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ABSTRACT

Adaptive and Multistage Procedures for Inference on Monotone Regression
Functions in Designed Studies and Observed Data Settings

by

Runlong Tang

Co-Chairs: Moulinath Banerjee and George Michailidis

This dissertation consisting of three works addresses two basic shape-restricted prob-

lems: the estimation of a distribution function at a given point in an observational

study and the estimation of the inverse of an increasing function at a given point in

a design setting.

In the first work, we study the estimation and hypothesis testing for a failure

time distribution function at a point in the current status model with observation

times supported on a grid of potentially unknown sparsity and with multiple subjects

sharing the same observation time. This is of interest since observation time ties

occur frequently with current status data. The grid resolution is specified as cn−γ

with c > 0 being a scaling constant and γ > 0 regulating the sparsity of the grid

relative to the number of subjects n. The asymptotic behavior falls into three cases

depending on γ: regular Gaussian-type asymptotics obtain for γ < 1/3, non-standard

cube-root Chernoff-type asymptotics prevail when γ > 1/3 and γ = 1/3 serves as a

boundary at which transition happens. The boundary limit distribution indexed by

c is different from the Gaussian and Chernoff limit distributions in the previous cases

but converges weakly to them as c goes to ∞ and 0, respectively. This relationship

among the limit distributions allows us to develop an adaptive procedure to construct

confidence intervals for the value of the failure time distribution at a point of interest

without needing to specify or estimate γ, which is of enormous advantage from the

perspective of inference. A simulation study of the adaptive procedure is presented.
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In the second work, we consider a hybrid two-stage procedure (TSP) for estimat-

ing an inverse regression function at a given point, where isotonic regression is first

implemented at stage one to obtain an initial estimate and then a local linear approx-

imation is exploited over the vicinity of this estimate at stage two. The convergence

rate of the second-stage estimate can attain the parametric rate n1/2. Furthermore,

a bootstrapped variant of TSP (BTSP) is introduced and its consistency properties

established. This variant manages to overcome the slow speed of the convergence in

distribution and the estimation of unknown parameters. Finally, the finite sample

performance of BTSP is studied through simulations and the method is illustrated

on a data set.

The third work shares the same basic problem with the second work. In practice,

the previous hybrid two-stage procedure usually results in a biased estimator and thus

confidence intervals with low coverage rates if the sample size is not large and the

regression function is very locally nonlinear around the target point. For such cases,

we propose to adopt isotonic regression and smoothed isotonic regression at stage two

and denote the resulting two-stage procedures by TSIRP and TSSIRP, respectively.

The convergence rate of the second-stage estimate from TSIRP is less than the para-

metric rate while that from TSSIRP can still achieve it. The performance of practical

TSIRP and TSSIRP is studied by simulations.
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CHAPTER I

Introduction

A model in statistics is a class of distribution functions indexed by an unknown

parameter living in a mathematical space. According to the parameter spaces, sta-

tistical models are usually classified into three categories: parametric, nonparametric

and semiparametric models, which are the combinations of the former two types of

models.

In a nonparametric model, the parameter is usually an unknown function with

an intuitive restriction. One popular constraint is posed on the smoothness of the

unknown function, which leads to various kernel smoothing and spline methods. An-

other natural restriction is on the shape of the unknown function, such as monotonic-

ity or convexity. The related statistical problems are usually called shape-restricted

problems.

In this dissertation, we consider two basic shape-restricted regression problems:

one is on the estimation of a distribution function, or more generally, an increasing

function, at a given point in an observational study; the other is on the estimation

of the inverse of an increasing function at a given point in a design setting. In

both problems, a crucial step is to estimate the unknown increasing function by the

so-called isotonic regression method. The resulting isotonic regression estimator of

the unknown increasing function at a point is a local average, similar to a kernel

smoothing estimator. However, different from the specified deterministic bandwidth

in the kernel smoothing estimator, the bandwidth for the local average in isotonic

regression is automatically chosen and random. In order to handle this randomness

in the local average and rigorously derive theoretical results, the classical theory on

central limit theorems for random vectors is not sufficient so that we exploit the

approach provided by the theory of empirical processes, which is essentially a theory
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on functional central limit theorems.

Three works have been done to address the above two basic shape-restricted prob-

lems. They are organized into the following three chapters. The work in Chapter II is

for the first problem and the works in Chapters III and IV for the second one. Next,

we give a brief separate introduction for each work.

Chapter II: Asymptotics for Current Status Data under Varying Obser-

vation Time Sparsity. The current status model, being the simplest avatar of

interval-censoring — one observes the individual at a single time-point and ascertains

whether they are infected or not by that time — and therefore best suited to an

understanding of the more general phenomenon, has unsurprisingly received much

attention in the statistical literature.

In this work, we consider estimating the distribution function of the infection time

at an observation time of interest and constructing confidence intervals for it. Since

the infection distribution function is increasing, it turns out that its nonparametric

maximum likelihood estimator (NPMLE) is equivalent to the isotonic regression of

it. To construct confidence intervals, we exploit weak convergence results on both

the normalized NPMLE (N.NPMLE) and the likelihood ratio test statistic (LRT). A

standard assumption for the current status model is that the observation times are

random observations from a Lebesgue density on the time-domain. However, this

assumption, though convenient for mathematical tractability, is often an unnatural

one. For example, health care providers inspecting patients may only observe them

at specific limited times, depending on their schedules, with multiple patients at

one time. In such cases, it seems more reasonable to assume that the observation

time lies on a grid in an interval and that the number of the grid points (grid size)

increases with the sample size. So, in this work, we assume that the observation

time follows a distribution on a grid and the grid size increases to infinity as the

sample size goes to infinity. It turns out that the rate of the increase of the grid

size completely determines the asymptotic behavior of N.NPMLE and LRT. When

the rate is low, there are so many individuals at each grid point that isotonization

becomes asymptotically unnecessary and simple averages play the main role. It is no

wonder that the limit distributions of N.NPMLE and LRT are normal or chi-square

distributions. On the other hand, when the rate is high, there are so few individuals

at each grid point that simple averages need to be isotonized and local averages with

automatically determined random bandwidths play the main role. For this case,

2



the limit distributions are Chernoff and the so-called D distributions, which are the

same as those under the Lebesgue density assumption. This means if the grid is dense

enough in the interval the discrete distribution on the grid is asymptotically equivalent

to a Lebesgue density. Since the limit distributions are so different as the rate of grid

size changes from low to high, there naturally arises an interesting question: does

there exist a boundary rate? The answer is affirmative and the boundary rate is of

order n1/3. For this case, the grid is just dense enough to invoke isotonization and

the limit distributions are different from those of the other two cases and depend on

discrete time stochastic processes. In order to obtain more flexibility, we introduce a

scaling constant c into the rate. That is, the rate is set to be of order (1/c)nγ with

constant c > 0 and γ ∈ (0, 1). We denote the limiting distributions of N.NPMLE

and LRT for the boundary case with γ = 1/3 by Sc and Mc, repectively. Clearly,

if the scaler c depends on n, it can change the rate order and thus the limiting

distributions. What is more interesting is that the scaler c also plays a similar role

on the limit distribution side! More specifically, in one direction, Sc and Mc converge

weakly to the normal and chi-square distributions of the sparse grid case as c goes

to infinity; in the other direction, Sc and Mc converge weakly to the Chernoff and D
distributions of the dense grid case as c goes to zero. The following diagram illustrates

these relationships among limiting distributions.

N.NPMLE LRT

0 < γ < 1/3 Normal Chi-Squarexc→∞ xc→∞
γ = 1/3 Sc Mcyc→ 0

yc→ 0

γ > 1/3 Chernoff D

This diagram clearly shows that the normal and Chernoff distributions are the ex-

tremes of the boundary distribution Sc and the chi-square and D distributions are the

extremes of Mc. This exciting discovery provides a theoretically strong and natural

support for a claim that the counterparts of the two perhaps most important classical

distributions normal and chi-square in the isotonic regression world are Chernoff and

D. Further, from this discovery, an adaptive procedure is proposed to construct con-

fidence intervals for the unknown infection distribution function at a point without

estimating or specifying the grid size rate, which is certainly of practical interest.

3



Chapter III: A Two-Stage Hybrid Procedure for Estimating an Inverse

Regression Function. It is often of interest to estimate d0, the inverse of an in-

creasing regression function f at a point of interest. For example, for a drug, there is

usually an increasing relationship between its dose and toxicity level. It is important

in developing the drug to identify the maximum safety dose given a maximum toler-

ance level of toxicity. For such problems, it is natural to obtain the isotonic regression

of the increasing function and then compute its inverse. Although this nonparametric

approach has a significant advantage of not involving tuning parameters, the conver-

gence rate of the estimator is only n1/3, slower than the usual parametric rate n1/2. In

many dose-response-type problems we can actually design the related studies. Based

on a zoom-in idea of improving the quality of the second-stage data, we propose a

hybrid two-stage procedure with the intention to produce a estimate having a faster

convergence rate.

From Taylor’s expansion, f is locally linear at d0 under mild assumptions. This

means if we can first identify a small neighborhood around d0, then we can effectively

fit f locally with a line. In this way, a nonparametric problem is asymptotically

transformed into a parametric one and the convergence rate may be accelerated.

More specifically, at the first stage we use some sample points to obtain a small

interval around d0 by isotonic regression. Then, at the second stage, all the remain-

ing doses are evenly allocated at the two ends of the interval since this is the most

efficient allocation for fitting a line over an interval by least squares. It turns out

the convergence rate of the second-stage estimator can reach n1/2, which means the

parametric rate is achieved in a nonparametric problem! However, when using the

limit distribution with the parametric rate to construct confidence intervals for d0,

we face two difficulties: one is on the estimation of f ′(d0), the slope of the unknown

function at the unknown target point appearing in the limit distribution; the other

one is a little implicit, which is the slow speed of convergence in distribution indicated

by simulation studies. To deal with these difficulties, we bootstrap the second-stage

responses. The corresponding bootstrapped second-stage estimator is proved to be

strongly consistent. Thus, we obtain a two-stage bootstrapped nonparametric pro-

cedure which achieves the parametric rate and at the same time avoids the above

two difficulties in constructing confidence intervals for d0. We have also proposed a

practical version of the bootstrapped procedure, which performs well in simulations,
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and applied this practical procedure to an engineering problem.

Chapter IV: Two Stage Nonparametric Procedures for Estimating a Thresh-

old Value of A Regressor. The successful application of the previous hybrid two-

stage procedure in practice relies on the sample size and the local linearity of the

regression function. If the sample size is not large so that the second-stage sampling

interval is relatively long and the regression function is quite locally nonlinear over

the second-stage sampling interval, the local linear fitting step in the hybrid two-stage

procedure would usually bring significant bias into the estimate of d0, which would

further cause low coverage rates for confidence intervals. In order to address this

issue, we propose alternative two-stage nonparametric procedures.

More specifically, after identifying a small neighborhood of d0, we consider fitting

f locally by isotonic regression again instead of a line via least squares. This time,

the second-stage design points are distributed within the interval instead of only at

the two ends. Intuitively, this approach would have more nonparametric flavor and

thus should be able to handle regression functions with more nonlinearities better

than the previous hybrid two-stage procedure, though the convergence rate might

not achieve the parametric rate n1/2. Suppose the order of the interval length is n−γ

for γ ∈ (0, 1/3). Then the convergence rate of the second-stage estimator turns out

to be n(1+γ)/3, faster than n1/3 but still slower than the parametric rate. When this

two-stage isotonic regression procedure is extended to a K-stage one, the convergence

rate of the Kth-stage estimator increasingly converges to the parametric rate as K

goes to infinity. This discovery reveals an essential difference in terms of convergence

rates between parametric methods and a special nonparametric method — isotonic

regression. Further, this discovery drives us to ask the interesting question whether

a K-stage nonparametric procedure can reach or even exceed the parametric rate if a

nonparametric method with a one-stage convergence rate faster than n1/3 is employed.

We have considered smoothed isotonic regression, a combination of isotonic regression

and kernel smoothing, whose one-stage convergence rate can be n2/5. It turns out

that the K-stage procedure with this smoothed isotonic regression can not exceed the

parametric rate. This, to some extent, indicates that the difference between paramet-

ric approaches and nonparametric ones is so fundamental that continuously improving

data quality could not make nonparametric approaches outperform parametric ones.

However, although the parametric rate can not be exceeded, a heuristic derivation

shows that the two-stage smoothed isotonic regression procedure could achieve it.
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CHAPTER II

Asymptotics for Current Status Data under

Varying Observation Time Sparsity

2.1 Introduction

The current status model is one of the most well-studied survival models in statis-

tics. An individual at risk for an event of interest is monitored at a random status or

observation time, and an indicator of whether the event has occurred is recorded. An

interesting feature of this kind of data is that the underlying survival function for the

event time can only be estimated nonparametrically at the n1/3 rate when the status

time is a continuous random variable. Under mild conditions on the survival distri-

bution, the limiting distribution of the estimator in this setting is the non-Gaussian

Chernoff’s distribution. This is in contrast to right-censored data where the under-

lying survival function can be estimated nonparametrically at rate
√
n under right-

censoring and is ‘pathwise norm-differentiable’ in the sense of van der Vaart (1991),

admitting regular estimators and normal limits. Interestingly, when the status time

distribution has finite support, the survival function estimator for current status data

simplifies to a binomial random variable and is also
√
n estimable and regular, with

a normal limiting distribution. This intriguing change in limiting distribution under

different degrees of sparsity of the status time distribution is the focus of this paper.

While the distinction between finite support and continuously distributed status

times is clear philosophically, the practical distinction between these two settings is

less clear. For example, suppose we observe a large number of ties in status times

which are distributed across a large number of distinct times, as can happen when

there is only one status time per day or only one status time per week but there are

a moderately large number of days or weeks in the study; for example, a group of
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health care providers inspecting people in a community (at risk for infection, say) over

a large number of days may only observe them at a specific time everyday, depending

on their schedule, with multiple patients being inspected at the same time. How

large should the number of distinct status times relative to n (the total number of

indivduals inspected) be for the distribution of the estimates of the survival function

to be closer to the Chernoff limit than the Gaussian? Under certain configurations,

will the distribution be closer to a limiting distribution that is neither Gaussian nor

Chernoff? These kinds of questions are the focus of this paper. Specifically, we wish to

assess the possible, relevant limiting distributions that can arise under different levels

of sparsity of the status time distribution as well as develop a statistical procedure

that is capable of adapting to whatever asymptotic regime is most suitable for the

data. This technically challenging problem is practically important since the most

relevant asymptotic regime is seldom known in practice except for the very extreme

settings where either there are only a few distinct status times (in which case a normal

approximation should work well) or when there are no ties at all in the status times

(the setting of a continuous status time).

The current status model, being the simplest avatar of interval-censoring — one

observes the individual at a single time-point and ascertains whether they are in-

fected or not by that time — and therefore best suited to an understanding of the

more general phenomenon, has unsurprisingly received much attention in the statisti-

cal literature. The model itself goes back to Ayer et al. (1955) and was subsequently

studied in Turnbull (1976) in a more general framework; asymptotic properties for

the nonparametric maximum likelihood estimator (NPMLE) of the survival distribu-

tion were first obtained in Groeneboom and Wellner (1992) and involved techniques

radically different from those in ‘classical’ survival analysis, and since then there has

been a notable body of work on both the methodological and asymptotic fronts: see,

for example, Huang (1996) where current status data under the Cox PH model is

studied; Lin et al. (1998) and Shiboski (1998) for work on additive hazards regression

and generalized additive models, respectively, for current status data; Sun (1999)

for current status data under unequal censoring; Banerjee and Wellner (2001) and

Banerjee and Wellner (2005) for a study of pointwise likelihood ratio tests for the

survival distribution in the current status model that lead to asymptotically pivotal

methods for inference in this model with broader implications for monotone function

estimation; Jewell et al. (2003), Groeneboom et al. (2008a) and Groeneboom et al.

7



(2008b) for current status model under competing risks with the last two papers pro-

viding a comprehensive description of the highly involved asymptotics that comes into

play; and Ma and Kosorok (2005) for some recent semiparametric analysis involving

partly linear transformation models with current status data. The above list is only

a sample of the enormous body of work involving the current status model and is

meant to reflect some of the main directions along which methodological and theo-

retical research have evolved over the last two decades, and also directions in which

the authors have taken a more active interest, but should amply illustrate the wide

range of problems that present themselves within the context of this relatively sim-

ple model. Interestingly though, the problem of determining the correct asymptotic

approximation in current status data with ties and the development of an adaptive

inference scheme, as discussed in the first two paragraphs, has not been satisfactorily

resolved thus far in the rather large literature.

Denoting the survival distribution by F and with x0 being a point of interest

in the time domain, the goal is to determine how the behavior of the NPMLE of

F (x0) depends on the relative magnitude of the number of distinct observation times,

K(n), to the sample size n. This change in the model is important not only because it

more closely mirrors applications than the Lebesgue density assumption, as discussed

above, but also because it induces surprisingly non-trivial complications in the limit-

ing distribution and consequently in conducting inference. Since F , as will be shown

later, is only identifiable at the distinct observation times, one can think about K(n)

as the effective number of parameters in the model. We will be investigating the

behavior of F̂ (the NPMLE of F ) under a discrete observation time scheme where

K(n), the determinant of the sparsity of the observation time scheme, will be allowed

to go to infinity with n at different rates. High rates correspond to dense observation

time schemes and low rates to sparse ones. It should be noted here that some authors

have indeed studied the current status model or closely related variants under discrete

observation time settings. Yu et al. (1998) have studied the asymptotic properties

of the NPMLE of F in the current status model with discrete observation times and

more recently Maathuis and Hudgens (2010) have considered nonparametric infer-

ence for competing risks current status data under discrete or grouped observation

times. However, these papers consider situations where the observation times are

i.i.d. copies from a fixed discrete distribution (but not necessarily finitely supported)

on the time-domain and are therefore not geared towards studying the effect of the
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trade-off between n and K(n), i.e. the effect of the relative sparsity of the number

of distinct observation times to the size of the cohort of individuals on inference for

F . In both these papers, the (pointwise) estimates of F are asymptotically normal

and
√
n consistent; however, in situations, where the number of distinct observation

times is large relative to the sample size, such normal approximations based on a fixed

discrete observation time distribution might be suspect; see, for example, Section 5.1

of Maathuis and Hudgens (2010) where this is illustrated via simulations. We will

return to the paper Maathuis and Hudgens (2010) later in our concluding discussion.

Zhang et al. (2001) consider isotonic regression with grouped data in the monotone

density estimation problem. The asymptotic properties of the isotonic estimator are

shown to depend on the order of magnitude of the grouping intervals (which are

allowed to depend on the sample size) and the corresponding limit distributions de-

termined but no effective inference schemes are developed. More recently, Wang and

Shen (2010) have considered monotone regression estimators based on grouped data

using B-splines and have studied their asymptotic properties in terms of the number

of knots as the sample size increases.

The rest of the paper is organized as follows. In Section 2, we introduce our

mathematical formulation of the problem and present an overview of the basic results

at a high level. Section 3 discusses the characterizations of the estimators of interest

while Section 4 presents the main asymptotic results and major proofs. Section 5

addresses the important question of adaptive inference in the current status model:

given a time-domain [a, b] and current status data observed at times on a regular

grid on [a, b] of an unknown level of sparsity, how do we make inference on F? What

asymptotic approximations should we use? We provide an answer to this question

that circumvents the need to determine the sparsity of the grid, and therefore provides

a tremendous advantage from the point of view of inference. Section 6 provides

simulation results for a practical version of the adaptive inference procedure developed

in Section 5. Section 7 concludes with a discussion of the findings of this paper and

their implications for monotone regression models in general, as well as more complex

forms of interval censoring and interval censoring with competing risks.
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2.2 Formulation of the Problem and Overview of Findings

Let {Ti,n}ni=1 be i.i.d. random survival times following some unknown distribution

F with Lebesgue density f concentrated on the time-domain [a′, b′] with 0 ≤ a′ < b′ <

∞ (or supported on [a′,∞) if no such b′ exists) and {Xi,n} are i.i.d. observation times

drawn from a discrete probability measure Hn supported on a regular grid on [a, b]

with a′ ≤ a < b < b′. 1 Also, Ti,n and Xi,n are assumed to be independent for each

i. However, {Ti,n} are not observed; rather, we observe {Yi,n = 1{Ti,n ≤ Xi,n}}. This

puts us in the setting of a binary regression model with Yi,n|Xi,n ∼ Bernoulli(F (Xi,n)).

We denote the support of Hn by {ti,n}Ki=1 where the i-th grid point ti,n = a+ iδ, the

unit spacing δ = δ(n) = c n−γ (also referred to as the grid resolution) with γ ∈ (0, 1)

and c > 0, and the number of grid points K = K(n) = b(b− a)/δc. On this grid, the

distribution Hn is viewed as a discretization of an absolutely continuous distribution

G, whose support contains [a, b] and whose Lebesgue density is denoted as g. More

specifically, Hn{ti,n} = G(ti,n)−G(ti−1,n), for i = 2, 3, . . . , K − 1, Hn{t1,n} = G(t1,n)

and Hn{tK,n} = 1−G(tK−1,n). For simplicity, these discrete probabilities are denoted

as pi,n = Hn{ti,n} for i = 1, 2, . . . , K. Let x0 ∈ (a, b) be a point around which we

are interested in determining the properties of the NPMLE of F as a function of the

grid resolution δ or equivalently in terms of (c, γ). In what follows, we refer to the

pair (Xi,n, Yi,n) as (Xi, Yi), suppressing the dependence on n, but the triangular array

nature of our observed data should be kept in mind. Similarly, the subscript n is

suppressed elsewhere when no confusion will be caused.

Given the point of interest x0 ∈ (a, b), define tl = tl,n to be the largest grid-point

less than or equal to x0 and tr = tr,n = tl+1,n the smallest grid point larger than x0.

As will be seen, the NPMLE F̂ is only identifiable up to its values at the grid-points.

To define it on the interval [a, b] one usually resorts to some convention of extension.

Our estimate F̂ will be taken to be the unique right-continuous step function with

potential jumps only at the grid-points that maximizes the likelihood function of

the observed data over all piece-wise constant right-continuous distribution functions

supported on [a, b].

We start with the estimation of F (tl) using F̂ (tl). The key features of the effect

of sparsity on the asymptotics are best illustrated by focusing on tl (which can be

1The regularity of the grid corresponds to evenly spaced inspection times which is satisfied in
many clinical and engineering applications (patients inspected daily at a clinic or machines inspected
routinely every week, for example). It also makes the subsequent derivations simpler to present
without compromising the complexity of the intrinsic mathematical issues involved.
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viewed as a natural surrogate for x0). We will demonstrate, explicitly, that resolving

the inference problem for F (tl) allows us to resolve the inference problem for F (x0)

with only minor modifications. The reason behind using tl instead of x0 primarily

stems from the fact that the derivations can be presented in a much cleaner form; to

deal with F (x0) one is forced to resort to a combination of F̂ (tl) and F̂ (tr) at least

for sparser grids (γ ≤ 1/3) and while this in itself does not require any significant

technical innovation, the derivations tend to become somewhat more cumbersome

and tedious. We focus our attention on three key questions: (a) What is the limit

distribution of F̂ (tl)− F (tl) under appropriate normalization? (b) What can we say

about the asymptotic properties of the likelihood ratio test statistic (LRS) for testing

the hypotheses H0,n : F (tl) = θl ↔ H1,n : F (tl) 6= θl when H0,n holds? (c) How can

the methods for making inference on F (tl) be modified to make inference for F (x0)?

The NPMLE of F , say F̂ , is characterized by the vector

{F̂ (ti)}Ki=1 = argmin
u1≤u2≤...uK

K∑
j=1

(Z̄i − ui)2Ni,

where Ni is the number of Xj’s that equal ti and Z̄i is the sample mean of all the

Yj’s such that Xj = ti, or in the other words the sample proportion of patients

inspected at time ti that are infected by that time. Some mathematics shows that for

γ ∈ (0, 1/3), with probability increasing to 1, the Z̄i’s are ordered in i and therefore

furnish the minimizer of the optimization problem in the above display. Basically, for

γ ∈ (0, 1/3), the grid is sparse enough so that the naive averages at each inspection

time, which provide empirical estimates of F at those corresponding inspection times,

are automatically ordered and there is no ‘strength borrowed’ from nearby inspection

times. It will be shown that n(1−γ)/2 (F̂ (tl)−F (tl)) converges to a normal distribution.

