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Tiger got to hunt,
Bird got to fly;
Man got to sit and wonder, “Why, why, why?”

Tiger got to sleep,
Bird got to land;
Man got to tell himself he understand.

– Kurt Vonnegut, Jr., Cat’s Cradle

– Japanese proverb
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CHAPTER I

Introduction

1.1 Background and Motivation

As sensing technology evolves, sensor costs decrease and sensing capability im-

proves; hence, sensors are being installed in an increasing number of applications.

Advances in data storage and computing capabilities also facilitate better and faster

processing of sensor data. With the amount of sensor data and computing power

available, new ways to process this data can therefore be developed to detect system

faults.

Fault detection is essential to many disciplines [1, 2]. In aerospace engineering,

structural health monitoring [3] and operational modal analysis [4] focus on detecting

and localizing faults in wings, fuselages, and control surfaces. In manufacturing,

process monitoring [5] and machine health monitoring [6, 7, 8] consider detection and

characterization of anomalies in parts, machine tools, and material handling systems.

In civil engineering, detection of cracks in bridges and buildings is widely researched

[9, 10]. Mechanical engineering applications include engine fault detection [11] and

pump fault detection [12].

Validated fault detection techniques provide multiple benefits. Downtime and

faulty operation can be reduced by implementing fast, reliable fault detection. Main-

tenance costs and scrap can also be mitigated through fault detection. Furthermore,
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health and safety risks can be alleviated through automated fault detection, especially

if it is applied to large structures that contain human occupants, such as aircraft and

buildings.

In some applications, an analytical model for the system under study may be

known [13]. In this case, model-based fault detection techniques may provide more

accurate fault detection than output-only fault detection techniques [14]. However,

an analytical model for the system under study is often unavailable or uncertain. In

fact, output measurement data may be the only information known about the system.

Furthermore, the excitation that induces the output data may be uncontrollable, un-

commandable, unknown, or corrupted by noise and disturbances. Hence, techniques

that use only output data for fault detection are needed.

1.2 Existing Techniques for Output-Only Fault Detection

1.2.1 Statistical Process Control

Statistical process control (SPC) techniques provide one way to detect faults by

examining deviations of the output measurements from their nominal values. First, a

control chart [15] is constructed using the output data. A Shewhart control chart [16]

examines the raw output data, a cumulative sum (CUSUM) control chart [17] exam-

ines data that has been normalized by the mean and variance of all the data collected,

and an exponentially-weighted moving average (EWMA) control chart [18] examines

averaged data values in which the relative weight of each data point exponentially

decreases with time. Second, a set of heuristic rules, such as the Westinghouse Elec-

tric Rules [19], is used to determine whether a fault has occurred because the data

in the control chart is out-of-control. The Westinghouse Electric Rules state that the

data in the control chart is out-of-control if (1) any point falls outside the 3σ limit,

(2) two out of three consecutive points fall outside the 2σ limit, (3) four out of five
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consecutive points fall outside the σ limit, or (4) at least nine consecutive points fall

on the same side of µ, where µ and σ are the mean and variance of the data in the

control chart, respectively.

1.2.2 Pattern Recognition

Pattern recognition approaches for fault detection are typically divided into three

main stages [20]. First, key characteristics, or features, are extracted from the output

data. Second, a subset of the most relevant features are selected. Third, the values

of the chosen features are combined together to produce an overall estimate of the

condition of the system. A fault is detected if the estimated system condition does

not correspond to a normal system condition.

Many features can be extracted from data, such as the mean and variance of

the data [21]. Because some features provide better insight into whether a fault

has occurred than others, a large number of time-domain, frequency-domain, and

time-frequency-domain features are extracted from the data to ensure that no key

information is lost [22]. Furthermore, application-specific features can be defined

based on expert knowledge or observation of the data [23].

Fischer’s criterion [24] is typically used to rank the relative importance of various

features, but improved classification can be obtained by selecting the set of features

that best span the feature space [25]. Hence, clustering and principal component

analysis (PCA) can be applied [26]. However, because PCA separates the feature

space using a linear combination of features, it is sub-optimal if the feature clusters

cannot be separated using linear partitions. Hence, heuristic graph search techniques

such as sequential forward selection have been developed to obtain a near-optimal set

of features [27].

To classify a set of features, machine learning techniques are used to define bound-

aries between clusters of features. Boundaries can be linear (for example, using
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Fisher’s linear discriminant) or nonlinear (for example, using a support vector ma-

chine) [28] and are typically obtained by training using supervised learning techniques

[29].

1.2.3 System Identification

Time-domain identification approaches can be used to estimate the parameters

of a time-series model from the excitation to the output measurements [30, 14]. For

example, estimates of the parameters a1, . . . , an, b0, . . . , bn of the linear time-series

model

y(k) = a1y(k − 1) + · · ·+ any(k − n) + b0u(k) + · · ·+ bnu(k − n)

can be used to detect faults, where y(k) denotes the output measurement(s) at time

step k and u(k) denotes the excitation at time step k. For output-only identification,

u(k) is assumed to be a realization of a white random process [32].

Eigenstructure estimation approaches identify a linear state space model for the

system [34, 35, 36]. For example, estimates of A and C of

x(k + 1) = Ax(k) + n1(k),

y(k) = Cx(k) + n2(k),

can be used to detect faults, where x(k) is the state of the system and n1(k) and n2(k)

are white and uncorrelated. A related approach, which uses blind source separation

to estimate the coefficients of the linear relationship between y(k) and x(k), can also

be applied [37]. These approaches typically assume that the excitation is a realization

of a white random process [33].
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Frequency-domain identification techniques can be used to estimate the resonant

frequencies and mode shapes of a structure [39]. For example, Fourier transforms can

be used to compute the frequency spectrum of each output measurement, and modal

characteristics inferred from the output spectra can be used to detect faults [38].

As with time-domain and eigenstructure estimation approaches, frequency-domain

identification techniques typically assume that the excitation is a realization of a

white random process [40].

In structural health monitoring, output-only system identification techniques are

known as Operational Modal Analysis (OMA) [4]. In OMA, the dynamics between

the excitation and output(s) are typically estimated, but the dynamics between sets

of output measurements (transmissibilities) can also be estimated [41, 42]. If the

excitation is sinusoidal, a frequency-domain approach can be used to identify the

harmonic frequencies of the structure [43].

1.2.4 Limitations of Existing Output-Only Fault Detection Approaches

SPC techniques require training or expert knowledge to determine the threshold σ

[44]. Furthermore, knowledge of the spectrum of the output data is required to design

an SPC approach to minimize the number of missed detections and false alarms [15].

Finally, SPC techniques cannot detect changes in the dynamics of the system that do

not result in a change in one of the first few statistical moments of the output data.

Feature extraction requires expert knowledge to define key metrics that charac-

terize the data. Machine learning requires a large amount of training data and may

need significant computational time to complete the training and classification steps

[45, 46]. Furthermore, training must be completed for each excitation, and unex-

pected changes in the excitation can cause the output data to be incorrectly classified

[47]. Finally, artificial neural networks (ANNs) require expert knowledge and/or ex-

tensive testing to determine the optimal number of layers, number of nodes, and types
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of activation functions in each layer [48].

Although many system identification approaches assume that the excitation signal

is a realization of a white random process, this assumption cannot be verified unless

the excitation can be measured. If the excitation signal is not a realization of a

white random process, consistent parameter estimates can be achieved only for very

specialized cases, namely, the white equation error and finite impulse response cases

[49, 50]. Furthermore, disturbances and nonzero initial conditions can corrupt the

output measurements and result in inaccurate parameter estimates [51, 52].

1.3 Research Objectives

The research presented in this thesis has three main objectives. First, we want to

develop a technique to detect an abrupt change in a noisy signal in real-time. This

technique should provide comparable or better performance than existing approaches

in terms of detection speed, number of missed detections, and number of false alarms.

Second, we want to define key features and choose a feature selection and classification

approach that is able to classify multiple states accurately while while requiring short

training and classification time. This technique should provide better performance

than a benchmark approach using principal component analysis and a multi-layer

perceptron. Third, we want to define a technique to detect changes in the dynamics

of a linear system. This technique should require no knowledge or measurement of the

excitation, allow an arbitrary nonzero and unknown initial system state, and degrade

gracefully in the presence of output noise. Furthermore, this technique should be

applicable to systems that have colored, non-unit-rank excitation as well as colored,

correlated output noise.
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1.4 Outline of the Dissertation

The remainder of this dissertation is organized as follows.

Chapter II explains the AMWPD algorithm for real-time abrupt change detection.

The AMWPD algorithm calculates the mean and variance of the data in adjacent

moving windows, compares the means of the data in the two windows, and returns

a fault if the mean of the data in the most recent window differs from the mean of

the data in the older window by more than kσold, where σold denotes the standard

deviation of the data in the older window and k > 0 is chosen by experience or data-

based training. We demonstrate techniques that reduce the number of operations

required to compute the mean and variance of the data in the two windows, thereby

reducing the computational requirements of the proposed algorithm. For a grinder-

dresser crash detection application, the AMWPD algorithm is compared with existing

techniques and shown to provide comparable detection speed and fewer false alarms.

This chapter is based on work described in [53].

Chapter III discusses techniques for shaving tool wear classification (including

tooth breakage detection) using indirect sensing. Feature extraction, feature dimen-

sion reduction, and classification are considered. PCA and modified tabu search

(mTS) with long-term memory are compared for feature dimension reduction. A

multi-layer perceptron (MLP) ANN is compared with a probabilistic neural network

(PNN) for classification. The approach using modified TS and a PNN (mTS + PNN)

is shown to achieve more accurate classification in less time than the approach using

PCA and an MLP. This chapter is based on work described in [54, 55].

Chapter IV defines a pseudo transfer function (PTF) from one output measure-

ment to another. The single-input-single-output (SISO) PTF order and relative de-

gree are characterized, and proofs and numerical examples are provided to justify the

results. SISO PTFs are estimated consistently in the presence of output noise using

quadratically-constrained least squares (QCLS), a technique described in [50]. Fur-

7



thermore, SISO PTFs are used to detect faults in a simulated example. This chapter

is based on work described in [56, 57, 58].

Chapter V extends the work in Chapter IV by introducing multiple-input-multiple-

output (MIMO) PTFs for systems with multiple excitations. Conditions for which

a MIMO PTF is defined are presented, as well as an upper bound on the order of

each entry of the MIMO PTF. A µ-Markov MIMO QCLS algorithm is developed and

used to estimate the MIMO PTF consistently in the presence of output noise. This

chapter is based on work described in [57, 59].

Finally, Chapter VI presents conclusions, contributions, and future work.
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CHAPTER II

Real-Time Peak Detection in a Noisy Signal

2.1 Introduction

Recent research has focused on improving monitoring and control techniques for

processes, tools, and machines to make manufacturing less expensive, more efficient,

and safer. To accomplish this task, sensors can be used to collect information about

the condition of the monitored system. Researchers have also developed techniques

for processing sensor signals to extract features that highlight the system condition.

Generally, the feature extraction methods can be classified as time domain, frequency

domain, time-frequency domain, or model-based approaches [21].

Once characteristic features are extracted from the signal, various methods can be

used to decide when the change in a feature or set of features necessitates maintenance

action. Some decision-making strategies include thresholding [60], statistical process

control (SPC) [15], and clustering based on pattern recognition [29].

Although this serial flow of information from sensor data to extracted features

to decisions has provided significant improvements in manufacturing quality and ef-

ficiency, “more development work is needed to ‘ruggedize’ monitoring algorithms so

that they can be used reliably on the shop floor” [21]. For example, although time-

frequency signal processing using wavelets provides insight into the system condition

(see [61] and [62]), the associated computational requirements makes this approach
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infeasible for some embedded applications. Furthermore, the computational time

required for time-frequency signal processing can limit its application in real-time

monitoring, where processing time must be minimized.

Hence, we develop an algorithm for peak detection that includes signal processing

and decision-making to minimize computational requirements and computing time.

The proposed algorithm is applied to the signal collected from a horsepower sensor on

a dresser spindle motor to detect contact between a dresser and grinder in real-time. If

contact is detected, the proposed algorithm provides feedback to stop machine motion

before damage occurs. The performance of the proposed algorithm is compared with

other contact detection methods and shown to provide fewer false alarms than existing

approaches.

The rest of this chapter is organized as follows. Section 2.2 provides details on

existing signal processing and decision-making methods. Section 2.3 explains the

proposed algorithm. Section 2.4 discusses implementation of the proposed algorithm

in an industrial production environment and compares the results of the proposed

algorithm with existing techniques for peak detection. Finally, Section 2.5 presents a

summary and some future research directions.

2.2 Signal Processing and Decision-Making Methods

Time domain signal processing methods extract statistical characteristics from

the signal; these characteristics are then used to determine whether a change in the

signal has occurred [63]. The main advantage of time domain techniques is that they

generally require less computational time than frequency domain or time-frequency

domain signal processing methods. However, time domain methods may be sensitive

to noise and do not provide as much insight into the process dynamics as other types

of signal processing methods.

Frequency domain signal processing methods extract information about the spec-
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trum of the sensor data using Discrete Fourier Transforms (DFTs) or Hilbert Trans-

forms [64]. Key spectral content is reflected in characteristic features such as the

NA4 index [23]. Frequency domain techniques require more computational time than

time domain techniques but may provide additional insight into the properties of the

signal, for example, by estimating natural frequencies. However, frequency domain

methods do not provide an estimate of the time when a specific frequency component

begins or ends, which could help users pinpoint the time when a change in the system

characteristics began.

Time-frequency domain signal processing methods extract features present in both

the time and frequency domains using short-time Fourier transforms (STFT) [65],

wavelet transforms [66], or a time-frequency kernel such as the Wigner-Ville [67]

or Choi-Williams [68] distribution. Time-frequency domain methods describe the

signal’s characteristics more completely than the time domain or frequency domain

methods, but time-frequency domain methods require significant computational time.

Hence, it is often infeasible to apply time-frequency signal processing methods for

embedded, real-time fault detection.

Model-based signal processing methods build a model for the nominal system dy-

namics using expert knowledge or input-output data [13]. Sensor data is then used to

construct a model for the present system dynamics; the present system dynamics are

compared to the nominal dynamics and a fault is detected if the estimated dynamics

differ significantly from the nominal dynamics. ARMA model residuals [69], parity

equations [70], virtual sensing [71], and parameter estimation [72] are some model-

based signal processing methods. For systems with unknown nonlinear dynamics,

construction of a model for the system dynamics can be time-consuming and compu-

tationally intensive, which limits the applicability of model-based signal processing

techniques in embedded, real-time fault detection.

Decision making methods for abrupt change detection are either parametric or
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non-parametric [73]. Parametric change detection techniques consider changes in es-

timated parameters or features, while non-parametric change detection techniques

consider changes in parameters and model structure simultaneously. If sensor noise is

known or estimated, parametric approaches are more accurate than non-parametric

approaches [74]. However, a Shewhart or control chart [15], which is a type of para-

metric change detection technique, cannot differentiate between abrupt and gradual

changes. If the sensor output gradually changes over time due to degradation or

process changes [75], a control chart may falsely indicate that an abrupt change has

occurred. Hence, a moving window, such as an Exponentially Weighted Moving Av-

erage (EWMA), a cumulative sum (CUSUM), or a finite moving average control chart

[19], can be introduced so that only abrupt changes in the signal are detected. How-

ever, these algorithms compare a single incoming data point with the baseline data

to determine whether an abrupt change has occurred. If the incoming data is noisy,

direct application of these methods can yield many false alarms.

2.3 Description of Proposed Algorithm

In the proposed Adjacent Moving Window Peak Detection (AMWPD) algorithm,

we assume that no abrupt changes occur in the signal until two adjacent first-in-first-

out buffers are filled with data. Hence, we compare the new data in the small buffer

SB with the old data in the large buffer LB. For K ∈ {L, S}, the mean of the data

in buffer K at iteration i is given by µKBi
, while the standard deviation of the data in

buffer K at iteration i is given by σKBi
. We detect an abrupt change if µSBi

À µLBi
.

We note that the presence of LB reduces the sensitivity of the proposed approach to

false detection of gradual changes. We apply the proposed approach to a sample time

series in Figure 2.1.

For each iteration i of the AMWPD algorithm, the newest sensor measurement y

is assigned to first element of SB, while the last element of SB in iteration i − 1 is
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Figure 2.1: Illustration of the two adjacent buffers in the Adjacent Moving Window
Peak Detection (AMWPD) algorithm.

assigned to the first element of LB. Hence,

SBi[1] = y (2.1)

and

LBi[1] = SBi−1[NSB], (2.2)

where the number in square brackets denotes the element of the associated buffer,

NKB is the number of data points in buffer KB, and K ∈ {L, S}.
NSB and NLB are chosen to maximize detection accuracy and robustness. If NSB

is too small, the algorithm will not be sufficiently robust to noise; conversely, if NSB

is too large, the algorithm will take too long to detect an abrupt change in the signal.

To ensure that NSB and NLB are properly chosen, we move a test data set through

a single buffer and choose NSB to be the length of the shortest buffer whose mean

and variance do not change significantly as the data is passed through the buffer. We

choose NLB > NSB but small enough to reduce computation time. The choices of

NSB and NLB for the dresser contact application are discussed in Section 2.4.2.
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Once both buffers are full with data, µSBi
, µLBi

, and σLBi
are given by

µKBi
, 1

NKB

NKB∑
q=1

KBi[q] (2.3)

and

σ2
KBi

, 1

NKB

NKB∑
q=1

(KBi[q]− µKBi
)2 , (2.4)

where q ∈ {1, . . . , NKB} and K ∈ {L, S}.
When a new data point y enters SB, (2.3) implies that, for time i + 1,

µSBi+1
=

y

NSB

+
1

NSB

NSB−1∑
q=1

SBi[q]. (2.5)

For time i, (2.3) also implies that

1

NSB

NSB−1∑
q=1

SBi[q] = µSBi
− SBi[NSB]

NSB

. (2.6)

Substituting (2.6) into (2.5), we have

µSBi+1
=

y − SBi[NSB]

NSB

+ µSBi
. (2.7)

Similarly, from (2.2), we have

µLBi+1
=

SBi[NSB]− LBi[NLB]

NLB

+ µLBi
. (2.8)

Hence, the number of operations to calculate the mean is reduced from NAB-1 addi-

tions and 1 division to 1 addition, 1 subtraction, and 1 division.

