additional work was required before

the formulation could be used for aeroelastic studies.

Reference [59] considered a flow field description based on the velocity potential,

and outlined a method of solution based on similarity expansion that is valid when

the geometric scale of the LEV is small compared to the airfoil chord. In this approach,

the circulation of the vortices shed from the leading and trailing edges are assumed

to have the same magnitude but opposite signs; the positions are assumed to be

symmetric with respect to the mid chord line. The unsteady loads computed using

this model showed reasonable correlation with those obtained from NS computations

for an accelerating elliptic airfoil at fixed angle of incidence.

A thin airfoil theory that accounts for chordwise flexibility and separation close

to the leading edge was developed in Ref. [61]. The chordwise location of the sepa-

ration point, obtained using independent computations or experiments, is explicitly

incorporated into the formulation. The model compared well with experimental data

for airfoils in steady flow [61], and was employed in Ref. [63] to calculate the forces

generated by a wing undergoing prescribed pitch and plunge motions in the presence

of a free stream. Comparisons showed that the unsteady loads computed using the
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approximate model showed reasonable correlation with those obtained from CFD

calculations based on FLUENT (a commercial software); however, results indicated

that the effect of LEVs was minor for the cases considered.

The development and implementation of a discrete vortex model (DVM) that is

applicable to rigid insect-like flapping wings in hover is presented in Refs. [62, 64].

This model, which extended the airfoil theory developed in Refs. [65–67] to incorporate

LEVs, accounts for wing thickness and camber, and includes a free wake model. It was

assumed in Refs. [62,64] that the separation point was at the leading edge; however,

the formulation is sufficiently general to incorporate flow separation at any other

point on the airfoil. The implementation involved applying the airfoil theory on rigid

flapping wings in a stripwise manner. The spanwise stations, called radial chords in

Ref. [62], were marked using circular arcs of varying radii. The model was used to

simulate rigid airfoils and scaled fruit-fly wings in hover, and for the cases considered,

showed reasonable agreement with experimental data [64].

1.3.3 Aeroelastic Studies and Effect of Wing Flexibility

The importance of wing flexibility for enhancing the force producing capability

of flapping wings has been suggested in several studies. Attempts to examine this

issue in a systematic manner include experimental [49, 68–74] and computational

studies [39,40,48,70,75–81].

Several studies [68,72,73,75,76] have examined the influence of wing flexibility

using aeroelastic tests/simulations in water or other media. Although these attempts

fall under the general category of flapping wing aeroelasticity, it is important to

recognize that interplay between wing flexibility, inertia loads, and aerodynamic

loads, obtained in these studies [68,72,73,75,76] does not capture the interactions in

biological and bio-inspired flapping wings that operate in air.

References [68,75] examined plunging wings in forward flight. The combinations
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of kinematics and flow conditions considered in these studies are more representative

of aquatic propulsion than of flapping wing flight. Reference [75] simulated thin foils

undergoing prescribed pitch and plunge motions in air and water. The aeroelastic

model was obtained by coupling an isotropic thin plate model with an unsteady panel

method. Results showed that wing flexibility that had a beneficial effect in air could be

detrimental in water, and vice versa. Water tunnel tests, which examined the effect of

spanwise flexibility on the thrust, lift, and propulsive efficiency of plunging wings, are

described in Ref. [68]. The wings were actuated using a prescribed sinusoidal motion

for 10,000< Re < 30,000 at several reduced frequencies. Measurements showed that

aerodynamic force generation capacity of the wings was non-monotonic with respect

to flexibility.

Experiments in water, in which the aerodynamic forces generated by rigid and

flexible geometrically scaled hawkmoth wings in hover were measured, are described

in Refs. [72, 73]. The conclusions of these studies are somewhat qualitative and

indicate that only a limited amount of flexibility is beneficial. In Ref. [72], several

wing configurations were actuated using representative hover kinematics Re ∼ 7500

at a frequency of 0.15 Hz. Measurements showed that increasing flexibility caused

a significant drop in forces compared to the rigid wing. In Ref. [73], flexible wings

that closely approximated hawkmoth wings were actuated using several simplified

versions of insect hover kinematics at a frequency of 0.9 Hz. The results showed that

the thrust generated by the flexible wings was significantly larger than that generated

by the rigid wings for all the cases considered.

The earliest attempt to examine the influence of wing flexibility in insect wings us-

ing computational tools was based on coupling FE models of hawkmoth wings with an

unsteady panel method [39,40]. Wing flexibility was incorporated using linear strain

displacement relations and the effect of LEVs and wake-capture were neglected in the

aerodynamic calculations. The wings were actuated using a sinusoidal flap motion in

which the amplitude and frequency were close to realistic values of the corresponding



19

insect. Results indicated that wing flexibility had a beneficial, but minor, effect on

force generation. This study concluded that improved aerodynamic analysis tools

were needed to examine the aeroelastic behavior under realistic operating conditions.

References [30, 70] describe a combined experimental and computational study

using bio-inspired wings that are composed of a mylar membrane stretched over a

metal skeleton. Several configurations were tested up to flapping frequencies of 12 Hz

where O (103)< Re <O (105). The experiments, conducted in air and vacuum, showed

that inertia loads constituted the major portion of loads acting on the flapping wings.

The thrust generated by the wings was found to decrease substantially at higher flap-

ping frequencies. The aeroelastic simulations were conducted using an approximate

model that was obtained by combining an in-house linear plate based FE solver with

an unsteady approximate aerodynamic model that is based on Theodorsen’s theory

modified using Polhamus analogy. Wing flexibility was incorporated using via free

vibration modes. Two sets of simulations were performed: an uncoupled analysis

in which the effect of aerodynamic loads on wing was ignored when computing the

response of the wing, and a coupled analysis in which the aerodynamic loads were

considered when computing the wing response. The results, which showed acceptable

correlation with experiments for the cases considered, indicated that wing flexibility

had a beneficial impact on force generation. The thrust predicted by the coupled and

uncoupled analyses was similar; however, the bending moment and magnitude of

tip deformation were significantly different. An important conclusion of this study

was that the impact of aerodynamic loads cannot be neglected when estimating the

magnitude of wing deformation.

References [49,69] presented a comprehensive experimental study in which the

aeroelastic behavior and thrust generation of anisotropic flapping wings was character-

ized based on their material properties, static and dynamic response, and aerodynamic

environment. The wings, which were based on a Zimmerman planform, were composed

of a membrane that was reinforced by a spar-batten skeleton that was constructed us-
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ing composite prepreg material. Several wing configurations were obtained by varying

the number of prepreg layers in the spar and battens. The experiments included static

bending tests, frequency response measurements in air, and flapping tests in vacuum

and air. In the flapping tests, the wings were actuated using a sinusoidal motion that

had amplitude of 35◦ for frequencies ranging from 5 Hz to 40 Hz and the loads were

measured using a force transducer at the root. Thrust measurements indicated that

the choice of the best flexible configuration was dependent on the flapping frequency;

specifically, the more flexible wings produced maximum thrust at lower frequencies

whereas the stiffer wings were more effective at higher frequencies. A peak in thrust

was obtained when the excitation frequency was close to the resonant frequency of the

wings. Moreover, the tip deformation patterns of the wings flapping in vacuum were

significantly different from those measured in air, suggesting that the aerodynamic

loads may be comparable to inertia loads for the cases considered.

Reference [71] examined the influence of flexibility in biological wings by con-

ducting static and flapping tests using freshly cut and aged hawkmoth wings. Static

bending tests, in which the wings were treated as beams, showed that the spanwise

bending stiffness of the aged wings was considerably greater than that of freshly cut

wings. In subsequent flapping tests, flow field measurements using DPIV showed that

the induced velocity generated by the fresh wings was considerably larger than that

of the aged wings. The wings used in this study were actuated using a flap motion

that approximated the hover kinematics in hawkmoths. Larger induced velocities of

flexible wings implies greater lift generation capacity; therefore, this study concluded

that insects benefited from wing flexibility.

Reference [76] simulated isotropic plunging wings, which were offset by a constant

flap rotation, in hover for Re = 100. The aeroelastic model was obtained by coupling a

viscous incompressible fluid description based on a lattice Boltzmann model to a struc-

tural description based on a lattice spring model. Wing flexibility was incorporated

using linear springs. The lift and power coefficients, and lift-to-power ratio (efficiency),
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were characterized using mass ratio and frequency that is normalized using the reso-

nant frequency of the structure in the viscous fluid. Results showed that a peak in

lift coefficient was obtained for a normalized frequency of 0.95 for all values of mass

ratio; moreover increasing the mass ratio decreased the magnitude of the peak. Peak

efficiency was obtained at a frequency ratio of 1.25 and the magnitude of the peak

increased with increased in mass ratio. Also, specific combination of parameters for

which the lift generated was sufficient to support the weight of a realistic insect were

identified. Consequently, this study concluded that wing flexibility and kinematics

could be tailored so as to generate a desired amount of lift.

In Ref. [48], the fluid-structure interaction in representative dragonfly wings

in hover was simulated using a finite element analysis based on the arbitrary

Lagrangian-Eulerian method. The unsteady aerodynamic loads were computed using

CFD based model. The structural models were based on data obtained from geometric

and static bending tests on dragonfly wings. Simulations were conducted for three

cases: flexible and rigid wings undergoing hover kinematics, and a rigid wing under-

going kinematics that are modified to match the tip motion of the flexible wing. The

results showed that the average energy consumption and lift of the flexible wing was

approximately equal to that of the rigid wing with modified kinematics; however, the

rigid wing required 19% more peak torque and 34% more peak power, indicating that

wing flexibility had a beneficial effect on power consumption.

Numerical simulations, based on NS calculation on a deforming mesh, were

used to examine the effect of wing deformation on the aerodynamic performance

in hoverflies [77]. The aerodynamic forces were computed using a wing that is

undergoing prescribed spanwise and chordwise deformations, wherein the time history

of the deformations were obtained via measurements on hoverflies in free flight. The

simulations, conducted for Re = 800, showed that the deforming wing generated 10%

more lift and required 5% less power compared to a rigid wing. The increase in lift

and decrease in power were attributed to the camber deformation and spanwise twist
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respectively, thus leading to a conclusion that wing flexibility was beneficial to insects.

References [78,79] describe the development of a computational aeroelastic frame-

work obtained by combining geometrically nonlinear beam and shell based structural

dynamic models with a CFD based flow field. The framework, which was validated by

simulating the experiments in Ref. [68] and comparing with aeroelastic simulations

that utilized a structural dynamic model based on MSC MARC, was employed in

Ref. [82] to simulate isotropic Zimmerman wings in hover. In this study [82], the

wings were actuated using a sinusoidal flap motion at a frequency of 10 Hz. For the

cases considered, the tip displacements and pressure distribution computed using the

aeroelastic model showed reasonable correlation with corresponding experimentally

measured quantities. The variation in lift due to flexibility by varying the elastic

modulus of the wings was also examined. The results showed that the lift was non-

monotonic, i.e. first increased and then decreased, with flexibility. Therefore, this

study concluded that only a limited amount of flexibility was beneficial for thrust

generation.

Impact of flexibility on the soaring and forward flight performance of ornithopter

wings was examined using wind tunnel tests [74] and simulations [80,81]. Measure-

ments using nylon- and latex-based wings that are reinforced by a metal frame [74],

for Re = 20,000 to Re = 80,000 and advance ratios ranging from 0.3 to 8, showed that

increasing chordwise flexibility improved the lift-to-drag ratio of wings in soaring

and high speed forward flight, whereas the influence of spanwise flexibility was more

prominent at lower advance ratios. Membrane wings, undergoing prescribed flap and

torsion at Re = 103 and advance ratio of 0.5, were simulated using an aeroelastic

model that is obtained by coupling a linear elastic membrane solver with an unsteady

LES (Large Eddy Simulation) flow solver [80]. Calculations, in which effect of inertia

forces was neglected, showed that the flexible camber prolonged the attachment of

LEVs on the wing surface compared to a rigid wing, thereby increasing the thrust

and lift considerably. Reference [81] simulated rigid and flexible flapping wings in
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forward flight (advance ratios of 0.5 to 4) using an aeroelastic model that combined

a commercially available flow solver (CFD-ACE+) with a structural dynamics solver

(FEMSTRESS). Results, obtained for wings that are composed of a parylene mem-

brane reinforced with a titanium leading edge spar, showed that stiffness distribution

was a key parameter in thrust production; specifically, a stiffer outboard region

enhanced lift whereas a more flexible inboard region enhanced thrust.

1.4 Objectives

Based on a review of literature presented, it is evident that a detailed under-

standing of the influence of wing flexibility in flapping wings in hover and forward

flight is still an unsolved problem. While several studies have found that a certain

amount of wing flexibility is beneficial, a quantitative characterization of this issue

has been inconclusive. Also, a systematic treatment of moderate-to-large deformation

of anisotropic flapping wings in the context of their aeroelastic behavior has not been

considered. Therefore, the primary objective of this dissertation is to contribute to-

wards the quantitative and qualitative understanding of the effect of flexibility on the

performance of anisotropic insect-based flapping wings in hover and forward flight.

Due to the large parameter space associated with the aeroelastic problem of

flapping wings, computational tools that allow a rapid exploration of the space are

extremely useful. To date, approximate aeroelastic modeling of insect-based flapping

wings has been considered in Refs. [30,70]. The aeroelastic model developed in these

studies incorporated wing flexibility in a linear manner, employed an assumed wake

model that does not incorporate the effect of wake capture, and is limited to wings

in hover. Therefore, a nonlinear approximate aeroelastic model that is suitable for

flexible anisotropic wings in hover and forward flight is developed in this dissertation.

The aeroelastic model is obtained by coupling a nonlinear finite element (FE) model of

the wing based on the MARC code [83] with an approximate unsteady aerodynamic
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model that is based on potential flow. The approximate aerodynamic model, which

is based on the formulation originally developed in Refs. [62, 64] for rigid wings in

hover, incorporates the effect of LEVs, wake capture, wing flexibility, effect of Reynolds

number, and effect of free stream due to forward flight. The specific objectives of the

dissertation are as follows:

1. Present a summary of the nonlinear aeroelastic model.

2. Describe the modifications to the aerodynamic model.

3. Determine the suitability of MARC for modeling flexible anisotropic flapping

wings.

4. Describe the development of structural dynamic models for anisotropic wings.

5. Compare results obtained using the approximate aerodynamic model with those

obtained using CFD for cases in which LEVs occur.

6. Compare results obtained using the approximate aeroelastic model with CFD

based and/or available experimental data for flapping wings in hover.

7. Examine the influence of wing flexibility on the performance and behavior of

anisotropic flapping wings in hover and forward flight.

1.5 Novel Contributions of the Dissertations

The main new contributions made in this dissertation are:

1. The development of a reliable and computationally efficient approximate aeroe-

lastic tool that is suitable for flexible insect-based flapping wings in hover and

forward flight. The model accounts for moderate-to-large wing deformation,

LEVs, and wake-capture.
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2. Determined the suitability of the structural dynamic model in MSC MARC to

address the flapping wing problem.

3. Modification of the original aerodynamic formulation [62,64] to account for wing

flexibility, effect of viscosity, and the effect of free stream due to forward flight.

4. Correlation with experimental data generated in Refs. [49,69].

5. Extensive trend studies on rigid and flexible flapping wings in hover and forward

flight.



CHAPTER II

Structural Dynamic Modeling

The structural dynamic models of MAV wings are developed in MARC [83] using

shell elements that are capable of undergoing large amplitude rigid body motion

as well as moderate-to-large flexible deformation. The shell elements are used in

conjunction with kinematic constraints and a variety of constitutive laws to model

isotropic as well as anisotropic flapping wings. A discussion on wing kinematics and

material modeling is provided in this chapter.

2.1 Wing Kinematics

Wing kinematics of a bio-inspired flapping wing include large amplitude, time de-

pendent rigid body rotations imposed at the base (root) of the wing. These kinematics

are usually represented by Euler angles or a similar approach for accounting large

rotations.

2.1.1 Representation of Rigid Body Rotations

Representation of large rigid body rotations, also called finite rotations, has been

treated extensively in literature [84–86]. Any general rotation in three dimensional

(3D) Euclidean space may be represented as a proper orthogonal tensor, and the

26
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operation of rotation on a vector space is equivalent to multiplication by this tensor.

However, parametric representation of rotations leads to efficient formulation of

the dynamics. Such parameterizations are broadly classified as vectorial and non-

vectorial [84, 86]. A minimum of three parameters are required to fully define a

rotation in 3D space; therefore, parameterizations are further classified into minimal

(characterized by three parameters) or non-minimal (characterized by more than three

parameters) representations. Vectorial representations are minimal in nature and

form a geometric vector in 3D space; these include representation using Caley, Gibbs,

Rodrigues, Wiener, or Milenkovic parameters [84]. While rotations are represented

as vectors, they do not behave as vectors except for small or incremental rotations.

Non-vectorial representations use a matrix representation for rotations. They are

either minimal, such as Euler angles, or non-minimal, such as the matrix of direction

cosines, representations based on Euler-Rodrigues, or Caley-Klein parameters.

Euler angles, used to describe the flight dynamics of fixed wing aircraft, have

been used to describe the wing kinematics of flapping wing flyers [18–26]. In MARC,

rigid body rotations may be imposed as boundary conditions either using the rotation

vector or as displacements at two or more nodes [83]. A brief discussion on these

representations is presented next.

Rotation Vector

Any rotation about a fixed pivot can be uniquely described using a rotation vector

shown in Eq. (2.1).

ψ(t)=ψ(t) ê(t) (2.1)
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where ê(t)=


êx(t)

êy(t)

êz(t)

 and ‖ê‖ =
√

ê2
x + ê2

y + ê2
z = 1

where ê(t) and ψ(t) denote the time dependent axis of rotation measured in an inertial

Cartesian coordinate system and the angle of rotation respectively. The effect of the

rotation ψ is defined as multiplication by a rotation tensor R̂(ψ), where:

R̂(ψ) =


cψ+ ê2

x(1− cψ) −êzsψ+ êxêy(1− cψ) êysψ+ êxêz(1− cψ)

êzsψ+ êxêy(1− cψ) cψ+ ê2
y(1− cψ) −êxsψ+ êyêz(1− cψ)

−êysψ+ êxêz(1− cψ) êxsψ+ êyêz(1− cψ) cψ+ ê2
z(1− cψ)

 (2.2)

Here the contracted notation cψ = cosψ, and sψ = sinψ is used. Inverse relations,

using which components of the rotation vector can be computed from a given rotation

tensor, are:

ψ = cos−1
[ R̂11 + R̂22 + R̂33 −1

2

]
êx = (R̂32 − R̂23)

2sinψ

êy = (R̂13 − R̂31)
2sinψ

(2.3)

êz = (R̂21 − R̂12)
2sinψ

where R̂i j, i, j = 1,2,3, denote the elements of the rotation tensor.

The following example illustrates the use of rotation vectors in the context of

flapping wings. Let O and Ow represent non-rotating (stationary) and wing-fixed

Cartesian coordinate systems that coincide at the start of the rotation (t = 0). Let

x and xw denote position vectors, measured in O and Ow respectively, of a point P

that is fixed on the wing. Note that xw is a constant vector and x(0) = xw. After a
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rotation ψ that describes the time dependent wing kinematics, the position vector of

P measured in O is:

x(t)= R̂(ψ) xw (2.4)

Euler Angles

Euler angles correspond to successive rotations that are performed about non-

parallel body-fixed axes [86]. Rotation using Euler angles is specified using three

angles, and a sequence of axes about which each successive rotation is performed.

Each Euler rotation can the conveniently represented as a rotation vector that has a

fixed axis of rotation in the body fixed coordinate system. The complete rotation is

obtained by multiplying the rotation tensors corresponding to each rotation vector as

illustrated by the following example.

Consider a sequence of Euler angles given by ψ1(t) about Yw, ψ2(t) about Xw,

and ψ3(t) about Zw, where Xw, Yw, and Zw are the wing-fixed axes. Using the

previous example of O, Ow, the intermediate orientations of the body-fixed frame

after each rotation are identified: O1 is obtained from O following the first rotation;

O2 is obtained from O1 following the second rotation; and Ow is obtained from O2

following the third rotation. At any time, the position vectors of P are x, x1, x2, and

xw, measured in O, O1, O2, and Ow respectively. These vectors are related as:

x = R̂(ψ1) x1 where ψ1 is defined in O

x1 = R̂(ψ2) x2 where ψ2 is defined in O1 (2.5)

x2 = R̂(ψ3) x3 where ψ3 is defined in O2

Note that ψ1 is a rotation about the Y axis in O, ψ2 is a rotation about the X axis in
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O1, and ψ3 is a rotation about the Z axis in O2. Therefore:

ψ1(t)=ψ1(t)


0

1

0

 ψ2(t)=ψ2(t)


1

0

0

 ψ3(t)=ψ3(t)


0

0

1

 (2.6)

Combining Eqs. (2.5) gives:

x(t) = R̂(ψ1) R̂(ψ2) R̂(ψ3) xw (2.7)

= R̂(ψ1,ψ2,ψ3) xw

where each R̂(ψ j), j = 1,2,3, is obtained by substituting ψ j into Eq. (2.2), and

R̂(ψ1,ψ2,ψ3) is the rotation tensor corresponding to the complete rotation.