Note that the rate of convergence is always faster than n1/3 and we are in the setting

of ‘standard’ asymptotics.

On the contrary, when γ ∈ (1/3, 1), the customary ‘non–standard’ asymptotics

that are prevalent in the usual treatment of the current status model (as in Groene-

boom and Wellner (1992) and Banerjee and Wellner (2001)) take over. Now, suc-

cessive grid points are close by each other, the naive averages are no longer ordered

and isotonization algorithms kick in, producing boundary solutions that are highly

non-linear functionals of the empirical distribution and the asymptotic distribution

turns out to be drastically different: n1/3(F̂ (tl)−F (tl)) converges to a multiple, which
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depends among other parameters upon c, of Chernoff’s distribution, or equivalently

a multiple of the slope at 0 of the greatest convex minorant of the stochastic process

{X(t) = W (t) + t2 : t ∈ R} with W (t) being two sided Brownian motion starting

from 0.

The case γ = 1/3 acts as the boundary scenario at which the transition between

standard and non-standard asymptotics happens and interestingly enough, the be-

havior of F̂ (tl) in this case is different from either of the previous cases. Basically,

when γ = 1/3, the grid points are ‘close enough’, so that the naive averages are no

longer the best estimates of F . On the other hand, the resolution of the grid exactly

matches n−1/3, the order of the local neighborhoods of the point tl that are asymp-

totically relevant to the estimation of F whenever γ ∈ [1/3, 1). As a consequence,

the limit distribution of n1/3(F̂ (tl)− F (tl)) is driven, not by a process in continuous

time as in the case when γ ∈ (1/3, 1), but a process essentially defined on cZ, where

Z is the set of integers. In fact, the relevant limit process can be written down as

the linear interpolant of the set of points Pc = {ck, αW (ck) + βc2k(1 + k) : k ∈ Z},
where the constants α and β depend on the underlying parameters of the problem,

and the limit distribution is that of the left derivative at 0 of the greatest convex

minorant of this process, denoted subsequently by Sc. The process Pc can be viewed

as a discretized version of the process X: note that for γ = 1/3, instead of Brownian

motion the random component of the relevant process is the restriction of Brownian

motion to the set cZ and the quadratic drift term t2, essentially the integral of the

function t, is replaced by the sum of the first k integers. As far as the asymptotics of

LRS for testing H0,n : F (tl) = θl are concerned, for the case γ ∈ (0, 1/3) we get the

usual χ2
1 distribution, for γ ∈ (1/3, 1) we obtain the pivotal limit D of Banerjee and

Wellner (2001), the same as when the covariates come from a Lebesgue density, and

for γ = 1/3 we obtain a discrete analogue of D which can be written as a functional

of Pc, though this is no longer pivotal.

In Section 5, we address the rather interesting question of how to make inferences

on F from current status data observed on a regular grid in the time-domain by

using the results developed in this paper. We argue that irrespective of the inherent

resolution parameter γ of the given grid, which is usually unknown in practice, one

can always assume γ to be 1/3, the boundary value, at the cost of adjusting c.

Basically, depending on the true inherent grid resolution, an adjusted data-driven

c, say ĉ, is shown to provide the correct asymptotic quantiles — namely those of
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Sĉ — for the distribution of n1/3(F̂ (tl) − F (tl)). Thus, the ‘boundary asymptotics’

can be used to approximate both the ‘standard’ (γ ∈ (0, 1/3)) and ‘non-standard’

(γ ∈ (1/3, 1)) situations and provide an effective means of setting confidence intervals

for F (tl) without having to contend with the difficult problem of estimating the

inherent resolution of the grid. Similar phenomena are observed with the likelihood

ratio statistics. From the point of view of conducting effective inference, we view this

as the key contribution of our work.

2.3 Estimation

In this section, we consider the shape-restricted nonparametric maximum likeli-

hood estimator (NPMLE) of F and the likelihood ratio test statistic (LRS) for testing

the value of F at a point of interest. The characterizations of these estimators are

well-known from the current status literature but we include a description tailored

for the setting of this paper.

The likelihood function of the data {(Xi, Yi)} is given by

Ln(F ) =
n∏
j=1

F (Xj)
Yj(1− F (Xj))

1−Yjp{i:Xj=ti} =
K∏
i=1

FZi
i (1− Fi)Ni−ZipNii ,

where p{i:Xj=ti} denotes the probability that Xj equals a genetic grid point ti, Fi is

an abbreviation for F (ti), Ni =
∑n

j=1{Xj = ti} is the number of the observation at

ti, Zi =
∑n

j=1 Yj{Xj = ti} is the sum of the responses at ti, {·} stands for both a set

and its indicator function with the meaning depending on the context of use, and F

is generically understood as either a distribution or the vector (F1, F2, . . . , FK), which

sometimes is also written as {Fi}Ki=1. Then, the log-likelihood function log(Ln(F )) is

given by

ln(F ) =
K∑
i=1

Ni log pi +
K∑
i=1

{
[Z̄i logFi + (1− Z̄i) log(1− Fi)]Ni

}
,

where Z̄i = Zi/Ni is the average of the responses at ti.

Denote the basic shape-restricted maximizer as

{F ?
i }Ki=1 = argmax

F1≤···≤FK
ln(F ).
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From the theory of isotonic regression (see, for example, Robertson et al. (1988)), we

have

argmax
F1≤···≤FK

ln(F ) = argmin
F1≤···≤FK

K∑
i=1

[(Z̄i − Fi)2Ni].

Thus, {F ?
i }Ki=1 is the weighted isotonic regression of {Z̄i}Ki=1 with weights {Ni}Ki=1,

and exists uniquely. We conventionally define the shape-restricted NPMLE of F as

the following right-continuous step function on [a, b]:

F̂ (t) =


0 if t ∈ [a, t1);

F ?
i , if t ∈ [ti, ti+1), i = 1, · · · , K − 1;

F ?
K , if t ∈ [tK , b].

(2.1)

A popular and straightforword method of setting confidence intervals for F at

a point of interest t ∈ (a, b) is first to derive the asymptotic distribution of F̂ (t)

and then to construct for F (t) the so-called Wald-type confidence intervals of the

form F̂ (t) plus and minus terms that depend on both the level of confidence and

the asymptotic distribution. Another popular but slightly more involved approach

to construct confidence intervals is through the inversion of a likelihood ratio test for

the value of F (t). More specifically, we first derive the asymptotic null distribution of

the likelihood ratio test statistic (LRS) for the following hypothesis testing problem:

H0 : F (t) = θ ↔ H1 : F (t) 6= θ, (2.2)

where t ∈ (a, b) and θ ∈ (0, 1) and then obtain the so-called LR-type confidence

intervals via inversion. Note that both t and θ can depend on n. One specific instance

of interest in this paper is that t = tl and θ = θl = F (tl). In this case, the hypotheses

(2.2) become

H0,n : F (tl) = θl ↔ H1,n : F (tl) 6= θl. (2.3)

To construct the LRS, we next consider the constrained shape-restricted NPMLE

of F under the null hypothesis of (2.3). Define

{F ?o
i } = argmax

F1≤···≤Fl=θl≤Fl+1≤···≤FK
ln(F ).
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It is well known that {F ?o
i } is well defined and

{F ?o
i }l−1i=1 = θl ∧ argmin

F1≤···≤Fl−1

l−1∑
i=1

[(Z̄i − Fi)2Ni],

{F ?o
i }Ki=r = θl ∨ argmin

Fr≤···≤FK

K∑
i=r

[(Z̄i − Fi)2Ni],

where the minimum and maximum operators (∧ and ∨) are interpreted as being taken

component-wise. Specifically, F ?o
l = θl as required by the null hypothesis. Thus, the

constrained NPMLE of F , similar to the unconstrained one, can be defined as the

following right-continuous step function on [a, b]:

F̂ o(t) =


0 t ∈ [a, t1);

F ?o
i , t ∈ [ti, ti+1), i = 1, · · · , K − 1;

F ?0
K , t ∈ [tK , b].

(2.4)

For the details underlying the above characterization of the constrained estimator of

F , we refer the readers to Banerjee (2000) and Banerjee and Wellner (2001). Thus,

the LRS in given by

2 log λn = 2[ln(F̂ )− ln(F̂ o)]. (2.5)

An asymptotic 1−η confidence interval for θl is given by the set of all 0 < θ < 1 such

that 2 log λn(θ), the LRS for testing H0,n : F (tl) = θ versus its complement, lies below

the (1− η)’th quantile of the limit distribution of the LRS under H0,n : F (tl) = θl.

Next, we provide characterizations of F̂ and F̂ o as slopes of the greatest convex

minorants (GCMs) of random processes, which prove useful for deriving the asymp-

totics for γ ∈ [1/3, 1). First, consider the characterization of F̂ . Define, for t ∈ [a, b],

Gn(t) = Pn{x ≤ t}, Vn(t) = Pny{x ≤ t}, (2.6)

where Pn is the empirical probability measure based on the data {(Xi, Yi)}. Then,

we have, for each x ∈ [a, b],

F̂ (x) = LS ◦GCM {(Gn(t), Vn(t)), t ∈ [a, b]} (Gn(x)) . (2.7)

Here, GCM(·) denotes the greatest convex minorant of a set of points in R2. For

any finite collection of points in R2, its GCM is a continuous piecewise linear convex
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function and LS(·) denotes the left slope or derivative function of a convex function.

The term GCM will also be generically used in connection with functions from R 7→ R.

For such a function H, GCM(H) will denote the greatest convex minorant of H.

Next, consider the characterization of F̂ o. Define, for s ∈ [a− tl, b− tl],

G̃n(s) = Gn(tl + s)−Gn(tl), Ṽn(s) = Vn(tl + s)− Vn(tl). (2.8)

Then, we have, for s ∈ [a− tl, 0),

F̂ o
l (tl + s) = θl ∧ LS ◦GCM

{
(G̃n(u), Ṽn(u)), u ∈ [a− tl, 0)

}
(G̃n(s)) (2.9)

and for s ∈ [tr − tl, b− tl),

F̂ o
r (tl + s) = θl ∨ LS ◦GCM

{
(G̃n(u), Ṽn(u)), u ∈ [0, b− tl]

}
(G̃n(s)). (2.10)

Therefore, we have, for s ∈ [a− tl, b− tl],

F̂ o(tl + s) = F̂ o
l (tl + s){s ∈ [a− tl, 0)} (2.11)

+ F̂ o
r (tl + s){s ∈ [tr − tl, b− tl]}+ θl{s ∈ [0, tr − tl)}.

The above characterizations will be further exploited in the next section.

2.4 Asymptotic Results

In this section, we primarily study the asymptotics of F̂ and 2 log(λn) for three

cases with different values of γ ∈ (0, 1). We first consider Case One γ ∈ (0, 1/3), then

Case Two γ ∈ (1/3, 1) and finally Case Three γ = 1/3.

2.4.1 Case One γ ∈ (0, 1/3)

In this subsection, we consider the asymptotics for γ ∈ (0, 1/3). First, we state

further technical assumptions :

(A1.1) There exists a constant fl > 0 such that f(x) > fl for every x ∈ [a, b].

(A1.2) There exists a constant gl > 0 such that g(x) ≥ gl for every x ∈ [a, b].

(A1.3) Assume a′ < a and F (a) > 0.
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We denote the above assumptions together as (A1). The assumptions (A1.1) and

(A1.2) require that both f and g have lower bounds ‘globally’. The assumption

(A1.3) is technically tailored to establish Proposition 2.4.9, the key technical tool

behind the arguments in this subsection. In fact, the strict assumption (A1.3) can

be replaced by a weaker one which allows a′ = a but requires that there exists

d ∈ (a, x0) such that F (d) > 0. With this weaker assumption, Proposition 2.4.9 needs

some technical adjustments but all the theorems in this subsection still hold without

any modification. To emphasize the main idea of the argument, without having to

deal with the aforementioned adjustments, we retain the strong assumption (A1.3).

By (A1.2), each discrete probability pi ≥ glδ. Denote ml = nglδ = glcn
1−γ, which

can be interpreted as the minimum average number of observations at a grid point.

The following lemma shows the consistency of F ?
l , F ?

r and F̂ (x0).

Lemma 2.4.1. If γ ∈ (0, 1/3) and (A1) holds, we have

F ?
l − F (tl)

P→ 0, F ?
r − F (tr)

P→ 0, and F̂ (x0)
P→ F (x0).

The joint limiting distribution of F̂ (tl) and F̂ (tr) is described below.

Theorem 2.4.2. If γ ∈ (0, 1/3) and (A1) holds, we have(√
Nl(F̂ (tl)− F (tl)),

√
Nr(F̂ (tr)− F (tr))

)
d→
√
F (x0)(1− F (x0))N(0, I2),

where I2 is the 2× 2 identity matrix.

Remark 2.4.3. From Theorem 2.4.2, the quantities F̂ (tl) and F̂ (tr) with proper cen-

tering and scaling are asymptotically uncorrelated and independent. In fact, they

are essentially the averages of the responses at the two grid points tl and tr and are

therefore based on responses corresponding to different sets of individuals. Conse-

quently, there is no dependence between them in the long run. Intuitively speaking,

γ ∈ (0, 1/3) corresponds to very sparse grids with successive grid points far enough

so that the responses at different grid points fail to influence each other.

Note thatNl/(npl) converges to 1 in probability and that npl/cg(x0)n
1−γ converges

to 1for γ ∈ (0, 1/3). Then the result of Theorem 2.4.2 can be rewritten as follows:(
n(1−γ)/2(F̂ (tl)− F (tl)), n

(1−γ)/2(F̂ (tr)− F (tr))
)

d→ αc−
1
2N(0, I2), (2.12)

where α =
√
F (x0) (1− F (x0))/g(x0). This formulation will be used later and the
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parameter α will be seen to play a critical role in the asymptotic behavior of F̂ (tl)

when γ ∈ [1/3, 1) as well.

Next, we consider the asymptotics of the log-likelihood ratio test statistic (LRS)

2 log λn for testing the hypotheses (2.3).

Theorem 2.4.4. If γ ∈ (0, 1/3) and (A1) holds, under the null hypothesis of (2.3), we

have 2 log λn
d→ χ2

1.

From Theorem 2.4.2 and Theorem 2.4.4, we see that the asymptotic distributions

are Normal and Chi-Squared, standard limit distributions for parametric problems.

In the following, we discuss testing and estimating F (x0). Denote 2 log λ′n as the

LRS based on F̂ and F̂ o for the hypotheses (2.2) with t = x0 and θ = θ0. Then,

this test statistic may not have a proper limit distribution, as shown by the following

theorem.

Theorem 2.4.5. Suppose γ ∈ (0, 1/3) and (A1) holds. If there exists ε > 0 and a

subsequence {nk} of {n} such that min(x0 − tl, tr − x0)/δ > ε, then under the null

hypothesis of (2.2) with t = x0 and θ = θ0, we have 2 log λ′nk
P→ 0 as k →∞.

An example satisfying the conditions of Theorem 2.4.5 is as follows. Suppose

a = 0, x0 = 1/2, c = 1, γ = 1/4 and nk = (2k + 1)4 for k ∈ N. Then (x0 − tl)/δ =

(tr − x0)/δ = 1/2 > 0. In fact, this example also concretely explains why we

do not make inference about F (x0) using F̂ (x0). The basic reason is that there

may not exist any scaling such that the scaled difference F̂ (x0) − F (x0) converges

to a tight non-degenerate random limit. More specifically, assume the setting of

the above example and further suppose F (t) = t for t ∈ [0, 1]. Then, we have

F̂ (x0)−F (x0) = (F̂ (tl)− tl) + (tl−x0). By (2.12), the proper scaler for the first term

F̂ (tl)− tl is n3/8 and the limit distribution is normal. However, this scaler times the

second term (x0 − tl) gives
√

2k − 1/2 (along {nk}), which diverges to infinity as k

goes to infinity.

Inference for F (x0): It turns out, however, that inference for F (x0) can still be

made provided the estimator F̂ is altered slightly. Recall that F̂ is defined as the

right-continuous step function that assumes the value F ?
i at ti. Consider now the

piecewise linear interpolant of the F ?
i ’s. More precisely, the modified estimator is
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given by

F̃ (t) =


0, if t ∈ [a, t1)
ti+1−t
ti+1−tiF

?
i + t−ti

ti+1−tiF
?
i+1, if t ∈ [ti, ti+1) and i = 1, 2, · · · , K − 1;

F ?
K , if t ∈ [tK , b].

Then, we can estimate F (x0) by F̃ (x0), whose consistency is ensured by the following

lemma.

Lemma 2.4.6. If γ ∈ (0, 1/3) and (A1) holds, we have F̃ (x0)
P→ F (x0).

Define two proportions pn = (x0 − tl)/(tr − tl) and qn = 1 − pn and a properly

normalized random quantity

RF̃ =
1√

p2n + q2n

√
Nl +Nr

2
(F̃ (x0)− F (x0)).

The asymptotic distribution of F̃ (x0) is the content of the next theorem.

Theorem 2.4.7. If γ ∈ (0, 1/3), (A1) holds, and f ′′ is bounded in a neighborhood of

x0, we have, for γ ∈ (1/5, 1/3),

RF̃

d→
√
F (x0)(1− F (x0))Z.

Further, if {nk} is a subsequence of {n} such that pnk converges to some p ∈ (0, 1),

we have, along this subsequence and for γ = 1/5,

RF̃

d→
√
F (x0)(1− F (x0))Z +

1

2

pq√
p2 + q2

g(x0)
1/2c5/2f ′(x0).

Furthermore, if f ′(x0) 6= 0, we have, for γ ∈ (0, 1/5),

RF̃

P→ Sign(f ′(x0))∞,

where q = 1− p and Z follows N(0, 1).

Remark 2.4.8. Since Nl/Nr converges in probability to 1, RF̃ is asymptotically equiv-

alent to (p2n + q2n)−1/2
√
Ni(F̃ (x0) − F (x0)) with i = l or r. Note that the coefficient

(p2n + q2n)−1/2 lies between 1 and
√

2. Comparing the asymptotic results of Theo-

rem 2.4.7 with γ ∈ (1/5, 1/3) and that of Theorem 2.4.2 reveals that F̃ (x0) effectively

combines the data around x0 to successfully achieve smaller asymptotic variance than
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F̂ (tl) and F̂ (tr).

2.4.1.1 Proofs

The proofs of the above lemmas and theorems rely heavily on some fundamental

propositions that we state below and prove in the appendix. In what follows we will

need to consider the vector of averages of responses over the grid-points: {Zi}ki=1.

Since Zi is not defined when Ni = 0, to avoid ambiguity we set Zi = 0 whenever

this happens. This can be done without affecting the asymptotic results, since the

probability of the event {Ni > 0, i = 1, 2, . . . , K} goes to 1. See, for example, Lemma

2.8.1 in the appendix where a stronger fact is established.

Proposition 2.4.9. If γ ∈ (0, 1/3) and (A1) holds, we have

P
(
Z̄1 ≤ Z̄2 ≤ · · · ≤ Z̄K

)
→ 1.

The above proposition says that on a sequence of sets with probability increasing

to 1, the vector {Zi}ki=1 is ordered and therefore the isotonization algorithm involved

in finding the NPMLE of F yields {F ?
i }Ki=1 = {Zi}Ki=1 on these sets. In other words,

asymptotically, isotonization has no effect and the naive estimates obtained by av-

eraging the responses at each grid point produce the NPMLE. This lemma is really

at the heart of the asymptotic derivations for γ < 1/3 because it effectively reduces

the problem of studying the F ?
i ’s which are obtained through a complex non-linear

algorithm to the study of the asymptotics of the Zi, which are linear statistics and

can be handled readily using standard central limit theory. For the following lemmas,

we use weaker assumptions (than (A1) on f and g):

(A1.1’) f(·) has a positive lower bound in a neighborhood of x0.

(A1.2’) g(·) has a positive lower bound in a neighborhood of x0.

We refer to these two assumptions together as (A1’).

Proposition 2.4.10. If γ ∈ (0, 1/3) and (A1’) hold, we have

P
(
Z̄l−1 ≤ Fl ≤ Z̄r

)
→ 1.

Now we state a further weaker assumption on F .

(A1.1”) F (·) is positive and continuous in a neighborhood of x0.
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Proposition 2.4.11. If γ ∈ (0, 1) and (A1.1”) and (A1.2’) hold, we have

(
Z̄l − Fl, Z̄r − Fr

) P→ 0,(√
Nl(Z̄l − Fl),

√
Nr(Z̄r − Fr)

)
d→
√
F (x0)(1− F (x0))N(0, I2).

Proof of Lemma 2.4.1. We only show F̂ (tl) − F (tl) → 0 in probability. The other

two can be shown similarly. We have

F̂ (tl)− F (tl) = (F ?
l − Fl)Bn + (F ?

l − Fl)(1−Bn) =: T1 + T2,

where Bn = {Z̄1 ≤ · · · ≤ Z̄K} and ‘=:’ means the right-hand side notations are

defined by the left-hand terms. By Proposition 2.4.9, Bn converges to 1 in probability.

Thus, T2 converges to 0 in probability. On the other hand, by Proposition 2.4.11,

Z̄l − Fl converges to 0 in probability. On Bn, the Zi’s are already monotone, and

the vector {F ?
i } obtained via isotonization coincides with {Zi}. We conclude that

T1 = (Z̄l − Fl)Bn
P→ 0 · 1 = 0. So, F̂ (x0) is a consistent estimator of F (x0).

Proof of Theorem 2.4.2. Denote Tnl =
√
Nl(F̂ (tl) − F (tl)) and Tnr =

√
Nr(F̂ (tr) −

F (tr)). Then, we have (Tnl, Tnr) = S1 +S2, whereS2 and S1 are (Tnl, Tnr)(1−Bn) and(√
Nl(Z̄l − Fl),

√
Nr(Z̄r − Fr)

)
Bn, respectively, with Bn as in the preceding proof.

By Proposition 2.4.9, Bn converges to 1 in probability. Then, S2 converges to 0 in

probability. On the other hand, by Proposition 2.4.11 and Slutsky’s Lemma, we have

S1
d→
√
F (x0)(1− F (x0))N(0, I2) · 1.

Proof of Theorem 2.4.4. We have

2 log λn = (2 log λn)Cn + (2 log λn)(1− Cn),

where Cn = Bn{Z̄l−1 ≤ θl ≤ Z̄r} with Bn as in the preceding proof. By Proposition

2.4.9 and Proposition 2.4.10, Cn converges to 1 in probability under the null hypothe-

sis. Thus, the second term above converges to 0 in probability. Denote the first term

above as T1. Then, we have

T1 = 2

{[
Z̄l log

(
Z̄l
θl

)
+ (1− Z̄l) log

(
1− Z̄l
1− θl

)]
Nl

}
Cn =: T11Cn.

By routine Taylor expansions of log(Z̄l) around θl and log(1 − Z̄l) around 1 − θl up
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to a third order term and some straightforward algebra, we have

T11 =
Nl(Z̄l − θl)2

θl (1− θl)
+ op(1).

Note that θl → F (x0). Finally, by Proposition 2.4.11, we have T11
d→ 1 · χ2

1 + 0 = χ2
1,

which completes the proof.

Proof of Theorem 2.4.5. We have 2 log λ′nk = 2 log λ′nkAnk where An = 1 − {Z̄1 ≤
· · · ≤ Z̄K}{Z̄l ≤ θ0 ≤ Z̄r}, since the likelihood ratio is identically 1 whenever An = 0.

Now, P (Z̄l ≤ θ0 ≤ Z̄r) → 1 under the null hypothesis and the conditions of the

theorem. To see this, consider P (Z̄l ≤ θ0) = P (n(1−γ)/2(Z̄l−F (tl)) ≤ n(1−γ)/2(F (x0)−
F (tl))). Now, n(1−γ)/2(Z̄l − F (tl)) is Op(1) and n(1−γ)/2(F (x0)− F (tl)) is easily seen

to be larger than a constant times n(1−γ)/2 δ along the subsequence {nk}. Since δ

is of order n−γ and 1 − 3γ > 0, it follows that n(1−γ)/2(F (x0) − F (tl)) diverges to

∞ along {nk}. So P (Z̄l ≤ θ0) → 1 along {nk} and a similar argument shows that

P (θ0 ≤ Z̄r)→ 1.

