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CHAPTER I

Introduction

One of the ultimate goals of the high energy physics community is to answer the question

‘What is the composition of our Universe?’. With the invention of quantum field theory,

we have a framework within which to pose this question. The collective efforts of theorists

and experimentalists have led us to a concise description which encompasses all terrestrial

experimental results to date. We refer to the Lagrangian which encodes this physical

picture as the Standard Model of particle physics (SM) — a theory of the strong, weak,

and electromagnetic forces, and three families of matter, the quarks and leptons.

So if we can describe the composition and interactions which govern our physical world,

is there anything important left to learn? As it turns out, there are a few major issues which

are so far unresolved. In particular, the focus of this thesis is an attempt to understand

an anomaly which has been around since 1933, when Fritz Zwicky measured the velocity

of galaxies in the Coma cluster and noticed that they were moving faster than one would

expect from the amount of observable luminous matter [200]. However, since it took

nearly 40 years for this observation to be independently corroborated by Vera Rubin’s

measurements of the rotation curves of stars in galaxies [177], this phenomenon has only

been actively studied since around the time when the SM was discovered.

One plausible explanation for these phenomena is that a non-trivial portion of the matter

in galaxies is dark. Further confirmation has come from gravitational lensing measurements

1
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[194] and by studying the perturbation spectrum of the cosmic microwave background

(CMB) [147]. Data from the WMAP experiment, our most precise measurement of the

CMB spectrum, can be used to deduce that the so called dark matter (DM) contributes

22.9% to the total energy density of the Universe [148], i.e.,

ΩDM h2 = 0.1126± 0.0036,(I.1)

where h ' 0.702 parametrizes the uncertainty in the Hubble constant. Since the same

data can be used to find that baryonic matter constitutes 4.6%1, approximately 83% of the

matter in the Universe is dark matter. This measurement is relevant for the epoch of the

CMB decoupling, when the Universe became cool enough for the first atoms to form. Using

this fact we can infer that the DM cannot be non-luminous chunks of baryonic matter. Such

clumps would have altered the CMB spectrum as additional visible SM matter. The DM

must be something beyond what we have discovered so far.

We must also be sure that there are no non-baryonic possibilities within the SM that

could account for the DM. Specifically, there is a particle within the SM which is stable and

dark — the neutrino. Using the what we know about the SM, we can compute the neutrino

relic density, Ωνh
2 . 4 × 10−5 [146], which is clearly sub-dominant to ΩDMh

2. Another

logical possibility which avoids all constraints is that primordial black holes (seeded by the

initial over-densities in the SM matter at the end of inflation) account for the DM [111].

However, it is quite difficult to produce the correct relic density using standard big bang

cosmology. Therefore, it is a well motivated assumption that the SM cannot account for

the presence of DM in our Universe and new physics is necessary.

There is one potential loophole in all of the above arguments. General relativity provides

the backbone of our predictions for cosmology. If there is a flaw in our understanding of

how gravity behaves on large scales, we could have fooled ourselves into thinking DM is
1The other 72.5% is due to “dark energy.”
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out there when what is really required is a modification of general relativity. However,

in 2002 an observation [161], known colloquially as the “bullet cluster,” of two galaxy

clusters which collided at some time in the past was made in three channels: X-rays (which

measures the position of the hot interstellar gas), gravitation lensing (which traces the

total mass of the cluster), and visible light (coming from the galaxies themselves). The

hot gas, which accounts for the dominant visible mass of the cluster, clearly had interacted

while the majority of the mass, which was no longer aligned with the gas, had not. Hence,

the majority of the cluster’s matter must be collisionless matter, implying that the DM

question is within the purview of particle physics.

The DM must also be able to account for the structure of the Universe. After the

end of inflation, tiny inhomogeneities (due to quantum fluctuations of the field responsible

for inflation) where imprinted on the density distribution of the DM. Over time these

fluctuations began to collapse due to the attractive nature of gravity, eventually pulling

the matter into clumps, thereby forming the skeletal structure of our network of galaxies.

In order for the DM to form the mass distribution of galaxies that we observe in our

Universe, it must have had a relatively low velocity, i.e., it must have been “cold” at the

epoch when its interactions fell out of equilibrium. For a given interaction strength, lighter

states will stop interacting with larger average velocities than heavier states. Therefore, the

requirement that the DM be cold implies a constraint on the DM mass2, mDM & O(keV),

which must be accounted for in any given model.

So a good model of DM must account for the relic density (Eq. (I.1)) and must result

in cold DM. It must also be stable (at least on cosmological timescales) so that the relic

density produced in the big bang would still be around today. As we will describe in

Sec. 1.3 below, there are a whole host of other observational constraints which must be

considered when attempting to postulate what the DM could be.
2In models with non-thermal warm DM the constraint is weaker: mDM & 550 eV [193].
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Given that there are various flaws of the SM, it is tempting to explore the idea that

the physics of DM could be connected to seemingly unrelated extensions of the SM (see

Sec. 1.1). This would allow us to understand the presence of ΩDM 6= 0 as an inevitable

consequence of more fundamental principles. Although these aesthetic considerations may

prove to be erroneous, there are many concrete models where these correlations can moti-

vate theoretical explorations and lead to new paradigms of thought.

Finally, since we are proposing scientific hypotheses for how our Universe might behave,

we would prefer that these ideas be falsifiable. The ultimate goal of DM phenomenology is

not only to construct compelling models, but to eventually have the experimental means

for teasing out there structure and measuring all the relevant parameters. This will help

realize our ultimate goal of understanding every aspect of the physical world.

1.1 Extending the Standard Model

The SM has been wildly successful at accounting for the data taken at collider experi-

ments. However, it has additional flaws beyond the lack of an explanation for the DM.

The SM is technically unnatural [189] due to the presence of the Higgs boson mass

parameter in the fundamental Lagrangian. Specifically, the Higgs boson two-point function

receives a contribution to its mass which goes as the Wilsonian cutoff squared. This

contribution can be interpreted as being generated by integrating out some new state which

couples to the SM. For example, if we assume that there are no scales of note between the

weak scale and the Planck scale, then the cutoff for the SM would be the Planck mass.

In order to reproduce the mass of the W± boson would then require a fine-tuning of one

part in 1032. This is known as the “hierarchy problem.” In principle this level of tuning is

allowed, but it is difficult to imagine dynamics from which it would emerge.

One can find another hint of new physics by studying the energy dependence of the SM

gauge coupling constants. Assuming that the SM is a valid effective field theory up to very
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high energies (on the order of 1016 GeV), one can naively apply the SM renormalization

group equations. The result is that the strong, weak, and electromagnetic forces almost

meet at a point [117]. While this near unification could be an accident, it is possible that

something deeper is going on. Therefore, it is not unreasonable to argue for a judicious

application of new physics which would cause the couplings to unify.

A final problem stems from cosmology. We have measured that the Universe is dom-

inated by SM matter, with essentially no anti-matter. Beginning with the big bang, one

can attempt to dynamically generate this baryon asymmetry by using only the physics of

the SM. However, the resulting asymmetry is far smaller than the observation. In order to

understand this baryogenesis in a dynamical way will also require extending the SM.

In the following subsection we will briefly review supersymmetry, one compelling paradigm

for extending the SM with the capacity to solve all of the above mentioned problems. In

particular, these models often include a DM candidate. This framework will underlie some

of the models utilized in later chapters of this thesis. For contrast we will end this section

with a short discussion of alternatives to SUSY with an emphasis on models which include

a potential DM particle.

1.1.1 Supersymmetry

Supersymmetry (SUSY) is a spacetime symmetry which relates particles of different

spin3. In particular, it interchanges fermions with scalars and gauge bosons with fermions.

Because the related particles must have identical quantum numbers under other symmetries

(e.g. the SU(3) × SU(2) × U(1) gauge symmetry of the SM), none of the observed SM

particles can be superpartners of each other. This tells us that SUSY must be broken,

i.e., the superpartners have different masses than their SM counterparts. Hence, if SUSY

is a symmetry of nature, there must exist a new heavy scalar for every SM matter field,
3See [162] for a review.
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the sleptons and squarks, and a new heavy fermion for each gauge boson, the gluino,

neutralinos and charginos. Additionally, due to anomaly cancellation constraints and the

requirement of a holomorphic superpotential in order to give masses to all the SM fermions,

the minimal supersymmetric standard model (MSSM) must include two Higgs doublets.

Due to the SUSY relations, the scalars in these models inherit a notion of chirality from

their fermionic partner. Since chiral symmetry protects the fermion masses from additive

renormalization, the same becomes true for the scalars — there are no longer quadratic

divergences in the scalar masses. Therefore, supersymmetrizing the SM solves the hierarchy

problem, which was described above in Sec. 1.1.

One can understand this “miraculous” cancellation diagrammatically by computing the

corrections to the Higgs boson mass in the MSSM. Since it has the largest Yukawa coupling,

the largest contributions of this type come from loops involving the top quark. In a SUSY

model, one must also include the scalar top partner, the stop squark, in the loop as well.

Due to Fermi statistics, there is an overall minus sign associated with the fermion loop,

and SUSY relates the coupling of the Higgs with the stop to the square of the top Yukawa

coupling. All divergences from these contributions cancel among each other to all loop

orders, leaving a finite correction to the Higgs mass which depends on the logarithm of the

stop mass over the top mass.

SUSY solves other problems as well. Due to the inclusion of so many additional particles

with SM charges, the running of the gauge couplings is altered in the MSSM once you reach

the threshold of the SUSY breaking masses. When one evolves these couplings up to very

high energies in the MSSM they meet at a point [88]. The MSSM automatically includes

gauge coupling unification.

There are also a large number of CP violating phases available in the MSSM which

could be responsible for generating the baryon asymmetry. Of course, one has to be
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careful that these complex parameters do not imply violations of relevant experimental

bounds, such as electric dipole measurements. Beyond this general consideration, many

models of baryogenesis rely on some of the features of SUSY including the presence of

additional scalars (for electroweak baryogenesis [76]) or the existence of D-flat directions

(for Affleck-Dine baryogenesis [8]).

Finally, we note that SUSY is a crucial ingredient in string theory for a variety of

reasons including the need to model fermionic particles. If string theory is the actual UV

completion of gravity, it is possible in some string-theory based models that weak-scale

SUSY would result.

Of central importance to this thesis is an additional constraint on the MSSM, known as

R-parity. This is a symmetry which takes φ→ ±φ where the + is for SM particles and the−

is for superpartners. It is invoked to forbid renormalizable gauge invariant superpotential

terms which can lead to many phenomenologically dangerous processes, including rapid

proton decay.

A consequence of R-parity is that the lightest superpartner (LSP) is stable, since it

could only decay into something which is odd under R-parity while only SM states are

kinematically allowed. If this particle does not carry electric charge, for example if it is

a neutralino, then it can be a DM candidate. In particular, the neutralino is a canonical

example of a “weakly interacting massive particle” as described below in Sec. 1.2.1.

For these reasons and more, SUSY models are studied in the context of DM, cosmology,

collider physics, and theoretical physics in general.

1.1.2 Alternatives to Supersymmetry

While other beyond the SM frameworks will not be utilized in this thesis, for the sake of

completeness we will briefly mention other solutions to the hierarchy problem, emphasizing

the potential connection to DM.
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One possibility is that the fundamental Planck scale is actually at a TeV. This would

clearly alleviate the hierarchy problem since corrections to the Higgs mass would be cut off

at the weak scale. In order to explain the apparent strength of gravity the authors of [25]

proposed the possible existence of one or more additional compact “large extra dimensions.”

They were able to show that the “leakage” of gravity into these new dimensions would

weaken its effect in the 4-dimensional effective theory. An extension of this model allows

all of the SM fields to propagate in the extra dimensions — this is known as the universal

extra dimension (UED) scenario [20]. One consequence of these models is that in the

4-dimensional effective theory there would exist a host of new heavy states and a new

stabilizing symmetry, known as Kaluza-Klein parity. The lightest of these new particles

would be stabilized by this parity and could be responsible for the DM [182].

A variation on this model is to take the new compact 5th dimension to be warped instead

of flat [174]. One goal of this paradigm, known as the Randall-Sundrum (RS) scenario,

is to relieve some of the fine-tuning required to achieve the weak scale which arises when

one considers phenomenological constraints on the size of the extra-dimensions. While RS

models allow for a rich new class of phenomenology (including a connection to technicolor

models via the AdS-CFT correspondence), they do eliminate the parity of the UED model.

However, it can be well motivated to extend RS to include an analogous parity which again

introduces a DM candidate [9].

One final class of theories assume that the Higgs boson is a strongly coupled composite of

new fermions [139]. In its modern incarnation, these are known as Little Higgs models [23].

In this scenario, the Higgs boson is a pseudo-Goldstone boson of some new global symmetry

which is broken at the TeV scale. The approximate shift symmetry associated with the

pseudo-Goldstone nature of this state protects it from receiving Planck sized corrections to

its mass. However, the original scenario was plagued by too-large contributions to precision
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electroweak observables which requires one to push up the scale of new physics, thereby

reintroducing the fine-tuning problem. In order to cure this ill, a new parity (T -parity)

was introduced [69]. As has been a common theme among all these scenarios (including

SUSY), this new parity also provided some options for explaining the DM.

1.2 Postulating a History for the Universe

Given a model of particle physics, either the SM or one of the extensions mentioned

above, one would like to be able to extract the physical properties of the Universe this model

implies. Our modern understanding of cosmology gives a general framework within which

one can address these questions in a concrete way. The relevant starting point for exploring

the implications with respect to DM is the end of a period of inflation — known as the

“big bang.” Immediately after the bang, it is well motivated to assume that the Universe

is a thermal bath of particles at some “reheat temperature” which, due to constraints from

big bang nucleosynthesis, must be greater than about 10 MeV. From this point on, the

temperature falls, the Universe expands, and one must evolve these initial distributions of

particles accordingly. The physics of a thermal bath in an expanding Universe is governed

by the Boltzmann equation [146]:

(I.2)
dnψ
dx

+ 3Hnψ = −〈σann|v|〉
(
n2
ψ − (nEQ

ψ )2
)
,

where ψ (ψ) is the particle (anti-particle) whose distribution is being analyzed, nψ is the ψ

number density, H is the Hubble parameter, x = mψ/T , mψ is the mass of ψ, and 〈σann|v|〉

is total annihilation cross section for ψ + ψ into anything.

Now we have a set of coupled equations for all the various particles and interactions. In

order to determine some of the possibilities that can be realized, we identify two relevant

rates which can potentially effect a change in number density: H (which accounts for

the expansion of the Universe) and Γann ≡ nψ〈σann|v|〉 (which tracks the relevance of the



10

particle’s interactions).

From Eq. (I.2), when Γann > H, the particles are in thermal equilibrium and follow the

Boltzmann distribution:

nψ =
1.2
π2
g T 3 T > mψ(I.3)

nψ =
(
mψT

2π

)3/2

g exp
(
−mψ

T

)
T < mψ,(I.4)

where g is the number of degrees of freedom for ψ.

Conversely, when Γann < H the particles no longer interact. This implies that the

number density per co-moving volume is fixed, i.e., nψ ∼ 1/T 3 (unless the particles are

unstable and would eventually decay). Hence, this simple equation can imply a large

variety of possibilities for the history of our Universe. We will outline three well motivated

scenarios in the following three subsections.

1.2.1 Thermal Dark Matter

One possibility is known as a “thermal” history for the Universe. The paradigm proceeds

in the following way: once inflation ended via reheating and subsequent thermalization,

the Universe evolved from that point onwards with all particles following their thermal

distributions as long as H < Γann (or H < Γdecay, where Γdecay is the decay width for an

unstable state) for each particle in the bath. Then it is a good approximation that the

only changes in the relative number densities are due to epochs where H > Γ for a given

state. For unstable particles, H > Γdecay implying that unstable particles drop out of

the thermal bath — they would decay immediately after being produced and their decay

products would instantaneously re-thermalize. For stable particles, when H > Γann they

would undergo “freeze-out” — they would stop interacting with the bath and their number

density per co-moving volume would be fixed. In a thermal Universe, this is how the DM

relic density could have been generated.
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Noting that in a hot thermal Universe, the energy density would be dominated by

radiation (which is short hand for any relativistic degrees of freedom), one can use Einstein’s

equation to find that the Hubble rate is given by

(I.5) H(T ) = 1.66g1/2
∗

T 2

MPl
,

where g∗ counts the number of relativistic degrees of freedom, T is the temperature, and

MPl is the Planck mass. Then the epoch of freeze-out is determined by

(I.6) H(Tfo) = Γann = nDM〈σann|v|〉,

where Tfo is the temperature when freeze-out occurs. As described above, observations

imply that the DM is cold, i.e., it is non-relativistic at freeze-out. Hence, we can approx-

imate nDM using Eq. (I.4) and we use Eq. (I.6) to find that Tfo ' mDM/20. Then taking

〈σann|v|〉 to be independent of temperature and relating (nDMmDM)/(s(T0) ρc) = ΩDMh
2,

where s(T0) and ρc are respectively the entropy density and the critical density of the

Universe today, we find that

(I.7) ΩDMh
2 = 1.07× 109 GeV−1 1

g
1/2
∗ MPl 〈σann|v|〉

.

Using the WMAP measurement given in Eq. (I.1), we find that

〈σann|v|〉thermal ' 3× 10−26 cm3/s(I.8)

under the assumption that the DM relic density is entirely due to thermal freeze-out.

This result can be interpreted as motivation for a connection to weak scale physics.

The argument simply follows from the observation that 3 × 10−26 cm3/s is a typical size

for interactions involving a new weakly interacting massive particle (WIMP). This hint is

taken very seriously — it is often referred to as “the WIMP miracle.”

One canonical example of a WIMP is an inevitable consequence of supersymmetrizing

the SM, namely the lightest neutralino (in models where it is the LSP), which is a linear
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combination of the fermionic superpartner of the weak gauge bosons and the Higgs bosons.

As described in Sec. 1.1.1, ifR-parity is enforced, the LSP will be stable. Then for particular

values of the parameters relevant for the neutralino mass and interactions, 〈σann|v|〉 ≈

3×10−26 cm3/s can be realized and the neutralino can be the thermal DM. This provides an

example of a well motivated DM candidate. Furthermore, the neutralino as a DM candidate

implies a whole host of testable predictions for experiments which will be explored in Ch. V

and Ch. VI of this thesis.

1.2.2 Non-thermal Dark Matter

A key assumption for the thermal story was that the Universe was radiation dominated

at the epoch of DM freeze-out. However, it is possible that some long lived particle, φ,

could have been produced in the thermal bath that followed inflation, and then subse-

quently come to dominate the energy density of the Universe before it decayed. There are

many hypothetical particles whose presence could lead to this history, e.g. gravitinos (the

superpartner of the graviton) or string moduli (the fields which parametrize the size and

shape of the compact extra dimensions in string theory). If such states exist and were pro-

duced at the big bang, they will change the thermal evolution of the Universe by releasing

entropy in their decay and diluting the DM relic density. There is also the possibility that

the DM could be one of the decay products of φ. Then φ decays would clearly change the

density of DM in the Universe.

To account for the dilution, we compute the change in entropy of the Universe due to

the φ decays. To do this, one needs to find the temperature of the radiation produced

as a result of the decay, known as the re-heat temperature, TRH. The φ particles will be

able to decay when the age of the Universe becomes comparable to the lifetime, t ∼ τφ.

The Friedmann equation (which relates the Hubble constant to the energy density of the
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Universe) then implies

(I.9) H2(t = τφ) '
1
4
τ−2
φ ' 8π

3MPl
ρ ' 8π

3MPl

π2g∗
30

T 4
RH,

where in the last step we assumed that all of the energy of the φ particles is transferred to

radiation. Thus,

(I.10) TRH ' 0.55g−1/4
∗ (MPl/τ)1/2.

In many models, one decay product of φ is the DM [166]. If this is the case and the

number density of DM exceeds the fixed point value

(I.11)
nDM

s
=

3H
s〈σann|v|〉

,

evaluated for T = TRH, then the DM will quickly annihilate down to this value for the

number density. The result of being produced by the out-of-equilibrium decays is to change

the thermal relic density by a factor:

(I.12) ΩDM = Ωthermal
DM

(
Tfo
TRH

)
.

This implies that 〈σann|v|〉 6= 3× 10−26 cm3/s for models with a non-thermal cosmolog-

ical history. Since Tfo ∼ mDM/20 ∼ 10 GeV and TRH & 10 MeV (in order to allow for big

bang nucleosynthesis to proceed), this dilution factor is on the order of 10−3. Hence, the

annihilation cross section appropriate for non-thermal DM can also be seen as associated

with the weak scale (e.g. pure Wino DM in some SUSY models).

1.2.3 Asymmetric Dark Matter

Another paradigm for DM is motivated by the observation that ΩDM ' 5 Ωbaryons. In

models of asymmetric dark matter (ADM) [140], the DM carries baryon and/or lepton

number and its relic density is set by the baryon asymmetry.

Given a DM-anti-DM pair, one can define a conserved (or approximately conserved)

quantum number such that the DM has opposite charge from the anti-DM. We refer to
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this charge as “dark matter number.” Then if an operator of the schematic form Oasym =

ODMOB−L (where ODM (OB−L) carries non-zero DM (B − L) number) is ever in thermal

equilibrium it will spread the baryon asymmetry across the baryons and the DM. The result

is that the difference in the relic densities of the DM and the baryons is primarily due to the

difference mDM versus mproton. Thus, these models generically predict that the DM mass is

roughly 5 GeV (see Ch. IV for a model where this is not the case). It is worth noting that

one model building challenge comes from requiring that the symmetric component of the

DM density to be sub-dominant. This is easy to understand. A WIMP, with its weak scale

annihilation cross section, reproduces the full relic density, so an ADM candidate must

have an annihilation rate which is a factor of & 50 larger. Once this problem is solved

within a given theory, the ADM paradigm survives as a novel alternative to the WIMP.

1.3 Confronting Reality

Now that we have discussed many theoretical issues with a focus on DM, it is important

to explore which aspects of these ideas can actually be tested. There are three classes of

experiments which are relevant for disentangling the properties of the DM particle: direct

detection (DD), indirect detection (ID), and collider experiments.

While normally not a part of an experimental collaboration, theorists can help make

progress in many directions with respect to testing models. Two important functions of

theorists are 1) to develop new models which motivate current and future experiments and

2) to respond to data by writing down new theories which can explain unexpected effects.

Beyond these tasks, we can be crucial for interpreting data in the context of existing models.

Often this is a non-trivial task and expertise in subtle aspects of the predictions can allow

one to decide how best to approach the data. We are also responsible for identifying new

classes of analysis techniques. In recent years, it has been theorists who understood the

relevance of the DD spectrum for distinguishing elastic from inelastic DD models [192],
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and there has been a significant effort in the theoretical community to develop new jet

sub-structure methods which are relevant for the LHC.

Therefore, it is appropriate for a theoretical thesis on DM to briefly review the relevant

experiments. In the following three sections we will discuss the aspects of DD, ID, and

collider experiments which are important for the chapters that follow.

1.3.1 Direct Detection Experiments

The idea behind DD is simple. Given the above discussion on generating the relic

density, it is not unreasonable to think that the DM might interact with nucleons. So,

assuming that backgrounds can be eliminated, if we could watch a large bulk of nucleons

for long enough eventually we would see a nucleon recoil against “nothing.” This would be

the signature of a nucleus interacting with a DM particle.

There are three general classes of signal that DD experiments use to look for DM-

nucleon scattering: scintillation, ionization, and phonons (or heat). Which of these is most

efficient depends on the target material and the detection technology.

From the theoretical point of view, since the DM-nucleon scattering would be non-

relativistic, an effective operator analysis is useful for characterizing the possibilities. As

discussed in more detail in Ch. V below, the largest operators are generally those responsible

for spin-independent (SI) and spin-dependent (SD) scattering:

OSI
q = cq(χ̄χ)(q̄q),(I.13)

OSD
q = dq(χ̄γµγ5χ)(q̄γµγ5q),(I.14)

where χ is the DM and q is a quark. The SI scattering rate benefits from an enhancement

which is proportional to the atomic number of the nucleus squared, due to the fact that OSI

“sees” the entire nucleus instead only the quarks. Since the average expected momentum

transfer is on the order of 100 MeV, the DM would not probe the internal structure of
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the nucleus. This is why the limits on the resultant scattering cross section are typically

stronger than for SD experiments.

If the DM is a WIMP, it is not unreasonable to expect that it could couple to the

Higgs boson. This would generate a SI cross section for DM-nucleon scattering. Currently

running experiments (e.g. XENON100 [21]) are probing rates which are naively predicted

by these types of interactions, namely σSI ∼ 10−43 cm2. There have also been some

reported signals from the DAMA [54] and CoGeNT [1] experiments. While these signals

could be explained by an O(10 GeV) DM particle, it is difficult to build a model which is

consistent with existing limits. Nevertheless, this is still an active area of research and new

data will be reported on short timescales. Perhaps we will have conclusive DD signals in

the near future which will require understanding in the context of models for DM.

1.3.2 Indirect Detection Experiments

We know that there must be DM throughout our galaxy. Assuming there is some rate

for DM-DM annihilations (χ†χ → ψ†SMψSM), there is another class of experiments which

have the ability to look for DM. The basic idea is that DM would annihilate throughout

the galaxy, and the byproducts of this process would propagate to us. Then experiments

either orbiting or based on the Earth can look for these particles. One exciting prospect

is that the the annihilation rate today could be related to the 〈σann|v|〉 which appears in

the derivation of the relic density in either the WIMP, Eq. (I.7), or non-thermal, Eq. (I.12)

scenarios, leading to a non-trivial correlation with ΩDM. However, this statement is model

dependent and would have to be corroborated by other measurements of the DM properties.