It is important to note that different sequences of rotation may result in the same

rotation tensor. Therefore, Euler angles that correspond to a given rotation tensor are

not unique. A comprehensive discussion on the procedure to compute Euler angles

from a given rotation tensor by assuming different sequences is presented in Ref. [86].

The following terminology is used in this dissertation: a time dependent rotation

about a fixed axis of rotation is referred to as a two dimensional (2D) rotation; pure

flapping or pure pitching motions fall into this category. The most general case of

a rotation in which magnitude as well as the axis of rotation are time dependent

are called three dimensional (3D) rotations. Thus, insect-like kinematics, which are

described by a combination of two or three Euler angles, are 3D rotations.

2.1.2 Implementation in MARC

In MARC, time dependent rigid body rotations may be input either as rotation

boundary conditions (BCs) at a single node or as displacement BCs at selected nodes

[87]. The time history of the BCs is specified either directly in the input file or via
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the FORCDT user subroutine. When specified in the input file, the values of the

DOFs at the node(s) are provided for each time step. When specified in the FORCDT

subroutine, incremental values of DOFs are provided.

The incremental rotation vector is:

∆ψ(t)=ψ(t+∆t)−ψ(t) (2.8)

where ψ(t) is calculated for a given R̂(t) using Eq. (2.3). The components of ψ(t) or

∆ψ(t) are specified as the rotation BCs at the node. The displacement DOFs at the

node are constrained when specifying rotation BCs.

The displacements and incremental displacements are:

u(t)= x(t+∆t)− x(t) and ∆u(t)= u(t+∆t)−u(t) (2.9)

where x(t) is the time dependent position vector of a point in the unrotated coordinate

system as discussed in the preceding examples. The components of u(t) or ∆u(t) are

specified as the displacement BCs at the selected nodes. The rotational DOFs of the

nodes are not constrained when specifying displacement BCs.

2.1.3 Kinematic and Rigid Body Constraints

In MARC, the kinematic BCs and rigid body constraints are enforced using an

augmented Lagrange multiplier method that is also employed in the nonlinear solver

‘SOL 400’ in MSC NASTRAN [87]. The augmented Lagrange multiplier (ALM) method,

described in Chapter 3 of Ref. [87], is summarized next.

The kinematic constraints imposed on the nodal DOFs in the global structure,

represented in matrix form, are:

ΦΦΦc(u)= uc (2.10)
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Using the ALM method, the constraints are included as an additional contribution,

Πcon, to the elastic strain energy of the structure, where:

Πcon = kλ λT (ΦΦΦc −uc)+ 1
2

(ΦΦΦc −uc)T kpe (ΦΦΦc −uc) (2.11)

In Eq. (2.11), the first and second terms are the contribution of the Lagrange multipli-

ers and the added penalty term to the strain energy respectively, and kpe is a penalty

stiffness. In traditional penalty methods, the penalty stiffness is typically an order

or more higher than the stiffness of the structure and may result in stiff equations

and ill-posed matrices. Using the ALM method, it is noted that a kpe of the order of

the structural stiffness is adequate, thus representing an advantage over traditional

penalty formulations [88,89]. The energy due to the constraints may be expressed as

the work done by an internal force Econ that is obtained following a first variation of

Πcon:

δΠcon = δuT HT (
kpe(ΦΦΦc −uc )+kλλ

)+δλT kλ (ΦΦΦc −uc )

=
{
δuT δλT

}HT (
kpe (ΦΦΦc −uc )+kλ λ̃

)
kλ (ΦΦΦc −uc )

 (2.12)

≡
{
δuT δλT

}
Econ (2.13)

where

H = ∂

∂u
(ΦΦΦc −uc )= ∂ΦΦΦc

∂u
(2.14)

and

Econ =
HT (

kpe (ΦΦΦc −uc )+kλλ
)

kλ (ΦΦΦc −uc )

=
Eu

con

Eλ
con

 (2.15)

The contribution of the constraints to the strain energy vanishes if the constraints

are imposed in an exact manner. Therefore, imposing the constraints in a numerical

manner involves minimizing Econ. Consider a first order Taylor expansion of Econ:



33

Econ(u+∆u,λ+∆λ)= Econ(u,λ)+Kcon(u,λ)

∆u

∆λ

 (2.16)

The corresponding tangent stiffness matrix is:

Kcon =
K11 K12

K21 K22

 (2.17)

where

K11 = ∂Eu
con

∂u
= HT(u)kpe H(u)+ ∂HT

∂u
(u)

(
kpe (ΦΦΦc(u)−uc )+kλλ

)
K12 = ∂Eu

con

∂λ
= kλHT(u) (2.18)

K21 = ∂Eλ
con

∂u
= kλH(u)

K22 = ∂Eλ
con

∂λ
= 0

Here, Econ and Kcon represent the contribution of the constraints to the residual

force vector and the tangential stiffness matrix of the constrained elastic structure

respectively. These are incorporated during the assembly of the global residual force

and global stiffness matrix of the structure, and the residual force vector is minimized

using a Newton-Raphson algorithm as outlined in Section 4.1.

2.2 Modeling Composite Materials

The constitutive laws used to model composite materials in MARC are discussed

in Volume A of Ref. [83]. The shell elements available in MARC are based on thin

and thick shell formulations. The specific forms of the constitutive law used in these
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formulations are given in Eqs. (2.19) and (2.20), and the stress-strain relations for a

composite element are given in Eq. (2.21). Thin shell elements utilize a plane stress

assumption to calculate the stresses and strains through the thickness of the element.

Thick shell elements, on the other hand, consider the effect of transverse shear

explicitly in the formulation. In both shell formulations, the numerical integration

through the thickness is performed using Simpson’s rule for isotropic materials and

trapeziodal rule for composite materials. In this dissertation, anisotropic wings are

modeled using thick shell elements based on an assumption that explicit treatment

of transverse shear may improve accuracy when modeling the structural dynamic

behavior of composite structures. Isotropic wings are also modeled using thick shell

elements, although the differences between predictions using thick and thin shells is

expected to be small for these wings.

For thick shell elements



ε11

ε22

γ12

γ23

γ31


=



1
E11

−ν21
E22

0 0 0
−ν12
E11

1
E22

0 0 0

0 0 1
G12

0 0

0 0 0 1
G23

0

0 0 0 0 1
G31





σ11

σ22

τ12

τ23

τ31


(2.19)

For thin shell elements


ε11

ε22

γ12

=


1

E11

−ν21
E22

0
−ν12
E11

1
E22

0

0 0 1
G12



σ11

σ22

τ12

 (2.20)

where the 1, 2, and 3 directions are shown in Figure 2.1, and

ν21 = ν12

(
E22

E11

)
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x1
x2

x3

x3

Figure 2.1: Mid-plane of a 4-noded shell element and local coordinate system.

In both shell formulations, the stresses σ in a laminated composite element, which

is composed of one of more layers of the orthotropic material, are obtained from the

mid-plane stresses and strains using classical lamination theory:

σ=C(ε− x3χ) (2.21)

where ε is the vector of mid-plane strains, x3 is the thickness coordinate measured

from the mid-plane as indicated in Figure 2.1, and χ is the vector of curvatures at the

mid-plane. Equation (2.21), which represents the constitutive law for the composite

element, is incorporated when formulating the equations of motions using the updated

Lagrangian (UL) approach.



CHAPTER III

The Approximate Aerodynamic Model

The unsteady loads generated by representative MAV wings are obtained using an

approximate aerodynamic model that was originally developed in Refs. [62,64]. Sev-

eral modifications to the original formulation to incorporate wing flexibility, effect of

Reynolds number, and free stream velocity due to forward flight, have been introduced

in this dissertation. The final version of the aerodynamic formulation is described in

this chapter. The assumptions and limitations of the original formulation, as well as

the modifications introduced, are carefully identified so that the improvements are

clear.

3.1 Summary of the Original Model

The aerodynamic model described in Refs. [62,64] consists of two components: (1)

a discrete vortex based airfoil theory that incorporates LEVs and a free wake model,

and (2) application of the airfoil theory to rigid insect-like flapping wings in hover.

The airfoil theory, based on the approach originally proposed by von Karman and

Sears [90], involves representing the bound and shed vorticity in an airfoil-wake

system using vortex pairs. The momentum per unit span of the system is obtained as

the sum of the momentum of the vortex pairs. The expressions for aerodynamic lift

36
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and moment in Ref. [90] were derived for thin airfoils undergoing small amplitude

pitch-plunge motions, assuming attached flow over the airfoil and a planar (flat) wake.

In Refs. [65,67], the classical approach [90] was generalized to include thick cambered

airfoils undergoing large amplitude pitch, plunge, and lead-lag motions, and a discrete

vortex based free wake model. References [62,64] extended the formulation described

in Refs. [65,67] to include the effect of LEVs, and applied the airfoil theory in a strip

theory manner to compute the aerodynamic loads generated by a flapping wing. An

overview of the formulation [62,64] follows.

3.1.1 Overview of the Aerodynamic Formulation

The overall approach is summarized in Figure 3.1. First, the wing is divided into

several spanwise stations, as shown in Figure 3.2, where each section is represented

as an airfoil. For each airfoil, an airfoil-wake surface that captures the airfoil degrees

of freedom (DOF), and approximates the geometry of the shed wake, is identified.

Next, the airfoil and the airfoil-wake surface are transformed to a circle in the complex

plane using a conformal mapping. Thus, the airfoil bound and shed wake vorticity are

computed on the complex plane. The quasi-steady component of vorticity is obtained

by neglecting the effect of the shed wake. The strength of shed vorticity is computed

by enforcing a stagnation condition at the leading edge (LE) and a Kutta condition

at the trailing edge (TE). The airfoil bound vorticity is obtained as a sum of the

quasi-steady and wake-induced vorticity on the airfoil. Next, the vorticity in the

complex plane is transformed back to the airfoil-wake surface (physical plane) using

an inverse transform. The unsteady loads acting on the airfoil are obtained from

the total vorticity. Finally, the shed vorticity is convected using the Rott-Birkhoff

equation, which is derived from Biot-Savart law for two dimensional flow.
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Figure 3.1: Schematic of the aerodynamic formulation.
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Figure 3.2: Spanwise sections and wing-fixed axes.
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3.1.2 Assumptions

Important assumptions and limitations of the aerodynamic model developed in

Refs. [62,64] are summarized below:

1. The wings are rigid, thin (zero thickness), and planar (flat plate).

2. The onset of flow separation, and the separation point, are assumed in an ad

hoc manner. The flow is assumed to be either attached or separated at all times.

3. The formulation is based on potential flow (inviscid, irrotational, and incom-

pressible).

4. The aerodynamic interaction between the various wing sections is neglected.

5. The effects of spanwise flow and tip vortices are not modeled.

6. The spanwise stations on the wing are described by circular arcs called radial

chords, as shown in Figure 3.3. Reference [62] justifies the use of radial chords

by the arguing that, due to the flapping motion of the wing, spanwise sections

that are viewed by the oncoming flow are better approximated using a radial

chord than a straight chord.

7. The airfoil and its shed wake are confined to the NC that is described by the

motion of the airfoil.

8. The effect of a free stream velocity due to forward flight is not incorporated

during implementation. Consequently, the model described in Refs. [62,64] is

limited to flapping wings in hover.

9. The unsteady aerodynamic loads are computed using the vortex impulse method.

This approach, which yields the integrated aerodynamic force and moment on

the airfoil, is unsuitable for aeroelastic analyses involving plate- or shell-like

structures that require pressure loading on the structure.
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Flapping
motion

Radial chords

Figure 3.3: Radial chords used in the original approach.

3.1.3 Modifications Introduced

The modifications incorporated in the current study, including the sections of this

thesis where they are described are:

1. Wing flexibility is incorporated using a time dependent radius of the airfoil-wake

surface (Section 3.2.2). Effect of chordwise flexibility is incorporated in two steps:

(1) calculating the zero lift angle due to camber (Eq. (3.2)) and (2) including

airfoil velocities in the calculation of the quasi-steady vorticity (Section 3.2.3).

2. Effect of free stream velocity due to forward flight is incorporated (Section 3.2.3).

3. The effect of Reynolds number is incorporated in a partial manner by including

the effect of viscosity in the expression of induced velocity due to shed vorticity

(Sections 3.2.5, 3.2.6, and 3.3.2).

4. The unsteady Bernoulli equation is used to calculate the aerodynamic pressure

on the airfoil, as described in Section 3.3.2. Thus, the aerodynamic model is

suitable for aeroelastic analysis of wings modeled using plate or shell elements.

5. In Refs. [62,64], the inverse of the conformal mapping was obtained using an

asymptotic approach that was described in Ref. [67]. In the current study, the

inverse is calculated using a direct approach (Page 58).
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6. The spanwise stations on the wing are assumed to be straight and normal to

the feathering axis of the wing, as shown in Figure 3.2.

3.2 Description of the Modified Approach

The modified formulation, and its implementation for flapping wings in hover and

forward flight, closely follow the approach described in Section 3.1.1 and shown in

Figure 3.1 and are described next.

Definition of the Airfoil-Wake Surface

Wing kinematics of biological flyers, in both hover and forward flight, consists

of a predominant sweep or flap motion in the stroke plane (SP), pitching about the

feathering axis, and a comparatively small elevation angle, as indicated in Figure

1.3 [21]. Therefore, the feathering axis of the wing is assumed to move on the stroke

plane (SP) [62] and the surface described by the airfoil motion is a cylinder that is

normal to the stroke plane; this normal cylinder (NC) is depicted in Figures 3.4 and

3.5.

In hover [62], the shed wake is assumed to be confined to the NC; therefore, NC

is a convenient choice for the airfoil-wake surface. For the case of forward flight, the

vortices shed into the wake are carried away with the free stream due to velocity of

forward flight and therefore a suitable approximation to the wake surface has to be

identified.

3.2.1 Extension to Forward Flight

Forward flight is characterized by a free stream velocity vector assumed to lie

in the YSP −ZSP plane as depicted in Figure 3.4. A complete description of the free

stream velocity involves two independent parameters u∞ and v∞, which are defined
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as positive along YSP and ZSP respectively. These quantities are determined from the

tip speed, advance ratio, and stroke plane inclination angle, using Eq. (3.1).

µ= −u∞
Utip

so that u∞ =−µUtip and v∞ = u∞ tan
(
βsp

)
(3.1)

where u∞, v∞, and βsp are shown in Figure 3.4. For the direction of flight assumed in

this study, indicated in Figure 1.3, u∞ and v∞ are negative due to the sign convention

adopted to describe the free stream velocity. The advance ratio is defined as a positive

number. Therefore, the negative sign in Eq. (3.1) ensures that µ> 0 yields negative

values of u∞ and v∞.

SP

ZSP

YSP

βSP

Shed wake

βSP

Direction 
of 

flight
(horizontal)

Vertical

Figure 3.6: Flapping wing vehicle in forward flight. Shaded region indicates shed
wake surface.

As mentioned earlier, experimental observations on live flyers suggest that a

transition from hover to forward flight includes tilting the SP. It is expected that a

wake surface suitable for wings in forward flight is tilted with respect to the free

stream velocity in a similar manner. In this study, it is assumed that the wake surface

is cylindrical and is tilted such that it remains normal to the SP as depicted in Figure

3.6. Thus, the NC, which is used for hover, is also used to approximate the geometry

of the shed wake in forward flight. The effect of free stream due to forward flight



44

is incorporated by modifying the expressions used to determine the quasi-steady

component of vorticity and the vortex wake model as described later.

Airfoil Coordinate Systems and Geometric Parameters

Several rectangular coordinate systems, which are defined on the flattened NC,

are used in the analysis of each airfoil section. These coordinate systems, shown in

Figures 3.7 and 3.8, are listed below, where the unit vectors corresponding to the axes

are denoted by ê with an appropriate subscript:

j(ξ  ,η  )j
A AηA

ξAαzll

η

ξ

Mean camber line

βj
LE

TE

Mid-chord

Figure 3.7: Coordinate systems used in the computation of airfoil camber.

1.
(
ξA,ηA)

: LE fixed coordinate system. Origin at LE; êξA along the chord; êηA

normal to the chord; identified by superscript A.

2.
(
ξ,η

)
: Zero lift coordinate system. Origin at the mid-chord; êξA along the zero

lift line (ZLL); êηA normal to ZLL.

3.
(
ξI ,ηI): Stationary coordinate system fixed to the NC; also shown in Figure 3.5.

êξI is parallel to the stroke plane; êηI is parallel to ZSP ; identified by superscript

I.

4.
(
ξnr,ηnr): Non-rotating coordinate system that translates with the airfoil. Origin

at the intersection of the feathering axis of the wing and the normal cylinder.

êξnr and êηnr are parallel to the stroke plane and êηI respectively; identified by

superscript nr.
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5.
(
ξ f a,η f a)

: Coordinate system fixed to the center of rotation of the airfoil. Origin

at the intersection of the feathering axis of the wing and the normal cylinder.

êξ f a and êη f a are parallel to êξ and êη respectively; identified by superscript f a.

6. Complex plane (Z ): Obtained via transformation of ξ−η; an airfoil of chord c

is transformed to a circle of radius R0 so that polar coordinates, i.e. (R0,θ), are

used to identify points on the airfoil. The LE is located at (−R0,π) and TE is

located at (R0,0).

An important step in the aerodynamic formulation is the transformation of the

airfoil to a circle on the complex plane via conformal mapping, the coordinates of

the airfoil and shed wake referred to the ξ−η coordinate system are transformed.

Therefore, the zero lift line is identified as follows. For each airfoil section, (ξ̄A
j , η̄A

j ),

j = 1, ...,nc, denotes coordinates of the mean camber line of the airfoil as shown in

Figure 3.7, and the zero-lift angle of attack, denoted by αzll, is obtained from thin

airfoil theory (pp. 68, Ref. [91]) as follows :

αzll =−2
π

nc∑
j=2

η̄A
j

c
∆β j

(1+cos(β j))
(3.2)

where β j = tan−1(η̄A
j /ξ̄A

j ); β1 = 0; and ∆β j = β j −β j−1. Then, (êξ, êη) is obtained from

(êξA , êηA ) by a rotation of αzll about
(
êηA × êξA

)
followed by a translation of the origin

to the mid-chord.

3.2.2 Airfoil Degrees of Freedom and Spanwise Flexibility

Each airfoil has three degrees of freedom (DOF) that are defined in ξI −ηI on

the flattened NC as shown in Figure 3.8; these are lead-lag (l), plunge (h), and

pitch (α) respectively. The lead-lag and plunge DOFs are positive along êξI and

êηI respectively, and α is positive clockwise, as indicated in Figure 3.8. The airfoil

DOFs and corresponding velocities are obtained from the structural dynamic model
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Figure 3.8: Degrees of freedom of the airfoil and coordinate systems used.

at each time step. Therefore, these quantities include the effect of wing deformation

in addition to the effect of the wing kinematics. Spanwise deformation of the wing

also causes a change in the radius of the NC associated with each airfoil. The change

in radius due to flexibility is incorporated in an approximate manner.

Let R0
j and R t

j denote the radial locations of a wing section at the start of the

motion and at some subsequent time t as shown in Figure 3.9. An average radius

of the NC at time t, which is used to calculate the distances on the flattened NC, is

defined by

R̄ t
j = 0.5

(
R0

j +R t
j

)
(3.3)

Geometric Parameters

The geometric parameters of the each airfoil required for the computation of the

aerodynamic loads are: the radius of the circle in the complex plane (R0), the camber

(σ) and the thickness (τ) parameters. In the current study, the airfoil thickness is

prescribed and assumed to be constant and the camber is approximated from the zero

lift angle. Subsequently, τ and σ are calculated following the description given in pp
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Figure 3.9: Top view of stroke plane showing the time dependent radius of normal
cylindrical surface.

479-484, Ref. [92], as shown in Eq (3.4).

τ=
taf
h,max

2.6
and σ=− c tanαzll

4
(3.4)

The procedure outlined above approximates a cambered airfoil as a circular arc.