This, together with Proposition 2.4.9, implies that Ank converges to 0 in probability

under the null hypothesis. Therefore, we have 2 log λ′nk → 0 in probability.

For the proofs of Lemma 2.4.6 and Theorem 2.4.7, see the appendix.

2.4.2 Case Two γ ∈ (1/3, 1)

We next deal briefly with the case γ ∈ (1/3, 1) before considering the most inter-

esting boundary case γ = 1/3. Our treatment will be condensed since the asymp-

totics for this case follow the same patterns as when the observation times possess a

Lebesgue density. The notations, however, are developed in detail and will also be

used for the boundary case.

For this case, we assume that both f and g are positive and continuously dif-

ferentiable in a neighborhood of x0. In order to study the asymptotics of the iso-

tonic regression estimator F̂ (tl) of F (tl) and the likelihood ratio statistic for test-

ing the hypotheses (2.3), the following localized processes will be of interest: for
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u ∈ In = [(a− tl)n1/3, (b− tl)n1/3], define

Xn(u) = n1/3(F̂ (tl + un−1/3)− F (tl)), (2.13)

Yn(u) = n1/3(F̂ o(tl + un−1/3)− F (tl)). (2.14)

Define subsets of In as follows: I ln = [(a − tl)n
1/3, 0), Imn = [0, (tr − tl)n

1/3), Irn =

[(tr−tl)n1/3, (b−tl)n1/3] and Ĩrn = Irn∪Imn = [0, (b−tl)n1/3]. Note that In = I ln∪Imn ∪Irn
goes to R, Imn goes to {0}, and Ĩrn is a left-side enlargement of Irn. Next, define the

following normalized processes on In:

G?
n(h) = g(x0)

−1n1/3G̃n(hn−1/3), (2.15)

V ?
n (h) = g(x0)

−1n2/3
(
Ṽn(hn−1/3)− F (tl)G̃n(hn−1/3)

)
, (2.16)

where G̃n and Ṽn are defined in (2.8). After some straight forward algebra, from (2.7),

(2.11), (2.13), and (2.14), we have the following technically useful characterizations

of Xn and Yn: for u ∈ In,

Xn(u) = LS ◦GCM {(G?
n(h), V ?

n (h)) , h ∈ In} (G?
n(u)); (2.17)

Yn(u) =


0 ∧ LS ◦GCM

{
(G?

n(h), V ?
n (h)) , h ∈ I ln

}
(G?

n(u)), if u ∈ I ln,

0, if u ∈ Imn ,

0 ∨ LS ◦GCM
{

(G?
n(h), V ?

n (h)) , h ∈ Ĩrn
}

(G?
n(u)), if u ∈ Irn.

(2.18)

For constants κ1 > 0 and κ2 > 0, denote

Xκ1,κ2(h) = κ1W (h) + κ2h
2, for h ∈ R,

X l
κ1,κ2

(h) = κ1W (h) + κ2h
2, for h ∈ (−∞, 0],

Xr
κ1,κ2

(h) = κ1W (h) + κ2h
2, for h ∈ [0,∞),

where W is a two-sided Brownian motion with W (0) = 0. Let Gκ1,κ2 , Gl
κ1,κ2

and

Gr
κ1,κ2

be the greatest convex minorants of Xκ1,κ2 , X l
κ1,κ2

and Xr
κ1,κ2

, respectively.
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Then, define, for h ∈ R,

gκ1,κ2(h) = LS(Gκ1,κ2)(h),

goκ1,κ2
(h) = (0 ∧ LS(Gl

κ1,κ2
)(h)){h ∈ (−∞, 0)}

+ (0 ∨ LS(Gr
κ1,κ2

)(h)){h ∈ (0,∞)}.

Denote α =
√
F (x0)(1− F (x0))/g(x0) and β = f(x0)/2. Let L p[−C,C] denote

the class of Borel measurable real-valued functions defined on [−C,C] that possess

a finite p’th moment with respect to Lebesgue measure on [−C,C]. Let ‘ ’ denote

‘weak convergence’ in addition to
d→. With these notations, we have the following

theorem on the joint distributional convergence of (Xn,Yn).

Theorem 2.4.12 (Weak Convergence of (Xn,Yn)). Suppose f and g are positive and

continuously differentiable in a neighborhood of x0. Then, the finite dimensional

marginals of the process (Xn,Yn) converge weakly to those of the process (gα,β, g
o
α,β).

Furthermore,

{(Xn(u),Yn(u)), u ∈ [−C,C]} {(gα,β(u), goα,β(u)), u ∈ [−C,C]}

in (L p[−C,C])2 for each p ≥ 1 and C > 0.

Remark 2.4.13. Note that Xn(0) = n1/3(F̂ (tl)− F (tl)). Then, by Theorem 2.4.12, it

converges in distribution to gα,β(0). By the Brownian scaling results on Page 1724 of

Banerjee and Wellner (2001), we have, for h ∈ R,

(gα,β(h), g0α,β(h))
d
= (α2β)1/3 (g1,1((β/α)2/3h), g01,1((β/α)2/3h))

Hence, by noting g1,1(0)
d
= 2Z, we have a concise result:

n1/3(F̂ (tl)− F (tl))
d→ (α2β)1/3g1,1(0)

d
=

(
4f(x0)F (x0)(1− F (x0))

g(x0)

)1/3

Z. (2.19)

Thus, the limit distribution of F̂ (tl) is exactly the same as one would encounter in the

current status model with survival distribution F and the observation times drawn

from a Lebesgue density function g.

Inference for F (x0) : Note that n1/3(F̂ (x0)−F (x0)) = Xn(0)+n1/3(F (tl)−F (x0)).

Since, under the conditions of Theorem 2.4.12, n1/3(F (tl)−F (x0)) converges to 0 for

24



γ ∈ (1/3, 1), we conclude that n1/3(F̂ (x0) − F (x0)) converges in distribution to the

right-hand side of (2.19), whose distribution is well-characterized.

The following result states the asymptotic distribution of the LRS 2 log λn for

testing the hypotheses (2.3).

Theorem 2.4.14 (Weak Convergence of 2 log λn). Under the null hypothesis in (2.3),

i.e. F (tl) = θl, we have

2 log λn
d→ D =

∫
R

(g1,1(u)2 − go1,1(u)2)du.

Remark 2.4.15. This is the same limit distribution as obtained in Banerjee and Well-

ner (2001) under a Lebesgue density assumption on the observation times. This

distribution also appears in Banerjee (2007) in connection with likelihood ratio tests

in general monotone regression models. The proofs of the above theorems are omitted

as they can be established via arguments similar to those in Banerjee (2007) using

continuous mapping for slopes of greatest convex minorants. Note that the limit

distribution of the likelihood ratio statistic is free of nuisance parameters.

Remark 2.4.16. Results similar to Theorem 2.4.12 and Theorem 2.4.14 hold for the

case γ ≥ 1. More specifically, the slight difference is that it is more convenient to

consider F (x0) directly instead of F (tl) for the case γ ≥ 1. This, together with

Theorem 2.4.12 and Theorem 2.4.14, means that a discrete random observation time

with a dense enough grid, i.e. γ > 1/3, leads to the same asymptotics as a continuous

random observation time.

2.4.3 Case Three γ = 1/3

Now we consider the most interesting boundary case γ = 1/3. For this case, we

assume as in the previous section that both f and g are is positive and continuously

differentiable in a neighborhood of x0. Let the localized processes Xn(u) and Yn(u)

be exactly as in Subsection 2.4.2 on Case Two γ ∈ (1/3, 1). Since the order of the

unit grid spacing δ is exactly n−1/3, equal to the order of the increment un−1/3 in G̃n

and Ṽn, Xn and Yn have potential jumps only at ci for i ∈ In = (In/c) ∩ Z. Thus, it

is equivalent to consider Xn and Yn on those ci’s. Define I ln = (I ln/c)∩Z and Imn , Irn
and Ĩrn in analogous fashion. Note that In, I ln, Irn and Ĩrn go to Z, −N, N and {0}∪N,

respectively, as n goes to infinity and that Imn always equals {0}. We then have, for
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i ∈ In,

Xn(ci) = LS ◦GCM {(G?
n(ck), V ?

n (ck)) , k ∈ In} (G?
n(ci)), (2.20)

and

Yn(ci) =


0 ∧ LS ◦GCM

{
(G?

n(ck), V ?
n (ck)) , k ∈ I ln

}
(G?

n(ci)), if i ∈ I ln;

0, if i ∈ Imn ;

0 ∨ LS ◦GCM
{

(G?
n(ck), V ?

n (ck)) , k ∈ Ĩrn
}

(G?
n(ci)), if i ∈ Irn.

(2.21)

Denote Pc(k) = (P1,c(k),P2,c(k)) = (ck, αW (ck) + βc2k(1 + k)), for k ∈ Z, as a

discrete process in R2, where α, β and W are defined as in Subsection 2.4.2. Based

on Pc, we define a discrete process, which will be related to Xn:

X(ci) = LS ◦GCM {Pc(k), k ∈ Z} (ci), (2.22)

and a discrete process, which will be related to Yn:

Y(ci) =


0 ∧ LS ◦GCM {Pc(k), k ∈ −N} (ci), if i ∈ −N;

0, if i = 0;

0 ∨ LS ◦GCM {Pc(k), k ∈ {0} ∪ N} (ci), if i ∈ N.

(2.23)

For simplicity of notation, for the remainder of this section, we will often write an

integer interval as a usual interval with two integer endpoints. This will, however,

not cause confusion since the interpretation of the interval will be immediate from

the context.

For (Xn,Yn), the following joint distributional convergence holds.

Theorem 2.4.17 (Weak Convergence of (Xn,Yn)). For each non-negative integer N ,

we have

{(Xn(ci),Yn(ci)), i ∈ [−N,N ]} {(X(ci),Y(ci)), i ∈ [−N,N ]}.

Proof. For each non-negative integer N , take an integer M > N . Then, we have the

following two claims:

Claim 1: There exist (integer–valued) random variables Ln, L
′
n < −M and Un, U

′
n >
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M such that Ln, L′n,Un and U ′n are all OP (1) and that

GCM {(G?
n(ck), V ?

n (ck)) , k ∈ [Ln, Un]}

= GCM {(G?
n(ck), V ?

n (ck)) , k ∈ Z} |[G?
n(cLn), G?

n(cUn)],

GCM {(G?
n(ck), V ?

n (ck)) , k ∈ [L′n,−1]}

= GCM {(G?
n(ck), V ?

n (ck)) , k ∈ −N} |[G?
n(cL′n), G?

n(−c)],

GCM {(G?
n(ck), V ?

n (ck)) , k ∈ [0, U ′n]}

= GCM {(G?
n(ck), V ?

n (ck)) , k ∈ {0} ∪ N} |[G?
n(0), G?

n(cU ′n)].

Claim 2: There also exist (integer–valued) random variables L,L′ < −M and U,U ′ >

M such that L,L′, U, U ′ are OP (1) and that

GCM {Pc(k), k ∈ [L,U ]} = GCM {Pc(k), k ∈ Z} |[cL, cU ],

GCM {Pc(k), k ∈ [L′,−1]} = GCM {Pc(k), k ∈ −N} |[cL′,−c],

GCM {Pc(k), k ∈ [0, U ′]} = GCM {Pc(k), k ∈ {0} ∪ N} |[0, cU ′].

The proofs of Claim 1 and Claim 2 consist of technically important localization argu-

ments. See Lemma 2.4.22 for the proof of Claim 1 and Lemma 2.8.7 in the appendix

for that of Claim 2. Intuitively speaking, Claim 1 ensures that the restriction of the

greatest convex minorant of the process (G?
n, V

?
n ) (which is involved in the construction

of Xn and Yn) to a bounded domain can be made equal, eventually, with arbitrarily

high probability, to the greatest convex minorant of the restriction of (G?
n, V

?
n ) to that

domain, provided the domain is chosen appropriately large. A similar fact holds for

the greatest convex minorant of the process Pc, which is involved in the construction

of X and Y. These equalities then translate to the left-derivatives of the GCM’s

involved and the proof is completed by invoking a continuous mapping theorem for

the GCM’s of the restriction of (G?
n, V

?
n ) on bounded domains, along with Claims 1

and 2, which enable the use of a key approximation lemma – a simple extension of

Lemma 4.2 in Prakasa Rao (1969) – stated below.

Lemma 2.4.18. Suppose that for each ε > 0, {Wnε}, {Wn} and {Wε} are sequences

of random vectors, W is a random vector and such that

1. limε→0 limn→∞P (Wnε 6= Wn) = 0,

2. limε→0 P (Wε 6= W ) = 0,
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3. Wnε  Wε, as n→∞ for each ε > 0.

Then Wn  W , as n→∞.

From Claims 1 and 2, for every (small) ε > 0, there exists an integer Mε large

enough such that

P (Mε > max{|Ln|, |L′n|, Un, U ′n, |L|, |L′|, U, U ′}) > 1− ε.

Denote, for i ∈ [−N,N ],

XMε
n (ci) = LS ◦GCM {(G?

n(ck), V ?
n (ck)) , k ∈ [±Mε]} (G?

n(ci)),

XMε(ci) = LS ◦GCM {Pc(k), k ∈ [±Mε]} (ci),

and for i ∈ [−N,−1], {0} and [1, N ]

YMε
n (ci) =


0 ∧ LS ◦GCM {(G?

n(ck), V ?
n (ck)) , k ∈ [−Mε,−1]} (G?

n(ci))

0,

0 ∨ LS ◦GCM {(G?
n(ck), V ?

n (ck)) , k ∈ [0,Mε]} (G?
n(ci)),

Y(ci) =


0 ∧ LS ◦GCM {Pc(k), k ∈ [−Mε,−1]} (ci), if i ∈ [−N,−1];

0, if i = 0;

0 ∨ LS ◦GCM {Pc(k), k ∈ [0,Mε]} (ci), if i ∈ [1, N ].

Denote [±N ] = [−N,N ] and

An =
{{(

XMε
n (ci),YMε

n (ci)
)
, i ∈ [±N ]

}
6= {(Xn(ci),Yn(ci)) , i ∈ [±N ]}

}
,

A =
{{(

XMε(ci),YMε(ci)
)
, i ∈ [±N ]

}
6= {(X(ci),Y(ci)) , i ∈ [±N ]}

}
.

Then, the following three facts hold:

Fact 1: limε→0 limn→∞P (An) = 0.

Fact 2: limε→0 P (A) = 0.

Fact 3:
{(

XMε
n (ci),YMε

n (ci)
)
, i ∈ [±N ]

}
 
{(

XMε(ci),YMε(ci)
)
, i ∈ [±N ]

}
, as n →

∞ for each ε > 0.
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Since An and A are subsets of {Mε ≤ max {|Ln|, Un, |L|, U, |L′n|, U ′n, |L′|, U ′}}, whose

probability is less than ε, Facts 1 and 2 hold. Fact 3 will be proved in Lemma 2.4.23

in Section 2.4.3.1. Therefore, by Lemma 2.4.18, we have the finite dimensional weak

convergence.

Remark 2.4.19. From Theorem 2.4.17, we have n1/3(F̂ (tl)−F (tl)) = Xn(0) converges

weekly to X(0) = LS ◦ GCM{Pc(k), k ∈ Z}(0). Note that X(0) is precisely the

random variable Sc defined in Section 2.

Theorem 2.4.20 (Weak Convergence of 2 log λn). Under the null hypothesis of (2.3),

i.e. F (tl) = θl, we have

2 log λn  Mc =
cg(x0)

F (x0)(1− F (x0))

∞∑
i=−∞

(
X(ci)2 − Y(ci)2

)
.

Proof. Denote Jn = {1 ≤ i ≤ n : F̂ (Xi) 6= F̂ o(Xi)}. Then, we have

2 log λn = 2(I − II) with I =
∑
i∈Jn

ψ(Xi, Yi; F̂ ), II =
∑
i∈Jn

ψ(Xi, Yi; F̂
o)

and ψ(x, y;F ) = y logF (x)+(1−y) log(1−F (x)). By Taylor expansions of log F̂ (Xi)

and log(1 − F̂ (Xi)) around the point tl ≡ tl,n (with Fl = F (tl)) we have I = I(1) +

I(2) + I(3) + I(4), where

I(1) = logFl
∑
i∈Jn

Yi + log(1− Fl)
∑
i∈Jn

(1− Yi),

I(2) =
∑
i∈Jn

(
Yi
Fl
− 1− Yi

1− Fl

)(
F̂ (Xi)− Fl

)
,

I(3) = −1

2

∑
i∈Jn

(
Yi
F 2
l

+
1− Yi

(1− Fl)2

)(
F̂ (Xi)− Fl

)2
,

I(4) =
1

3

∑
i∈Jn

(
Yi
F ?3
li

− 1− Yi
(1− F ??

li )3

)(
F̂ (Xi)− Fl

)3
,

and F ?
li and F ??

li both lie between Fl and F̂ (Xi). By noting that {Xi : i ∈ Jn} is the

union of several whole “blocks” of X(i)’s in the unconstrained isotonic regression and

that over each block F̂ equals the average of the corresponding block responses, we
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have, for each nonnegative integer k,

∑
i∈Jn

(Yi − F̂ (Xi))(F̂ (Xi)− Fl)k = 0. (2.24)

Using this fact, we have

I(2) =
1

Fl(1− Fl)
∑
i∈Jn

(
F̂ (Xi)− Fl

)2
,

I(3) = −1

2
I(2)− 1

2

(
1

F 2
l

− 1

(1− Fl)2

)∑
i∈Jn

(
F̂ (Xi)− Fl

)3
.

Thus, I simplifies to

I = I(1) +
1

2Fl(1− Fl)
∑
i∈Jn

(
F̂ (Xi)− Fl

)2
+R1,

where R1 is the remaining term.

Similarly, we have

II = II(1) +
1

2Fl(1− Fl)
∑
i∈Jn

(
F̂ o(Xi)− Fl

)2
+R2,

where II(1) = I(1) and R2 is the remaining term, by noting that the corresponding

equation of (2.24) still holds since {Xi : i ∈ Jn} is the union of whole “blocks” of those

two constrained isotonic regressions and a special interval containing tl over which

F̂ o always equals to Fl. In fact, the special interval consists of tl and the “truncated”

blocks of those two constrained isotonic regressions.

We will show both R1 and R2 are oP (1) in Lemma 2.8.14. Thus, we have:

2 log λn =
1

Fl(1− Fl)
∑
i∈Jn

[(
F̂ (Xi)− Fl

)2
−
(
F̂ o(Xi)− Fl

)2]
+ oP (1).

Denote Dn = {1 ≤ j ≤ K : F̂ (tj) 6= F̂ o(tj)}. Then Dn is either an empty set or

an integer interval including l. Denote D̃n = Dn − l also by [−Ln, Un]. For empty

Dn, [−Ln, Un] is understood as ∅. A summation with an empty index set is defined

to be 0.

Next, for 1 ≤ j ≤ K, let W ′
j = #{1 ≤ i ≤ n : Xi = tj}, the number of observation
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times equal to tj. Then,

∑
i∈Jn

[(
F̂ (Xi)− Fl

)2
−
(
F̂ o(Xi)− Fl

)2]
=
∑
j∈Dn

[(
F̂ (tj)− Fl

)2
−
(
F̂ o(tj)− Fl

)2]
W ′
j

=
∑
j∈D̃n

[(
F̂ (tl+j)− Fl

)2
−
(
F̂ o(tl+j)− Fl

)2]
W ′
l+j

=
∑

j∈[−Ln,Un]

(
X2
n(cj)− Y2

n(cj)
)
n−2/3W ′

l+j ,

using the definitions of the process Xn and Yn. On the other hand,

W ′
l+j =

n∑
i=1

{tl+j−1 < Xi ≤ tl+j} = g(x0)n
2/3 (G?

n(cj)−G?
n(c(j − 1))) ,

which means n−2/3W ′
l+j = g(x0)Wj with Wj = G?

n(cj)−G?
n(c(j−1)). Then, we have:

2 log λn =
g(x0)

Fl(1− Fl)
∑

j∈[−Ln,Un]

(
X2
n(cj)− Y2

n(cj)
)
Wj + oP (1)

=
cg(x0)

Fl(1− Fl)
Sn +R3 + oP (1),

where Sn =
∑

j∈[−Ln,Un] (X
2
n(cj)− Y2

n(cj)) and R3 is the remaining term.

Similarly, denote E = {j ∈ Z : X(cj) 6= Y(cj)} for the limiting processes X
and Y. Then, E is either an empty set or an integer interval usually including 0.

Denote E also by [−L,U ]. For empty E, [−L,U ] is understood as ∅ as before. Let

S =
∑

j∈[−L,U ] (X2(cj)− Y2(cj)).

We will show Sn  S in Lemma 2.8.11. On the other hand, it will be shown

that R3 = oP (1) in Lemma 2.8.14. Therefore, we complete the proof by noticing

Fl → F (x0) and applying Slutsky’s Lemma.

Remark 2.4.21. The limit distribution Mc in Theorem 2.4.20 is, up to a constant,

the difference of two discrete stochastic processes summed over the (discrete) time

axis and depends on parameters. Owing to the discreteness of the time axis, there

is no scaling to filter out the nuisance parameters in Mc so that we do not have a

universal limit distribution for the likelihood ratio statistic in this boundary case. As
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a comparison, in the case with γ > 1/3 or with a continuous design density, Brownian

scaling ensures that all the nuisance parameters in the expression for the likelihood

ratio statistic disappear, leaving us with the universal limit D. For more details on

the nature of the Brownian scaling arguments, see, for example, Pages 1724-1725 of

Banerjee and Wellner (2001).

Inference for F (x0) : The linearly interpolated estimator that we used to make

inference for F (x0) when γ < 1/3 cannot be made to work in this situation. Inference

on F (x0) with the linear interpolant can, however, be made if we consider a slightly

altered setting for the grid of observation times. This and related issues are discussed

towards the end of the next section on adaptive inference for F at a point.

2.4.3.1 Technical Details

Lemma 2.4.22 (Localization Argument). Claim 1 in the proof of Theorem 2.4.17

holds.

Proof. We only prove the first equality. The others can be established through anal-

ogous arguments. Denote Kn(x) = GCM {(Gn(t), Vn(t)) , t ∈ [a, b]} (x) for x ∈ [0, 1].

Recall tl+j = tl+jcn
−1/3 for j ∈ Z. Then, it is sufficient to show there exist xLn < tl−M

and xUn > tl+M such that

(1) both tl − xLn and xUn − tl are OP (n−1/3), and

(2) GCM {(Gn(t), Vn(t)) , t ∈ [xLn , xUn ]} = Kn|[Gn(xLn), Gn(xUn)].

Let xLn and xUn be the largest grid point less than tl−M and the smallest grid

point larger than or equal to tl+M , at which F̂ jumps. Thus, the slopes of Kn change

at (and Kn and CSD agree on) Gn(xLn) and Gn(xUn).

With the above choices of xLn and xUn , (2) is satisfied. We next show that (1)

holds. It is sufficient to show both tl−M − xLn and xUn − tl+M are OP (n−1/3). We

next show the former and the latter can be established in the same way. Denote

Tn = tl−M − xLn and let Sn be the smallest non-negative value such that F̂ changes

its value at tl−M + Sn. First, by the definition of F̂ , for all β, we have

Vn(tl−M + β) ≥ Kn(tl−M) + F̂ (tl−M)
[
Gn(tl−M + β)−Gn(tl−M )

]
.
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Denote, for all β,

Γn(β) = [Vn(tl−M + β)− Vn(tl−M)]− F̂ (tl−M) [Gn(tl−M + β)−Gn(tl−M)] .

Then, it is easy to see that Γn(0) = 0 and Γn achieves its minimum at both −Tn and

Sn. Thus, Γn(−Tn) ≤ 0.