Given a determination of the expected astrophysical backgrounds (essentially assuming

a power-law distribution), there are a few experiments which have detected cosmic ray

spectra which do not match these standard expectations. The PAMELA experiment [7]

has observed an excess in the measurement of e+/(e+ + e−) around 100 GeV without
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seeing an excess in anti-protons, and the Fermi collaboration [4] has seen an excess in the

electron channel which extends to energies up to nearly a TeV. Explaining these anomalies

is an active area of research. The PAMELA signal requires a DM annihilation cross section

which is two orders of magnitude above the thermal value for a WIMP in order to reproduce

the size of the excess. The predominant annihilation should be to leptons to explain the

lack of anti-protons. In Ch. IV we will provide a DM model which satisfies both of these

criteria.

Perhaps the biggest issue with mapping ID onto DM models is the problem of under-

standing the astrophysical sources of uncertainly. In order to extract a DM signal, we must

be able to determine both the continuum background and the contribution from additional

(unknown?) astrophysical processes which generate cosmic rays. The exact distribution of

DM in our galaxy is another source of uncertainly, since this is an important input in the

calculation of the cosmic ray spectra produced by DM annihilations. With the exception of

a sharp γ-ray line with energy mDM/2, it is not possible to argue that a discovery through

only ID is possible. However, these experiments do allow us to both motivate novel types

of models and to constrain well known scenarios in relevant regions of parameter space.

1.3.3 Collider Experiments

The last class of experiments which are relevant in the context of DM searches are

colliders. Again assuming that the DM interacts with the SM, the idea is simply to exploit

a process of the type ψ†SMψSM → χχ + X, where X is any number of SM states. Then,

since the DM interacts so weakly, it will pass through the detector without leaving behind

any trace. We will be able to measure the rest of the event, namely X, which we can use

to infer the missing momentum. At a hadron collider, such as the large hadron collider

(LHC) which is currently running at CERN, the momentum of the colliding partons along

the direction parallel to the beam is unknown. Therefore, the only constraint that can be
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inferred is on the transverse missing momentum. This makes it a difficult proposition to

explore DM at hadron colliders since we wish to extract the properties of a state which we

will not directly measure.

We have some experience with these types of measurements from past discoveries. A

notable example is the W± boson which can decay to a lepton and an (invisible) neutrino.

To extract the mass from events with a single s-channel W±, a new kinematic variable, the

transverse mass
(
MT =

√
m2 + |~pT |2

)
was proposed, where m is the mass of the visible

particle being produced and ~pT is the 3-momentum in the plane transverse to the beam.

No matter what the details of the underlying model are, this variable can never exceed the

mass of the parent particle. By collecting enough statistics, measuring the endpoint of the

MT distribution, and using the (excellent) approximation that the neutrino is massless,

the W± mass can be inferred.

In typical models, events with DM involve two parent particles and result in at least

two DM particles in the final state (e.g. for SUSY models this is due to the presence of

R-parity). Therefore, the simple definition of MT will not suffice to extract the maximum

possible information from these events. Recently a variant on the transverse mass was

proposed in order to address the additional complication of events where the missing energy

was due to two states. This variable, known as MT2, will be discussed in Ch. VI, where we

will explore a variation on its canonical use in order to determine how well the DM mass

can be extracted at the LHC.

1.4 Outline

This thesis has been derived from five papers [78, 80, 81, 79, 77] (of eight total papers

that I collaborated on as a graduate student).

In Chapter 2 we present a model where the dark matter properties which are relevant

today differ from the ones which determine its relic density. The dynamics of this alteration
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is governed by the dark matter couplings to a new scalar field which undergoes a late-time

first order phase transition. The cosmology and collider phenomenology of this new scalar

are explored.

In the next two chapters we discuss two models of asymmetric dark matter (see Sec. 1.2.3).

In Chapter 3 we investigate the idea that the dark matter relic density is determined by

the matter-anti-matter asymmetry in the context of a supersymmetric model with a new

Abelian dark sector. The GeV scale for the dark matter is generated dynamically. Details

of the cosmological history, including potential effects on big bang nucleosynthesis, direct

and indirect detection constraints, and collider signatures are discussed.

In Chapter 4, motivated by the PAMELA positron excess, we present a model where

the dark matter relic abundance is set by the lepton asymmetry which allows us to explain

both the leptophilic nature of the dark matter and the “boosted” annihilation cross section.

We explore relevant constraints and make connections with neutrino physics.

In Chapter 5 we look at some prospects for direct detection (see Sec. 1.3.1). We rely on

the fact that Majorana dark matter which couples to the Z0 boson must also couple to the

Higgs boson which leads to correlations between the spin-dependent and spin-independent

interactions of the dark matter with nucleons. This relationship is explored in the context

of upcoming direct detection experiments, under a variety of assumptions, and using the

canonical example of mixed neutralinos.

In Chapter 6 we investigate the ability of the LHC to measure the DM mass (see

Sec. 1.3.3). We perform a realistic collider study of a recently proposed variant on the MT2

kinematic variable. Our goal is to systematically analyze the error associated with mak-

ing mass measurements of the parent and invisible particles utilizing single stage cascade

decays.

Finally, in Chapter 7 we give our conclusions and outlook to the future of our under-
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standing of dark matter.



CHAPTER II

Changes in Dark Matter Properties After Freeze-Out

This chapter was completed in collaboration with David Morrissey and Aaron Pierce

[78].

In Sec. 1.2.1 we discussed the thermal WIMP and the role of the thermally averaged

annihilation cross section, 〈σav〉. With the turn-on of the Large Hadron Collider (LHC)

and a host of direct and indirect detection experiments coming on-line, there is hope that

the nature of the DM particle will be measured thoroughly enough that 〈σav〉 can be

computed. Then a prediction of the thermal relic abundance, (ΩDM h2)particle, can be

made. If (ΩDM h2)particle = (ΩDM h2)astro, this will be strong evidence that the universe

has a standard thermal history back to the DM freeze-out temperature, Tfo (typically tens

of GeV for weak-scale DM). This would extend the successful predictions of Big Bang

Nucleosynthesis (BBN), which demonstrate a thermal history of the universe only back to

temperatures of several MeV.

On the other hand, if the calculated relic density does not equal the measured one, this

will be evidence for physics beyond minimal thermal DM. If (ΩDM h2)particle < (ΩDM h2)astro,

it is possible that we have not identified the dominant source of DM or the DM was pro-

duced non-thermally as a decay product of another particle [166]. Conversely, if

(ΩDM h2)particle > (ΩDM h2)astro the thermal relic abundance of the DM must have been

diluted, perhaps by a late production of entropy [186] or a modification of the expansion

21
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history of the universe [136, 40]. In the present chapter, we explore a novel possibility that

can obtain either direction of this inequality: a change in the properties of the DM itself

between Tfo and the present. Time-dependent DM has been considered in another context

in attempts to relate DM and Dark Energy [17, 175].

Relevant changes in the attributes of the DM particle can occur if there is a field

whose vacuum expectation value (VEV) changes during the crucial epoch between Tfo

and BBN. If this field influences the mass or couplings of the DM particle, there can be

a dramatic effect on the relic abundance one would calculate based on the properties of

the DM particle measured today. Here we present a simple model that illustrates how

this mechanism could be realized. We discuss some constraints on scenarios of this type,

and we study the phenomenology that should accompany the late-time phase transitions

typical of this class of models.

2.1 A late-time phase transition

To change the DM properties, we suppose there is a phase transition (PT) after Tfo [113].

In the model considered here, this PT occurs in a new sector containing a Standard Model

(SM) singlet P . We couple the PT sector to a model for the DM in the next section. The

PT will modify both the mass and couplings of the DM particle in this model.

Rather than introducing a new field P , one might instead try to modify the properties

of the DM after freeze-out via the electroweak PT. This does not work for electroweak-

mass DM using the minimal SM Higgs phase transition [87]. Unless the dynamics of this

PT are modified (or the initial DM mass is very large), the temperature of the PT is

typically greater than Tfo, and the DM properties would not be modified between Tfo and

the present day. On the other hand, if the Higgs boson sector is non-minimal, it is possible

that the electroweak transition temperature might be lowered substantially (see e.g. [85]).

The new singlet field P is initially stabilized at the origin in the early universe by a
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thermal mass term [91, 195]. As the universe cools, P undergoes a PT at a temperature

TPT < Tfo ≈ mDM/20, and develops a non-zero VEV, 〈P 〉 ≡ vP . For the PT to have a

significant effect on the DM properties (perhaps by generating a large excursion in the DM

mass ∆m ≡ λDM−P vP ) typically requires vP � TPT
1.

We take the potential for P to be

(II.1) VP (T = 0) = −1
2
|mP |2P 2 +

λ

4!
P 4,

which induces

(II.2) vP (T = 0) =
√

6 |mP |2/λ

below TPT. The Z2 symmetry of this potential (P → −P ) means there is a danger of

forming domain walls. We can retain the form of the potential while avoiding domain

walls by softly breaking the Z2 with a very small cubic term, making this symmetry only

approximate [5].

A large hierarchy between vP and TPT in this scenario requires that the coupling re-

sponsible for inducing a thermal mass for P be considerably larger than λ. This can arise

if P couples to other states that are approximately massless when vP = 0. Such states

can emerge if P is part of a larger “hidden” sector, perhaps coupled to the SM only via

a “Higgs portal” [170, 179]. For concreteness, we consider additional fermionic fields cou-

pling to P according to L 3 λPQiP QiQi. Since the Q’s have no other mass terms (which

would violate the Z2 of P ), these couplings contribute to the temperature-dependent mass

of the P field, strongly trapping it at the origin. When vP shifts to its non-zero value, the

Q’s acquire a mass of λPQi vP , typically of order a few hundred GeV.

At high temperatures and near the origin of P , the potential is approximately [91, 195]

(II.3) VP (T ) = −1
2
(|mP |2 −

NQ

6
λ2
PQ T

2)P 2 +
1
4!
λP 4,

1Here λDM−P is a dimensionless coupling between the DM and P . This assumes fermionic DM. For scalar DM the
VEV-dependent contribution must be even larger to make a significant change in the mass, as the new contribution
should be added in quadrature.



24

where λPQ is the (universal) coupling between P and the Q’s and NQ is the number of

Dirac Q fields. This potential gives a PT temperature of

(II.4) TPT =

√
6|mP |2
NQ λ2

PQ

.

Strong trapping of the P field at the origin typically leads to a brief period of thermal

inflation (TI) [157, 198, 151]. The vacuum energy density during TI is ρvac = |mP |2v2
P /4.

If TI ends at TPT by the instantaneous decay of the P field to radiation, we can estimate

the reheating temperature TRH via conservation of energy:

T 4
RH =

45 |mP |4

gRH
∗ π2 λ

+
36 gPT

∗ |mP |4

gRH
∗ NQ

2 λ4
PQ

,(II.5)

where g∗ is the effective number of relativistic degrees of freedom. Reheating can dilute the

DM abundance. Although this is not the dominant effect that we wish to explore, it can

be of quantitative importance. This is also the reason why we rely on thermal corrections,

rather than an additional cubic term in the tree-level potential, to trap P at the origin.

With a cubic term, the trapping need not turn off as the universe supercools and could

lead to a severe dilution of the DM abundance.

To estimate this dilution, we first assume there are no new sources of entropy during

TI. This fixes nfo/sfo = nPT/sPT, where n and s are the number density of the DM and

entropy density of the universe respectively. No DM is produced in the reheating process,

implying nPT = nRH. Once TI ends and reheating completes, the new conserved quantity

is nRH/sRH = nPT/sRH. The dilution factor, D, is

(II.6)
nPT

sRH
=
sPT

sRH

nfo
sfo

=
(
gPT
∗
gRH
∗

T 3
PT

T 3
RH

)
nfo
sfo
≡ D ×

nfo
sfo

.

Taking into account the change in the mass of the particle, the present abundance is given

by

(II.7) (ΩDM h2)astro = D ×

(
mvP 6=0

DM

mvP =0
DM

)
× ΩvP =0

DM h2.
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|mP | λ vP λPQ NQ TPT TRH D

4.0 GeV 1.5× 10−5 2.5 TeV 0.10 9 33 GeV 40 GeV 0.77

Table 2.1: Benchmark phase transition parameters.

This can differ dramatically from (ΩDM h2)particle, as we will see in the next section.

In Table 2.1 we exhibit a benchmark point that gives a first-order PT with a transition

temperature TPT � vP . To obtain this feature, the value of λ is small. This interaction

obtains additive corrections of the form ∆λ =
∑

(cb λ2
b − cf λ4

f )/(16π2), where the sum

runs over bosons and fermions that couple to P , and the ci are O(1) coefficients. For the

benchmark couplings, the small value of λ is technically natural.

The value of TPT for the benchmark point is also large and could exceed a typical value

of Tfo unless the mass of the DM particle is many hundreds of GeV. Smaller values of TPT

can be achieved by reducing the value of |mP |2. This leads to light excitations of P that

can be phenomenologically problematic – it is difficult to make them decay quickly enough

to avoid BBN constraints while not disturbing the evolution of supernovae.

2.2 A Dark Matter sector

There are many possibilities for the DM sector, all of which could work with the generic

phase transition module we presented in the previous section. The particular DM sector we

consider is a “level-changing” model, consisting of three fermions with the same quantum

numbers as the Higgsinos and Bino of the minimal supersymmetric SM: a vector-like pair

of SU(2)L doublets ψL and ψL̄ with the appropriate hypercharges, and a gauge singlet ψS .

All fields in this DM sector are charged under an exact X → −X symmetry (independent

of the approximate Z2 of P ), implying that the lightest of these particles is absolutely
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µ µs λs λ1 λ2

1.3 TeV 0.68 TeV -0.070 0.020 0.010
mDM(vP = 0) mDM(vP 6= 0) Tfo(vP = 0) Tfo(vP 6= 0)

1.3 TeV 1.0 TeV 65 GeV 52 GeV

Table 2.2: Benchmark parameters realizing (ΩDM h2)particle > (ΩDM h2)astro.

stable. The DM sector Lagrangian is

L 3 µψL ·ψL̄ + λ1H ·ψL ψs + λ2H
∗ ·ψL̄ ψs(II.8)

+ (µs + λs P )ψs ψs + h.c.,

where H = (G+, 1√
2
(H0 + iG0))T is the SM Higgs boson. The resulting “neutralino” mass

matrix is

M0 =


0 µ −λ1

vH√
2

µ 0 λ2
vH√

2

−λ1
vH√

2
λ2

vH√
2

2 (µs + λs vP )

 ,(II.9)

with electroweak VEV 〈H0〉 ≡ vH = 246GeV 2.

Within this model, it is not difficult to obtain (ΩDM h2)particle � (ΩDM h2)astro. As an

example, we consider the benchmark parameter point given in Tables 2.1 and 2.2. At high

temperatures vP = 0. There the DM is a nearly pure combination of the doublets ψL and

ψL̄: X0 ≈ 1/
√

2ψL + 1/
√

2ψL̄ + ε ψs, with ε ≈ (λ1−λ2)vH/(4µs− 2µ). The thermal relic

abundance of this state is nearly identical to that of a pure Higgsino. This is set by its

annihilation to pairs of W bosons, and is given by [158]

(II.10) ΩvP =0
DM h2 = 0.1

(mDM

1 TeV

)2
,

including coannihilation with the heavier “charginos”.
2The ψsψs coupling breaks the approximate Z2 symmetry of P , and thus quantum corrections from loops of

the ψs field would modify the P potential in Eq. (II.1). This can easily be avoided by adding a second singlet (or
another pair of doublets) without significantly altering the DM story we present here. To avoid complication, we will
consider only one singlet. These symmetries could also forbid a vP dependent “Higgsino” mass which we also ignore
for simplicity.



27

The mass and composition of the DM change after the PT. For the parameters in the Ta-

bles, the lightest of the DM-sector particles is nearly pure singlet post-PT. Using Eq. (II.7),

its relic density is (ΩDM h2)astro = 0.1. This is the value measured by astrophysical probes.

However, it is considerably different from the value one would reconstruct from measure-

ments of the DM particle Lagrangian today, assuming one measured the relevant couplings

but did not take into account the non-canonical cosmological effect described here 3.

The dominant contribution to the apparent particle annihilation cross section, assuming

the relevant particles and their couplings can be measured, is the s-channel exchange of

a P going into QQ. Assuming a standard thermal history, the predicted relic density is

approximately given by

(II.11) (ΩDM h2)particle =
0.02

NQ (λPQ λs)2
(mDM

1 TeV

)2
,

yielding (ΩDM h2)particle = 45 for the benchmark, more then two orders of magnitude

larger than (ΩDM h2)astro. Even if the PT-sector particles are not discovered at colliders,

the properties of the DM today will differ from those at freeze-out. These properties can

potentially still be deduced by direct and indirect detection searches for DM.

We obtained (ΩDM h2)particle � (ΩDM h2)astro in this example. A different choice of

mass matrix (Eq. (II.9)) can lead to the opposite relationship. When this is the case, the

value of 〈σav〉 should increase after the PT, and the DM can potentially recouple after

thermal inflation. Demanding that the DM stay frozen out gives a bound on the allowed

change in the relic density. Non-recoupling of the DM after reheating requires

nPT 〈σa v〉vP 6=0 ≤ 1.66(gRH
∗ )1/2

T 2
RH

MPl
,(II.12)

where MPl is the Planck mass. A similar condition holds for the initial (vP = 0) freeze-out

cross section and temperature. Combining these expressions and accounting for redshift
3In practice, it is difficult to measure the couplings of this particular DM candidate. However, we see no funda-

mental impediment to building models with DM candidates amenable to experimental study.
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from freeze-out to the PT gives

(II.13)
〈σav〉vP 6=0

〈σa v〉vP =0 ≤

√
gRH
∗ gvP =0

∗

gPT
∗

(
T 2

RH T
vP =0
fo

T 3
PT

)
.

Here gvP =0
∗ is the effective number of relativistic degrees of freedom calculated at T vP =0

fo .

Using the standard approximate solution to the Boltzmann equation [146] to relate 〈σav〉

to ΩDM h2, along with Eq. (II.7), leads to the constraint

(II.14)
(ΩDM h2)particle
(ΩDM h2)astro ∼

>

√
gRH
∗

gvP 6=0
∗

TRH

T vP 6=0
fo

.

A large change in the apparent relic density without recoupling requires a hierarchy

between TRH and T vP 6=0
fo . To avoid disturbing BBN, TRH must be larger than about 10 MeV.

Taking a typical Tfo of tens of GeV, the apparent relic density can be reduced by a factor

of a thousand. In practice we find it difficult to obtain such low reheating temperatures

simultaneous with the large vP needed to make a significant shift in the DM properties.

2.3 Phenomenology of a Late Phase Transition

For the PT to happen after DM freeze-out, the mass of the physical P excitation ∼ |mP |

should be light. The existence of a light P is the most generic feature of the mechanism

presented here, and so it is worth considering its phenomenology in some detail. The

symmetries of the model allow the Lagrangian term L 3 (λPH/2)P 2 |H|2, coupling P with

the SM Higgs boson. The resultant mixing with the Higgs boson gives two mass eigenstates,

p0 and h0. The mixing angle is given by

(II.15) tan 2θ =
6λPH vP vH
λHv2

H − λ v2
P

,

where L 3 λH(H0)4/4! 4.

The relevant phenomenological constraints and signals depend on the precise mass of

the p0, which in principle could range from tens of GeV all the way down to a fraction of
4With a non-zero λPH term, the VEV of P modifies the potential for H0 and vice versa. Therefore, the Higgs

VEV can be different when vP = 0 (changing the mass of the W boson). It is also important to check that this cross
coupling still allows a well separated TEW > TPT.
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an MeV. Mixing allows the p0 to be produced in association with a Z0, or to appear in

meson decays. For mp0 ∼< 100 MeV, astrophysical constraints similar to those for axions

[173] become important.

For DM masses near the weak scale, the natural value of the p0 mass is on the order of

a few GeV. For the parameters in Table 2.1 and a moderate mixing angle, mp0 ≈ 6 GeV.

In this mass range, the p0 could be produced in Upsilon (Υ) decays. To lowest order [197],

(II.16)
Γ(Υ→ p0 γ)

Γ(Υ→ µ+ µ−)
=

sin2 θm2
b

2π v2
H α

(
1−

m2
p0

m2
Υ

)
.

Requiring BR(Υ → p0 γ) × BR(p0 → τ+ τ−) . 10−5 [156] gives a modest bound on the

mixing angle of θ . 0.3 for BR(p0 → τ+ τ−) = 1. For a 6 GeV p0, decays to charm quarks

actually exceed those to τ ’s by a factor of 2 (unless a more complicated Higgs sector allows

for a tanβ enhanced p0 couplings to down-type fermions). In this mass range, a comparable

bound exists from non-observation of Z0 p0, which would have been seen in Z0 h0 searches

at LEP [31]. For higher masses, mP > 10 GeV, the bound on the mixing angle strengthens

due to the LEP constraint: θ < 0.14. The p0 decays are very prompt; the lifetime of p0 is

2 × 10−19 sec for θ = 0.14. The p0 branching ratios are identical to a SM Higgs boson of

the same mass. If the p0 mass falls below the B-meson mass, bounds on the mixing angle

from b→ sP processes [15] are strong: θ∼< 10−4.

These considerations also provide a way to observe the p0 state at colliders. For lighter

masses (mp0 < 8 GeV) and large mixing, searches for the rare decay Υ → γ p0 → γ τ+τ−

may be useful. If the h0 is not so heavy that it decays to W bosons, then h0 → p0 p0 need

only compete with h0 → b b̄ [71]. The ratio of the widths is given by

(II.17)
Γ(h0 → p0 p0)
Γ(h0 → b b)

=
3 (ξλc2θvP vH)2

m2
b

(m2
h0 − 4m2

p0)
1/2

(m2
h0 − 4m2

b)
3/2
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with the effective coupling

ξ = tθ +
λH vH
λ vP

t2θ(II.18)

− t2 θ
18

(
1−

λH v
2
H

λ v2
P

)[
1− 2 t2θ −

vP
vH

(2 tθ − t3θ)
]
,

where tθ ≡ tan θ and cθ ≡ cos θ. For θ saturating the LEP bound, BR(h0 → p0p0) can

approach 40% for vP ∼> 750 GeV. Then h0 Z0 → p0 p0 Z0 → 4 b Z0 might be observable at

the LHC if b-tagging efficiencies are sufficiently high [61], though it will be challenging.

Thus far we have not mentioned the decay of the Q’s. This can proceed via higher-

dimension operators. Alternately, the Q’s can decay to quarks through renormalizable

operators if they are SU(3)c triplets and are allowed a very small mixing with the quarks

of the SM. For the benchmark parameters in Table 2.1, mQ = 250 GeV. Then given the

latter scenario there is the possibility of producing the Q’s directly at the LHC.

2.4 Discussion

The DM model presented here represents an existence proof of a general mechanism:

DM properties can change after freeze-out. We have focused our attention on situations

where a shifting VEV causes a change in the DM mass and composition. A similar effect

could occur if the coupling that sets the relic abundance of the DM is a function of a light

modulus.

In another example, the DM mass might shift so that 2mDM is approximately resonant

with some other state in the theory, such as a Higgs boson. With the DM now sitting on

resonance, one would calculate a tiny thermal relic abundance. To implement this scenario

using a SM Higgs boson is difficult. For a “natural” PT, mDM ∼ TeV. To access the

Higgs resonance, mh0 ∼ 2mDM ∼ O(TeV). This implies Γh0 will be too large to generate

a strong resonant enhancement of 〈σa v〉. In the presence of heavy but narrow resonances,

this is a viable mechanism.
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Alternately, the DM itself could remain unchanged, but the properties of particles cru-

cial for setting the thermal relic abundance are modified by the cosmology. Consider a

coannihilating particle, C, nearly degenerate with the DM. If the mass of C shifts between

Tfo and now, the importance of coannihilation would not be evident from low-temperature

measurements, and the calculated (ΩDM h2)particle would differ from the true value.

If (ΩDM h2)particle 6= (ΩDM h2)astro, it is possible that the relic abundance of the DM is

actually thermal, but an alternate cosmology has altered the DM properties since freeze-

out. These scenarios are naturally realized if there is a light modulus that undergoes a

late PT. The field responsible for the late time transition, P , could show up in future

experiments. One possibility is via Higgs boson decays: h0 → p0 p0. If p0 is light enough,

it could also be produced in rare meson decays. Embedding a model of this type in an

extension of the minimal supersymmetric SM is a direction for future investigation.

Recent preliminary data from the PAMELA [58], ATIC [63], PPB-BETS [191], and

Fermi [4] experiments report significant excesses of cosmic ray positrons and electrons

above the expected astrophysical background. This excess could be the result of dark

matter annihilation in our galaxy. However, such a dark matter interpretation of these

results requires a DM annihilation cross-section well above the value that would generate

the observed dark matter relic density [121]. The cosmology discussed here offers the

possibility of explaining these indirect DM signals while maintaining a fairly standard

thermal freeze-out picture. What is needed is a DM annihilation cross-section that increases

significantly between freeze-out and today.



CHAPTER III

Asymmetric Dark Matter from a GeV Hidden Sector

This chapter was completed in collaboration with Daniel Phalen, Aaron Pierce, and

Kathryn Zurek [80].