The standard deviation of the large buffer at time i+1 is also updated dynamically.
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For time i + 1, (2.4) implies

σ2
LBi+1

=

(
SBi[NSB]− µLBi+1

)2

NLB

+

(∑NLB−1
q=1 LBi[q]− µLBi+1

)2

NLB

. (2.9)

For time i, (2.4) also implies

(∑NLB−1
q=1 LBi[q]− µLBi

)2

NLB

= σ2
LBi

− (SBi[NSB]− µLBi
)2

NLB

. (2.10)

Next, we assume µLBi+1
≈ µLBi

. This approximation is justified because we assume

that the mean of the signal in LB does not change significantly as each new data

point enters SB. Hence, (2.9) and (2.10) imply

σ2
LNi+1

=
(SBi[NSB]− µLBi

)2 − (LBi[NLB]− µLBi
)2

NLB

+ σ2
LBi

. (2.11)

Hence, the number of operations required to calculate the standard deviation is re-

duced from NLB subtractions, NLB multiplications, NLB-1 additions, 1 division, and

1 square root to 3 subtractions, 2 multiplications, 1 addition, 1 division, and 1 square

root.

We set a threshold so that, if the mean of SB is significantly larger than the mean

of LB, an abrupt change is detected. The abrupt change detection criterion is given

by

Peak =





0, µSBi+1
< µLBi+1

+ kσLBi+1
,

1, else,
(2.12)

where k is the user-defined threshold that determines how large the change must be in

order to be detected. If the data is normally distributed, k ≈ 3 is a common threshold

choice based on the size of the confidence interval needed to describe normal process
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variations [76, 77]. The choice of k for the dresser contact detection application is

further discussed in Section 2.4.2.

A flowchart of the AMWPD algorithm is shown in Figure 2.2. Although the

AMWPD algorithm is used to detect changes in mean, a similar approach could be

used to detect changes in variance.

Figure 2.2: Flowchart of the AMWPD algorithm.

2.4 Industrial Application

2.4.1 Application Description

Grinding is an abrasive finishing process that can produce smooth surfaces with

tight geometric tolerances while maintaining high material removal rates [78]. To

facilitate grinding, the dressing process removes dull grains, exposes new, sharp grains,

and re-shapes the grinding wheel. Because improper dressing can cause the grinding

wheel to fail catastrophically, the dressing process must be carefully monitored.

Recent advances in numerical control, probing, and sensing have improved the
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dressing process [79, 80]. However, proposed techniques for detecting dresser contact

using Acoustic Emission (AE) sensors are prohibitively expensive for shop-floor im-

plementations and require extremely high data sampling rates [81, 82]. Hence, other

sensors and processing techniques must be investigated to detect dresser-grinder con-

tact.

Figure 2.3: A schematic drawing of the dressing process.

We apply the AMWPD algorithm to detect contact between a cylindrical dresser

and 4-axis cylindrical grinder. The AMWPD algorithm interfaces with the machine

controller to immediately stop grinder motion if improper contact occurs between

the grinder and dresser to ensure that catastrophic damage is avoided. A schematic

drawing of the proper dressing process is shown in Figure 2.3, while a drawing of

some of the possible dresser failure modes is shown in Figure 2.4.

Figure 2.4: Two possible dresser failure modes.

A picture of the grinder where the data collection, data processing, and decision
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making system is installed is shown in Figure 2.5. Data from a horsepower sensor

is used to determine whether contact between the dresser and grinder has occurred.

Because the horsepower sensor only needs access to the power cables on the spindle

motor, this sensor is very unintrusive to the process [79]. Other types of sensors used

for dresser contact detection, like AE [81] or force [83] sensors, must be installed very

close to or embedded in the grinding wheel and therefore may adversely affect the

grinding process. Furthermore, the horsepower sensor is less expensive and requires a

much lower sampling rate than other sensor types. Hence, although AE sensors can

detect grinder-dresser contact faster than horsepower sensors [84], we use a horsepower

sensor to detect grinder-dresser contact.

Figure 2.5: Picture of the grinder system where the AMWPD algorithm is applied.

The hardware for this system consists of an analog input module, a solid-state

relay output module, and a real-time controller. To avoid aliasing, the signal from
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k NLB NSB Missed Detections False Alarms
0.55 500 100 0/21 0
0.45 500 100 0/21 2
0.65 500 100 4/21 0
0.55 250 100 1/21 0
0.55 500 50 0/21 10
0.55 500 150 3/21 0

Table 2.1: Dependence of the AMWPD algorithm on NSB, NLB, and k.

the horsepower sensor is sampled at 100 Hz (the sensor has a time constant of 0.05

seconds). The AMWPD algorithm is embedded to facilitate real-time operation. If

contact is detected, the output module closes the solid state relay. The machine

control, which monitors the solid state relay, stops the grinder motion if the solid

state relay is closed. The real-time controller is connected to the local intranet so

that engineers can check the performance and output of the algorithm.

2.4.2 Application Results

We evaluate the performance of the AMWPD algorithm for various choices of

NSB, NLB, and k in Table 2.1. To obtain the results in Table 2.1, we apply the

AMWPD algorithm to analyze signals collected from a dressing process in which

the grinder contacts the dresser 21 times. By increasing k and holding all other

parameters constant, we see in Table 2.1 that the number of false alarms decreases

while the number of missed detections increases.

Hence, the parameter choices in the first row of Table 2.1 provide sufficiently low

rates of missed detections and false alarms. With this choice of parameters, a peak

is detected less than 0.5 seconds after it occurs, as shown in Figure 2.6.

As Figure 2.7 illustrates, the motion of the grinder is stopped less than 0.55

seconds after contact occurs. During this time, the grinding wheel does not feed far

enough into the dresser to damage the dresser or grinder wheel.
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Figure 2.6: Illustration of the peak detection time of the AMWPD algorithm.

Figure 2.7: Schematic drawing characterizing the time required for the grinder to stop
moving after the grinding wheel has touched the dresser.

2.4.3 Algorithm Comparison

We compare the speed and accuracy of the AMWPD algorithm with the perfor-

mance of existing techniques for abrupt change detection. We use the raw dresser

horsepower data shown in Figure 2.8. We note that two large peaks are present in
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the signal.

Figure 2.8: Unfiltered dresser horsepower data.

When the data is passed through a third-order Butterworth filter with a cutoff

frequency of 2 Hz, we see that the signal actually contains 4 peaks, as shown in Figure

2.9. In the raw data signal in Figure 2.9, the two small peaks cannot be distinguished

from the signal baseline due to the overwhelming presence of noise in the signal.

Hence, these two small peaks could be missed by a peak detection algorithm.

Figure 2.9: Filtered dresser horsepower data.

The AMWPD algorithm is compared with an online Shewhart control chart [16,
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Algorithm λ k NSB NLB Missed Detections False Alarms Avg. detection delay (s)

AMWPD Alg. 0.55 100 500 0/4 0 0.47

Shewhart 4 500 0/4 17 0.78

EWMA 0.025 4 500 0/4 9 0.22

Table 2.2: Comparison of AMWPD algorithm with online Shewhart control chart.

85] as well as an online EWMA control chart [18]. The EWMA control chart compares

each new data point with a weighted average of past data, where recent data has

higher relative weight than old data. Because the weighted average smooths the old

data, the EWMA control chart is more robust to noise than the Shewhart control

chart. Furthermore, the EWMA control chart gives more importance to the most

recent measurements, which provides faster detection speed than the Shewhart control

chart.

We use the data in Figure 2.8 to compare the performance of the AMWPD al-

gorithm with the performance of the Shewhart and EWMA detection methods. The

optimal values of k and λ for the Shewhart and EWMA detection methods are ob-

tained by exhaustively searching for the sets of parameters that provide the minimum

number of false alarms and missed detections. Using the optimal parameter values,

the performance of the three algorithms is compared in Table 2.2.

2.4.4 Discussion

Based on the results shown in Table 2.2, the AMWPD algorithm provides fewer

false alarms (Type II errors) than the Shewhart and EWMA algorithms. Although all

the algorithms can be tuned to provide zero missed detections (Type I errors), only

the AMWPD algorithm simultaneously provides zero missed detections and zero false

alarms. Furthermore, although the EWMA algorithm provides a faster response time

than the AMWPD algorithm, the AMWPD algorithm has a faster response time than

the Shewhart algorithm.

We note that λ and k are typically chosen to be 0.2 and 3, respectively, to provide
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minimal false alarm and missed detection rates [18, 19]. However, Table 2.2 shows

that the false alarm and missed detection rates for this application are minimized by

unconventional choices of λ and k. The nominal λ and k may differ from expected

values because the sensor noise may not be white, normally distributed, or stationary.

2.5 Conclusions and Future Work

This chapter has presented a new algorithm for real-time dresser contact detection

using a horsepower sensor connected to the dresser spindle motor of an industrial

grinder. The proposed AMWPD algorithm provides advantages over existing methods

for abrupt change detection in terms of detection speed, reliability, and robustness.

Furthermore, the AMWPD algorithm has been implemented and validated for dresser

contact detection on an industrial grinding machine. A picture of the interface to

the AMWPD algorithm, which is embedded using a LabVIEW real-time operating

system, is provided in Figure 2.10.

The next phase of this research will be to leverage the results of the AMWPD

algorithm and hardware interface. Hence, the robustness of the AMWPD algorithm

will be improved and automatic methods for choosing k, NLB, and NSB will be

investigated so that the AMWPD algorithm can be applied to prevent crashes on

similar grinding machines. Also, additional work will be done to determine how

well the AMWPD algorithm can detect peaks in signals from other manufacturing

applications such as drilling, milling, and turning.

23



Figure 2.10: User interface for embedded AMWPD algorithm.
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CHAPTER III

Multi-State Classification Using Heuristic Feature

Selection

3.1 Introduction

Shaving is a gear finishing process which reduces gear tooth surface roughness

and dimensional inaccuracies [86]. During the shaving process, the tool engages the

workpiece so that the tool teeth mesh with the workpiece teeth and the tool drives the

rotation of the workpiece. Because of a small angle between the tool and workpiece

axes of rotation, the sides of the tool teeth press against the sides of the workpiece

teeth as the tool and workpiece rotate. The sides of the tool teeth contain many

sharp ridges, as shown in Figure 3.1, which remove workpiece material through the

cutting and forging processes. Although researchers have explored various aspects of

the shaving process, including offline estimation of shaving cutting tool wear using

optical inspection techniques [87], mathematical modeling of the shaving process to

reduce machining errors [88], and new cutter designs to improve workpiece surface

finish [89], only one previous work addresses shaving tool wear classification using

indirect measurement techniques [54]. However, the approach in [54] provides low

classification accuracy and does not consider the evolution of tool wear for a single

tool; instead, different tools with different wear states are considered.
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Figure 3.1: Shaving cutting tool with cutting edges enhanced in inset.

Shaving tool wear classification using indirect measurements, such as accelerom-

eter signals, is difficult for various reasons. First, the cutting force, which has been

shown to be correlated with tool wear in turning, drilling, and milling [90], is very

small for the shaving process. Second, since multiple tool and workpiece teeth are

engaged at any instant during the shaving process, the change in the cutting force

due to the breakage or wear of a single ridge on a single tooth is extremely small.

Third, the indirect sensor signal may only contain a small contribution from the cut-

ting force due to the long transmission path from the cutting force to the sensor.

However, because shaving tools are very expensive, fast and accurate shaving tool

wear classification can provide significant maintenance cost savings.

In this chapter, we employ a standard approach for tool wear classification, which

consists of data collection, feature extraction, feature selection, and classification [20].

We extract many well-known features in the time, frequency, and joint time-frequency

domains, including root mean square [21], NA4 index [91], and time-frequency en-

tropy [92]. Because the key features required for shaving tool wear classification are

unknown, we also define new features, discussed in Section 3.2.3, which are designed

to improve the classification result. To select key features and obtain a classification

result, we employ a recently-developed heuristic technique [93]. For some applica-

tions, the heuristic technique developed in [93] has been shown to have higher accu-

racy and lower computational cost than conventional approaches, such as sequential
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forward/backward selection [27] and genetic algorithms [94]. However, the heuristic

technique developed in [93] has never been applied to estimate tool wear condition.

The remainder of this chapter is organized as follows. Section 3.2 explains the

methods and techniques used to conduct the experiments and subsequent data anal-

ysis. Section 3.3 provides our results and discussion on tool tooth breakage detection

as well as tooth wear estimation. Finally, Section 3.4 provides conclusions.

3.2 Methodology

3.2.1 Experimental Setup

We conducted two experiments on shaving tool wear classification. First, we

consider 5 different shaving cutter tools. Of these 5 tools, one tool is freshly re-ground.

Another tool has an intermediate wear condition (given a part-based re-grind schedule

to re-grind after X workpieces are machined, this tool has machined X/2 workpieces).

A third tool has an advanced wear condition (it has machined X workpieces since the

previous re-grind). The fourth and fifth tools have multiple broken teeth.

Second, we conduct a run-to-failure test on a freshly sharpened shaving tool with

no broken teeth. Data is collected during the processing of three workpieces at the

beginning of every shift, which corresponds to an interval of about 200 workpieces cut

between measurements. As teeth break, the measurement interval is reduced so that

there are only about 50 workpieces cut between measurements. The run-to-failure

test is terminated when the tool has 11 total broken teeth and 3 broken teeth adjacent

to each other (as shown in Figure 3.2).

Three-axis accelerometers are installed in locations 1 and 2 on the shaving machine

shown in Figure 3.3. Accelerometers were chosen for this application because they are

simple to install, do not affect the process under study, and are relatively inexpensive.

Furthermore, accelerometers have been shown to provide good sensitivity when used
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Figure 3.2: Shaving tool with broken teeth.

for gearbox CM [95].

Figure 3.3: Accelerometer locations on machine.

The shaving process, which lasts roughly 30 seconds, can be separated into three

key steps, or “cuts.” During the first cut, the shaving cutting tool rotates clockwise

and engages the workpiece. During the second cut, the shaving cutting tool rotates

counter-clockwise and feeds into the workpiece. During the third cut, the shaving

cutting tool rotates clockwise, performs a finishing operation, and retracts from the

workpiece. Accelerometer data is sampled at 25 kHz throughout the shaving process.
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3.2.2 Data Pre-Processing

A total of 6 time series are obtained for each shaving cutting cycle (one time series

for each axis of each accelerometer). A sample of one time series is shown in Figure

3.4.

Figure 3.4: Sample accelerometer data from shaving one workpiece.

As labeled in Figure 3.4, the time series is separated into three “cuts.” To es-

timate tool condition, the data collected during one cut in Figure 3.4 is examined

independently from the data collected during another cut. Hence, data from Cut 2

is only compared to data from Cut 2, not data from Cut 1 or Cut 3. This procedure

ensures that only data collected under the same cutting conditions is compared.

We only present the results of analysis of data from Cut 2 in this study. Data

from Cut 2 is chosen because, unlike Cut 1 and Cut 3, Cut 2 does not involve any

disengagement of the tool and workpiece. Note that analysis of the data from Cut

1 or Cut 3 does not yield better classification results than analysis of the data from

Cut 2.

3.2.3 Feature Extraction

We extract the 18 metrics listed in Table 3.1 from each segment of data from Cut

2. Since we use two 3-axis accelerometers to collect vibration data, a feature consists

of a metric extracted from data from one axis of one accelerometer. Hence, we extract
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Time Domain Freq. Domain Time-Freq. Domain

Mean MF1 (Mag. of Meshing Freq.) EtrpSTFT (Entropy of STFT)

PPV (Peak-to-Peak Value) MF2 (1st Overtone of MF1) EtrpCW (Entropy of Choi-Williams Kernel)

RMS (Root Mean Square) MF3 (2nd Overtone of MF1) EtrpWavelet (Entropy of Wavelet Kernel)

CF (Crest Factor) MF4 (3rd Overtone of MF1)

Kurtosis SumMF1 (Sideband Mag. of MF1)

ModKurt (Modified Kurtosis) SumMF2 (Sideband Mag. of MF2)

RecSk (Rectified Skewness) SumMF3 (Sideband Mag. of MF3)

Entropy SumMF4 (Sideband Mag. of MF4)

Table 3.1: Variables used for breakage detection and tool condition estimation.

a total of 108 features (18 metrics, 3 axes, and 2 sensors) from the vibration data.

The feature labeling convention is Metric/Axis/Sensor. For example, the feature

RMS/Y/2 corresponds to the Root Mean Square of data collected from the Y-axis

of Sensor 2.

Definitions of many of the metrics in Table 3.1 are provided in [21]. For complete-

ness, we provide definitions of these metrics. Let {x(k)}l
k=1 denote a time series of

measurement data. Then the mean of x is given by

µ , 1

l

l∑
i=1

x(i), (3.1)

the peak-to-peak value of x is given by

PPV , max
i

(x(i))−min
i

(x(i)), (3.2)

the root mean square (or standard deviation) of x is given by

RMS ,

√√√√1

l

l∑
i=1

(x(i)− µ)2, (3.3)
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the kurtosis of x is given by

Kur ,
1
l

∑l
i=1 (x(i)− µ)4

RMS4
, (3.4)

and the entropy of x is given by

Entropy , −
l∑

i=1

Prob(x(i))log(Prob(x(i))). (3.5)

The sideband magnitude of the N th harmonic of the meshing frequency SumMFN

quantifies the noise in the frequency domain data near the meshing frequency and its

overtones. Examining the FFT of the data from Cut 2, shown in Figure 3.5, we see

that the magnitude of the sidebands near the meshing frequency and its overtones is

larger if the tool is broken.

Figure 3.5: FFT of data from new tool (top) and broken tool (bottom).

To obtain an expression for SumMFN , we let

Xk =
l∑

j=1

x(j)e−
2πi

l
jk, (3.6)
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where Xk is the discrete Fourier transform (DFT) of x at frequency k, i2 = −1, and

k = 0, 1, . . . , l − 1. We define

KN , {v : 0 < |v −NM | < 0.5NM}, (3.7)

where M is the meshing frequency, N = 1, 2, . . ., and v ∈ R. Then

SumMFN =
∑

k∈KN

‖Xk‖, (3.8)

where ‖·‖ denotes the Euclidean norm.