Letting P denote the distribution of (Y1n, X1n) (note the suppression of dependence

on n) and Pn the empirical measure of n i.i.d. observations from this distribution, we

have via simple algebra,

Γn(β) =(Pn − P)gn1(x, y; β)− γn(Pn − P)gn2(x; β)

+Pgn1(x, y; β)− γnPgn2(x; β),

where γn = F̂ (tl−M)− F (tl−M), gn1(x, y; β) = (y− F (tl−M))gn2(x; β) and gn2(x; β) =

{x ≤ tl−M + β} − {x ≤ tl−M}.
Since Tn, Sn and γn are oP (1) by a standard consistency argument, we can analyze

locally. Now, for all sufficiently small ε > 0, we can find, a neighborhood N of 0 (that

may depend on ε), such that for all sufficiently large n (depending on ε), the following

facts hold for every β ∈ N :

Fact 1: |Pgn1(x, y; β)− (1/2)g(x0)f(x0)β
2| ≤ εβ2 +O(n−2/3).

Fact 2: |Pgn2(x; β)− g(x0)β| ≤ K β2 +O(n−1/3).

Fact 3: |(Pn − P)gn1(x, y; β)| ≤ εβ2 +OP (n−2/3).

Fact 4: |(Pn − P)gn2(x; β)| ≤ εβ2 +OP (n−2/3).

The O and OP terms in the above facts are non-negative and can depend on ε, but

not on β ∈ N . The constant K can again depend on ε. For the purpose of continuity,

the proofs of the above facts are provided in Lemmas 2.8.3, 2.8.4, 2.8.5, and 2.8.6.

Next, choose and fix ε0 small enough such that the above facts hold and furthermore

ε0 < f(x0)g(x0)/8. The above four facts imply that:

∣∣Γn(β)− (1/2)f(x0)g(x0)β
2 + γng(x0)β

∣∣
≤ 3ε0β

2 + γnKβ
2 +OP (n−2/3) + |γn|O(n−1/3).
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Given η > 0, there exists Nη such that for all n ≥ Nη, we have γnK < ε0 and −Tn
and Sn lie in N with probability at least 1 − η. Denote this event as En. Then, on

En, An(β) ≤ Γn(β) ≤ Bn(β), where

An(β) = C1β
2 − γ′nβ −OP (n−2/3)− |γ′n|O(n−1/3),

Bn(β) = C2β
2 − γ′nβ +OP (n−2/3) + |γ′n|O(n−1/3),

and C1 = (f(x0)g(x0)/2 − 4ε0) > 0, C2 = (f(x0)g(x0)/2 + 4ε0) > 0 are constants

and γ′n = γng(x0). Note that γ′n and γn have the same stochastic order. From the

definition of Tn and Sn,

min
β

Γn(β) = max {Γn(−Tn),Γn(Sn)} ≥ max {An(−Tn), An(Sn)} .

Since one of C1(−Tn)2− γ′n(−Tn) and C1S
2
n− γ′nSn must be non-negative, we readily

conclude that minβ Γn(β) ≥ −OP (n−2/3)−|γ′n|O(n−1/3). Next, note that Bn(·) attains

its minimum at γ′n/2C2. Hence, we also have

min
β

Γn(β) ≤ Γn(γ′n/(2C2)) ≤ Bn(γ′n/(2C2))

≤ −(γ′n)2/(4C2) +OP (n−2/3) + |γ′n|O(n−1/3).

We conclude that

−OP (n−2/3)− |γ′n|O(n−1/3) ≤ −(γ′n)2/(4C2) +OP (n−2/3) + |γ′n|O(n−1/3) ,

which can be written equivalently as

(γ′n)2 − |γ′n|O(n−1/3)−OP (n−2/3) ≤ 0.

This implies |γ′n| ≤ OP (n−1/3) =: ξn and thus |γ′n| is OP (n−1/3). Further,

0 = Γn(0) ≥ Γn(−Tn) ≥ An(−Tn) = C1T
2
n + γ′nTn −OP (n−2/3)− |γ′n|O(n−1/3),

showing that Tn must be less in absolute value than the maximum of the roots of the
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quadratic equation C1x
2 + γ′nx−OP (n−2/3)− |γ′n|O(n−1/3) = 0. This leads to

|Tn| ≤
ξn +

√
ξ2n + 4C1OP (n−2/3) + 4C1ξnO(n−1/3)

2C1

=: ξ̃n,

and ξ̃n is again OP (n−1/3). Thus, for τ > 0,

P (n1/3Tn > τ) ≤ P (Ec
n) + P ({n1/3Tn > τ} ∩ En) ≤ P (Ec

n) + P (n1/3ξ̃n > τ),

which is less than 2η for all n sufficiently large given τ large enough. Therefore, Tn

is OP (n−1/3) and the proof is complete.

Lemma 2.4.23. Fact 3 in the proof of Theorem 2.4.17 holds.

Proof. We view
{(

XMε
n (ci),YMε

n (ci)
)
, i ∈ [±N ]

}
as the image of a 2(2N + 1) dimen-

sional vector function Ψ defined on the vector of two processes Wn = (Gnf ,Vnf ),
where Gnf = {G?

n(ck), k ∈ [±Mε]} and Vnf = {V ?
n (ck), k ∈ [±Mε]}. More specifically,

denote Ψ = ({Ψi}Ni=−N , {Ψl
i}−1i=−N , 0, {Ψr

i}Ni=1), where

Ψi(κ, λ) = max
−Mε≤u<i;

min
i≤v≤Mε

{(λ(v)− λ(u))/(κ(v)− κ(u))} for i ∈ [±N ],

Ψl
i(κl, λl) = max

−Mε≤u<i;
min
i≤v<0

{(λ(v)− λ(u))/(κ(v)− κ(u))} ∧ 0 for i ∈ [−N, 1],

Ψr
i (κr, λr) = max

0≤u<i;
min

i≤v≤Mε

{(λ(v)− λ(u))/(κ(v)− κ(u))} ∨ 0 for i ∈ [1, N ];

κ and λ are functions defined on [±Mε]. Then, XMε
n (ci) = Ψi((G

?
n(kc), V ?

n (kc)) :

k ∈ [±Mε]) for i ∈ [±N ], YMε
n (ci) = Ψl

i((G
?
n(kc), V ?

n (kc)) : k ∈ [±Mε]) for i ∈
[−N,−1] and YMε

n (ci) = Ψr
i ((G

?
n(kc), V ?

n (kc)) : k ∈ [±Mε]) for i ∈ [1, N ]. Sim-

ilarly,
{(

XMε(ci),YMε(ci)
)
, i ∈ [±N ]

}
is the image of the same 2(2N + 1) dimen-

sional vector function Ψ defined on the vector of two processes W = (Gf ,Vf ), where

Gf = {P1,c(k), k ∈ [±Mε]} and Vf = {P2,c(k), k ∈ [±Mε]}. Letting H be the set of

real-valued functions defined on the integer interval [±Mε], view (κ, λ) as an element

of H2 equipped with the topology of pointwise convergence on each co-ordinate. Note

thatWn andW are random elements assuming values inH2. Thus (κm, λm) is defined

to converge to (κ0, λ0) if κm(j)→ κ0(j) for all j ∈ [±Mε] and the same holds for λm

and λ0. Then, Ψ can be viewed as a map from H2 to R2(2N+1). The continuity of

Ψ follows immediately from the fact that each Ψi,Ψ
l
i,Ψ

r
i is continuous: this follows

from the fact that the max and min in the definitions of each of these functions are
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taken with respect to a finite number of elements. We show in Lemmas 2.8.8 and

2.8.9, that

Gnf
P ?→ Gf (2.25)

Vnf  Vf (2.26)

Then, by Slutsky’s lemma, we have Wn  W . The conclusion of the lemma is now

a direct outcome of the continuous mapping theorem.

2.5 Adaptive Inference for F at A Point

The goal in this section is to develop a scheme for constructing confidence intervals

for F (tl) (and later also for F (x0)) without knowledge of the underlying grid resolution

controlled by the parameters γ and c, given current status data over an equally spaced

grid of observation times on [a, b]. To this end, we first investigate the relationships

between the three different asymptotic limits for the distribution of F̂ (tl) that were

derived in the previous section, under different values of γ. Our first result relates

the distribution of Sc to the standard normal.

Theorem 2.5.1. As c→∞, we have
√
cSc

d→ αZ, where Z follows the standard normal

distribution.

Remark 2.5.2. Recall that Sc does depend on both α and β. So, rigorously, it should

be written as Sc,α,β. The notation Sc, though convenient, is perhaps a bit unfortunate

since dependence on other parameters in the problem are ignored. We need to keep

this dependence in mind.

Our next result investigates the case where c goes to 0.

Theorem 2.5.3. As c→ 0, we have Sc
d→ gα,β(0)

d
= 2(α2β)1/3Z.

Remark 2.5.4. This result is somewhat easier to visualize at a heuristic level. Recall

that Sc is the left-slope of the GCM of the process Pc at the point 0, the process itself

being defined on the grid cZ. As c goes to 0, the grid becomes finer and the process

Pc will eventually be substituted by its limiting version, namely Xα,β. Thus, in the

limit Sc becomes gα,β(0), the left-slope of the GCM of Xα,β at 0. The representation

of this limit in terms of Z was established in Remark 2.4.13 following Theorem 2.4.12.

We are now in a position to propose our inference scheme. We focus on the

so-called ‘Wald-type’ intervals for F (tl), i.e. intervals of the form F̂ (tl) plus and
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minus terms depending on the sample size and the large sample distribution of the

estimator. Recall that the grid resolution is determined by unknown parameters

γ > 0 and c > 0. We now pretend that γ is exactly equal to n−1/3. This allows

us to calculate the value of the corresponding parameter c, say ĉ, via the relation:

b(b− a)/(ĉn−1/3)c = K(= b(b− a)/(cn−γ)c), where K is the number of grid points.

Some algebra shows that

ĉ = ĉn = cn1/3−γ +O(n1/3−2γ) = cn1/3−γ(1 +O(n−γ)) .

Thus, the calculated parameter ĉ actually depends on n, and goes to ∞ and 0 for

γ ∈ (0, 1/3) and γ ∈ (1/3, 1), respectively. We propose to use the distribution of Sĉ
as an approximation to the distribution of n1/3(F̂ (tl) − F (tl)) for γ ∈ (0, 1). Thus,

an adaptive approximate 1− η confidence interval for F (tl) is given by[
F̂ (tl)− n−1/3 q(Sĉ, 1− η/2), F̂ (tl)− n−1/3 q(Sĉ, (η/2))

]
, (2.27)

where η > 0 and q(X, p) stands for the lower pth quantile of a random variable X

with p ∈ (0, 1).

The above adaptive confidence interval provides the correct asymptotic calibra-

tion, irrespective of the true value of γ. If γ happens to be 1/3, then the adaptive

confidence interval is constructed with the correct asymptotic result. Usually this

situation is rare so that it is important to know the performance of the adaptive

confidence interval for γ 6= 1/3. If we knew that γ ∈ (1/3, 1), then, by the result

(2.19) and the symmetry of gα,β(0), the true confidence interval would be[
F̂ (tl)± n−1/3 q(gα,β(0), (1− η/2))

]
. (2.28)

Recall that ĉ goes to 0 for γ ∈ (1/3, 1). Thus, by Theorem 2.5.3, the quantile sequence

q(Sĉ, p) converges to q(gα,β(0), p) since gα,β(0) is a continuous random variable. So,

the adaptive confidence interval (2.27) converges to the true one (2.28) obtained when

γ is in (1/3, 1).

That the adaptive procedure also works with γ ∈ (0, 1/3) will be shown by using

Theorem 2.5.1. When the true γ is known to be less than 1/3, from the result (2.12)

and the symmetry of the standard normal random variable Z, the confidence interval
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is given by [
F̂ (tl)± n−(1−γ)/2αc−1/2q(Z, (1− η/2))

]
. (2.29)

We then only need to show that, for every p ∈ (0, 1), as n→∞,

n−1/3q(Sĉ, p)
n−(1−γ)/2αc−1/2q(Z, p)

=
n−1/3c1/2

n−(1−γ)/2ĉ1/2
· ĉ

1/2q(Sĉ, p)
αq(Z, p)

= I · II → 1.

Recall that ĉ goes to ∞ for γ ∈ (0, 1/3). By Theorem 2.5.1, we have II → 1 as

n→∞. On the other hand, we can see I simplies to (1 +O(n−γ))−1/2 and therefore

goes to 1. Thus, the adaptive confidence interval (2.27) also converges to the true

one (2.29) obtained when γ is known to be in (0, 1/3).

While the major advantage of our method lies in that it does not require mak-

ing a call on the degree of sparsity γ — in that respect, it adjusts automatically to

the inherent rate of growth of the number of distinct observation times to the num-

ber of individuals, and that is an extremely desirable property — there are some

implementational issues with the method that should be pointed out.

Firstly, note that nuisance parameters, namely g(x0) and f(x0), do need to be

estimated from the data. Of the two f(x0) is more difficult to estimate accurately.

Estimation of nuisance parameters is however unavoidable using the Wald-type in-

tervals we have been dealing with, even with γ known. This nuisance parameter

problem is somewhat easier for γ ∈ (0, 1/3), since one at most needs an estimate

of g(x0) in that situation and this is readily available via standard smoothing tech-

niques. For γ ∈ (1/3, 1), both nuisance parameters enter into the limit distribution

of n1/3(F̂ (tl)− F (tl)). Of course, with γ known but not equal to 1/3, one could have

dispensed with the Wald-type intervals altogether, considering instead intervals using

LRS inversion. This would have obviated the need to estimate nuisance parameters,

since in either case, γ ∈ (0, 1/3) or γ ∈ (1/3, 1), the LRS is asymptotically pivotal

with known limit distributions χ2
1 and D respectively. Recall that in the boundary

scenario, i.e. for γ = 1/3, the asymptotic distribution of the LRS is no longer pivotal,

so the usual advantageous feature of likelihood ratios is absent in this situation.

Secondly, note that unlike the cases γ ∈ (0, 1/3) and γ ∈ (1/3, 1), the limit distri-

bution of n1/3(F̂ (tl) − F (tl)) in the boundary case does not admit a natural scaling

in terms of a fixed known distribution; with γ ∈ (0, 1/3), the standard normal plays

this role and for γ ∈ (1/3, 1), Chernoff’s distribution. This means that the quantiles
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of the limit distribution in the boundary case cannot be computed by multiplying

the quantiles of a generic distribution by an estimated factor and must be generated

time and again starting from the parent process Pc which depends on α and β, or

to be more precise, from an estimated parent process generated by using consistent

estimates of the unknown parameters α and β. This is, however, not a terribly major

issue in these days of fast computing and in our opinion, the mileage obtained in

terms of adaptivity more than compensates for the lack of scaling.

Finally, one might wonder if resampling techniques could be used for adaptive

estimation. The problem, however, lies in the fact that while the usual n out of n

bootstrap works for γ ∈ (0, 1/3), it fails under the non-standard asymptotic regimes

that operate for γ ∈ [1/3, 1), as is clear from the work of Abrevaya and Huang (2005),

Kosorok (2008) and Sen et al. (2010). Since γ is unknown, it is impossible to decide

whether to use the standard bootstrap or not. One could argue that the m out of

n bootstrap or subsampling will work irrespective of the value of γ but, again, the

problem with using these methods is that they require knowledge of the convergence

rate and this is unknown as it depends on the true value of γ.

Similar to the relationship among Sc, Z and Z, revealed by Theorem 2.5.1 and

Theorem 2.5.3, we can establish a corresponding relationship among Mc, χ
2
1 and D.

Theorem 2.5.5. As c→∞, we have Mc
d→ χ2

1.

Theorem 2.5.6. As c→ 0, we have Mc
d→ D.

From these two theorems, we can similarly develop another adaptive procedure

based on the LRS of the boundary case for testing the hypotheses (2.3) to construct

the so-called LR-type confidence intervals for F (tl) without the knowledge of the true

value of γ ∈ (0, 1). These adaptive LR-type confidence intervals are also asymp-

totically correct, regardless the value of γ. As pointed out before, the asymptotic

distribution of the LRS for the boundary case γ = 1/3 is no longer pivotal and the

same nuisance parameters g(x0) and f(x0) need to be estimated in order to construct

the adaptive LR-type confidence intervals. This is a reasonable price for not knowing

the true value of γ.

Inference for F (x0) : To make adaptive inference on F (x0) given x0 ∈ (a, b),

consider a slightly altered setting for the grid. Suppose p ∈ [0, 1) and q = 1− p. Let

tl = x0 − pδ, tr = x0 + qδ, tl−i = tl − iδ, tr+j = tr + jδ for i = 1, · · · , l − 1 and
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j = 1, · · · , K − r with both t1 − a and b− tK in (0, δ]. Since the unconstrained and

constrained isotonic regressions F̂ and F̂ o are well-defined only at the grid-points, the

related random quantities Xn and Yn are also well-defined without any modification.

Under the new setting of the grid, first consider the boundary case γ = 1/3, for

which Theorem 2.4.17 still holds. Define F̃ (x0) = qF̂ (tl)+pF̂ (tr), which is the linearly

interpolated estimator for F (x0). Then, we have n1/3(F̃ (x0) − F (x0)) = qXn(0) +

pXn(1)+n1/3(F (tl)−F (x0)), which converges weakly to qX(0)+pX(1)−cpf(x0) given

f is continuous around x0. Then, we can construct confidence intervals for F (x0).

However, with our original setting for the grid, n1/3(F̃ (x0)−F (x0)) might not converge

weakly, because the p and q would depend on n without necessarily converging to a

limit. To see this, let a = 0, b = 1, x0 = 1/2, c = 1, n1,k = (2k)3 and n2,k = (2k + 1)3

for k ∈ N. Then, along the first subsequence {n1,k}, n1/3
1,k (F̃ (x0) − F (x0)) converges

weakly to Xn(0). But along the second subsequence {n2,k}, n1/3
2,k (F̃ (x0) − F (x0))

converges weakly to (Xn(0) + Xn(1))/2 + f(x0)/2. Since the limiting distributions

along different subsequences are different, n1/3(F̃ (x0) − F (x0)) does not converge

weakly.

Next, consider the case γ ∈ (1/3, 1), for which the above decomposition of n1/3(F̃ (x0)−
F (x0)) still holds. Since n1/3(F (tl) − F (x0)) converges to 0 and (Xn(0),Xn(1)) con-

verges weakly to gα,β(0)(1, 1), we have n1/3(F̃ (x0)−F (x0)) converges weakly to gα,β(0)

by noticing p+ q = 1. On the other hand, similar to the argument for Theorem 2.5.3,

(X(0),X(1)) converges weakly to gα,β(0)(1, 1) as c goes to 0. Thus, the limit distri-

bution for γ = 1/3, qX(0) + pX(1) − cpf(x0), converges weakly to gα,β(0), the limit

distribution for γ ∈ (1/3, 1), by noticing that cpf(x0) converges to 0 as c goes to 0.

This means that adaptive inference on F (x0) can be made for large values of γ.

Finally, consider the case γ ∈ (0, 1/3). Similar to the RF̃ defined before Theorem

2.4.7, here we generically denote RF̃ = (p2 + q2)−1/2[(Nl +Nr)/2]1/2(F̃ (x0)− F (x0)).

Similar to the argument for Theorem 2.4.7, we have that RF̃ converges weakly to

[F (x0)(1−F (x0))]
1/2N(0, 1) for γ ∈ (1/5, 1/3). Since both Nl and Nr are asymptoti-

cally equivalent to cg(x0)n
1−γ, we conclude that c1/2n(1−γ)/2(F̃ (x0)−F (x0)) converges

weakly to (p2 + q2)1/2αN(0, 1). On the limiting distribution side, another decomposi-

tion of n1/3(F̃ (x0)−F (x0)) is exploited for γ = 1/3. We have n1/3(F̃ (x0)−F (x0)) =

qn1/3(F̂ (tl)−F (tl))+pn1/3(F̂ (tr)−F (tr))+qn1/3(F (tl)−F (x0))+pn1/3(F (tr)−F (x0)).

Similar to the argument for Theorem 2.4.12, the above first two terms as a vector con-

verges weakly to (X(0),X′(0)) with X′(0)
d
= X(0); the above last two terms converge
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to −pqcf(x0) and pqcf(x0), respectively. Thus, for γ = 1/3, n1/3(F̃ (x0) − F (x0))

converges weakly to qX(0)+pX′(0). Now, similar to the argument for Theorem 2.5.1,

we have that, as c goes to ∞,
√
c(X(0),X′(0)) converges weakly to α(Z1, Z2), where

Z1 and Z2 are independent standard normal distributions. Thus,
√
c(qX(0) + pX′(0))

converges weakly to (p2 + q2)1/2αN(0, 1) as c goes to ∞. This means that adaptive

inference on F (x0) can also be made for values of γ in (1/5, 1/3).

Similar to Theorem 2.4.7, for γ = 1/5 and γ ∈ (0, 1/5) with f ′(x0) 6= 0, we have

c1/2n(1−γ)/2(F̃ (x0)−F (x0)) converges weakly to (p2+q2)1/2αN(0, 1)+(1/2)pqc5/2f ′(x0)

and Sign(f ′(x0))∞, respectively. Thus, the adaptive procedure could still be applied

with an adjustment for the bias term (1/2)pqc5/2f ′(x0) for γ = 1/5 but is not available

for γ ∈ (0, 1/5) any more. This basically means that when the grid resolution under

the new grid setting is very sparse, the adaptive procedure would lose its effectiveness

for inference at x0. In comparison, in the original grid setting, the adaptive procedure

would work for all values of γ ∈ (0, 1/3) for inference on F at the point tl.

2.5.0.2 Proofs

Here, we provide proofs of the main results in this section, apart from the proof

of Theorem 2.5.6 which can be established by an extension of the ideas used in the

proof of Theorem 2.5.3 and is skipped.

Proof of Theorem 2.5.1. For k ∈ Z, let

h̃(k) = α
√
cW (ck) + βc5/2k(1 + k), h(k) = αcW (k) + βc5/2k(1 + k).

Then, we have {h̃(k), k ∈ Z} d
= {h(k), k ∈ Z}. Thus,

√
cSc

d
= LS ◦GCM {(ck, h(k)) , k ∈ Z} (0).

Define S̃c =
√
cSc. Denote

Ac =

{
h(k)

ck
<
h(k + 1)

c(k + 1)
, k = 1, 2, · · ·

}
,

Bc =

{
h(−(k − 1))

c(k − 1)
<
h(−k)

ck
, k = 2, 3, · · ·

}
, Cc =

{
h(1)

c
>
−h(−1)

c

}
.

Then, for ω ∈ AcBcCc, it is easy to see S̃c = −αW (−1). We will show in Lemma

2.5.7, AcBcCc
P→ 1. Thus, S̃c = S̃cAcBcCc + S̃c(1 − AcBcCc)

d→ −αW (−1)
d
= αZ,
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with Z ∼ N(0, 1). Therefore,
√
cSc

d→ αZ.

Proof of Theorem 2.5.5. We have

Mc = α−2
(√

cSc
)2

+ cα−2
∑
i 6=0

(
X(ci)2 − Y(ci)2

)
=: T +R.

By Theorem 2.5.1, we have T
d→ Z2 ∼ χ2

1. It suffices to show R
P→ 0. Letting Ac, Bc

and Cc denote the same quantities as in the proof of Theorem 2.5.1 and letting

Dc =

{
h(−1)− h(−2)

−c+ 2c
< 0

}
, Ec =

{
h(1)

c
> 0

}
,

for every ω ∈ AcBcCcDcEc, we have R = 0. We will show AcBcCcDcEc
P→ 1 in

Lemma 2.5.7. Thus, R
P→ 0, which completes the proof.

Lemma 2.5.7. Each of Ac, Bc, Cc, Dc and Ec in the proof of Theorem 2.5.1 and

Theorem 2.5.5 converges to 1 in probability.

Proof. It is easy to show Cc, Dc or Ec converges to 1 in probability. The argument

that Ac converges to one in probability is similar to that for Bc and only the former

is established here. In order to show P (Ac) → 1, it suffices to show P (Acc) → 0. We

have, for each k ∈ Z,

P

(
h(k)

ck
≥ h(k + 1)

c(k + 1)

)
= P

(
αW (k)

k
+ βc3/2(k + 1) ≥ αW (k + 1)

k + 1
+ βc3/2(k + 2)

)
= P

(
α

[
W (k)

k
− W (k + 1)

k + 1

]
≥ βc3/2

)
= P

(
N(0, 1) ≥ α−1βc3/2

√
k(k + 1)

)
≤ 2−1 exp

{
−2−1α−2β2c3k(k + 1)

}
,

using the fact that W (k)/k−W (k+1)/(k+1) ∼ N(0, (k(k+1))−1) and the inequality

P (N(0, 1) > x) ≤ 2−1 exp{(−2−1x2)} for x ≥ 0 (See, for example, < 2 > on Page 317
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of Pollard (2002)). Then, we have

P (Acc) ≤
∞∑
k=1

P

(
h(k)

ck
≥ h(k + 1)

c(k + 1)

)
≤

∞∑
k=1

2−1 exp
{
−2−1α−2β2c3k2

}
≤ 2−1

∞∫
0

exp
{
−2−1α−2β2c3x2

}
dx = (

√
2π/4)αβ−1c−3/2 → 0,

as c→∞. Thus, P (Ac)→ 1, which completes the proof.