The Generalized Joukowski Transformation

The conformal mapping that relates a circle to a Joukowski airfoil [62] is given by

ζ= z+ (1−ε)R2
0

z
+ εR3

0

2z2 (3.5)
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where ζ= ξ+ ıη, z = R0eıθ, and ε= (τ− ıσ)/R0. Substituting expressions for ζ, z, and

ε, into Eq. (3.5) one obtains

ξ = 2R0 cosθ+σ(sinθ− 1
2

sin2θ)−τ(cosθ− 1
2

cos2θ)

η = τ(sinθ− 1
2

sin2θ)+σ(cosθ− 1
2

cos2θ) (3.6)

Substituting θ = 0 and θ =π yields the coordinates of the trailing and leading edges:

(ξte,ηte)= (2R0 − 1
2
τ,

1
2
σ) and (ξle,ηle)= (−2R0 + 3

2
τ,−3

2
σ) (3.7)

The airfoil chord is defined as

c =
√

(ξle −ξte)2 + (
ηle −ηte

)2 (3.8)

Substituting Eq. (3.7) into Eq. (3.8) and simplifying, one obtains

R0 = 1
4

√
c2 −4σ2 + 1

2
τ (3.9)

where the chord is calculated from the structural dynamic model as

c =
√(

ξ̄A
1 − ξ̄A

nc

)2 + (
η̄A

1 − η̄A
nc

)2 (3.10)

Subsequently, the bound and shed vorticity and circulation are computed on this circle

in the complex plane.

3.2.3 Quasi-steady Vorticity and Circulation

Quasi-steady vorticity is the sum of two components: (a) a free stream component

that is computed from the instantaneous angle of attack and free stream velocity, and

(b) an unsteady component that is computed from airfoil velocities.
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Figure 3.10: Component of u∞ normal to the instantaneous position of the wing. .

Free stream component of vorticity

The vorticity and circulation due to a free stream, derived in Refs. [65,67], are

γ f s(θ, t) = −2uI

[
sin(θ−α)+sin(α)

]
(3.11)

Γ f s(t) = −4πR0uI sin(α)

where the vorticity and circulation are positive in the counter-clockwise direction as

indicated in Figure 3.8. In Ref. [62], the analysis was limited to hover; therefore, it was

assumed that uI ≡ 0 and Eq. (3.11) did not contribute to the quasi-steady component

of vorticity. In the current study, the effect of free stream velocity is incorporated into

Eq. (3.11). The free stream velocity vector, and its magnitude, at each wing section
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are given by

UI = −u∞ cos ϕ̃w êξI +v∞ êηI

UI = ∣∣UI
∣∣=√(

u∞ cos ϕ̃w
)2 +v2∞ (3.12)

where ϕ̃ is depicted in Figure 3.10 and subscript w indicates wing section. The

instantaneous angle of attack of the airfoil, which is equal to the angle between the

free stream velocity vector and êξ is shown in Figure 3.8 and is given by:

αtot =α+α f s where α f s = tan−1
(

vI

uI

)
= tan−1

(
− v∞

u∞ cos ϕ̃w

)

Thus, the modified expressions for vorticity and circulation due to the free stream

velocity and angle of attack are given by

γ f s(θ, t) = −2UI

[
sin(θ−α−α f s)+sin

(
α+α f s

)]
(3.13)

Γ f s(t) = −4πR0UI sin
(
α+α f s

)

Vorticity due to Airfoil Velocities

ξ

η
vξ

vη

shear layer 1

shear layer 2

Airfoil and shed wake

vx

vyvθ vr

R0
θ x

iy
shear layer 1

shear layer 2

Circle on
complex plane

Figure 3.11: Airfoil and corresponding circle showing shear layers.
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The unsteady component of vorticity is computed by enforcing the normal flow

boundary condition on the circle. Derivation for a rigid airfoil is given in Ref. [62],

and the extension for the flexible airfoil case is described next. The components of

velocities on the surface of a flexible airfoil in the ξ−η coordinate system, shown in

Figure 3.8, are given by

v f lex
ξ

= vrigid
ξ

+∆v f lex
ξ

v f lex
η = vrigid

η +∆v f lex
η (3.14)

where the velocities for a rigid airfoil [62] are given by

vrigid
ξ

= l̇ cosα− ḣsinα+ηα̇
vrigid
η = l̇ sinα+ ḣcosα− (ξ+a)α̇ (3.15)

The fluid does not penetrate the surface of the airfoil; therefore, the normal velocity of

the fluid on the surface of the airfoil is given by Eq. (3.14). The polar components of

velocity on the circle are obtained from the corresponding Cartesian components on

the airfoil (shown in Figure 3.11) as follows:

vr − ıvθ = (vx − ıvy)eıθ = (v f lex
ξ

− ıv f lex
η )

dζ
dz

eıθ

= (Av f lex
ξ

+Bv f lex
η )+ ı(Bv f lex

ξ
− Av f lex

η ) (3.16)

where

A = 1
R0

[τ (cosθ−cos2θ)−σ (sinθ−sin2θ)]

B = 1
R0

[2R0 sinθ−τ (sinθ−sin2θ)−σ (cosθ−cos2θ)] (3.17)
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Thus, the normal velocity of the fluid on the circle is given by

vr(θ, t)
∣∣ f lex
us = (Avrigid

ξ
+Bvrigid

η )+ (A∆v f lex
ξ

+B∆v f lex
η ) (3.18)

The tangential component of fluid velocity on the circle is obtained from the radial

velocity by applying conjugate function theory [92,93]. Then,

vθ(θ, t)
∣∣ f lex
us = −1

2π

2π∮
0

vr(ς, t)
∣∣ f lex
us cot

(
ς−θ

2

)
dς

= vθ(θ, t)
∣∣rigid
us +∆vθ(θ, t)

∣∣ f lex
us (3.19)

where vθ(θ, t)
∣∣rigid
us was derived in Ref. [62] as

vθ(θ, t)
∣∣rigid
us = 1

R0

[
− A1 cosθ− (A2 + 1

2
A7)cos2θ+ A3 sinθ+

(A4 − 1
2

A5 + 1
2

A6)sin2θ− A8 sinθ cos2θ+ (3.20)

A9 sinθsin2θ− A10 cosθ cos2θ+ A11 cosθsin2θ
]

where A1 to A11, derived in Ref. [62], are given as follows.
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A1 =−σ(l̇ cosα− ḣsinα)+ (2R0 −τ)(l̇ sinα+ ḣcosα)+a(τ−2R0)α̇

A2 =σ(l̇ cosα− ḣsinα)+τ(l̇ sinα+ ḣcosα)−aτα̇

A3 = τ(l̇ cosα− ḣsinα)−σ(l̇ sinα+ ḣcosα)+aσα̇

A4 =−τ(l̇ cosα− ḣsinα)+σ(l̇ sinα+ ḣcosα)−aσα̇

A5 =−2R0σα̇

A6 = 2R0σα̇ (3.21)

A7 = 4R0(τ−R0)α̇

A8 = R0σα̇

A9 =−1
2

(τ2 +σ2 +2R0τ)α̇

A10 = 1
2

(τ2 +σ2 −4R0τ)α̇

A11 =−2R0σα̇

Note that

∆vθ(θ, t)
∣∣ f lex
us = −1

2π

2π∮
0

(
A∆v f lex

ξ
+B∆v f lex

η

)
cot

(
ς−θ

2

)
dς (3.22)

In this study, ∆v f lex
ξ

and ∆v f lex
η are assumed to be averaged quantities that are

independent of the ς in Eq. (3.22). However, the contributions are computed by

substituting the time dependent values of these components at each time step to

capture the variation of velocities in an approximate manner. It is important to note

that this assumption has to be re-examined if the contribution of chordwise velocities

to the vorticity is comparable to the vorticity due to rigid body motion and wake
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interactions.

∆vθ(θ, t)
∣∣ f lex
us =− 1

2π

 2π∮
0

A cot
(
ς−θ

2

)
dς

∆v f lex
ξ

− 1
2π

 2π∮
0

Bcot
(
ς−θ

2

)
dς

∆v f lex
η

(3.23)

The evaluation of the integrals in Eq. (3.23) is described in Appendix A. The final

form of Eq. (3.23) is obtained as

∆vθ(θ, t)
∣∣ f lex
us = 1

R0

[
τ
(
sinθ−sin2θ

)+σ(
cosθ−cos2θ

)]
∆v f lex

ξ
(θ, t) (3.24)

+ 1
R0

[
−2R0 cosθ+τ(cosθ−cos2θ

)−σ(
sinθ−sin2θ

)]
∆v f lex

η (θ, t)

Combining Eqs. (3.19), (3.20), and (3.24), the expression for the tangential velocity of

the fluid on the surface of the airfoil is given as:

vθ(θ, t)
∣∣ f lex
us = 1

R0

[
− A1 cosθ− (A2 + 1

2
A7)cos2θ+ A3 sinθ+ (A4 − 1

2
A5 + 1

2
A6)sin2θ

−A8 sinθ cos2θ+ A9 sinθsin2θ− A10 cosθ cos2θ+ A11 cosθsin2θ
]

+
∆v f lex

ξ

R0

[
τ (sinθ−sin2θ)+σ (cosθ−cos2θ)

]
+ (3.25)

+∆v f lex
η

R0

[
−2R0 cosθ+τ (cosθ−cos2θ)−σ (sinθ−sin2θ)

]

Subsequently, the vorticity on the circle [62] is obtained as

γ
f lex
us (θ, t) = vθ(θ, t)

∣∣ f lex
us + Γ0

2πR0
(3.26)

where

Γ0 = 2π
[
2R0

(
l̇ sinα+ ḣcosα

)+ α̇(
1
2
τ2 + 1

2
σ2 −2R0(R0 +a)

)]
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3.2.4 Effect of Fluid Viscosity

In a viscous fluid, the influence of shed vorticity at a point decays with increase

in distance as well as the age of the vortex. At sufficiently large Reynolds numbers,

the temporal decay of the vortex strength is slow enough compared to the time of

simulation so that one may assume that the strength of the vortex is constant with

respect of time. However, this effect needs to re-examined at lower Reynolds number.

In this study, the decay of vortex strength is incorporated in the expression of

induced velocity due to shed vorticity. From Ch. 13, Ref. [94], the induced velocity due

to a Lamb-Oseen vortex, which arises as an exact solution of the NS equations for 2D

viscous flow, is given by:

vind

∣∣∣
viscous

= vind

∣∣∣
inviscid

(
1− e−

r2
v

4ν∞ tv

)
= vind

∣∣∣
inviscid

(
1− e−Re r2

v
4tv

)
(3.27)

and Γ
∣∣∣
viscous

= Γ
∣∣∣
inviscid

(
1− e−

r2
v

4ν∞ tv

)

where rv denotes the distance between the vortex and the point at which induced

velocity is computed, tv denotes the age of the vortex, and

Re = Ure f c
ν∞

; rv =
rv

c
; tv =

tvUre f

c

Incorporating this effect into the aerodynamic model modifies the constraint conditions

used to determine the shed vorticity, the expressions used to computed wake induced

and bound vorticity, the evolution of the wake, and the calculation of the pressure

using the unsteady Bernoulli equation.
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Figure 3.12: Distances and angles that are used in the computation of velocity poten-
tial.

3.2.5 Determination of Shed Vorticity

Following Ref. [62], the induced velocity on the circle due to an inviscid 2D vortex

shed into the wake is:

vind (θ, t)
∣∣∣
inviscid

= − 1
2πR0

∮
wk

R

(
zwk +R0eıθ

zwk −R0eıθ

)
dΓwk (3.28)

where, R denotes real part, wk = wk1+wk2, and wk1 and wk2 denote shear layers

emanating from the airfoil shown in Figure 3.12. Combining Eqs. (3.27) and Eq.

(3.28), the induced velocity becomes

vind (θ, t)
∣∣∣
viscous

= − 1
2πR0

∮
wk

[
R

(
zwk +R0eıθ

zwk −R0eıθ

)
dΓwk

(
1− e−

r2
v

4ν∞ tv

)]
(3.29)

where rv =
∣∣∣zwk −R0eıθ

∣∣∣
where, rv is depicted in Figure 3.12, and the effect of viscosity is included inside

the integral on the right hand side (RHS). At each time step, the strengths of the

vortices shed from the edges of the airfoil are determined from the Kutta condition at
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the TE and a stagnation condition at the LE on the circle in the complex plane [62].

These constraint conditions on induced velocity, originally derived in Ref. [62] for

inviscid flow, are based on the assumptions: a streamline that has separated at the

LE re-attaches further downstream, and flow leaves the TE smoothly. Inclusion of the

effect of viscosity modifies the expressions.

The stagnation condition at the LE:

1
R0

[
A1 −

(
A2 + 1

2
A7

)
+ A10

]
−2UI sin

(
α+α f s

)
=

1
2πR0

∮
wk

[
R

(
zwk −R0

zwk +R0

)
dΓwk

(
1− e−

r2
v

4ν∞ tv

)]
(3.30)

where rv = |zwk +R0|

The Kutta condition at the TE:

Γ0 =−
∮

wk

[
R

(
zwk +R0

zwk −R0

)
dΓwk

(
1− e−

r2
v

4ν∞ tv

)]
where rv = |zwk −R0| (3.31)

where, the effect of viscosity is included inside the integrals on the RHS of Eqs. (3.30)

and (3.31). In Eqs. (3.30) and (3.31), the positions of the most recent shed vortices

as well as the strengths are unknown. The position vectors of the most recent shed

vortices are determined using a vortex placement scheme in which shed vortices are

placed at specified distances from the TE and LE [64]. Position vectors of the vortices

shed at the end of the first time step are given by

At the LE : ζI (
dΓwk2,1

) = ζI
le −

1
2

(
qI

le −UI

)
∆t

At the TE : ζI (
dΓwk1,1

) = ζI
te −

1
2

(
qI

te −UI

)
∆t
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Position vectors of the vortices shed at any subsequent time step are given by:

At the LE : ζI (
dΓwk2, j

) = ζI
le −

1
3

(
ζI

le −ζI (
Γwk2, j−1

))
At the TE : ζI (

dΓwk1, j
) = ζI

te −
1
3

(
ζI

te −ζI (
Γwk1, j−1

))

At any time step j, dΓwk1, j and dΓwk2, j are the only remaining unknowns [64]. The

positions and strengths of the previously shed vortices are known; therefore, Eqs.

(3.31) and (3.30) are sufficient to determine the shed vorticity. Solution of Eqs. (3.31)

and (3.30), along with history of the previously shed vortices, yields the total vorticity

shed into the wake. Subsequently, the wake induced vorticity on the circle is given by:

γwi(θ, t)
∣∣∣
viscous

=− Γ0

2πR0
− 1

2πR0

∮
wk

[
R

(
zwk +R0eıθ

zwk −R0eıθ

)
dΓwk

(
1− e−

r2
v

4ν∞ tv

)]
(3.32)

where rv =
∣∣∣zwk −R0eıθ

∣∣∣
The airfoil bound vorticity on the circle is obtained by combining Eqs. (3.13), (3.26),

and (3.32):

γb = γ f s +γ f lex
us +γwi

∣∣∣
viscous

(3.33)

The Inverse Joukowski Transform

Following the calculation of bound and shed vorticity in the complex plane, the

positions and strengths of vortices are transformed from the complex plane to the

airfoil wake surface. The velocities and vortex strengths are transformed:

q(ζ)= q(z)
dζ/dz

, γ(ζ)= γ(z)
dζ/dz

, and Γ(ζ)=Γ(z)
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The positions of the vortices on the NC are obtained by solving the inverse of Eq (3.5)

using the procedure described in Ref. [95] pp 178-180. The inverse of Eq (3.5) is given

by

z̃3 +az̃2 +bz̃+c= 0 (3.34)

Note, in this equation the bold symbols denote complex quantities, and

z̃ = z
R0

, a=− ζ

R0
, b= (1−ε) , and c= ε

2
(3.35)

The roots of Eq (3.34) are obtained as follows: First obtain

d= a2 −3b
9

and g= 2a3 −9ab+27c
54

(3.36)

Then

A=−
[
g+

√
g2 −d3

]
(3.37)

where, the sign of the square root is chosen so that

R

(
g∗

√
g2 −d3

)
≥ 0 (3.38)

Next compute

B=
 d/A (|A| 6= 0)

0 (|A| = 0)
(3.39)

The roots of Eq. (3.34) are given by

z̃1 = (A+B)− a
3

z̃2 = −1
2

(A+B)− a
3
+ ı

p
3

2
(A−B) (3.40)

z̃3 = −1
2

(A+B)− a
3
− ı

p
3

2
(A−B)
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where, the root that corresponds to a given ζ is z̃ j, where j = 1,2,3, that has the

maximum absolute value. This is illustrated by the following example. Consider a

circle with R0 = 0.272, τ = 0.0462, and σ = 0.0462 as shown in Figure 3.13(a). The

corresponding airfoil has c = 1 and is shown in Figure 3.13(b). The airfoil coordinates

(ζ), obtained by substituting values of R0, τ, and σ into Eq. (3.6), are used to calculate

the corresponding inverse values (z̃) using Eq. (3.40). For each ζ, the roots of the

inverse equation are plotted in Figure 3.13(a). Two of the three roots lie inside the

circle indicating that the correct root is the one that has maximum absolute value.

Similar arguments apply when computing z̃ for shed vortices.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.2

−0.1

0

0.1

0.2

Im
ag
(z
)
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(a) Solid line indicates the circle. Squares indicate
roots of the inverse transform.
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ξ
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Coords from correct root

(b) Original airfoil coordinates, and those
generated using the correct root from the
inverse transform.

Figure 3.13: Circle, corresponding airfoil, and roots of the inverse transform

3.2.6 The Vortex Wake Model

Vortices on the flattened NC are convected using the Rott-Birkhoff equation [94],

which is derived from Biot-Savart law for two dimensional flow. The Rott-Birkhoff

equation yields induced velocity at any point due to a vortex and it is implemented in
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the ξI −ηI coordinate system as shown in Eq. (3.41).

q∗(ζI)=
∞∑
j=1

[ dΓ j

2πı
(
ζI −ζI

j

) + (uE − ıvE)
]

(3.41)

where, ζI
j ≡ ζI (

dΓ j
)
, ∞ indicates that the summation includes airfoil bound and all

shed vortices in the airfoil-wake system, and uE,vE are components of the free stream

velocity at each shed vortex. The effect of free stream velocity due to forward flight is

incorporated by using

uE =−u∞ cos ϕ̃Γ j and vE = v∞ (3.42)

where ϕ̃Γ j denotes the instantaneous sweep angle of the dΓ j, as depicted in Figure

3.10. Therefore, Eq. (3.41) yields

q∗(ζI)=
∞∑
j=1

[ dΓ j

2πı
(
ζI −ζI

j

) + (−u∞ cos ϕ̃Γ j − ıv∞
)]

(3.43)

Note that Eq. (3.43) becomes singular as
(
ζI −ζI

j

)
approaches zero. Therefore, nu-

merical implementation of Eq. (3.43) requires de-singularization of the vortex core,

in which each discrete vortex is assumed to have a finite core radius. Adopting the

de-singularization procedure used in Ref. [60], Eq. (3.43) is modified as follows:

q∗(ζI) =
∞∑
j=1

 dΓ j

2πı
(
ζI −ζI

j

)
(
ζI −ζI

j

)∗
(
ζI −ζI

j

)∗ + (−u∞ cos ϕ̃Γ j − ıv∞
)

=
∞∑
j=1

dΓ j

(
ζI −ζI

j

)∗
2πı|ζI −ζI

j |2
+ (−u∞ cos ϕ̃Γ j − ıv∞

)
≈

∞∑
j=1

 dΓk

(
ζI −ζI

j

)∗
2πı

(
r2

c +|ζI −ζI
j |2

) + (−u∞ cos ϕ̃Γ j − ıv∞
) (3.44)
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Incorporating the effect of viscosity, Eq. (3.44) yields

q∗(ζI)
∣∣∣
viscous

≈
∞∑
j=1

 dΓ j

(
ζI −ζI

j

)∗
2πı

(
r2

c +|ζI −ζI
j |2

)
1− e

−
r2
v j

4ν∞ tv j

+ (−u∞ cos ϕ̃Γ j − ıv∞
) (3.45)

where rv j =
∣∣∣ζI −ζI

j

∣∣∣
It was noted in Ref. [64] that the use of wake sub-iterations improves the quality of

the solution when wake distortion due to wing-wake interaction is expected. Therefore,

the Euler scheme, which was used in Ref. [64], is also used in the current study. In

this scheme, the positions of the wake vortices are computed by performing several

sub-iterations within each time step.