Modified kurtosis attempts to provide a more accurate estimate of the peakedness

of a bi-modal distribution than standard kurtosis (which is based on a unimodal,

symmetric distribution). The modified kurtosis of x is given by

ModKurt =
K+ + K−
RMS4

, (3.9)

where, for ∗ ∈ {+,−},

K∗ ,
∑

j∈J∗ (x(j)− µ)4

|J∗| , (3.10)

J+ , {j : x(j) ≥ µ} ⊂ {1, . . . , l} , (3.11)

and

J− , JC
+ ∩ {1, . . . , l} . (3.12)

Because the shaving process consists of periodic impacts between the shaving cutting

tool and workpiece gear, the accelerometer data exhibit a sinusoidal trend. Hence,
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the data histogram is bi-modal, where one mode corresponds to data collected during

meshing and the other mode corresponds to data collected during transitions between

meshing. Figure 3.6 shows how the histogram of the accelerometer signal changes as

the tool wear increases.

Figure 3.6: Histogram of data from new tool (top) and severely worn tool (bottom).

3.2.4 Feature Selection and Tool Wear Classification

3.2.4.1 Feature dimension reduction and classification using principal

component analysis and a multi-layer perceptron

Because of the large number of features extracted and the inability for a single

feature to correctly and reliably classify the tool wear state, we consider combining

multiple features together to achieve a better classification result. We consider reduc-

tion of the dimension of the feature space using principal component analysis (PCA),

which extracts key dimensions from the feature space [96], and classification using a

multi-layer perceptron (MLP) type of artificial neural network (ANN). We call this

the PCA + MLP approach.

To explain PCA, let l be the number of data sets collected and let r be the number

of features extracted from each data set. For j ∈ {1, . . . , r}, we define the jth feature
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vector

gj ,




gj(1)

...

gj(l)



∈ Rl, (3.13)

where gj(k) is the value of feature j associated with data set k, and k ∈ {1, . . . , l}.
Then we define

A ,




gT
1

...

gT
r




. (3.14)

The singular value decomposition [97] of A is given by

A = WΣV T, (3.15)

where the columns of W are the eigenvectors of AAT and Σ is a diagonal matrix

with nonnegative diagonal entries. Arranging the diagonal entries of Σ in descending

order, the reduced-dimension representation Ared is constructed by selecting the first

1 ≤ q < r singular vectors of A so that

Ared = WT
[1:q,1:q]A. (3.16)

Details on the choice of q for the tool wear classification example are provided in

Section 3.3.1.

A sample of a two-dimensional case in which PCA provides feature dimension

reduction is shown in Figure 3.7, where the two input features x1 and x2 can be

combined into the single output feature pc1 without losing the ability to differentiate

between the two classes (dots and circles).
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Figure 3.7: Illustration of PCA for feature dimension reduction.

We consider the MLP because of the success it has achieved in previous classifi-

cation applications [98]. The MLP architecture consists of a feed-forward ANN with

three layers, shown in Figure 3.8. The first (input) layer of the MLP inputs the prin-

cipal components extracted using PCA, while the third (output) layer outputs the

classification result. From testing, we achieved the best classification performance

when the second (hidden) layer contains 27 neurons. Each neuron in the second layer

has a tan-sigmoid activation function, while the neuron in the third layer has a linear

activation function [29].

Figure 3.8: Multi-layer perceptron artificial neural network structure used in shaving
tool wear classification.
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Back-propagation is used to train the MLP network to fix the values of the weights

between the layers. Hence, we divided the data into training and testing groups. To

improve the accuracy of the weights, we generated additional training data sets by

constructing a moving window, as shown in Figure 3.9, that has the same length

as the amount of time required for the shaving cutting tool to rotate once. Then

the moving window is applied to the center of the data in Cut 2. By advancing the

moving window through a single data set in increments of 0.1 s, 14 separate data sets

can be generated.

Figure 3.9: Moving windows to increase the amount of training data.

3.2.4.2 Feature selection and classification using modified tabu search

and a probabilistic neural network

We also consider modified tabu search with long-term memory (mTS). The long-

term memory provides advantages over existing approaches for heuristic feature se-

lection, such as sequential forward selection [27], sequential forward floating selection

[99], and tabu search with a short-term memory [100]. First, unlike TS with short-

term memory, mTS does not require training to determine the optimal memory length.

Second, the long-term memory helps to reduce the probability of the TS converging to

a premature local optima, a problem for sequential selection techniques. An overview
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of the proposed feature selection approach using mTS is shown in Figure 3.10.

Figure 3.10: Overview of proposed tabu search with long-term memory (mTS).

We use a probabilistic neural network (PNN) to classify the tool condition ap-

proach. A PNN, originally proposed in [101], is chosen instead of a back-propagation

neural network because a PNN requires less training time and is analytically tractable

[102]. The PNN contains an input layer, pattern layer, summation layer, and output

layer, as shown in Figure 3.11. Since the number of layers in the PNN architecture is

fixed and all the synaptic weights are directly assigned using training samples, train-

ing can be completed in a single epoch without requiring subsequent error correction.

Furthermore, a PNN converges to a Bayesian classifier given sufficient training data

[101].

In the training stage, a set of NL data samples {X1, X2, . . . , XNL
} is used to teach

the PNN. Each input sample has m dimensions and each dimension corresponds to a

selected feature. We write Xj =

[
x

(j)
1 x

(j)
2 · · · x

(j)
m

]T

, where j ∈ {1, 2, . . . , NL}.
The pattern layer has NL nodes and the synaptic weight between the jth neuron in

the pattern layer and the ith component of the input vector is the value of the ith
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Figure 3.11: Structure of a probabilistic neural network (PNN).

component of the jth training sample, wp
j,i = x

(j)
i . The summation layer has NC nodes,

where NC is the number of classes. The synaptic weight between the kth neuron of

the summation layer and the jth neuron of the pattern layer is given by

w
(S)
k,j =





1, Xj ∈ class k,

0, else.
(3.17)

The synaptic weight between the output neuron and the kth neuron in the summation

layer is given by w
(O)
1,k = 1. Using these conventions, a PNN is trained to achieve zero

error in classifying the training samples.

After training, a test set of NT data samples, which do not belong to the training

set, are used to evaluate the classification accuracy of the PNN. When a test sample

X∗ =

[
x

(∗)
1 x

(∗)
2 · · · x

(∗)
m

]T

is input into the PNN, the output of the jth activation
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function in the pattern layer is

φj = e
−

∑m
i=1(w

(P )
j,i

−x
(∗)
i )

2

2σ2
j , (3.18)

where σj is a smoothing parameter. Hence, pattern layer neurons with weight vectors

different from the input vector X∗ output values near zero, while neurons with weight

vectors similar to X∗ output values near one. For each class, the summation layer

combines and normalizes the outputs of the pattern layer to produce a vector of

probabilities. The output of the kth neuron in the summation layer is given by

ψk =

∑NL

j=1 w
(S)
k,j φj∑NL

j=1 w
(S)
k,j

. (3.19)

In the output layer, the outputs of the summation layer are compared and the label

corresponding to the class with the maximum probability

ŷ(∗) = arg max
k

ψk (3.20)

is chosen as the output of the PNN. If ŷ(∗) equals the true class label y(∗) that cor-

responds to X∗, then the input sample has been correctly classified. Classification

accuracy is defined as the percentage of correctly classified samples out of all NT test

samples.

3.3 Results and Discussion

3.3.1 Classification of 5 Different Tools Using the PCA + MLP Approach

We see from Figure 3.12 that a single feature can be used to differentiate wear

condition 4 (a tool with multiple broken teeth) from the other 3 wear conditions (tools

with no broken teeth, but various amounts of wear). However, Figure 3.12 also shows
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that it is difficult to differentiate between the wear conditions of unbroken tools.

Figure 3.12: Dependence of a single feature on the tool condition.

To consider multiple features and improve the classification accuracy using PCA,

we first normalize the feature vectors to have zero mean and unity variance. Then we

compute the contribution rate and cumulative contribution rate of each eigenvalue of

AAT. As shown in Figure 3.13, the contribution rate decreases and the cumulative

contribution rate increases as the principal component index increases. Both trends

are consistent with expected trends for PCA. Since the cumulative contribution rate

of the first 7 principal components is greater than 90% we use the first 7 principal

components as inputs into the MLP.

We see from Figure 3.14(A) that the clusters in the MLP training data set are

closely-packed and easily-differentiable. Figure 3.14(B) shows that the clusters in the

MLP testing data set are also closely-packed and easily-differentiable. Furthermore,

by comparing Figure 3.14(A) with Figure 3.14(B), we see that the boundaries used

to classify the training data set can also be used to classify the testing data set.

Using the 7 principal components from the training data set as inputs to the MLP,

the training goal of the MLP (a mean squared error≤ 10−5) is achieved in 12 iterations

using the Levenberg-Marquardt algorithm [103]. After training, the performance of

the trained MLP is tested using the testing data set. Figure 3.15 shows that all the

testing samples are correctly identified and that the 4 different tool wear conditions

40



Figure 3.13: Contribution and cumulative contribution rate curves of principal com-
ponents.

can be correctly classified using multiple features.

3.3.2 Run-To-Failure Test: Tooth Breakage Detection Using the mTS +

PNN Approach

During shaving, tools with at least one broken tooth can deteriorate workpiece

quality and increase scrap. We investigate whether the proposed technique can be

applied to detect the tool tooth breakage after proper training. For tooth breakage

detection, the run-to-failure data is divided into two classes, shown in Figure 3.16,

which provides the entire history of a single feature (CF/Y/1). The first class includes

all the data from when the tool has zero broken teeth. The second class includes all

the data from when the tool has at least one broken tooth. We randomly choose 50%

of the data from each class for training; we use the remaining data for testing. Using

the testing data, we evaluate how accurately we can distinguish between unbroken

and broken tools using a single feature. Table 3.2 shows the 6 features that pro-

vide classification accuracy greater than 90%. Note that 4 of these features include
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Figure 3.14: Combinations of the 1st, 2nd, and 4th principal components for the train-
ing set (A), and the testing set (B).

SumMFN , while the remaining features are extracted in the time-frequency domain

using a wavelet distribution.

We also use the testing data to evaluate how accurately we can distinguish between

unbroken and broken tools using the features extracted from a single sensor. Table 3.3

shows that we can achieve 99.92% classification accuracy using 12 features from Sensor

1 and 99.82% classification accuracy using 23 features from Sensor 2. Therefore, if

only a single sensor can be used to detect breakage, Sensor 1 should be used because
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Figure 3.15: Test of PCA + MLP classification result.

Figure 3.16: Division of the CF/Y/1 data into two classes - unbroken (1) and broken
(2).

it provides higher classification accuracy using fewer features.

Finally, we use the testing data to evaluate how accurately we can distinguish

between unbroken and broken tools using data from both sensors. Table 3.4 shows

that we can achieve 99.95% classification accuracy using 17 features.
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Feature Name Accuracy (%)
SumMF1/X/1 94.37

EtrpWavelet/X/2 93.53
EtrpWavelet/Z/2 92.81
SumMF1/X/2 91.25
SumMF3/Y/1 90.88
SumMF1/Z/1 90.19

Table 3.2: Breakage detection results using a single feature.

Sensor 1 Only (99.92 % Accuracy) Sensor 2 Only (99.82 % Accuracy)

CF/Y/1 PPV/Y/1
Etrp/Y/1 RecSk/Y/1

EtrpCW/Y/1 SumMF1/X/1
EtrpSTFT/Z/1 SumMF1/Y/1

EtrpWavelet/X/1 SumMF1/Z/1
Kur/Y/1 SumMF2/Z/1

CF/Z/2 EtrpWavelet/Z/2 MF2/Y/2 RecSk/X/2
Etrp/X/2 Kur/Y/2 MF2/Z/2 RMS/Y/2
Etrp/Y/2 Kur/Z/2 MF3/Y/2 SumMF1/Y/2

EtrpCW/X/2 MF1/X/2 MF4/X/2 SumMF1/Z/2
EtrpSTFT/X/2 MF1/Y/2 MF4/Z/2 SumMF3/X/2

EtrpWavelet/X/2 MF2/X/2 PPV/Y/2

Table 3.3: Best features for breakage detection using a single sensor.

Both Sensors (99.95 % Accuracy)
Etrp/Y/2 MF1/Z/2 RecSk/Y/2

EtrpCW/X/2 MF2/Y/2 RMS/X/1
EtrpCW/Y/1 MF3/Y/1 SumMF1/X/1

EtrpSTFT/Z/2 MF3/Z/2 SumMF1/Z/1
Kur/Y/1 MF4/X/2 SumMF2/Z/1
Kur/Y/2 PPV/Y/2

Table 3.4: Best features for breakage detection using both sensors.
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3.3.3 Run-to-Failure Test: Tooth Wear Condition Estimation Using the

mTS + PNN Approach

We also investigate whether the proposed technique can be applied to estimate

the wear condition of the shaving tool after proper training. We divide the data

into four classes (normal, worn, broken, and severely broken), as shown in Figure

3.17, which provides the entire history of the feature CF/Y/1. The “normal” class

includes all data collected before 12,000 workpieces have been cut, since this is the

manufacturer’s specification for the tool regrind interval. The “worn” class includes

all data collected after 12,000 workpieces have been cut and before any teeth have

broken. The “broken” class includes all data collected after one tooth has broken but

before multiple adjacent teeth have broken. The “severely broken” class includes all

data collected after at least two adjacent teeth have broken. After collecting the data,

we apply the procedure described in Section 3.3.2 to classify the data. For training,

we randomly choose 50% of the data from each of the 4 classes; we use the remaining

data for testing.

Figure 3.17: Division of the CF/Y/1 data into 4 classes - normal (1), worn (2), broken
(3), and severely broken (4).

Using the testing data, we evaluate how accurately we can identify the tool con-

dition using a single feature. Table 3.5 shows the 4 features that provide the highest
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Feature Name Accuracy (%)
EtrpWavelet/Z/2 80.44
EtrpWavelet/X/2 79.38

SumMF1/X/1 77.84
SumMF1/X/2 74.55

Table 3.5: Tool condition estimation results using a single feature.

Sensor 1 Only (97.69% Accuracy) Sensor 2 Only (96.25% Accuracy)

CF/Y/1 MF1/Z/1 SumMF1/Y/1
EtrpSTFT/Y/1 MF2/X/1 SumMF2/Y/1
EtrpSTFT/Z/1 MF2/Y/1 SumMF2/Z/1

EtrpWavelet/X/1 MF2/Z/1 SumMF3/Y/1
Kur/Z/1 MF3/X/1 SumMF3/Z/1
MF1/X/1 MF4/Y/1 SumMF4/Y/1
MF1/Y/1 SumMF1/X/1

Etrp/X/2 MF3/X/2 SumMF1/X/2
EtrpCW/Z/2 MF3/Y/2 SumMF1/Z/2

EtrpWavelet/X/2 MF3/Z/2 SumMF2/X/2
EtrpWavelet/Z/2 MF4/Z/2 SumMF2/Y/2

Mean/Y/2 RecSk/X/2 SumMF3/Z/2
MF1/Z/2 RMS/Y/2 SumMF4/Z/2
MF2/Y/2 RMS/Z/2

Table 3.6: Best features for tool condition estimation using a single sensor.

classification accuracy. Note that all the features in Table 3.5 are included in Table

3.2.

We also use the testing data to evaluate how accurately we can identify the tool

condition using the features extracted from a single sensor. Table 3.6 shows that

we can achieve 97.69% classification accuracy using 20 features from Sensor 1 and

96.25% classification accuracy using 20 features from Sensor 2. Therefore, if only a

single sensor can be used to classify the tool condition, Sensor 1 should be used since

it provides higher classification accuracy than Sensor 2 while using the same number

of features. This result is consistent with the result in Section 3.3.2 for breakage

detection.

Finally, we use the testing data to evaluate how accurately we can identify the

tool condition using data from both sensors. Table 3.7 shows that we can achieve

98.41% classification accuracy using 34 features.

3.3.4 Comparative Study

We compare the PCA + MLP approach with the mTS + PNN approach for

classification of tool condition given the run-to-failure data. Both algorithms are
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Both Sensors (98.41% Accuracy)
Etrp/X/1 Mean/Y/2 MF3/Y/1 SumMF1/Z/2
Etrp/Y/2 Mean/Z/1 MF4/Y/1 SumMF2/Y/1

EtrpCW/Z/1 MF1/X/1 RMS/Y/1 SumMF2/Z/1
EtrpSTFT/Y/1 MF1/X/2 RMS/Z/1 SumMF3/X/1

EtrpWavelet/X/1 MF2/X/1 RMS/Z/2 SumMF3/Y/1
EtrpWavelet/X/2 MF2/X/2 SumMF1/X/1 SumMF3/Y/2
EtrpWavelet/Y/1 MF2/Y/2 SumMF1/Y/2 SumMF3/Z/1
EtrpWavelet/Z/2 MF2/Z/1 SumMF1/Z/1 SumMF4/Y/1

Table 3.7: Best features for tool condition estimation using both sensors.

Breakage detection Tool condition estimation

Accuracy (%) Processing time (s) Accuracy (%) Processing time (s)

PCA + MLP 99.10 32.5 77.50 33.0

mTS + PNN 99.95 7.4 98.41 7.1

Table 3.8: Comparison of feature selection techniques.

implemented in Matlab on a desktop computer with an Intel Core2 CPU (Q8200,

2.33 GHz) and 2 GB of RAM. Because the mTS + PNN method uses 17 features for

breakage detection and 34 features for tool condition estimation, we use choose 17

principal components for breakage detection classification and 34 principal compo-

nents for tool condition using the PCA + MLP approach. We note that the principal

components obtained using PCA are not individual features; they are linear combi-

nations of the 108 features extracted from the sensor data. Hence, in the absence

of prior knowledge, the PCA + MLP method must extract all 108 features before

performing PCA. The mTS + PNN method, in contrast, needs to extract only the

features listed in Tables 3.4 and 3.7 to obtain the classification result. Table 3.8 com-

pares the performance of the two techniques when data from both sensors is used. In

Table 3.8, “Processing Time” is the average amount of time required to classify one

input data measurement. Table 3.8 shows that the classification accuracy and the

processing time are both improved using the proposed method.
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3.4 Conclusions

In this chapter, we developed a method for classifying the wear of a shaving tool

using indirect measurements. We proposed a new metric, SumMFN , which helps

to characterize the tool wear state. We also applied a recently-developed feature

selection and classification technique, modified tabu search with a probabilistic neural

network, to achieve high classification accuracy and short processing time. Through

an experimental case-study, we showed that the proposed technique correctly classifies

the shaving tool wear and provides faster, more accurate results than a conventional

approach.