In order to have a model which realizes the asymmetric dark matter (ADM) paradigm,

the symmetric component of the DM relic density must annihilate away efficiently. It is not

always straightforward to achieve a sufficiently high annihilation cross section. After all, the

DM is not charged under U(1)EM or SU(3)C . Furthermore, its light mass, when combined

with constraints on the invisible width of the Z0 boson, precludes large interactions via

the weak force. If a higher dimension operator is responsible for this annihilation, the

suppression scale needs to be near or below the weak scale to achieve a large enough

annihilation cross section [52]. Then one must ask the question why no hint of this new

physics has been observed yet. Hence, the requirement of large symmetric annihilation

cross sections implies a challenge for asymmetric dark matter (ADM) model building. One

possible solution to this problem occurs when light fields couple strongly to the DM. For

example, an axion from the next-to-minimal supersymmetric standard model (NMSSM)

can play this role. The DM can efficiently annihilate to the singlet axion which subsequently

decays; this mechanism was employed in [140]. Here, we build on this approach. Suppose

the dark sector contains a new dark force, and the dark gauge boson has a mass lighter than

the DM, i.e. roughly a GeV. Then the light gauge boson can provide the light annihilation

32
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mode, in analogy with the NMSSM axion. The cross section for this annihilation can

be large, solving the challenge of reducing the symmetric component of the DM. If the

dark gauge boson has a small kinetic mixing with U(1)Y , it can subsequently decay to SM

fermions. In addition, supersymmetrizing these models can provide ways for the sub-weak

scale to be generated naturally [132, 104, 29, 199, 70, 141, 167].

Large direct detection cross sections can result from the vector interaction in models

where the DM annihilates to a U(1)d gauge boson that mixes with the SM photon. DAMA

[55] and the recent CoGeNT [1] results hint at a light DM candidate with a large cross

section. The mass of the DM required to explain these signals is in the correct range for

ADM [109, 64, 150, 16]. Whether or not these hints are borne out in future experiments,

the models presented here demonstrate that the observation of light DM at direct detection

experiments might point towards a model of GeV hidden sector ADM.

In the next section we present a toy model that illustrates the main features of ADM

models with dark photons. In Sec. 3.2 we give a realistic supersymmetric (SUSY) model

which realizes this paradigm. In Sec. 3.3 we discuss the cosmological history of this simple

SUSY model. In Sec. 5.1 we discuss the direct detection cross section and then turn in

Sec. 3.5 to exploring the collider implications of this model. Then we conclude.

3.1 Ingredients

In models of ADM, there are two key ingredients: an operator that transfers the asym-

metry from the SM to the DM and a large annihilation mode that effectively suppresses the

symmetric component of the relic density. In this section we present a simple non-SUSY

model that demonstrates the broad features of ADM models with a dark Abelian gauge

group.
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The Lagrangian for the dark sector is

L = χ̄(i /D −mχ)χ+ |DµH
′|2 − V (H ′)

−1
4
bµνb

µν +
ε

2
bµνB

µν +Oasym.(III.1)

Here bµν and Bµν are the dark gauge boson and hypercharge field strengths, respectively.

χ is a Dirac fermion with charge Q under U(1)d – it is the DM, and H ′ is the dark Higgs

with charge −1 under U(1)d. The operator Oasym transfers the B−L asymmetry from the

SM sector to the dark sector. ε parametrizes a kinetic mixing between the dark photon

and the hypercharge boson. It is naturally generated by integrating out matter charged

under both symmetries; the result is an ε of the size [131]:

ε ∼ gY gd
16π2

log
M ′

M
,(III.2)

where gY is the hypercharge coupling constant; gd is the U(1)d coupling constant, and the

logarithm of scales results from splittings between fields charged under both symmetries.

Due to the loop factor suppression, ε ∼ 10−3, at least in the absence of large logarithmic en-

hancements. When H ′ acquires a non-zero vacuum expectation value (vev), the dark U(1)

is broken and the dark photon becomes massive. The dominant symmetric annihilation

mode for the DM is χ̄χ→ γdγd.

The asymmetry transfer operator must conserve dark charge, and so is of the form

Oasym =
(H ′nχp)OB−L

Λr
(III.3)

where Λ is the mass suppression scale, p = n/Q, and OB−L is an operator with a non-zero

B − L number that involves only SM fields. p > 1 is a necessary condition for ensuring

the stability of the DM. Using the equilibrium methods outlined in [127], one can solve

for the DM asymmetry in terms of the B − L asymmetry. If this asymmetric component

dominates, the measured value of the DM relic density determines the mass of the DM.
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We discuss how the choice of transfer operator and corresponding Λ singles out a DM

mass in Sec. 3.3. Here, we note only that this operator need be in equilibrium after the

baryon asymmetry is generated, but must go out of equilibrium before T ∼ mχ, or the DM

asymmetry will be Boltzmann suppressed.

3.2 A Supersymmetric Model

Supersymmetry will stabilize both the electroweak scale as well as the dark scale. While

in the above model the DM mass is put in by hand, here we can generate it dynamically.

We propose the following model:

Ld ⊃
∫
d2θ

(
λSTH ′ +

ε

2
WdWY

)
.(III.4)

Here S is a singlet, while T has charge +1 under U(1)d. The dark Higgs, H ′, has charge

−1 under U(1)d. Wd and WY represent the gauge field strength superfields for the dark

photon and hypercharge, respectively, with kinetic mixing ε. In the absence of large soft

terms in the hidden sector, this model gives rise to a symmetry breaking pattern where

〈S〉 = 〈T 〉 = 0 and 〈H ′〉 6= 0 [70, 167].1 There is an accidental global symmetry under

which S = +1 and T = −1, leading to a stable state. The lightest component of the S and

T chiral superfields constitutes the DM.

We suppose SUSY breaking is communicated to the MSSM by gauge mediation, while

the U(1)d does not couple directly to the messengers. Then the hidden sector is shielded

from SUSY breaking in the MSSM and only receives soft-terms via the small kinetic mixing

parameter. Once electroweak symmetry is broken, the kinetic mixing induces an effective

Fayet-Illiopoulos (FI) D-term for the U(1)d, ε〈DY 〉, as in [70]. Ignoring the small super-

symmetry breaking effects, the potential is

V =
1
2
(
gd(|T |2 − |H ′|2) + ε〈DY 〉

)2 + |λ|2
(
|S|2|H ′|2 + |S|2|T |2 + |T |2|H ′|2

)
,(III.5)

1Note this superpotential was also recently considered in an attempt to explain the CoGeNT excess in [99], in a
symmetric DM model and with different assumptions about supersymmetry breaking.
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where 〈DY 〉 = gY v
2c2β

4 + ξY . Here, v = 246 GeV is the effective MSSM Higgs vev, tanβ =

vu/vd. ξY is a “fundamental” FI term for hypercharge whose existence is more model

dependent. For example, a weak scale ξY can be naturally generated in U(1) messenger

models of gauge mediation [89]. For c2β = −1 and ξY = 0,
√
|DY | ' 72 GeV. Then for

ε = 10−3 and ε〈DY 〉 ' 5 GeV2, the GeV scale has been generated from the weak scale.

The dark Higgs, H ′, obtains a vev to cancel the D-term

〈H ′〉 =

√
ε〈DY 〉
gd

,(III.6)

from which the scalars obtain masses

m2
H′ = 2g2

d〈H ′〉2; m2
S = m2

T = λ2〈H ′〉2.(III.7)

The mass of the dark photon is

mγ̃d
=
√

2gd〈H ′〉.(III.8)

At this point, the vacuum is supersymmetric. The mass matrix in the fermion sector (in

the (λ̃d, H̃ ′, S̃, T̃ ) basis) is given by

M =



0
√

2gd〈H ′〉 0 0

√
2gd〈H ′〉 0 0 0

0 0 0 λ〈H ′〉

0 0 λ〈H ′〉 0


.(III.9)

The dark Higgsino-photino mass eigenstate, γ̃d, is degenerate with the gauge boson, and

the S − T fermions, ψ and ψ̄, are degenerate with their scalar superpartners.

We now address how the small SUSY breaking effects leak into this sector. In particular,

two loop gauge mediated diagrams contribute positive mass squareds to the T and H ′

scalars via the kinetic mixing. We normalize the size of this contribution to right handed

selectron mass, m̃Ec , as

∆m̃2
T,H′ = ε2

(
gd
gY

)2

m̃2
Ec .(III.10)
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This equation is valid at the messenger scale; renormalization group running to the hidden

sector scale is a 10% effect. This soft mass affects the cosmology of this model since it

raises the T scalar above ψ.

Because it is a singlet, the S scalar does not receive a positive (mass)2 from gauge

mediation. Rather, it has a negative soft mass squared at one loop due to the presence of

the T and H ′ soft masses. This lowers the S scalar just below ψ by an amount

∆m̃2
S = − 2λ2

16π2
(∆m̃2

H′ + ∆m̃2
T ) log

(
Mmess

mS

)
.(III.11)

Here Mmess is the messenger scale where the soft masses are generated. Thus the lightest

state charged under the S/T parity is the S scalar. It is this state which constitutes the

DM.

While the splittings of Eqs. (III.10) and (III.11) will be most important for cosmology,

for completeness we note the leading splitting in the gauge multiplet. The dark photino

gets a small correction from mixing with the MSSM gauge sector that splits the fermion

into two Majorana states around the dark gauge boson. Including the leading corrections

to the dark photino mass,

m
(1,2)
γ̃d

=
√

2gd〈H ′〉 ± ε2
(
m2
Zs

2
W s2β
µ

+
m2
γ̃d

M1

)
.(III.12)

There are two contributions to the mass of the dark Higgs radial mode, h′, which take it

away from the SUSY limit: the small correction from mixing with the Higgs boson via the

D-term and a 1-loop radiative correction which contributes to its quartic. The correction

to the quartic is the larger of the two. It shifts the physical dark Higgs boson mass by an

amount

∆m2
h′ =

λ4〈H ′〉2

16π2
log

m2
T

m2
ψ

' λ2

8π2
∆m̃2

T .(III.13)

To allow efficient annihilation of the S/T sector to gauge bosons, we choose
√

2gd < λ.

The spectrum is shown schematically in Fig. 3.1. Aside from the gravitino, γ̃d is the
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∼ 10 GeV
T
ψ

S

∼ GeV γd, γ̃d,H
′

� GeV G̃

Figure 3.1: The spectrum of the SUSY model. We have illustrated the mass pattern of the S/T
multiplet (not to scale) since this splitting determines the identity of the DM. The
splittings within the dark photon multiplet have been suppressed.

lightest R-odd particle. Although the dark gaugino is slightly lighter than the gauge bosons,

thermal effects allow it to annihilate to the gauge bosons which subsequently decay. We

describe this process in detail in Sec. 3.3.

There are phenomenological constraints on an Abelian GeV hidden sector. If the dark

photon mass is smaller than the mass of the Υ(3s), the lack of observation of dark photons

at B-factories constrains the mγd
− ε parameter space [100], yielding ε . 4 × 10−3. For

larger dark photon masses, the strongest constraints are ε . 10−2 coming from precision

electroweak measurements – there are ε suppressed couplings to the Z0 which can lead

to changes in these observables [120]. Finally, avoiding Landau poles for λ before the

GUT scale enforces λ . 1.5 which (due to the requirement that
√

2gd < λ in our model)

constrains gd . 1.1. If one only requires no Landau poles appear before O(10 TeV), this

constraint is λ . 2.5 and gd . 1.8. Stronger constraints on ε/gd from the Landau pole are

dependent upon the DM mass (see Sec. 3.3 below). We plot the excluded region due to all

of these constraints in Fig. 3.2.

3.3 Cosmology

The proposed SUSY model of ADM with a dark photon has a non-trivial cosmological

history. In particular, the near degeneracy of the states which comprise the DM and
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massive dark photon superfields imply the potential for late decays. In the analysis that

follows, we demonstrate that we maintain the success of Big Bang Nucleosynthesis (BBN).

In addition, the presence of the global symmetry on S/T and R-parity results in two stable

states, S and the gravitino. We must check that ΩDM is dominated by the asymmetric

part of the S density.

We present two different asymmetry transfer operators. One of these operators has

processes that re-symmetrize the DM and anti-DM at late times. The model with a sym-

metric DM density today is subject to additional constraints. For this reason, this transfer

operator must be discussed separately.

In all cases, we assume that the gravitino mass is ≤ 16 eV, consistent with low-energy

gauge mediation, in order to evade constraints from measurements of the Lyman-α forest

without restricting the reheat temperature after inflation [193]. We will conclude this

section with some variations on our canonical cosmology.

One key component of ADM models is the requirement of an asymmetry transfer mech-

anism. We assume that the transfer occurs via some higher dimensional operator, Oasym,

generated by integrating out physics at a scale, M . The states integrated out to generate

Oasym can be charged under both U(1)d and U(1)Y , and in principle could also be respon-

sible for generating ε. We are agnostic about the source of the (B − L) asymmetry - we

only require that it is generated before Oasym falls out of equilibrium.

Since the S field is a gauge singlet,2 asymmetry transfer operators will have the following

generic form [140]:

Oasym =
SpOB−L
M r

,(III.14)

where OB−L is a SM gauge singlet operator involving only MSSM fields with a non-zero

B − L number q. This operator transfers the B − L into the S/T global symmetry. The
2One is also free to use the combination (TH′) in constructing these operators.
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four lowest dimension MSSM superpotential operators with |q| = 1 are LHu, U cDcDc,

LLEc, or LQDc. Higher q operators can be built from combinations of these. The size of

the asymmetry produced only depends on q [65, 103].

Assuming the symmetric component of the DM abundance is negligible (we verify this

in specific cases below), we can compute the S−S† asymmetry using standard equilibrium

methods [127]. Above the 〈H ′〉 6= 0 phase transition there is the additional requirement

that the net U(1)d charge is zero. IfOasym decouples before the electroweak phase transition

(EWPT), the mass for the DM in the SUSY model is given by

mDM =
158
33

p

|q|
ΩDM

ΩB

B

B − L
mp ' (7.1 GeV)

p

|q|
,(III.15)

where mp is the proton mass. ΩDM is the DM relic abundance, and ΩB is the abundance

of baryonic matter. B/(B−L) ' 0.35 with an uncertainty of O(10%) due to the details of

the sphalerons and the EWPT [127]. If the asymmetry transfer operator decouples after

the EWPT but before the dark sector phase transition (which occurs at T ∼ mDM), the

effective B − L transferred is different, and

mDM =
197
87

p

|q|
ΩDM

ΩB

B

B − L
mp ' (3.3 GeV)

p

|q|
.(III.16)

In the main body of the text, we will focus on the operators:

O(1)
asym =

S2U cDcDc

M2
(1)

(
or

S2LLEc

M2
(−1)

, etc.

)
;(III.17)

O(−2)
asym =

S2(LHu)2

M3
(−2)

,(III.18)

where the superscript refers to the B−L number, q, for the MSSM operator. We will show

in an appendix that O(−1)
asym = (S2LHu)/M(−1) does not give rise to a viable cosmology when

all constraints are analyzed. If they decouple above the EWPT, these operators imply a
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DM mass:

m
(1)
DM = 14.2 GeV ⇒ λ

√
ε/gd
10−1

(√
〈DY 〉

72 GeV

)
= 0.62;(III.19)

m
(−2)
DM = 7.1 GeV ⇒ λ

√
ε/gd
10−2

(√
〈DY 〉

72 GeV

)
= 1.0.(III.20)

Hence, the choice of operator implies a relationship among the parameters in the dark

sector. One can use the upper bounds on λ arising from the absence of a Landau pole to

constrain the minimum allowed ε/gd, see Fig. 3.2.

3.3.1 After Decoupling of Asymmetry Transfer

After U(1)d is broken, the asymmetric DM abundance is spread across S, T, and ψ in

the ratios 1
3 , 1

3 , and 1
3 . However, the ψ and T are unstable. Since we are working in

the context of low scale gauge mediation, the decays T → G̃ψ and ψ → G̃S are allowed.

Decays to gauginos are kinematically forbidden due to the small mass splitting between

the S, T scalars and ψ fermion. The decay width for these processes are:

Γ(T → ψG̃) =
1
8π

(m2
T −m2

ψ)4

F 2m3
T

;(III.21)

Γ(ψ → SG̃) =
1

16π
(m2

ψ −m2
S)4

F 2m3
ψ

,(III.22)

where we have assumed a massless gravitino. Since the decays are invisible to the SM,

these processes will not interfere with BBN predictions. In any case, for the parameters we

consider, they occur on time scales less than a second. These mass splittings are calculable

in terms of the underlying parameters and are given by (see Eqs. (III.10) and (III.11)):

m2
T −m2

ψ ' 3× 10−3
( gdε

10−4

)2
(

m̃Ec

200 GeV

)2

GeV2;(III.23)

m2
ψ −m2

S ' 6× 10−4λ2
( gdε

10−4

)2
(

m̃Ec

200 GeV

)2

GeV2.(III.24)

Depending upon the asymmetry transfer operator, decays that change the DM asym-

metry number by two units could also be allowed. This ‘re-symmetrization’ of the DM
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must occur when the DM number density is sufficiently low to prevent annihilations from

turning back on, re-coupling the DM and reducing the relic density. Since the cross section

for annihilation of DM is large in these models, the operators that allow re-symmetrization

of the DM abundance are also tightly constrained by indirect signals. We will discuss this

further when we consider specific asymmetry transferring operators.

The symmetric abundance of S should be subdominant to the asymmetric density, so

that the DM density is truly set by the baryon asymmetry and not thermal freeze-out. The

S annihilations are dominated by the process SS† → γ̃dγ̃
†
d, which comes from the t-channel

exchange of a T fermion. This annihilation cross section is approximately

〈σsymv〉 '
(
2× 10−20cm3/s

)
λ4

(
7 GeV
mS

)2

,(III.25)

where we have assumed that the gauge sector is much lighter than the ADM sector. This

yields a symmetric relic density of

Ωsym
S h2 ' 2× 10−8λ−4

( mS

7 GeV

)2
� 0.1,(III.26)

which is clearly subdominant to the measured abundance of DM.

The cosmology of γd and h′ is straightforward since they both decay to the SM via ε

suppressed couplings long before BBN. The story is not so simple for the dark photino. The

presence of R-parity stabilizes the lightest of the superpartners, which for this scenario (low

energy SUSY breaking), is the gravitino. The dark photino is the second lightest R-odd

state, and decays via 1/F suppressed couplings. Due to the dark photino’s near degeneracy

with the dark photon, the dominant decay channel is γ̃d → γG̃, which is suppressed both

by the scale SUSY breaking and the kinetic mixing ε. This decay time is [70]

τ(γ̃d → γG̃) = 190 s
(

10−3

ε

)2(GeV
mγ̃d

)5
( √

F

50 TeV

)4

.(III.27)

This late production of photons could, in principle, alter the predictions of BBN. This de-

pends on the destructive power of the dark photinos, which is given by mγ̃d
nγ̃d

/s ≡ mγ̃d
Yγ̃d

,
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where nγ̃d
is the number density of photinos and s is the entropy density of the universe.

Since the Higgsino component of the dark photino induces an interaction between the dark

photino and the dark photon, the number density is set by these interactions. Though

the dark photino and photon masses are degenerate, the thermal tail of the Boltzmann

distribution allows efficient annihilation of the dark photinos. To good approximation, the

annihilation cross-section for this process is given by [167]:

〈σγ̃d
v〉 '

g4
d

16πm2
γ̃d

vf.o. ' 7× 10−24cm3/s
( gd

0.1

)4
(

1 GeV
mγ̃d

)2 (vf.o.
0.3

)
,(III.28)

where vf.o. is the velocity when the dark photinos freeze out. Hence, the dark photinos

can have a small relic abundance when they decay to a gravitino and a photon. In Fig. 3.2

we show the regions in the gd − ε plane which do not alter the predictions of BBN and

satisfy constraints from B-factories and from precision electroweak (PEW) measurements.

In generating this figure we have done the full calculation of the thermally averaged cross

section to capture the effects of the degeneracy between the initial and final states. We

also show the region of specific choices of ε and gd which can modify the abundance of Li-7,

alleviating the tension with the current measurements [134].

Next we explore the cosmology associated with transferring the asymmetry to the DM.

We pay particular attention to the requirement that the transfer operator not imply a

Boltzmann suppression for the asymmetry by remaining in equilibrium to very low scales,

T < mDM. This requirement constrains the asymmetry transfer scale, M . The physics

involved in the determination of this scale is sensitive to the choice of the transfer operator,

so we discuss each operator in turn.

3.3.2 Cosmology of Models with Oasym ∼ S2U cDcDc

The cosmology associated with the q = 1 operator is the most straightforward. Com-

ments similar to those below also apply to operators where U cDcDc is replaced by either

LLEc or LQDc. Since there are three MSSM fields involved which do not obtain vevs, at
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Figure 3.2: Constraints in the ε−gd plane. We have shown the regions which are excluded by BBN
constraints due to γ̃d → γG̃ [134] (orange), B-factories due to direct searches for γd [99]
(green), and precision electroweak measurements due to γd −Z0 mixing [120] (brown).
The red region corresponds to parameters which solve the lithium-7 problem [134]. One
the left (right) we show contours where λ is constrained so as not to reach Landau pole
before MGUT (10 TeV) for mDM = 14.2 GeV, mDM = 7.1 GeV and mDM = 3.3 GeV,
assuming 〈DY 〉 = 72 GeV. The region below these contours is excluded.

tree level all asymmetry transfer interactions will involve at least one SM superpartner.

For these processes the transfer rate will be Boltzmann suppressed for temperatures below

the superpartner scale, and will be be strongly suppressed when T ∼ mDM. So, for low

temperatures (below the SUSY scale), the dominant process arises from a one-loop diagram

where a gluino is exchanged. This coverts two squarks to quarks and generates an effective

dimension-7 operator (SψSψdcψdcψuc/M3
eff ). Taking a superpartner scale of 1 TeV, the

requirement that this effective operator be out of equilibrium before T ∼ mDM enforces

the mild constraint M(1) > 2 TeV.

If one imposes the stronger bound that the transfer operator decouples before the

EWPT, a stronger bound on M(1) is present. Depending on the precise spectrum of the

superpartner masses, either the tree-level or loop induced process can be the most impor-

tant. However, both give bounds of M(1) ∼ O(100 TeV). If this stronger condition holds,

then the DM mass is as given in Eq. (III.19), otherwise Eq. (III.16) applies.
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Figure 3.3: The one-loop diagram which generates the S number violating mass bS .

3.3.3 Cosmology of Models with Oasym ∼ S2(LHu)2

For the q = −2 operator, the story is different: the process SS → ν†ν† has the po-

tential to wash-out the asymmetry. Requiring that this process be out of equilibrium at

temperatures of order the DM mass yields:

M(−2) & 20 TeV
( mS

7 GeV

)1/6
.(III.29)

The mass estimate of mDM in Eq. (III.15) requires the stronger condition that the asymme-

try transfer operator decouples at temperatures above the EWPT (and does not recouple

once 〈Hu〉 6= 0). This implies that M(−2) & 30 TeV.

The origin of neutrino masses has a strong impact on the cosmology for this transfer

operator. If neutrinos are Majorana, then the superpotential operator (LHu)2/MνR is non-

vanishing, where MνR is the right handed neutrino mass scale. The operator S2(LHu)2

equates L number with S number. Therefore, the neutrino mass operator violates S number

and generates a mass term via the one-loop diagram in Fig. 3.3 that breaks S number by

two units, bSSS + h.c.. This splits the real and imaginary components of the S scalar by

∆mS =
bS
mS
' 1

16π2

v2c2βµ
2

M3
(−2)

mν

mS
log
(
m̃νL

Mmess

)

' 4× 10−22 GeV
(

7 GeV
mS

)( µ

100 GeV

)2
(

105 GeV
M(−2)

)3

.(III.30)

Here µ is the supersymmetric Higgs mass parameter; m̃νL is the sneutrino soft mass,
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and mν is the neutrino mass. This splitting will induce S−S† oscillations when H ∼ ∆mS

similar to [81].

When these oscillations begin, one must check that the now symmetric relic density does

not recouple and annihilate away. This condition is given by H(Tr) > ∆mS , where the re-

coupling temperature (Tr ∼ m3
S/λ

4) is in the range 0.1− 100 keV. This constraint implies

a limit on M(−2) & 105 GeV which is more restrictive than the decoupling constraints

described above in Eq. (III.29). Hence, the asymmetry operator decouples before the

EWPT, and the DM mass is 7.1 GeV, from Eq. (III.15).

Even if the oscillations do not occur so early as to affect the relic density, they could lead

to residual annihilation which could give additional constraints. The annihilation mode

SS† → γ̃†dγ̃d → γγG̃G̃ could produce photons which can effect the reionization depth of

the CMB, see [185] for a recent analysis. The quantity constrained is the annihilation cross

section times the ionization fraction, f . For DM in the 10 GeV range,

f〈σv〉
(
ρS
ρDM

)(
ρS†

ρDM

)
=

1
4
f〈σv〉 . few × 10−26 cm3/s.(III.31)

We expect that f will be in the range 0.1− 0.5. Hence, if oscillations occur before recom-

bination, the requirement 〈σv〉 . 10−24 translates to λ . 0.1.

After fixing λ ∼ 0.1, one must check that mS = 7.1 GeV can be achieved in this model.

To obtain a DM mass of this size, one must maximize the ratio ε/gd. From Fig. 3.2, the

maximum this ratio can be is (ε/gd)max ∼ (7×10−3/7×10−3), which, when combined with

λ ∼ 0.1, implies mS = 7.2 GeV. Hence, this scenario is marginally feasible. Including a

bare FI term for hypercharge could mitigate this tension. Note that this point in parameter

space should be probed by the existing but as yet unanalyzed data from the B-factories.

Alternatively, if M(−2) & 1010 GeV, the oscillations occur at temperatures below an

eV. Hence there are no DM annihilations during recombination. In this case, the strongest

constraints come from considering the effect of DM annihilation on reionizing the universe.
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Since the high energy photons which result from the SS† → γ̃†dγ̃d → γγG̃G̃ annihilations

are poor ionizers [51], the strongest constraint comes from (for example) the annihilation

channel SS† → γdγd → e+e−e+e− where the electrons subsequently upscatter CMB pho-

tons. This cross section is roughly two orders of magnitude smaller then the one quoted

in Eq. (III.25). This translates into a bound3 λ . 0.3 [51]. Note that this larger value of

λ will alleviate some of the tension with achieving the correct size for mS .