ζI(t+∆t)= ζI(t)+
nwksubit∑

j=1
q j(t)

∆t
nwksubit

3.3 Calculation of Aerodynamic Loads

The unsteady aerodynamic loads can be calculated from the total vorticity using

either the vortex impulse method or the unsteady Bernoulli equation. The two

approaches are equivalent and derived from the Euler equations for irrotational

flow; the derivations are summarized in Appendix B. The final expressions and

implementation are presented next.

3.3.1 The Vortex Impulse Method

The vortex impulse method (VI) is based on Kelvin’s impulse theorem that relates

the aerodynamic force and moment due to a system of vortices to the impulse and

moment of impulse of the vortices. Following Refs. [62,65, 67,90], the impulse and
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moment of impulse of the vortex pairs that constitute the airfoil-wake system in a

non-rotating coordinate system that is translating with the airfoil are given as follows:

Inr = ıρ∞
∞∑
j=1

dΓ j ζ
nr
j and Inr

m = ρ∞
2

∞∑
j=1

dΓ j

∣∣∣ζnr
j

∣∣∣2 (3.46)

The force and moment on the airfoil, obtained in the non-rotating coordinate

system, are given by:

Fnr = dInr

dt
and Mnr = dInr

m

dt
−I (U0 · Inr) (3.47)

where I refers to the imaginary part and U0 = (−uI + l̇)+ ı(−vI + ḣ) denotes the

translational velocity of the coordinate system.

3.3.2 Unsteady Bernoulli Equation

Shear layer 2

Shear layer 1

η

C3

C1

C4

C2s

swk1

s0

wk2

s

ξ

ηI

I
ξ,ξ

η

fa

fa

Figure 3.14: Contours of integration for computing velocity potential from bound and
shed vorticity from an airfoil. For clarity, shed vortices are indicated by
solid circles.

The unsteady Bernoulli principle relates the local pressure at any point to the

velocity potential at that point. Following Ref. [61], the expression derived in the
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ξ f a −η f a coordinate system is as follows:

p∞− p
ρ∞

= ∂φ

∂t
+ 1

2

[(
∂φ

∂ξ f a

)2
+

(
∂φ

∂η f a

)2]
−

(
vrigid
ξ f a

∂φ

∂ξ f a +vrigid
η f a

∂φ

∂η f a

)
(3.48)

where vrigid
ξ f a and vrigid

η f a are the velocities of the airfoil resolved in the ξ f a −η f a coor-

dinate system. It is important to note that the velocity potential is discontinuous

across shear layers, i.e. the wakes shed from the airfoil. Therefore, the potential

is computed along piecewise continuous contours [96]. Vorticity and circulation are

defined as positive when counter-clockwise; therefore, integration along the contours

is performed in a counter-clockwise manner. The origin of integration is selected to

be a point close to the trailing edge on the upper surface of the airfoil as shown in

Figure 3.14. Furthermore, swk1 and swk2 denote the arc coordinates at which the

shear layers are formed as indicated in Figure 3.14. Therefore, φ is discontinuous at

swk1 and swk2. For an airfoil with a sharp trailing edge, a shear layer emanates from

the trailing edge; therefore, swk1 = LC. The total velocity potential at any point in the

airfoil wake system is given by

φ(s, t)=φb(s, t)+φwk1(s, t) (3.49)

For attached flow, φb is obtained by integrating the vorticity along contour C1 [97]

shown in Figure 3.14. For separated flow, φb is obtained by integrating the vorticity

along contours C1 −C2 −C3 [96] as follows:

For 0< s < swk2

φb(s, t)=φ0 +
s∫

0

γb ds (3.50)

For swk2 < s < LC

φb(s, t)=φ0 +
swk2−∫
0

γb ds+
∫

Lwk2

{
γwk2(ς, t)

(
1− e−

r2
v

4ν∞ tv

)}
dς+

s∫
swk2+

γb ds (3.51)
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The velocity potential due to shear layer 1 is given by

φwk1(s, t)=
∫

Lwk1

{γwk1(ς, t)
2π

ϕ(ς, s, t)
(
1− e−

r2
v

4ν∞ tv

)}
dς (3.52)

where, in Eqs. (3.51) and (3.52), the effect of viscosity is included inside the integrals

on the RHS and

rv =
∣∣∣ζ f a

wk(ς, t)−ζ f a(s)
∣∣∣ (3.53)

Moreover ϕ ∈ [0,2π), depicted in Figure 3.12, is given by

ϕ(ς, s, t)= argument
(
ζ

f a
wk(ς, t)−ζ f a(s)

)
(3.54)

Equivalence of the Approaches

The vortex impulse method and the unsteady Bernoulli equation are mathemati-

cally equivalent; however, the integrated aerodynamic forces computed using these

approaches are not identical for a rigid zero thickness airfoil.

The aerodynamic force acting on an airfoil, obtained by integrating the pressure

computed using the Bernoulli equation, is as follows:

F =
Ó
S

pn̂ dS

=
Ï
Sξ

pn̂ξdSξ+
Ï
Sη

pn̂ηdSη

= Fξ+Fη (3.55)

For a zero thickness flat plate airfoil, the projected area parallel to the chord, i.e. Sξ,

is equal to zero. Consequently, Fξ ≡ 0. Therefore, for this case the force calculated by

integrating pressure is always normal to the airfoil chord.

On the other hand, the calculation of force from the impulse and the moment of
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impulse of vorticity, shown in Eqs. (3.46) and (3.47), does not require the projected

areas of the airfoil. Therefore, the forces computed using Eq (3.47) may have a non

zero component parallel the airfoil chord. Therefore, for a zero thickness flat plate

airfoil, the vortex impulse method and the Bernoulli equation yield identical values of

force normal to the airfoil chord, but do not produce identical results for force parallel

to the airfoil chord.

3.4 Limitations of the modified aerodynamic model

Several modifications to enhance the capabilities of the aerodynamic model have

been introduced. However, underlying assumptions and limitations need to be noted.

1. The effect of viscosity is incorporated as the decay of circulation once a vortex is

shed into the wake. However, the aerodynamic formulation is fundamentally

based on the assumption of potential flow and the effect of boundary layer

around the airfoil is neglected.

2. The aerodynamic formulation is 2D and is applied on the wing in a strip-theory

manner. Effects of spanwise flow, tip vortices, and aerodynamic interactions

between the various wing sections are neglected.

3. Wing flexibility is incorporated in an averaged manner. Spanwise flexibility

is incorporated by using a time dependent radius of the airfoil-wake surface.

Chordwise flexibility is incorporated using a zero lift angle due to camber and

the averaged effect of airfoil velocities in the calculation of the quasi-steady

vorticity. The assumptions imposed during incorporation of chordwise velocities

have to be re-examined if the contribution of airfoil flexibility to the unsteady

loads is expected to be comparable to the contribution of LEVs and wake capture.

4. The physics of flow separation, including intermittent separation and reattach-

ment, are not accounted for. The onset of flow separation and the separation
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point are assumed in an ad hoc manner. The flow is assumed to be either

attached or separated.

5. The geometry of the shed wake, in hover as well as forward flight, is approxi-

mated using a cylindrical surface that is normal to the stroke plane. For the

general case, the wake is typically not confined to a normal cylinder and a

more realistic representation that accounts for wake contraction, movement of

vorticity out of the NC, and other 3D effects, has to be considered.



CHAPTER IV

Aeroelastic Analysis

The aeroelastic behavior of the flapping wing is modeled in MARC by coupling the

structural dynamic model with the loads computed using the approximate aerody-

namic model. The aeroelastic response is obtained using an updated Lagrangian (UL)

approach and the coupled fluid-structure model is implemented in MARC using user

defined subroutines.

4.1 The Updated Lagrangian Approach

The equations of motion representing the aeroelastic response problem are ob-

tained using an updated Lagrangian (UL) approach [88, 98]. In this approach, an

approximate solution is obtained by referring all the quantities (stress, strain and dis-

placements) of the deformed configuration to the equilibrium configuration obtained

at the previous time step, and linearizing the resulting equations of motion (EOM).

Implementation of the UL formulation in MARC, which is based on the description

given in Refs. [88,98], is shown in Figure 4.1 (left) and summarized below.

Starting from the equilibrium equations, the principle of virtual work yields the

68
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Equations of motion (EOM) in 
integral form (Principle of virtual work)

Quantities (stress, strain, displacements, etc) in
the deformed configuration are approximated

by quantities referred to the reference configuration

Obtain approximate EOM

Linearize the approximate
EOM in each time step

Finite element approximation
Converts EOM to matrix form

Time integration using a
suitable numerical scheme

Use previously computed
equilibrium configuration as
the reference configuration

Initialize system
variables
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Figure 4.1: Formulation of the aeroelastic equations (left) and implementation of the
aeroelastic model in MARC (right).

following integral form [88,98]:

∫
V t+∆t

σt+∆t
i j δet+∆t

i j dV t+∆t = R̃ t+∆t −F t+∆t
inertial (4.1)

where

R̃ t+∆t =
∫

At+∆t

T t+∆t
k δut+∆t

k dAt+∆t +
∫

V t+∆t

ρt+∆t f t+∆t
k δut+∆t

k dV t+∆t (4.2)

and

F t+∆t
inertial =

∫
V t+∆t

ρt+∆t ü(t+∆t) t+∆t
k δut+∆t

k dV t+∆t (4.3)
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where, the right superscript on the quantities indicates that the deformed configu-

ration, i.e. the configuration at time t+∆t, is the reference configuration; u(t+∆t)
k,

ü(t+∆t)
k, and uk are the Cartesian components of the accelerations and incremental

displacements, and uk = u(t+∆t)
k− ut k. The left superscript indicates the total quantity

at time (t+∆t).

The deformed configuration is unknown; thus, quantities that are referred to the

deformed configuration, such as σt+∆t
i j and et+∆t

i j , cannot be computed exactly. There-

fore, the LHS of Eq. (4.1) is approximated by an integral that uses the configuration

at time t as the reference. In this approximation, σt+∆t
i j is approximated by St+∆t

i j and

et+∆t
i j is approximated by εt+∆t

i j . Therefore, Eq. (4.1) modifies to the following equation:

∫
V t

St+∆t
i j δεt+∆t

i j dV t = R̃ t+∆t −F t+∆t
inertial (4.4)

Furthermore, the second Piola-Kirchoff (PK2) stress at time t+∆t is obtained as a

sum of the Cauchy stress in the reference configuration, σt
i j, and an incremental PK2

stress, ∆tSi j:

St+∆t
i j = σt

i j +∆tSi j (4.5)

Similarly, the Green-Lagrange strain is given by

εt+∆t
i j = εt

i j = et
i j +ηt

i j (4.6)

where et
i j and ηt

i j are obtained from the incremental displacement as

et
i j = 1

2
(ut

i, j +ut
j,i) (4.7)

ηt
i j = 1

2
ut

k,iu
t
k, j
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Furthermore, the constitutive relations are given by

∆tSi j = Ct
i jrsε

t
rs (4.8)

where Ct
i jrs denotes the components of the tangent stiffness matrix. The final equation,

obtained by substituting Eqs. (4.5), (4.6), and (4.8) into Eq. (4.4), is nonlinear in the

incremental displacement ui and is given by

∫
V t

Ct
i jrsε

t
rsδε

t
i jdV t +

∫
V t

σt
i jδη

t
i jdV t = R̃ t+∆t −F t+∆t

inertial −
∫
V t

σt
i jδet

i jdV t (4.9)

Equation (4.9) is linearized by assuming that δεt
i j = δet

i j, so that the constitutive equa-

tion becomes ∆tSi j = Ct
i jrset

rs. Thus, the linearized integral equation that represents

dynamics of the system is given by

∫
V t

Ct
i jrset

rsδet
i jdV t +

∫
V t

σt
i jδη

t
i jdV t = R̃ t+∆t −F t+∆t

inertial −
∫
V t

σt
i jδet

i jdV t (4.10)

The finite element approximation to the accelerations and incremental displacements

are given by

üt+∆t t+∆t(x, t)= üt+∆t t+∆t · N and u(x, t)=u · N (4.11)

Substituting Eqs. (4.11), (4.7), and (4.3), into Eq. (4.10), and simplifying the result

yields the final form of the equation of motion for each element in the structure as:

(Kt
L +Kt

NL)u= R̃t+∆t −M üt+∆t t+∆t −Ft
σ (4.12)
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Expressions for Kt
L, Kt

NL, Ft
σ, and M are given below:

Kt
L =

∫
V t

(Bt
L)T Ct Bt

LdV t (4.13)

Kt
NL =

∫
V t

(Bt
NL)T σt Bt

NLdV t (4.14)

Ft
σ =

∫
V t

(Bt
L)T σt dV t (4.15)

M =
∫
V t

NT ρt NdV t (4.16)

where Bt
L and Bt

NL are transformation matrices obtained from the shape function

matrices. The derivation of Bt
L and Bt

NL for various types of elements (beams, shells,

etc) is described in Refs. [89, 98]. Finally, Eq. (4.12), that represents the finite

element discretization of the equation of motion, is integrated forward in time using

an appropriate numerical scheme.

In this approach, the true stress and strain in the deformed configuration at the

beginning of each time step are approximated using incremental stress and strain

measures in the reference configuration. Therefore, iterations are often required

within each time step so that the approximate incremental quantities converge. The

iterations are done using the Newton-Raphson (NR) method [88,89] as follows. The

residual force vector is defined as:

EtG elas = R̃t+∆t
G − ( Kt

G L+ Kt
G NL) uG − MG üt+∆t t+∆t

G − Ft
G σ (4.17)

where the left subscript G implies that the matrices and vectors represent the global

assembled matrices of the structure. The residual force vector for the structure
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including kinematic constraints is given by

EtG res =
 EtG elas +Eu

con

Eλ
con

 (4.18)

where, Eu
con and Eλ

con are due to the constraints and given in Eq. (2.15). The converged

values of the incremental stresses, strains, and displacements, for time t+∆t are

obtained by minimizing Et+∆t
G res. Following a first order Taylor expansion,

Et+∆t
G res = Et res + KtG

∆u

∆λ

 (4.19)

where, the tangent stiffness matrix is given by

KtG =
 Kt elas +K11 K12

K21 K22

 where Kt elas =−∂ Et elas

∂ utG
(4.20)

and K11,K12,K21 and K22 are given in Eq. (2.18). The converged values of incre-

mental displacements, stresses, and strains are obtained by iterating the following

expressions:

Kt+∆t (i−1)
G

∆u(i)

∆λ(i)

 = Et+∆t (i−1)
G res (4.21)

and

 ut+∆t (i)
G

λ(i)

 =
 ut+∆t (i−1)

G

λ(i−1)

+
∆u(i)

∆λ(i)


where i = 1,2, ... denotes the iteration number
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with the following initial conditions

 ut+∆t (0)
G

λ(0)

=
 utG

λ0

 ; Kt+∆t (0)
G = KtG ; Et+∆t (0)

G res = EtG res (4.22)

where the left and right superscripts indicate the time step and the iteration respec-

tively, and λ0 is an initial guess for the Lagrange multipliers. A converged solution

is obtained when an appropriate convergence criteria either on Et+∆t (i)
G res or ut+∆t (i)

G is

satisfied. Two implementations of the NR method are available in MARC [83]: (1) the

complete Newton-Raphson method, wherein the tangent stiffness matrix is computed

for each iteration in a time step, and (2) a modified Newton-Raphson method in which

the tangent stiffness matrix is computed only once at the start of the iteration. The

complete Newton-Raphson method [83,88,89] is used in this dissertation.

Numerical Integration

The equations of motion obtained from the UL method are integrated using a

single step Houbolt (SSH) scheme. The implementation of this scheme in MARC

is based on the description given in Ref. [99]. The SSH scheme, which belongs to

the class of Houbolt algorithms [88, 99], is an implicit and second order accurate

scheme that is unconditionally stable for linear systems. By design, the algorithm

incorporates numerical damping and is asymptotically annihilating, which implies

that the high frequency response of the system is eliminated in each time step.

4.2 Fluid-structure Coupling in MARC

The implementation of the aeroelastic model is shown in the block diagram given in

Figure 4.1 (right). At each time step, rigid body motion is prescribed as displacements

or rotations at specified nodes. The aerodynamic loads, computed based on the wing
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motion at the beginning of each time step, are applied to the structure via FORCEM

user defined subroutine in MARC. This subroutine is called from the main program for

each step of the Newton-Raphson iteration within a time step to ensure convergence

of the structural displacements for the applied loads. Finally, the vortices shed into

the wake are convected at the end of the time step.



CHAPTER V

Structural Dynamic Model: Validation and

Comparisons

Validation of the capabilities of MARC and determining its suitability for modeling

flexible flapping wings has been carefully done in this study. The results presented

include: (1) implementation of large rigid body motions representative of wing kine-

matics, (2) calculations that show that the centrifugal stiffening effect is properly

taken into account, (3) comparison of mode shapes and frequencies of anisotropic

wings, and (4) comparison of tip displacements of anisotropic wings flapping in vac-

uum.

5.1 Implementation of Wing Kinematics

Implementation of large amplitude, time dependent rotations in MARC were ex-

amined by imposing 2D and 3D rotations on a rigid rectangular plate. The rigid plate,

shown in Figure 5.1, has dimensions Rspan = 0.1 m and b = 0.025 m, and is modeled

using multi-point rigid body constraint type RBE2 available in MARC/NASTRAN [87].

This constraint allows the user to define a single “master” node and several “slave”

nodes such that the motion of the slave nodes is linked to the motion of the master

node using a rigid body link. In the plate configuration shown in Figure 5.1, the hinge
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point H was chosen as the master node and all other nodes were slave nodes. Using

this feature, rotations were prescribed at the master node.

R

2b X

H

Y
Z

P

span

W

W

W

Figure 5.1: Rectangular plates.

Implementation of 2D Rotations

The results shown in Figure 5.2(a), which correspond to the implementation of

2D rotations in MARC, pertain to the motion of point P (indicated in Figure 5.1) as

measured in the unrotated coordinate system. Rotations described by Eq (5.1) was

used as input:

ψ= sin(2π f t)


1

1

1

 (5.1)

where the angle is measured in radians, f = 20 Hz, and ∆t = 5×10−4 seconds. The x,

y, and z coordinates of P as functions of time are obtained from MARC and compared

to the motion of P that was computed by substituting Eq. (2.4) into Eq. (2.2) and

calculating the result in a simple MATLAB program. This comparison indicates that

the large amplitude 2D rotations can be implemented accurately in MARC using an

incremental form of the rotation vector.
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Implementation of 3D Rotations using Incremental Rotation Vector

Euler angles given in Refs. [18,44], represented as rotation vectors in Eq (5.2), are

input as a time dependent rotation to the rigid plate.

ψ1 = 53◦


1

0

0


ψ2 =

[−3◦−43◦ cos(2π f t)
]


0

1

0

 (5.2)

ψ3 =
[
8◦−77◦ cos(2π f t−49◦)−3◦ cos(2π f t+67◦)−8◦ cos(2π f t+29◦)

]


1

0

0


where, f = 20 Hz. Note that the Euler angles shown in Eq. (5.2) correspond to a

large rotation at t = 0. In Ref. [44], this initial static rotation was required since

the flapping motion was prescribed with respect to a body-fixed frame that did not

initially coincide with the wing-fixed frame. One of the objectives of this study is

to examine the implementation of large amplitude flapping motion. Therefore, it

was assumed that the initial offset between the body-fixed and wing-fixed frames is

zero. This requires elimination of the initial static rotation, and is accomplished by

obtaining the Euler angles corresponding to the initial rotation, denoted by ψ0
1, ψ0

2,

and ψ0
3, by substituting t = 0 into Eq. (5.2):

ψ0
1 = 53◦


1

0

0

 ψ0
2 =−46◦


0

1

0

 ψ0
3 =−50.7◦


1

0

0

 (5.3)
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Then, the modified rotation matrix, denoted by R̂1, that describes the flapping motion

without the initial rotation is given by

R̂1 = R̂T
(ψ0

1,ψ0
2,ψ0

3) R̂(ψ1,ψ2,ψ3) (5.4)

where R̂(ψ0
1,ψ0

2,ψ0
3) and R̂(ψ1,ψ2,ψ3) are obtained using Eq. (2.7). For each time step,

the modified rotation tensor R1 is used to compute the rotation vector implemented

in MARC. The time step used to discretized the motion was 5×10−4 seconds. Figure

5.2(b) shows a comparison of the position of the point P that has coordinates (0.1,0,0)

in (XW ,YW , ZW ) obtained as output from MARC with that computed using a MATLAB

program. It is evident that the implementation of rotations in Marc shows considerable

error. Decreasing the time step to 2.5×10−4 seconds did not improve the results. This

result indicates that wing kinematics, which are typically 3D rotations, cannot be

implemented as a time dependent rotation vector in MARC. Therefore, an alternate

implementation of wing kinematics is considered.
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(a) 2D rotations in MARC
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Figure 5.2: Implementation of rigid body rotations in MARC.
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Implementation of Wing Kinematics as Displacements

Wing kinematics are implemented as displacements at three nodes. The RBE2 con-

straint was used to constrain the rotational DOF of the nodes; the displacement DOF

were not constrained so that displacement boundary conditions could be prescribed at

multiple nodes. Material properties were selected so as to minimize the deformation

due to wing flexibility. The plate was modeled using 440 shell elements (Element type

75) and assumed to have the following properties: th = 5mm, E = 2100GPa, ρ = 20

kg/m3, and ν = 0.3. Displacements, which correspond to the rotation tensors that

describe the 2D and 3D rotations, are computed for three vertices of the rectangular

plate and imposed at the nodes at these locations. The displacements of the fourth

vertex were obtained as output from MARC and compared to the exact solution, which

is obtained from a MATLAB implementation, in order to examine if the kinematics

are implemented correctly. For the test cases, displacements corresponding to the

flapping motion were prescribed at three points: the hinge H is held fixed in transla-

tion but unconstrained in rotation; displacements are prescribed at points that have

coordinates (0.1,0.05,0) and (0,0.05,0) respectively in (XW ,YW , ZW ). Subsequently,

displacements are obtained at point P that has coordinates (0.1,0,0) in (XW ,YW , ZW ).