To justify the relevance of the proposed feature selection and wear classification

approach, we estimated the potential cost-savings to a company sponsor if the pro-

posed approach were implemented. Considering tooling costs, setup time, and scrap,

we showed that the proposed feature selection and wear classification approach could

save > $11, 000 per tool per machine. Production downtime and maintenance person-

nel costs, which may be significant, were not considered in this cost-savings estimate.
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CHAPTER IV

SISO Pseudo Transfer Function Identification

4.1 Introduction

In many applications of system identification, the system is driven by external

excitations that are not measured. Still, output measurements may be used to detect

whether the dynamics of the system have changed. In particular, output-only system

identification techniques have been used for damage detection in numerous applica-

tions [38, 31, 35, 36, 39, 34, 40, 33]. Since the input (excitation) signal is unknown, its

statistical properties are often assumed to be known in order to compensate for the

lack of knowledge of its time history. It is typically assumed that the input is white

noise, and frequency-domain [38, 39, 40, 42], subspace-based [33, 34, 35, 36], and

time-domain [31] system identification techniques are used to detect changes in the

dynamics of the system. Blind source separation techniques can also be applied [37].

A related technique is used in [104] for blind channel identification in FIR systems.

In this chapter we develop an output-only identification technique that uses mul-

tiple outputs but requires neither measurements nor a statistical description of the

external input signal. We designate one of the output signals as the pseudo input and

another as the pseudo output. The resulting pseudo transfer function (PTF) from the

pseudo input to the pseudo output thus provides a map between the output signals.

The main contribution of this chapter is an analysis of the order and relative degree
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of the PTF between a pair of outputs. In particular, we prove that the order of the

PTF is one less than the order of the system and the relative degree of the PTF is

zero. Next, we apply system identification techniques to the PTF. For the case of

noisy measurements, we use quadratically-constrained least squares (QCLS) [50] to

identify the PTF. Assuming that the input is sufficiently persistent (see Definition

B.0.3) and the output-noise autocorrelation is known up to a scale factor, QCLS

achieves consistent parameter estimates for arbitrary noise types and input signals.

We then use changes in the estimated PTF to detect system faults.

To compare a transmissibility [105] and a PTF, consider the system G in Figure

4.1. The transmissibility from y1 to y2 in Figure 4.1(a) assumes that y1 is colocated

with the excitation u. Hence, because the transfer function from u to y1 is given by

y1 = u,

and the transfer function from u to y2 is given by

y2 =
N2

D
u,

the transmissibility from y1 to y2 is given by

y2 =
N2

D
y1. (4.1)

However, the PTF from y1 to y2 in Figure 4.1(b) does not assume that y1 and u are

colocated. Then the transfer function from u to y1 is given by

y1 =
N1

D
u,
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and the transfer function from u to y2 is given by

y2 =
N2

D
u.

Hence, the PTF from y1 to y2 is given by

y2 =
N2

N1

y1. (4.2)

We note that the transmissibility (4.1) contains pole information, while the PTF

(4.2) does not. Furthermore, pole information appears in the output-to-output rela-

tionship only if the excitation and sensor measurement are colocated, and hence a

transmissibility is a special type of PTF.

Figure 4.1: Difference between the transmissibility from y1 to y2 (a) and the pseudo
transfer function (PTF) from y1 to y2 (b).

The rest of this chapter is organized as follows. Section 4.2 explains how transfer

functions are used to model input-output relationships. Section 4.3 reviews the effect

of sampling zeros on the order and relative degree of discrete-time transfer functions.

Section 4.4 uses input-output transfer function models to obtain output-output PTF

models. Section 4.5 provides simulation examples with noisy and noise-free measure-

ments.

51



4.2 Problem Formulation

Consider the system S in Figure 4.2, which has a scalar input u and two scalar

outputs y1 and y2. For i = 1, 2, the subsystem Si has the input u and output yi.

Measurement noise corrupting y1 and y2 is denoted by w1 and w2, respectively. For

Ā ∈ Rn×n, B̄ ∈ Rn, C ,




C1

C2


 ∈ R2×n, and D ,




D1

D2


 ∈ R2, a state space

representation of S is denoted by (Ā, B̄, C, D), where

˙̄x(t) = Āx̄(t) + B̄ū(t), x̄(0) = x0, (4.3)

ȳ(t) = Cx̄(t) + Dū(t). (4.4)

For i = 1, 2, a state space representation of Si is given by (Ā, B̄, Ci, Di). We let

G denote the continuous-time transfer function corresponding to (Ā, B̄, C,D) and,

for i = 1, 2, we let Gi denote the continuous-time transfer function corresponding to

(Ā, B̄, Ci, Di).

Figure 4.2: Method for identifying a pseudo transfer function (PTF).

For k ∈ {0, 1, . . .} and sample interval h > 0, we apply the variation of constants
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method [106] to solve (4.3) for x̄(t) from t = kh to t = kh + h, which yields

x̄(kh + h) = eĀhx̄(kh) +

∫ kh+h

kh

eĀ(kh+h−τ)B̄ū(τ)dτ. (4.5)

We assume that ū(t) changes sufficiently slowly that ū(kh) ≈ ū(kh + h). Hence, we

rewrite (4.5) and (4.4) as

x(k + 1) = Ax(k) + Bu(k) (4.6)

and

y(k) =




y1(k)

y2(k)


 = Cx(k) + Du(k), (4.7)

where x(k) , x̄(kh), u(k) , ū(kh), A , eĀh, and

B ,
∫ h

0

eĀτdτB̄.

For i = 1, 2, (4.7) implies

yi(k) = Cix(k) + Diu(k). (4.8)

For i = 1, 2, let

Gi(s) = Ci

(
sI − Ā

)−1
B̄ + Di

=
β̄i,mi

smi + β̄i,mi−1s
mi−1 + · · ·+ β̄i,0

sn + ᾱn−1sn−1 + · · ·+ ᾱ0
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denote the continuous-time transfer function corresponding to (Ā, B̄, Ci, Di), and let

Gi,h(z) = Ci (zI − A)−1 B + Di

=
βi,nz

n + βi,n−1z
n−1 + · · ·+ βi,0

zn + αn−1zn−1 + · · ·+ α0

(4.9)

denote the discrete-time transfer function corresponding to (A,B,Ci, Di). We assume

that (A,B,C1, D1) and (A,B,C2, D2) are minimal realizations of G1,h and G2,h, re-

spectively, and thus G1,h and G2,h each have order n. This assumption requires that

sampling does not cause loss of observability or controllability [107].

To account for the possibly nonzero initial condition x0 and the resulting free

response, we write G1,h and G2,h in terms of the forward shift operator q [108] rather

than in terms of the z-transform variable. For i = 1, 2, we obtain

yi = Gi,h(q)u =
ηi(q)

δ(q)
u, (4.10)

where

δ(q) , det(qI − A)

and

ηi(q) , Ciadj(qI − A)B + Diδ(q)

are polynomials in q, and yi and u denote time sequences, that is, yi = {yi(0), yi(1), . . .}
and thus qyi = {yi(1), yi(2), . . .}. Note that (4.10) represents an ARMA time-series

model rather than a relation between z-transforms. For i = 1, 2, since (A, B, Ci, Di)

is a minimal realization of Gi,h, the polynomials δ(q) and ηi(q) are coprime.
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It follows from (4.10) that

η2(q)δ(q)y1 = η2(q)η1(q)u,

η1(q)δ(q)y2 = η1(q)η2(q)u,

and thus

η2(q)δ(q)y1 = η1(q)δ(q)y2.

The PTF from y1 to y2 can thus be written as

y2 =
δ(q)η2(q)

δ(q)η1(q)
y1. (4.11)

Note that (4.11) is independent of the input u. Because (4.11) is expressed in terms

of the forward shift operator q and not the complex number z, (4.11) accounts for

nonzero initial conditions.

Unlike common factors in the complex number z, common factors in the forward-

shift operator q cannot always be cancelled. This point is illustrated by the following

example.

Example 4.2.1 Consider the sequences

y1 = {y1(0), y1(1), . . .} = {1, 2, 3, . . .}, (4.12)

y2 = {y2(0), y2(1), . . .} = {6, 7, 8, . . .}. (4.13)
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Operating on (4.12) and (4.13) with q− 1 yields

(q− 1)y1 = {2− 1, 3− 2, 4− 3, . . .} = {1, 1, 1, . . .},

(q− 1)y2 = {7− 6, 8− 7, 9− 8, . . .} = {1, 1, 1, . . .}.

Hence (q− 1)y1 = (q− 1)y2, whereas y1 6= y2.

Despite Example 4.2.1, we show in Section 4.4 that the common factor δ(q) in

(4.11) can be cancelled. This cancellation is possible because δ(q), η1(q), and η2(q)

are obtained from minimal state-space realizations of G1,h and G2,h with the same

initial condition x0.

To identify a PTF, output data are collected from sensors. Although we make

no explicit assumptions about the persistency of u, the pseudo-input y1 must be

sufficiently persistent for PTF identification. Estimation of the PTF from y1 to y2

can be classified as a functional errors-in-variables identification problem [109] because

y1 is an arbitrary (not necessarily white) signal.

4.3 Sampling Zeros

Discretization of a continuous-time system may yield a discrete-time system that

has more zeros than the continuous-time system. The additional zeros are called

sampling zeros [110]. For discrete-time models that arise from sampled-data systems,

the following result shows that zero-order-hold sampling of Gi, i = 1, 2, yields the

discrete-time transfer function Gi,h given by (4.9), whose relative degree di , n−mi

is either 0 or 1.

Proposition 4.3.1 Let i = 1, 2. If n = mi, then di = 0 and βi,n 6= 0. If n > mi,

then di = 1, βi,n = 0, and βi,n−1 6= 0. Furthermore, as h → 0, di − 1 zeros of Gi,h(q)
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approach the roots of Jdi
(q), where

Jdi
(q) , Jdi,1q

di−1 + Jdi,2q
di−2 + · · ·+ Jdi,di

,

and, for k ∈ {1, . . . , di},

Jdi,k ,
k∑

j=1

(−1)k−jjdi




di + 1

k − j


 .

Furthermore, the roots of Jdi
(q) are distinct and negative.

Proof 4.3.1 It is shown in Theorem 1 of [110] that di−1 zeros of Gi,h(q) approach

the roots of Jdi
(q). Theorem 2.1 of [111] shows that the roots of Jdi

(q) are distinct

and negative. ¤

Note that Jdi
(q) is the Euler-Frobenius polynomial [111]

Jdi
(q) ,





1, di = 1,

(1−q)di+1

q

(
q d

dq

)di−1 (
q

(1−q)2

)
, di ≥ 2.

For example,

J2(q) = q + 1,

with root −1,

J3(q) = q2 + 4q + 1,

with roots −2±√3, and

J4(q) = q3 + 11q2 + 11q + 1,
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with roots −1, −5± 2
√

6. Finally, since Jd(q) is a palindromic polynomial, it follows

that −1 is a root of Jdi
(q) with multiplicity 0 or 1, and, if λ is a root of Jdi

(q), then

1/λ is a root of Jdi
(q) [112]. Since, in addition, all of the roots of Jdi

(q) are negative,

the asymptotic zeros due to sampling appear at either −1 or in negative reciprocal

pairs or both.

4.4 Output-Only Model

For i = 1, 2, we formulate an equivalent matrix representation of (4.11) by writing

ηi(q) =
n∑

j=0

βi,jq
j, δ(q) =

n∑
j=0

αjq
j.

We define

v , NY ∈ Rl−n, (4.14)

where

N ,
[

N2 −N1

]
∈ R(l−n)×2l,

and, for i = 1, 2,

Ni ,




βi,0 . . . βi,n 0 . . . 0

0 βi,0 . . . βi,n
. . .

...

...
. . . . . . . . . . . . 0

0 . . . 0 βi,0 . . . βi,n



∈ R(l−n)×l.
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Without loss of generality, we assume αn = 1 and express (4.11) as

∆v = 0, (4.15)

where, for l > 2n data points,

∆ ,




α0 . . . αn−1 1 0 . . . 0

0 α0 . . . αn−1 1
. . .

...

...
. . . . . . . . . . . . . . . 0

0 . . . 0 α0 . . . αn−1 1



∈ R(l−2n)×(l−n).

Finally, we define

Y ,




Y1

Y2


 ,




y1(0)

...

y1(l − 1)

y2(0)

...

y2(l − 1)




∈ R2l. (4.16)

Combining (4.15) and (4.14) yields

∆NY = 0, (4.17)

which is an equivalent matrix formulation of (4.11).

From (4.16) we have for i = 1, 2,

Yi = Γix0 +HiU, (4.18)
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where

Γi ,




Ci

...

CiA
l−1



∈ Rl×n, U ,




u(0)

...

u(l − 1)



∈ Rl,

and

Hi ,




Di 0 . . . 0

CiB Di

. . .
.
..

.

..
. . .

. . . 0

CiA
l−2B . . . CiB Di




,




Hi,0 0 . . . 0

Hi,1 Hi,0

. . .
.
..

.

..
. . .

. . . 0

Hi,l−1 . . . Hi,1 Hi,0




∈ Rl×l.

Then we define

Yi,free , Γix0

and

Yi,forced , HiU,

so that

Yi = Yi,free + Yi,forced.

Furthermore,

Y = Γx0 +HU,
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where Γ ,




Γ1

Γ2


 and H ,



H1

H2


. Finally,

Y = Yfree + Yforced,

where

Yfree ,




Y1,free

Y2,free




and

Yforced ,




Y1,forced

Y2,forced


 .

Hence, (4.17) can be written as

∆N(Yfree + Yforced) = 0. (4.19)

Now we show that Yfree ∈ N (N) and Yforced ∈ N (N), and thus Y ∈ N (N), where

N (N) is the null space of N .

Lemma 4.4.1 N2Γ1 = N1Γ2.

Proof 4.4.1 See Appendix A. ¤

Proposition 4.4.1 NYfree = 0.

Proof 4.4.2 With u(k) ≡ 0, (4.18) implies

N2Y1,free = N2Γ1x(0), (4.20)
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N1Y2,free = N1Γ2x(0). (4.21)

Subtracting (4.21) from (4.20) and using Lemma 4.4.1, we have

NYfree = N2Y1,free −N1Y2,free

= N2Γ1x(0)−N1Γ2x(0)

= 0. ¤

Lemma 4.4.2 N2H1 = N1H2.

Proof 4.4.3 See Appendix A. ¤

Example 4.4.1 Consider the IIR system

y1(k) =
1

q2 − bq− a
u(k), y2(k) =

q

q2 − bq− a
u(k),

where

A =




0 1

a b


 , B =




0

1


 , C1 =

[
1 0

]
,

C2 =

[
0 1

]
, D1 = D2 = 0.

Finally, let l = 5 > 2n = 4. Then

N1 =




1 0 0 0 0

0 1 0 0 0

0 0 1 0 0




, N2 =




0 1 0 0 0

0 0 1 0 0

0 0 0 1 0




,
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Γ1 =




1 0

0 1

a b

ab a + b2

a2 + ab2 2ab + b3




, Γ2 =




0 1

a b

ab a + b2

a2 + ab2 2ab + b3

2a2b + ab3 a2 + 3ab2 + b4




,

H1 =




0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

b 1 0 0 0

a + b2 b 1 0 0




, H2 =




0 0 0 0 0

1 0 0 0 0

b 1 0 0 0

a + b2 b 1 0 0

2ab + b3 a + b2 b 1 0




.

Hence,

N2Γ1 = N1Γ2 =




0 1

a b

ab a + b2




,

which confirms Lemma 4.4.1. Furthermore,

N2H1 = N1H2 =




0 0 0 0 0

1 0 0 0 0

b 1 0 0 0




,

which confirms Lemma 4.4.2.

Proposition 4.4.2 NYforced = 0.

Proof 4.4.4 With x0 = 0, (4.18) implies

N2Y1,forced = N2H1U, (4.22)

N1Y2,forced = N1H2U. (4.23)
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Subtracting (4.23) from (4.22) and invoking Lemma 4.4.2 yields

NYforced = N2Y1,forced −N1Y2,forced

= N2H1U −N1H2U

= 0. ¤

Combining Propositions 4.4.1 and 4.4.2 with (4.19) yields the following result,

which is stronger than (4.17).

Theorem 4.4.1 NY = 0.

Theorem 4.4.1 is an equivalent matrix formulation of

y2 =
η2(q)

η1(q)
y1. (4.24)

Comparing (4.24) with (4.11), Theorem 4.4.1 shows that cancellation of the δ(q) in

the numerator and denominator of (4.11) is valid. The following result characterizes

the order and relative degree of the PTF given by (4.24).

Proposition 4.4.3 The PTF in (4.24) obtained by sampling the one-input, two-

output continuous-time system (4.3),(4.4) and using zero-order hold has relative de-

gree 1 if D1 6= 0 and D2 = 0; relative degree −1 if D1 = 0 and D2 6= 0; and relative

degree 0 otherwise. Furthermore, the PTF has order n if D1 6= 0 and order n − 1

otherwise.

Proof 4.4.5 Since η1(q) and η2(q) are the numerators of the discrete-time trans-

fer functions from u to y1 and u to y2, respectively, Proposition 4.3.1 implies that,

for i = 1, 2, ηi(q) has degree n if the continuous-time system has relative degree 0 and

degree n− 1 otherwise. ¤
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Note that y1 and y2 are related by

y2 =
C2adj(qI − A)B + D2det(qI − A)

C1adj(qI − A)B + D1det(qI − A)
y1, (4.25)

which shows that the PTF from y1 to y2 captures information about the zeros of G1,h

and G2,h.

4.5 Examples

Consider the mass-spring-damper structure in Figure 4.3, which has the equations

of motion

Mq̈(t) + Cdq̇(t) + Kq(t) = F (t), (4.26)

where

q(t) =




q1(t)

q2(t)


 , M =




m1 0

0 m2


 , Cd =




c1 + c2 −c2

−c2 c2 + c3


 ,

K =




k1 + k2 −k2

−k2 k2 + k3


 , F (t) =




f1(t)

f2(t)


 =




1

0


 u(t). (4.27)

We express (4.26) in state-space form (4.3), where x̄(t) =

[
q1(t) q2(t) v1(t) v2(t)

]T

,

Ā ,




0 0 1 0

0 0 0 1

−k1+k2

m1

k2

m1
− c1+c2

m1

c2
m1

k2

m2
−k2+k3

m2

c2
m2

− c2+c3
m2




, B̄ ,




0

0

1
m1

0




,
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and where m1 = 1
2
m2 = 1 kg, k1 = 4

5
k2 = 2

3
k3 = 4 N/m, c1 = 5

2
c2 = 5

7
c3 = 0.5 kg-m/s,

and h = 0.5 s.