If M−2 & 1012 GeV, then DM has not begun oscillating yet. Alternately, since the mass

splitting is proportional to the Majorana neutrino mass, if the neutrinos have Dirac masses

no oscillation occurs. In these cases, the DM abundance would still be asymmetric today

and the above constraints do not apply.

3.3.4 Variations on the Cosmological History

In this section we will explore various other allowed cosmological histories beyond the

simplest story we have presented above. For example, one could imagine a scenario with a

heavier gravitino. The dark sector will generically feel anomaly mediated supersymmetry

breaking contributions, which for too large a gravitino mass could potentially raise the DM

above the GeV scale or destabilize the H ′ vev. This implies

α

4π
m3/2 =

α

4π
F√
3mPl

. GeV⇒
√
F . 2× 1010 GeV,(III.32)

which implies a bound of m3/2 . 130 GeV. Thus, the gravitino can be heavier than

the dark photino. In this case, the photino cannot decay, so one should ensure that the

abundance of dark photinos is small enough to only constitute a subdominant portion of

the DM:

Ωγ̃d
h2 ' 3.5× 10−2

(
0.02
gd

)4 ( mγ̃d

1 GeV

)2
(

0.3
vf.o.

)
.(III.33)

3In [51] the DM mass is 100 GeV. Since our DM is 7.1 GeV in this model the constraint will be slightly stronger
then what they quote.
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This implies a lower bound on gd & 0.02. Alternately, a small amount of R-parity violation

(RPV) in the MSSM could allow dark photino decays without spoiling BBN. If this RPV

is provided by a LLEc or LQDc operator, assuming no non-trivial textures, this implies a

value for the coefficient near the limits from µ→ eγ.

In this scenario, the gravitino would decay to dark photinos as well. Again, constraints

from BBN would limit the abundance of gravitinos produced in the early universe, which

translates into a constraint on the reheat temperature of the universe of O(105 GeV) [142].

This could pose a problem for asymmetry transfer operators which require higher reheat

temperatures to ensure the transfer is ever in equilibrium.

Another way to avoid a gravitino overabundance is to imagine a too-large baryon asym-

metry was generated via the Affleck-Dine mechanism [8], which was subsequently diluted

by a period of late-time inflation to the measured value while simultaneously diluting the

gravitinos. Since the DM is set by the same large asymmetry, it would be diluted by the

same fraction and would maintain the correct ratio between the relic density of baryons

and DM.

3.4 Direct Detection

Since S is neutral under the dark gauge force, tree-level direct detection proceeds either

by the exchange of h′ via mixing with the MSSM Higgs, which is suppressed by ε, or by

mixing with the T via the Aλ term to exchange a dark photon. However, since we have

assumed that the only SUSY breaking is communicated to the dark sector through kinetic

mixing, this A-term is suppressed by ε2. So, these tree-level diagrams are small. However,

once H ′ acquires a vev the S scalar receives a coupling to the dark photon at the one-loop

level:

λ2gd
16π2

4g4
d − λ4 + 4λ2g2

dlog
(
λ2

2g2d

)
2(2g2

d − λ2)2

S†
←→
∂µSγ

µ
d ≡ gdqeffS

†←→∂µSγµd .(III.34)
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This coupling is analogous to the one-loop Z0bb̄ vertex corrections from a charged Higgs

and a top quark [124].

Since the dark photon only couples to the atomic number of the nucleus, the effective

cross section per proton is

σp =
4
π

g4
W c

4
Wµ

2
S,p

c22βm
4
W

q2eff ,(III.35)

where gW is the weak coupling constant, cW is the cosine of the weak mixing angle, and

µS,p is the reduced mass of S and a proton. Due to the gd and ε dependence in mγd
(see

Eq. (III.8)), this cross section is approximately independent of both parameters [70]. This

is

σp ' (9.1× 10−42cm2)λ4,(III.36)

where we have taken the limit λ � gd. This is not large enough to give rise to the signal

observed by CoGeNT, but it will be probed by a variety of upcoming experiments.

In Fig. 3.4, we have plotted the predicted range of direct detection cross sections,

appropriate to mDM = 14.2 GeV, 7.1 GeV and 3.3 GeV where these mass choices are

relevant for the operators and decoupling temperatures described above (see Eqs. (III.15)

and (III.16)). The upper bound is due to the assumption that there is no Landau pole

for λ before the GUT scale, and the lower bound occurs for the smallest allowed value of

λ consistent with the correct DM mass (using (ε/gd)max ' 1 as described in Sec. 3.3.3).

We also show the current Xenon-10 bound (solid black line), the projected Xenon-100

bound, assuming 6000 kg-days (dashed green line), the projected Xenon-1T bound (dotted

blue line) [133], and the projected limit from the Majorana experiment (dot-dashed purple

line) [83]. We have normalized these bounds by the factor (Z/A)2 which is appropriate

for our model where scattering is only off of protons (σp). For mDM =14.2 GeV, the

largest values of λ are already excluded by Xenon-10 [18]. At 14 GeV, the bound from
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Figure 3.4: The predictions for the direct detection scattering cross sections normalized per proton
(σp) for mDM = 14.2 GeV, 7.1 GeV and 3.3 GeV. We have plotted current/projected
limits (also normalized per proton) from Xenon-10 (solid black line), Xenon-100 with
6,000 kg-days (dashed green line), Xenon-1T (dotted blue line) [133], and Majorana
(dot-dashed purple line) [83].

Xenon-10 is approximately 3 × 10−43 cm2, which translates to λ < 0.7. Nearly the entire

parameter space for mDM = 14.2 GeV can be probed by Xenon-100 with 6,000 kg-days.

For mDM = 7.1 GeV, Xenon-1T will cover the allowed region, and for mDM = 3.3 GeV,

Majorana will probe much of the allowed range. Hence, a combination of current and

proposed experiments will have the potential to cover most of the interesting parameter

space for this model.

3.5 Colliders

Finally, we discuss some collider implications of this class of models. There are three

portals into the dark sector which could potentially be probed: photon kinetic mixing,

Higgs boson mixing, and the asymmetry transfer operator.

The MSSM LSP (LSPMSSM) is unstable to decay to the low mass hidden sector [188,

187]. One mediation mechanism for decay to the hidden sector is through kinetic mixing,

as discussed in [132, 27]. The collider phenomenology of such scenarios has been studied
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extensively recently; see for example [2, 101, 180, 57, 100, 44, 43, 42].

Photon kinetic mixing may also be probed via the decays of the LSPMSSM to the dark

sector [132, 29]. If the LSPMSSM is has electroweak quantum numbers, then it will decay

promptly to its SM partner and a dark gaugino via an ε-suppressed interaction. This dark

gaugino is stable on detector time scales, and so will manifest as missing energy. More

interesting is if LSPMSSM is a neutralino, since it will decay to a dark gaugino and dark

Higgs via ε mixing in the neutralino mass matrix. The dark gaugino will again result in

missing energy. However, the dark Higgs will promptly decay back to SM fermions via

mixing with the MSSM Higgs boson. These could produce “lepton jets” [29].

The T and ψ fields couple to the Z0 and the MSSM Higgs boson via ε suppressed

couplings, so it will be difficult to produce these particles directly. Furthermore, the DM

state S only interacts through couplings which are both ε and loop suppressed. Hence, the

LHC study of the DM will be indirect. There will be rare decay of the Higgs boson either

to a pair of dark photinos (invisible) or dark Higgs bosons (multijet). For the largest values

of ε these branching ratios will be O(10%).

Finally, if the OB−L ∼ U cDcDc, then the UV completion will necessarily involve colored

objects, some of which could have the quantum numbers of diquarks. If this asymmetry

operator decouples after the EWPT (which would imply a DM mass quoted in Eq. (III.16)),

then this UV completion is a candidate for early discovery at the LHC [45, 138].

3.6 Discussion and Conclusions

In this chapter we have presented a supersymmetric model of Asymmetric Dark Matter,

where the GeV scale for the DM mass is naturally generated by loop suppressed gauge

kinetic mixing between the hypercharge and dark gauge bosons. This scenario allows the

symmetric component of the DM to annihilate efficiently into the dark photons. Direct

detection signals proceed via interactions with the dark photon.
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This model also provides a solution to the DM problem in models of low scale gauge

mediation where the very light gravitino is the LSP and cannot account for the DM. Since

gauge mediation is a key component for achieving the appropriate spectrum in this model,

the connection is robust. Hence, we have shown that this ADM module can provide the

DM for gauge mediated SUSY breaking models.

While we chose to focus on a simple model, this paradigm encompasses a large class of

theories which connect the ADM mass scale with the weak scale via a one loop suppression.

We note two interesting mechanisms for achieving this goal. The first was proposed in

[199, 167] and was coined “singlet meditation” by these authors. The idea is to mediate a

weak scale soft mass to a hidden sector singlet field which is then transferred to the rest

of the dark sector at one loop via Yukawa couplings. Another choice uses the ideas of

[141], where the soft spectrum of the MSSM is due to gaugino (or gravity) mediation while

the dark sector only receives contributions from anomaly mediation, again resulting in a

one loop suppression. Both of these ideas can be convolved with the ADM paradigm in

straightforward – if not minimal – ways, resulting in an explanation for the GeV scale DM

mass.

Finally we note that the model presented here provides another example of GeV scale

DM with an observable direct detection cross section. The DM mass in models of this type

are typically ∼ 10 GeV, so direct detection experiments with low energy thresholds are

best suited to discover DM of this type.



CHAPTER IV

Leptophilic Dark Matter from the Lepton Asymmetry

This chapter was completed in collaboration with Kathryn Zurek [81].

Next we will explore an ADM model which is motivated by the excess in cosmic ray

positron and electron signals over the expected background as observed by AMS-01 [10],

HEAT [41, 46], PPB-BETS [191], PAMELA [7], Fermi [4] and ATIC [82] which may be a

signal of annihilating DM (see Sec. 1.3.2). The annihilation cross-section needed to produce

these signals is non-thermal, a factor ∼ 10−1000 (depending on DM mass and astrophysical

boost factor) larger than the thermal annihilation cross-section [74, 165]. Annihilation

predominantly to leptons is preferred both by the shape of the PAMELA signal and the

lack of excess in the anti-proton data [92]. These facts appear to disfavor an explanation

utilizing a canonical neutralino (though when combined with an astrophysical flux, it may

be obtained [137]). One possibility is to introduce new GeV scale particles [27]. These

light states mediate a Sommerfeld enhancement [129, 75], implying boosted annihilation in

the halo today, while also acting as intermediate final states, thereby providing kinematic

constraints on the allowed SM particles produced from DM annihilations.

In this chapter we provide a simple paradigm which gives rise to both boosted and

leptophilic annihilation of DM, involving neither Sommerfeld enhancements nor new GeV

mass states. When the DM relic density is set by the lepton asymmetry, the annihilation

modes are naturally leptophilic. Additionally, this density is derived using lepton number

53
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(L) violating operators that transfer the asymmetry, and not the L-preserving operators

which lead to a signal for indirect detection experiments (such as PAMELA and Fermi) at

low temperatures 1. Though these models can provide a unique explanation for the cosmic

ray excesses, their interest extends beyond this application.

4.1 Ingredients

We begin by outlining the general features of this class of models and then turn to

constructing a simple model for illustration. An initial lepton asymmetry is generated

at temperatures well above the electroweak scale. We are agnostic about the source of

this asymmetry for the purposes of this paper. Lepton number violating operators, which

connect the SM leptons to dark sector fields, transfer the lepton asymmetry to the dark

sector. As in all models of ADM, these operators relate the DM number density to the

lepton, and therefore baryon, density,

(IV.1) (nX − nX̄) ∼ (n` − n¯̀) ∼ (nb − nb̄),

where the exact proportions are O(1) and are determined by the particular operator trans-

ferring the asymmetries, and (nX − nX̄), (n` − n¯̀) and (nb − nb̄) are the asymmetries in

the DM (X), leptons and baryons respectively. As a result mX ∼ ΩDM
Ωb

mp, where mX is

the DM mass, mp is the proton mass, ΩDM is the DM relic density and Ωb is the baryon

density of the universe. This relation implies a DM mass mX ' 5 GeV. Though the size

of this mass is phenomenologically viable, it does not directly link the DM sector to the

new physics which stabilizes the weak scale.

If the L-violating operators which transfer the asymmetry have not decoupled as the

DM becomes non-relativistic, there is a Boltzmann suppression of the DM asymmetry (see
1Previous works considered DM from the lepton asymmetry as an explanation of the cosmic ray positron excesses,

but utilized decaying DM with a lifetime tuned to the age of the universe [114, 67]. There have also been other models
of leptophilic DM unrelated to the lepton asymmetry that have utilized a Sommerfeld enhancement to generate the
boost [110, 199, 60]
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[39, 127] for a more detailed discussion)

(IV.2) (nX − nX̄) ∼ (n` − n¯̀) e−mX/Td ,

where Td is the temperature at which the L-violating operators decouple. This implies

that the DM mass can be much larger 2

(IV.3) mX =
45
29

1
NX

f(0)
f(mX/Td)

ΩDM

Ωb
mp,

where NX is the number of DM families and f(x) is the Boltzmann suppression factor

given by [39]

(IV.4) f(x) =
1

4π2

∫ ∞

0

y2 dy

cosh2(1
2

√
y2 + x2)

.

The decoupling temperature, Td, is naturally at the electroweak scale if the corre-

sponding higher dimensional operators are TeV scale suppressed. Once these L-violating

operators decouple, the asymmetric DM density is frozen in.

Although the L-violating interactions have frozen out, L-preserving interactions are

expected to remain in thermal equilibrium to lower temperatures. This is particularly

natural if the L-violating operators are generated by a combination of the L-preserving

interactions and an operator which introduces a small amount of L-violation into the

theory. While the L-preserving operators may be in thermal equilibrium longer than the

resulting L-violating interactions, they do not change the relic DM density, which will be

dominantly composed of X̄s with essentially no Xs.

If the asymmetry in the DM persisted until today, there would be no indirect detection

signal from X − X̄ annihilation. If, however, there is a small violation of DM number

in the dark sector, as may result from a small DM Majorana mass, X − X̄ oscillations
2In deriving this relation we have assumed that the universe reheated high enough for the electroweak sphalerons

to be active and that they remain in equilibrium at temperatures below the electroweak phase transition. Hence,
at the sphaleron decoupling temperature we assume that the top quark and H′ particles do not contribute to the
relevant number densities.
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will erase the asymmetry without reducing the relic density, giving rise to a signal for

indirect detection experiments from X̄ X → `+ `−. In some cases the hidden sector may

be more complicated, and four lepton final states may also result, e.g. X̄ X → `+ `− `+ `−.

Since this L-preserving interaction is expected to be stronger than the L-violating operator

which set the asymmetry, the associated annihilation cross-section may be large enough to

generate the cosmic ray positron excesses.

4.2 An Explicit Model

There are many models which exhibit the generic features described above. The rest of

the chapter is devoted to an illustrative toy model which reproduces this scenario. Consider

the L-violating interaction (from [140])

(IV.5) Lasym =
1

M ′4
ij

X̄2(LiH)(Lj H) + h.c.,

where L is the lepton doublet, H is the SM Higgs doublet and M ′ is a new L-violating

mass scale. This term mediates X̄ X̄ ↔ ν̄ ν̄, thereby transferring the lepton asymmetry to

an X − X̄ asymmetry. Consider in addition the L-preserving interaction

(IV.6) Lsym =
1
M2
ij

X̄ X L̄i Lj + h.c.,

where M is a new L-preserving mass scale, which mediates X̄ X ↔ `+ `−, ν̄ ν. A UV

completion of these operators is

(IV.7) L 3 yi LiH ′ X̄ − λ′

2
(H†H ′)2 + h.c.,

where H ′ is a new Higgs doublet. There is a Z2 symmetry under which X, X̄ and H ′ are

charged, which is unbroken for 〈H ′〉 = 0. This symmetry ensures that the lightest Z2 odd

state, which we take to be X̄, is stable. Upon integrating out H ′, the effective scale of L-

violation (Eq. (IV.5)) is M ′4
ij = m4

H′/(yi yj λ′), and the scale of the L-preserving operator

(Eq. (IV.6)) is M2
ij = m2

H′/(yi yj). Also note that while the model with NX = 1 does
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not violate L, it does violate any two of electron number, muon number and tau number

due to the first interaction in Eq. (IV.7). For weak scale parameters and assuming that

yi = y ' 1, the rate for µ → e γ is ∼ 15 orders of magnitude above the current bound.

One way to avoid this bound is to assume a hierarchy of O(10−8) between the first two

generations of yi couplings. For NX = 3 the interactions are expanded to

(IV.8) L = yij LiH
′ X̄j +mi

X X̄iXi.

For a generic yij matrix, the same large rates for µ → e γ are present as describe above

for NX = 1. If yij = diag(y1, y2, y3) in this basis (where mX is diagonal), contributions to

µ→ e γ vanish.

The λ′ term is present in Eq. (IV.7) to break a global U(1)X , under which X, X̄ and H ′

are charged so that an X asymmetric operator such as Eq. (IV.5) can arise. For M and M ′

at or above the electroweak scale and λ′ < 1, (M ′2
ij ) & (vMij), implying that the L-violating

operators decouple first (v ≡ 〈H〉). The annihilations through the operator in Eq. (IV.6)

(and Eq. (IV.12) below) give rise to larger cross-sections than through Eq. (IV.5). The

smaller cross-section from the L-violating operators set the DM asymmetry, and hence its

relic density.

From Eq. (IV.3), mX/Td ≈ 5 − 8 for mX ≈ 100 − 1000 GeV (note there is only

logarithmic sensitivity to mX). Then using H(Td) = nX̄ 〈σasym v〉 to set the L-violating

cross-section yields λ′ = 2 × 10−4 for mX = 500 GeV, NX = 1 and y = 1, or equivalently

M ′ ' 5 TeV (mX/500 GeV)3/8N1/8
X . For reference we include the zero temperature result

for the asymmetric annihilation X̄ X̄ ↔ ν̄ ν̄

(IV.9) 〈σasym v〉 =
1

16π
v4m2

X

M ′8 ,

which results in an O(20 %) error when calculating M ′.
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The symmetric annihilation X̄ X ↔ `+ `−, ν̄ ν through Eq. (IV.6) with cross-section

(IV.10) 〈σsym v〉 =
1

8π
m2
X

M4
ij

,

will typically freeze-out at a temperature lower then Td. These annihilations do not affect

the relic density, which is set by the DM asymmetry.

4.3 Indirect Detection Signals and Neutrino Masses

As long as the DM density is asymmetric, there will be no indirect signals for DM in

the universe today. However, a small Majorana mass mM term,

(IV.11) LM = mM X̄ X̄,

will induce X − X̄ oscillations which erase the DM asymmetry and give rise to X − X̄

annihilation signals in the universe today. For mX = 500 GeV and M = 300 − 600 GeV

(corresponding to y = 2 − 1 and mH′ = 600 GeV), 〈σsymv〉 = 10−23 − 10−24 cm3/s which

is the size required to generate the PAMELA and Fermi signals.

One can also generate four lepton final states in this model with only a minor modi-

fication. For example the Dirac mass term, mX X̄ X, could result from the vev of a new

singlet scalar (Φ) and the interaction

(IV.12) LX = λX Φ X̄ X,

where mX ≡ λX 〈Φ〉. Assuming Φ has no direct couplings to the SM, its decays will occur

exclusively to leptonic final states through a one-loop diagram. Then the interactions in

Eq. (IV.12) mediate annihilations to X̄ X → Φ Φ → `+ `− `+ `−. Note that we do not

require kinematic restrictions to force Φ to decay to leptonic final states.

There is a cosmological restriction on the X Majorana mass – to preserve the relic

density, we require that no annihilations recouple when the X − X̄ oscillations commence.

Otherwise the relic density would be reduced to the (small) thermal value set by the
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symmetric processes. Quantitatively, the symmetric “no-recoupling” temperature (Tnr),

defined by

(IV.13)
nasym(Tnr)

2
〈σsym v〉 = H(Tnr),

must be greater than the temperature when oscillations begin (Tosc):

(IV.14) H(Tnr) & H(Tosc) ∼ mM .

For the no-recoupling relation, we have taken equal parts X̄ and X from oscillations at

Tnr, and nasym is the relic DM density set by asymmetric annihilations. Using Eq. (IV.3)

to find nasym(Tnr) and Eq. (IV.10) we find Tnr ' 0.8 GeV g
−1/2
∗ (10−23 cm3/s/〈σa v〉) for

mX = 500 GeV. Then Eq. (IV.14) implies mM . O(10−14 − 10−20 GeV) for 〈σsym v〉 ∼

O(10−26− 10−23 cm3/s). This very small mass is natural since X effectively carries lepton

number, an unbroken global symmetry in the absence of Majorana neutrino masses. Then

the presence of Majorana neutrino masses induces an X Majorana mass:

(IV.15) mM ∼
1

16π2
y2 λ′ v2 mν

m2
H′0
∼ O(10−18 GeV),

where the last relation is for the parameters described above Eq. (IV.9). This is a small

enough Majorana mass that no wash out occurs for 〈σsymv〉 . 10−24 cm3/s. Also note that

since we are assuming instantaneous oscillations, even when mM is at the upper bound

of the constraint implied by Eq. (IV.14) there will only be an O(1) change in the DM

relic density. Thus for the symmetric annihilation cross-sections of interest here, Majorana

neutrino masses are often consistent with the no-recoupling condition. Models with mass

varying neutrinos [102] or where the neutrinos are Dirac will weaken this or eliminate this

constraint.

The constraints from neutrino masses also do not apply if the X Majorana mass induces

Majorana neutrino masses. If the X Majorana mass results from the vev of a sub-GeV
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scalar field (S), from the interaction

(IV.16) LM = καβ S X̄α X̄β,

and the scalar field only obtains a vev at T < Tnr, the Majorana mass ((mM )αβ ≡ καβ 〈S〉)

can be arbitrarily large without reducing the DM number density. In this case, the neutrino

mass is generated at one-loop [107]:

(IV.17) (mν)ij = yiα yjβ
λ′

16π2
v2 (mM )αβ

m2
H′0

,

where we have taken NX = 3. Since one must assume that yij is flavor diagonal to avoid

lepton flavor violating decays, the flavor and CP violation in the neutrino sector result from

the structure of the X Majorana mass matrix. The parameters y ∼ O(1), λ′ ∼ O(10−4)

and mH′0 ∼ O(600 GeV) require mM ∼ O(10−5 GeV) to achieve mν ∼ O(10−2 eV). The

off-diagonal entries in mM lead to µ → e γ but for these parameters the constraint is

satisfied.

One might worry that the interaction in Eq. (IV.16) could wash out the X asymmetry

through, e.g., X̄ X̄ ↔ S S processes. The X asymmetry is safe from wash out provided this

process decouples above Td, which happens for small U(1)X violation, κ . O(10−3). The

phase transition to the vacuum with a non-zero vev for S obtains if either the temperature

drops below the critical temperature associated with the S potential or the S particles de-

cay. S decays to two neutrinos via a one-loop diagram with rate ΓS−decay ∼ O(10−22 GeV)

for the parameters discussed above and mS ' 10 MeV. The decay happens just after S

becomes non-relativistic but before big bang nucleosynthesis, avoiding any cosmological

problems.

4.4 Direct Detection

This model does not possess any DM-nucleon couplings at tree-level. However, the

operator in Eq. (IV.6) induces an effective magnetic dipole moment for the DM when
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coupling a photon to the lepton loop. This leads to a direct detection cross-section for X

scattering off of a nucleon (see [140] and the references therein for details)

σdd ' 2× 10−46 cm2

(
Z/A

0.4

)2(600 GeV
mH′±/y

)4

.(IV.18)

This will be a signal for the next generation of experiments.

4.5 Discussion

To conclude this chapter, relating the lepton asymmetry to the DM density implies a

novel mechanism for obtaining both leptophilic DM and a separation between the freeze-out

and present day annihilation cross-sections. In these models, L-violating operators which

transfer the lepton asymmetry set the DM density, while related L-preserving operators

set the rates for annihilation in indirect detection experiments (such as PAMELA and

Fermi). The smaller L-violating cross-sections set the relic density, while allowing for large

cross-sections for indirect detection experiments through the L-preserving operators. If

DM of this type is responsible for the cosmic ray anomalies, then it will be observed in

the next generation of direct detection experiments. Non-minimal versions of the model

can generate the SM neutrino masses and mixings at one-loop. Asymmetric Dark Matter

will continue to be important for both model building and experimental searches for DM

in the galaxy today.



CHAPTER V

On the Correlation Between the Spin-Independent and
Spin-Dependent Direct Detection of Dark Matter

This chapter was completed in collaboration with Daniel Phalen and Aaron Pierce [79].

One DM candidate worthy of special attention is the Weakly Interacting Massive Par-

ticle (WIMP). However, the naive WIMP paradigm turns out to be an over-simplification.

Not just any weak scale stable particle will do. If the DM is weakly interacting in the

strictest sense – i.e. has full-strength SU(2)L × U(1)Y gauge interactions – then DM may

be excluded by existing direct detection (DD) experiments. In particular, a weak-scale

Dirac (vector-like) fermion, χD, with SU(2) interactions (which encompasses the simplest

DM model of all, a Dirac neutrino), feels the weak force via the operator:

(V.1) Ovector = (χ̄D γ
µ χD)Z0

µ.