Figures 5.2(a) and 5.2(b) show a comparison of the coordinates of point P obtained as

output from MARC to the exact solution. It is evident that the displacements output

from MARC are identical to the exact solution. This indicates that large amplitude

2D and 3D rotations are correctly implemented in MARC as displacements.
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Figure 5.3: Comparison of tip displacements for an accelerating plate. Results 1 and
2 (solid lines) from Ref. [70]; result 3, circles, MARC current study .

5.2 Centrifugal Stiffening Effect

The effect of centrifugal stiffening was examined by considering the case of an

isotropic plate undergoing a prescribed angular acceleration that is given by Eq. (5.5).

ω=


ωs

(
t
ts
− 1

2π sin 2πt
ts

)
0≤ t ≤ ts

ωs t ≥ ts

(5.5)

where, ωs = 10 rad/s and ts = 5 s. The properties of the plate are provided in Table 5.1.

The plate was modeled in MARC using 900 shell elements (Type 75) and the results

were obtained for a time step ∆t = 0.001 second. A comparison of tip displacements,

obtained from MARC and Ref. [70], are shown in Figure 5.3. The results indicate

that the structural model in MARC incorporates the effect of centrifugal stiffening

correctly.
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Property E ρ ν Rspan b th

Value 70 GPa 3000 kg/m3 0.3 1.0 m 0.5 m 0.0025 m

Table 5.1: Geometric and material properties of the accelerating isotropic plate.

5.3 Comparison of Mode Shapes and Frequencies for

Anisotropic Wings

The computed and experimentally determined [69] mode shapes and frequencies

for anisotropic Zimmerman wings are compared so as to validate the structural

dynamic models. The anisotropic wings, shown in Figure 5.5, are built from an

unstressed CAPRAN film (membrane) supported by a carbon fiber based spar-batten

skeleton. Using the notation used in Ref [69], the wings are labeled as LiBj where i

and j denote the number of prepreg layers used in the construction of the LE spar and

the battens, shown in Figure 5.4. The nominal elastic properties of the materials used

were provided by the respective manufacturers.

Figure 5.4: Anisotropic wing configurations, from Ref [69].

The natural frequencies of the wings were identified using a Laser Doppler Vibrom-

eter (LDV) that uses the phase shift between the incident and reflected light to obtain

a frequency response spectrum of the structure [69]. The experiments involve visual

tracking of the wing surface using high speed cameras to obtain the deformation
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Figure 5.5: Painted (left) and unpainted wings (right).

pattern. The translucent CAPRAN film, shown in Figure 5.5 (right), is not suitable

for visual tracking. Therefore, a dense speckle pattern was generated by spraying

black acrylic paint, shown in Figure 5.5 (left), to facilitate tracking of the wing. The

CAPRAN film is very thin, lightweight, and flexible, and the change in geometric

and material properties of the film due to the paint speckle that is deposited on the

film were determined experimentally, and the properties were used to generate the

structural dynamic and aeroelastic results.

5.3.1 Tensile Tests on the CAPRAN Membrane

Figure 5.6: Tensile test specimens.

The Young’s moduli of the films were measured by tensile tests using specimens

shown in Figure 5.6. Tensile test samples are manufactured to a total length of

25±1 mm, a gauge length of 13±2 mm and a height of 2.5±0.5 mm. The tests
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were carried out under displacement control loading at a nominal rate of 0.018 mm/s.

The small scale tensile tester is shown in Figure 5.7. Strains are determined using

optical images taken with a high resolution camera of a speckle pattern, distributed

on the surface of the film using acrylic paint applied with an airbrush or a spray can.

Unpainted films could not be tracked; therefore, a light speckle pattern, expected to

have an insignificant effect on the material properties of the film, was deposited on

the unpainted films. Specimens of the densely and lightly painted films, labeled as

Heavy dots and Light dots are shown in Figure 5.8. Thicknesses of the samples are

measured with a Phillips XL30 Environmental Scanning Electron Microscope (SEM).

Figure 5.7: Experimental setup.

The SEM measurements indicated that there was little or no change in thickness

of the film due to the paint; an average value of 15 microns is therefore used in

calculations. The thicknesses are listed in Table 5.2. The characteristic stress-strain

curves obtained after the post-processing of the data are shown in Figures 5.10(a) and

5.10(b). The results indicate that the elastic moduli of the painted (heavy dots) and

lightly painted (light dots) films are approximately the same, where an averaged value

of E = 2.74 GPa is used in calculations. However, static weight measurements show

that the paint increases the weight, and the density, of the films by approximately
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Figure 5.8: Specimens of the film. Dense speckle (heavy dots) - left and light speckle
(light dots) - right.

Unpainted Film Painted film

Density, kg/m3 1186.0 1383.7

Young’s modulus, GPa 2.72±0.16 2.76±0.21

Thickness, ( ×10−6 m ) 15.17±0.90 14.96±0.57

Table 5.2: Density and Young’s moduli of the painted and unpainted films.

16%. The densities and Young’s moduli of the painted and unpainted films are given

in Table 5.2.

5.3.2 Comparison of Mode Shapes and Frequencies

The experimentally determined and computed mode shapes and frequencies for

anisotropic Zimmerman wings are shown in Figure 5.11 and Tables 5.5 and 5.6

respectively. The finite element models of the wings, shown in Figure 3.2, are obtained

using 1263 thick shell elements (Element type 75 in MARC).

Note that the experiments [69] were conducted in air; this implies that the mode

shapes and frequencies that are identified correspond to aeroelastic modes that include

added mass effects [56] as well as coupling effects between bending and torsion. In

an aeroelastic system, a useful indicator of the relative importance of the inertial to
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Figure 5.9: Sample image from the SEM indicating thickness of the film.

aerodynamic forces is the mass ratio [56] that is described by Eq (5.6).

Mass ratio= ρthcr

0.25πρ∞c2
r

(5.6)

where, the thickness of the composite and the membrane are given in Table 5.4. A

lower bound of the mass ratio for the anisotropic wings is obtained by considering

a representative cross section that is composed entirely of the membrane material,

illustrated in Figure 5.12 (left). The mass ratio can also be computed by considering a

more realistic cross section as shown in Figure 5.12 (right).

The values of the mass ratios are given in Table 5.3. The calculations indicate

that the added mass effects are most likely to be significant for modes that have a

predominant contribution from the membrane, and these will be relatively insignif-

icant for modes that have a predominant contribution from the composite skeleton.
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Figure 5.11: Comparison of mode shapes: Experiment [69] (left) and FE model -
current study (right)

compositemembranemembrane

Realistic anisotropic cross-sectionCross-section composed of membrane

24.2 mm 0.8 mm
25 mm

Figure 5.12: Cross sections used to compute mass ratios for the anisotropic wings.
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Mass ratio

Cross-section composed of membrane material 0.88 (lower bound)

Realistic cross-section 235 (L1B1)

Table 5.3: Mass ratios corresponding to sample cross-section of the wing

An examination of the experimentally determined mode shapes shows that the first

mode has a predominant contribution from the skeleton; this indicates that the first

measured frequency is a reasonable approximation to the first natural frequency.

The finite element models use the nominal values for the wing geometry, material

and elastic properties. However, the elastic properties of the carbon fiber prepreg

are modified by adjusting the recommended properties so as to obtain a reasonable

overall correlation with experimentally obtained frequencies and mode shapes. The

recommended and adjusted elastic properties are given in Table 5.4.

A comparison of the frequencies, shown in Table 5.5, indicates that there is

reasonable agreement (approx 20% error) between the computed and measured values.

The computations yield closely spaced modes, listed in Table 5.6, that contain a

predominant contribution from the membrane. These modes were not identified in the

experiments. However, the frequency spectrum obtained from the experiments [69]

show several smaller peaks that were ignored. It is conceivable that these correspond

to the closely spaced modes. The cases that show significantly higher error are

identified in bold. The experiments indicate a decrease in the natural frequency for

the second and third modes from 84 Hz and 126 Hz for L2B1 to 52 Hz and 84 Hz for

L2B2. This decrease appears to be questionable based on the trends observed in the

other configurations. This discrepancy may be due to the manner in which the modes

were identified from the frequency response spectrum [69].

A qualitative comparison of the mode shapes obtained for L1B1 and L1B2 is shown

in Figure 5.11. These results indicate that the FE model shows reasonable agreement
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Recommended values Adjusted values used in the

structural dynamic model

Carbon fiber E11 = 233 GPa E11 = 233 GPa

prepreg E22 = 23.1 GPa E22 = 23.1 GPa

(Properties of G12 = 3 GPa G12 = 15.5 GPa

one layer) (L1B1, L1B2)

G12 = 10.5 GPa

(all other configs)

G23,G31 n/a G23 =G31 = 1.7 GPa

ν12 = 0.05 ν12 = 0.05

ν23,ν31 n/a ν23 = ν31 = 0.32

ρ = 1740 kg/m3 ρ = 1740 kg/m3

Thickness = 0.1 mm Thickness = 0.1 mm

Capran membrane E = 2.5−3.5 GPa E = 2.76 GPa

(From experiments) ν12 = n/a ν12 = 0.489 (Incompressible)

ρ = 1160 kg/m3 ρ = 1384 kg/m3

Thickness = 12-20 microns Thickness = 15 microns

Table 5.4: Material properties of the composite and membrane
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Wing label Mode 1 Mode 2

Experiment 23 50

L1B1 FE model 21.5 49

Experiment 22 45

L1B2 FE model 19.5 46.2

Experiment 42 84

L2B1 FE model 47 88

Experiment 41 52

L2B2 FE model 44 86.1

Experiment 59 104

L3B1 FE model 65 107

Experiment 67 n/a

L3B2 FE model 64 101

Table 5.5: Comparison of frequencies, in Hz, for various wing configurations

Wing label Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

L1B1 21.5 49 73.8 77.4 106.5 111.5

L1B2 19.5 46.2 74.2 78.5 100.5 107.5

L2B2 47 72 76.5 88 109 118.8

L2B2 44 74 78.7 86.1 109 118.5

L3B1 65 75.5 76.8 107 109 120

L3B2 64 78 79 101 109 120

Table 5.6: Computed frequencies, in Hz, for various wing configurations. Frequencies
used for comparison with experiment are identified in bold.



92

with the experimental results for the cases considered.

The numerical simulations indicate that the in-plane shear moduli (G12) of the

materials used has a significant impact on the placement and spacing of frequencies.

Therefore, additional studies that examine the sensitivity of the measured frequencies

and the thrust generated due to variations in the material properties may be necessary.

5.4 Flapping Tests in Vacuum: Comparison of Tip Displace-

ments
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(b) Tip deformation due to flexibility.

Figure 5.13: Tip coordinate and deformation due to flexibility of L2B1 flapping in
vacuum.

A comparison of tip displacements of wing configurations L2B1 and L3B1 undergo-

ing prescribed flap motion in vacuum are shown in Figures 5.13 and 5.14. The wings

are undergoing a simple rotation about YW , shown in Figure 3.2, that is described by
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Figure 5.14: Tip coordinate and deformation due to flexibility of L3B1 flapping in
vacuum.

the rotation vector shown in Eq (5.7).

ψβ =β0 sin(2π f t)


0

1

0

 (5.7)

where β0 = 35◦ and f = 25 Hz. Results using MARC were generated using the struc-

tural dynamic models and material properties described in the previous section and

400 time steps per flapping cycle were used to discretize the motion. The experimental

results were obtained from Ref. [69]. Figures 5.13(a) and 5.14(a) show the Z coordinate

of the wing tip, normalized using the root chord, measured in an inertial coordinate

system that coincides with XWYW ZW at the start of the motion. Figures 5.13(b)

and 5.14(b) show the normalized Z coordinate of the wing tip in the instantaneous

XWYW ZW coordinate system. The results indicate that MARC shows reasonable

agreement with the experimental measurements. Note that the experimental results

were obtained by assuming that the tip deformation is periodic; consequently, the
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data consists of tip displacements measured and averaged over several cycles. How-

ever, it is interesting to note that the computations show a cycle-to-cycle variation in

the tip displacements. Moreover, in the experiments, the flapping stroke exceeded

the intended amplitude of 35◦ due to uncertainties associated with the actuation

mechanism [69]; this introduces additional discrepancies in the comparisons.



CHAPTER VI

Verification of the Aerodynamic Model

In this chapter, considerations involving the numerical implementation of the

aerodynamic model are discussed. The results obtained are grouped as follows: (1)

flat plate airfoils undergoing prescribed motion, (2) rigid Zimmerman wings in hover,

and (3) rigid Zimmerman wings in forward flight. For all the cases considered, flow

separation from the leading edge as represented by the leading edge vortex (LEV) is

assumed to be present unless specified otherwise.

Digital Filters
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Figure 6.1: Sample comparison of original and filtered load signals

In all simulations using the approximate aerodynamic model, the unsteady force

coefficients contain large amplitude high frequency oscillations caused by interaction

95
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of the airfoil with previously shed vortices. The oscillations, which are a consequence

of the discrete vortex representation of the wake, relate to two sources. First, the

vortices are shed into the wake and these cluster and form regions of concentrated

vorticity. These regions interact with the airfoil as it re-enters the wake to produce

high frequency oscillations superimposed on the unsteady loads. Second, during

numerical implementation, the boundary condition on the surface of the airfoil is

enforced only at a finite number of points that is governed by the airfoil discretization

(Nθ). Thus, a small number of vortices may pass through the airfoil when it enters

a previously shed wake, causing an abrupt change in induced velocity and resulting

in spikes in the load signal. Increasing the airfoil resolution and/or decreasing the

size of the time step did not eliminate the noise. Similar problems have been noted by

other researchers using discrete vortex approaches (Section 10.2, Ref. [100]). Several

strategies, such as reflection of vortices when they approach too close to a body,

re-discretization of the wake using sub-elements, or annihilation of vortices that

pass through the airfoil, have been utilized to prevent abrupt changes in induced

velocity [101]. These strategies, which introduce additional computational expense,

delay but do not eliminate the problematic behavior of vortices, and are therefore not

considered in this study due to their limited utility. A reduction in the magnitude of

the numerical oscillations is essential before the unsteady loads can be applied on

the flexible structure for aeroelastic simulation of flexible response. The numerical

oscillations do not have a critical role when simulating rigid airfoils and wings.

However, smoothing the signals improves clarity when comparing the time histories

of the aerodynamic and aeroelastic forces with CFD based results.

The load signals, obtained from the approximate aerodynamic model for rigid cases

as well as the aeroelastic calculations, are post-processed using zero-phase digital

filters available in MATLAB® (version 8.0). The filters are implemented in MATLAB®

using the filtfilt command as shown in Eq (6.1). A sample comparison of the original
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and smoothed signals is shown in Figure 6.1.

yf iltered = filtfilt
(
B f , A f , yunf iltered

)
(6.1)

where B f and A f are filter coefficients based on Chebyshev functions that are arrays of

length
(
m f +1

)
. The implementation of the zero-phase digital filters is summarized in

Appendix C; additional information may be obtained from the extensive documentation

provided in MATLAB®.

Circulation Limits and Cut-offs

A common assumption in the aerodynamic analysis of oscillating airfoils using

approximate unsteady aerodynamic theories is that the flow leaves a sharp airfoil edge

smoothly. However, Refs. [102,103] note that for airfoils oscillating at sufficiently high

frequencies, the flow turns around the sharp corner. This condition is applicable also

to insect-like flapping wings during stroke reversal. In these situations, the stagnation

condition at the LE (Eq. (3.30)) and the Kutta condition at the TE (Eq. (3.31)), which

represent the constraint conditions on induced velocity derived assuming that the flow

leaves the edges smoothly, are violated although the flow velocity and the strength of

the shed vorticity are limited due to viscosity. Enforcing the constraint conditions in

the approximate aerodynamic model (Eqs. (3.30) and (3.31)) results in the shedding of

vortices that have unrealistically high circulation. These vortices cause severe wake

distortion and can lead to numerical instabilities in the simulation. In this study, the

constraint conditions at the LE and TE of the airfoil are relaxed during numerical

implementation following Ref. [104]. The circulations of the latest shed vortices at

each time step, computed using Eqs. (3.30) and (3.31), are modified using an ad hoc

circulation limit, given by Eq. (6.2). The modified circulations may not satisfy the

stagnation and Kutta conditions, and represent shed vorticity computed by relaxing
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the constraint conditions.

If

∣∣∣∣∣ dΓt
wk

dΓt−∆t
wk

∣∣∣∣∣≥ εΓ then dΓt
wk = εΓdΓt−∆t

wk

dΓt
wk∣∣dΓt
wk

∣∣ for dΓt
wk 6= 0 (6.2)

where dΓt−∆t
wk and dΓt

wk denote strengths of vortices shed at consecutive time steps.

Literature indicates that caution should be exercised when using such ad hoc

criteria [101]. Several simulations were conducted to determine suitable values of

εΓ for the airfoil as well as the rigid wing cases described in this chapter. However,

details of these simulations and justification for the choice of εΓ are provided only for

the rigid wing cases (Section 6.2).

6.1 Airfoil Cases: Comparison with CFD for separated flow
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Figure 6.2: Force coefficients for a flat plate at a fixed angle of attack in uniform flow.

A comparison of force coefficients for a zero thickness flat plate airfoil undergoing
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prescribed motion are shown in Figures 6.2 and 6.3. The CFD computations were

performed using the CFD++ code [105,106], where the flow field was computed using

the incompressible, unsteady, Reynolds-averaged NS equations using a finite volume

formulation, on a grid that had approximately 500,000 points and 200 points on

the surface of the airfoil. The CFD results were obtained by solving the laminar

NS equations. Results based on the approximate model were obtained by assuming

leading edge separation for the following parameters: Nθ = 100, nwksubit = 4, rc = 0.1c.

The unsteady loads were computed using both the vortex impulse method as well as

the unsteady Bernoulli equation.
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Figure 6.3: Force coefficients for a plunging airfoil.

Figure 6.2 shows the force coefficients obtained for an airfoil held at a fixed angle

of attack, α= 55o, in a steady flow for the following parameters: c = 1m, uI = 1.5m/s,

vI = 0m/s, Re = 1.5×106, ∆t = 0.005c/uI . The circulation limit was fixed at 3.0. The

force coefficients were defined as follows:

CL = L
1
2ρ∞U2

I c
, CD = D

1
2ρ∞U2

I c
,and CM = M

1
2ρ∞U2

I c2
(6.3)

where, the aerodynamic moment was calculated about the quarter-chord. Further-
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more,

CFξ
= Fξ

1
2ρ∞U2

I c
, and CFη

= Fη

1
2ρ∞U2

I c
(6.4)

Figure 6.2(a) indicates that lift and drag computed using the vortex impulse method

and the unsteady Bernoulli equation compare well with each other and show reason-

able agreement with CFD. However, the moment computed using the vortex impulse

method shows better agreement with CFD than that computed using the Bernoulli

equation. This is probably due to the fact that small discrepancies in values of pres-

sure, particularly near the edges of the airfoil, have a significant impact on calculation

on moment. As discussed earlier, Figure 6.2(b) shows that the Bernoulli equation and

vortex impulse method predict identical values of Fη but different values of Fξ. Note

that no filters were used for this case.