Figure 4.3: 2 DOF Mass-spring-damper structure.

We use Markov parameters to characterize (4.25) because Markov parameters can

be estimated consistently under more general conditions than coefficients, poles, or

zeros [113]. Hence, we consider the µ-Markov model structure

y2(k) =− aµy2(k − µ)− · · · − aµ+nmod−1y2(k − µ− nmod + 1)

+ H0y1(k) + · · ·+ Hµ−1y1(k − µ + 1)

+ bµy1(k − µ) + · · ·+ bµ+nmod−1y1(k − µ− nmod + 1). (4.28)

The order of this model is nmod due to the cancellation of µ poles and zeros. The

absence of terms involving y2(k − 1), . . . , y2(k − µ + 1) is responsible for the explicit

presence of the Markov parameters H0, . . . , Hµ−1. Note that, if y1 is a realization

of a white random process, the Markov parameters H0, . . . , Hµ−1 can be estimated

consistently using least squares (LS) [113]. However, because y1 is not a realization

of a white noise process, we use QCLS to provide consistent estimates of the Markov

parameters [50].

We investigate the accuracy of the estimates of the Markov parameters of a PTF

for various u and x0. We quantify the difference between the estimated and actual
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Markov parameters by defining

εT , σmax

(
T − T̂

)
,

where, for µ = 10,

T ,




H0 · · · 0

...
. . . 0

H9 · · · H0




is the truncated Toeplitz operator [114] and T̂ is an estimate of T .

4.5.1 Effect of model order with noise-free measurements

We first investigate the effect of the order of the µ-Markov model on the accuracy

of the estimated Markov parameters of the PTF. We consider three different input

signals u, namely, a realization of a white Gaussian process with mean 0 and variance

1, a square wave with period 0.33 s, and a sine wave with period 0.33 s, as well as

zero and nonzero x0. We simulate (4.26) to obtain the position q1 of the first mass

and the velocity v2 of the second mass. We then use LS with the µ-Markov model

structure (4.28) of relative degree 0 to estimate the first 10 Markov parameters of

the PTF from q1 to v2. For 50 realizations of 500 samples of each u, we construct εT

and compute the average estimation error ε̄T over all u. Plotting ε̄T as a function of

the µ-Markov model order nmod in Figure 4.4 shows that the Markov parameters are

correctly estimated if nmod ≥ n− 1 = 3.

4.5.2 Consistency of the estimated PTF

We now investigate the effect of output noise on the accuracy of the identified PTF

by adding noise to both the pseudo input and pseudo output. Since the pseudo input
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Figure 4.4: Error in the estimated Markov parameters of the PTF from q1 to v2 as
the µ-Markov model order increases.

is not a realization of a white random process, LS with a µ-Markov model structure

does not yield consistency of the Markov parameters. Hence, for comparison, we use

both LS and QCLS [50] with the µ-Markov model structure (4.28) with nmod = 3

and relative degree 0 to estimate the first µ = 10 Markov parameters of the PTF

from q1 to v2. To obtain consistent estimates, QCLS requires knowledge of the noise

autocorrelation

R , E
[
ψ(k)ψT(k)

] ∈ R(2nmod+µ+1)×(2nmod+µ+1)
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to within a scalar multiple, where nmod + µ − 1 ≤ k ≤ l, l is the number of data

samples,

ψ(k) ,




ψ2(k)

−ψ1(k)


 ,

and, for i = 1, 2,

ψi(k) ,
[

wi(k) wi(k − µ) · · · wi(k − µ− nmod + 1)

]T

,

Note that we form R by solving a discrete-time Lyapunov equation for the autocor-

relation of the noise vector ψ(k) [115].

We choose x(0) 6= 0 and u ∼ N(0, 1) and, for i = 1, 2, we choose the standard

deviation of wi so that the signal-to-noise ratio (SNR) is 10. For LS, we let µ = 10

in (4.28) and estimate the first 10 Markov parameters of the PTF from q1 to v2. For

QCLS, we let µ = 1 in (4.28) and estimate the coefficients of (4.28). We then impulse

the identified model (4.28) to obtain an indirect estimate of the first 10 Markov

parameters of the PTF from q1 to v2. We use the estimated Markov parameters

from LS and QCLS along with the true Markov parameters to compute εT , which

we average over 50 noise sequences and 10 input sequences to obtain ε̄T . Figure 4.5,

shows that QCLS provides consistent estimates of the PTF, while LS does not. This

result is expected since the pseudo-input y1 is not white.

4.5.3 Damage detection through PTF estimation

Finally, we investigate whether changes in the identified PTF can be used to detect

changes in system parameters. We choose x(0) 6= 0 and u ∼ N(0, 1) and simulate

(4.26)–(4.27). In this case, we consider the exactly proper PTF from the acceleration

a1 of the first mass to the acceleration a2 of the second mass. Both continuous-time
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Figure 4.5: Error in the estimated PTF from q1 to v2, where zero-mean noise is added
to both output measurements.

transfer functions G1 and G2 have 2 zeros at s = 0. Under sampling, these zeros map

to the same locations, and thus the order of the PTF from y1 to y2 is n = 2. Adding

white noise with a SNR of 100 to both y1 and y2, we use QCLS with a µ-Markov

model structure (4.28) with nmod = n = 2, µ = 1 and relative degree 0 to estimate

the model coefficients. We then impulse the identified model to estimate the first

µ = 2 Markov parameters of the PTF from a1 to a2.

At time step k = 34, the stiffnesses ki are reduced by a factor of 2 and the damping

ratios ci are increased by a factor of 3. Figure 4.6 shows the change in the true and

estimated Markov parameters after damage is introduced. At time step k = 66,

we re-initialize the QCLS algorithm. Figure 4.6 shows that the Markov parameter

estimates converge to the modified values after re-initialization. Note that the QCLS

algorithm returns zero estimates until l = 3nmod +2µ−1 = 9 data samples have been

collected.

70



0 10 20 30 40 50 60 70 80 90 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time step k

 

 

H0

H1

Ĥ0
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Figure 4.6: Damage detection using the PTF from a1 to a2, where white, zero-mean
noise is added to both output measurements.

4.6 Conclusions

For SISO sampled-data systems, we defined the concept of a pseudo transfer func-

tion (PTF) from one output to another. A PTF, which contains information about

the zeros of the system, does not depend on either the input to the system or its

initial condition. We provided results to illustrate that a PTF can be estimated con-

sistently in the presence of output noise if the autocorrelation of the output noise is

known to within a scalar multiple. We also demonstrated how PTFs can be used to

detect faults in a simulated mass-spring-damper system. Future research will address

consistency of the PTF estimate when the output noise autocorrelation is unknown

using an instrumental variable approach [116]. Investigation into damage localization

using PTFs is also left for future research.
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CHAPTER V

MIMO Pseudo Transfer Function Identification

5.1 Introduction

In some applications, the excitation may be unknown and thus output measure-

ment data may be the only available information for system identification. In this

case, it is typically assumed that the excitation is generated by a white random

process, and frequency-domain [38, 39, 40, 42], subspace-based [33, 34, 35, 36], and

time-domain [31] system identification techniques are used to detect changes in the

dynamics of the system. Blind source separation techniques can also be applied [37].

As an alternative approach, pseudo transfer functions (PTFs) are used in [56, 58]

to detect system changes under unknown excitation. SISO PTFs for single-input,

two-output systems are characterized in [56, 58]. Sampling introduces additional

zeros into a discrete-time input-output model if the relative degree of the continuous-

time system is greater than 1 [110]. Hence, for a strictly proper continuous-time

system, the order of the SISO PTF arising from a sampled-data application is n− 1,

where n is the order of the underlying system [56, 58]. Since a PTF is essentially a

ratio of transfer functions, the information in a PTF consists of information about

the zeros of the system from the unknown excitation to each of the outputs. For

applications involving structural dynamics, PTFs can be viewed as an extension of

transmissibilities, where PTFs do not require that one of the outputs be colocated
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with the prescribed displacement [42].

The results of [56, 58] assume that a single unknown excitation is applied to the

system. For the case of multiple excitation signals, it is shown in [57] that additional

outputs can be used to obtain a MIMO PTF that is independent of the excitation

signals. For example, the system shown in Figure 5.1 is excited by both u1 and u2 so

that the output measurements y1, y2, and y3 contain contributions from both u1 and

u2. Therefore, for j = 1, 2, 3, yj,2, which is the effect of u2 on the jth output, appears

as output noise corrupting measurement yj. Furthermore, identification of the SISO

PTF from y1 to y2 involves estimation in the presence of noise due to u2. However,

identification of the MIMO PTF from [y1 y2]
T to y3 is noise-free in the sense that,

in the absence of additional noise sources, exact identification of the MIMO PTF is

possible using finite data. In [57], recursive least squares is used to identify MIMO

PTFs.

Figure 5.1: Illustration of how unknown multiple excitation signals can cause an in-
crease in output noise.

The contribution of this chapter is to analyze MIMO PTFs in terms of the con-

ditions on the outputs under which a MIMO PTF can be defined. In particular,

we consider the normal rank of the PTF as well as its order and relative degree.

We also go beyond the results of [57] by considering the case in which the outputs

are corrupted by noise that is not due to an excitation signal. Hence, we consider an

errors-in-variables identification problem. To address this problem, we apply quadrat-

ically constrained least squares [50]. Since the results of [50] are confined to SISO

systems, we apply the MIMO extension developed in Appendix B. In addition, we
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use the µ-Markov model structure rather than an ARMAX model structure since the

former requires only a lower bound on the estimated model order.

5.2 Problem Formulation

Figure 5.2: Pseudo transfer function (PTF) identification problem.

Consider the system S in Figure 5.2, which has unknown inputs ū1, . . . , ūm and

outputs ȳ1, . . . , ȳp. We define ū ,
[

ū1 · · · ūm

]T

and ȳ ,
[

ȳ1 · · · ȳp

]T

. For

Ā ∈ Rn×n, B̄ ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, a state space representation of S

is denoted by (Ā, B̄, C, D), where

˙̄x(t) = Āx̄(t) + B̄ū(t), x̄(0) = x0, (5.1)

ȳ(t) = Cx̄(t) + Dū(t). (5.2)

For k ∈ {0, 1, . . .} and sample interval h > 0, we apply the variation of constants
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method [106] to solve (5.1) for x̄(t) from t = kh to t = kh + h, which yields

x̄(kh + h) = eĀhx̄(kh) +

∫ kh+h

kh

eĀ(kh+h−τ)B̄ū(τ)dτ. (5.3)

We assume that ū(t) changes sufficiently slowly that ū(kh) ≈ ū(kh + h). Hence, we

rewrite (5.3) as

x(k + 1) = Ax(k) + Bu(k), (5.4)

where x(k) , x̄(kh), u(k) , ū(kh), A , eĀh, and

B ,
∫ h

0

eĀτdτB̄.

We rewrite (5.4) in terms of the forward-shift operator q as

δ(q)x = adj (qI − A) Bu, (5.5)

where

δ(q) , det(qI − A)

and adj(·) denotes the adjugate operator. Defining y(k) , ȳ(kh), it follows from (5.2)

that

y(k) = Cx(k) + Du(k). (5.6)

For the remainder of this chapter, we assume p > m. Hence, substituting (5.5)
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into (5.6) yields

δ(q)y = N(q)u, (5.7)

where, for U(q) ∈ Rm×m[q], L(q) ∈ R(p−m)×m[q], CU ∈ Rm×n, CL ∈ R(p−m)×n,

DU ∈ Rm×m, and DL ∈ R(p−m)×m,

N(q) , Cadj (qI − A) B + δ(q)D (5.8)

=




U(q)

L(q)




=




CUadj (qI − A) B + δ(q)DU

CLadj (qI − A) B + δ(q)DL


 ∈ Rp×m[q].

We can also write (5.8) as

y = G(q)u

,
[
C (qI − A)−1 B + D

]
u

=




GU(q)

GL(q)


 u

=




CU (qI − A)−1 B + DU

CL (qI − A)−1 B + DL


 u.

5.3 Output-Only Model

For 1 ≤ i ≤ j ≤ p, we define

y[i:j] ,
[

yi · · · yj

]T

,
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so that

y =




y[1:m]

y[m+1:p]


 .

It follows from (5.7) that

δ(q)y[1:m] = U(q)u (5.9)

and

δ(q)y[m+1:p] = L(q)u. (5.10)

Multiplying (5.9) on the left by adj (U(q)) yields

δ(q)adj (U(q)) y[1:m] = det (U(q)) u. (5.11)

Assuming det (U(q)) is not the zero polynomial and thus U(q) is invertible, we sub-

stitute (5.11) into (5.10) to obtain

δ(q)det (U(q)) y[m+1:p] = δ(q)L(q)adj (U(q)) y[1:m].

Hence,

y[m+1:p] = Γ(q)y[1:m],

where

Γ(q) , δ(q)

δ(q)det (U(q))
L(q)adj (U(q)) ∈ R(p−m)×m[q] (5.12)
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is the MIMO PTF from y[1:m] to y[m+1:p]. As explained in [58] for the case m = 1, the

common factor δ(q) can be cancelled.

Note that

U(q) = PQ(q), (5.13)

where

P ,
[

CU DU

]
∈ Rm×(n+m)

and

Q(q) ,




adj (qI − A) B

δ(q)Im


 ∈ R(n+m)×m.

The following result uses (5.13) to provide a necessary condition for det U(q) 6= 0.

Proposition 5.3.1 If det U(q) 6= 0, then rank P = m.

Proof 5.3.1

normal rank U(q) = normal rank PQ(q)

= min{rank P, normal rank Q(q)}

= rank P = m. ¤

Note that

U(q) = R(q)S, (5.14)
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where

R(q) ,
[

CUadj (qI − A) δ(q)Im

]
∈ Rm×(n+m)

and

S ,




B

DU


 ∈ R(n+m)×m.

The following result uses (5.14) to provide a necessary condition for det U(q) 6= 0.

Proposition 5.3.2 If det U(q) 6= 0, then rank S = m.

Proof 5.3.2

normal rank U(q) = normal rank R(q)S

= min{normal rank R(q), rank S}

= rank S = m. ¤

The following result provides necessary and sufficient conditions for det U(q) 6= 0.

Proposition 5.3.3 det U(q) 6= 0 if and only if GU(q) has full normal rank.

Proof 5.3.3

normal rank GU(q) = normal rank CU (qI − A)−1 B + DU

= normal rank U(q) = m. ¤

Propositions 5.3.1 and 5.3.2 provide necessary conditions for det U(q) 6= 0. How-

ever, the following example shows that these conditions are not sufficient for GU(q)

to have full normal rank and thus for det U(q) 6= 0.
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Example 5.3.1 Let

A = −1

4




1 −2 0

2 1 0

0 0 2




, B =




2 2

0 1

1 0




,

CU =



−1 0 0

0 1 1


 , DU =




0 0

0 0


 .

Note that A is asymptotically stable, B and CU are full-rank, (A,B, CU , DU) is min-

imal, and rank P = rank S = m. However,

GU(q) =
1

q3 + q2 + 9
16
q + 5

32



−(q + 1

4
)(2q + 1) −(q + 1

2
)(2q + 1)

1
4
(q + 1

4
)(4q− 3) 1

4
(q + 1

2
)(4q− 3)


 ,

which does not have full normal rank.

5.4 MIMO PTF Order And Relative Degree

For i = 1, . . . , p, we write

yi(k) = Cix(k) + Diu(k),

and thus

δ(q)yi = Ni(q)u,
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where Ni(q) is the ith row of N(q), Ci is the ith row of C, and Di is the ith row of D.

For all i ∈ {1, . . . , p} and all j ∈ {1, . . . , m},

ηi,j(q) , (N(q))(i,j) = Ciadj (qI − A) Bj + Di,jδ(q).

Proposition 5.4.1 Let GU(q) have full normal rank. Then

deg (det (U(q))) ≤ nm,

and, for all i, j ∈ {1, . . . , m},

deg
(
adj (U(q))(i,j)

)
≤ n(m− 1).

Proof 5.4.1 For all r ∈ {1, . . . , p} the degree of ηr,j(q) is n if Dr,j 6= 0 and

n−1 otherwise (see Proposition 4.3.1). Hence, computing det U(q) using the cofactor

expansion yields

deg (det (U(q))) ≤ m

(
max

i,j
ηi,j(q)

)

= mn.

Furthermore,

deg
(
adj (U(q))(i,j)

)
≤ (m− 1)

(
max

i,j
ηi,j(q)

)

= (m− 1)n. ¤

Proposition 5.4.2 Let G(q) have full normal rank. Then, for all i ∈ {1, . . . , p−
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m} and all j ∈ {1, . . . , m},

deg [L(q)adj (U(q))](i,j) ≤ nm.

Proof 5.4.2 For all r ∈ {1, . . . , p} the degree of ηr,j(q) is n if Dr,j 6= 0 and n− 1

otherwise, as shown in Proposition 4.3.1. Hence, for all k ∈ {1, . . . , m},

deg [L(q)adj (U(q))](i,j) ≤ max
i,j

(
deg [L(q)](i,j)

)

+ max
j,k

(
deg [adj (U(q))](j,k)

)

= n + n(m− 1)

= nm. ¤

Theorem 5.4.1 Let G(q) have full normal rank and assume that the common

factor δ(q) in (5.12) can be cancelled. Then, for all i ∈ {1, . . . , p − m} and for all

j ∈ {1, . . . , m}, the order of Γ(q)(i,j) is less than or equal to nm. Furthermore, the

relative degree d(i,j) of Γ(q)(i,j) is given by

d(i,j) , deg [det (U(q))]− deg [L(q)adj (U(q))](i,j) .

5.5 Three-Output, Two-Input Case

Let p = 3 and m = 1. From Theorem 4.4.1, the PTF from y1 to y3 is given by

y3 =
η3,1(q)

η1,1(q)
y1. (5.15)
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Next, let m = 2. Assuming δ(q) in (5.12) can be cancelled, the PTF from Y[1:2] to y3

is given by

y3 = Γ(1,1)(q)y1 + Γ(1,2)y2, (5.16)

where

Γ(1,1)(q) =
η3,1(q)η2,2(q)− η3,2(q)η2,1(q)

η1,1(q)η2,2(q)− η2,1(q)η1,2(q)

and

Γ(1,2)(q) =
η3,2(q)η1,1(q)− η3,1(q)η1,2(q)

η1,1(q)η2,2(q)− η2,1(q)η1,2(q)
.