When the coefficient of this operator is typical in size, namely O(g/ cos θw), where g is the

SU(2) coupling constant and θw is the weak mixing angle, it leads to a huge DD signal

– experiments constrain the DM mass to be greater than 50 TeV [181]. Furthermore, the

thermal relic density for a 50 TeV Dirac neutrino will be far too large to explain the WMAP

measurement. Thus, DM at the weak scale requires a strong suppression of this operator.

In fact, it is straightforward to eliminate it entirely. If χ is a Majorana spinor, the operator

(χ̄ γµ χ)Z0
µ identically vanishes due to the properties of Majorana bilinears. The DM may
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be Majorana if an SU(2) singlet Majorana fermion mixes with a Dirac state. This mixing

can only be accomplished via SU(2) breaking in the WIMP sector, i.e. through a Higgs

boson vacuum expectation value (vev). Then the resultant DM particle has a non-zero

coupling to a Higgs boson, h, and the dominant scattering process is due to the following

operators:

OHiggs = (χ̄ χ)h,(V.2)

OZ0 = (χ̄ γµγ5 χ)Z0
µ.(V.3)

In a multi-Higgs boson theory, h need not be the Higgs boson of the Standard Model (SM),

but even in these theories, there often is a Higgs boson that has SM-like properties. We will

explore the impact of these operators on Spin-Independent (SI) and Spin-Dependent (SD)

scattering off of nuclei, paying particular attention to the expected correlation between the

rates at these two types of experiments.

While we perform most of our analysis in the context of the Minimal Supersymmetric

Standard Model (MSSM) (for a review of the MSSM, see [162]), we reference other models

where appropriate to emphasize the generality of our arguments. We will review the

assertion that post-LEP (largely due to the constraints on the chargino and slepton masses),

one may consider a mixed or “well-tempered” neutralino as a likely DM candidate, if it is

thermally produced [24]. We will show that in this case, light Higgs boson and Z0 exchange

will generically lead to a signal in the next generation of SI and SD experiments.

A thermal history for the WIMP is not the only possibility. As described in Sec. 1.2.2,

non-thermal mechanisms may populate the DM (e.g. through the decay of a modulus

or gravitino [166]), or the DM can be overabundant and subsequently diluted by extra

sources of entropy. These options allow a WIMP with a wider range of properties, since

the annihilation rate is not fixed by the thermal history. In what follows, we do not rescale

DD signals to the (too-low/too-high) thermal relic density. In all cases, we assume that the
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WIMP constitutes the total DM density, determined from astrophysical measurements to

be ρDM ≈ 0.3 GeV/cm3. We will be clear when we are making the assumption of a thermal

history. For the purposes of this study, a “thermal” WIMP is one whose thermal relic

density is within the generous range±3σ of the WMAP measurement given in Eq. (I.1). We

also note that more recent determinations favor a slightly larger value: ρDM = 0.39− 0.43

GeV/cm3 [62, 178]. This would extend the reach of the direct detection experiments by a

factor of ≈ 4/3 and probe more parameter space. An accurate determination of the local

DM density is important for an accurate measurement of the DM DD cross section.

Related results already exist in the literature, including some comprehensive numerical

scans. However, we find that often the (simple) underlying physics is left obscure. We

hope to make clear the expected size of various contributions to DD and the relationship

to the assumption of a thermal relic abundance. Assuming there are no conspiratorial

cancellations, these typical sizes represent important targets for DD experiments.

There is an overwhelming literature in existence on the subject of DD, see reviews

[115, 135] and references therein. Of particular interest to us is the relationship between

the size of the SD and SI signals, which has recently been explored in [33, 50, 56, 53].

In the next section, we begin by discussing the current experimental status and then

make naive estimates for the SI and SD DD cross sections from h and Z0 exchange re-

spectively. In Sec. 5.2 we lay out the specific structure of the SI and SD operators in the

MSSM and estimate the naive size of the SI and SD cross sections. Then in Sec. 5.3 we

review the argument for a well-tempered neutralino and discuss some alternatives. Sec.

5.4 concentrates on illuminating the expected size of the SD cross section for mixed DM

models with various restrictions. In Sec. 5.5 we describe the conditions under which SI

and SD signals in the MSSM are expected to be correlated. Technical results are relegated

to three appendices.
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5.1 Direct Detection Preliminaries

The interactions in Eqs. (V.2) and (V.3) lead to SI and SD elastic signals in DD ex-

periments, respectively. In Fig. 5.1 we have plotted the current experimental limits for SI

and SD DD. Currently, the state of the art SI experiments are CDMS [12] and XENON

[19]. XENON constrains σχpSI < 4.5 × 10−8 pb for mχ = 30 GeV. After combining their

most recent run with previous data, CDMS-II has a 90% CL bound of 3.8 × 10−8 pb for a

WIMP with a mass of 70 GeV [11]. In the most recent data set, two tantalizing events were

seen, but it is premature to attribute these to signal. In any case, XENON100 expects to

place a limit on the order of σχpSI ≈ few ×10−9 pb by early 2010. Thus, we will consider

SI cross sections greater than 5× 10−9 pb as potentially probeable in the short-term, and

hence “large.”

There are two ways the SD cross sections are constrained. The first is via DD experi-

ments. The current best bound on the SD DM-proton interaction comes from the KIMS

experiment [152], σχpSD < 1.6× 10−1 pb for mχ = 70 GeV; the best bound on the SD DM-

neutron interaction coming from the XENON experiment, σχnSD < 6× 10−3 pb for mχ = 20

GeV, with the strongest bounds for masses of O(10) GeV coming from PICASSO [22].

There are also bounds from DM capture in the sun, assuming (as is the case in the MSSM)

that the DM has annihilation products which give rise to relatively hard neutrinos. As-

suming annihilation of the DM to W± bosons is appreciable (as is appropriate for much of

the parameter space considered here, see Sec. 5.3), IceCube [3] places very strong bounds

for masses above 250 GeV with the strongest bounds coming at 250 GeV, σχpSD < 3× 10−4

pb. At present, no limits exist from IceCube below this mass. For smaller masses, the best

limits of this type come from SuperK [86], σχpSD < 10−2 pb above mχ > 20 GeV.

Perhaps within the next two years [155], the COUPP [49] and PICASSO [34] experi-

ments will take data with a projected sensitivity to SD scattering of σχpSD ≈ 10−4 pb. They
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will also have sensitivity down to much lower masses than the neutrino experiments. The

XENON data will probe σχpSD ≈ 4 × 10−3 pb for a 30 GeV WIMP. A 1 ton COUPP-like

proposed experiment [56], might ultimately probe values as low as 10−7 pb. The DeepCore

extension to the IceCube detector should be able to extend down to the 10−5 pb level

with 5 years of data [196]. Bounds from neutrino experiments can be avoided if particular

final states dominate WIMP annihilation, e.g. 1st generation quarks, though this does not

happen in the MSSM. We consider SD cross sections greater than 10−4 pb as potentially

achievable in the short-term, and hence “large.”

Figure 5.1: Current bounds on SI (left) and SD (right) DM-nucleon cross sections. The COUPP
and XENON100 projected SD bounds are only estimates – we have scaled the current
exclusion curve of COUPP by a factor of 10−3 [154] and the current SD exclusion curve
of XENON10 by the factor which scales the XENON10 SI limit to the XENON100 SI
limit.
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5.1.1 Spin Independent

The operator responsible for SI DM-nucleus interactions is

(V.4) OSI
q = cq (χ̄ χ) (q̄ q),

where χ is the DM and q is a quark. Taking the expectation value of this operator between

two nucleon states (N = p (proton) or n (neutron)) determines the effective interaction of

the DM with a nucleon,

(V.5) 〈N |mq q̄ q|N〉 = mN f
(N)
Tq ,

where the nuclear matrix element f (N)
Tq is determined in chiral perturbation theory from the

pion nucleon-scattering sigma term. The coefficient of the effective DM-nucleon interaction,

fN (χ̄ χ)(N̄ N), is given by

(V.6)
fN
mN

=
∑

q=u,d,s

f
(N)
Tq

1
mq

cq +
2
27
f

(N)
TG

∑
q=c,b,t

1
mq

c(h)q ,

where f (N)
TG = 1−

∑
q=u,d,s f

(N)
Tq and the h on c(h)q refers to Higgs boson exchange [183].

The nucleon-Higgs interaction is coherent over the nucleus [112] resulting in the well

known A2 enhancement for SI cross sections. To compare between experiments using

different nuclei, the elastic scattering cross section is normalized to a per nucleon value

[115]:

(V.7) σSI(χN → χN) =
4
π
m2
r

1
A2

(Z fp + (A− Z) fn)2,

where mr is the reduced mass between the DM and a nucleon.

We use the DarkSUSY package for numerical analysis [119], so for analytic estimates

we will use the same values for the nuclear matrix elements, namely

f
(p)
Tu = 0.023 f

(p)
Td = 0.034 f

(p)
Ts = 0.14 f

(p)
TG = 0.803

f
(n)
Tu = 0.019 f

(n)
Td = 0.041 f

(n)
Ts = 0.14 f

(n)
TG = 0.800.
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Since these values are derived from the pion nucleon scattering sigma term, their error bars

are correlated.

If the Higgs boson, h, that mediates the interaction between the DM and the nucleon

is SM-like, the coefficients cq are given by

(V.8) cq = yq yχ
1
m2
h

,

where yq (yχ) is the Yukawa coupling for the quark (DM) and mh is the Higgs mass. The

per nucleon cross section is then

(V.9) σSI(χN → χN) ≈ 5× 10−8 pb
( yχ

0.1

)2
(

115 GeV
mh

)4

(SI typical).

Estimates based on recent lattice simulations seem to favor smaller values for the nuclear

matrix elements [118]. If these lattice results are correct, the dominant contribution to the

SI scattering cross section would be due to the heavy quark content of the nucleon (since

f
(N)
TG → 1 in the limit of small f (N)

q ) and the coefficient in Eq. (V.9) would be replaced

by 2 × 10−8 pb. In cases where cd � cu, which can occur in models with multiple Higgs

bosons such as the MSSM, then uncertainties in the f (N)
Tq can lead to as much as an order

of magnitude variation in σSI(χN → χN) [98].

5.1.2 Spin Dependent

The operator responsible for SD DM-nucleus interactions is

(V.10) OSD
q = dq (χ̄ γµγ5 χ)(q̄ γµγ5 q).

Taking the expectation value of this operator between two nucleon states allows us to find

the effective SD interaction of the DM with a nucleon (N = p (proton) or n (neutron)),

(V.11) 〈N |q̄ γµγ5 q|N〉 = 2 s(N)
µ ∆q(N),

where s(N)
µ is the spin of the nucleon and the ∆q(N) are extracted from polarized deep elastic

scattering. The coefficient of the effective DM-nucleon interaction, 2 aN (χ̄ γµγ5 χ)(N̄ s
(N)
µ N),
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is given by

(V.12) aN =
∑

q=u,d,s

dq ∆q(N).

The elastic scattering cross section quoted by the experiments is between the DM and a

nucleon which is given by

(V.13) σSD(χN → χN) =
6
π
m2
r a

2
N ,

where mr is the reduced mass between the DM and a nucleon.

Again we follow DarkSUSY and use the following values for the SD calculations,

∆(p)
u = 0.77 ∆(p)

d = −0.40 ∆(p)
s = −0.12

∆(n)
u = −0.40 ∆(n)

d = 0.77 ∆(p)
s = −0.12.(V.14)

The prediction for SD scattering is somewhat more robust to variation in the hadronic

matrix elements than the SI case: the uncertainties in these values can lead to O(30%)

variation in the SD cross section [98].

If the SD interaction is mediated by the Z0 boson, then the coefficients dq are given by

(V.15) dq =
g2

2 c2w
T q3

(
QZ−DM

2

)
1
m2
Z

,

where QZ−DM parametrizes the coupling of the DM to the Z0 and cw ≡ cos θw. For

concreteness, (and since it is relevant for calculations of solar capture) when we quote

values for SD scattering we will focus on the cross section off of protons. For SD scattering

mediated by the Z0, the neutron scattering is O(20%) smaller. The SD cross section is

(V.16) σSD(χp→ χp) ≈ 4× 10−4 pb
(
QZ−DM

0.1

)2

(SD typical).

In the next section, we discuss the form that QZ−DM takes in the MSSM.
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5.2 Direct Detection of Neutralino dark matter

The best DM candidate in the MSSM is the lightest neutralino, which is an admixture

of Bino (B̃), Wino (W̃ ), and the up and down-type Higgsinos (H̃u and H̃d). The stability

of the lightest superpartner (LSP) is guaranteed by R-parity, which is introduced to avoid

proton decay. The neutralino mass matrix is given by

M =



M1 0 −mZ sw cβ mZ sw sβ

0 M2 mZ cw cβ −mZ cw sβ

−mZ sw cβ mZ cw cβ 0 −µ

mZ sw sβ −mZ cw sβ −µ 0


,

where M1 is the Bino mass, M2 is the Wino mass, µ is the Supersymmetric (SUSY)

Higgs boson mass parameter, mZ is the Z0 mass, β = arctan(vu/vd), vu,d are the up and

down-type Higgs boson vevs, sw ≡ sin θw, cw ≡ cos θw, sβ ≡ sinβ, and cβ ≡ cosβ.

The composition of the lightest neutralino, which we denote χ, is specified by

(V.17) χ ≡ ZB B̃ + ZW W̃ + ZHd
H̃d + ZHu H̃u.

If squarks are heavy, the only potentially sizable contributions to SI DD are from both

CP-even Higgs bosons, h and H, where mh < mH . We comment on the typically sub-

dominant squark exchange contributions in Appendix B.1. The Higgs boson exchange

contributions are [32, 97],

cu
mu

= −g
2(ZW − tw ZB)

4mW sβ
×(V.18) [(

ZHd
sα cα + ZHu c

2
α

) 1
m2
h

+
(
−ZHd

sα cα + ZHu s
2
α

) 1
m2
H

]
cd
md

=
g2(ZW − tw ZB)

4mW cβ
×(V.19) [(

ZHusα cα + ZHd
s2α
) 1
m2
h

+
(
−ZHusα cα + ZHd

c2α
) 1
m2
H

]
,

where cu,d are the SI operator coefficients given in Eq. (V.4), g is the SU(2) gauge coupling,

mW is the W± mass, tw ≡ tan θw, α is the Higgs mixing angle, cα ≡ cosα and sα ≡ sinα.
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In the decoupling (mH → ∞ and α → π/2 + β) and large tβ limits, these expressions

simplify:

cu
mu

=
−g2

4mW
(ZW − tw ZB)

sβ
m2
h

ZHu ,(V.20)

cd
md

=
cu
mu

(
1−

tβ
s2β

m2
h

m2
H

ZHd

ZHu

)
,(V.21)

where we have only kept the tβ enhanced contribution from H. We will use these expres-

sions below in Sec. 5.5 when analyzing the allowed suppression of the SI cross section.

The lack of an observation of a Higgs boson at LEP makes it likely that we live in at

least a moderate tβ regime (so that the tree-level contribution to the Higgs boson mass

mh = mZ cos 2β is maximized), and constraints on the mass of the charged Higgs from

flavor experiments point to the decoupling limit. Therefore, Eqs. (V.20) and (V.21) are

particularly useful for estimating the expected size of scattering. In Sec. 5.3 we will argue

for the typical size of the various neutralino mixing angles which lead to SI cross sections

of the order,

σMSSM
SI (χN → χN) ≈

5× 10−9 pb
(

115 GeV
mh

)4((ZW − tw ZB)ZHu

0.1

)2

(MSSM: SI typical),(V.22)

where we have used Eqs. (V.20) and (V.21) and taken mH →∞.

In the heavy squark limit, contributions to SD DD come from Z0 exchange. Since the

Bino and Wino are both SU(2) singlets, they do not couple to the Z0. Therefore, SD is

controlled by the Higgsino content of the WIMP. The Z0 exchange contribution takes the

form:

(V.23) dq = − g2

4m2
Z c

2
w

(
|ZHd

|2 − |ZHu |2
)
T q3 .

A non-zero Higgsino component (so that ZHu,d
6= 0) is insufficient to ensure a non-zero SD

coupling. If M1, M2 → ∞, so that a pure Higgsino is recovered, |ZHu | = |ZHd
| = 1/

√
2,
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and the SD coupling vanishes. Instead, the Higgsino forms a Dirac state, and the large

vector scattering of the Dirac neutrino is recovered. Hence, mixing with B̃ and/or W̃ (so

that |ZHu | 6= |ZHd
|) is required in order for the dq’s to be non-zero. This requirement also

implies a non-zero SI cross section, giving the correlation demonstrated below.

The typical cross section for SD DD in the MSSM (again see Sec. 5.3) is given by

(V.24) σMSSM
SD (χp→ χp) ≈ 4× 10−4 pb

(
|ZHd

|2 − |ZHu |2

0.1

)2

(MSSM: SD typical).

There are reasons to expect the squarks do not make a sizable contribution to the DD

cross sections. In the MSSM, satisfying the LEP bound on the Higgs boson mass requires

large radiative corrections from the stop loops. This implies that at least one stop must

have a TeV scale mass. Renormalization group flow tends to make the third generation

sparticles lighter than the partners for the first and second generations. Therefore, it is

plausible that squark contributions to DD scattering are negligible since only the first and

second generation squarks contribute (see Appendix B.1 for details about squark exchange).

For concreteness, in all scans below we take the scalar superparters to be O(2 TeV). This

is also why Eqs. (V.22) and (V.24) are expected to be good approximations. For a study

which focuses on the effects of light squarks, see [50].

5.3 The Argument for a Well-Tempered Neutralino

Arkani-Hamed, Delgado and Giudice [24] argued that when one takes the LEP limits on

charginos and sleptons into account, a pure neutralino (i.e. composed of only one gaugino

eigenstate, usually taken to be Bino) is no longer the “natural” MSSM DM candidate,

at least when one imposes the requirement of a thermal cosmology. They claim that one

should instead consider a mixed neutralino, which they have dubbed “well-tempered.”

Since the relic density of mixed DM is set by annihilations to W+W− (and t t̄ when

kinematically allowed) there is a further condition that mχ > mW . Hence, we will impose



73

this requirement when we refer to “thermal” DM in the analysis that follows. In what

follows, we review their argument and then discuss some non-thermal options. Note that

SI DD has previously been studied for well-tempered models [30, 130], but no dedicated

SD study exists.

5.3.1 Thermal history

We begin by considering the thermal history of a nearly pure Bino. If one does not allow

for co- [122, 94, 95] or resonant [122, 93, 176, 90, 169] annihilations, then Bino freeze-out

is controlled by t-channel sfermion exchange. One can show [24] that in order to produce

the observed DM relic density, the sfermion must be ∼< 110 GeV. Since the LEP limits on

sfermions are O(100 GeV), there is only a small experimentally allowed window for thermal

Bino DM.

Either co-annihilations (e.g. with the stau or stop) or resonant annihilation through the

pseudo-scalar Higgs (A0) also allow dominantly Bino DM. However, both of these options

involve numerical coincidences. In the first case the Boltzmann factor will exponentially

suppress the density of the would-be co-annihilator unless exp(−∆M/Tf ) is O(1), where

∆M = mNLSP−mχ, mNLSP is the mass of the next-to-lightest superpartner, and Tf is the

DM freeze-out temperature. Since Tf ≈ mχ/20, this requires a mass degeneracy, ∆M , of

a few percent. To realize the second case requires a precise relationship between mχ and

mA. When mχ < mW , the Z0 or h poles may be used to achieve the correct relic density,

which requires a similar numerical conspiracy.

Located at the other extreme, far away from the pure Bino, is a pure Wino or a pure

Higgsino. In these cases, the requirement of a thermal relic abundance fixes the mass to

be O(2.5 TeV) and O(1 TeV) respectively. Thus, to realize either of these cases implies
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µ & O(100 GeV). Since, in the MSSM, the Z0 mass is given by

(V.25)
m2
Z

2
= −|µ|2 +

m2
Hd
−m2

Hu
t2β

t2β − 1
,

where m2
Hu,d

are the Higgs soft-mass squared parameters, this requires a substantial fine-

tuning between µ2 and m2
Hu,d

in order to reproduce the measured Z0 mass of 91 GeV.

Therefore, the desire to alleviate fine-tuning in this expression leads to the requirement

that µ ∼ O(100 GeV). This will also naively lead to well-tempering since the neutralino

mixing is proportional to mZ/µ. Though the accuracy of the current measurement of the

DM relic density (see Eq. (I.1)) requires a precisely determined neutralino composition, one

can easily reproduce the DM abundance for any mass of O(100 GeV). The Bino/Higgsino

mixed LSP as a good thermal WIMP was pointed out in studies of the focus point region

on the MSSM [106, 105].

A Higgs boson mass above the LEP bound requires large radiative corrections from

a stop squark. This implies that the scale for these particles, mSUSY, should be around

a TeV. These states yield additive corrections to m2
Hu,d

, proportional to m2
SUSY. Hence,

even in the case when µ ∼ O(100 GeV), there will naively be fine-tuning between these

corrections and the bare value of m2
Hu,d

in order to reproduce mZ . Solutions to this “little

hierarchy problem” have been proposed within the MSSM (e.g. [144]) – we will ignore this

type of fine-tuning in our arguments, focusing instead on the model independent tuning

explicit in Eq. (V.25).

5.3.2 Non-thermal options

A thermal history is not the only way to achieve the correct DM relic abundance [166].

It has even been argued [6] that there is a “non-thermal WIMP miracle” when there exist

TeV scale states which decay to the DM via Planck suppressed operators. For example, a

heavy gravitino (or string-theory moduli fields) can live long enough to dominate the energy

density of the universe. Then when these states decay, they will produce superpartners
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which will decay down to the lightest neutralino, resulting in a neutralino relic density. This

relaxes the relationship between the mass/composition and relic density of a neutralino.

A variety of other options have been proposed. Models where the energy density of the

universe at the epoch of DM freeze-out was dominated by something other than radiation

were studied in [136]. Alternately, if the DM interacts so feebly that it never achieves

thermal equilibrium, one can achieve the correct value of the relic density via “freeze-in”

production [125]. Since the total energy density of DM is close to that of the baryons,

one can construct models where the DM relic density is set by an asymmetry which is

determined by the baryon asymmetry [140]. In [116], it was shown that by varying the

reheat temperature and allowing for non-thermal sources, any neutralino composition can

result in the correct relic density. In [78], a low temperature phase transition in the early

universe changes the DM properties after freeze-out. All of these options involve either

non-trivial cosmological histories or other model building challenges. We will focus on the

thermal – and hence well-tempered – case, with discussions of the deviations that arise

when the thermal assumption is relaxed.

5.4 Spin Dependent Cross Sections for Mixed Dark Matter

In the MSSM, the neutralino mass mixing can often be approximately understood in

terms of a two state system: a Dirac Higgsino mixing with either a Bino or a Wino. Thus,

to understand the physics of SD scattering via Z0 exchange, it is useful to consider the

simple “Singlet-Doublet Model” (SDM) for DM, where the singlet has the same quantum

numbers as either a Bino or a Wino, and the doublets have the same quantum numbers as

the Higgsinos:

(V.26) LSDM 3 µDD D̄ + λhS D + λ′ h∗ S D̄ +
µS
2
S2.
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Here D and D̄ are a vector-like pair of SU(2) doublet fermions, S is an SU(2) singlet, h is

the SM Higgs doublet, λ (λ′) is the Yukawa coupling which leads to the mixing between the

D (D̄) and S, µD is the vector-like mass for the D and D̄, and µS is the Majorana mass for

S. For the purposes of SD scattering it is sufficient to replace h by its vev, 〈h〉 ≡ v = 174

GeV. The exchange of the uneaten component of h leads to SI DD.

In the case where S plays the role of the Bino, the values of λ and λ′ are constrained by

the supersymmetric relations to be λ v = −mZ sw cβ and λ′ v = −mZ sw sβ, while in the

case where S is the Wino, the values of λ and λ′ are constrained by the supersymmetric

relations to be λ v = mZ cw cβ and λ′ v = mZ cw sβ.

We now use this model to discuss the coupling of the Z0 boson to the DM in the MSSM.

In Appendix B.2 we discuss the diagonalization of the 3×3 mixing matrix of the SDM. With

appropriate substitutions, these expressions correspond to either Bino/Higgsino (M2 →∞)

and Wino/Higgsino (M1 → ∞) neutralinos. In these limits we can write down approx-

imate expressions for the effective coupling of the DM to the Z0. When there are no

degeneracies between parameters in the neutralino mass matrix and mZ may be treated

as a perturbation, we have (see [24] and Appendix B.2):

|ZHd
|2 − |ZHu |2 =(V.27) 

c2β s
2
w m

2
Z

µ2−M2
1

for |M1|, |µ|, |µ| − |M1| > mZ , M2 →∞

c2β c
2
w m

2
Z

µ2−M2
2

for |M2|, |µ|, |µ| − |M2| > mZ , M1 →∞.

The largest values of |ZHd
|2 − |ZHu |2 do not occur in this limit. Instead, they are found

when two parameters of the neutralino mass matrix are degenerate. The reason is simple:

a degeneracy allows a large gaugino–Higgsino mixing in spite of the relative smallness of

the off-diagonal entries of the neutralino mass matrix (proportional to mZ). It should be

said that there is no particular reason to believe that a precise degeneracy should occur,

since µ and the gaugino masses are SUSY preserving and breaking respectively. However,



77

since this case maximizes the possible signal at SD experiments, it is worth noting. In the

presence of these degeneracies, we have (see Appendix B.2):

|ZHd
|2 − |ZHu |2 =(V.28) 

(sβ−cβ) sw mZ

2
√

2 |µ| +
(s2β−c

2
β) s2w m

2
Z

8µ2 for |M1| = |µ| > mZ , M2 →∞

(sβ−cβ) cw mZ

2
√

2 |µ| +
(s2β−c

2
β) c2w m

2
Z

8µ2 for |M2| = |µ| > mZ , M1 →∞.