Figure 6.3 shows the force coefficients obtained for an airfoil undergoing prescribed

plunge motion for the following parameters: c = 0.1m, h(t)= csin(2π f t), f = 1.592×
10−2 Hz, ρ∞ = 1788.92kg/m3, Re = 1000, and ∆t = 0.001/ f . A non-zero free stream

velocity was required for the CFD simulations; therefore, uI = 0.0001m/s and vI = 0m/s

was used so as to simulate ‘near hover’ conditions. The lift coefficient was defined as

follows:

CL = L
1
2ρ∞U2

re f c
where Ure f = 2π f c

The results obtained from the approximate aerodynamic model were smoothed using

a fourth order digital filter (m f = 4) whose coefficients are given in Table 6.1. Figure

6.3 indicates that the vortex impulse method and the unsteady Bernoulli equation

predict identical loads for normal to the chord. Moreover, the approximate model

shows reasonable agreement with CFD for the cases considered. The differences

observed can be attributed to the slightly different wake structures predicted by the

approximate model and CFD computation. The wake structure affects the unsteady

forces, particularly when an airfoil enters the wake shed during the previous cycles.

The forces generated by airfoils in hover are presented in Figures 6.4 and 6.5,
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A f 1 -3.0456 3.6243 -1.9780 0.4158

B f 0.001 0.0041 0.0062 0.0041 0.001

Table 6.1: Filter coefficients

Case ID Name f , Hz l0 α0 ϕα

1 Delayed rotation 1
2π c π

4
π
3

12 Synchronized rotation 1
3π 1.5c 4π

9
π
2

Table 6.2: Amplitudes and phase for airfoil kinematics. The case ids are obtained
from Ref. [107]

whereas Figure 6.6 includes a free stream velocity and therefore corresponds to the

case of forward flight. The lift and drag are components of the aerodynamic force

along the ηI and ξI axes respectively. The airfoil kinematics are given by Eq. (6.5)

and the parameters are shown in Table 6.2.

l(t) = l0 sin(2π f t)

α(t) = π

2
+α0 sin

(
2π f t+ϕα

)
(6.5)

where, the pitching is about the mid-chord. The results are obtained for Re = 100,

c = 1m, ρ∞ = 1 kg/m3, ν∞ = 0.01 m2/s, Ure f = 1.0 m/s, where Re and Ure f are defined

as follows.

Re = Ure f c
ν∞

and Ure f = 2π f l0 (6.6)

The non-dimensional forces are defined as follows:

CL = L
1
2ρ∞U2

re f

and CD = D
1
2ρ∞U2

re f c
(6.7)

The CFD based results are obtained from Ref. [107]. The approximate loads, com-

puted using the unsteady Bernoulli equation, were obtained for: Nθ = 200, rc = 0.1 c,

nwksubit = 4, and circulation limit was fixed at 2.0. For both cases, CFD simulations
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indicated that there was leading edge separation. However, for case 12, the vorticity

shed from the LE was substantially weaker compared to that shed from the TE.

Therefore, the approximate simulations for this case were also conducted assuming

attached flow over the airfoil. For both cases, simulations using the approximate

model were conducted assuming inviscid as well as viscous flow, wherein the effect of

fluid viscosity was incorporated into the calculations as described earlier.
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Figure 6.4: Force coefficients for Case 1

The force coefficients obtained for case 1 are shown in Figure 6.4; results obtained

by assuming inviscid flow and incorporating viscous effects are shown in Figures 6.4(a)

and 6.4(b) respectively. Simulations with the approximate model were conducted by

using 500 time steps per cycle to discretize the motion, and the load signals were

smoothed using the filter described in Table 6.3. The comparisons indicate that

incorporating the effect of viscosity improves correlation with CFD based results.

The improvement is noticeable for CD in particular. These results suggest that the

influence of fluid viscosity in the interactions involving shed vorticity is important for

this case.

The force coefficients obtained for case 12 are shown in Figure 6.5. Simulations

assuming separated and attached flows were conducted by using 800 and 500 time

steps per cycle respectively, and the loads obtained were smoothed using filters de-
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Figure 6.5: Force coefficients for Case 12

scribed in Tables 6.3 and 6.4 respectively. The results with separated flow, shown in

Figures 6.5(a) and 6.5(b), indicate that the inviscid approximate model does not com-

pare well with CFD for this case. Incorporating viscous effects improves correlation

slightly, as shown in Figure 6.5(b); however, the improvement is most noticeable in

the first and second cycles of CD . Results obtained by assuming attached flow, shown

in Figures 6.5(c) and 6.5(d), show that the approximate results agree with CFD based

results. However, some of the peaks in CD are not adequately captured. Incorporating

viscous effects improves correlation slightly, but the effect seems to be minor for this

case. These results suggest that when the vortical generation from the LE is weak, a

dominant contribution to the aerodynamic loads is from the TE vortices.

The forces generated by the airfoils in the presence of a free stream are shown
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Figure 6.6: Force coefficients for Cases 1 and 12 with free stream

in Figure 6.6. The kinematics are the same as those used in cases 1 and 12, and a

free stream velocity vector that is parallel to ξI is now introduced. The free steam

velocity is equal to 0.2Ure f , where Ure f is given in Eq. (6.7). Simulations using the

approximate model were conducted by assuming separated flow for case 1, attached

flow for case 12, and including the effect of viscosity. The results were obtained by

using 500 time steps per cycle, and subsequently smoothed using the filter described

in Table 6.3. The comparisons indicate that the approximate model shows reasonable

agreement with CFD for the cases considered. In particular, comparisons for case 12,

shown in Figure 6.6(b), indicate that the discrepancy in the peaks of CD is somewhat

larger compared to the discrepancy observed for case of hover; this may be attributed

to the increased contribution of vorticity shed from the LE.

A f 1.0000 -3.5379 4.7367 -2.8414 0.6439
B f (×10−3) 0.0797 0.3186 0.4779 0.3186 0.0797

Table 6.3: Filter coefficients

A f 1.0000 -3.9109 5.7376 -3.7423 0.9156
B f (×10−6) 0.1517 0.6067 0.9101 0.6067 0.1517

Table 6.4: Filter coefficients
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6.2 Rigid Zimmerman Wings in Hover

The forces generated by rigid Zimmerman wings undergoing prescribed flapping

motion are shown in Figures 6.7, 6.8, 6.9 and 6.10. Note that the lift and thrust

are the components of the aerodynamic force resolved along YSP and ZSP , shown in

Figure 3.5 respectively; the corresponding non-dimensional quantities are defined

in Eq (6.8). Furthermore, XW and YW , shown in Figure 3.2, coincide with XSP and

ZSP , respectively at the start of the motion. The flapping motion, which corresponds

to a simple rotation about YW , is described by the rotation vector shown in Eq. (5.7).

Furthermore, the transient aerodynamic loads obtained using the approximate model,

for the rigid as well as subsequent flexible cases considered, are calculated using

Bernoulli equation.

CL = L
1
2ρ∞U2

re f Rspancr
and CT = T

1
2ρ∞U2

re f Rspancr
where Ure f = 4Rspanβ0 f

(6.8)
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Figure 6.7: Lift coefficients for β0 = 35◦, f = 10 Hz for various Nt and εΓ

Simulations were conducted to determine the impact of εΓ, Nsection, Nθ, and Nt on

the forces generated by flapping wings. The unfiltered non-dimensional lift, obtained

for β0 = 35◦ and f = 10 Hz, are shown in Figures 6.7 and 6.8. Comparisons for

thrust are similar and therefore not presented. The numerical experiments were

conducted in air (ρ∞ = 1.209 kg/m3 and ν∞ = 1.568×10−5 m2/s). The vortex core radius
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Figure 6.8: Lift coefficients for β0 = 35◦, f = 10 Hz for various Nsection and nθ

and number of sub-iterations in the wake were fixed at rc = 0.1c and nwksubit = 4

respectively. Comparisons of CL for various combinations of Nt and εΓ are shown

in Figure 6.7. The loads generated over one and half cycles are nearly identical

for all the combinations considered. However, the amount of noise in the signal is

significant for εΓ = 3.0 and εΓ = 4.0. The results indicate that εΓ = 2.0 adequately

captures the loads generated by the wing while limiting the noise to reasonable levels.

Therefore, the circulation limit used in all subsequent simulations, using rigid as well

as flexible wings, is fixed at 2.0. Figure 6.7 also shows that the loads generated for

various values of Nt are nearly identical. Note that Nt = 200 and Nt = 450 represent

discretizations in which incremental rotations per time step at the root are 0.7◦ and

0.31◦ respectively. Therefore, the values of Nt in subsequent simulations are chosen

so that the incremental rotations lie in this range.

The unfiltered loads generated by the wings for various combinations of Nsection =
{19,39,59} and Nθ = {50,100,200} are shown in Figure 6.8. It is evident that the

differences in the loads are relatively minor, indicating that any combination of

Nsection and Nθ may be chosen without a significant loss in accuracy. Note that

increasing Nθ reduces the noise in the signal. Due to the limited number of cases

considered in this dissertation, results were obtained using a somewhat conservative

choice of Nsection = 59 and Nθ = 100. A lower resolution, which is computationally
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less expensive (see Appendix D), may be used when conducting extensive parametric

studies.
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Figure 6.9: Force coefficients generated by a rigid wing undergoing prescribed flapping
motion with amplitude of 5◦

Figure 6.9 shows the non-dimensional lift and thrust generated by the wing

for β0 = 5◦ and f = 10 Hz. For this case Re = 426, where the Reynolds number is

calculated using the root chord and maximum tip speed based on the flapping motion

of the rigid wing as shown in Eq. (6.9).

Re = Utipcr

ν∞
where Utip = 2π f Rspanβ0 (6.9)

The CFD based results, which are presented in Ref. [82], were computed using

the numerical framework that is described in Refs. [78, 79]. Simulation using the

approximate model was conducted using 200 time steps per flapping cycle to discretize

the motion. Subsequently, a fourth order filter (m f = 4) described in Table 6.5 was used

to smooth the results. The results, shown in Figure 6.9, indicate that the lift computed

using the approximate aerodynamic model compares well with the corresponding CFD

based quantity for the case considered. Note that due to the lack of wing pitch or twist,

the thrust corresponds to aerodynamic force parallel to the chordwise direction of the
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wing. In the approximate computations, the wing is assumed to have zero thickness;

consequently, the force parallel to the wing chord is equal to zero. In the CFD based

computations, this quantity is equal to the sum of viscous forces on the wing surface

and the suction pressure on the edges of the wing; the results indicate that the thrust

obtained from CFD based calculations is several orders of magnitude lower than the

lift.
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(d) f = 40 Hz

Figure 6.10: Force coefficients generated by rigid wings undergoing prescribed flap-
ping motion with amplitude of 35◦

The non-dimensional lift and thrust for β0 = 35◦ and f = {10,20,30,40} Hz are

shown in Figures 6.10 and 6.11. The Reynolds numbers for these cases, calculated



109

A f 1 -2.0345 1.9478 -0.9135 0.1766

B f 0.0110 0.0441 0.0661 0.0441 0.0110

Table 6.5: Filter coefficients

using Eq. (6.9), are 4387, 8775, 13163, and 17550 respectively. The CFD simulations

were conducted using the numerical framework described in Refs. [46,108]. Simula-

tions using the approximate and CFD based models were conducted using 300 and

500 time steps per flapping cycle to discretize the motion respectively. Subsequently,

a fourth order filter (m f = 4) described in Table 6.6 was used to smooth the signals ob-

tained using the approximate model. The results indicate that the approximate model

over-predicts the lift compared to CFD simulation; the mean and maximum errors in

the peak lift are 50% and 100% respectively. The discrepancy may be attributed to the

spanwise flow and tip vortices that may be important for the combination of amplitude

and flapping frequencies considered; note that these aspects are not incorporated in

the approximate aerodynamic model.
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Figure 6.11: Lift coefficients generated by rigid wings for β0 = 35◦.
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Figure 6.12: Lift and thrust coefficients, calculated using the approximate model,
generated by rigid wings for β0 = 18◦.

The time histories of CL for all the flapping frequencies considered is shown in

Figure 6.11, wherein the CFD based and approximate results are shown on separate

plots. The thrust was several orders of magnitude lower than lift; consequently

comparisons involving this quantity are not shown. It is interesting to note that

the lift coefficients, computed for various frequencies, are very similar. This trend

indicates that CL is somewhat insensitive to Reynolds number. Furthermore, based

on the definition of CL in Eq. (6.8), it follows that the peak lift is proportional to

the square of the flapping frequency. Similar trends are obtained from simulations

using the approximate model for β0 = 18◦, as shown in Figure 6.12, indicating that the

relation between the lift and flapping frequency is insensitive to flapping amplitude.

A f 1 -3.0456 3.6243 -1.9780 0.4158
B f 0.0010 0.0041 0.0062 0.0041 0.0010

Table 6.6: Filter coefficients

The forces generated by rigid wings undergoing prescribed combined flap-pitch

motion are shown in Figures 6.13, 6.14, 6.15, and 6.16. The wing kinematics are
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Figure 6.13: Force coefficients generated by a rigid wing undergoing combined pitch-
flap motion. β0 = 10◦, α0 = 5◦
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Figure 6.14: Force coefficients generated by a rigid wing undergoing combined pitch-
flap motion. β0 = 15◦, α0 = 5◦
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Figure 6.15: Force coefficients generated by a rigid wing undergoing combined pitch-
flap motion. β0 = 15◦, α0 = 10◦

described by the following Euler rotations: a flapping rotation about YW described by

Eq. (5.7) followed by a feathering motion about XW described by Eq. (6.10); where,

XW , indicated in Figure 3.2, originates at the quarter-chord point of the root. The

parameters for which the results are obtained are summarized in Table 6.7. For

all the results presented, the approximate simulations and CFD were conducted by

using 500 and 200 time steps per flapping cycle respectively. Comparisons, shown in

Figures 6.13, 6.14, and 6.15, indicate that the approximate model shows reasonable

correlation with CFD for the cases considered. The time histories of CL and CT ,

computed using the approximate model for f = 10 Hz, 20 Hz, 30 Hz, and 40 Hz, are

shown in Figure 6.16. The Reynolds numbers for these cases, calculated using Eq.

(6.9), are 1880, 3761, 5641, and 7520 respectively. The results clearly show that the

force coefficients computed at various flapping frequencies are very similar, indicating

that the aerodynamic forces scale with f 2. Note that a similar trend was obtained for

rigid wings undergoing prescribed flap motion.
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ψα =−α0 sin(2π f t)


1

0

0

 (6.10)
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Figure 6.16: Force coefficients generated using the approximate aerodynamic model
for rigid wings undergoing combined pitch-flap motion. β0 = 15◦, α0 = 10◦,
for various frequencies

Figure Number Flap amplitude Pitch amplitude f
6.13 10◦ 5◦ 10 Hz
6.14 15◦ 5◦ 10 Hz
6.15 15◦ 10◦ 10 Hz
6.16 15◦ 10◦ 10,20,30,40 Hz

Table 6.7: Figures corresponding to various combined flap-pitch cases.

6.3 Rigid Zimmerman Wing in Forward Flight

The forces generated by rigid wings in forward flight are presented. As mentioned,

forward flight is characterized by a free stream velocity vector that is assumed to lie

in the YSP −ZSP plane as indicated in Figure 3.4. The components of the free stream
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Figure 6.17: Combinations of advance ratio and SP inclination: Expt - Experimental
data [21].

velocity are determined from the tip speed, advance ratio, and stroke plane inclination

angle, using Eq. (3.1) as described earlier. The results are generated for combinations

of µ and βsp that are based on experimentally obtained data for hawkmoths in forward

flight [21]. The specific combinations used in the current study, which are based on

the data obtained for Moth M1 in Ref. [21], are shown in Figure 6.17 and listed in

Table 6.8.

µ 0 0.05 0.10 0.15 0.20 0.25
βsp 0◦ 14◦ 21.2◦ 27.7◦ 34◦ 40◦

Table 6.8: Combination of advance ratios and stroke plane inclinations used in the
current study

The non-dimensional lift generated by rigid wings for β0 = 35◦, f = 10 Hz, and

various advance ratios, are shown in Figure 6.18. The thrust generated was several

orders of magnitude lower than lift; therefore, comparisons involving this quantity

are not presented. The CFD and approximate simulations were conducted by using

500 and 300 time steps per flapping cycle respectively and results obtained using the
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approximate model were smoothed using the filter described in Table 6.6. Compar-

isons indicate that the approximate model shows reasonable agreement with CFD

based results for the cases considered. The correlation between the results improves

as advance ratio increases. The time histories indicate that the peak-to-peak forces

decreases with increasing advance ratio. A comparison of the mean lift coefficients,

which represent the time averaged values of CL, is shown in Figure 6.19. This re-

sult indicates that the mean lift decreases (becomes more negative) with increase in

forward flight speed; furthermore, the approximate model shows reasonable agree-

ment with the CFD based result and also captures the trend. The results shown in

Figures 6.18 and 6.19 demonstrate that the modified aerodynamic model can be used

to conduct trend type studies for wings in forward flight despite of the simplifying

assumptions.

The non-dimensional forces generated by rigid wings for β0 = 20◦, µ = 0.25, for

various flapping frequencies are shown in Figures 6.20, 6.21, and 6.22. The Reynolds

numbers corresponding to f = 2.5 Hz and 10 Hz, calculated using Eq. (6.9), are

626 and 2507 respectively. The CFD and approximate simulations were conducted

by using 500 and 200 time steps per flapping cycle respectively; results obtained

using the approximate model were smoothed using the filter described in Table 6.6.

Comparisons indicate that the approximate model shows reasonable agreement with

CFD based results for the cases considered. The time histories of CL for f = 2.5 Hz and

10 Hz are shown in Figure 6.16. It is evident that the force coefficients computed at

various flapping frequencies are very similar, indicating that the aerodynamic forces

scale with f 2. This result, combined with the trends obtained previously for wings in

hover, seem to imply that the predominant unsteady aerodynamic force generating

mechanisms for flapping wings in hover and forward flight are somewhat insensitive

to Reynolds number and the forces scale with the square of frequency for a given

kinematic pattern. However, the impact of wing planform on this finding has to be

examined.
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(f) µ= 0.25

Figure 6.18: Force coefficients generated by rigid wings in forward flight: β0 = 35◦,
f = 10 Hz
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Figure 6.19: Mean lift generated by rigid wings in forward flight.
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Figure 6.20: Force coefficients generated by rigid wings in forward flight: β0 = 20◦,
f = 2.5 Hz, µ= 0.25
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Figure 6.21: Force coefficients generated by rigid wings in forward flight: β0 = 20◦,
f = 10 Hz, µ= 0.25
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Figure 6.22: Force coefficients generated by rigid wings in forward flight: β0 = 20◦,
µ= 0.25



CHAPTER VII

Aeroelastic Studies

Aeroelastic studies were conducted using isotropic and anisotropic wings in hover

and forward flight for a variety of wing kinematics. The studies are separated as

follows: (1) preliminary tests on the aeroelastic interface, (2) flexible wings in hover,

and (3) flexible wings in forward flight.

7.1 Preliminary Calculations using the Aeroelastic Interface

The results presented in this section are used to determine whether MARC can be

used to impose pressure loads, which can later be replaced with aerodynamic loads,

on a plate that is undergoing prescribed large amplitude rigid body motion. First, the

simultaneous application of a uniform pressure load and large amplitude rigid body

motion on a plate is examined.

A plate with dimensions Rspan = 0.1 m, b = 0.025 m, and th = 0.001 m, was chosen.

The plate is assumed to be made of a hypothetical material that has elastic modulus

E = 2.1×1010 N/m2, Poisson’s ratio ν = 0.3, and density ρ = 20 kg/m3. The finite

element model of the plate was composed of 440 shell elements (Element type 75 in

MARC). A low value of density was selected so as to reduce the effect of inertial loads

due to flapping motion thus guaranteeing that the flexible deformation of the flapping

119
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Pressure Flapping case Static case
N/m2 ×10−3 m ×10−3 m
500 3.352 3.353

10,000 61.79 61.59

Table 7.1: Comparison of tip displacement for static and flapping case.

plate is due mainly to the externally applied load. This implies that the displacements

obtained for a flapping plate with external load can be compared to those obtained for

a static plate that is cantilevered along the flapping edge with the same applied load.

Two cases of uniform pressure loads, ∆p1 = 500 N/m2 and ∆p2 = 10,000 N/m2, which

resulted in small and large edge displacements respectively were examined. Here,

“small” displacements imply displacements that are of the order of the plate thickness.