It follows from (5.16) that, if two excitation signals are present, then the SISO PTF

from y1 to y3 given by (5.15) is incorrect. In particular, (5.16) shows that both y1

and y2 contribute to y3. Hence a MIMO PTF is needed to correctly characterize the

output-output relationship.

5.6 Examples

Consider the mass-spring-damper structure in Figure 5.3, which has the equations

of motion

Mq̈(t) + Cdq̇(t) + Kq(t) = F (t), (5.17)
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where

q(t) =




q1(t)

q2(t)

q3(t)




, M =




m1 0 0

0 m2 0

0 0 m3




,

Cd =




c1 + c2 −c2 0

−c2 c2 + c3 −c3

0 −c3 c3 + c4




,

K =




k1 + k2 −k2 0

−k2 k2 + k3 −k3

0 −k3 k3 + k4




,

F (t) = Bu(t) =




1 0

0 1

0 0







u1(t)

u2(t)


 .
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We express (5.17) in state-space form (5.1), where ȳ(t) =

[
q1(t) q2(t) v2(t)

]T

,

x̄(t) =




q1(t)

q2(t)

q3(t)

v1(t)

v2(t)

v3(t)




, Ā ,




03×3 I3

−M−1K −M−1Cd


 , B̄ ,




03×2

M−1B


 ,

and where m1 = 1
2
m2 = 1

3
m3 = 1 kg, k1 = 4

5
k2 = 2

3
k3 = 4

7
k4 = 4 N/m, c1 = 1

2
c2 =

1
3
c3 = 1

4
c3 = 0.1 kg-m/s, and h = 0.5 s.

Figure 5.3: 3 DOF mass-spring-damper structure.

We use Markov parameter matrices to characterize the PTF estimate. To do this,

we use the µ-Markov model structure

A0y2(k) =− Aµy2(k − µ)− · · · − Aµ+nmod−1y2(k − µ− nmod + 1)

+ H0y1(k) + · · ·+ Hµ−1y1(k − µ + 1)

+ Bµy1(k − µ) + · · ·+ Bµ+nmod−1y1(k − µ− nmod + 1) (5.18)

of order nmod. The absence of terms involving y2(k−1), . . . , y2(k−µ+1) is responsible

for the explicit presence of the Markov parameter matrices H0, . . . , Hµ−1.

The µ-Markov model structure has two principal advantages over the traditional
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ARMAX structure. First, within the context of least squares identification with

a white excitation signal, it is shown in [113] that the µ-Markov model provides

consistent estimates of the Markov parameters in the presence of arbitrary output

noise. Second, unlike parameter coefficients in an ARMAX model structure, the

estimates of the Markov parameters are insensitive to the assumed model order nmod

as long as nmod is larger than the true model order n. Consequently, only an upper

bound on the true model order is needed.

For MIMO PTF identification, neither output signal is white, and thus we use

quadratically constrained least squares (QCLS) with the µ-Markov model structure

(5.18). As discussed in Appendix B and [50], if the noise autocorrelation matrices

are known to within a scalar multiple, QCLS yields consistent parameter estimates

in the presence of both input and output noise. If this assumption is not satisfied,

instrumental variables methods [116] can be used to achieve consistent parameter

estimates.

To quantify the difference between the estimated and actual Markov parameter

matrices, we define

εT , ‖T − T̂ ‖2

‖T ‖2

,

where

T ,




vec (H0)

...

vec (H3)




and T̂ is the estimate of T obtained from QCLS.
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5.6.1 Effect of model order with noise-free measurements

We investigate the effect of the µ-Markov model order nmod on the accuracy of the

estimated Markov parameter matrices of the PTF. We simulate (5.17) with x0 6= 0 to

obtain the position q1 of the first mass, the position q2 of the second mass, and the

velocity v2 of the second mass, where u1 and u2 are realizations of white Gaussian

processes with mean 0 and variance 1.

First, we consider the SISO PTF from q1 to v2 and use LS with the µ-Markov

model structure (5.18) of relative degree 0 to estimate the first 4 (scalar) Markov

parameters of the PTF from q1 to v2. For 10 realizations of 1000 samples of each u,

we construct εT and compute the average estimation error ε̄T over all u. Plotting ε̄T

as a function of the µ-Markov model order nmod in Figure 5.4 shows that the Markov

parameters are not correctly estimated for all nmod from 1 to 15. This is expected

because q1 and v2 are corrupted by contributions from both u1 and u2.

Next, we consider the two-input, one-output PTF from

[
q1 q2

]T

to v2 and use

LS with the µ-Markov model structure (5.18) of relative degree 0 to estimate the first

4 (2× 2) Markov parameters of the PTF from

[
q1 q2

]T

to v2. For 10 realizations

of 1000 samples of each u, we construct εT and compute the average estimation error

ε̄T over all u. Plotting ε̄T as a function of the µ-Markov model order nmod in Figure

5.5 shows that the Markov parameters are correctly estimated for nmod ≥ 4.

5.6.2 Consistency of the estimated MIMO PTF

We now investigate the effect of output noise on the accuracy of the identified PTF

by adding noise to the output measurements. As shown in Figure 5.6, we assume that

measurement yi is corrupted by white, zero-mean Gaussian noise wi and we assume

that each measurement yj is corrupted by white, zero-mean Gaussian noise vj−m,

where i ∈ {1, . . . , m} and j ∈ {m + 1, . . . , p}. Hence, the measured pseudo-inputs
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

ε̄
T

µ-Markov model order n
mod

Figure 5.4: Error in the estimated Markov parameters of the SISO PTF from q1 to
v2 as the µ-Markov model order increases.

ξ[1:m] are given by

ξ[1:m] = y[1:m] + v[1:m],

and the measured pseudo-outputs ξ[m+1:p] are given by

ξ[m+1:p] = y[m+1:p] + w[1:p−m].

Since the pseudo inputs are not realizations of white random processes, LS does

not yield consistent estimates of the Markov parameters. Hence, for comparison, we

use both MIMO LS and MIMO QCLS with the µ-Markov model structure (5.18) with

nmod = 4 and relative degree 0 to estimate the first µ = 4 Markov parameter matrices

of the PTF from

[
q1 q2

]T

to v2. To obtain consistent estimates, QCLS requires
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Figure 5.5: Error in the estimated Markov parameters of the MIMO PTF from
[q1 q2]

T to v2 as the µ-Markov model order increases.

Figure 5.6: Effect of output noise on PTF identification.
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knowledge of the noise autocorrelation to within a scalar multiple, as discussed in

Appendix B and in [50].

We simulate (5.17) with x0 6= 0 to obtain the position q1 of the first mass, the

position q2 of the second mass, and the velocity v2 of the second mass, where u1

and u2 are realizations of white Gaussian processes with mean 0 and variance 1. We

choose v1, v2, and w1 so that the signal-to-noise ratio (SNR) of each measurement is

10. For LS and QCLS, we let µ = 4 in (5.18) and estimate the Markov parameter

matrices of the PTF from

[
q1 q2

]T

to v2. We use the estimated and true Markov

parameter matrices to compute εT , which we average over 10 noise sequences and

10 input sequences u to obtain ε̄T . The estimates provided by QCLS in Figure 5.7

appear consistent, while the estimates provided by LS do not. This result is expected

since the pseudo-inputs q1 and q2 have colored spectra.

10
2

10
3

10
0.6

10
0.7

10
0.8

ε̄
T

Number of data samples l

 

 

LS
QCLS

Figure 5.7: Consistent estimation of the PTF from [q1 q2]
T to v2, where white, un-

correlated noise is added to all sensor measurements
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5.7 Conclusions

In this chapter, we defined a MIMO PTF to relate sets of output measurements

and provided conditions on the number of excitations required to exactly estimate

a MIMO PTF. We also provided necessary and sufficient conditions under which a

MIMO PTF is defined, as well as lower bounds on the order and relative degree of

the MIMO PTF. Using a simulated mass-spring-damper system, we demonstrated

that a MIMO PTF can be estimated exactly if no noise is present in the system.

By developing and applying a MIMO quadratically constrained least squares (QCLS)

identification algorithm, we demonstrated that a MIMO PTF can be estimated con-

sistently in the presence of output noise if the autocorrelation of the output noise is

known to within a scalar multiple.
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CHAPTER VI

Conclusions and Contributions

6.1 Conclusions

In this dissertation, we proposed several approaches for output-only fault detec-

tion.

First, we described the adjacent moving window peak detection (AMWPD) ap-

proach to detect an abrupt change in a noisy signal in real-time. We characterized the

computational requirements of the AMWPD approach and provided techniques to re-

duce the computational complexity of the AMWPD approach. We also compared the

AMWPD approach with existing techniques and showed that the AMWPD approach

provides fewer false alarms and comparable detection speed.

Second, we applied a modified tabu search and probabilistic neural network (mTS

+ PNN) approach to classify tool wear in the shaving process. We defined novel

features that we used in the mTS + PNN approach to yield improved classification

accuracy. We also compared the mTS + PNN approach with an existing feature ex-

traction and selection approach and showed that the mTS + PNN approach provides

higher classification accuracy and requires less computational time.

Third, we characterized pseudo transfer functions (PTFs) that we use to detect

faults in linear, time-invariant systems. For a system with one excitation and two

outputs, we provided the order and relative degree of the single-input-single-output
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(SISO) PTF and showed that the estimated PTF equals the true PTF if no noise is

present in the data. We also applied quadratically-constrained least squares (QCLS)

to estimate the PTF consistently for zero-mean output noise with known covariance.

Finally, we showed that a change in the system dynamics can be reflected by a change

in the estimated PTF.

Fourth, we extended the PTF approach to linear, time-invariant systems with

multiple excitations and more than two outputs. We provided an upper bound on the

order and relative degree of each entry of the multiple-input-multiple-output (MIMO)

PTF and showed that the estimated MIMO PTF equals the true MIMO PTF if

no noise is present in the data. Finally, we developed a MIMO QCLS technique

to estimate the MIMO PTF consistently for zero-mean output noise with known

covariance.

6.2 Contributions

This dissertation has four main contributions. First, we developed, validated, and

implemented the AMWPD approach, which yields few false alarms and fast detection

time, to detect an abrupt change in a noisy signal in real-time. Second, we defined

key features that we used to classify the tool wear in a shaving process. We also

applied the mTS + PNN feature selection and clustering approach to achieve fast

and accurate tool wear classification. Third, we defined a SISO PTF, which requires

minimal assumptions about the excitation and output noise, to detect a fault in a

linear system that has a single excitation and two outputs. Fourth, we defined a

MIMO PTF to detect a fault in a linear system that has non-unit-rank excitation

and more than two outputs.
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6.3 Proposed Future Work

Future work can be conducted in each area addressed by this dissertation. A short

summary of some possible directions for future research is provided below.

The AMWPD approach should be tested on other applications with data from

other types of output measurements. Also, the sensitivity of the AMWPD approach

to the spectrum of the measurement noise must be investigated to quantify the robust-

ness of the AMWPD approach to non-white, non-Gaussian noise. Finally, extensions

of the AMWPD approach to real-time detection of other types of anomalies (i.e., an

increase in variance or change in spectrum) could provide more comprehensive fault

detection capability.

Due to time and cost constraints, the mTS + PNN approach was only validated

on data from a single tool. Hence, data from additional tools should be used to

confirm these results. Also, future research should investigate how many tools must

be used for training to ensure sufficient capability to classify data from a tool that has

not been used to train the mTS + PNN approach. Furthermore, the mTS + PNN

approach could be tested on other types of manufacturing applications with other

types of output measurements. Finally, future work should investigate the effect of

the activation function in the pattern layer on the accuracy of the classification result,

perhaps comparing the proposed activation function (3.18) with a hyperbolic tangent

function or a radial basis function. Similarly, computational time and accuracy should

be compared if the activation function in the output layer is nonlinear.

The sensitivity and robustness of the PTF fault detection approach must be com-

pared with existing methods for fault detection, including statistical process control

techniques, fault detection using standard system identification approaches, and fea-

ture extraction, selection, and classification approaches. Identification of PTFs for

nonlinear systems, especially systems with Hammerstein or Wiener nonlinearities, as

shown in Figure 6.1, is also a subject of future work. Furthermore, additional experi-
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Figure 6.1: Identification of a system with linear dynamics G and static Hammerstein
H and Wiener W nonlinearities.

mental validation of the PTF approach on aerospace, civil, and mechanical structures

would motivate implementation and commercialization.

Consistent identification of PTFs is another area for future study. Although

this dissertation considers both standard and quadratically-constrained approaches

to batch least squares identification of time-series models, other identification ap-

proaches should also be considered, especially instrumental-variables [116]. Although

we applied recursive least squares to identify a PTF online in [56], additional inves-

tigation into the consistency of online PTF identification techniques is required.

Figure 6.2: Illustration of a how a network of sensors can be used for fault localization.

Finally, fault isolation (damage localization) using the PTF approach is an area

for future study, especially in structural health monitoring applications. As shown

in Figure 6.2, a MIMO PTF can relate a large number of output measurements.
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Assume a crack occurs in the wing in Figure 6.2. If the entry of the MIMO PTF

relating output j to output k changes more than the other entries of the MIMO PTF,

then the crack may have occurred between outputs j and k. However, simulated and

experimental data must be used to examine this hypothesis.
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APPENDIX A

Proofs of SISO PTF Identities

Key Lemmas

We define

α ,
[

α0 α1 · · · αn−1

]T

,

Ac , SAS−1 =




0(n−1)×1 In−1

−αT


 ,

Bc , SB =

[
0 · · · 0 1

]T

.

For i = 1, 2, we define

Cc,i , CiS
−1 =

[
βi,0 βi,1 · · · βi,n−1

]
− βi,nα

T.
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For j = 0, . . . , n, we define

χj ,





eT
j+1, 0 ≤ j ≤ n− 1,

−α, j = n,

where

ek ,




0(k−1)×1

1

0(n−k)×1



∈ Rn.

Finally, for i, j = 0, . . . , n, we define

fi,j , χiA
j
c.

Lemma A.0.1 For all i, j = 0, . . . , n,

fi,j = fj,i.

Proof A.0.1 Note

Aj
c =








eT
j+1

...

eT
n

−αT

...

−αTAj−1
c




, 0 ≤ j ≤ n− 1,




−αT

...

−αTAj−1
c




, j = n.
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If i = j, the result follows immediately.

If 0 ≤ i ≤ n− 1 and j = n,

fi,n = eT
i+1




−αT

...

−αTAj−1
c




= −αTAi
c = fn,i.

If 0 ≤ i ≤ n− j − 1 and 0 ≤ j ≤ n− 1,

fi,j = eT
i+1




eT
j+1

.

..

eT
n

−αT

..

.

−αTAj−1
c




= eT
i+j+1 = eT

j+1




eT
i+1

.

..

eT
n

−αT

..

.

−αTAi−1
c




= fj,i.

If n− j ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1,

fi,j = eT
i+1




eT
j+1

..

.

eT
n

−αT

...

−αTAj−1
c




= −αTAi+j−n
c = eT

j+1




eT
i+1

..

.

eT
n

−αT

...

−αTAi−1
c




= fj,i. ¤

Proposition A.0.1

n∑
i=0

β2,iC1A
i =

n∑
i=0

β1,iC2A
i. (A.1)

Proof A.0.2 Because (A,B) is controllable, from (4.10) there exists a nonsingu-

lar S that transforms A,B, C1, and C2 into controllable canonical form. Hence from
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Lemma A.0.1 we have

n∑
i=0

β2,iC1A
i =

n∑
i=0

β2,iCc,1A
i
cS

=
n∑

i=0

β2,i

[
n−1∑
j=0

(
β1,je

T
j+1

)− β1,nαT

]
Ai

cS

=
n∑

i=0

n∑
j=0

β2,iβ1,jfj,iS

=
n∑

i=0

n∑
j=0

β1,iβ2,jfj,iS

=
n∑

i=0

β1,i

[
n−1∑
j=0

(
β2,je

T
j+1

)− β2,nαT

]
Ai

cS

=
n∑

i=0

β1,iCc,2A
i
cS

=
n∑

i=0

β1,iC2A
i ¤

Proposition A.0.2 For all k = 0, . . . , n,

n∑

i=k

β2,iH1,i−k =
n∑

i=k

β1,iH2,i−k. (A.2)

Proof A.0.3 We consider the cases k = n, k = n−1, and k = 0. The remaining

cases are proved in a similar fashion.

For k = n,

n∑
i=n

β2,iH1,i−n = β2,nD1 = β2,nβ1,n = β1,nD2 =
n∑

i=n

β1,iH2,i−n.
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For k = n− 1,

n∑
i=n−1

β2,iH1,i−n+1 = β2,n−1D1 + β2,nC1B

= β2,n−1β1,n + β2,nCc,1Bc

= β2,n−1β1,n + β2,nβ1,n−1 − β2,nβ1,nαn−1

= β1,n−1β2,n + β1,nCc,2Bc

= β1,n−1D2 + β1,nC2B

=
n∑

i=n−1

β1,iH2,i−n+1.

For k = 0, we define

ξi,j ,





0, i = 0, 0 ≤ j ≤ n− 1,

1, i = 0, j = n,

eT
j+1A

i−1
c en, 1 ≤ i ≤ n, 0 ≤ j ≤ n− 1,

−αTAi−1
c en, 1 ≤ i ≤ n, j = n,

and note that, using a proof similar to the proof of Lemma A.0.1, it can be shown

that ξi,j = ξj,i. Hence,

n∑

i=0

β2,iH1,i = β2,0β1,n + β2,1Cc,1Bc + · · ·+ β2,nCc,1An−1
c Bc

= β2,0β1,n +
n∑

i=1

β2,i




n−1∑

j=0

β1,jeT
j+1 − β1,nαT


 Ai−1

c Bc

=
n∑

i=0

n∑

j=0

β2,iβ1,jξi,j

=
n∑

i=0

n∑

j=0

β1,iβ2,jξi,j

= β1,0β2,n +
n∑

i=1

β1,i




n−1∑

j=0

β2,jeT
j+1 − β2,nαT


 Ai−1

c Bc

= β1,0β2,n + β1,1Cc,2Bc + · · ·+ β1,nCc,2An−1
c Bc

=
n∑

i=0

β1,iH2,i. ¤
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Proof of Proposition 4.4.1

Assume l > 2n. Then

N2Γ1 =




∑n
i=0 β2,iC1A

i

...
∑n

i=0 β2,iC1A
l−n−1+i




, (A.3)

N1Γ2 =




∑n
i=0 β1,iC2A

i

...
∑n

i=0 β1,iC2A
l−n−1+i




. (A.4)

From (A.1), it follows that the first component of (A.3) and the first component of

(A.4) are identical. Multiplying (A.1) on the right by Aq−1 implies that, for q ∈
{2, 3, . . . , l− n}, the qth component of (A.3) and the qth component of (A.4) are also

identical. ¤

Proof of Proposition 4.4.2

Assume l > 2n. Then

N2H1 =




σ2,1(1, 1) . . . σ2,1(1, n + 1) 0 0

...
. . . . . . . . .