Proof for Theorem 2.5.3. We want to show that Sc
d→ gα,β(0), as c → 0, where

gα,β(0) = LS ◦ GCM{Xα,β}(0) = LS ◦ GCM{Xα,β(t) : t ∈ R}(0) and Sc = LS ◦
GCM{Pc}(0) = LS ◦ GCM{Pc(k) : k ∈ Z}(0). Since Sc = S ′c + βc, where S ′c =

LS ◦GCM{P ′c : k ∈ Z}(0) and P ′c = {(ck, αW (ck) + β(ck)2) : k ∈ Z}, it is sufficient

to show S ′c
d→ gα,β(0) as c → 0. To make the notation simple and without causing

confusion, in the following we still use Pc and Sc to denote P ′c and S ′c. Also, it will be

useful to think of Pc as a continuous process on R formed by linearly interpolating the

points {ck,P2,c(ck) : k ∈ Z}, where P2,c(ck) = αW (ck) + β (ck)2 = Xα,β(ck). Note

that viewing Pc in this way keeps the GCM unaltered, i.e. the GCM of this continuous

linear interpolated version is the same as that of the set of points {ck,P2,c(ck) : k ∈ Z}
and the slope-changing points of this piece-wise linear GCM are still grid-points of

the form ck.

Let L and U be the largest negative and smallest nonnegative x-axis coordinates of

the slope changing points of the GCM of Xα,β. Similarly, let Lc and Uc be the largest

negative and smallest nonnegative x-axis coordinates of the slope changing points of

the GCM of Pc. For K > 0, define gKα,β(0) = LS ◦ GCM{Xα,β(t) : t ∈ [−K,K]}(0)

and SKc = LS ◦GCM{Pc(t) : t ∈ [−K,K]}(0).

We will show that, given ε > 0, there exist Mε > 0 and c(ε) such that (a) for

all 0 < c < c(ε), P (SMε
c 6= Sc) < ε and (b) P (gMε

α,β(0) 6= gα,β(0)) < ε. These

immediately imply that both Fact 1: limε→0 lim supc→0 P (SMε
c 6= Sc) = 0 and Fact

2: limε→0 P (gMε
α,β(0) 6= gα,β(0)) = 0 hold. We then show that Fact 3: For each

ε > 0, SMε
c

d→ gMε
α,β(0) holds as well. Then, by Lemma 2.4.18, we have the conclusion

Sc
d→ gα,β(0). Figure 2.1 illustrates the following argument.

Let τ−2 < τ−1 < τ1 < τ2 be four consecutive slope changing points of Gα,β =

GCM{Xα,β} with τ−1 denoting the first slope changing point to the left of 0 and

τ1 the first slope changing point to the right. Since τ−2 and τ2 are OP (1), given
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ξ
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C1(t)

C2(t)

Lc Uc t2t1

Gα,β(t)

Xα,β(t)

Figure 2.1: An illustration for showing {Lc} is OP (1) in the proof of Theorem 2.5.3.

ε > 0, there exists Mε > 0 such that P (−Mε < τ−2 < τ2 < Mε) > 1 − ε/4. Note

that the event {gMε
α,β(0) = gα,β(0)} ⊂ {−Mε < τ−2 < τ2 < Mε} and it follows that

P (gMε
α,β(0) 6= gα,β(0)) < ε/4 < ε. Thus, (b) holds.

Next, consider the chord C1(t) joining (0, Gα,β(0)) and (τ−2, Gα,β(τ−2)). By the

convexity of Gα,β over [τ−2, 0] and τ−1 ∈ (τ−2, 0) being a slope changing point,

Xα,β(τ−1) = Gα,β(τ−1) < C(τ−1). But C1(0) = Gα,β(0) < Xα,β(0) and it follows

by the intermediate value theorem that ξ = infτ−1<t<0 {t : Xα,β(t) = C1(t)} is well-

defined (since the set in question is non-empty), τ−1 < ξ < 0, C1(ξ) = Xα,β(ξ) and

on [τ−1, ξ), Xα,β(t) < C1(t). Let V = ξ − τ−1. Since V is a continuous and positive

random variable, there exists δ(ε) > 0 such that P (V > δ(ε)) ≥ 1 − ε/4. Then, the

event Eε = {V > δ(ε)} ∩ {−Mε < τ−2} has probability larger than 1 − ε/2. For any

c < c(ε) =: δ(ε), we claim that Lc ≥ τ−2 on the event Eε and the argument for this

follows below.

If Lc < τ−2, consider the chord C2(t) connecting two points (Lc,P2,c(Lc)) and

(Uc,P2,c(Uc)). This chord must lie strictly above the chord {C1(t) : τ−1 ≤ t ≤ 0}
since it can be viewed as a restriction of a chord connecting two points (t1, Gα,β(t1))

and (t2, Gα,β(t2)) with t1 ≤ Lc < τ−1 < 0 ≤ Uc ≤ t2. It then follows that all points

of the form {ck,P2,c(ck) = Xα,β(ck) : ck ∈ [Lc, Uc]} must lie above C2(t). But there

is at least one ck? with τ−1 < ck? < ξ and such that Xα,β(ck?) < C1(ck
?) < C2(ck

?),

which furnishes a contradiction.

We conclude that for any c < c(ε), P (−Mε < Lc) > 1− ε/2. A similar argument

to the right-hand side of 0 shows that for the same c’s (by the symmetry of two-sided

Brownian motion about the origin), P (Uc < Mε) > 1 − ε/2. Hence P (−Mε < Lc <
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Uc < Mε) > 1− ε. On this event, clearly SMε
c = Sc and it follows that for all c < c(ε),

P (SMε
c 6= Sc) < ε. Thus, (a) also holds and Facts 1 and 2 are established.

It remains to establish Fact 3. This follows easily. For almost every ω, Xα,β(t)

is uniformly continuous on [±2Mε]. It follows by elementary analysis that (for al-

most every ω) on [±Mε], the process Pc, being the linear interpolant of the points

{ck,Xα,β(ck) : −Mε ≤ ck ≤ Mε} ∪ {(−Mε,P2c(−Mε)), (Mε,P2,c(Mε))}, converges

uniformly to Xα,β as c→ 0. Thus, the left slope of the GCM of {Pc(t) : t ∈ [±Mε]},
which is precisely SMε

c , converges to gMε
α,β(0) since the GCM of the restriction of Xα,β

to [±Mε] is almost surely differentiable at 0 (see, for example, the Lemma on Page

330 of Robertson et al. (1988) for a justification of this convergence).

2.6 A Practical Procedure and Simulations

In this section, we provide a practical version of the adaptive procedure introduced

in Section 5 to construct Wald-type confidence intervals for F (tl).

Recall that, in the adaptive procedure, we always specify γ = 1/3 and thus esti-

mate the value of c by a solution ĉ of the equation K = b(b− a)/ĉn−1/3c, where K is

the number of grid points. To construct a 1− 2η confidence interval for F (tl), quan-

tiles of Xĉ(0) are needed. Since Xc(0) = LS ◦GCM {T (k), k ∈ Z} (0) (c is genetically

used), we approximate Xc(0) with

Xc,Ka(0) = LS ◦GCM {Pc(k), k ∈ [−Ka − 1, Ka]} (0)

for some large Ka ∈ N. Further, since

Xc,Ka(0) = LS ◦GCM {(P1,c(k)/c,P2,c(k)/c), k ∈ [−Ka − 1, Ka]} (0)

where P1,c(k)/c = k and P2,c(k)/c = αW (ck)/c + βck(1 + k), we have that Xc,Ka(0)

is the isotonic regression at k = 0 of the data

{(k,P2,c(k)/c− P2,c(k − 1)/c), k ∈ [−Ka, Ka]}

=
{

(k, αZk/
√
c+ 2βck, k ∈ [−Ka, Ka]

}
,

where {Zk}Kak=−Ka are i.i.d. from N(0, 1), α =
√
F (x0)(1− F (x0))/g(x0) and β =

f(x0)/2. To make this adaptive procedure practical, we next consider the estimation
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of α and β, or equivalently, the estimation of F (x0), g(x0) and f(x0).

First, we consider the estimation of F (x0) and g(x0). Although F (x0) can be

consistently estimated by F̂ (tl), it is usually better to estimate F (x0) by ρF̂ (tl) +

(1 − ρ)F̂ (tr) with ρ = (x0 − tl)/(tr − tl) ∈ [0, 1). To estimate g(x0), suppose the

design density g is constant within a small interval around x0, which is chosen to be

[tl−j? , tr+j? ], where j? is defined below in the estimation of f(x0). Then, from the

estimating equation (Nl−j?+1 + · · ·+Nr+j?)/n = g(x0)(tr+j? − tl−j?), one simple but

consistent estimator of g(x0) is given by ĝ(x0) = (Nl−j?+1 + · · · + Nr+j?)/[n(tr+j? −
tl−j?)].

Next, we consider the estimation of f(x0). In fact, we estimate f(tl) using a

local linear approximation. First, we identify a small interval around tl and then

approximate F over this interval by a line, whose slope gives the estimator of f(tl).

We determine the interval according to the following several requirements. First, the

sample proportion pn in the interval should be larger than the sample proportion

at each grid point, which is of order n−γ for γ ∈ (0, 1). For example, setting pn

be of order 1/ log(n) theoretically ensures a sufficiently large interval. Second, for

simplicity, we make the interval symmetric around tl. Third, in order to obtain

a positive estimate (since f(tl) is positive), we symmetrically enlarge the interval

satisfying the above two requirements until the values of F̂ at the two ends of the

interval become different. More specifically, we first find j?, which is the smallest

integer such that
∑l+j?

i=l−j? Ni/n ≥ 1/ log(n). Finally, we find i?, which is the smallest

integer larger than j? such that F̂ (tl−i?) < F̂ (tl+i?). After identifying the interval

[tl−i? , tl+i? ], we fit a line over this interval by weighted least squares. More specifically,

we compute

(β̂0, β̂1) = argmax
(β0,β1)∈R2

{
l+i?∑
i=l−i?

(
F̂ (ti)− β0 − β1ti

)2
Ni

}
,

and then estimate f(tl) (and f(x0)) by β̂1. Once these nuisance parameters have been

estimated, the practical adaptive procedure can be implemented.

To evaluate its finite sample performance in simulations, we also provide simulated

confidence intervals of an idealized adaptive procedure where the true values of the

parameters F (x0), g(x0) and f(x0) are used, but γ is still practically assumed to be

1/3 and c is taken as the previous ĉ. These confidence intervals can be considered as

the best Wald-type confidence intervals based on the adaptive procedure.
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The simulation settings are as follows: The sampling interval [a, b] is [0, 1]. The

design density g is uniform on [a, b]. The distribution of T is the uniform distribution

over [a, b] or the exponential distribution with λ = 1 or 2. The point of interest x0 is

0.5. The pair of two controlling parameters (γ, c) takes values (1/6, 1/6), (1/4, 1/4),

(1/3, 1/2), (1/2, 1), (2/3, 2) or (3/4, 3). The sample size n is from 100 to 1000 by 100.

When generating the quantiles of Xĉ(0), Ka is set to be 300 and the corresponding

iteration number 3000. We are interested in constructing 95% confidence intervals

for F (tl). The iteration number for each simulation is 3000.

Denote the simulated coverage rates and average lengths for the practical pro-

cedure as CR(P) and AL(P) and those for the theoretical procedure as CR(T) and

AL(T). Figure 2.2 contains the plots of CR(P), CR(T), AL(P) and AL(T) and Table

2.1 contains the corresponding numerical values for n being n1 = 100, n2 = 300 or

n3 = 500. The first plot of Figure 2.2 shows that both CR(T) and CR(P) are usually

close to the nominal level 95% from below and CR(T) are generally about 1% better

than CR(P). This reflects the price of not knowing the true values of the parameters

F (x0), g(x0) and f(x0) in the practical procedure. On the other hand, the second

plot of Figure 2.2 shows that the AL(P)s are usually slightly shorter than AL(T)s.

This indicates that the practical procedure is slightly more aggressive. As the sample

size increases, the coverage rates usually approach the nominal level and the average

lengths also become shorter, as expected.

The patterns noted above show up in more extensive simulation studies, not shown

here owing to constraints of space. Also, the adaptive procedure is seen to compete

well with the asymptotic approximations that one would use for constructing CIs

were γ known. Of course, for extreme values of γ (close to 0 or 1), the likelihood

ratio based confidence intervals using the relevant asymptotic approximations (i.e.

χ2
1 in the small γ and D in the large γ settings) in the known γ case systematically

outperform the adaptive ones and also enjoy the advantage of being constructed

without nuisance parameter estimation but that is hardly surprising since extreme

values of γ correspond to a ‘black and white’ situation, while moderate γ’s correspond

to the ‘grey’ area and pose greater challenges to estimation and it is here that the

adaptive procedure is most useful.
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Figure 2.2: A comparison of the coverage rates and average lengths of the practical
and theoretical procedures, where (ri,ci) for i = 1, · · · , 6 are (1/6, 1/6),
(1/4, 1/4), (1/3, 1/2), (1/2, 1), (2/3, 2) or (3/4, 3), respectively. The
sample size n varies from 100 to 1000 by 100.
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Table 2.1: A comparison of the coverage rates and average lengths of the practi-
cal procedure with those of the theoretical procedure, where U [0, 1] and
exp(λ) stand for the uniform distribution over [0, 1] and the exponential
distributions with the parameter λ, and n1, n2 and n3 are 100, 300, and
500, respectively.

Coverage Rates
CR(P) U [0, 1] exp(1) exp(2)
(γ, c) n1 n2 n3 n1 n2 n3 n1 n2 n3

(1/6, 1/6) .924 .941 .943 .929 .939 .939 .924 .944 .934
(1/4, 1/4) .914 .937 .943 .923 .934 .935 .923 .943 .941
(1/3, 1/2) .933 .930 .938 .934 .940 .938 .934 .936 .942
(1/2, 1) .920 .941 .947 .924 .935 .935 .928 .939 .947
(2/3, 2) .925 .943 .936 .921 .931 .931 .932 .941 .936
(3/4, 3) .928 .940 .941 .921 .922 .931 .930 .940 .940

CR(T) U [0, 1] exp(1) exp(2)
(γ, c) n1 n2 n3 n1 n2 n3 n1 n2 n3

(1/6, 1/6) .940 .947 .953 .940 .949 .946 .931 .941 .946
(1/4, 1/4) .929 .947 .949 .938 .945 .946 .932 .949 .943
(1/3, 1/2) .943 .940 .948 .941 .951 .946 .928 .939 .936
(1/2, 1) .940 .949 .946 .941 .944 .950 .939 .945 .950
(2/3, 2) .946 .950 .941 .941 .951 .947 .935 .957 .943
(3/4, 3) .939 .953 .947 .945 .948 .944 .930 .950 .946

Average Lengths
AL(P) U [0, 1] exp(1) exp(2)
(γ, c) n1 n2 n3 n1 n2 n3 n1 n2 n3

(1/6, 1/6) .417 .286 .239 .358 .246 .206 .380 .261 .216
(1/4, 1/4) .415 .287 .240 .356 .242 .204 .376 .258 .218
(1/3, 1/2) .409 .281 .236 .359 .243 .207 .381 .258 .219
(1/2, 1) .411 .287 .241 .350 .243 .201 .370 .258 .215
(2/3, 2) .411 .286 .241 .354 .239 .202 .379 .253 .216
(3/4, 3) .414 .287 .241 .352 .239 .202 .376 .250 .214

AL(T) U [0, 1] exp(1) exp(2)
(γ, c) n1 n2 n3 n1 n2 n3 n1 n2 n3

(1/6, 1/6) .426 .294 .247 .357 .247 .208 .377 .260 .219
(1/4, 1/4) .426 .295 .248 .357 .247 .208 .377 .261 .220
(1/3, 1/2) .422 .292 .246 .355 .246 .208 .374 .260 .219
(1/2, 1) .424 .295 .249 .356 .247 .209 .375 .261 .220
(2/3, 2) .424 .297 .251 .356 .248 .209 .375 .262 .221
(3/4, 3) .424 .297 .251 .356 .248 .209 .375 .262 .221
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2.7 Conclusions

In this paper, we have considered isotonic nonparametric estimation and hypoth-

esis testing for the survival function at a point in the current status model with i.i.d.

data. The design density for the covariate is assumed to be an equally spaced grid

distribution with the grid resolution being δ = cn−γ for c > 0 and γ > 0 and in-

corporates situations where there are systematic ties in the observation times of the

entities involved and the number of distinct observation times can increase with the

sample size.

The asymptotic properties of the isotonic regression estimator and the likeli-

hood ratio test statistic depend critically on the order of the grid resolution γ. For

γ ∈ (0, 1/3), the asymptotic distributions are normal and chi-squared, which are the

standard limit distributions in parametric problems with finite number of unknown

parameters; for γ ∈ (1/3,∞), the asymptotic distributions are Chernoff and the so-

called D, which are the standard limit distributions in isotonic regression problems

with continuous design densities. Thus, when γ ∈ (0, 1/3), the grid is so sparse that

the nonparametric problem is essentially reduced to a parametric one. On the other

hand, when γ ∈ (1/3,∞), the grid is dense enough that the observation time can be

viewed as an absolutely continuous random variable. For the most interesting bound-

ary case with γ = 1/3, the grid is, in some sense, neither too sparse nor too dense

and the asymptotic distributions are Sc and Mc, functionals of the unconstrained

and constrained GCMs of discrete time stochastic processes which depend on c, the

scaling parameter in the grid resolution.

The limit distributions Sc and Mc are different from those obtained in the other

two cases. However, as c goes to∞, Sc and Mc converge in distribution to the normal

and chi-squared distributions; as c goes to 0, Sc and Mc converge in distribution

to the Chernoff’s and D distributions. These weak convergence results allow the

approximation of the extreme distributions with the boundary ones, by adjusting the

value of the scaler c, and lead to an adaptive procedure for statistical inferences which

obviates the need to estimate or specify the order γ, and therefore provides a powerful

inferential tool. Note that while we have considered grid resolutions of the order n−γ,

the derivations in this paper are easily generalizable to arbitrary grid resolutions that

converge to 0 with n. So long as the resolution rn satisfies n−1/3 = o(rn), standard

asymptotics prevail while Chernoff-type asymptotics are obtained when rn = o(n−1/3).

However the class of grid resolutions of order n−γ for γ ∈ (0,∞) is rich enough that
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almost any setting with tied observation times can be viewed as coming from such a

scenario.

The results in this paper reveal some new directions for future research. As

touched upon in the introduction, some recent related work by Maathuis and Hudgens

(2010) deals with the estimation of competing risks current status data with discrete

(or grouped) observation times. A natural question of interest, then, is what happens

if the observation times in their paper are supported on grids of increasing size as

considered in this paper for simple current status data. Does γ = 1/3 also form the

boundary between normal and non-normal asymptotics as with the simpler current

status model? Can an adaptive procedure of similar vein be devised for current status

data with competing risks? One could also consider the problem of grouped current

status data (with and without the element of competing risks), where the observation

times are not exactly known but grouped into bins. Based on communications with

us and preliminary versions of this paper, Maathuis and Hudgens (2010) conjecture

that for grouped current status data without competing risks, one may expect findings

similar to those in this paper, depending on whether the number of groups increases

at rate n1/3 or at a faster/slower rate. Whether similar phenomena would arise for

grouped current status data with competing risks is again, unclear, though γ = 1/3

is certainly not an un-natural candidate for the transition from normality to non-

normality.

Viewed as a regression model, the current status model is a monotone binary

regression model and the results obtained here translate almost directly to results

on monotone binary regression. In fact, it is fairly clear that the adaptive inference

scheme proposed in this paper will apply to monotone regression models with discrete

covariates in general. In particular, the very general conditionally parametric response

models studied in Banerjee (2007) under the assumption of a continuous covariate

can be handled for the discrete covariate case as well by adapting the methods of this

paper and the adaptive procedure can be made to work similarly. Furthermore, similar

adaptive inference in more complex forms of interval censoring, like Case-2 censoring

or mixed-case censoring (see, for example, Sen and Banerjee (2006) and Schick and

Yu (2000)), should also be possible in situations where the multiple observation times

are discrete-valued. Finally, we conjecture that phenomena similar to those revealed

in this paper will appear in nonparametric regression problems with grid-supported

covariates under more complex shape constraints (ike convexity, for example), though
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the boundary value of γ as well as the nature of the non-standard limits will be

different and will depend on the ‘order’ of the shape constraint.

2.8 Appendix

In this appendix, we provide proofs of some of the technical results.

2.8.1 Supplementary proofs for Case One γ ∈ (0, 1/3)

First, we establish two useful lemmas.

Lemma 2.8.1. If γ ∈ (0, 1) and (A1.2) holds, for every η ∈ (0, 1), we have

P
(
∩Ki=1 {Ni ≥ ηml}

)
→ 1.

Proof. Denote the event of interest as An. Then, Acn = ∪Ki=1 {Ni < ηml} and it is

sufficient to show P (Acn)→ 0. Let t = − log(η) > 0, we have

P (Ni < ηml) =P(
n∑
j=1

{Xj = ti} < ηml) ≤ etηmlPe−t
∑n
j=1{Xj=ti}

≤etηml
[
1− (1− e−t)glδ

]n ≤ etηmle−(1−e
−t)glδn

≤eml(ηt−1+e−t) = eml(−η log(η)−1+η).

The third inequality above exploits the fact 1 − x ≤ e−x for x > 0. Note that

−η log(η)− 1 + η < 0 for every η ∈ (0, 1), K ∼ (b− a)c−1nγ and ml = glcn
1−γ. Then,

we have

P (Acn) ≤
K∑
i=1

P (Ni < ηml) ≤ Keml(−η log(η)−1+η) → 0,

which completes the proof.

Next, we introduce two related binary regression models which yield sufficient

statistics whose distributions are identical to the sufficient statistics in the current

status model. The first model is as follows. Suppose {ti}Ki=1 and X are defined as

before. Let {Xj}nj=1 be i.i.d. copies of X and Ni =
∑n

j=1{Xj = ti} for i = 1, 2, · · · , K.

Given {Ni}Ki=1, for each i draw an i.i.d. sample {Yij}Nij=1 from Bernoulli(1, Fi). Denote

Ȳi = N−1i
∑Ni

j=1 Yij, for each i. The second model is as follows. Suppose {ti}Ki=1, X,

{Xj}nj=1 and {Ni}Ki=1 are defined as before. Let {Y ′ij : 1 ≤ i ≤ K, 1 ≤ j ≤ n} be a
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family of mutually independent random variables, distributed independently of the

variables in the previous sentence, such that for each i, Y ′ij follows Bernoulli(1, Fi)

for 1 ≤ j ≤ n. Denote Ȳ ′i = N−1i
∑n

j=1 Y
′
ij{Xj = ti} for each i. Then, we have the

following equalities in distribution, which will be used in other proofs. Its proof can

be shown by straightforward comparing distributions and omitted here.

Lemma 2.8.2.
(
{Ni}, {Z̄i}

) d
=
(
{Ni}, {Ȳi}

) d
=
(
{Ni}, {Ȳ ′i }

)
Proof of Proposition 2.4.9. It suffices to show P

(
Ȳ1 ≤ Ȳ2 ≤ · · · ≤ ȲK

)
→ 1 by Lemma

2.8.2, which is equivalent to show P
(
∪K−1i=1

{
Ȳi > Ȳi+1

})
→ 0. Denote this probability

as T . We then have T = T1 + T2, where

T1 = P
(
∪K−1i=1

{
Ȳi > Ȳi+1

}
,∩Ki=1 {Ni ≥ ηml}

)
, with η > 0

and T2 = T − T1. Since, by Lemma 2.8.1, T2 ≤ P
(
∪Ki=1 {Ni < ηml}

)
→ 0, it remains

to show T1 → 0.