For the flapping plate, the pressure loads were superimposed with large amplitude 2D

rotations, described by the rotation vector in Eq. (5.1) where f = 5 Hz. A time step of

∆t = 2×10−3 seconds was used. At each time step, the magnitude of the displacement

at point P that has coordinates (0.1,0,0) in (XW ,YW , ZW ) due to flexibility is obtained.

The results obtained for the static plate with pressure load and flapping plate with

pressure load are summarized in Table 7.1. The results indicate that pressure loads

can successfully be imposed on a plate that is flapping with large amplitude rigid body

motion.

7.2 Flexible Flapping Wings in Hover

The results are obtained for isotropic and anisotropic wings that were based

on the Zimmerman planform [69]. The finite element models of the wings, shown

in Figure 3.2, were obtained using 1263 thick shell elements (Element type 75 in

MARC). The wing sections described by the structural mesh, shown in Figure 3.2, are

conveniently used as the spanwise stations during the aerodynamic analysis. The
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airfoil discretization for the aerodynamic analysis is typically more refined than the

number of elements along the chord in the structural dynamic model. Therefore,

the chordwise distributions of deformation and velocities are linearly interpolated to

obtain the corresponding quantities for the airfoil. The pressure distribution imposed

on each structural element along the chord is assumed to be constant, and is computed

from the pressure distribution on the airfoil using Eq. (7.1).

p j

∣∣∣
struc

=

ξ j+1∫
ξ j

p(ξ)
∣∣∣
aero

dξ(
ξ j+1 −ξ j

) for j = 1,2, · · · , (nc −1) (7.1)

Pressure Limits

During the simulations, a pressure based filter that is described by Eq. (7.2) was

used to limit the magnitude of numerical noise that is transmitted to the flexible wing;

note that the limit should be sufficiently high so as not to introduce significant errors

during calculations.

papplied =


−pl imit if pcalculated ≤−pl imit

pcalculated if − pl imit ≤ pcalculated ≤ pl imit

pl imit if pcalculated ≥ pl imit

(7.2)

The limiting pressure is given by pl imit = npress pre f , where pre f is defined in Eq.

(7.3).

pre f =
1
2
ρ∞U2

tip where Utip = 2π f β0Rspan (7.3)

The impact of the pressure limit on the aeroelastic calculations was examined using

L1B1 and L3B1 in hover at f = 10 Hz and f = 40 Hz respectively. The flapping motion

is described by the rotation vector given by Eq. (5.7) for β0 = 35◦ and simulations
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were conducted using 300 time steps per flapping cycle. Based on the experiments

described in Ref. [69], these cases are expected to have maximum aerodynamic loading

at the corresponding frequencies. It is reasonable to assume that a pressure limit that

is determined based on these cases would be adequate for the other configurations.

The time averaged lift and thrust forces generated by the wings for various values of

npress are shown in Figures 7.1 and 7.2. The results clearly show that the aeroelastic

forces are under-predicted if the pressure limit is not sufficiently high. Based on the

trends obtained, the variation in mean lift and thrust is minor (difference < 15%) for

npress ≥ 30. Therefore, npress is fixed at 36 for all the simulations involving flexible

wings undergoing simple flap motion.
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Figure 7.1: Mean forces generated for various pressure limits, L1B1 in hover at 10
Hz.

Simulations of rigid wings in forward flight, described in Section 6.3, indicate that

the magnitude of maximum aerodynamic force is similar to that generated by wings

in hover. This suggests that the maximum loading on the wings is similar. Therefore,

it is assumed that a pressure limit that is suitable for wings in hover will also be

adequate for wings in forward flight. This is verified by considering the case of L3B1
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Figure 7.2: Mean forces generated for various pressure limits, L3B1 in hover at 40
Hz.

for β0 = 35◦, f = 40 hz, and µ = 0.25. The time histories of the thrust and lift for 3

cycles, which were smoothed using filter in Table 6.1, are shown in Figure 7.3 and

the mean quantities are listed in Table 7.2. Note that simulations for npress = 64 and

100 terminated after the 3rd cycle due to excessive local deformation caused by the

noise. Figure 7.3 indicates that the differences in the overall time histories for various

values of npress are similar. The maximum difference in the mean quantities is less

than 15%, which is considered to be acceptable.

npress Mean lift, g Mean thrust, g
36 -4.8994 5.2331
49 -4.2935 5.3998
64 -4.8973 5.7890
100 -4.3969 5.6732

Table 7.2: Mean lift and thrust generated by L3B1 for β0 = 35◦, f = 40 Hz, and µ= 0.25,
for various pressure limits.
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Figure 7.3: Time histories of lift and thrust generated by L3B1 for β0 = 35◦, f = 40 Hz,
and µ= 0.25, for various pressure limits.

Isotropic Flapping Wings in Hover

The lift and thrust generated by isotropic wings undergoing prescribed flapping

motion are shown in Figures 7.4, 7.5, and 7.6. The flapping motion is given by the

rotation vector in Eq (5.7) for β0 = 5◦ and f = 10 Hz. The wing thickness, density,

and Poisson’s ratio were 0.4mm, 2700 kg/m3, and 0.3 respectively. In the simulations

using the approximate model, 50 time steps per flapping cycle were used to discretize

the motion. The CFD based results, presented in Ref. [82], were computed using

the aeroelastic model that is described in Refs. [78, 79]. The lift and thrust were

non-dimensionalized as indicated by Eq (6.8). The load signals obtained from the

approximate model were smoothed using digital filters described in Table 6.5.

The results, shown in Figures 7.4, 7.5, and 7.6, indicate that the lift and thrust

computed using the approximate aeroelastic model show reasonable agreement with

the CFD based results for the cases considered. Note that a periodic or steady

state solution was not observed for the case of E = 0.1 GPa. Therefore, an accurate
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Figure 7.4: Force coefficients generated by isotropic wings undergoing prescribed
flapping motion, E = 70 GPa
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Figure 7.5: Force coefficients generated by isotropic wings undergoing prescribed
flapping motion, E = 10 GPa
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assessment of the differences between the CFD and approximate result is difficult for

this case.
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Figure 7.6: Force coefficients generated by isotropic wings undergoing prescribed
flapping motion, E = 0.1 GPa

Anisotropic Flapping Wings in Hover

The computed and experimentally measured magnitudes of thrust generated

by anisotropic wings are compared next. The results, obtained for β0 = 35◦ for a

range of flapping frequencies, are shown in Figures 7.7, 7.8, and 7.9 respectively. A

relative comparison of thrust generated by one-layer batten configurations is shown in

Figure 7.10. The experimental results were obtained from Ref. [69] and computations

are based on the approximate aeroelastic model. Note that the experiments were

conducted using two wings undergoing symmetric flapping motion, whereas the

computations were performed by considering a single wing. Therefore, the thrust

obtained from the simulations was multiplied by a factor of two to facilitate comparison

with the experimental result. For the approximate model, 300 time steps per flapping

cycle were used to discretize the motion. The simulations, conducted for a total of

5 cycles, indicated that an approximate steady state was achieved after two cycles.
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Therefore, the mean thrust was calculated by time averaging the thrust generated

over cycles 2 through 5.
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Figure 7.7: Comparison of thrust generated by L1B1 and L1B2: ‘Expt’ - Experiments
[69], ‘Comp’ - computations, current study

The results show that the thrust obtained using the approximate aeroelastic model

shows reasonable agreement with experimentally measured thrust for all the cases

considered. This is somewhat surprising since the approximate aerodynamic model

over-predicted peak lift generated by rigid wings for these combinations of flapping

amplitude and frequencies. An accurate assessment of the error is difficult, since

the limited amount of available experimental data does not provide any indication

of the sensitivity of the thrust to variability in material and geometric properties

and wing construction. Consequently, the impact of discrepancies in structural

dynamic modeling on the thrust generated has to be examined before quantifying

the differences in the aeroelastic results. It may also be assumed that the impact of

wing flexibility on spanwise flow and tip vortices affects the discrepancy between the

computational and experimental results.
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Figure 7.8: Comparison of thrust generated by L2B1 and L2B2: ‘Expt’ - Experiments
[69], ‘Comp’ - computations, current study

Comparison of the thrust generated by the one and two layer batten configurations

is shown in Figures 7.7, 7.8, and 7.9. The computational results indicate that the

thrust generated reduces as the number of prepreg layers in the battens is increased.

This may be due to the fact that reinforcing the battens increases the torsional

stiffness of the wing thereby reducing the twist angle of the wing. Thus, the total

force generated by the wing and its component normal to the stroke plane, i.e. thrust,

are both reduced. This trend is not apparent from the experimental results.

Figure 7.10 shows the thrust generated by one-layer batten configurations. These

results indicate that the approximate model predicts the trends that are observed

from the experimental measurements. Different wing configurations produce maxi-

mum thrust for the range of flapping frequencies considered. The L1B1 configuration

produces maximum thrust for frequencies between 5 Hz and 18 Hz, L2B1 for frequen-

cies between 18 Hz and 35 Hz, and L3B1 for frequencies between 35 Hz and 40 Hz

respectively.
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Figure 7.9: Comparison of thrust generated by L3B1 and L3B2: ‘Expt’ - Experiments
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The thrust generated by L1Bj configurations is shown in Figure 7.7. This result

indicates that experimental measurements as well as the computations for L1B1 show

a peak in thrust for a flapping frequency in the range of 20−25 Hz. The computations

for L1B2 show a similar peak. These peaks occur when the frequency of wing excita-

tion is in the vicinity of the fundamental frequency of the wing. Additional simulations

using L1B1 were conducted in order to examine the dependence of the peak in thrust

on the flapping amplitude. The results, shown in Figure 7.11, indicate that a peak in

thrust is obtained when the excitation frequency is close to the natural frequency of

the wing for all the amplitudes considered. This is an important observation that is

likely to guide subsequent efforts in wing design and selection of wing kinematics.
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Figure 7.11: Thrust generated by L1B1 for various flapping amplitudes: Dashed line -
Experiments [69], Solid lines - computations, current study. The vertical
green line indicates the natural frequency of L1B1

The aerodynamic and inertia loads acting on the wings were compared. Compar-

isons for L1B1 for the range of frequencies considered are shown in Figure 7.12 and
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7.13, where results obtained from the aeroelastic model were smoothed using the

filter described in Table 6.1. The aerodynamic and inertia loads are calculated as

give by Eq. (7.4). The results, which are representative of the comparisons obtained

for other cases, indicate that the relative importance of inertia loads increases as

flapping frequency increases, and the aerodynamic loads are comparable to inertia

loads. This finding is contrary to the observations of Refs. [28,29,41], suggesting that

the relative importance of aerodynamic to inertia loads is configuration dependent

and wings that have excessive mass will produce inertia loads that will be dominant.

Thus, this finding emphasizes the importance of correctly accounting for aeroelastic

effects in flapping wings.

Fsp

∣∣∣
aero

=
Ï
Aw

p dAsp and Fsp

∣∣∣
inertia

=
Ñ
Vw

dm ẍsp (7.4)

Wings undergoing insect-like kinematics for the case of hover

Results were obtained for rigid and flexible wings employing insect-like kinematics.

The kinematics, based on the hover kinematics of hawkmoths [21], are obtained by

scaling the stroke amplitudes by a factor of two. The time dependent Euler angles,

prescribed about the Yw, Xw, and Zw axes respectively, are described by the rotation

vectors in Eq. (7.5) and shown in Figure 7.14.

ψΦ =Φr(t)


0

1

0

 ψα =αr(t)


1

0

0

 ψΘ =Θr(t)


0

0

1

 (7.5)
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Figure 7.12: Aerodynamic and inertia loads acting on L1B1 in hover: β0 = 35◦, f = 5
Hz to 20 hz
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Figure 7.13: Aerodynamic and inertia loads acting on L1B1 in hover: β0 = 35◦, f = 25
Hz to 40 hz
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Figure 7.14: Hawkmoth kinematics: thin lines denote actual kinematics [21]; thick
lines denote scaled kinematics that are used in the current study.

where

Φr(t) = Φ0

4
+ 1

2

3∑
j=0

[
Φc j cos(2π j f t)+Φs j sin(2π j f t)

]
αr(t) = −α0

4
− 1

2

3∑
j=0

[
αc j cos(2π j f t)+αs j sin(2π j f t)

]
(7.6)

Θr(t) = Θ0

4
+ 1

2

3∑
j=0

[
Θc j cos(2π j f t)+Θs j sin(2π j f t)

]
where αr1 and Θr are prescribed about the quarter-chord point at the root. The Fourier

coefficients of the Euler angles are given in Table 7.3. The simulations were conducted

using 300 time steps per flapping cycle, and the results obtained from the aeroelastic

model were smoothed using a filter described by Table 6.3. The pressure limit used

for this case is computed using npress = 36 and β0 = 60◦ in Eq. (7.3); this value of β0 is

expected to yield a conservative limit.

The lift and thrust, in grams, generated by rigid and anisotropic wings for f = 10

Hz, and f = 20 Hz, are shown in Figure 7.15. The results correspond to the forces

generated by an isolated flapping wing. For f = 10 Hz, L1B1 generates higher thrust

compared to the other wings, as shown in Figure 7.15(a). However, the lift generated



135

Φ0 Φc1 Φc2 Φc3 Φs1 Φs2 Φs3
8.1074 52.9298 0.5959 2.2231 -6.9385 -2.6643 1.5011

Θ0 Θc1 Θc2 Θc3 Θs1 Θs2 Θs3
-1.9395 1.4152 6.1994 0.4469 2.4752 0.5730 -0.7162

α0 αc1 αc2 αc3 αs1 αs2 αs3
9.6698 -14.9886 0.5099 -0.9282 -58.9230 -0.2521 -7.6834

Table 7.3: Fourier coefficients in the hawkmoth kinematics (in degrees).

by all the configurations is somewhat similar. For f = 20 Hz the results in Figure

7.15(b) indicate that L1B1 generates less thrust and lift when compared to L3B1 and

the rigid wing, whereas L3B1 produces the maximum thrust. Recall that for this

frequency, the L1B1 and L3B1 configurations generated the maximum and minimum

thrust when using a simple flap actuation. This implies that the impact of wing

flexibility is kinematics dependent.
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Figure 7.15: Lift and thrust generated by rigid and flexible wings undergoing scaled
hawkmoth kinematics
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7.3 Flexible Flapping Wings in Forward Flight

The effect of forward flight on the aerodynamic forces generated by flexible wings

was examined using anisotropic wings undergoing prescribed flap motion for a range

of forward flight conditions. The results, shown in Figures 7.16, 7.16, 7.18, and

7.19, were obtained for L1B1 and L3B1, β0 = 35◦, f = {10,40} Hz, and forward flight

conditions corresponding to the values given in Table 6.8. The flapping motion is

given by Eq. (5.7) and the magnitude of the free stream velocities was determined

based on the tip speed of a rigid wing undergoing the same kinematics. The mean

forces were obtained by time averaging the transient forces over cycles 2 through 5.

The mean forces computed for one wing were multiplied by a factor of two so as to

approximate the force generated by a vehicle that has a pair of wings.
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Figure 7.16: Mean lift and thrust, in grams, generated by rigid and flexible wings

The mean lift and thrust generated by rigid and flexible wings are shown in

Figures 7.16 and 7.16. The results indicate that the lift decreases (becomes more
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Figure 7.17: Mean lift and thrust, in grams, generated by rigid and flexible wings

negative) with increase in forward flight speed. However, the change in thrust is

somewhat small. Furthermore, different wings produce maximum mean thrust at

different frequencies: L1B1 produces maximum thrust at f = 10 Hz, whereas L3B1

produces the maximum thrust at f = 40 Hz. Similar trends were obtained for the case

of hover.

The mean horizontal and vertical forces generated by the wings, indicative of the

propulsive and payload capacity of the wings, are shown in Figures 7.18 and 7.19.

The horizontal and vertical directions are shown in Figure 1.3. Note that both Fh

and Fv are positive in an actual vehicle; a negative value of Fh denotes drag. The

results show that Fv increases and Fh decreases with increase in forward flight speed,

and wing flexibility has a beneficial influence. The flexible configurations have higher

payload capacity and lower drag than rigid wings. Configurations L1B1 and L3B1

have the largest payload capacity and least drag at 10 Hz and 40 Hz respectively.

These results indicate that the trends in force generation obtained for wings in hover
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Figure 7.18: Mean horizontal and vertical forces, in grams, generated by rigid and
flexible wings
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Figure 7.19: Mean horizontal and vertical forces, in grams, generated by rigid and
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also apply to forward flight.

Of the various wings and flapping frequencies considered in this study, positive

values of both Fh and Fv were obtained only in the case of L3B1 at f = 40 Hz, as

shown in Figure 7.19. Thus, this case seems to be the most effective combination

of wing flexibility and kinematics encountered in this study. The payload capacity

for this case, which is 12 grams, is inadequate to support the expected weight of a

potential vehicle (approximately 50 grams). This implies that further exploration of

the parameter space is needed. Note that typical insect kinematics include a large

pitching motion during and at the ends of each flapping stroke. In the current study

the wing pitch was due to wing torsion. Therefore, the interaction of wing flexibility

and kinematics that include active pitching of the wing has to be explored in greater

detail.



CHAPTER VIII

Conclusions and Future Work

An approximate aeroelastic model suitable for representing the behavior of flexi-

ble anisotropic flapping wings in hover and forward flight has been developed. The

structural dynamic component of this flapping wing aeroelastic problem was modeled

using MSC MARC, a commercially available nonlinear finite element package, and

the aerodynamic loads were computed from an approximate aerodynamic model. The

capability of the MARC code for modeling anisotropic bio-inspired flapping wings was

carefully tested and found to be adequate. The approximate aerodynamic model, origi-

nally developed for rigid wings in hover, was modified to incorporate wing flexibility

and forward flight. The effect of viscosity was also incorporated in an approximate

manner by including the temporal decay of circulation once a vortex is shed into the

wake. The results presented include validation studies conducted on the structural

dynamic models, aerodynamic studies using rigid airfoils and wings in hover and

forward flight, and aeroelastic studies on isotropic and anisotropic wings in hover and

forward flight. The conclusions obtained from these studies are presented next.

8.1 Principal conclusions

Based on detailed structural dynamic studies that involved implementation of

wing kinematics in MARC, modeling the centrifugal stiffening effect of an accelerating

140
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plate, tensile tests conducted on thin films (membrane), a comparison of mode shapes,

frequencies, and tip displacements in vacuum, for several anisotropic Zimmerman

wings, one can conclude that,

1. Two dimensional rotations can be implemented in MARC either as rotation

vectors or displacements. However, 3D rotations, which are representative

of insect-like kinematics, have to be implemented as displacement boundary

conditions.

2. Comparisons obtained for an accelerating plate show that MARC captures the

centrifugal stiffening effect, which may be important in flapping wings, in an

accurate manner.

3. Tensile tests show that paint, which is used to facilitate visual tracking of

translucent membranes, has very little effect on the geometric and stiffness

properties of thin films. However, a 16% increase in density is noted, implying

that the impact of paint on the mass distribution and inertia properties of

membrane based wings cannot be neglected.

4. Comparisons of mode shapes and frequencies indicate that the finite element

wing models developed in this study show reasonable correlation (error ≤ 20%

in frequencies) with experimentally measured mode shapes and frequencies for

all the configurations considered. However it is noted that the experiments were

conducted in air which implies that the measured frequencies correspond to

aeroelastic modes and not free vibration modes. The tip displacements obtained

for wings flapping in vacuum show that the FE model correlates reasonably well

with experiments.

Aerodynamic comparisons and trend studies were conducted for rigid airfoils and

Zimmerman wings in hover and forward flight; the principal conclusions were:
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1. The approximate unsteady aerodynamic loads show reasonable agreement with

CFD based results for all the cases considered.

2. The unsteady Bernoulli equation and the vortex impulse method predict iden-

tical forces normal to the airfoil chord, but differ in forces that are parallel to

the airfoil chord. Both approaches show reasonable correlation with CFD based

computations.

3. Results for airfoils operating at low Reynolds number (Re = 100) show that

incorporating the effect of viscosity in the approximate model improves cor-

relation with CFD based results. When the vortical activity from the LE is

strong, assuming separated flow in the approximate model is likely to yield

reasonable agreement with CFD based loads. When the vortical activity from

the LE is weak, approximate loads computed by assuming attached flow are

likely to correlate better with CFD based results compared to those computed

by assuming separated flow. However, the vorticity shed from the LE may have

a significant effect on the unsteady loads during some portions of the flapping

cycle.

4. Comparisons of forces generated by rigid Zimmerman wings in hover and for-

ward flight, for a variety of wing kinematics, shows that the approximate model

captures the important trends accurately. Results also indicate that the forces

generated by rigid wings are insensitive to Reynolds number for the range

considered in this study (626 ≤ Re ≤ 17551) and scale with the square of the

flapping frequency.