...

σ2,1(l − n, 1) . . . σ2,1(1, 1) . . . σ2,1(1, n + 1)
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and

N1H2 =




σ1,2(1, 1) . . . σ1,2(1, n + 1) 0 0

...
. . . . . . . . .

...

σ1,2(l − n, 1) . . . σ1,2(1, 1) . . . σ1,2(1, n + 1)




are Toeplitz, where

σj,k(r, s) ,
n∑

i=s−1

βj,iHk,i+r−s.

For q ∈ {0, 1, . . . , l − n− 2}, multiplying (A.1) on the right by AqB implies that, for

r ∈ {2, 3, . . . , l − n},

σ2,1(r, 1) = σ1,2(r, 1).

Furthermore, setting k = s− 1 in (A.2) implies that, for s ∈ {1, 2, . . . , n + 1},

σ2,1(1, s) = σ1,2(1, s). ¤

Interesting Matrix Equality

We define

N ,

 01×(n−1) 0

In−1 0(n−1)×1


 ∈ Rn×n, ej ,




0(j−1)×1

1

0(n−j)×1


 ∈ R

n, Rj ,




0 · · · 0 1

... . .
.

. .
.

0

0 . .
.

. .
. .

..

1 0 · · · 0




∈ Rj×j ,

Uk , RkNk =


 Rn−k 0(n−k)×k

0k×(n−k) 0k×k


 ∈ Rn×n, Lk , NkRk =


 0k×k 0k×(n−k)

0(n−k)×k Rn−k


 ∈ Rn×n.
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Furthermore, let a ∈ Cn denote the nth column of A and, for j = 1, . . . , n, define

Qj , Un−j +
n−1∑
i=1

(
eT

j Ai−1a
)
Li.

Lemma A.0.2 For every positive integer k,

Akb = Nkb +
k−1∑
i=0

(eT
nN ib)Ak−i−1a. (A.5)

Proof A.0.4 We prove (A.5) by induction. For k = 1,

Ab = (N + aeT
n )b

= Nb + (eT
nb)a

= Nb + (eT
nN0b)A0a,

where N0 = A0 = In. From (A.5), we have

Ak+1b = A(Akb)

= A

[
Nkb +

k−1∑
i=0

(eT
nN ib)Ak−i−1a

]

= ANkb + A

k−1∑
i=0

(eT
nN ib)Ak−i−1a

=
(
N + aeT

n

)
Nkb +

k−1∑
i=0

(eT
nN ib)Ak−ia

= Nk+1b + (eT
nNkb)A0a +

k−1∑
i=0

(eT
nN ib)Ak−ia

= Nk+1b +
k∑

i=0

(eT
nN ib)Ak−ia. ¤
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Proposition A.0.3 Let b, c ∈ Cn and let

A =




0 0 · · · 0 a1

1 0 · · · 0 a2

0 1 · · · 0 a3

...
...

. . .
...

0 0 · · · 1 an




∈ Cn×n.

Then

[
b Ab · · · An−1b

]
c =

[
c Ac · · · An−1c

]
b.
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Proof A.0.5 From Lemma A.0.2, we have

[
b Ab · · · An−1b

]
c

=
[

b Nb + (eT
n b)a · · · Nn−1b +

∑n−2
i=0 (eT

nN ib)An−i−2a
]

c

=
[

b Nb · · · Nn−1b
]

c +
[

0n×1 (eT
n b)a · · · ∑n−2

i=0 (eT
nN ib)An−i−2a

]
c

=




b1 0 · · · 0

b2 b1
. . .

.

..

..

.
. . .

. . . 0

bn · · · b2 b1







c1

c2

.

..

cn




+
[

0n×1 (eT
n b)a · · · (eT

nNn−2b)a
]

c

+
[

0n×2 (eT
n b)Aa · · · (eT

nNn−3b)Aa
]

c + · · ·+
[

0n×(n−1) (eT
n b)An−2a

]
c

=




b1 0 · · · 0

b2 b1
. . .

.

..

..

.
. . .

. . . 0

bn · · · b2 b1







c1

c2

.

..

cn




+
[

0n×1 bna · · · b2a
]

c

+
[

0n×2 bnAa · · · b3Aa
]

c + · · ·+
[

0n×(n−1) bnAn−2a
]

c

=




b1c1

b2c1 + b1c2

..

.

bnc1 + · · ·+ b1cn




+ (bnc2 + · · ·+ b2cn)a + (bnc3 + · · ·+ b3cn)Aa + · · ·+ bncnAn−2a

=




bTUn−1c

bTUn−2c

.

..

bTU0c




+

n−1∑

i=1

(bTLic)A
i−1a =




bTUn−1c + bT
(∑n−1

i=1

(
eT
1 Ai−1a

)
Li

)
c

bTUn−2c + bT
(∑n−1

i=1

(
eT
2 Ai−1a

)
Li

)
c

.

..

bTU0c + bT
(∑n−1

i=1

(
eT
nAi−1a

)
Li

)
c




=




bTQ1c

.

..

bTQnc




=
[

c Ac · · · An−1c
]

b,

where the last equality follows from the fact that Q1, . . . , Qn are symmetric.
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APPENDIX B

MIMO QCLS with a µ-Markov Model Structure

Problem Formulation

We consider identification of a MIMO system, where the noise-free input is u0(k) ∈
Rm and the noise-free output is y0(k) ∈ Rp. Hence,

A(q)y0 = B(q)u0 (B.1)

with transfer function

G(q) , A−1(q)B(q),

where A ∈ Rp×p[q] has full normal rank, B ∈ Rp×m[q], k = 0, . . . , l is a positive

integer, A and B are left coprime, and every entry of G(q) is a proper function of q.
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We write (B.1) as a µ-Markov time-series model

0 = α0y0(k) + αµy0(k − µ) + · · ·+ αk′y0(k − k′)

−H0u0(k)− · · · −Hµ−1u0(k − µ + 1)

−Bµu0(k − µ)− · · · −Bk′u0(k − k′), (B.2)

where

k′ , µ + n− 1,

and for i = 0, µ, µ + 1, . . . , k′, αi ∈ R.

Applying the vec operator to (B.2), we obtain

0 = α0y0(k) + αµy0(k − µ) + · · ·+ αk′y0(k − k′)

− (
uT

0 (k)⊗ Ip

)
vec(H0)− · · · −

(
uT

0 (k − µ + 1)⊗ Ip

)
vec(Hµ−1)

− (
uT

0 (k − µ)⊗ Ip

)
vec(Bµ)− · · · − (

uT
0 (k − k′)⊗ Ip

)
vec(Bk′). (B.3)

Errors-In-Variables Formulation

We write (B.3) as

φT
0 (k)θ = 0,
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where

φ0(k) ,




yT
0 (k)

yT
0 (k − µ)

...

yT
0 (k − k′)

−u0(k)⊗ Ip

...

−u0(k − k′)⊗ Ip




∈ R[pm(n+µ)+n+1]×p

and

θ ,




α0

αµ

...

αk′

vec(H0)

...

vec(Hµ−1)

vec(Bµ)

...

vec(Bk′)




∈ Rpm(n+µ)+n+1.

Assuming l ≥ k′′, we define

Φ0 ,




φT
0 (k′)
...

φT
0 (l)



∈ Rp(l−µ−n+2)×[pm(n+µ)+n+1]

110



so that

Φ0θ = 0,

where

k′′ , (µ + n)(m + 1) +
n + 1

p
− 2.

Next, we assume that y0(k) is corrupted by output noise w(k) and we assume that

u0(k) is corrupted by input noise v(k) so that the measured output y(k) is given by

y(k) = y0(k) + w(k),

and the measured input u(k) is given by

u(k) = u0(k) + v(k).

Hence,

y(k) = G(q)u0(k) + w(k)

= G(q)u(k)−G(q)v(k) + w(k). (B.4)

We write (B.4) in regression form

A(q)y(k)−B(q)u(k) = A(q)w(k)−B(q)v(k),

or

φT(k)θ = ψT(k)θ,
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where

φ(k) = φ0(k) + ψ(k),

and

ψ(k) ,




wT(k)

wT(k − µ)

...

wT(k − k′)

−v(k)⊗ Ip

...

−v(k − k′)⊗ Ip




∈ R[pm(n+µ)+n+1]×p.

The regression matrix Φ is given by

Φ = Φ0 + Ψ,

where

Ψ ,




ψT(µ + n− 1)

...

ψT(l)



∈ Rp(l−µ−n+2)×[pm(n+µ)+n+1].

Definition B.0.1 For all l ≥ k′′, the input sequence {u0(k)}l
k=k′′ is persistently

exciting for G(q) if rank Φ0 = pm(n + µ) + n.

Definition B.0.2 For all l ≥ k′′, the input sequence {u0(k)}l
k=k′′ and the noise

sequences {w(k)}l
k=k′′ and {v(k)}l

k=k′′ are jointly persistently exciting for G(q) if

rank Φ = pm(n + µ) + n + 1
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For κ ≥ k′, let σpm(n+µ)+n,κ be the second-smallest singular value of




φT
0 (κ)

...

φT
0 (k′′)




.

Definition B.0.3 For all l ≥ k′′, the sequence {u0(k)}l
k=k′′ is infinitely persistently

exciting for G(q) if there exists ε > 0 such that, for all κ ≥ k′, σpm(n+µ)+n,κ > ε.

QCLS for MIMO Systems with Known Noise Covariance

The QCLS problem is given by

min
θ̂∈D(N)

J (θ̂), (B.5)

where N ∈ R[pm(n+µ)+n+1]×[pm(n+µ)+n+1] is symmetric and

D(N) ,
{

θ̂ ∈ Rpm(n+µ)+n+1 : θ̂TNθ̂ = 1
}

.

If N = NLS, solutions of the QCLS problem (B.5) are solutions of the standard least

squares problem with α0 = ±1, where

NLS ,




1 01×[pm(n+µ)+n]

0[pm(n+µ)+n]×1 0[pm(n+µ)+n]×[pm(n+µ)+n]


 .

Note that the θ̂ which solves the QCLS problem (B.5) corresponds to the generalized

eigenvector associated with the smallest positive generalized eigenvalue of (M, N),

where

M , 1

l
ΦTΦ.

For the remainder of this chapter, we assume that {w(k)}∞k=0 and {v(k)}∞k=0 are

stationary, have finite second moments, and are jointly ergodic random processes in
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the sense that, for all ρ, σ ∈ {0, 1, 2} and for all i,

E[wρ(i)vσ(i)] = lim
l→∞

1

l

l∑

k=0

wρ(k)vσ(k) wp1.

For k′ ≤ k ≤ l, we define

R , E[ψ(k)ψT(k)] =




Rww −Rwv

−Rvw Rvv


 (B.6)

and note that R is positive semi-definite and, since w(k) and v(k) are stationary, R

is independent of k.

We define

M0 , 1

l
ΦT

0 Φ0,

M0 , lim
l→∞

M0,

and

M , lim
l→∞

M,

where the limits are defined when they exist.

Proposition B.0.4 Assume that {u0(k)}l
k=0 and {y0(k)}l

k=0 are bounded and

satisfy (B.1). Also assume that w(k) and v(k) have zero mean. For all l ≥ k′′, as-

sume that {u0(k)}l
k=k′′ is persistently exciting for G(q) and assume that {u0(k)}l

k=k′′ ,

{w(k)}l
k=k′′ , and {v(k)}l

k=k′′ are jointly persistently exciting for G(q). Finally, assume

that M0 + R > 0. Then, for all η > 0, QCLS with N = ηR̄ provides an unbiased

estimate θ̂ of θ.
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Proof B.0.6 The proof is analogous to the proof of Proposition 9.3 in [50]. ¤

Proposition B.0.5 Assume that M0 exists. Assume that {u0(k)}l
k=0 and {y0(k)}l

k=0

are bounded and satisfy (B.1). Also assume that w(k) and v(k) have zero mean. For

all l ≥ k′′, assume that {u0(k)}l
k=k′′ is infinitely persistently exciting for G(q) and

assume that {u0(k)}l
k=k′′ , {w(k)}l

k=k′′ , and {v(k)}l
k=k′′ are jointly persistently exciting

for G(q). Finally, assume that M > 0. Then, for all η > 0, QCLS with N = ηR̄

provides a consistent estimate θ̂ of θ.

Proof B.0.7 The proof is analogous to the proof of Theorem 10.11 in [50]. ¤

Example: Noise with Known Covariance

Consider the two-input, one-output, asymptotically stable, non-minimum phase

system with minimal realization (A,B,C,D) given by

A =




0 1

−0.7 0.1


 , B = I2,

C =

[
0.3 1

]
, D = 01×2. (B.7)

To quantify the difference between the estimated and actual Markov parameter ma-

trices, we define

εT , ‖T − T̂ ‖2

‖T ‖2

,

where

T ,




vec (H0)

...

vec (H3)
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and T̂ is an estimate of T .

We investigate the effect of noise on the accuracy of the identified MIMO TF. We

simulate (B.4) with

G(q) = C (qI − A)−1 B + D,

where A, B, C, and D are given by (B.7), u1 and u2 are realizations of white Gaussian

processes with mean 0 and variance 1, and we choose v1, v2, and w so that the signal-

to-noise ratio (SNR) is 3. For comparison, we estimate the Markov parameter matrices

using standard least squares (LS) and QCLS with known noise covariance

R =




0.385I3 03×12

012×3 0.111I12


 .

For LS and QCLS, we let µ = 4 and estimate the Markov parameter matrices of

the TF. We use the estimated and true Markov parameter matrices to compute εT ,

which we average over 10 noise sequences and 5 input sequences to obtain ε̄T . Figure

B.1 shows that QCLS provides consistent estimates of the TF, while LS does not.

For the result shown in Figure B.1, we note that x0 6= 0 and nmod = 4.
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Figure B.1: Error in the estimated TF using MIMO µ-Markov QCLS, where zero-
mean, white, uncorrelated noise is added to u1, u2, and y.
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APPENDIX C

Conditions for Consistent Estimates

Problem Formulation

Figure C.1: Errors-in-variables approach to system identification.

We consider the identification problem shown in Figure C.1, where the true input

u0 and true output y0 are corrupted by input noise v and output noise w, respectively,

so that the measured input u = u0 + v and the measured output y = y0 + w. We

assume that G has order n and is linear, time-invariant, stable, and causal. We

also assume that the number of data samples l À n and only consider batch (not

recursive) least squares (LS) and quadratically-constrained least squares (QCLS).
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Consistent Estimates Using LS

First, we consider estimation of the coefficients a0, . . . , an, b0, . . . , bn of the auto-

regressive moving average (ARMA) time-series model

a0y0(k) + · · ·+ any0(k − n) = b0u0(k) + · · ·+ bnu0(k − n). (C.1)

For consistent and unbiased estimates of the coefficients, the estimated model order

n̂ = n and v(k) ≡ 0. Furthermore, one of the following conditions must be satisfied

• White equation error: The data satisfies

a0y(k) + · · ·+ any(k − n) = b0u(k) + · · ·+ bnu(k − n) + w(k). (C.2)

• Finite impulse response: The data satisfies

a0y(k) = b0u(k) + · · ·+ bnu(k − n) + a0w(k). (C.3)

Second, we consider estimation of the first µ Markov parameters H0, . . . , Hµ−1 of

the µ-Markov time-series model [117]

0 = a0y0(k) + aµy0(k − µ) + · · ·+ ak′y0(k − k′)

−H0u0(k)− · · · −Hµ−1u0(k − µ + 1)

− bµu0(k − µ)− · · · − bk′u0(k − k′), (C.4)

where

k′ , µ + n− 1.
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For consistent and unbiased estimates of the Markov parameters, the following con-

ditions must be satisfied

• n̂ ≥ n.

• v(k) ≡ 0.

• u0 is a realization of a white random process.

• w is a realization of a stationary random process.

Consistent Estimates Using QCLS

First, we consider estimation of the coefficients of the ARMA time series model

(C.1). For consistent and unbiased estimates of the coefficients, the following condi-

tions must be satisfied

• n̂ = n.

• w and v are stationary, have zero mean and finite second moments, and arise

from jointly ergodic random processes.

• u0 is infinitely persistently exciting (see Definition B.0.3).

• u0, v, and w are jointly persistently exciting exciting (see Definition B.0.2).

• The orders of the coloring filters of v and w are less than n̂ + 1.

• The noise covariance R, defined in (B.6), is known to within a scalar multiple.

Second, we consider estimation of the first µ Markov parameters H0, . . . , Hµ−1 of

the µ-Markov time-series model (C.4). For consistent and unbiased estimates of the

coefficients, the following conditions must be satisfied

• n̂ ≥ n (the case n̂ > n is under investigation).
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• w and v are stationary, have zero mean and finite second moments, and arise

from jointly ergodic random processes.

• u0 is infinitely persistently exciting (see Definition B.0.3).

• u0, v, and w are jointly persistently exciting exciting (see Definition B.0.2).

• The orders of the coloring filters of v and w are less than n̂ + 1.

• The noise covariance R, defined in (B.6), is known to within a scalar multiple.

Conditions under which Solution to Discrete-Time Lyapunov

Equation is Toeplitz

Proposition C.0.6 If R is symmetric and if λi(A) 6= 1/λj(A
T) for all i, j, then

the solution Q to the discrete-time Lyapunov equation

Q = AQAT + R (C.5)

exists and is unique and symmetric.