On one hand, we have T1 ≤
∑K−1

i=1

∑
A

SiP (Ni = ni, i = 1, 2, · · · , K) , where

Si = P

(
1

ni

ni∑
j=1

Yij >
1

ni+1

ni+1∑
j=1

Y(i+1)j

)

and A = {(n1, n2, · · · , nK) ∈ NK :
∑K

i=1 ni = n, ni ≥ ηml for i = 1, 2 · · · , K}. On

the other hand, we will show that, for each i = 1, · · · , K − 1,

Si ≤ 2 exp

{
−ηf

2
l

16
δ2ml

}
. (2.30)

Then, the result follows by noticing that δ2ml ∼ c3gln
1−3γ →∞ for γ ∈ (0, 1/3).

Next, we show (2.30). Denote Zij = Yij − Fi, Z ′ij = −Zij for i = 1, · · · , K and

j = 1, · · · , Ni and ∆i = Fi+1 − Fi for i = 1, · · · , K − 1. Then we have

Si ≤P

(
1

ni

ni∑
j=1

Zij >
∆i

2

)
+ P

(
1

ni+1

ni+1∑
j=1

Z ′(i+1)j >
∆i

2

)
=: Si1 + Si2.

In a similar way, it can be shown that both Si1 and Si2 are less than or equal to

exp {−ηf 2
l δ

2ml/16}. Next, we only show the inequality on Si1.
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For every t > 0, we have

Si1 ≤ e−
∆i
2
nit(PetZi1)ni ≤ exp {−φ(t)ni} ,

where φ(t) = t(Fi + Fi+1)/2 − Fi(et − 1). Note that the maximizer of φ(t) is t?i =

log((Fi + Fi+1)/2Fi) > 0 and that the maximum of φ is

φ(t?i ) =
Fi + Fi+1

2
log

Fi + Fi+1

2Fi
− Fi+1 − Fi

2
.

Thus, we have Si1 ≤ exp {−φ(t?i )ni} . For x ∈ [t1, tK−1], define

h(x) =
F (x) + F (x+ δ)

2
log

F (x) + F (x+ δ)

2F (x)
− F (x+ δ)− F (x)

2
.

Then, we have φ(t?) ≥ infx∈[t1,tK−1] h(x). Since ni ≥ ηml, it is sufficient to show

inf
x∈[t1,tK−1]

h(x) ≥ (flδ)
2/16. (2.31)

By the assumption (A1.1), there exists ξ ∈ (x, x + δ) such that F (x + δ) =

F (x) + f(ξ)δ. Then, we have

h(x) =

(
F (x) +

f(ξ)

2
δ

)
log

(
1 +

f(ξ)

2F (x)
δ

)
− f(ξ)

2
δ

=

(
F (x) +

f(ξ)

2
δ

)(
f(ξ)

2F (x)
δ − 1

2(1 + ζ)2
f(ξ)2

4F (x)2
δ2
)
− f(ξ)

2
δ

=
f 2(ξ)

4F (x)
δ2 − 1

(1 + ζ)2
f 2(ξ)

8F (x)
δ2 − 1

(1 + ζ)2
f 3(ξ)

16F 2(x)
δ3

≥ f 2(ξ)

4F (x)
δ2 − f 2(ξ)

8F (x)
δ2 − f 3(ξ)

16F 2(x)
δ3 ≥ f 2(ξ)

16F (x)
δ2 ≥ f 2

l

16
δ2,

where the Taylor’s expansion of log(1 + x) around 0 is utilized in the second equality

and ζ ∈ (0, f(ξ)δ/(2F (x))); the assumptions (A1.1) and (A1.3) and F (x) ≤ 1 are

exploited for the last two inequalities.

Proof of Proposition 2.4.10. The proof follows very similar lines as that of Proposi-

tion 2.4.9 and is therefore skipped.

Proof of Proposition 2.4.11. By Proposition 2.8.2, it suffices to show the results with

Ȳ ′l and Ȳ ′r replacing Z̄l and Z̄r. We have Ȳ ′l −Fl = T1/T2, where T1 = n−1
∑n

j=1 p
−1
l 1(Xj =
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tl)(Y
′
lj − Fl) and T2 = n−1

∑n
j=1 p

−1
l 1(Xj = tl). By Chebyshev’s Inequality, it is easy

to check that T1 and T2 converge to 0 and 1 in probability, respectively. Then Z̄l−Fl
converges to 0 in probability by Slutsky’s Lemma. Similarly, Z̄r − Fr converges to 0

in probability.

Next, we show weak convergence. Denote Znj = (Znjl, Znjr), where

Znjl = p
−1/2
l 1(Xj = tl)(Y

′
lj − Fl)/

√
Fl(1− Fl),

Znjr = p−1/2r 1(Xj = tr)(Y
′
rj − Fr)/

√
Fr(1− Fr),

for j = 1, 2, · · · , n. Then {Znj} are independent and identically distributed. It

is easy to check that the means of Znjl and Znjr are 0, the variances are 1 and

the covariance is 0. Then, by a triangular array version of multivariate central

limit theorem (see Proposition 2.27 in van der Vaart (1998)), in order to show

n−1/2
∑n

i=1 Znj
d→ N(0, I2), it is sufficient to check the Lindeberg condition: for each

ε > 0,
n∑
j=1

E||n−1/2Znj||2{||n−1/2Znj|| > ε} → 0.

Since

n∑
j=1

E||n−1/2Znj||2{||n−1/2Znj|| > ε} ≤ 1

nε2
E||Zn1||4 =

1

nε2
E[Z4

n1l + Z4
n1r],

E[Z4
n1l] =

[F 3
l + (1− Fl)3]
plFl(1− Fl)

≤ 4

glδF (x0)(1− F (x0))
,

and similar inequality holds for E[Z4
n1r], we have

n∑
j=1

E||n−1/2Znj||2{||n−1/2Znj|| > ε} ≤ 8

ε2glF (x0)(1− F (x0))
· 1

cn1−γ → 0.

Thus, the Lindeberg condition holds.

Denote Tn = (Tnl, Tnr), where Tnl = N
1/2
l (Ȳ ′l −Fl) and Tnr = N

1/2
r (Ȳ ′r−Fr). Then,

we have Tn = β(x0)n
−1/2∑n

i=1 Znj +Rn, where

Rn =

(
(ηnl − β(x0))

1√
n

n∑
i=1

Znjl, (αnr − β(x0))
1√
n

n∑
i=1

Znjr

)
,

β(x0) =
√
F (x0)(1− F (x0)), αnl = [Fl(1− Fl)]1/2/[Nl/(npl)]

1/2,
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and αnr is similarly defined. Then, by Slutsky’s Lemma, it suffices to show both

αnl − β(x0) and αnr − β(x0) converge to 0 in probability. Here we only show the

former and the latter can be shown in a similar manner. From the continuity of F at

x0, [Fl(1 − Fl)]1/2 → β(x0). Notice that Nl/(npl) is exactly T2 and Nl/(npl) → 1 in

probability. This completes the proof.

Proof of Lemma 2.4.6. By the definition of F̃ (x0), we have

F̃ (x0)− F (x0) =
tr − x0
tr − tl

(F ?
l − Fl) +

x0 − tl
tr − tl

(F ?
r − Fr)

+
tr − x0
tr − tl

(Fl − F (x0)) +
x0 − tl
tr − tl

(Fr − F (x0)).

By Lemma 2.4.1, both F ?
l − Fl and F ?

r − Fr converge to 0 in probability. For the

continuity of f at x0, both Fl − F (x0) and Fr − F (x0) converge to 0. Note that the

absolute values of the coefficients are less than 1. Therefore, F̃ (x0)−F (x0) converges

to 0 in probability.

Proof of Theorem 2.4.7. Denote p̃n = pn/(p
2
n + q2n)1/2, q̃n = pn/(p

2
n + q2n)1/2, αl =

[plFl(1−Fl)]1/2, αr = [prFr(1−Fr)]1/2, ξlj = q̃n(Ylj −Fl){Xj = tl}/αl, ξrj = p̃n(Yrj −
Fr){Xj = tr}/αr. Then, we have

1√
p2n + q2n

(F̃ (x0)− F (x0)) = [αl
n1/2

Nl

T1 + (Rn1 +Rn2)]An + ĨAcn +
1√

p2n + q2n
II,

where Ĩ = q̃n(F ?
l −Fl)+ p̃n(F ?

r −Fr), II = qnFl+pnFr−F (x0), T1 = n−1/2
∑n

j=1(ξlj +

ξrj), Rn1 = (αr − αl)N−1r
∑n

j=1 ξlj and Rn2 = αl(N
−1
r − N−1l )

∑n
j=1 ξrj. When γ ∈

(0, 1/3) and (A1) hold, by regular argument, T1 converges to N(0, 1) in distribution;

n(1−γ)/2αln
1/2/Nl and n(1−γ)/2(Rn1 +Rn2) converge to [F (x0)(1− F (x0))/(cg(x0))]

1/2

and 0 in probability, respectively.

Since f ′′ is bounded in a neighborhood of x0, we have

Fl = F (x0) + f(x0)(tl − x0) +
1

2
f ′(x0)(tl − x0)2 + o((tl − x0)2),

Fr = F (x0) + f(x0)(tr − x0) +
1

2
f ′(x0)(tr − x0)2 + o((tr − x0)2).
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Denote T2 = (p2n + q2n)−1/2n(1−γ)/2II. Then,

T2 =
1

2
√
p2n + q2n

f ′(x0)n
(1−γ)/2(tr − x0)(x0 − tl)

+ o(qnn
(1−γ)/2(tl − x0)2 ∨ pnn(1−γ)/2(tr − x0)2).

Thus, for γ ∈ (1/5, 1/3), we have T2 → 0; for γ = 1/5 and pn converging to some

p ∈ (0, 1), we have T2 → (1/2)pq(p2n + q2n)−1/2c2f ′(x0); Further, for γ ∈ (0, 1/5)

and f ′(x0) 6= 0, we have T2 → Sign(f ′(x0))∞. Finally, noticing that both npl/Nl

and npr/Nr converge to 1 in probability and that both pl and pr are asymptotically

equivalent to g(x0)cn
−γ completes the proof.

2.8.2 Proofs for Case Three γ = 1/3

In what follows we will denote the distribution of the vector (X1n, Y1n) by P
(suppressing the dependence on n) and Pn will denote the empirical measure of the

sample, i.e. n i.i.d. observations drawn from P.

Lemma 2.8.3. Fact 1 in the proof of Lemma 2.4.22 holds.

Proof. For β = 0, Fact 1 holds obviously. Next, fix a small interval N0 about 0 such

that f, g, f ′, g′ are all uniformly bounded in this neighborhood. Let ε > 0. Consider

β > 0, β ∈ N0. We have

Pgn1(x, y; β) = PXPY |X (Y − F (tl−M)) {tl−M < X ≤ tl−M + β}

=

bβ/δc∑
j=1

(F (tl−M+j)− F (tl−M)) (G(tl−M+j)−G(tl−M+j−1))

= δ2
bβ/δc∑
j=1

jf(t1?l−M+j)g(t2?l−M+j) = T1 + T2

where the mean value theorem is applied twice at the third equality, t1?l−M+j lies in

[tl−M , tl−M+j], t
2?
l−M+j lies in [tl−M+j−1, tl−M+j], T1 = δ2

∑bβ/δc
j=1 jf(x0)g(x0) and T2 =

δ2
∑bβ/δc

j=1 j
[
f(t1?l−M+j)g(t2?l−M+j)− f(x0)g(x0)

]
. We will show that for β sufficiently

small (depending on ε) both |T1 − (1/2)f(x0)g(x0)β
2| and |T2| are dominated by

εβ2 + O(n−2/3) when n is sufficiently large (depending on ε), where the O(n−2/3)

terms can again depend on ε. Then the result follows, as ε is arbitrary.

First consider T1. We have T1 − (1/2)f(x0)g(x0)β
2 = (1/2)f(x0)g(x0)T11 where
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T11 = δ2bβ/δc(1 + bβ/δc)− β2. Since bxc ∈ (x− 1, x] for x ∈ R, simple algebra gives

|T11| ≤ βδ and consequently

|T1 − (1/2)f(x0)g(x0)β
2| ≤ (f(x0)g(x0)/2)βδ ≤ εβ2 + δ̃2/ε = εβ2 +O(n−2/3) ,

where δ̃ = (f(x0)g(x0)/2) δ and we use the fact that δ = c n−1/3 to get the last

expression in the above display. Note that the O(n−2/3) term depends on ε.

Next consider T2. We have |T2| ≤ T21 + T22, where

T21 = δ2
bβ/δc∑
j=1

j|f(t1?l−M+j)− f(x0)|g(t2?l−M+j),

T22 = δ2
bβ/δc∑
j=1

j|g(t2?l−M+j)− g(x0)|f(x0).

Here we only show T21 ≤ εβ2 + O(n−2/3) and T22 ≤ εβ2 + O(n−2/3) can be shown

similarly. We have

T21 . δ2
bβ/δc∑
j=1

j|f(t1?l−M+j)− f(x0)| = δ2
bβ/δc∑
j=1

j|f ′(t1??l−M+j)||t1?l−M+j − x0|

. δ2
bβ/δc∑
j=1

j|t1?l−M+j − x0| . δ2
bβ/δc∑
j=1

jbβ/δcδ + δ2
bβ/δc∑
j=1

j(M + 1)δ.

Denote the above last two terms as T211 and T212. The mean value theorem is applied

at the second step and t1??l−M+j lies between t1?l−M+j and x0. In the first and third

steps, the assumption that g and f ′ are bounded around x0 is utilized. Denote

the constant associated with the . by K̃. Then T21 ≤ T211 + T212 with T211 ≤
K̃δ3bβ/δc2(1 + bβ/δc) ≤ K̃δ3(β/δ)2(β/δ + 1) = K̃ β3 + K̃β2δ ≤ εβ2 , by choosing

β < ε/K̃ and n sufficiently large (depending on ε), and T212 ≤ K̃δ3bβ/δc(1+bβ/δc) ≤
K̃β2δ + K̃βδ2 ≤ εβ2 +O(n−2/3) , again for n sufficiently large (depending only on ε).

Thus, T21 ≤ εβ2 +O(n−2/3), which completes the proof.

Lemma 2.8.4. Fact 2 in the proof of Lemma 2.4.22 holds.

Proof. For β = 0, Fact 2 holds obviously. Next, suppose β > 0 and is restricted to

the neighborhood N0 from the proof of the previous lemma. The case β < 0 can be
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handled in the same way. We have

Pgn2(x; β) = P {tl−M < X ≤ tl−M + β} =

bβ/δc∑
j=1

(G(tl−M+j)−G(tl−M+j−1))

=

bβ/δc∑
j=1

g(x0)δ +

bβ/δc∑
j=1

(
g(t?l−M+j)− g(x0)

)
δ,

where the mean value theorem is applied at the last step and t?l−M+j lies between

[tl−M+j−1 and tl−M+j]. Denote the above last two terms as T1 and T2.

We have |T1 − g(x0)β| ≤ g(x0)|δbβ/δc − β| ≤ g(x0)δ = O(n−1/3). Next, consider

T2. Similar to the argument involving T21 in the proof of Lemma 2.8.3, for a constant

K ′ depending only on N0, we have: we have

|T2| ≤ K ′δ

bβ/δc∑
j=1

|t?l−M+j − x0| ≤ K ′δ

bβ/δc∑
j=1

jδ +K ′δ

bβ/δc∑
j=1

(M + 1)δ.

Denote the above last two terms as S1 and S2. We have S1 ≤ K ′δ2bβ/δc(1+bβ/δc) ≤
K ′β2 + K ′βδ ≤ K ′β2 + O(n−1/3) and S2 ≤ K ′δ2bβ/δc ≤ K ′βδ ≤ O(n−1/3). Thus,

T2 ≤ K ′β2 +O(n−1/3) and Fact 2 now follows.

The proof of the next lemma follows the lines of the proof of Lemma 4.1 in Kim

and Pollard (1990).

Lemma 2.8.5. Fact 3 in the proof of Lemma 2.4.22 holds.

Proof. Denote R0 > 0 as a small constant. Let, for each m > 0,

Mn = sup
|β|≤R0

n2/3
(
|(Pn − P) gn1(x, y; β)| − εβ2

)
,

E =
{
∃β ∈ [±R0] s.t. |(Pn − P) gn1(x, y; β)| > εβ2 + n−2/3m2

}
,

An,j =
{
|β| ≤ R0 : (j − 1)n−1/3 ≤ |β| ≤ jn−1/3

}
,

Bj =
{
∃β ∈ An,j s.t. n2/3 |(Pn − P) gn1(x, y; β)| > ε(j − 1)2 +m2

}
.

Then, we have P (Mn > m) ≤ PE ≤
∑∞

j=1 PBj. By Chebyshev’s Inequality,

PBj ≤ n4/3P sup
|β|<jn−1/3

|(Pn − P) gn1(x, y; β)|2 /
[
ε(j − 1)2 +m2

]2
.

Denote Gn1(R) = {gn1(x, y; β) : |β| ≤ R} for 0 < R ≤ R0. Then one envelope
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function is Fn1(x, y;R) = {x ∈ [tl−M ±R]} by noticing |y − F (tl−M)| ≤ 1. Straight

forward calculation gives PF 2
n1(R) ≤ C1R for n large enough, where C1 can be any

constant greater than 2g(x0), say 3g(x0). Note that, for every R ∈ (0, R0], Gn1(R) is

a bounded VC-class of functions with VC-dimension bounded by a constant (inde-

pendent of n). It follows readily that J(1,Gn1(R)) is finite and uniformly bounded in

n (see Page 239 of van der Vaart and Wellner (1996)). Theorem 2.14.1 of van der

Vaart and Wellner (1996) with F taken to be Gn1(jn−1/3) and p = 2 now yields that

for some constant C2 and C = C1C2

P sup
|β|<jn−1/3

|(Pn − P) gn1(x, y; β)|2 ≤ n−1C2PF 2
n1(jn

−1/3) ≤ Cjn−4/3.

Thus, we have P (Mn > m) ≤
∑∞

j=1 PBj ≤
∑∞

j=1Cj/ [ε(j − 1)2 +m2]
2
. The last term

converges for each m > 0 and goes to 0 as m → ∞ by the Dominated Convergence

Theorem. Therefore Mn = OP (1), which completes the proof.

Lemma 2.8.6. Fact 4 in the proof of Lemma 2.4.22 holds.

Proof. The proof is the same to that of Lemma 2.8.5 except changing subscripts n1

to n2. Note that the same envelope function is used.

Lemma 2.8.7. Claim 2 in the proof of Theorem 2.4.17 holds.

Proof. Without loss of generality, here we only prove for the first equality. Denote

K(i) = GCM{Pc(k), k ∈ Z}(ci) for i ∈ Z. Let L and U be the largest integer less

than −M and the smallest integer larger than M such that K change slopes at cL

and cU . Then, the first equality holds. Thus, it is sufficient to show both L and U

are OP (1). We show the latter and the former can be shown in the same way.

Denote Aj = {K(M) + X(M)(j −M) = P2,c(j)} for j ≥M . Then,

{U = +∞} ⊂ {Aj, i.o. for j ≥M} =: B.

On the other hand, we have

B ⊂
{

lim sup
t→+∞

αW (t) + βt(c+ t)

t
= +∞

}c
=: Dc.

From P (limt→+∞W (t)/t = 0) = 1, the law of large number for a standard Brownian

motion, we have P(D) = 1 by noticing β > 0. Therefore, P(U = +∞) = 0, which
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completes the proof.

Lemma 2.8.8. The convergence in probability (2.25) in the proof of Lemma 2.4.23

holds.

The proof is fairly straightforward and therefore skipped.

Lemma 2.8.9. The weak convergence (2.26) in the proof of Lemma 2.4.23 holds.

Proof. It suffices to show that for each integer C > 0,

{V ?
n (ck), k ∈ [−C,C]} d→ {P2,c, k ∈ [−C,C]} .

We have V ?
n (ck) = T1(ck) + T2(ck) for k ∈ [−C,C], where

T1(ck) = g(x0)
−1n2/3(Pn − P)(y − F (tl))

({
x ≤ tl + kcn−1/3

}
− {x ≤ tl}

)
,

T2(ck) = g(x0)
−1n2/3P(y − F (tl)

({
x ≤ tl + kcn−1/3

}
− {x ≤ tl}

)
.

Then it is sufficient to show

{T1(ck), k ∈ [−C,C]} d→ {αW (ck), k ∈ [−C,C]} ,

{T2(ck), k ∈ [−C,C]} →
{
βc2k(1 + k), k ∈ [−C,C]

}
.

It is easy to show that T2(ck) → βc2k(1 + k) uniformly for for k ∈ [±C].

We, therefore, consider T1. Set ξi,n = (ξi,n,−C , · · · , ξi,n,0, · · · , ξi,n,C) with ξi,n,k =

g(x0)
−1n−1/3(Yi,n−F (tl))

(
{Xi,n ≤ tl + kcn−1/3} − {Xi,n ≤ tl}

)
for each i ∈ [1, n] and

k ∈ [±C]. Then {T1(ck), k ∈ [−C,C]} =
∑n

i=1(ξi,n− Pξi,n). Note that {ξi,n} is a row

independent triangular array and each element is a 2C + 1 dimensional vector. By

the triangular version of the central limit theorem (see, for example, Proposition 2.27

of van der Vaart (1998)), it is sufficient to show that ξi,n has a finite variance for each

i,
∑n

i=1 P||ξi,n||2{||ξi,n|| > ε} → 0 for each ε > 0, and
∑n

i=1Cov(ξi,n) converges to the

covariance matrix of {αW (ck), k ∈ [±C]}. Since Pξ2i,n,k ≤ g(x0)
−2n−2/3 ≤ g(x0)

−2

by noting both Yi,n and F (tl) are bounded by 1, we know ξi,n has finite variance.
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Further, we have

n∑
i=1

P||ξi,n||2{||ξi,n|| > ε} ≤ 1

ε2

n∑
i=1

P||ξi,n||4

=
1

ε2

n∑
i=1

P

(
C∑

k=−C

ξ2i,n,k

)2

≤ 1

ε2g(x0)4
(2C + 1)2n−1/3 → 0.

That
∑n

i=1Cov(ξi,n,k1 , ξi,n,k2) converges to Cov(αW (ck1, ck2)) for k1, k2 ∈ [±C] follows

by direct calculation. This completes the proof.

Remark 2.8.10. In the proofs of Lemma 2.8.8 and Lemma 2.8.9 we exploit the fact

that, for the boundary case with γ = 1/3, we only need to consider finite dimensional

random vectors {G?
n(ck), k ∈ [±C]} and {V ?

n (ck), k ∈ [±C]} for every integer C > 0.

However, for the case with γ ∈ (1/3, 1), the dimension goes to∞ as n goes to∞. Then

the usual Chebyshev’s inequality and the central limit theorem for a triangular array

of random vectors will not work and more powerful tools from empirical processes

need to be used.

Lemma 2.8.11. In the proof of Theorem 2.4.20, Sn  S holds.

Proof. The same truncation technique illustrated in the proof of Theorem 2.4.17 is

utilized here again. More specifically, We will show that, in the following Lemmas

2.8.12 and 2.8.13, the following two claims hold:

Claim 1: Both (nonnegative) Ln and Un are OP (1).

Claim 2: Both (nonnegative) L and U are OP (1).

Then, for each small ε > 0, there exists (integer) Mε large enough such that

P (Mε > max{Ln, Un, L, U}) > 1− ε. Denote

SMε
n =

∑
j∈[±Mε]

(
X2
n(cj)− Y2

n(cj)
)
, SMε =

∑
j∈[±Mε]

(
X2(cj)− Y2(cj)

)
.

Then, we will show the following facts:

Fact 1: limε→0 limn→∞P
(
SMε
n 6= Sn

)
= 0.

Fact 2: limε→0 P
(
SMε 6= S

)
= 0.

Fact 3: SMε
n  SMε , as n→∞ for each ε > 0.
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Fact 1 and Fact 2 hold since that {Mε > max {|Ln|, Un, |L|, U}} is a subset of both{
SMε
n = Sn

}
and

{
SMε = S

}
. By Theorem 2.4.17 and the Continuous Mapping The-

orem, Fact 3 follows. Therefore, by Lemma 2.4.18, we have Sn  S.