Perturbing away from the limit of exact degeneracy gives corrections to these expressions

of O((Mi−µ)/µ). Note that DM with a mixed Wino/Higgsino has a SD DD rate enhanced

relative to a Bino/Higgsino admixture by the appropriate power of cw/sw = 1.8.

What is the largest obtainable SD cross section in the MSSM? A numerical scan yields

|ZHd
|2 − |ZHu |2 < 0.4⇒(V.29)

(σSUSY
SD ) < 6× 10−3 pb (General MSSM, Non− thermal DM),(V.30)

when the squarks are heavy. This upper bound is largely a consequence of the LEP bounds

on the chargino masses which force the mixing ∼ mZ/µ to be less than one. Eq. (V.29)

provides a good analytic understanding of this number – it comes within approximately

10% of this value. The deviation is due to mixing effects that occur away from the large

M1 limit.

In many models of SUSY breaking the relation M1/α1 = M2/α2 = M3/α3 holds. We

refer to this condition as unified gaugino masses. Because this is equivalent to M2 ≈ 2M1

at the weak scale, the LSP is mostly Bino and Higgsino. In this case,

|ZHd
|2 − |ZHu |2 < 0.32⇒(V.31)

(σSUSY
SD ) < 4× 10−3 pb (Unified Gaugino Masses, Non− thermal DM).(V.32)

Finally, for mχ > mW , a thermal relic density within ±3σ of the WMAP measurement
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implies an upper limit on the amount of Higgsino in the DM particle. Therefore,

|ZHd
|2 − |ZHu |2 < 0.24⇒(V.33)

(σSUSY
SD )thermal < 2× 10−3 pb (General MSSM, Thermal DM).(V.34)

This result holds for the case with unified gaugino masses as well. Note that Eqs. (V.30),

(V.32), and (V.34) all occur for a DM mass of O(80 GeV).

To saturate the above bound (i.e. maximize σSD for thermal, well-tempered DM)

requires a Bino/Higgsino mixture (recall that dq vanishes for a pure Higgsino), with a

negligible Wino contribution. The largest values of SD DD occur when the DM has the

largest Bino/Higgsino mixing which happens for the lowest values of the DM mass. As the

mass of the DM increases, a larger component of Higgsino or Wino is needed for the DM

to efficiently annihilate down to the correct relic density, which in turn typically leads to

a decrease in σSD.

As shown in Fig. 5.2, there is a tight correlation between the SD cross section and the

DM mass, in the decoupling limit when there is gaugino mass unification and a thermal

relic abundance.

For low masses, the neutralino is well-tempered for low masses and as mχ → O(1 TeV)

the neutralino approaches a pure Higgsino. Examining Fig. 5.2, except for when the an-

nihilation channel χχ → tt̄ opens, σSD is a smooth, monotonically decreasing curve. An

experiment sensitive to cross sections of O(10−4 pb) will probe mχ . 200 GeV. There is

a spread in the points in this figure from the liberal range taken on the relic density con-

straint. For masses approaching O(1 TeV), there is additional extent from the variation

in the Bino content of the neutralino and from contributions from squark exchange. For

masses at 1 TeV, σSD goes from 10−6 pb → 0 for M1 from 1300 GeV→∞. Note that the

projected reach of a 1 ton version of COUPP is O(10−6) pb for mχ = 1 TeV [56], which

would probe the entire range of SD cross sections for neutralinos excepting a nearly pure
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TeV Higgsino.

Note that the imposition of the unified gaugino mass condition essentially imposes the

requirement that there is a tiny Wino content in the LSP. The hatched region in Fig. 5.2

is filled in when non-unified gaugino masses are allowed. In this case, a thermal relic DM

candidate can be obtained for a Bino tempered with Wino if M1 ≈M2, which implies that

the SD cross section decreases, effectively filling in the region beneath the curve in Fig. 5.2.

Note that when σSD ∼ O(10−6 pb), there is additional model dependence since the squark

contribution becomes important (see Appendix B.1).

Figure 5.2: σp
SD, as a function of mχ for points satisfying the relic density constraint. We have

imposed gaugino mass unification and taken the decoupling limit. The shaded region
above the dotted line corresponds to “large” SD and will be probed in the near term.
The solid red line is the current bound from IceCube, assuming annihilation to W+W−.
The blue hatched region is filled in if the assumption of gaugino mass unification is
relaxed. The sfermion masses are taken to be O(2 TeV).

Finally, we note that there is a region of well-mixed Higgsino–Wino near 2 TeV with a
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thermal abundance (where M2 ≈ µ). In this case, the second line of Eq. (V.29) applies,

and we find an approximate SD cross section of 6× 10−6 pb, perhaps able to be probed at

a future 1 ton COUPP-like experiment. These are the neutralinos which account for the

hatched region above the points in Fig. 5.2.

Not only is the SDM a simplified system useful for understanding the physics of SD

scattering in the MSSM, it is potentially of independent interest. The DM may be unrelated

to the solution to the hierarchy and simply given by the Lagrangian of Eq. (V.26) [26, 159].

Then the DD story is essentially unchanged except there is greater parametric freedom.

For example, the Higgs boson mass is no longer fixed by SUSY. Then the only constraint

is mh . O(TeV) to unitarize W±
L scattering. For mh ∼ TeV, the SI DD cross section is at

most 10−12 pb which would not lead to a signal in the next round of SI experiments. While

such a large Higgs boson mass is in tension with precision electroweak measurements, it

could be reconciled with a contribution to the T parameter [171] in a way that factorizes

from the DM phenomenology.

If one allows for a non-thermal history, the freedom of the SDM allows off-diagonal

parameters of the mixing matrix that give |ZHd
|2 − |ZHu |2 = 1. This maximizes the SD

DD signal from Z0 exchange (σSDM
SD ≈ 4 × 10−2 pb). Thus, the SDM with a non-thermal

history predicts scattering anywhere up to (or even above) the current bounds. Requiring

a thermal history limits the amount of doublet allowed in mχ, decreasing σSDM
SD . For if a

very large doublet component is chosen (in an attempt to maximize the SD cross section),

the requirement of reproducing the relic density requires µS to be O(TeV).

5.5 Spin Independent versus Spin Dependent

When a Majorana fermion couples to the Z0, there is necessarily an interaction with a

Higgs boson, which leads to SD and SI elastic scattering respectively. In the last section,

we concentrated on the physics behind the size of the SD cross section. We now ask the
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following questions: what is the expected correlation between the SI and SD signals? Is it

possible to make one large while the other nearly vanishes?

Since mh and mZ are known in the MSSM, there exists a correlation between the SI and

SD signals, at least in the limit of heavy sfermions and Higgs boson decoupling. For this

region of MSSM parameter space, the SI and SD DD cross sections are given by Eqs. (V.22)

and (V.24), where only mixing factors and the Higgs boson mass are left unspecified. The

light Higgs boson mass is constrained to lie in the tight range 114 GeV < mh < 130

GeV, where the lower bound is due to the LEP limit and the upper bound comes from

considerations of fine-tuning. For the SplitSUSY model – where the decoupling and heavy

sfermion limits certainly apply – the Higgs boson mass is allowed to be larger: mh < 160

GeV.

In Figs. 5.3, 5.4 and 5.5, we have plotted the max(σpSI, σ
n
SI) vs. σpSD for neutralino

scattering with various restrictions. Note that these plots are made from independent

scans and we have taken the scalar superpartners to be O(2 TeV).

As discussed in Section 5.1, we define “large” cross sections to be σlarge
SI > 5×10−9 pb and

σlarge
SD > 10−4 pb, motivated by the projected near term range of current DD experiments.

Hence, the shaded region delineates the (very approximate) reach of the next generation

of SI and SD experiments. Note that this neglects the dependence of the sensitivity on the

mass of the DM. The maximum for σSD in Fig. 5.3 is given by Eq. (V.30) and for Figs. 5.4

and 5.5 is given by Eq. (V.34).

In Fig. 5.3 we show points for both thermal and non-thermal neutralinos. This is

our most general framework, and in this case it is clear that the correlation between the

relevant mixing angles (and hence cross sections) is weak. By only allowing points which

have a thermal relic density within ± 3σ of the WMAP measurement (see Figs. 5.4 and

5.5), the correlation progressively improves. We will discuss this in detail in what follows.
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We will pay special attention to the mH →∞ limit. In any theory with multiple Higgs

bosons, a small SI signal can occur when the diagrams from Higgs boson exchange cancel

against one another. Two important points should be made. First, this cancellation is often

incomplete and typically cannot be realized for scattering off of both protons and neutrons

simultaneously. Second, such a cancellation is a conspiracy – it requires unexpected rela-

tionships between parameters in the Higgs sector and nuclear matrix elements. The finer

the cancellation, the greater the conspiracy (for further discussion of this cancellation, see

Sec. 5.5.3). If one takes the decoupling limit for Fig. 5.3, so that SI DD is determined

by h exchange alone, the maximum SI cross section is ∼ 3× 10−8 pb. Note that even for

mA ∼ O(TeV) there can be nontrivial contributions for tβ ∼ O(50) (see Eq. (V.21)).

There is a negative correlation between fine-tuning and the size of DD cross sections (see

Eq. (V.25)) [160, 145]. To emphasize this point, in Figs. 5.3, 5.4 and 5.5 we have marked

points with |µ| < 500 GeV by blue dots and points with |µ| > 500 GeV by red crosses. The

apparent feature around σSI ≈ 10−8 pb in Fig. 5.4 is due to the finite range of mA taken in

this scan (mA < 1 TeV) – the points above this gap have constructive contributions from h

and H while the points below have destructive contributions. There are a few interesting

features in Fig. 5.5. The gap which extends along the entire plotted range of SD cross

sections is due to a slight cancellation between the various contributions from the light

Higgs boson (see Eqs. (V.18) and (V.19)) which can occur at finite tβ (tβ < 50 in this

scan). The small number of points around σSD = 3× 10−4 pb is due to the opening of the

top threshold (see Fig. 5.2). The behavior around σSD = 2×10−5 pb is due to the cross over

from dominantly Bino to dominantly Higgsino DM, which occurs around mχ = 500GeV.

5.5.1 Large SI and Large SD

To have non-zero SI and SD signals, a Bino-Higgsino, Wino-Higgsino or Bino-Wino-

Higgsino mix is required. In fact, appreciable SI and large SD signals can be generated as
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Figure 5.3: The max(σp
SI, σ

n
SI) vs. σp

SD cross sections in pb for the MSSM. The dots (in blue)
and crosses (in red) correspond to |µ| < 500 GeV and |µ| > 500 GeV respectively.
The horizontal (vertical) line refers to the projected sensitivity for the next generation
of SI (SD) experiments. We have shaded the near-term probeable region. Note that
we are neglecting the dependence of this sensitivity on the neutralino mass. We have
not imposed the thermal relic density constraint – all points are taken to have ρDM =
0.3 GeV/cm3, regardless of thermal abundance. All sfermions have masses of O(2 TeV).
If one takes the decoupling limit, there is a maximum value for σSD = 3× 10−8 pb.

long as the Higgsino fraction is larger than O(10%). Note that the |µ| < 500 GeV points,

which correspond to less fine-tuning in mZ , imply large SD signals. When the gaugino

fraction is dominated by Wino rather than Bino, the relative size of g and g′ gives a slight

enhancement in the SI cross section. There can be further enhancement of the SI cross

section if sgn(ZB) 6= sgn(ZW ) (see Eq. (V.18)) which accounts for points with the largest

SI values in Figs. 5.3 and 5.4. This cannot occur in models with unified gaugino masses,

where M2 ≈ 2M1.

Large SI and SD signals occur as long as there is non-trivial gaugino content in the

WIMP. Imposition of the thermal relic density constraint formχ > mW , ensures a minimum



84

Figure 5.4: The max(σp
SI, σ

n
SI) vs. σp

SD cross sections in pb for the MSSM. We have imposed that
the thermal abundance of the neutralinos is within ± 3σ of the WMAP measurement.
The dots (in blue) and crosses (in red) correspond to |µ| < 500 GeV and |µ| > 500
GeV respectively. The horizontal (vertical) line refers to the projected sensitivity for
the next generation of SI (SD) experiments. We have shaded the near-term probeable
region. Note that we are neglecting the dependence of this sensitivity on the neutralino
mass. All sfermions have masses of O(2 TeV).

required Bino component. If one imposes the large SI and SD conditions, |ZB|2 . 0.7

and |ZB|2 . 0.85 below and above the top threshold respectively. Note that the large SD

requirement implies that mχ < 200 GeV (see Fig. 5.2). Hence, the assumption of a thermal

history is necessary to conclude that the neutralino is a Bino-Higgsino admixture, rather

than Wino-Higgsino.

In the next three subsections we will attempt to elucidate the difficulties one encounters

when trying to suppress SI and/or SD. This will allow us to argue that large SI and SD DD

signals are the generic prediction for a well-tempered MSSM neutralino, since suppression

of either SI or SD or both requires doing some gymnastics. While future data may force
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Figure 5.5: The max(σp
SI, σ

n
SI) vs. σp

SD cross sections in pb for the MSSM with gaugino mass
unification. We have imposed that the thermal abundance of the neutralinos is within
± 3σ of the WMAP measurement. We have taken the decoupling limit (mA = 4TeV).
The dots (in blue) and crosses (in red) correspond to |µ| < 500 GeV and |µ| > 500 GeV
respectively (see the text for a discussion). The horizontal (vertical) line refers to the
projected sensitivity for the next generation of SI (SD) experiments. We have shaded
the near-term probeable region. Note that we are neglecting the dependence of this
sensitivity on the neutralino mass. All sfermions have masses of O(2 TeV).

these contortions upon us, we conjecture that if the DM is a well-tempered neutralino, it

is likely to be discovered in the next generation of DD experiments.

5.5.2 Small SI and Small SD

There are two ways to suppress both SI and SD. The first is to make |ZHu | = |ZHd
| = 0,

which is equivalent to the µ→∞ limit. This limit leads to fine-tuning of the electroweak

scale. To achieve the proper thermal relic abundance in this case requires a Bino-Wino mix.

Note that the Bino and Wino only mix indirectly through the Higgsino. Therefore, two

insertions of the mixing factor are required, and the resulting mixing is of size (mZ/µ)2.
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One can see the effects of this limit by inspecting the red crosses in Figs. 5.3, 5.4 and

5.5. The upper bound in Figs. 5.3 and 5.4 are from points which are either Bino/Higgsino

or fully mixed states while the points with the smallest values for SI are due to either

Wino/Bino neutralinos or the cancellations discussed in Sec. 5.5.4.

The second option is to take M1,2 � µ. This will imply that ZB,W = 0, thereby

suppressing SI DD, and |ZHu | = |ZHd
| so that SD DD is also zero. Reproducing the

measured relic density then requires µ ≈ 1 TeV. When one does impose the thermal

relic density as a prior, Fig. 5.2 shows that for DM masses of O(TeV), i.e. the region of

dominantly Higgsino DM, the SD cross section ranges from O(10−5 pb) to 0. Fig. 5.5 shows

the corresponding SI cross sections for this range. The trend of SI and SD going to zero in

this plot is due to the limit M1,2 →∞. Thermal dark matter in either of these two limits

(µ or M1,2 → ∞) will have a finely-tuned electroweak scale. Note that for either pure

Wino or pure Higgsino DM there is a 1-loop diagram which leads to an SI DD cross section

of O(10−11 pb) or O(10−12 pb) and an SD DD cross section of O(10−9 pb) or O(10−10 pb)

for the Wino or Higgsino case respectively [128]. We neglect this tiny contribution in our

numerical scans.

5.5.3 Large SI and Small SD

There are points which have large SI and SD with a nearly maximal gaugino fraction.

If one relaxes the requirement of large SD, then the gaugino fraction can be pushed to

nearly 100% while keeping the product ZB,W ZHu,d
approximately fixed, which in turn

keeps the SI cross section constant. The relic density constraint can still be satisfied since

both Winos and Higgsinos annihilate to W± bosons with approximately the same rate.

There is another way to have small SD while allowing large SI. In the context of the

SDM, one can take λ = λ′, i.e. tβ = 1 in the MSSM. From the SDM mass matrix (see

Appendix B.2), one can see that mixing between S and D− will vanish. Since the SD
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cross section is proportional to this mixing factor, ZD− , it will be zero as well. This effect

accounts for the empty region in Figs. 5.3 and 5.4 since we restricted tβ > 5 in our numerical

scans.

For tanβ ∼> 1.5, we find that for σSI ∼ 5 × 10−9 pb the smallest cross section for SD

is σSD ∼ 10−6 pb. If one allows σSI < 5 × 10−9 pb, then as |ZHu,d
| → 0, σSD/σSI →

|ZHu,d
|2 → 0. Hence, SD falls off faster than SI. However, this is the µ → ∞ limit which

leads to fine-tuning as described above.

5.5.4 Small SI and Large SD

Large SD requires a well-tempered neutralino, which naively also leads to large SI DD.

In this section we will enumerate the various options one has for suppressing SI signals.

We will argue that all options require fine-tuning or numerical coincidences1.

Here are the options for minimizing σSI:

1. One can make mh and mH heavy; however mh ≈ 115 GeV in the MSSM in the

absence of large fine-tunings. Even in SplitSUSY, mh∼< 160 GeV.

2. Since cu,d ∼ (ZW − tw ZB), i.e the Higgs couples to the Zino, one could attempt to

restrict the DM to only be a photino-Higgsino admixture. In Appendix B.3, we show

that this is impossible when one restricts M2 by the LEP bound.

3. One can tune
(
f

(N)
Tu + 2 2

27 f
(N)
TG

)
cu
mu

against
(
f

(N)
Td + f

(N)
Ts + 2

27 f
(N)
TG

)
cd
md

by tuning

the contribution from H against that from h. As we will discuss below, it is not

possible to precisely tune this quantity to zero simultaneously for the proton and

the neutron (see Fig. 5.6). However, an approximate realization of this condition is

possible – this is the tuning that underlies large SD/small SI points in Figs. 5.3 and

5.4 and reported in the literature (e.g. [168]).
1Another possibility is that both SI and SD from exchange of the Z0 and Higgs boson respectively are small.

If there exist light squarks, they can give rise to large SD signals [56]. Cross section estimates from light squark
exchange are discussed more in Appendix B.1.
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4. One can tune the contribution from the proton against the contribution from the neu-

tron. The cancellation would only hold for a specific element. Since all experiments

do not use the same elements, we will not pursue this case further.

In what follows, we minimize the SI cross section by tuning the contributions from the

h and H against each other (point 3 above). From Eq. (V.19), this cancellation requires (in

the decoupling/large tβ limit) sgn(ZHu) = sgn(ZHd
). This condition for cancellations to be

possible was first noted in [96]. Using DarkSUSY we have confirmed that this is a necessary

condition, not just in this limit, but for any values of the pseudo-scalar Higgs mass (mA)

and tβ. This condition only occurs for certain signs of M1, M2 and µ. If large SD/small

SI were observed for neutralino DM, this would constrain the signs in the neutralino mass

matrix.

Let us estimate the maximum allowed suppression. To good approximation2, the best

one can do is to tune away the coupling to (for example) the proton:

(V.35)
cu
mu

= −

(
f

(p)
Td + f

(p)
Ts + 2

27 f
(p)
TG

f
(p)
Tu + 2 2

27 f
(p)
TG

)
cd
md
≡ −f (p)

d/u

cd
md
≈ −1.64

cd
md

.

In order for Eq. (V.35) to have a guaranteed solution requires independent control of α

and mH . Since there is a non-trivial relationship between α and mH (both are determined

by mA), our lower bound provides a conservative estimate. Using Eq. (V.8) to estimate cq

and plugging in the relationship between cu and cd from Eq. (V.35) gives σpSI = 0 and

σSI = σnSI =
4
π
m2
n

(A− Z)2

A2
m2
r y

2
χ

1
m4
h((

f
(n)
Tu + 2

2
27
f

(n)
TG

)
f

(p)
d/u −

(
f

(n)
Td + f

(n)
Ts +

2
27
f

(n)
TG

))2

(V.36)

≈ 8× 10−13 pb
(

115 GeV
mh

)4 ( yχ
0.1

)2
(SI with cancellations).(V.37)

This gives an estimate for how small SI can be, absent taking some of M1,M2, µ→∞. The

effects of the current uncertainties on the hadronic matrix elements described in Sec. 5.1.1
2From Fig. 5.6 the absolute minimum of the total SI cross section occurs between the region where the coupling

to the proton and neutron vanish. Therefore, the following analytic estimate will be off by a factor of a few.
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can change the amount of cancellation allowed (the coefficient in Eq. (V.35)), altering the

lower bound in Eq. (V.37) by O(50%).

In Fig. 5.6 we show the SI cross section on the proton, the neutron and both as a

function of mA for a 93 GeV neutralino with a thermal relic density of ΩDM h2 = 0.1,

σpSD = 9 × 10−4 pb and σnSD = 6 × 10−4 pb. One can clearly see that both contributions

to SI DD cannot both be canceled simultaneously. At the minimum, σmin
SI = 3× 10−12 pb

for mA = 751 GeV. For a shift in mA of ∼ 5%, the cross section becomes ∼ 2 × 10−10

pb – a change of almost 2 full orders of magnitude. This emphasizes the delicacy of the

cancellation. Other than in the limited region where the cancellation occurs, the entire

range is probeable by the next generation of SI experiments.

Numerically, we find that for σSD > 10−4 pb, the smallest σSI can be is O(10−14 pb)

where the suppression beyond the value in Eq. (V.37) is due to small mixing angles.

Finally , we note that while these kinds of conspiracies are allowed, there is no reason

to expect that the SUSY breaking parameters have anything to do with the nuclear matrix

elements. We take this as evidence that such cancellations are unlikely.

5.6 Conclusions

In this work we have explored the physics of SD DD with an emphasis on the correlations

with SI experiments. In the process, we have determined some expectations for the SD

cross sections. In particular, in the MSSM,
(
σSUSY

SD

)
< 6 × 10−3 pb without making any

assumptions about the thermal history. Again, allowing for a non-trivial cosmic history,

but imposing the unified gaugino mass condition, we find
(
σSUSY

SD

)
< 4× 10−3 pb. Finally,(

σSUSY
SD

)
< 2×10−3 pb when a thermal relic density is imposed. These represent important

targets for future experiments. If one includes the possibility of squark exchange, a SD

cross section as high as 2 × 10−2 pb can be reached for a neutralino which has a thermal

abundance by utilizing the squark pole [47, 48]. We note that in the absence of light
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Figure 5.6: Plot of the SI DD cross section for the neutralino scattering off of a proton (solid), a
neutron (dashed) and both (dotted) as a function of mA. For reference, the size of the
SD cross section is about 9×10−4 pb (proton) and 6×10−4 pb (neutron) and mχ = 93
GeV. The thermal relic density is ΩDM h2 = 0.1. The minimum value for the total SI
DD is σmin

SI = 3×10−12 pb for mA = 751 GeV. By changing mA by 5%, the cross section
becomes ∼ 2× 10−10 pb. For small mA the cross section is on the order of σSI ∼ 10−7

pb and in the decoupling limit the cross section is on the order of σSI ∼ 10−9 pb – the
entire region where there are not any conspiratorial cancellations is within the reach of
the next generation of SI experiments.

squarks, if SD cross sections larger than ∼ 6× 10−3 pb were observed, the DM would not

be an MSSM neutralino. This would point to more exotic theories like the SDM or models

with light mediators [66]. For models which reproduce the relic density, in the decoupling

limit, and unified gaugino masses, a 1-ton COUPP-like experiment could probe the entire

range of SD cross sections up to WIMP masses of O(1 TeV).

More generally, we have argued that given the experimental constraints from LEP,

neutralino DM is likely to be well-tempered with possible signals for the next generation of

SI and SD DD experiments. In fact, any model (such as the SDM) which interacts with the

SM via a light Higgs boson can imply a signal in SI experiments and any model of Majorana
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fermions with non-trivial couplings to the Z0 can imply a signal in SD experiments. We

have enumerated the ways to avoid these arguments. Since all of these options involve a

numerical conspiracy or some new source of tuning, we take them to be disfavored. With

available methods we should be able to probe the majority of the natural range for the SI

and SD DD signals of both thermal and non-thermal neutralino DM.



CHAPTER VI

Extracting the Dark Matter Mass from Single Stage
Cascade Decays at the LHC

6.1 Introduction

This chapter was completed in collaboration with Eric Kuflik and Kathryn Zurek [77].

In this chapter we will explore one aspect of DM phenomenology at the LHC. Making

DM mass measurements at the LHC, for example in models of supersymmetry (SUSY) or

Universal Extra Dimensions (UED), is a difficult problem, since the DM particle is typically

produced in pairs as products of complicated decay chains of parent particles. In fact, the

number of states participating in the event can vary dramatically depending on the specific

model. The identities, couplings, and masses of the particles involved in these processes

may be unknown. Let n be the number of steps in the cascade between the production

of the parent and the appearance of the DM child in the event. For n > 1, if all visible

particles in the decay are detected, all masses of the parent, intermediate and visible and

invisible child particles can, in principle, be determined uniquely (see for example [59] for

a discussion). The simplest case of n = 1 proves to be more challenging. In Fig. 6.1 we

show a schematic of an n = 1 process. We have also included the possibility that additional

visible states are produced before the parents, which we refer to as Up-Stream Radiation

(USR). In Sec. 6.2 below, we will discuss the relevance of USR for DM mass determination.

Refs. [123, 37, 163, 172, 164] also study n = 1 decay chains.

92
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Figure 6.1: Schematic representation of the n = 1 class of processes considered in this work, with
additional Up-Stream Radiation (USR). The parent particle is the state which decays
to the visible particles and the child DM particles.