Proof C.0.8 Since λi(A) 6= 1/λj(A
T) for all i, j, the solution Q to (C.5) exists

and is unique [118]. We show that Q is symmetric by contradiction. Hence, we

assume R 6= RT and Q = QT. From (C.5), we have

RT = QT − AQTAT,

= Q− AQAT,

= R,

which is a contradiction. ¤
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Proposition C.0.7 If A and B are written in controllable-canonical form, that

is,

A ,




0 1 0 · · · 0

0 0 1 · · · 0

...
...

...
. . .

...

0 0 0 · · · 1

a1 a2 a3 · · · an




, B ,




0

0

...

0

1




,

where {ai}n
i=1 ∈ R, and if λi(A) 6= 1/λj(A) for all i, j, then the solution Q to the

discrete-time Lyapunov equation

Q = AQAT + BBT (C.6)

exists and is unique, symmetric, and Toeplitz.

Proof C.0.9 From Proposition C.0.6, it follows that the solution Q to (C.6) exists

and is unique and symmetric. From (C.6), we have




q1,1 · · · q1,n

.

..
.
..

.

..

qn−1,1 · · · qn−1,n

qn,1 · · · qn,n − 1




=




0 1 0 · · · 0

.

..
. . .

. . .
.
..

0 0 · · · 1 0

a1 a2 a3 · · · an







q1,2 · · · q1,n
∑n

i=1 aiq1,i

.

..
.
..

.

..
.
..

qn−1,2 · · · qn−1,n
∑n

i=1 aiqn−1,i

qn,2 · · · qn,n
∑n

i=1 aiqn,i




=




q2,2 · · · q2,n
∑n

i=1 aiq2,i

.

..
.
..

.

..
.
..

qn,2 · · · qn,n
∑n

i=1 aiqn,i

∑n
i=1 aiqi,2 · · · ∑n

i=1 aiqi,n
∑n

i=1

∑n
j=1 aiajqi,j




. (C.7)

From (C.7), we observe that, for i = 1, . . . , n,

qi,i =





qi+1,i+1, i < n,

1 + a1 (a1q1,1 + · · ·+ anq1,n) + · · ·+ an (a1qn−1 + · · ·+ anqn,n) , i = n.
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Furthermore, for 1 ≤ i < j ≤ n,

qi,j =





qi+1,j+1, i < n,

a1qi+1,1 + · · ·+ anqi+1,n, i = n.

Hence, Q is Toeplitz. ¤
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APPENDIX D

Max Rank of Regressor Matrix Due to Nonzero

Initial Conditions

Problem Formulation

Consider the time-series model

y(k) = −A1y(k − 1)− · · · − Any(k − n) + B0u(k) + · · ·+ Bnu(k − n), (D.1)

where k = n, n + 1, . . . , l − 1, l > n, y(k) ∈ Rp, u(k) ∈ Rm, A1, . . . , An ∈ Rp×p, and

B0, . . . , Bn ∈ Rp×m. We decompose y(k) into its free and forced components, that is,

y(k) = yfree(k) + yforced(k),

where for k ≥ n, yfree(k) and yforced(k) satisfy

yfree(k) = −A1yfree(k − 1)− · · · − Anyfree(k − n)
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and

yforced(k) = −A1yforced(k − 1)− · · · − Anyforced(k − n) + B0u(k) + · · · + Bnu(k − n).

We define

Yfree ,
[

yfree(n) yfree(n + 1) · · · yfree(l − 1)

]
∈ Rp×(l−n+1), (D.2)

Φfree ,




Φyfree

0


 ∈ R[pn+m(n+1)]×(l−n), (D.3)

Φyfree
,




yfree(n− 1) yfree(n) · · · yfree(l − 2)

yfree(n− 2) yfree(n− 1) · · · yfree(l − 3)

...
...

. . .
...

yfree(0) yfree(1) · · · yfree(l − n− 1)



∈ Rpn×(l−n),

and

θ ,
[
−A1 · · · −An B0 · · · Bn

]
∈ Rp×[pn+m(n+1)]

so that

θΦfree = Yfree. (D.4)

We also define

Yforced ,
[

yforced(n) yforced(n + 1) · · · yforced(l − 1)

]p×(l−n+1)

, (D.5)
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Φforced ,




Φyforced

Φu


 ∈ R[pn+m(n+1)]×(l−n), (D.6)

Φyforced
,




yforced(n− 1) yforced(n) · · · yforced(l − 2)

yforced(n− 2) yforced(n− 1) · · · yforced(l − 3)

...
...

. . .
...

yforced(0) yforced(1) · · · yforced(l − n− 1)



∈ Rpn×(l−n),

and

Φu ,




u(n) u(n + 1) · · · u(l − 1)

u(n− 1) u(n) · · · u(l − 2)

...
...

. . .
...

u(0) u(1) · · · u(l − n− 1)



∈ Rm(n+1)×(l−n)

so that

θΦforced = Yforced. (D.7)

Adding (D.4) and (D.7) we obtain

θΦ = Y, (D.8)

where

Φ ,




Φy

Φu


 ,




Φyfree
+ Φyforced

Φu


 , Φfree + Φforced ∈ R[pn+m(n+1)]×(l−n), (D.9)
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Φy ,




y(n− 1) y(n) · · · y(l − 2)

y(n− 2) y(n− 1) · · · y(l − 3)

...
...

. . .
...

y(0) y(1) · · · y(l − n− 1)



∈ Rpn×(l−n),

and

Y , Yfree + Yforced =

[
y(n) y(n + 1) · · · y(l − 1)

]
. (D.10)

State-Space Modeling

Consider a minimal state-space realization of the time series model (D.1) given by

x(k + 1) = Ax(k) + Bu(k), x(0) = x0, (D.11)

y(k) = Cx(k) + Du(k), (D.12)

where k = 0, 1, . . . , l − 1, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m. We note

that x(k) can be decomposed as

x(k) = xfree(k) + xforced(k),

where xfree(k) and xforced(k) satisfy

xfree(k + 1) = Axfree(k), xfree(0) = x0,

yfree(k) = Cxfree(k),
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and

xforced(k + 1) = Axforced(k) + Bu(k), xforced(0) = 0,

yforced(k) = Cxforced(k) + Du(k).

Furthermore

yfree(k) = CAkx0,

and thus

Φyfree
=




CAn−1x0 CAnx0 · · · CAl−2x0

CAn−2x0 CAn−1x0 · · · CAl−3x0

...
...

. . .
...

Cx0 CAx0 · · · CAl−n−1x0




. (D.13)

We factor Φyfree
as

Φyfree
= Īn,pOn(A,C)Kl−n(A, x0), (D.14)

where

Oi(A,C) ,




C

CA

...

CAi−1




,
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Kj(A, x0) ,
[

x0 Ax0 · · · Aj−1x0

]
,

and

Īq,r ,




0 · · · 0 Ir

... . .. . .. 0

0 . .. . ..
...

Ir 0 . .. 0



∈ Rqr×qr. (D.15)

We factor Φyforced
as

Φyforced
= Īn,pH̄Ū , (D.16)

where

H̄ ,




H0 H1 · · · Hl−n−1

H1 H2 · · · Hl−n

...
...

. . .
...

Hn−1 Hn · · · Hl−2



∈ Rpn×m(l−1)(l−n),

Ū ,




U 0m(l−1)×1 · · · 0m(l−1)×1

0m(l−1)×1 U
. . .

...

...
. . . . . .

...

0m(l−1)×1 · · · 0m(l−1)×1 U



∈ Rm(l−1)(l−n)×(l−n),
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U ,




u(0)

u(1)

...

u(l − 2)



∈ Rp×m(l−1),

and for i = 0, 1, . . . , l − 2,

Hi ,
[

CAi−1B CAi−2B · · · CB D 0p×m(l−i−2)

]

=

[
CKi(A,B)Īn,p D 0p×m(l−i−2)

]
∈ Rp×m(l−1). (D.17)

Conditioning of Φ

Proposition D.0.8

rank(Φfree) = rank(Φyfree
) = rank(Kl−n(A, x0)).

Proof D.0.10 Since Īn,p is nonsingular, rank(On(A,C)) = n, and Kl−n(A, x0)

has n rows, from (D.3) and (D.14) it follows from Sylvester’s inequality that

rank(Kl−n(A, x0)) ≥ rank(Φfree)

= rank(Φyfree
)

= rank(Īn,pOn(A,C)Kl−n(A, x0))

= rank(On(A,C)Kl−n(A, x0))

≥ rank(On(A,C)) + rank(Kl−n(A, x0))− n

= rank(Kl−n(A, x0)). ¤

Let σ1(Φ) ≥ σ2(Φ) ≥ · · · denote the singular values of Φ, and let ρ(A) denote the

spectral radius of A. We now examine the singular values σi(Φ) as the contribution
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of yfree to Φ increases.

Proposition D.0.9 Consider (D.1) with input {u(k)}l−1
k=0 and a sequence {x0i}∞i=1

of initial conditions, where ‖x0i‖ → ∞ as i →∞ and, for all i, r = rank(Kl−n(A, x0i)).

Then

σr+1(Φi)

σr(Φi)
→ 0 as i →∞,

where

Φi , αiΦfree,i + Φforced,

Φfree,i ,




Īn,pOn(A,C)Kl−n(A, x̂0i)

0


 ,

αi , ‖x0i‖,

and

x̂0i , x0i

‖x0i‖ .

Proof D.0.11 Using Proposition D.0.8, it follows that rank(Φfree,i) = r. Since
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σi(·) is continuous and αi →∞ as i →∞, we have

lim
i→∞

σr+1(Φi)

σr(Φi)
= lim

i→∞
σr+1(αiΦfree,i + Φforced)

σr(αiΦfree,i + Φforced)

= lim
i→∞

σr+1(Φfree,i + 1
αi

Φforced)

σr(Φfree,i + 1
αi

Φforced)

=
σr+1(Φfree,i)

σr(Φfree,i)

= 0. ¤

Proposition D.0.9 shows that the condition number of Φ increases as the contri-

bution of the free response to Φ increases relative to the contribution of the input

u(k).

Proposition D.0.10 Let M ∈ Rn×n be nonsingular and assume MAM−1 is a

Jordan form matrix. Then (A, x0) is controllable if and only if A is cyclic and, for

every eigenvalue λ of A, the component of Mx0 corresponding to the lowest-right

entry of the Jordan block associated with λ is nonzero.

Proof D.0.12 See [119], pp. 209-214. ¤

Proposition D.0.11 Let U 6= 0 and let l > 2n. Then

rank(H̄) + (l − n)(m−ml + 1) ≤ rank(Φyforced
) ≤ rank(H̄).

Proof D.0.13 Since Īn,p is nonsingular, it follows from (D.16) and Sylvester’s
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inequality that

rank(H̄) ≥ rank(Φyforced
)

= rank(Īn,pH̄Ū)

= rank(H̄Ū)

≥ rank(H̄) + rank(Ū)−m(l − 1)(l − n)

= rank(H̄) + (l − n)−m(l − 1)(l − n). ¤

Stochastic Analysis

Lemma D.0.3 Let β ∈ R, assume that A is asymptotically stable and (A,B) is

controllable, and let Qβ satisfy the discrete-time Lyapunov equation

Qβ = β2ATQβA + BBT. (D.18)

Then tr Qβ →∞ as β ↑ 1
ρ(A)

.

Proof D.0.14 Write Qβ as

Qβ =
∞∑
i=0

β2iAiBBTAiT.

Let λ ∈ C be an eigenvalue of A such that |λ| = ρ(A), and let v ∈ Cn be an eigenvector

of AT associated with λ such that v∗v = 1. Since (A, B) is controllable, it follows
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that rank

([
λI − A B

])
= n. Therefore,

0 6=




λI − AT

BT


 v

=




λv − λv

BTv




=




0

BTv


 .

Hence BTv 6= 0. Therefore

tr Qβ ≥ v∗Qβv = v∗BBTv

∞∑
i=0

|βλ|2i →∞ as β ↑ 1

ρ(A)
. ¤

Numerical Examples

Example D.0.1 To illustrate Proposition D.0.9 for n = r = 2, let

A =



−0.1 0.2

0 0.5


 , B =




1

1


 , (D.19)

C =

[
1 0

]
, D = 0. (D.20)

We choose l = 100 and initial condition

x0i = αi




0.96

−0.27


 . (D.21)
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For each αi, we choose 10 Gaussian white noise input sequences u(k) with zero mean

and standard deviation σu = 1. Then we simulate (D.11)–(D.12) for each u(k) and

each αi using the minimal realization (D.19)–(D.20) with the initial condition in

(D.21). Next, we construct Φ and compute σ3(Φ)
σ2(Φ)

for each u(k). Finally, we aver-

age σ3(Φ)
σ2(Φ)

for each αi. Figure D.1 shows that σ3(Φ)
σ2(Φ)

decreases as α increases, which

demonstrates Proposition D.0.9 for n = r = 2. To illustrate Proposition D.0.9 for
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Figure D.1: Change in σ3(Φ)
σ2(Φ)

with αi, averaged over 10 realizations of white noise u(k)
with l = 100.

n = 2, r = 1, we choose l = 100 and initial condition

x0i = αi




1

0


 . (D.22)

For each αi, we choose 10 Gaussian white noise input sequences u(k) with zero mean

and standard deviation σu = 1. Then we simulate (D.11)–(D.12) for each u(k) and

each αi using the minimal realization (D.19)–(D.20) with the initial condition in
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(D.22). Next, we construct Φ and compute σ2(Φ)
σ1(Φ)

for each u(k). Finally, we aver-

age σ2(Φ)
σ1(Φ)

for each αi. Figure D.2 shows that σ2(Φ)
σ1(Φ)

decreases as αi increases, which

demonstrates Proposition D.0.10 for n = 2, r = 1.
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Figure D.2: Change in σ2(Φ)
σ1(Φ)

with αi, averaged over 10 realizations of white noise u(k)
with l = 100.

Example D.0.2 To illustrate Lemma D.0.3 for n = 2, we choose β ∈ [0, 2) and

A and B as in (D.19) and compute tr Qβ. To examine the behavior of the individual

states x(k) as β approaches 2, we choose initial condition x0 =

[
0 0

]T

. Next, we

simulate

x(k + 1) = βAx(k) + Bu(k), x(0) = x0 (D.23)

using a set of zero-mean, unity-variance Gaussian white noise input sequences {u(k)}999
k=0.

Then we define an “effective” initial condition x∗(0) = x(1000) associated with each

white noise input sequence. For each β and each x0 = x∗(0), we choose a zero-mean,

136



unity-variance Gaussian white noise input sequence {u(k)}l−1
k=0 and simulate (D.23).

Then we compute an estimate of the size of the state (the trace of the steady-state

covariance of x(k)) for each β, given by

σ2
x , 1

l

l−1∑
i=0

(x(i)− x̄)T (x(i)− x̄) ,

≈ trE[xxT], (D.24)

where

x̄ , 1

l

l−1∑
i=0

x(i). (D.25)

Repeating this process, we compute an average of σ2
x, which we plot along with tr Qβ

in Figure D.3. Figure D.3 shows that σ2
x converges to tr Qβ as l increases. Figure D.3

also shows that both σ2
x and tr Qβ approach ∞ as β ↑ 2.
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Figure D.3: Plot of σ2
x and Qβ versus β for n = 2, where σ2

x approaches ∞ as β
approaches 2 and σ2

x converges to Qβ as l increases.
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APPENDIX E

Zeros of the Discrete-Time Transfer Function from

Excitation to Acceleration in a

Mass-Spring-Damper System

Problem Formulation

Consider the mass-spring-damper system shown in Figure E.1. The equations of

motion for this system are given by

˙̄x(t) = Āx(t) + B̄u(t), (E.1)

ȳ(t) = Cx̄(t) + Dū(t), (E.2)

where x̄(t) ,
[

q(t) q̇(t)

]T

is the state of the system at time t, ū(t) is the excitation

at time t, and ȳ(t) is the sensor measurement at time t. Assuming ū(t) remains
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constant between samples, we can discretize (E.1) to obtain

x(k + 1) = Ax(k) + Bu(k), (E.3)

where h > 0 is the sampling interval, x(k) , x̄(kh), u(k) , ū(kh), A , eĀh, and

B ,
∫ h

0

eĀτdτB̄.

Denoting y(k) , ȳ(kh), (E.2) and (E.3) imply

y(k) = Cx(k) + Du(k). (E.4)

Figure E.1: Illustration of mass-spring-damper system.

Zeros of the Discrete-Time Transfer Function from Excitation

to Acceleration: Double Integrator

Let

Ā =




0 1

0 0


 , B̄ =




0

1/m


 ,
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C =

[
0 0

]
, and D = 1/m, where m > 0. Hence,

A =




1 h

0 1


 , B =




h2

2m

h
m


 .

Then the zeros of the discrete-time transfer function from u to y are given by the

roots of C adj (zI − A) B + D det (zI − A). Hence, both zeros occur at z = 1.

Zeros of the Discrete-Time Transfer Function from Excitation

to Acceleration: Damped Rigid Body

Let

Ā =




0 1

0 c


 , B̄ =




0

1/m


 ,

C =

[
0 c

]
, and D = 1/m. Hence,

A =




1 ech−1
c

0 ech


 , B =




ech−ch−1
mc2

ech−1
mc


 .

Then the zeros of the discrete-time transfer function from u to y are given by the

roots of C adj (zI − A) B + D det (zI − A). Hence, both zeros occur at z = 1.
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Zeros of the Discrete-Time Transfer Function from Excitation

to Acceleration: Undamped Oscillator

Let

Ā =




0 1

−k 0


 , B̄ =




0

1/m


 ,

C =

[
−k 0

]
, and D = 1/m, where k > 0. Hence,

A =




cos(
√

kh) 1
k

sin(
√

kh)

−sqrtk sin(
√

kh) cos(
√

kh)


 , B =




1−cos(
√

kh)
km

sin(
√

kh)√
km


 .

Then the zeros of the discrete-time transfer function from u to y are given by the

roots of C adj (zI − A) B + D det (zI − A). Hence, the zeros occur at

z = 1, cos(
√

kh).

We note that both zeros do not occur at z = 1.

142



BIBLIOGRAPHY

143



BIBLIOGRAPHY

[1] R. Isermann, “Process fault detection based on modeling and estimation meth-

ods - a survey,” Automatica, vol. 20, no. 4, pp. 387–404, 1984.

[2] J. J. Gertler, Fault Detection and Diagnosis in Engineering Systems. New York,

NY: Marcel Dekker Inc., 1998.

[3] D. Balageas, C.-P. Fritzen, and A. Güemes, Structural Health Monitoring. Lon-
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