Lemma 2.8.12. Claim 1 in Lemma 2.8.11 holds.

Proof. Let −cL′n be the smallest grid point less than 0 such that Xn(−cL′n) is equal

to Xn(0) and cR′n the largest grid point larger than or equal to 0 such that Xn(cR′n) is

equal to Xn(0). Let −cL′′n be the smallest grid point less than 0 such that Xn(−cL′′n) >

0 and cR′′n the largest grid point greater than 0 such that Xn(cR′′n) < 0. If there does

not exist such a grid point −cL′′n or cR′′n, let L′′n or R′′n be any nonnegative integer,

say 0. Note that L′n, R
′
n, L

′′
n and R′′n are all nonnegative.

Then, Xn and Yn differ at most over [−cL′n−cL′′n, cR′n+cR′′n]. From the relationship

between Xn and F̂ and that between Yn and F̂ o, it is clear that [−Ln, Rn] is contained

in [−L′n − L′′n, R′n + R′′n]. Thus, it suffices to show L′n + L′′n = OP (1) and R′n + R′′n =

OP (1).

From the proof of Lemma 2.4.22, we have already shown L′n and R′n are OP (1),

just by letting M there be 0. Thus, it remains to show L′′n and R′′n are OP (1). We

next show the former and the latter can be derived in the same way.

For each integer M > 0, by Theorem 2.4.17,

lim sup
n→∞

P (L′′n > M) ≤ lim sup
n→∞

P (Xn(−cM) > 0) = P (X(−cM) > 0) .

On the other hand, we will show limM→∞ P (X(−cM) > 0) = 0 in the proof of the

next Lemma 2.8.13. Therefore, L′′n is OP (1), which completes the proof.

Lemma 2.8.13. Claim 2 in Lemma 2.8.11 holds.

Proof. Define L′, R′, L′′ and R′′ similar to those L′n, R
′
n, L

′′
n and R′′n in the proof of

Lemma 2.8.12. More specifically, let −cL′ be the smallest grid point less than 0 such

that X(−cL′) is equal to X(0) and cR′ the largest grid point larger than or equal to

0 such that X(−cR′) is equal to X(0). Let −cL′′ be the smallest grid point less than

0 such that X(−cL′′) > 0 and cR′′ the largest grid point greater than 0 such that

X(cR′′) < 0. If there doest not exist such a grid point −cL′′ or cR′′, let L′′ or R′′ be

any nonnegative integer, say 0. Note that L′, R′, L′′ and R′′ are nonnegative.

Then, X and Y differ at most over [−cL′ − cL′′, cR′ + cR′′]. Since that [−L,R] is

in [−L′ − L′′, R′ +R′′], it suffices to show L′ + L′′ = OP (1) and R′ +R′′ = OP (1).
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From the proof of Lemma 2.8.7, we have already known L′ and R′ are OP (1), just

by letting M there be 0. Thus, it remains to show L′′ and R′′ are OP (1). We next

show the former, and the latter can be done in the same way.

For each integer M > 0, we have

P
(
L
′′
> M

)
≤ P

(
∞⋃

m=M

{
P2,c(−m)

−cm
> 0

})
.

On the other hand, we have

P
{

lim sup
t→−∞

αW (t) + βt(c+ t)

t
= −∞

}
= 1,

which gives

P
{

lim sup
t→−∞

αW (t) + βt(c+ t)

t
> 0

}
= 0.

Thus, we have

lim
M→∞

P

(
∞⋃

m=M

{
P2,c(−m)

−cm
> 0

})
= P

(
lim sup
m→∞

P2,c(−m)

−cm
> 0

)
= 0,

Therefore, L′′ is OP (1).

Lemma 2.8.14. In the proof of Theorem 2.4.20, the remainder terms R1, R2 and R3

are all oP (1) holds.

Proof. We will only show R1 = oP (1) and R2 = oP (1) can be established in the same

way. Recall that

R1 = −1

2

(
1

F 2
l

− 1

(1− Fl)2

)∑
i∈Jn

(
F̂ (Xi)− Fl

)3
+

1

3

∑
i∈Jn

(
Yi
F ?3
li

− 1− Yi
(1− F ??

li )3

)(
F̂ (Xi)− Fl

)3
.

First, we have

n1/3
∑
i∈Jn

∣∣∣F̂ (Xi)− Fl
∣∣∣3 =

∑
j∈[Ln,Un]

|Xn(cj)|3Wj  c
∑

j∈[L,U ]

|X(cj)|3 ,

where the weak convergence holds by the same argument as in Lemma 2.8.11.
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Second, it is easy to see that there exists C > 0 such that 1/F 2
l + 1/(1−Fl)2 < C

for large n. For example, take C = 2/F (x0)
2 + 2/(1− F (x0))

2.

Third, recall that F ?
li and F ??

li lie between Fl and F̂ (Xi) for i ∈ Jn. Note that Xi

with i ∈ Jn can only be tj for some j ∈ Dn. That is, for each i ∈ Jn, there exists

j ∈ Dn such that F̂ (Xi) = F̂ (tj). On the other hand, note Ln and Un are OP (1).

Then, with arbitrary high probability Dn ⊂ [±M ] for M large enough. Since F̂ (tj)

converges to F (x0) in probability for each fixed j and Fl always converges to F (x0),

both F ?
li and F ??

li converge to F (x0) in probability for i ∈ [±M ] with a fixed M .

Thus, we have supi∈Jn(1/F ?3
li + 1/(1−F ??

li )3) converges to 1/F (x0)
3 + 1/(1−F (x0))

3

in probability.

Therefore, using the triangular inequality for absolute value, combining the above

three results and using Slutsky’s Lemma gives R1 = oP (1).

Next, consider R3. We have: R3 = g(x0)(Fl(1− Fl))−1Tn, where

Tn =
∑

j∈[−Ln,Un]

(
X2
n(cj)− Y2

n(cj)
)

[(G?
n(c(j))−G?

n(c(j − 1)))− c] .

Then |Tn| ≤ Snξn by noticing that X2
n(cj) ≥ Y2

n(cj) for each j, where

ξn = sup
j∈[−Ln,Un]

|(G?
n(c(j))−G?

n(c(j − 1)))− c| .

By Lemma 2.8.11, Sn converges weakly. Thus, it suffices to show the nonnegative

quantity ξn = oP (1). Denote Dn = {[−Ln, Un] ⊂ [±C]} for C > 0. By Lemma 2.8.12,

the probability of Dn can be made arbitrarily close to 1 as C becomes large enough.

Then, it suffices to show ξnDn = oP (1). We have

ξnDn ≤ sup
j∈[±C]

|G?
n(cj)− cj|+ sup

j∈[±C]

|G?
n(c(j − 1))− c(j − 1)|

≤ 2 sup
j∈[±(C+1)]

|G?
n(cj)− cj| .

The last term converges to 0 in probability by Lemma 2.8.8, which completes the

proof.
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CHAPTER III

A Two-Stage Hybrid Procedure for Estimating an

Inverse Regression Function

3.1 Introduction

The problem of estimating an inverse regression function has a long history in

Statistics, due to its importance in diverse areas including toxicology, drug devel-

opment and engineering. The canonical formulation of the problem is as follows.

Let

Y = f(x) + ε,

where f is a monotone function establishing the relationship between the design

variable x and the response Y , and ε an error term with zero mean and finite variance

σ2. Further, without loss of generality it is assumed that f is isotonic and x ∈ [0, 1].

It is of interest to estimate d0 = f−1(θ0) for some θ0 in the interior of the range of f ,

given f ′(d0) > 0.

Depending on the nature of the problem, one usually first obtains an estimate of f

and subsequently of d0, either from observational data or from design studies Morgan

(1992). In the latter case, one specifies a number of values for the design variable,

and obtains the corresponding responses, which are then used to get the estimates.

Motivated by an engineering application, fully described in Section 3.5, we in-

troduce a two-stage design for estimating d0. Specifically, we consider a complex

queueing system operating in discrete time under a throughput (average number of

customers processed per unit of time) maximizing resource allocation policy (for de-

tails see Bambos and Michailidis (2004)). Unfortunately the customers’ average delay,

which is an important “quality-of-service” metric of the performance of the system,
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is not analytically tractable and can only be obtained via expensive simulations. The

average delay as a function of the system’s loading (number of customers arriving

per unit of time) is depicted in Figure 3.1. The relationship between system loading

and average delay can not be easily captured by a simple parametric model; hence, a

nonparametric estimator might be more useful. In addition, given that the responses

are obtained through simulation, only a relatively small number of simulation runs

can be performed. It is of great interest for the system’s operator to obtain accurate

estimates of the loading corresponding to prespecified delay thresholds (e.g. 10 and

15 time units), so as to be able to decide whether to upgrade the available resources.

0.2 0.4 0.6 0.8

10
20

30
40

One Stage Data

loading

de
la

y

Figure 3.1: The average delay as a function of system’s loading.

The main idea of the proposed two-stage approach is summarized next: at stage

one, an initial set of design points and their corresponding responses are generated.

Then a first-stage nonparametric estimate of f is obtained and subsequently a first-

stage estimate of d0. Next, a second-stage sampling interval covering d0 with high

probability is specified and all new design points are laid down at the two boundary

points of this interval and their responses obtained. Finally, a linear regression model

is fitted to the second-stage data by least squares and a second-stage estimate of d0

computed as the inverse of the locally approximating line of f at θ0. As we will see,

the employment of a local linear approximation at stage two allows the second-stage

estimate of d0 to attain a
√
n parametric rate of convergence, despite the nonpara-

metric nature of the problem. To overcome estimation of several tuning parameters
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required by the second-stage estimate, a bootstrapped variant is introduced and its

consistency properties established. To clinch the asymptotic results of the proposed

two-stage estimate and its bootstrapped counterpart, a number of subtle technical

issues need to be addressed and these are resolved in subsequent sections. Before

proceeding further, it is important to draw attention to the fact that our proposed

two-stage method relies critically on the reproducibility of the experiment: i.e. at

any stage, it is possible to sample responses from any pre-specified covariate value.

While reproducibility in this sense is guaranteed for our motivating application, the

two-stage procedure above is not applicable in the absence of adequate degree of con-

trol on the covariate. For example, if the covariate is time, the implementation of a

two-stage procedure would require one to go back and sample from the past, which

is impossible.

Isotonic regression is a conceptually natural and computationally efficient esti-

mation method for shape-restricted problems Barlow et al. (1972); Robertson et al.

(1988). In the framework of regression, the asymptotic distribution for the isotonic

regression estimator at a fixed point was first derived in Brunk (1970), and then ex-

tended in Wright (1981) and Leurgans (1982). The asymptotic distribution for the

L1-distance between the isotonic estimator and the regression function was obtained

in Durot (2002), paralleling Groeneboom et al. (1999) on a unimodal density, and then

extended in Durot (2007, 2008). Banerjee and Wellner (2005) derive the asymptotic

distribution for the inverse of the distribution function of the survival time at a given

point in the current status model; the regression version of this result will be used to

derive the asymptotics for the two stage procedures.

The inverse regression problem has been extensively studied in the context of

different applications. For example, in statistical calibration, the goal is to estimate

a scalar quantity d0 from a model Z = f(d0) + ε, with Z observed. The information

about the underlying function f comes from experimental data {Yi, Xi} that follow the

same regression model; namely, Yi = f(Xi)+εi. Osborne (1991) gives a comprehensive

review of this topic and Gruet (1996) provides a kernel based direct nonparametric

estimator of d0. It is clear that when ε = 0, the calibration problem becomes the

canonical problem described above.

Another active area is provided by the model-based dose-finding problems in tox-

icology and drug development, where d0 corresponds to either the maximal tolerated

dose or the effective dose with respect to a given maximal toxicity or an efficacy level.
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Possible dose levels are often prespecified. The dose-response relationship is usu-

ally assumed to be monotone and described either by parametric models (e.g. probit,

logit Morgan (1992), multihit Rai and Ryzin (1981), cubic logistic Morgan (1985)), or

by nonparametric models, for which kernel estimates Staniswalis and Cooper (1988)

and isotonic regression Stylianou and Flournoy (2002) are employed. On the other

hand, due to ethical and budget considerations, most studies encompass sequential

designs, so that more subjects (e.g. patients) receive doses close to the target d0 (see

Rosenberger (1996) and Rosenberger and Haines (2002) for comprehensive reviews

on the subject). Stylianou and Flournoy (2002) compare parametric estimators us-

ing maximum likelihood and weighted least squares based on the logit model and

nonparametric ones using sample mean and isotonic regression with a sequential up-

and-down biased coin design, and show that a linearly interpolated isotonic regression

estimator performs best in most simulated scenarios. Further, Ivanova et al. (2003)

claim that the isotonic regression estimator still performs best for small to moderate

sample sizes with several sequential designs from a family of up-and-down designs;

Gezmu and Flournoy (2006) recommend using smoothed isotonic regression with their

group up-and down designs. All these partially motivate the use of isotonic regression

in our two-stage procedure, though it should be noted that our approach is markedly

different from the ones discussed above, owing to the different nature of the motivat-

ing application; in particular, ethical constraints that prevent administration of high

dose-levels are absent in our situation.

In a nonparametric setting, one could also employ a fully sequential Robbins-

Monro procedure Robbins and Monro (1951) for finding d0. This corresponds to a

stochastic version of Newton’s scheme for root finding problems. Anbar (1977) con-

sidered a modified Robbins-Monro type procedure approximating the root from one

side. A good review of this area is provided in Lai (2003), in which it is also pointed

out that the procedure usually exhibits an “unsatisfactory finite-sample performance

except for linear problems” especially in noisy settings, due to the fact that it does

not incorporate modeling for (re)using all the available –up to that instance– data.

Another downside of a sequential design, as opposed to the batch design employed

in this study, is the time and effort required to collect the data points Müller and

Schmitt (1990).

The remainder of the paper is organized as follows: Section 3.2 describes the two-

stage procedures. The asymptotic properties of the two-stage estimators are obtained
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in Section 3.3. Simulation studies and data analysis are presented in Sections 3.4 and

3.5, respectively. We close with a discussion in Section 3.6, which is followed by an

appendix containing technical details.

3.2 Two-Stage Procedures

In this Section, we review some necessary background material and introduce the

proposed two-stage estimation procedures.

3.2.1 Preliminaries: A Single-Stage Procedure

We review some material on estimating the parameter of interest d0 by using

isotonic regression combined with a single-stage design. The procedure is outlined

next:

1. Choose n increasing design points {xin}ni=1 ∈ [0, 1] and obtain the corresponding

responses that are generated according to Yin = f(xin) + εin, i = 1, 2, · · · , n,

where f is in F0, a class of increasing real functions on [0, 1] with positive and

continuous first derivatives in a neighborhood of d0 and εin are independently

and identically distributed (iid) random errors with mean zero and constant

variance σ2. Note that the subscript n will be suppressed from now on for

simplicity of notation.

2. Obtain the isotonic regression estimate f̂ of f from the data {(xi, Yi)}ni=1. (For

details see Chapter 1 of Robertson et al. (1988)).

3. Estimate d0 by d̂
(1)
n = f̂−1(θ0) = inf{x ∈ [0, 1] : f̂(x) ≥ θ0}, where θ0 = f(d0).

In order to study the properties of f̂ and d̂
(1)
n , we consider the following further

assumption on the design points.

(A1) There exists a distribution function G, whose Lebesgue density g is positive

at d0, such that supx∈[0,1] |Fn(x) − G(x)| = o(n−1/3), where Fn is the empirical

function of {xi}ni=1.

For example, the discrete uniform design xi = i/n for i = 1, 2, · · · , n satisfies (A1)

with G being the uniform distribution on [0, 1] and g(d0) = 1 > 0.

The following basic result provides the asymptotic distribution of d̂
(1)
n .
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Theorem 3.2.1. If f ∈ F0 and (A1) holds,

n1/3(d̂(1)n − d0)
d→ CZ,

where C = [4σ2/(f ′(d0)
2g(d0))]

1/3 and Z follows Chernoff’s distribution.

Remark 3.2.2. Chernoff’s distribution is the distribution of the almost sure unique

maximizer of B(t) − t2 on R, where B(t) denotes a two-sided standard Brownian

motion starting at the origin (B(0) = 0). It is symmetric around zero, with tails

dwindling faster than those of the Gaussian and its quantiles have been tabled in

Groeneboom and Wellner (2001).

The proof of Theorem 3.2.1 follows by adaptations of the arguments from Theorem

1 in Banerjee and Wellner (2005) to the current regression setting. Hence, an ap-

proximate confidence interval for d0 with significance level 1− 2α can be constructed

as follows

[d̂(1)n − n−1/3Ĉqα, d̂(1)n + n−1/3Ĉqα] ∩ (0, 1), (3.1)

where qα denotes the upper α quantile of Chernoff’s distribution and Ĉ is a consistent

estimate of C.

In the presence of relatively small budgets for design points, the slow convergence

rate and the need to estimate f ′(d0) adversely impact the performance of this pro-

cedure. In order to accelerate the convergence rate, we propose next an alternative

that is based on a two-stage sampling design and uses local linear approximation for

f in stage two.

3.2.2 Procedures Based On Two-Stage Sampling Designs

We describe next a hybrid estimation procedure for estimating d0 based on a two-

stage sampling design. Suppose that the total budget consists of n doses that are

going to be allocated in two stages.

1. Allocate n1 = np, p ∈ (0, 1) design points and obtain the first-stage data

{(xi, Yi)}n1
i=1, the isotonic regression estimate of f and the estimate d̂

(1)
n1 of d0

as outlined in Section 3.2.1. Note that by np, we denote by bnpc or bnpc + 1,

depending on whether n− bnpc is even or not. Also, recall that the additional

subscript n is suppressed.

2. Determine two second-stage sampling points L and U symmetrically around
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d̂
(1)
n1 , where L = d̂

(1)
n1 − Kn−γ1 and U = d̂

(1)
n1 + Kn−γ1 , for some constants γ > 0

and K > 0.

3. Allocate the remaining n − n1 design points equally to L and U and generate

the responses as Y ′i = f(L) + ε′i and Y ′′i = f(U) + ε′′i for i = 1, 2, · · · , n2, with

{ε′i} and {ε′′i } being iid random errors with mean zero and constant variance σ2,

mutually independent and also independent of {εi}.

4. Fit the second-stage data {(L, Y ′i ), (U, Y ′′i )} with the linear model y = β0 +

β1x using least squares. Denote the resulting intercept and slope estimates by

(β̂0, β̂1), respectively. Then, the second-stage (or two-stage) estimator of d0 is

given by d̃
(2)
n = (θ0 − β̂0)/β̂1.

Asymptotic properties of d̃
(2)
n will be established in Subsection 3.3.1. For example,

when f is in a subset of F0, denoted as F , the third derivatives of whose elements

are uniformly bounded around d0, and γ ∈ (1/4, 1/3), we have

n1/2(d̃(2)n − d0)
d→ σ

f ′(d0)(1− p)1/2
N(0, 1), (3.2)

where
d→ denotes convergence in distribution. Thus, the convergence rate of the two-

stage estimator of d0 becomes n1/2, the standard parametric convergence rate, which

is faster than the n1/3 convergence rate of the one-stage isotonic regression estimator.

However, when constructing confidence intervals from asymptotic results like (3.2),

we face two difficulties. One is that the limiting distributions of interest still depend

on f ′(d0), accurate estimation of which is difficult for small to moderate sample

sizes. The other one, which is less obvious but perhaps with more serious practical

implications, is that the asymptotic results of interest suffer slow speed of convergence

in distribution. Therefore, a bootstrap variant of the two-stage procedure that avoids

direct estimation of f ′(d0) is introduced and is seen to relieve the slow convergence

problem.

3.2.3 Bootstrapping The Two-Stage Estimator

The steps of the bootstrapped two-stage procedure are outlined next.

1. Follow steps 1–4 to obtain the second stage design points L and U , responses

{Y ′i } and {Y ′′i } and d̃
(2)
n .
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2. Sample with replacement, responses {Y ′?i }
n2
i=1 and {Y ′′?i }

n2
i=1, from {Y ′i }

n2
i=1 and

{Y ′′i }
n2
i=1, respectively. Construct the corresponding bootstrapped second-stage

(or two-stage) estimator d̃
(2)?
n , and calculate the root R?

n = n1/2(d̃
(2)?
n − d̃(2)n ).

3. Repeat the previous step B times to obtain {R?b
n }Bb=1. Subsequently, calculate

the lower and upper α quantiles, q?l and q?u, of {R?b
n }Bb=1. Finally, construct a

1− 2α bootstrapped Wald-type confidence interval for d0 as

[d̃(2)n − n−1/2q?u, d̃(2)n − n−1/2q?l ]. (3.3)

Note that the procedure does not require estimation of f ′(d0).

The asymptotic properties of the bootstrapped two-stage estimator are established

in Subsection 3.3.2. For example, when f ∈ F , γ ∈ (0, 1/3) and all the absolute

moments of the random error are finite, we have

n1/2(d̃(2)?n − d̃(2)n )
d?→ σ

f ′(d0)(1− p)1/2
N(0, 1), (P − a.s.), (3.4)

where
d?→ implies convergence in distribution conditional on the data obtained from

the employed two-stage design.

From (3.2) and (3.4), the strong consistency of the bootstrapped estimator d̃
(2)?
n is

ensured for f ∈ F and γ ∈ (1/4, 1/3). In fact, the strong assumption on the random

error can be replaced by a mild one that the sixth moment of the random error is

finite, at the price of replacing strong consistency with weak consistency. Therefore,

the bootstrapped procedure is theoretically validated under certain conditions.

Remark 3.2.3. Both the two-stage estimator and its bootstrapped variant rely on the

choice of a number of tuning parameters: p, γ and K. Practical procedures for their

selection will be discussed in Section 3.4.

3.3 Asymptotic Properties of Two-Stage Estimators

In this Section, we establish the asymptotic properties of both the two-stage es-

timator and its bootstrapped variant for d0. We start by discussing the two-stage

estimator d̃
(2)
n .
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3.3.1 Two-Stage Estimator

All results in this subsection are derived under the assumption (A1). According

to the two-stage procedure,

(β̂0, β̂1) = argmin
β0,β1∈R

n2∑
i=1

[(Y ′i − β0 − β1L)2 + (Y ′′i − β0 − β1U)2].

Denote Y +
i = Y ′′i + Y ′i and Y −i = Y ′′i − Y ′i . Then,

β̂0 = (2n2)
−1

n2∑
i=1

Y +
i − d̂(1)n1

β̂1, β̂1 = (2Kn−γ1 n2)
−1

n2∑
i=1

Y −i . (3.5)

Setting θ0 = β̂0 + β̂1d̃
(2)
n gives

d̃(2)n = (1/β̂1)(θ0 − β̂0) = (1/β̂1)[θ0 − (2n2)
−1

n2∑
i=1

Y +
i ] + d̂(1)n1

. (3.6)

In order to analyze d̃
(2)
n , additional assumptions about the smoothness of the

underlying function f around d0 are required. We consider the following three classes

of underlying functions:

F = {f ∈ F0 : f ′′′(x) is UBN(d0)},

F1 = {f ∈ F0 : f ′′(d0) 6= 0, f ′′′(x) is UBN(d0)},

F2 = {f ∈ F0 : f ′′(d0) = 0, f ′′′(d0) 6= 0, f (4)(x) is UBN(d0)}

where UBN(d0) means “uniformly bounded in a neighborhood of d0”. Then, the

mutually exclusive F1 and F2 are subsets of F .

Remark 3.3.1. A function in F2 is exactly locally linear at d0 while that in F1 is

not. Notice that both F2 and F1 depend on d0. For example, consider the sigmoid

function f(x) = exp{a(x − b)}/(1 + exp{a(x − b)}) for some constants a > 0 and

b ∈ (0, 1). It belongs to F2 if d0 = b and to F1 otherwise. Obviously, the size of F2

is much smaller than that of F1. However, the asymptotic results for f ∈ F2 should

also provide good approximations for functions that are approximately linear in the

vicinity of d0. Hence, the class F2 is also of interest.

We consider next the asymptotic properties of d̃
(2)
n , starting with the consistency

of the two-stage estimator.