The motivation for studying DM mass determination in n = 1 processes is many fold

– we mention two here. First, within SUSY or UED, n = 1 processes with additional

USR can be important. For example, decays ˜̀± → `± χ̃0 with initial state radiation, and

q̃ → j χ̃± → j `±ν̃ (for a sneutrino lightest SUSY particle), are of the type shown in

Fig. 6.1, where ˜̀± is a slepton, `± is a lepton, χ̃0 is a neutralino, q̃ is a squark, j is a

jet, χ̃± is a chargino and ν̃ is a sneutrino. Although higher n chains may also be present

in many models, the combinatoric backgrounds can make mass extraction in such decay

chains complicated. By contrast n = 1 events are clean, and involve only two visible objects

plus missing transverse momentum (hereafter referred to as missing energy). Also, since

one will potentially observe n = 1 chains if one of these theories is correct, it will be useful

to extract as much information as possible from these signals. Second, the observations of

astrophysical anomalies, e.g. PAMELA [7] and Fermi [4], have led many to conjecture that

the DM is leptophilic. Models which generate such signals can, for example, be constructed

by connecting the DM to the lepton asymmetry [81], or by positing that mixed sneutrinos

constitute the DM [28, 126, 190]. The simplest such dark sectors involve only a new

mediator state and the leptophilic DM state, so that the DM is produced at a collider
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through the leptonic decay of the mediator. Hence, the study of these processes is well

motivated. The reader is referred to Appendix C.1 for more detail on models where n = 1

decay chains with USR are important.

As shown in Appendix C.2, the phase space for n = 1 processes without USR depends

on the combination µ = (m2
p−m2

c)/(2mp) and weakly on ŝ/(4m2
p) where mp is the parent

mass, mc is the child mass and
√
ŝ is the partonic center-of-mass energy. Hence, extracting

µ is simple, while measuring mp proves to be more challenging. Current experimental

methods for mass determination in events with missing energy rely on matrix element

techniques. Here, one begins by assuming a model which implies a matrix element with

additional dependence on mp. Then by fitting measured differential distributions, one can

extract, in addition to the combination µ, the overall mass scale mp by observing how

quickly the event rate falls off with
√
ŝ.

In this paper we explore a different technique where the overall mass scale is determined

from the transverse boosts given to the parent particles by USR. Since the boost depends

only on mp, i.e. it is independent of the matrix element, the result is a model independent

method for determining the overall mass scale. We explore a particular MT2 variant pro-

posed in [149], which utilizes events with USR to separately extract the parent and child

masses. We carry out the first full scale simulation of these MT2 based variants for dark

matter mass determination, including detector effects, emphasizing the size of statistical

errors and discussing various difficulties this method presents.

The outline of this paper is as follows. We begin with a discussion of the MT2 variable,

and the possibility of extracting parent and child mass separately in n = 1 events with

USR. Next we turn to a numerical analysis of this MT2 based method and its efficiency

in DM mass determination for a given number of n = 1 events at the LHC. We then

discuss additional sources of error beyond those explicitly contained in the previous section.
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Finally, we conclude. In Appendix C.1 we outline some example models where this method

would be relevant and in Appendix C.2 we show how the phase space for n = 1 processes

depends on the MT2 endpoint.

6.2 MT2 Preliminaries

We begin by reviewing the MT2 variable [153, 36]. Since the LHC is a hadron collider,

the initial parton longitudinal momenta are unknown. Hence, only the total transverse

momentum is constrained to be zero, and thus it becomes necessary to use transverse

variables, such as MT2, a generalization of the transverse mass (see also [68, 38, 143]). For

the class of processes studied here (see Fig. 6.1), there will be two missing particles in each

event, so that the 4-momenta of the invisible child particles cannot be determined. Thus,

only the total transverse missing momentum, ~p miss
T , can be measured. In addition, the

child particle mass, mc, is not known. However, a trial DM mass can be guessed, m̃c, and

MT2 formed for each event as

(VI.1) MT2(m̃c) ≡ min
[
max

{
M

(1)
T ,M

(2)
T

}]
,

where the minimization is performed over trial missing momenta for the two child particles,

~p
miss(1)
T , ~p miss(2)

T , subject to the constraint that their sum be the total missing ~pT :

(VI.2) ~p
miss(1)
T + ~p

miss(2)
T = ~p miss

T = −~p vis(1)
T − ~p vis(2)

T ,

where ~p vis(i)
T is the transverse momentum of the ith visible particle, and we are neglecting

here the possibility of additional USR. In Eq. (VI.1), M (i)
T is the transverse mass of the

visible and child particles using the guessed missing momentum, ~p miss(i)
T , and child trial

mass m̃c:

(VI.3) M
(i)
T =

√(
m

(i)
vis

)2
+ m̃2

c + 2
(
E

vis(i)
T E

miss(i)
T − ~p vis(i)

T · ~p miss(i)
T

)
,
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where m(i)
vis is the mass of the ith visible particle. The energies are formed in the usual way,

(VI.4) E
vis(i)
T ≡

√(
~p

vis(i)
T

)2
+
(
m

(i)
vis

)2
, E

miss(i)
T ≡

√(
~p

miss(i)
T

)2
+ m̃2

c .

When there is no USR, there exists a value of MT2, referred to as an endpoint, above which

the differential cross section, dσ/dMT2, rapidly approaches zero, which is given by [73]

(VI.5) Mmax
T2 = µ+

√
µ2 + m̃2

c ,

where

(VI.6) µ ≡
m2
p −m2

c

2mp
,

is the momentum of the invisible child in the parents’ rest frame. As we show in Appendix

C.2, n = 1 chains only depend on µ up to small corrections due to the parent mass

(which is exploited by the matrix element methods). Methods which do not capitalize on

these corrections do not have enough information to extract both masses separately. This

neglects, however, the potential for additional USR in the event. The USR can be in the

form of jets coming from the initial state QCD radiation (ISR), or jets coming from the

decays of heavy colored objects in n > 1 processes, where the decay chain ends in the

n = 1 process of interest. By including the USR, Eq. (VI.2) no longer obtains, and instead

the total momentum of the visible and invisible particles must be balanced against the

momentum of the radiation, ~p USR
T ≡ ~PT ,

(VI.7) ~p
miss(1)
T + ~p

miss(2)
T = ~p miss

T = −~p vis(1)
T − ~p vis(2)

T − ~PT .

Now the MT2 endpoint will depend on the upstream momentum [59, 172, 164]:

(VI.8)

Mmax
T2 (m̃c, PT ) =



(µ(PT ) +

√(
µ(PT ) + PT

2

)2
+ m̃2

c

)2

− P 2
T
4

1/2

, if m̃c ≤ mc(µ(−PT ) +

√(
µ(−PT )− PT

2

)2
+ m̃2

c

)2

− P 2
T
4

1/2

, if m̃c ≥ mc
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and

(VI.9) µ(PT ) ≡
m2
p −m2

c

2mp

√1 +
(
PT

2mp

)2

− PT
2mp

 .

The functional form for the MT2 endpoint depends on whether the test mass is larger or

smaller than the true DM mass. Hence, there is a discontinuity in the derivative with

respect to the trial child mass of Eq. (VI.8) above and below the true DM mass, mc,

giving rise to a kink [123, 37, 163, 72] in the Mmax
T2 (m̃c, PT ) curve which can be utilized

for extracting additional information beyond Eq. (VI.5). In principle, given an event with

a specific value for the PT of the USR, one can now extract the parent and child masses.

However, since one must do this analysis for a particular bin in PT , there is competition

between the size of the bin – small bins imply small statistical samples – and the accuracy

of the measurement.

Another method was proposed in [149], which sidesteps the problem of binning by

utilizing the whole range of PT . From Eqs. (VI.5) and (VI.8), it can be seen that Mmax
T2 is

unchanged by the effects of the PT when m̃c = mc. Furthermore, it has been shown [149]

that

(VI.10) Mmax
T2 (m̃c, PT )−Mmax

T2 (m̃c, 0) ≥ 0,

where the equality only holds when m̃c = mc. Thus one can construct a new variable [149]

(VI.11) N(m̃c) ≡
∑

all events
Θ
(
Mmeasured
T2 (m̃c)−Mmax

T2 (m̃c, 0)
)
,

where Θ(...) is the Heaviside function andMmeasured
T2 (m̃c) is the measured value ofMT2(m̃c).

It is this variable we will be minimizing to find the correct child mass. In Fig. 6.2, we plot

N(m̃c) vs. m̃c for mp = 300 GeV and mc = 150 GeV. Since the shape is “bowl”-like,

we refer to this construction as an MT2 bowl. Unless otherwise specified, all events were

simulated with the MadGraph 4.4 event generator [13], showered by PYTHIA 6.4 [184],
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and run through the detector simulation software PGS 3.3 [84]. Note that we use the

MadGraph default settings which defines a lepton as having pT > 10 GeV and a jet as

having pT > 20 GeV.
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Figure 6.2: Example of an MT2 bowl for 50,000 smuon pair production events with QCD USR. The
parent mass is 300 GeV and the child mass is 150 GeV. The events were run through
the PGS detector simulator.

6.3 Mass Determination from MT2 Bowls

In this section we will calculate the statistical errors for child mass determination with

MT2 bowls. Clearly, Eq. (VI.9) only depends on the kinematics of the event, i.e. it

is independent of the quantum numbers, including the spin, of the underlying particles.

Then, up to small corrections due to the steepness of the MT2 distribution about this

endpoint, there are only O(1) differences in the bowls around the minimum for different

parent spins. Hence, we can study the effectiveness of this variable for a wide variety of
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models by only scanning over the masses of the parent and child particles. We take

mp = 100 GeV, mc = 25, 50, 75 GeV,

mp = 300 GeV, mc = 75, 150, 225 GeV,

mp = 500 GeV, mc = 125, 250, 375 GeV(VI.12)

as our benchmark parameters.

For reference we provide the overall cross section for these benchmark models in Ta-

ble 6.1, where we have assumed that the production occurs via electroweak processes, in-

cluding the effects of QCD ISR. Neglecting diagrams which involve additional new-physics

states, the overall rates only depend on the spin of the parent up to O(1) factors due to

the choice of SU(2) × U(1) representation. For reference, the scalar example process is

p p → ˜̀+ ˜̀− → `+ `− χ̃0 χ̃0 where ˜̀± is a slepton and χ̃0 is the lightest neutralino. This

is the process we simulate for our benchmarks with QCD ISR. For reference, a fermionic

example process is p p → χ̃+ χ̃− → `+ `− ν̃ ν̃∗ where χ̃± is a chargino and ν̃ is a sterile

sneutrino. For some details of these and other models which have n = 1 processes, see

Appendix C.1. Our results below will be given in terms of the number of events before

cuts, so Table 6.1 can be used to estimate the reach of actual models.

mp σscalar σfermion

100 GeV 0.4 pb 20 pb
300 GeV 9× 10−3 pb 0.4 pb
500 GeV 10−3 pb 6× 10−2 pb

Table 6.1: Cross sections for electroweak pair production of parent particles with various masses
and spins including the effects of QCD ISR. We neglect any t-channel processes involving
additional states.

There are also models which have more complicated decay chains but can be interpreted

as n = 1 processes with additional USR. For example, one can have new colored objects

which decay to jets and the parent particle. As long as the USR can be distinguished

from the decay product of the parent, our method is applicable. This will improve the
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prospects for this method dramatically since the overall rate will increase due to colored

production instead of electroweak production, and additionally the majority of events will

have very hard PT for the USR. Hence, we also choose a set of benchmark models with

colored objects up-stream with masses

mcol = 600 GeV, mp = 300 GeV, mc = 150 GeV,

mcol = 1000 GeV, mp = 300 GeV, mc = 150 GeV,

mcol = 1400 GeV, mp = 300 GeV, mc = 150 GeV,(VI.13)

where mcol is the mass of the colored state which decays to the parent particle and jets.

The example process we will simulate for these benchmarks is p p → q̃ q̃ → j j χ̃+ χ̃− →

`+ `− ν̃ ν̃∗ where q̃ is a squark, χ̃± is a chargino and ν̃ is a sterile sneutrino. While one might

be able to use additional handles from viewing such events as n = 2 processes (instead of

n = 1 with USR), here we wish to examine only the effect of harder USR from colored

particle decay on the error for DM mass determination in n = 1. For additional models of

n = 1 processes which can be produced in the decays of colored states see Appendix C.1.

As discussed above, the additional radiation shifts all events, including those near the

MT2 endpoint. For reference, the radiation distributions for our benchmark models are

shown in Figs. 6.3 and 6.4. From Eq. (VI.8), the correction to the MT2 endpoint due to

USR is of the form PT /mp. Hence, the PT distribution of jets determines how well the

parent and child masses can be extracted separately. From Fig. 6.3, we see that heavier

parents lead to harder PT distributions due to the larger recoil occurring from production

of a heavier state. However, since the correction to MT2 goes as 1/mp, this enhancement is

tempered by the parent mass. In addition, heavier parents have smaller production cross

sections (see Table 6.1). Hence, assuming they can be seen above the backgrounds, lower

parent mass states give rise to more defined bowls. The trade-off between background

rejection, which is optimized for high masses, and the quality of the MT2 bowls, which
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is optimized for low masses due to the dependence on the ISR, leads to a sweet spot in

the range of O(200 GeV) to O(500 GeV), with significant dependence on the spin of the

parent. In the cases with colored states upstream this tension is alleviated since now the

PT distributions are harder and the production cross sections are larger, as in Fig. 6.4.
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Figure 6.3: PT of the hardest jet for slepton events with only QCD ISR. The blue dotted line is for
mp = 500 GeV, the red dashed line is for mp = 300 GeV and the yellow solid line is for
mp = 100 GeV. Note from Eq. (VI.8) that the correction to MT2 due to USR is of the
form PT /mp.

The effects of the radiation on the MT2 endpoint are shown by plotting N(m̃c) as a

function of m̃c in Fig. 6.2, for 50,000 smuon pair production events with two muons and

missing energy, with no background events (also see Fig. 6.11). As we will show in the

next section, the backgrounds can be very efficiently cut away, and will be insignificant

near the MT2 endpoint (see Sec. 6.4.2). In what follows, we will present statistical error

bars on the DM mass determination using the MT2 bowl and will discuss in detail various

sources of error and their effect on this analysis.
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Figure 6.4: PT of the hardest jet with new colored state dominating the USR. Specifically, these
colored states are squarks. The blue dotted line is for mcol = 1400 GeV, the red dotted
line is for mcol = 1000 GeV and the yellow solid line is for mcol = 600 GeV. We have
fixed mp = 300 GeV in all cases. From Eq. (VI.8), the correction to MT2 due to USR
is of the form PT /mp.

6.3.1 Statistical Analysis of MT2 Bowls

Contributions to adjacent bins in the MT2 bowls from the same events imply that it is

inappropriate to use simple
√
N statistics in computing errors. Removing one event from

a given bin in the distribution can in principle remove one event from each bin. Therefore,

we utilized the well-known “bootstrapping” method to do the statistical error analysis.

We employed the following method when doing this. We begin by generating a sample of

O(100, 000) signal events (we take
√
s = 14 TeV). From those 100, 000 events, we choose

a subset of size Nevents, and make 100 independent random selections of Nevents events

from the original data set. Then for each of these selections we calculate N(m̃c) using

Eq. (VI.11). This gives us a random sampling of bowls for a given number of events. Since

there is often a degeneracy of minima for each of these random bowls, especially for a

low number of events, we take the geometric mean of these multiple minima to give us

an average minimum for each bowl. Note that we do this assuming the theoretical value
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of Mmax
T2 (see Sec. 6.4.3). Finally, we find the mean and standard deviation of these 100

average minima. To find the standard deviation we used the formula
∑

(xi−xmean)2/(N−1)

and checked to confirm that this corresponds to 1-σ error for a Gaussian distribution to

good approximation.

This method allows for a statistical sampling of the distribution of possible bowls for

a given number of events. We present our results as a function of Nevents, the number

of events before any cuts are made. Note that the events which contribute to the bowl

have very special kinematics which allow them to go beyond Mmax
T2 – the overwhelming

majority of events will not have any bearing on the mass determination. Hence, cuts

designed to remove backgrounds will not cut away these special events which contribute

near the minimum of the MT2 bowl where the DM mass determination occurs. This is an

expectation we check explicitly in the next section.1 Also note that by working with the

mean we will systematically underestimate the DM mass due to the asymmetric shape of

the bowl. This asymmetry is due to the shape of the MT2 distribution near the endpoint as

a function of m̃c – the slope becomes steeper as m̃c is taken larger. The events used for the

bowls were generated using the PGS detector simulator so that they do include detector

effects which also adds to the consistent underestimates. As we discuss in Sec. 6.4.1,

detector simulations must be utilized to determine the required correction to account for

this off-set. Further sources of error are discussed below in Sec. 6.4.

In Figs. 6.5 - 6.8, we show the statistical error bars for the DM mass determination for a

given parent and child mass combination as a function of the number of events before cuts.

Note that for a given child mass, the error bars grow smaller as the DM mass approaches

the parent mass, due to the width of the minimum of the bowl. This occurs because the

minimum of the bowl becomes more well-defined as the MT2 distribution becomes steeper.

The error bars grow smaller as Nevents grows larger, but not as quickly as 1/
√
Nevents.

1This assumption is not true when Mmax
T2 ≈ mW as in the case of, for example, mp = 100 GeV and mc = 25 GeV.
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This is because events contribute to multiple bins so that errors from adjacent bins are

correlated. Also notice that error bars in Fig. 6.8 are much smaller for a given Nevents than

those in Fig. 6.6 for mc = 150 GeV. The error bars are also smaller for larger values of

mcol. This is due to the enhanced PT of the USR as shown by comparing Figs. 6.3 and

6.4. In what remains we will discuss the various additional errors and will argue to what

degree we expect them to degrade the results.
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Figure 6.5: Mean and ±1-σ statistical error bars for a DM mass measurement as a function of the
number of signal events before cuts. The only source of USR is initial state radiation.
The process we simulated is electroweak smuon production. The error bars will improve
by O(1) for fermionic parents. The parent mass is 100 GeV and the child masses are
75 GeV (green), 50 GeV (blue) and 25 GeV (red) from top to bottom. The dashed
lines show the actual child mass. Note that detector effects have been simulated for the
underlying events and that the DM mass measurement systematically undershoots the
actual value on account of these effects.

6.4 Sources of Error

The results of Figs. 6.5 - 6.8 only incorporate statistical and detector effects. In this

section we argue that the errors we have included in our analysis are a realistic estimate of

the precision with which the DM mass can be extracted from simple cascade decays. We

further qualify the additional sources of error below.
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Figure 6.6: Same as Fig. 6.5 except that the parent mass is 300 GeV and the child masses are 225
GeV (green), 150 GeV (blue) and 75 GeV (red) from top to bottom. As explained in
the text, we find that cuts designed to eliminate the background will not change these
results.
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Figure 6.7: Same as Fig. 6.5 except that the parent mass is 500 GeV and the child masses are 375
GeV (green), 250 GeV (blue) and 125 GeV (red) from top to bottom. As explained in
the text, we find that cuts designed to eliminate the background will not change these
results.
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Figure 6.8: Same as Fig. 6.6 except that the dominant source of USR is new heavy colored states.
These colored states are squarks which produce chargino parents and jets. The parent
mass is 300 GeV and the child mass is 150 GeV for all three cases. The mass of
the colored objects are 1400 GeV (green), 1000 GeV (blue) and 600 GeV (red) from
top to bottom. As explained in the text, we find that cuts designed to eliminate the
background will not change these results.

6.4.1 Detector Effects

With the inclusion of detector effects, the events at the MT2 endpoint become smeared

out. This implies that some events which do not have the correct kinematics to make

a contribution to the bowl can have MT2 > Mmax
T2 . This leads to a degradation of the

minimum of the bowl. Since the MT2 distribution is steeper for larger test masses, this

degradation will tend to contribute to a larger underestimate of the DM mass. This is the

reason for the systematic under-shooting of the DM mass in Figs. 6.5 - 6.8. To illustrate

this effect we have generated the analog of Fig. 6.6 for parton level events as shown in

Fig. 6.9. Note that the 1-σ error bars overlap with the actual DM mass except in the

case where mc = 75 GeV since here the bowl is essentially flat below m̃c ∼ 75 GeV (see

Fig. 6.11). Hence detector simulations would have to correct for this systematic effect in

any real DM mass measurement.

After generating bowls using the parton level events, the value N(m̃c) (see Eq. (VI.11))
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at the minimum is ∼ 0. For the same bowls, but with detector effects, the value N(m̃c =

mc) is no longer 0 – for O(100, 000) events, N(m̃c = mc) ∼ O(100). Hence one can attempt

to clean up the bowl by removing the events from the data sample which contribute at the

minimum. This will increase the steepness of the bowl and might be helpful in minimizing

the error since all removed events are guaranteed to be pathological. However, since this

cleaning process does not change the minimum, this will not change the error bars presented

above.
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Figure 6.9: Same as Fig. 6.6 except that the underlying events are parton level.

6.4.2 Background Contamination and Cuts

In this section we will argue that a generic set of cuts designed to remove backgrounds

will not degrade the minimum of the MT2 bowl and hence will not affect our conclusions.

Motivated by the choices taken in [35], we have analyzed the following cuts for illustration,

which are relevant for di-lepton events with jets and missing energy (i.e. slepton pair

production):

1. Require 2 opposite sign, same flavor leptons (e or µ).

2. Hardest lepton: pT > 40 GeV.
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3. Second hardest lepton: pT > 30 GeV.

4. pmiss
T > 100 GeV.

5. A Z0 veto: the invariant mass of the two leptons, m``, must not lie in the range

80 GeV < m`` < 100 GeV.

6. No b-tagged jets.

While cuts should be tailored to the particular model under consideration, these are fairly

generic, and will serve to illustrate the point that our results are not significantly de-

graded by background removal. We also explored the effect of a cut on MT2 by requiring

MT2(m̃c = 0) > 100 GeV. These cuts will be very efficient for eliminating standard model

(SM) backgrounds, the worst of which is W+W− plus jets, where the W± bosons decay

leptonically. In particular, this di-boson process is dominated by t t̄ production.

An MT2 cut on the t t̄ background is a powerful discriminator, and in many cases it will

have no effect on the DM mass determination. To see this, first note that the t t̄ background

falls into the same class of n = 1 processes we have been studying already, with the tops

as the colored particles leading to hard USR, the W± as parents and the neutrinos as

children. Since the child is a neutrino, mc = 0, and the minimum of the bowl will occur

at m̃c = 0. Then (neglecting detector effects which will only add a small perturbation)

the t t̄ background will be largely eliminated for an MT2 cut of O(100 GeV). In Fig. 6.10

we plot this MT2 distribution including detector effects. Clearly, there is an endpoint at

mW . The cross section for t t̄→ b b̄ µ− µ+ νµ ν̄µ is 5 pb. Then starting with a 100,000 event

sample, the cuts 1-6 described above reduce this background to 0.065 ± 0.002 pb. Then

the MT2(m̃c = 0) > 100 GeV cut eliminates all remaining events. In this way, the worst

of the SM backgrounds can be easily removed for mp∼> 100 GeV.
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Figure 6.10: MT2(m̃c = 0) distribution for t t̄ events where we have treated this as an n = 1 process
where the b-jets are USR and the W± are the parent particles. This plot is made before
cuts and we have included detector effects. There is an endpoint at mW since the child,
i.e. the neutrino, mass is zero in these events.

In Fig. 6.11 we have plotted a series of MT2 bowls before and after this set of cuts

to check that the signal in the DM mass determination region of the MT2 bowl is not

degraded. For mp = 100 GeV there is a significant degradation of the bowl. However,

for this value of mp, there will be tremendous difficulties disentangling the signal from the

W+W− background since they have very similar MT2 endpoints. For the models with

heavier parents or with additional colored states producing hard USR, the minimum is

maintained for these cuts. Additionally, the MT2 cut has no effect on these plots (excluding

the example with mp = 100 GeV). We also checked that this statement is robust under

variations in the cut parameter choices made above.

6.4.3 Variation in Mmax
T2

In generating Figs. 6.5-6.8 we assumed that the Mmax
T2 endpoint has been measured pre-

cisely and matches the theoretical value. In [149], another MT2 based variable, MT2⊥, was

introduced, which is the projection of MT2 along the direction perpendicular to the USR.

They show that the endpoint of this distribution is independent of the USR momentum
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Figure 6.11: MT2 bowl for 25,000 (10,000) slepton (squark) pair production events which give jets,
two muons and missing energy. The bowls on the left column only have QCD ISR.
The bowls on the right have additional colored states which dominate the USR, and
we have taken mp = 300 GeV and mc = 150 GeV for these cases. Note that the cuts
preserve the minimum in all cases except mp = 100 GeV. Additionally, when one does
a cut on MT2(m̃c = 0), the bowl will be unaffected as long as this cut is taken below
Mmax

T2 for the bowl in question.
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and identical to Mmax
T2 (m̃c, 0) endpoint. Hence, even in cases with large USR, it is possible

to extract the required input to construct the bowls.

However, the level of accuracy with which Mmax
T2 (m̃c, 0) can be measured depends on

detector effects. For the purposes of illustration, in Fig. 6.12, we show how the MT2 bowl

is degraded as one varies the Mmax
T2 endpoint by ±2% and ±5% for mp = 300 GeV and

mc = 150 GeV. For variations on the order of −5% the minimum is shifted by a non-trivial

amount and can even disappear in some cases. For overestimates of Mmax
T2 of order 5%,

the width of the minimum becomes much broader than the statistical error bars presented

above. Therefore, it is crucial to the success of this method that an accurate measurement

of the MT2 endpoint be made. On the other hand, the steepness of the bowl around the

minimum is maximized for the correct choice of Mmax
T2 . By combining this observation

with the direct measurement of the endpoint, the accuracy with which Mmax
T2 could be

determined would be improved. The accuracy with which this can be done is left for future

work, though it can likely be done with high precision due to the larger amount of statistics

available than for the bowls.