Transient and time-averaged forces computed from the approximate aeroelastic

model were compared with those obtained from CFD based computations using

isotropic wings in hover as well as experiments conducted on several anisotropic wing

configurations in hover. Trends for the mean forces were obtained for rigid and flexible

wings in forward flight. Principal conclusions are:
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1. High frequency large amplitude noise is an important consideration in aeroelas-

tic simulations that employ a discrete vortex representation of the airfoil and

the wake to compute the unsteady loads. The noise needs to be eliminated or

reduced before the aerodynamic loads can be imposed on a flexible structure.

In the current study, pressure based filters were used to limit the amplitude of

noise.

2. The approximate model shows reasonable agreement with CFD based compu-

tations and experimental measurements for all the cases considered, and it

predicts important trends in forces accurately. Therefore, this tool may be used

to conduct trend studies on flapping wings.

3. For anisotropic wings in hover undergoing pure flapping motion, a peak in thrust

was obtained when the actuation frequency was close to the natural frequency of

the wing, and the location of the peak appears to be independent of the flapping

amplitude. The choice of the ‘best’ flexible configuration was found to depend on

the flapping frequency considered.

4. Increasing torsional stiffness reduces the thrust generated by the anisotropic

wings in hover due to a reduction in the pitch angle caused by wing twist; this

trend was not evident from the experiments.

5. The aerodynamic loads acting on the wings were found to be comparable to

inertia loads. This is contrary to what was found in previous studies [28–30],

which noted that aerodynamic loads are negligible compared to inertia loads.

Therefore, it appears that the relative importance of aerodynamic and inertia

loads in flapping wings is dependent on the configurations considered.

6. The payload capacity and propulsive capability of rigid and flexible wings in

hover and forward flight were examined. It was found that flexible wings have

larger payload capacity and lower drag compared to rigid wings. Also, different
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flexible configurations perform better at different flapping frequencies; similar

trends were noted in hover.

7. Results for rigid and flexible wings undergoing insect-like kinematics suggest

that the choice of the ‘best’ flexible configuration also depend on the kinematics

used in addition to the flapping frequency.

8.2 Recommendations for future work

With its current capabilities, the aeroelastic code developed in this dissertation

may be used to explore the parameter space and identify scaling laws that are likely to

guide the design of efficient flapping structures. The large parameter space associated

with flapping wings implies that continued exploration is needed not only to under-

stand the underlying physics but also to identify modifications and enhancements that

will improve the predictive capabilities of approximate tools. Some recommendations

are provided next:

1. Simulations of insect wings using CFD based tools indicate that spanwise flow

and tip vortices may be important depending on the interplay between wing

planform and kinematics. The approximate aerodynamic formulation is 2D

and does not model these effects. Therefore, modifications to incorporate these

effects into the formulation without an undue increase in computational expense

should be pursued.

2. Comparisons for rigid airfoils demonstrate that vorticity shed from the LE may

have a significant contribution to the loads only during some parts of the flapping

cycle. Examples that are of practical interest include insects in forward flight

wherein prominent LEVs were observed during the downstroke and only some

portions of the upstroke. Accurate aerodynamic analysis of these situations

would have to capture the effect of intermittent separation and re-attachment.
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The approximate aerodynamic formulation is based on potential flow and there-

fore requires a physics based separation and re-attachment criterion that allows

switching between the separated and attached flow assumptions. A useful start-

ing point is to examine separation and re-attachment criteria that are used to

model the effect of dynamic stall on helicopter blades.

3. The shed wake geometry for wings in hover and forward flight has been approxi-

mated using a normal cylindrical surface. Such an approximation appears to

be reasonable for the cases considered in this thesis. However, for the general

case the shed wake is typically not confined to the normal cylinder and a more

realistic representation of wake geometry may have to be considered.

4. The effect of spanwise and chordwise deformations were incorporated into

the aerodynamic formulation in an averaged manner. Although it appears

that chordwise flexibility did not have a significant effect on the unsteady

loads generated by the wings for the cases considered, a better approach to

incorporate airfoil velocities is desired. For example, the chordwise velocities

could be approximated as a Fourier series expansion and incorporated into the

expression of quasi-steady vorticity.

5. The numerical noise that arises due to the discrete representation of the vorticity

has to be reduced/eliminated in a more systematic manner. One may consider

using digital filters for each spanwise station or borrow ideas from studies

that use a modal representation of the structure. In the former, appropriate

filters may be have to be designed on case by case basis. In the latter, the filter

is determined based on the number of mode shapes used to approximate the

pressure distribution.
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Appendix A: Incorporating Chordwise Flexibility

Derivation of Terms Incorporating Chordwise Flexibility

∆vθ(θ, t)
∣∣ f lex
us = −1

2π

2π∮
0

(A∆v f lex
ξ

+B∆v f lex
η )cot

(
ς−θ

2

)
dς (A.1)

Assume that ∆v f lex
ξ

and ∆v f lex
η are independent of the coordinate θ. Then,

∆vθ(θ, t)
∣∣ f lex
us = −1

2π

{[ 2π∮
0

A cot
(
ς−θ

2

)
dς

]
∆v f lex

ξ
+

[ 2π∮
0

Bcot
(
ς−θ

2

)
dς

]
∆v f lex

η

}
(A.2)

Substituting Eqs. (3.17) and (A.7) into Eq. (A.2) and simplifying, one has

2π∮
0

A cot
(
ς−θ

2

)
dς=τ

[
Ic,1(θ)− Ic,2(θ)

]
−σ

[
Is,1(θ)− Is,2(θ)

]
2π∮
0

Bcot
(
ς−θ

2

)
dς=2Is,1(θ)−τ

[
Is,1(θ)− Is,2(θ)

]
−σ

[
Ic,1(θ)− Ic,2(θ)

]
(A.3)

where, the general form of Is, j and Ic, j are given in Eq. (A.6). Substituting the

results obtained in Eq. (A.10) into Eq. (A.3), one has

− 1
2π

2π∮
0

(
A cot

(
ς−θ

2

))
dς=τ(sinθ−sin2θ

)+σ(
cosθ−cos2θ

)

− 1
2π

2π∮
0

(
Bcot

(
ς−θ

2

))
dς=−2cosθ+τ(cosθ−cos2θ

)−σ(
sinθ−sin2θ

)
(A.4)
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Therefore,

∆vθ(θ, t)
∣∣ f lex
us =

[
τ
(
sinθ−sin2θ

)+σ(
cosθ−cos2θ

)]
∆v f lex

ξ
(A.5)

+
[
−2cosθ+τ(cosθ−cos2θ

)−σ(
sinθ−sin2θ

)]
∆v f lex

η

Evaluating Is, j and Ic, j

Note that

Is, j(θ)=
2π∮
0

sin jςcot
(
ς−θ

2

)
dς

Ic, j(θ)=
2π∮
0

cos jςcot
(
ς−θ

2

)
dς (A.6)

where, j is a non-negative integer, and

cot
(
ς−θ

2

)
= sinς+sinθ

cosθ−cosς
(A.7)

Substituting Eq. (A.7) into (A.6), one obtains

Is, j(θ)= 1
2

2π∮
0

cos( j−1)ς−cos( j+1)ς
cosθ−cosς

dς+
2π∮
0

sin jςsinθ
cosθ−cosς

dς

Ic, j(θ)= 1
2

2π∮
0

sin( j+1)ς−sin( j−1)ς
cosθ−cosς

dς+
2π∮
0

cos jςsinθ
cosθ−cosς

dς (A.8)

Using the results in Eqs. (A.12) and (A.13), one has
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2π∮
0

cos jς
cosθ−cosς

dς=−2π
sin jθ
sinθ

and
2π∮
0

sin jς
cosθ−cosς

dς= 0 (A.9)

Substituting Eq. (A.9) into (A.8)

Is, j(θ)= 1
2

[
−2π

sin( j−1)θ
sinθ

+2π
sin( j+1)θ

sinθ

]
= 2πcos jθ

Ic, j(θ)=−2πsin jθ (A.10)

Glauert Integrals

The Glauert integrals of interest are

IGLC =
2π∮
0

cos jς
cosθ−cosς

dς and IGLS =
2π∮
0

sin jς
cosθ−cosς

dς (A.11)

for j = 0,1,2, · · · . IGLC may be simplified as follows:

2π∮
0

cos jς
cosθ−cosς

dς=
π∫

0

cos jς
cosθ−cosς

dς+
2π∫
π

cos jς
cosθ−cosς

dς

Consider the second integral. Change variable of integration from ς to φ where

φ= 2π−ς. Then
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2π∫
π

cos jς
cosθ−cosς

dς=−
0∫
π

cos(2π j− jφ)
cosθ−cos(2π−φ)

dφ

=−
0∫
π

cos jφ
cosθ−cosφ

dφ

=
π∫

0

cos jφ
cosθ−cosφ

dφ

Therefore
2π∫
0

cos jς
cosθ−cosς

dς= 2
π∫

0

cos jφ
cosθ−cosφ

dφ

From Appendix E, pp. 624, of Ref. [92], note that

π∫
0

cos jφ
cosθ−cosφ

dφ=−πsin jθ
sinθ

Therefore

IGLC = 2
π∫

0

cos jφ
cosθ−cosφ

dφ=−2π
sin jθ
sinθ

(A.12)

Similarly, IGLS may be modified as

2π∮
0

sin jς
cosθ−cosς

dς=
π∫

0

sin jς
cosθ−cosς

dς+
2π∫
π

sin jς
cosθ−cosς

dς

Consider the second integral. Change variable of integration from ς to φ where

φ= 2π−ς. Then
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2π∫
π

sin jς
cosθ−cosς

dς=−
0∫
π

sin(2π j− jφ)
cosθ−cos(2π−φ)

dφ

=−
0∫
π

−sin jφ
cosθ−cosφ

dφ

=−
π∫

0

sin jφ
cosθ−cosφ

dφ

Therefore

IGLS =
2π∫
0

sin jς
cosθ−cosς

dς= 0 (A.13)



152

Appendix B: Unsteady Loads

The unsteady aerodynamic loads are computed using either the vortex impulse

method or the unsteady Bernoulli equation, where both approaches are derived from

the irrotational form of the Euler equations (Chapters 9 and 10, Ref. [92]). The

vortex impulse method yields directly the integrated force and moment on the airfoil;

therefore, this approach is more suitable for aerodynamic calculations involving rigid

wings or aeroelastic calculations involving beam-type structural dynamic models.

The unsteady Bernoulli equation is computationally more expensive and yields the

pressure distribution on the airfoil; therefore, this approach is used when chordwise

distribution of aerodynamic loads are of interest. The two approaches are equiva-

lent; however, important differences during implementation due to assumptions on

the geometry of the airfoil. This appendix summarizes the derivations of the two

approaches.

Derivation of the Unsteady Bernoulli Equation

From Ref [109], the Newton’s second law of motion or the law of conservation of

momentum gives
Dq
Dt

= f − ∇∇∇p
ρ

(B.1)

where, f denotes body force per unit volume. Equation (B.1) gives 1

∂q
∂t

+ (q ·∇∇∇) q = f − ∇∇∇p
ρ

(B.2)

The second term on the left hand side of the above equation can be written as

q ·∇q =∇∇∇
(

q2

2

)
−q× (∇∇∇×q) (B.3)

1The following derivation is taken from Refs [97,109]
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Substituting this into Eq (B.2), we obtain

∂q
∂t

+∇∇∇
(

q2

2

)
−q× (∇∇∇×q)= f − ∇∇∇p

ρ
(B.4)

For irrotational flow, ∇∇∇×q = 0. Therefore, Eq (B.4) yields

∂q
∂t

+∇∇∇
(

q2

2

)
= f − ∇∇∇p

ρ
(B.5)

Assume body force is conservative, i.e. f = −∇∇∇E, and note q = ∇∇∇φ, then Eq (B.5)

implies

∇∇∇∂φ
∂t

+∇∇∇q2

2
= −∇∇∇E−∇∇∇ p

ρ

⇒∇∇∇
[
∂φ

∂t
+ q2

2
+E+ p

ρ∞

]
= 0 (B.6)

Therefore
∂φ

∂t
+ q2

2
+E+ p

ρ
= C(t) (B.7)

Where, C(t) denotes an arbitrary function of time. For a reference condition E∞ = 0,

φ∞ = const, q∞ = 0, we obtain

p∞− p
ρ

= ∂φ

∂t
+ q2

2
+E (B.8)

This is the expression for the unsteady Bernoulli equation.

Derivation of the Vortex Impulse Method

The instantaneous state of an irrotational ideal fluid, or a change in such a

state, may be interpreted as brought out suddenly or impulsively, and the set of

forces producing them are known as impulsive forces (Ch. 9, Ref. [92], pp. 245-249).

Following Ref. [92] one obtains
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φ= χ− $

ρ
(B.9)

where φ is the velocity potential, $ is known as the impulsive pressure, and χ is the

potential of the impulse of body forces. Thus the velocity potential is the potential of

the impulse. In the absence of body forces, χ= 0 and the impulsive pressure is given

by

$=−ρφ (B.10)

outer boundary (    )

solid bodyfluid

inner boundary (    )S

Σ

Figure B.1: Outer and inner boundaries of a solid immersed in a fluid

The force and moment applied by the body on the fluid are equal to the time derivatives

of the impulses; this is shown by following the arguments presented in Refs [109,110].

Consider a fluid that has an inner boundary S and an outer boundary Σ as shown

in Figure B.1, where the velocity potential of the fluid is given by φ. Consider a time

interval t ∈ [
t−0 , t+1

]
. Suppose the flow, which was at rest prior to t0 is acted upon by a

system of impulsive pressure
(−ρ∞φ0

)
at t = t0 and by a system iof impulsive pressure

−(−ρ∞φ1
)

at t = t1 so that the fluid is brought back to rest after time t1. In summary:

Fluid is at rest prior to t0.

Acted upon by −ρ∞φ0 at t0.
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Acted upon by −(−ρ∞φ0
)

at t1, so that

Fluid is brought back to rest after t1.

The total time integral of the pressure is given by

t+1∫
t−0

pdt = (−ρ∞φ0
)− (−ρ∞φ1

)+ t1∫
t0

pdt (B.11)

From the Bernoulli equation, Eq (B.8) (Eq 2-13 from Ref [109]), we have

p = p∞−ρ∞
[
∂φ

∂t
+ q2

2
+E

]
(B.12)

Substituting Eq (B.12) into Eq (B.11), we have

t+1∫
t−0

pdt =−ρ∞
t+1∫

t−0

∂φ

∂t
dt−ρ∞

t+1∫
t−0

q2

2
dt+const[t1 − t0] (B.13)

The fluid is at rest prior to the starting impulse at t0 and after the final impulse at t1;

therefore
t+1∫

t−0

∂φ

∂t
dt = 0 (B.14)

Consequently, Eq. (B.13) becomes

t+1∫
t−0

pdt = 0−ρ∞
t+1∫

t−0

q2

2
dt+const[t1 − t0] (B.15)

Now, consider the resultant forces on the inner and outer boundaries by examining
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the following integrals

FS =
Ï
S

n

t+1∫
t−0

p dt dS and FΣ =
Ï
Σ

n

t+1∫
t−0

p dt dΣ

Assertion: Both FS and FΣ are separately zero.

To prove this assertion, consider the following arguments. The fluid is at rest at

an infinite outer boundary. Therefore, the fluid velocity tends to zero as the outer

boundary is pushed to infinity, which implies

Ï
Σ

n

t+1∫
t−0

p dt dΣ=−ρ∞
t1∫

t0

n
Ï
Σ

q2

2
dΣdt −→ 0 as Σ−→∞ (B.16)

Also Ï
Σ

n
t1∫

t0

const[t1 − t0] dt dΣ= 0 (B.17)

Furthermore, the overall process starts from a condition of rest and ends with

a condition of rest; therefore, the resultant impulsive force exerted over the inner

boundary must be zero. Equation (B.16) shows that the impulse force vanishes at the

outer boundary; therefore Ï
S

n

t+1∫
t−0

p dt dS = 0 (B.18)

This result implies that the left hand side of Eq (B.11) is equal to zero. Therefore,
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combining with Eq (B.17), we obtain

0 =
Ï
S

[−ρ∞φ1 +ρ∞φ0
]

n dS+
Ï
S

n
t1∫

t0

p dt dS+0

⇒
Ï
S

n
t1∫

t0

p dt dS =
t1∫

t0

Fdt =
Ï
S

[−ρ∞φ1 +ρ∞φ0
]
n dS = I t1 − I t0 (B.19)

Taking a time derivative on both sides of Eq (B.19), it follows that

F = dI
dt

=
Ï
S

n p dS (B.20)

By an analogous argument, the moment is given by

M = dIm

dt
=

Ï
S

r × n p dS (B.21)
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Appendix C: Implementation of Digital Filters in MATLAB

Digital filters are used to reduce or enhance certain aspects of a sampled, discrete

time signal. A common application of digital filters is the selective retention or elimi-

nation of frequency content in a given signal. The filters are typically implemented

as linear polynomials that are obtained as a weighted sum of the input and output

signals.The coefficients in the polynomial, which correspond to the weights or filter

coefficients, are determined based on the type of filter required.

Each operation of a filter on a signal is called a ‘pass’ to signify that only certain

frequencies are allowed to pass through. For instance, low (or high) pass filters imply

that only frequencies that are lesser (or greater) than a specified value to pass through.

Two types of filters, called forward and zero-phase, are relevant in the context of this

study.

Forward Filters

A forward filter is implemented using an explicit relation between the input signal

and the latest value of the output signal, as shown in Eq (C.1).

yf iltered(n)=
m f +1∑

j=1
B f ( j)yunf iltered(n− j+1)−

m f +1∑
j=2

A f ( j)yf iltered(n− j+1) (C.1)

Due to the explicit nature of the forward filter, it is computationally inexpensive and

can be implemented real time during a time stepping simulation. It is important

to note that each pass through a forward filter introduces a reduction in magnitude

and a phase shift between the input and output signals. In several applications, the

phase errors introduced by the filters are undesirable, particularly when phase shifts

introduced by the physical system are an important considerations. In such cases,

zero phase filters, described next, are preferred.
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Zero-Phase Filters

As the name indicates, zero-phase filters produce a zero phase difference between

the input and output signals. These filters involve two passes through a forward filter

as follows: First, using Eq (C.1) obtain y1 as the filtered signal corresponding to yin.

Then define y2 as follows:

y2( j)= y1(n+1− j) for j = 1,2, · · · ,n (C.2)

Next, using Eq (C.1) obtain y3 as the filtered signal corresponding to y2. Then yf iltered

is given as follows:

yunf iltered( j)= y3(n+1− j) for j = 1,2, · · · ,n (C.3)

In this implementation, the forward filter operates on the yunf iltered followed by an

operation on y2 which is the revered signal corresponding to y1. Consequently, the

phase shifts that appear due to each operation of the forward filter cancel each other.

Therefore, yf iltered has a zero phase difference with yunf iltered.
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Appendix D: Computational Expense of the Vortex Model

The computational expense of the unsteady aerodynamic model is an important

consideration in aeroelastic calculations. For each wing section, the order of magnitude

of the expense due to the various steps in the aerodynamic model employed in the

current study are shown in Table D.1.

Terms Component Expense

QS vorticity Nθ

Conformal mapping Nv +Nθ

Shed vorticity Kutta condition Nv

Stagnation condition Nv

Wake induced vorticity Nv Nθ

Inverse transform Nv +Nθ

Unsteady loads Vortex Impulse method Nv +Nθ

Bernoulli equation Nθ+N2
θ
+Nθ Nv

Wake model Initialize Nv

Vortex induced velocity nwksubit N2
v

Airfoil induced velocity nwksubit Nθ Nv

Update positions Nv

Misc calculations nwksubit Nv

Table D.1: Computational time requirements for various terms in the aerodynamic
model

Terms that have highest order of magnitude are shown in Table D.2. It is evident

that the wake model and the unsteady Bernoulli equation are the most expensive

components of the aerodynamic model.

The computational expense for a wing that is divided into Nsection spanwise stations,
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Terms Expense

Wake model nwksubit
(
N2

v +Nθ Nv
)

Bernoulli equation Nθ Nv +N2
θ

(calc. of velocity potential)

Wake induced vorticity Nv Nθ

Misc nwksubit Nv

Table D.2: Dominant contributions

is proportional to the following

Nsection

[
nwksubit

(
N2

v +Nv Nθ

)+N2
θ +Nθ Nv

]
The above expression implies that increasing Nsection causes a linear increase in

computational expense, whereas increasing Nθ has a quadratic effect.
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