6.5 Discussion and Conclusions

In this work we studied the possibility of using n = 1 single stage cascade decays to

measure the DM mass at the LHC. We have argued, using the particular MT2 variant

of [149], that if a signal is observable and backgrounds can be eliminated, it is possible

to make O(10%) measurements of the DM mass with O(10, 000) events before cuts for

optimal values of mp and mc. We have shown that this requires a precise determination of

Mmax
T2 (m̃c, 0).

In [14] the matrix element technique was used to ascertain how well the neutralino mass

could be measured in an n = 1 squark decay for a benchmark model with a parent mass

of 561 GeV and a child mass of 97 GeV. Using parton level events so that jet smearing
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Figure 6.12: Plot of MT2 bowls allowing for variations in the Mmax
T2 endpoint of ±5% and ±2%.

All bowls are made with 50,000 smuon pair production events before cuts. For clarity
we have not simulated detector effects for these events.

effects, etc., are not considered, they found that with 3000 events before cuts only an

upper limit on the child mass could be determined and with 7500 events a measurement

could be made with an O(100%) error bar. This can be compared with our Fig. 6.7 for

the benchmark mp = 500 GeV and mc = 125 GeV2. We find that with 3000 events we

can make an O(70%) determination and for 7500 events error bar goes down to O(50%)

once the correction for detector effects is applied as described above in Sec. 6.4.1. Hence,

the methods seem to be competitive, but ultimately a detailed study will be required to

determine which will lead to the best DM mass determination.

Finally, we would like to emphasize the model independence of these results, even when

there are complicated cascade decays. A large class of events can be interpreted as n = 1

processes with USR. All that is required is that the only missing energy in event is produced

at the end of the chain as the result of the decay of an on-shell parent, and that the USR

be distinguishable from the decay product of the parent. When this isolation is possible

(e.g. the two photon plus missing energy signal of some gauge mediated SUSY breaking
2Note that since they did not include the effects of ISR, these error bars are a conservative estimate.
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models) our results can be applied up to differences due to detector effects.



CHAPTER VII

Summary and Conclusions

This is an exciting era for fundamental physics. The LHC is running, direct detection

(DD) experiments are probing a well motivated region of parameter space, and data from

indirect detection experiments continues to accumulate. It is not unreasonable to believe

that all of this information will culminate in a new and deeper understanding of the laws of

nature and the composition of our Universe. The goal of this thesis is to attempt progress

in exploring some new theoretical ideas in dark matter (DM) model building while also

working to understanding what we can actually learn from the upcoming experimental

results.

We presented three new possible explanations for DM and the corresponding phe-

nomenology. The first model demonstrates that it is possible for the DM mass and/or

couplings at freeze-out, which are relevant for determining the relic abundance, could have

been different from the ones we would observe today. This requires the introduction of

a new scalar field which would have undergone a low temperature phase transition. We

discussed the experimental implications of this type of phase transition sector and the

possibilities for reconstructing this cosmological history.

The next two theories are both examples of asymmetric dark matter (ADM) — models

where the DM relic density is set by the baryon asymmetry. The first one provides a simple

SUSY realization of the ADM paradigm by introducing a new DM sector with an Abelian

114
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gauge symmetry. By introducing kinetic mixing between this new “dark photon” and the

hypercharge gauge boson, we can generate the GeV scale for the DM mass dynamically,

efficiently annihilate away the symmetric component of the DM relic density, and predict

observable signals for DD.

The second ADM model is motivated by the PAMELA positron excess. The requirement

of a leptophilic DM candidate implies that the DM caries lepton number and its relic density

is therefore set by the lepton asymmetry. In order to explain the PAMELA signal, the DM

must have a mass of order 100 GeV. Hence, the process which transfers the asymmetry

must be in equilibrium until after the DM becomes non-relativistic. A small Majorana

mass for the DM must be introduced in order for the relic density to be symmetric today.

Since this mass term violates lepton number, it can be utilized to generate masses for the

SM neutrinos at 1-loop. The renormalizable completion of the model implies the existence

of an additional Higgs boson which could be discovered at the LHC.

The rest of this thesis was devoted to exploring future experimental results in a semi-

model independent fashion. Typically the two largest effective DM-nucleon operators which

imply signal in DD experiments are spin-independent (SI) and spin-dependent (SD). If

SD signals are the result of coupling to the Z0 boson, we argue that there will likely be

observable signals in SI experiments as a consequence of Higgs boson exchange between the

DM and nuclei. By exploring the conditions required for a robust correlation between these

two signals, we show that if signals could appear in one type of experiment without implying

a signal for the other there would be a non-trivial fine-tuning of unrelated parameters.

Within the context of the MSSM, a desire to alleviate fine-tuning in the Z0 mass (and by

assuming a thermal history for the Universe) implies that SI and SD experiments should

see signals in currently running, or at least the next generation, of experiments.

We concluded with a study of DM mass determination at the LHC by utilizing single-
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stage cascade decays. In order to extract the DM mass from this class of events we utilize a

variation of the MT2 kinematic variable. In order to break kinematic degeneracies requires

the modification of MT2 to include the effect of upstream radiation. We compute 1-sigma

error bars on DM determination for a variety of parent and DM masses for events where

the upstream radiation is due to initial state radiation and for the case when it comes from

the decays of heavier states. We found that a measurement of a 150 GeV dark matter

candidate can be made to O(10%) for a parent mass of 300 GeV with a production cross

section of 100 fb and 100 fb−1 of integrated luminosity at the 14 TeV LHC.

In anticipation of future signals, it is up to the theoretical physics community to be

prepared for any possible scenario for how nature behaves. This means a continued push

to explore consequences of the endless possibilities of the theory landscape by looking for

new ways to generate the DM relic density, by finding new correlations between seemingly

unrelated theoretical issues, by discovering (and eliminating?) tricky degeneracies among

the signals from different models, and by proposing new experimental tests which will allow

us to untangle the mathematical structures that underlie reality. Hopefully within the next

few years we will make progress towards an answer to the nearly 80 year question — what

is the dark matter?
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APPENDIX A

Asymmetric Dark Matter from a GeV Hidden Sector

A.1 Models with Oasym ∼ S2LHu are not allowed

In this appendix, we argue that this operator is excluded. We begin by arguing for the

allowed size of mDM in models with this operator.

Since the size of mDM is determined by when the asymmetry transfer decouples with

respect to the EWPT, it depends on the size of M(−1). In particular, the process ψψ ↔

ν†γ̃d, which proceeds via t-channel S exchange, controls the transfer once 〈Hu〉 6= 0. Since

the rate for this process is proportional to T for TEWPT > T > mS , it becomes more

important as the temperature decreases. Therefore, if this process were ever in equilibrium

it would necessarily lead to some washout since its decoupling would be controlled by the

Boltzmann suppression of the DM. Requiring that this process not be in equilibrium for

any T > mS implies a bound

M(−1) & 3× 108 GeV
(
λ

0.1

)(
14 GeV
mS

)1/2

.(A.1)

For the asymmetry transfer to decouple before T = TEWPT, requires examination of the

operator with 〈Hu〉 = 0, which gives the condition:

M(−1) & 6× 107 GeV
(
λ

0.1

)
.(A.2)

These two conditions together imply that in order to avoid washout, the asymmetry transfer

must decouple at T > TEWPT, and the DM mass is 14.2 GeV (see Eq. (III.15)).
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For this operator, the decay ψ → S†ν† is allowed. This could give a non-trivial sym-

metric component of the DM today. If this decay rate is sizable, the constraints described

in Sec. 3.3.3 are relevant which implies that λ . 0.1. In fact, given the CMB constraint, it

is not possible to achieve a DM mass as large as the required 14.2 GeV. As described in

Sec. 3.3.3, maximizing the ratio ε/gd yields the largest possible DM mass. Using Fig. 3.2,

this ratio attains its maximum at (ε/gd)max ∼ (7× 10−3/7× 10−3), which when combined

with λ ∼ 0.1 implies mS = 7.2 GeV. Since this is far below 14.2 GeV, this scenario is

excluded.

One might hope that the CMB constraint could be mitigated by ensuring that symmetric

decays ψ → G̃S dominate over the asymmetric decays. The decay width to gravitinos is

given in Eq. (III.21) and to neutrinos is given by

Γ(ψ → S†ν†) =
1

32π
v2 sin2 β

M2
(−1)

(m2
ψ −m2

S)2

m3
ψ

.(A.3)

Then the branching ratio is given by

(A.4) BR(ψ → SG̃) = 1− BR(ψ → S†ν†) =
2M2

(−1)(m
2
ψ −m2

S)2

F 2v2s2β + 2M2
(−1)(m

2
ψ −m2

S)2
.

To satisfy the CMB constraint for λ = 1 requires that BR(ψ → S†ν) . 10−4. For gd = 10−1

and ε = 4× 10−3, M(−1) & 1016 GeV. This implies the reheat temperature after inflation

must be ∼ 1016 GeV in order for this operator to ever have been in equilibrium, inconsistent

with the lack of observation of tensor modes at WMAP [108].
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APPENDIX B

On the Correlation Between the Spin-Independent and
Spin-Dependent Direct Detection of Dark Matter

B.1 Squark Contributions to Direct Detection

The neutralino can scatter off of quarks via s-channel squark exchange, giving contribu-

tions to OSI
q or OSD

q . Only squarks that couple to the light quarks (u, d, s) will be able to

contribute to the SI and SD cross sections since only the light quarks have non-negligible

nuclear matrix elements.

A non-zero “left-right” squark mixture is required since SI scattering converts a left-

handed quark into a right-handed quark. Though a Bino/Wino mixture maximizes the

coupling between the quarks and the neutralino, the scattering cross section for a pure

Bino is of the same order.

If one makes the standard assumption that left-right squark mixing (i.e. a-terms) are

proportional to Yukawa couplings, then the squark mixing angle is proportional to mq/m̃q.

Therefore, all SI couplings will be proportional to a quark mass and there is no enhancement

for the light squarks over Higgs boson exchange. The maximum cross section is

(B.1)
(
σsquark

SI (χN → χN)
)

max
= 6× 10−9 pb

(
200 GeV
m̃s

)4

,

for a Bino-Wino mix. This is subdominant to the Higgs boson exchange contribution
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barring the cancellations discussed in Sec. 5.5.41.

The maximum σSD(χp→ χp) contribution from squark exchange is for a “left-handed”

up-type squark coupling to a pure Wino, due to the larger SU(2) gauge coupling:

(B.2)
(
σsquark

SD (χp→ χp)
)

max
= 3× 10−4 pb

(
200 GeV
m̃u

)4

.

This is typically subdominant to the Z0 contribution to SD DD. Thus, we will focus on

the effects of Z0 exchange in our discussions of the expected SD cross section.

B.2 The Bino/Higgsino and Wino/Higgsino Limits

In the limit of largeM1 (M2) the neutralino is dominantly a Wino/Higgsino (Bino/Higgsino)

admixture. We can explore this effective 3 state system using the SDM defined as (see

Eq. (V.26) above):

(B.3) LSDM 3 µDD D̄ + λhS D + λ′ h∗ S D̄ +
µS
2
S2.

The resulting lightest eigenstate (χ) is specified by

(B.4) χ ≡ ZS S + ZDD + ZD̄ D̄.

Following [24], it is useful to write this system in a basis defined by S andD± ≡ 1√
2
(D± D̄).

Note that the labels ± have nothing to do with electric charge. The mass matrix is then,

in the (S, D+, D−) basis,

MSDM =


µS

1√
2
(λ+ λ′) v 1√

2
(λ− λ′) v

1√
2
(λ+ λ′) v µD 0

1√
2
(λ− λ′) v 0 −µD

 ,

with the resulting lightest eigenstate,

(B.5) χ ≡ ZS S + ZD+ D+ + ZD− D−.

1If exceptionally large left-right in the squark sector is allowed (perhaps through abnormally large a-terms) a
contribution to σSI(χN → χN) of O(10−3 pb) may be obtained.
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Since we are interested in the SD DD cross section, our goal is to extract the coupling

of χ to the Z0. The coefficient of the operator OSD
q of Eq. (V.10) is given by

(B.6) dq = − g2

4m2
Z c

2
w

|2ZD+ ZD− |2 T
q
3 .

Note that |2ZD+ ZD− | ≡ |ZD|2 − |ZD̄|2. One can find analytic expressions for the mass

eigenstates and the combination |2ZD+ ZD− | in various useful limits. To second order in

v, for |µD|, |µS |, (|µD| − |µS |)� λ v, λ′ v

mχ = µS −
2λλ′ v2

µD
− (λ2 + λ′2) v2 µS

µ2
D

(B.7)

|2ZD+ ZD− | =
(λ′2 − λ2) v2

µ2
D − µ2

S

,(B.8)

and for |µD| = |µS | � λ v, λ′ v,

mχ = µS −
1√
2
|λ+ λ′| |v|+ (λ− λ′)2 v2

8µS
(B.9)

|2ZD+ ZD− | =
(λ′ − λ) v
2
√

2 |µS |
+

(λ′2 − λ2) v2

8µ2
S

.(B.10)

Perturbing away from the limit of exact degeneracy gives corrections to these expressions

of O((µS − µD)/µD). Note we have assumed that there is no CP violation for simplicity.

In order to apply these expressions to the MSSM one can make the identifications

SDM Bino/Higgsino Wino/Higgsino

µS M1 M2

µD µ µ

λ v −mZ sw cβ mZ cw cβ

λ′ v −mZ sw sβ mZ cw sβ

where we neglect terms of O(1/M2) for the Bino/Higgsino system and O(1/M1) for the

Wino/Higgsino system.

Explicitly making the substitutions for the MSSM we have
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|ZHd
|2 − |ZHu |2

=


c2β s

2
w m

2
Z

µ2−M2
1

for |M1|, |µ|, |µ| − |M1| > mZ , M2 →∞

c2β c
2
w m

2
Z

µ2−M2
2

for |M2|, |µ|, |µ| − |M2| > mZ , M1 →∞,
(B.11)

and

|ZHd
|2 − |ZHu |2

=


(sβ−cβ) sw mZ

2
√

2 |µ| +
(s2β−c

2
β) s2w m

2
Z

8µ2 for |M1| = |µ| > mZ , M2 →∞

(sβ−cβ) cw mZ

2
√

2 |µ| +
(s2β−c

2
β) c2w m

2
Z

8µ2 for |M2| = |µ| > mZ , M1 →∞.
(B.12)

B.3 No-go Theorem for photino-Higgsino DM

The neutralino mass matrix in the (γ̃, Z̃, H̃d, H̃u) basis is given by

M =



M1 c
2
w +M2 s

2
w (M1 −M2) cw sw −mZ s2w cβ mZ s2w sβ

(M1 −M2) cw sw M1 s
2
w +M2 c

2
w mZ c2w cβ −mZ c2w sβ

−mZ s2w cβ mZ c2w cβ 0 −µ

mZ s2w sβ −mZ c2w sβ −µ 0


.

Is it possible to generate a large SD/SI ratio by having DM which is only a mixture

of photino and Higgsino? The Higgsino component is required for a non-trivial coupling

to the Z0 and an admixture of photino (and not Zino) will allow (|ZHd
|2 − |ZHu |2) 6= 0

without introducing a coupling to the Higgs. We show that current phenomenological

bounds preclude this possibility.

There are two potential options. The first is decoupling the Zino by making it heavy

while tuning the photino mass to be ∼ µ. This implies taking the limit where M1 and

M2 are large while the combination M1 c
2
w +M2 s

2
w stays small, which requires sgn(M1) 6=

sgn(M2). Then the Zino-photino mixing will go like (M1 −M2)/mZ̃ > O(1). Note that

we are free to take M1 < mZ to suppress this mixing, but due to the LEP bound on the
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chargino mass, M2 > mZ . The second option is to try to eliminate the photino-Zino mixing

by taking M1 = M2. Then the Zino and photino have the same mass and the Higgsino

will mix with both, resulting in a DM state which is an equal admixture of all 4 gauge

eigenstates. Therefore, a neutralino cannot be a mixture of only photino and Higgsino.
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APPENDIX C

Extracting the Dark Matter Mass from Single Stage
Cascade Decays at the LHC

C.1 Benchmark Models

The n = 1 events studied here are the simplest class of events at the LHC which involve

the DM. Perhaps the most commonly studied of such processes is p p→ q̃ q̃ → j j χ̃0 χ̃0. In

such models, however, one expects there to be higher n processes present as well which will

give additional kinematic information. In this appendix we will outline examples of n = 1

process with scalar, fermionic and vector parents. Estimates for the electoweak LHC cross

sections for these models are given in Table 6.1.

C.1.1 Scalar Parents

We begin by motivating scalar parents. Recently, a wave of leptophilic DM models have

been proposed to explain measured cosmic ray anomalies. A non-supersymmetric example,

which is additionally motivated by the baryon-DM coincidence, can be constructed by sim-

ply extending the SM by two additional fields: a new Higgs doublet, H ′, and a leptophilic

DM state, X, interacting via [140]

(C.1) L = X̄LH ′ +mXX̄X.

When the additional term

(C.2) ∆L = λ(H†H ′)2 + h.c.
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is added to the Lagrangian, where H is the SM Higgs doublet, and the H ′ is integrated

out, the effective operator

(C.3) Lasym =
X̄2LH LH

M4

is generated, where M is the effective suppression scale. This operator transfers the lepton

asymmetry to the DM sector, so that the DM density is set by an asymmetry and not

thermal freeze-out. Also note that such leptophilic DM candidates can be viable as an

explanation for the observation of an excesses of cosmic ray positrons by the PAMELA

experiment [81]. Although the DM would be asymmetric (i.e. mostly X̄) when its density

freezes in, that asymmetry could be erased through Majorana mass terms for X̄ and X.

Then in the universe today, XX̄ → `+`− may give rise to significant cosmic ray positron

signals.

The DM would be created at the collider through the electroweak production of the H ′,

(C.4) p p→ H ′H ′ → X X̄ `+ `−.

However, production rates for p p→ H ′H ′ → X X̄ `+ `− will be low (see Table 6.1). While

these events could be extracted from the large di-boson background with high luminosity,

DM mass determination will be difficult.

Note that this process is identical to the electroweak pair production of sleptons (see

[35] for a study which determines how feasible it is to find these processes at the LHC),

(C.5) p p→ ˜̀+ ˜̀− → `+ `− χ̃0 χ̃0.

C.1.2 Fermionic Parents

For an example with fermionic parents, we turn to a model which is embedded within

the MSSM. Introduce a superfield DM candidate, X, with the quantum numbers of a

sterile neutrino. Then the active sneutrino can mix with scalar partner for X, X̃, leading
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to mixed sneutrino DM. In [28, 126, 190], X̃ has been shown to be a viable DM candidate.

At the LHC, electroweak production can go through

(C.6) p p→ χ̃+χ̃− → X̃ X̃∗ `+ `−,

where χ̃± is a chargino. Since the parent particles are fermions instead of scalars, the

production rates are larger (see Table 6.1).

With a slight modification, these classes of DM models can be related to the lepton

asymmetry. One can add a new pair of electroweak doublet superfields, D and D̄, and a

new superpotential term,

(C.7) ∆W = mD D̄ D + λ X̄ DHu + yi Li D̄ X̄ +mXX̄X,

where mD is the mass for D, mX is the mass for X and λ is a new yukawa coupling.

Integrating out these doublet states results in the lepton number transferring operator

(C.8) Wasym =
X̄2 LHu

M
,

where M is the effective suppression scale. This operator can be used to generate the relic

density. The production at the collider then goes through the electroweak production of

the fermionic D̃:

(C.9) p p→ D̃+ D̃− → ˜̄X ˜̄X∗ `+ `−.

Production rates in all these fermionic parent models can further be enhanced by em-

bedding the n = 1 process into squark decays:

(C.10) p p→ q̃ q̃ → χ̃+ χ̃− j j → ν̃ ν̃∗ `+ `− j j

As described above (see Fig. 6.4), this will lead to a much harder USR distribution, which

in turn will imply better DM mass determination.
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C.1.3 Vector Parents

Lastly, we note that within UED models, pair production of vectors gives rise to similar

signals. For example,

(C.11) p p→W (1)+W (1)− → `+ `− ν(1)ν̄(1),

where W (1)± is a KK W -boson, ν(1) is a KK neutrino is an n = 1 chain. This process can

similarly be embedded in the decay of new colored states, which gives rise to harder USR:

(C.12) p p→ Q(1) Q̄(1) →W (1)+W (1)− j j → `+ `− ν(1) ν̄(1) j j,

where Q(1) is a KK quark. Note that if ν(1) is the DM its mass is restricted to be greater

than O(50 TeV) by direct detection experiments [181].

C.2 Phase Space Dependence on MT2

To show the phase space dependence on MT2 and the overall scale mp, we will assume

that the parents are produced on-shell so that the 2 → 4 production in Fig. C.1 can be

approximated by the 2→ 2 cross section σ2→2 and parent particle decay width Γ.

Figure C.1: Process considered in this section. The proton momenta are qi, the parent momenta
are ki, the visible momenta are pvi and the child momenta are pci .
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We begin by simplifying the general 2 → 2 differential cross-section and 1 → 2 differ-

ential decay width. Throughout the calculation we will drop overall constants since they

do not contribute to the normalized distributions. The 2 → 2 differential cross-section is

given by

(C.13) dσ2→2 =
1

4 |~q1|CM

√
ŝ
|Mσ|2 (2π)4 δ4(q1 + q2 − k1 − k2)

1
2E1

d3k1

(2π)3
1

2E2

d3k2

(2π)3
,

where
√
ŝ is the parton center-of-mass (CM) energy and Ei is the energy of the ith parent.

Integrating over ~k2 in the CM frame to eliminate δ3(~q1 + ~q2 − ~k1 − ~k2) gives

(C.14) dσ2→2 ∝
1
ŝ
|Mσ|2

1
E1E2

δ(
√
ŝ− E2 − E1) d3k1,

where ~k2 = −~k1. Similarly, we simplify the 1→ 2 differential decay widths

(C.15) dΓi =
1

2Ei
|MΓ|2 (2π)4δ4(ki − pvi − pci)

1
2Evi

d3pvi

(2π)3
1

2Eci

d3pci
(2π)3

,

where c and v stand for child and visible, respectively, and i = 1, 2. Integrating over ~pci to

eliminate δ3(~ki − ~pci − ~pvi) gives

(C.16) dΓi ∝
1

EiEci Evi

|MΓ|2 δ(Ei − Eci − Evi) d3pvi ,

where the δ-function enforces ~pci = ~ki − ~pvi . Since for 1 → 2 decays the summed and

squared matrix elements |MΓi |
2 are only functions of the masses, they will not contribute

to the normalized distributions. We drop these factors from here forward.

Convolving the differential parent decay width with the differential 2→ 2 cross section,

and again dropping overall constant factors gives

dσ = dσ2→2 dΓ1 dΓ2

∝ |Mσ|2

ŝ

δ(
√
s− 2E1) δ(E1 − Ec1 − Ev1) δ(E2 − Ec2 − Ev2)

E4
1 Ec1 Ev1 Ec2 Ev2

d3k1d3pv1d
3pv2 .(C.17)

Define cosβi to be the angle between the visible particle momenta and the parent particle:

(C.18) ~ki · ~pvi ≡ ki pvi cosβi.
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Rewriting the phase space delta functions so that cosβ1, cosβ2, and k1/mp are the

integration variables, the integrand takes on a more revealing form

dσ2→2 dΓ1 dΓ2 ∝ d
(
k1

mp

)
dpv1 dpv2 dΩ1 d(cosβv1) d(cosβv2) dφv1 dφv2

× |Mσ|2

s̃5/2
√
s̃− 1

J (θ1, θv1 , θv2 : θ1, βv1 , βv2) δ
(
k1

mp
−
√
s̃− 1

)
× δ

(
cosβ1 −

µ− pv1
√
s̃

pv1
√
s̃− 1

)
δ

(
cosβ2 −

µ− pv2
√
s̃

pv2
√
s̃− 1

)
,(C.19)

where J (...) is the Jacobian for converting from integration over the θ angles to the β

angles, which does not depend on any mass parameters, µ is defined as in the main body

of the paper (see Eq. (VI.6)), and

(C.20) s̃ ≡ ŝ

4m2
p

.

Hence, Eq. (C.19) shows that the phase space only depends on the parent and child

mass through the two functions s̃ and µ. Note that when integrating over the parton

distribution functions (PDFs), the factor 1/(1− s̃)2 will cause the differential cross-section

to be dominated by values s̃ ∼ 1, which corresponds to threshold production of the parent

particles. Therefore, for a trivial cross section matrix element, the differential cross section

only depends on the mp and mc through the combination 2µ = Mmax
T2 (m̃c = 0) = (m2

p −

m2
c)/mp. Note that in some cases,Mσ will depend explicitly on mp, or masses of particles

being exchanged in the corresponding Feynmann diagram, causing slight deviations in the

normalized distributions for the same Mmax
T2 , but different parent mass.

In Fig. C.2, we plot various normalized distributions with the same Mmax
T2 (m̃c = 0) end-

point. With the exception of a weak dependence on the parent mass, due to ŝ dependence,

the distributions look virtually identical. Note that it is this weak ŝ dependence that the

matrix element methods seek to capitalize on.
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Figure C.2: Various distributions for points with the same MT2 endpoint for p p → ˜̀+ ˜̀− →
`+ `− χ̃0 χ̃0. As shown in Appendix C.2, the data only depends on Mmax

T2 with a slight
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p). The distributions plotted are the invariant mass of the two
visible particles (upper left), the total missing transverse energy (upper right), the to-
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between the two visible particles (lower right).
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