74



Lemma 3.3.2. For f ∈ F and γ ∈ (0, 1/2), we have:

β̂0
P→ f(d0)− f ′(d0)d0, β̂1

P→ f ′(d0), and d̃(2)n
P→ d0.

Based on Lemma 3.3.2, we obtain the asymptotic distribution of d̃
(2)
n in the next

theorem. It turns out that the asymptotic results with f ∈ F1 and F2 are the same

for γ > 1/4. This implies that the nonlinearity of f at d0 becomes asymptotically

ignorable as the length of the neighborhood of d0 shrinks fast enough.

Theorem 3.3.3. For f ∈ F and γ ∈ (1/4, 1/2),

n1/2(d̃(2)n − d0)
d→ C2Z1, for γ ∈ (1/4, 1/3),

n1/2(d̃(2)n − d0)
d→ C2Z1 + C3ZZ2, for γ = 1/3,

n(5/6−γ)(d̃(2)n − d0)
d→ C3ZZ2, for γ ∈ (1/3, 1/2);

for f ∈ F1 and γ ∈ (0, 1/4],

n2γ(d̃(2)n − d0)
d→ C1, for γ ∈ (0, 1/4),

n1/2(d̃(2)n − d0)
d→ C1 + C2Z1, for γ = 1/4;

for f ∈ F2 and γ ∈ (1/8, 1/4],

n1/2(d̃(2)n − d0)
d→ C2Z1, for γ ∈ (1/8, 1/4];

where C1 = −K2p−2γf ′′(d0)/[2f
′(d0)], C2 = σ/[f ′(d0)(1 − p)1/2], C3 = CC2/K, C

is as given in Theorem 3.2.1, Z1 and Z2 are standard normal, Z follows Chernoff’s

distribution and Z, Z1, Z2 are mutually independent.

Remark 3.3.4. Theorem 3.3.3 characterizes the convergence rate of the estimator in

terms of the size of the shrinking neighborhood. It shows that for γ ∈ [1/4, 1/3]

the parametric rate of n1/2 is achieved given f ∈ F . On the other hand, for the

boundary values of γ = 1/4 and 1/3, there exists asymptotic bias in the former

case (for f ∈ F1), while in the latter case the asymptotic variance increases. For

γ > 1/3, the rate of convergence falls below
√
n, while for γ < 1/4 and f ∈ F1 the

limit distribution of the two-stage estimate is degenerate and thus not conducive to

inference. Hence, these results suggest selecting γ in the (1/4, 1/3) range. Note that,

the function class F2 achieves the n1/2 rate of convergence for a slightly larger range
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of values for γ than F1. This is a consequence of the near linearity of f in the vicinity

of d0, which allows a good linear approximation of f with a relatively long interval

[L,U ].

Remark 3.3.5. The case of γ < 1/8 has been omitted for f ∈ F2, since it involves a

Taylor expansion of f up to its fifth derivative. Nevertheless, in principle no other

technical challenges are in play.

3.3.2 Bootstrapped Two-Stage Estimator

We consider next the asymptotic properties of the bootstrapped two-stage esti-

mator, which is:

d̃(2)?n = (1/β̂?1)(θ0 − β̂?0) = (1/β̂?1)[f(d0)− (2n2)
−1

n2∑
i=1

Y ?+
i ] + d̂(1)n1

, (3.7)

where Y ?+
i = Y ′′?i + Y ′?i , Y ?−

i = Y ′′?i − Y ′?i and

β̂?0 = (2n2)
−1

n2∑
i=1

Y ?+
i − d̂(1)n1

β̂?1 , β̂
?
1 = (2Kn−γ1 n2)

−1
n2∑
i=1

Y ?−
i . (3.8)

We now present a probabilistic framework needed to clearly establish the asymp-

totic properties of the bootstrapped estimator rigorously. The point is that the design

points and random errors involved in the sampling mechanism are assumed to come

from triangular arrays but not necessarily from sequences.

Let {{xin}ni=1}∞n=1 be a triangluar array of distinct design points in [0, 1] and ε a

continuous random variable in R with mean 0 and finite variance σ2 > 0. Now, there

exists, on some probability space (Ω,A , P ), a set of random errors

{{εin}ni=1, {ε
′
in}ni=1, {ε

′′
in}ni=1}∞n=1 which are iid copies of ε. Then, suppressing the sub-

script n, {{xi}n1
i=1, {εi(ω)}n1

i=1, {ε
′
i(ω)}n2

i=1, {ε
′′
i (ω)}n2

i=1}∞n=1 represents a fixed triangular

array of real numbers for a fixed ω ∈ Ω, where n = n1 +2n2 with n1 and 2n2 denoting

the first and second stage sample sizes.

Given ω ∈ Ω, according to the sampling mechanism used in the bootstrapped pro-

cedure, the data obtained from the first stage are given by {(xi, Yi(ω))}n1
i=1, which are

subsequently used to obtain d̂
(1)
n1 (ω) and the lower and upper boundary points L(ω)

and U(ω) to be used in the second stage. Hence, the second-stage data are given by

{L(ω), Y
′
i (ω)} and {U(ω), Y

′′
i (ω)} and the resulting estimate by d̃

(2)
n (ω). The proce-

dure then requires bootstrapping {Y ′i (ω)}n2
i=1 and {Y ′′i (ω)}n2

i=1, which is conceptually
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equivalent to bootstrapping {ε′i(ω)}n2
i=1 and {ε′′i (ω)}n2

i=1 to get {ε′?i }
n2
i=1 and {ε′′?i }

n2
i=1, so

that Y
′?
i = f(L(ω))+ε

′?
i and Y

′′?
i = f(U(ω))+ε

′′?
i for i = 1, 2, · · · , n2. Note that given

ω and n, the bootstrapped second-stage random errors {ε′?i }
n2
i=1 and {ε′′?i }

n2
i=1 are iid

uniform random variables supported on {ε′i(ω)}n2
i=1 and {ε′′i (ω)}n2

i=1, respectively. Fi-

nally, the bootstrapped estimate d̃
(2)?
n is calculated from {(L(ω), Y

′?
i ), (U(ω), Y

′′?
i )}n2

i=1.

Thus, given ω and with n increasing, the design points and random errors are

sampled as rows from the fixed triangular array. Then, the bootstrapped random

errors {ε′?i }
n2
i=1 and {ε′′?i }

n2
i=1 also form triangular arrays as n varies. Given ω and n,

the randomness of d̃
(2)?
n comes from the bootstrapping step.

Under the above theoretical setting, in order to obtain the strong consistency

of the bootstrapped estimator, we consider the following strong assumptions on the

design points, the regression function and the random errors.

(A2) There exists a distribution function G, whose Lebesgue density g is positive

and has a bounded first derivative on [0, 1], such that supx∈[0,1] |Fn(x)−G(x)| .
n−1/2, where Fn is the empirical function of {xi}ni=1 and “.” denotes that the

left side is less than a constant times the right side.

(A3) The regression function f ∈ F0 is differentiable on [0, 1] with infx∈[0,1] f
′(x)

and supx∈[0,1] f
′(x) both positive and finite.

(A4) All the absolute moments of ε are finite, i.e. E|ε|q <∞ for all q ∈ N.

Remark 3.3.6. There exist triangular arrays of design points satisfying (A2). For

example, with xi = i/n for i = 1, 2, · · · , n and all n, we have an array of discrete

uniform designs on [0, 1]. Let G be the uniform distribution function on [0, 1]. Then,

for this special array supx∈[0,1] |Fn(x) − G(x)| ≤ 1/n. Note that (A2) is stronger

than (A1). A random variable with finite moment generating function in a small

neighborhood of 0 satisfies (A4), such as a normal random variable. The assumptions

(A2) to (A4) are essentially the fixed design versions of the assumptions for Lemma

1 of Durot (2008), a modification of which enables us to identify a crucial boundary

rate for the almost sure convergence of the isotonic regression estimator of d0. This

boundary rate plays a central role in the strong consistency of the bootstrapped

estimator.

Next, we state results on the strong consistency of β̂1 and the conditional weak

consistency of β̂?1 and then on strong consistency of the bootstrapped estimator. Note
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that P ? denotes the probability of the bootstrapped data conditional on the original

data.

Lemma 3.3.7. If f ∈ F , γ ∈ (0, 1/2) and (A2) to (A4) hold,

β̂1 → f ′(d0), (P − a.s.), β̂?1
P ?→ f ′(d0), (P − a.s.),

where
P ?→ denotes convergence in probability conditional on a given ω.

Theorem 3.3.8. If f ∈ F , γ ∈ (0, 1/3) and (A2) to (A4) hold,

n1/2(d̃(2)?n − d̃(2)n )
d?→ C2Z1, (P − a.s.),

where C2 and Z1 are as in Theorem 3.3.3. That is,

sup
t∈R
|P ?

(
n1/2(d̃(2)?n − d̃(2)n ) ≤ t

)
− P (C2Z1 ≤ t) | a.s→ 0.

From the above strong consistency, the corresponding weak consistency follows

under the same set of conditions. However, weak consistency can be obtained with

the following weaker requirement on the random error:

(A5) The sixth moment of ε is finite, i.e. Eε6 <∞.

Theorem 3.3.9. If f ∈ F , γ ∈ (0, 1/3) and (A1) and (A5) hold, for t ∈ R,

sup
t∈R
|P ?

(
n1/2(d̃(2)?n − d̃(2)n ) ≤ t

)
− P (C2Z1 ≤ t) | P→ 0,

where C2 and Z1 are as in Theorem 3.3.3.

Remark 3.3.10. Comparing Theorem 3.3.8 with Theorem 3.3.3, we see that, under the

strong assumption (A5) on the random errors, the bootstrapped estimator is strongly

consistent for f ∈ F and γ ∈ (1/4, 1/3), which is exactly the γ-range of most interest.

Further, if f is locally linear at d0, i.e. f ∈ F2, the strong consistency continues to

hold for γ ∈ (1/8, 1/4]. Similar conclusions on weak consistency hold by comparing

Theorem 3.3.9 with Theorem 3.3.3, but under the milder assumption (A5) on the

random errors.
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3.4 Performance Evaluation

In this section, through an extensive simulation study we investigate the finite

sample performance of the One-Stage Procedure (henceforth, OSP), the proposed

Two-Stage Procedure (TSP) and its bootstrapped variant (BTSP).

Notice that for practically implementing the OSP, as well as the two-stage proce-

dures, estimates of f ′(d0) and σ2 need to be obtained; the resulting procedures are

called POSP, PTSP and PBTSP, respectively (Practical OSP, TSP and BTSP). For

σ2, we employ the nonparametric estimator proposed by Gasser et al. (1986), which

is based on local linear fitting. Suppose the data {(xi, Yi)}ni=1 are already sorted in

ascending order of xi’s. Then, we calculate

S2 = (n1 − 2)−1
n−1∑
i=2

c2i ε̃
2
i ,

where ε̃i = aiYi−1 + biYi+1−Yi, c2i = (a2i + b2i +1)−1, ai = (xi+1−xi)/(xi+1−xi−1) and

bi = (xi−xi−1)/(xi+1−xi−1), for i = 2, 3, · · · , n−1. An estimate of f ′(d0) is obtained

through the local quadratic regression estimator proposed by Fan and Gijbels (1996),

at the estimate d̂
(1)
n . Specifically, let K(·) denote the Epanechnikov kernel function

and h > 0 the bandwidth, so that Kh(·) = (1/h)K(·/h). Further, let η̂ = (η̂0, η̂1, η̂2)

be given by

η̂ = argminη∈R3

n∑
i=1

[
Yi −

2∑
j=0

ηj(xi − d̂(1)n )j

]2
Kh(xi − d̂(1)n ).

Then, the local quadratic regression estimator of f ′(d̂
(1)
n ) is given by η̂1. The band-

width h is chosen by first fitting a fifth order polynomial function to the data to

obtain f̂pol(x) =
∑5

j=0 α̂jx
j . Next, the estimate of the third order derivative of f at

d̂
(1)
n is obtained by f̂

(3)
pol (d̂

(1)
n ) = 6α̂3 + 24α̂4d̂

(1)
n + 60α̂5(d̂

(1)
n )2. Finally the bandwidth h

is calculated as

ĥopt = C1,2(K)
[
S2/(f̂

(3)
pol (d̂

(1)
n ))2

]1/7
n−1/7,

where C1,2(K) = 2.275.

For the two-stage procedures, the tuning parameters γ and K need to be specified

for obtaining the second-stage sampling points L and U . We select them as the end

points of a high level Wald-type confidence interval calculated from the first-stage
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data; that is, γ and K satisfy

Kn−γ1 = Cqβn
−1/3
1 , (3.9)

where qβ is the upper β quantile of Z. On the other hand, a good quantitative rule for

selecting the first-stage sample proportion p is not available; nevertheless, a practical

qualitative rule of thumb dictates that p should decrease, while np should increase as

the sample size increases. In our simulation study a number of different values for p

are considered.

Finally, due to presence of small sample sizes the following modification of the

second-stage estimator is adopted:

d̃(2)n =

{
min(max((θ0 − β̂0)/β̂1, 0), 1) if β̂1 > 0,

d̂
(1)
n1 otherwise.

The same modification applies to the bootstrapped second-stage estimator in BTSP.

Remark 3.4.1. Note that our method for choosing the tuning parameters γ,K brings

in another subjective parameter β. However, the choice of β is guided by a rational

principle, namely the requirement that the chosen interval contain the truth with

high probability. The magnitude of β is related to how conservative the experimenter

wants to be in the construction of the second stage interval which is fundamentally

subjective. Also, our rule of thumb regarding the choice of p is based on the idea

that with larger budgets smaller p’s at stage one will still lead to reasonably precise

sampling intervals at stage two, leaving a larger proportion of points for stage two

and the possibility of more accurate conclusions.

The basic settings of the simulation study are as follows: two regression functions

are considered, f1(x) = x2 + x/5 and f2(x) = e4(x−0.5)/(1 + e4(x−0.5)) for x ∈ [0, 1].

The first-stage design points are drawn from a discrete uniform distribution on [0, 1],

i.e. xi = i/(n1 + 1). Further, the target is set to d0 = 0.5, the standard deviation

of the random error σ to 0.1, 0.3 and 0.5, the sample size n ranges from 50 to

500 in increments of 50, while the first-stage sample proportion p ranges from 0.2

to 0.8 in increments of 0.1. Finally, the levels of significance α and β are set to

0.025. Note that β is only required to be small and the specific choice of 0.025

is somewhat arbitrary. The following quantities are computed: coverage rates and

average lengths of confidence intervals, and mean squared errors of estimators. The
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simulation programs and more results can be found on the first author’s webpage:

www.stat.lsa.umich.edu/∼rltang. In this paper, we show part of the results for saving

space.

Remark 3.4.2. Choosing γ and K via equation (3.9) is theoretically equivalent to

having γ = 1/3 and K = Cqβ. Notice that strictly speaking, neither strong nor

weak consistency for γ = 1/3 is expected to hold for the bootstrapped estimator.

However, it is reasonable to expect that for realistic sample sizes, the performance of

the bootstrap would be satisfactory, since γ = 1/3 is at the boundary of consistency.

The obtained simulation results certainly vindicate this expectation. We would like

to note that there are other bootstrap methods that could have been used, like the

wild or residual bootstrap or the m out of n bootstrap, but it is not clear whether

they would yield consistency at γ = 1/3. It would be interesting to explore some of

these issues in future work.

3.4.1 Comparison of Two-Stage Procedures

By Theorem 3.2.1, from the first-stage data, an asymptotic (1 − 2β) confidence

interval for d0 with the true parameter is given by:

[d̂(1)n1
− Cqβn−1/31 , d̂(1)n1

+ Cqβn
−1/3
1 ]

⋂
[0, 1].

We consider the above confidence interval as the sampling interval [L,U ] with γ = 1/3

and K = Cqβ. Then, by Theorem 3.3.3, for f ∈ F and γ = 1/3,

n1/2(d̃(2)n − d0)
d→ C2Z1 + C3ZZ2.

Hence, the corresponding asymptotic (1− 2α) confidence interval of d0 is given by:

[d̃(2)n − q̃αn−1/2, d̃(2)n + q̃αn
−1/2]

⋂
[0, 1], (3.10)

where q̃α is the upper α quantile of C2Z1 + C3ZZ2.

Next we compare the two-stage procedures, focusing on the coverage rates. In

the first row of Figure 3.2, the coverage rates of the (3.10) confidence intervals for

combinations of f, n and σ are shown based on 5000 replications, using the true

parameters f ′(d0) and σ (i.e. the true C, C2 and C3 in constructing the confidence
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Figure 3.2: Coverage Rate plot grouped with different σ’s.

intervals). It can be seen that in general, coverage rates are below the nominal level

0.95, which is depicted by a solid horizontal line in each subplot. This reflects that

d̃
(2)
n usually has slow speed of convergence in distribution. As expected, the results

improve for small noise levels, larger sample sizes and functions closer to linearity in

the vicinity of d0.

The second row in Figure 3.2 shows the coverage rates of the bootstrapped pro-

cedure, based on 1000 replicates and 3000 bootstrap samples per replicate, using the

true parameters f ′(d0) and σ at stage one. It can be seen that the coverage rates

achieve the nominal level with proper first-stage sample proportions, smaller values

of which are preferred since both average lengths and mean square errors are usually

increasing with p from simulation results not shown in this paper. It can be concluded

that the BTSP exhibits superior performance to the TSP in terms of coverage rates,

especially for settings with f1, moderate noise and relatively small sample sizes.

Finally, the third row in Figure 3.2 depicts the coverage rates of the bootstrapped

procedure, when both f ′(d0) and σ are estimated from the first-stage data. The

results based on 1000 replicates and 3000 bootstrap samples per replicate indicate

a high level of agreement with those of the BTSP, which in turn suggests that the
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PBTSP is reliable in applications.

Our findings suggest that p = 0.4 is a good conservative choice for functions

exhibiting a strong linear trend in the vicinity of d0, while p = 0.5 is preferable

otherwise.

3.4.2 Comparison of One- and Two-Stage Procedures

We compare next the POSP and the PBTSP, in terms of coverage rates and

average lengths of confidence intervals. We also compare the mean squared errors of

the first- and second-stage estimates of d0. The results for POSP are based on 5000

replications, while those of PBTSP on 1000 replications and 3000 bootstrap samples

per replication, due to its computational intensity. It can be seen from Table 3.1 that

both procedures usually perform well in terms of coverage rates. Further, under the

PBTSP, confidence intervals usually have shorter average lengths, and the estimates

for d0 have smaller mean squared errors, with slightly more gains accruing in the f2

case. However, it needs to be pointed out that both procedures suffer in the case with

large noise and small to moderate sample sizes, especially for f1.

Table 3.1: CR, AL and MSE stand for coverage rates, average lengths and mean
squared errors of PBTSP while CR1, AL1 and MSE1 stand for those of
POSP. ALR and MSER are the ratios of CR over CR1 and MSE over MSE1,
respectively.

f p σ n CR CR1 AL AL1 ALR MSE MSE1 MSER

100 0.944 0.955 0.06 0.13 0.43 2e-04 1e-03 0.21
0.1 200 0.943 0.953 0.04 0.10 0.37 1e-04 7e-04 0.15

f1 0.5 300 0.952 0.956 0.03 0.09 0.35 7e-05 5e-04 0.14
100 0.927 0.942 0.21 0.27 0.79 3e-03 5e-03 0.58

0.3 200 0.935 0.947 0.14 0.21 0.63 1e-03 3e-03 0.39
300 0.956 0.947 0.11 0.19 0.58 8e-04 2e-03 0.33

100 0.971 0.966 0.06 0.16 0.40 2e-04 1e-03 0.16
0.1 200 0.951 0.964 0.04 0.12 0.34 1e-04 9e-04 0.13

f2 0.4 300 0.950 0.966 0.03 0.11 0.31 7e-05 7e-04 0.11
100 0.952 0.948 0.24 0.32 0.76 5e-03 6e-03 0.79

0.3 200 0.959 0.956 0.16 0.25 0.62 2e-03 4e-03 0.46
300 0.948 0.955 0.12 0.22 0.53 8e-04 3e-03 0.25

Remark 3.4.3. One of the advantages of the bootstrap procedure, as pointed out in

Subsection 3.2.3, is that its implementation does not require knowledge of f ′(d0). One

might feel that the practical implementation of the bootstrap procedure defeats this

advantage, since f ′(d0) is estimated from the first-stage data to construct the second

83



stage sampling interval. However, note that only a rough and ready estimate of f ′(d0)

would suffice for the purpose of setting the sampling interval. On the contrary, to

set a confidence interval directly from the asymptotic distribution of the second-stage

estimate requires a much more precise estimate of f ′(d0). Thus, the really crucial

advantage with the bootstrap is that it obviates the need for a precise estimate of

f ′(d0).

Remark 3.4.4. Notice that the sigmoid function f2 belongs to class F2 for the case

d0 = 0.5, since its second-derivative vanishes at that point. It is of practical interest to

investigate the performance of the PBTSP for the case where the regression function

at the target point is close to, but not exactly, linear. We have examined the case

for f2 and d0 = 0.4 and 0.6 under the previously considered settings. The curvatures

(i.e. second derivatives) of the regression functions at these two points are about 0.76

and -0.76, respectively. The results are very close to those obtained for d0 = 0.5.

Remark 3.4.5. In PBTSP, the second stage sampling points L and U are identified

through a Wald-type confidence interval constructed via estimating f ′(d0) and σ2,

with d̂
(1)
n1 at the center of [L,U ]. An alternative, albeit ad-hoc way of obtaining an

interval centered at d̂
(1)
n1 is to set L = d̂

(1)
n1 −Ln/2 and U = d̂

(1)
n1 +Ln/2, where Ln is the

length of a testing-based confidence interval for d0 obtained from the first-stage data.

This testing-based interval is obtained as follows: consider testing the hypothesis

H0,d : f−1(θ0) = d vs H1,d : f−1(θ0) 6= d. Let f̂ (1) denote the usual isotonic estimator

of f from the stage one data and f̂
(1)
d the constrained isotonic estimator under H0,d.

The residual sum of sqaures based test statistic is given by

RSS(d) =

∑n1

i=1 (Yi − f̂ (1)
d (xi))

2 −
∑n1

i=1 (Yi − f̂ (1)(xi))
2

σ̂2
,

where σ̂2 is a consistent estimate of σ2. The inversion procedure assigns d to the

confidence set if RSS(d) falls below an appropriate threshold determined by a pre-

specified quantile of its limit distribution D (when d = d0 holds true), which is

completely parameter-free and therefore enables the construction of the confidence

set without the need for nuisance parameter estimation. The limit distribution of

RSS(d0) can be derived by adapting Theorem 2 of Banerjee and Wellner (2005)

(where a likelihood ratio statistic is dealt with) to the residual sum of squares statistic

in the nonparametric regression setting, but see also Banerjee (2007) and Banerjee

(2009) for a unified treatment of likelihood ratio and residual sum of squares statistics
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in monotone function problems.

Alternatively, we can use the extremities of the testing-based confidence interval

themselves as the sampling points for the second stage. For both cases, simulations

show that their results are very similar to those of PBTSP using the Wald-type con-

fidence interval, thus implying that the procedure is not particularly sensitive to the

exact specification of L and U . Note that although this testing-based approach has

the merit of completely avoiding the estimation of f ′(d0), the asymptotic properties

of the corresponding two-stage estimator and its bootstrapped variant become in-

tractable since neither the testing-based confidence interval nor the length Ln admits

an easy analytical characterization, unlike the analytically simple Wald–type confi-

dence intervals used in this paper. To conform to the theoretical development and to

save space, we only present simulation results for such Wald-type stage two sampling

intervals.

Remark 3.4.6. In the case of f ∈ F1, one may question the use of a linear working

model for approximating f around d0. Instead, fitting a higher order polynomial work-

ing model may seem more appropriate. We examined the case of f1 using a quadratic

working model. The results show that this model improves the mean squared error

of the estimates when the noise is large, but leads to substantial undercoverage.

Remark 3.4.7. Our simulation results indicate that good choices for p are 0.5 for f1

and 0.4 for f2, respectively. Our practical recommendation is p = 0.5, whenever no

prior information about the linearity of f around d0 is available.

3.5 Data Application

We apply our methods to the engineering problem introduced at the beginning

of this paper. We briefly describe the underlying system next: consider a complex

queueing system comprising N first-in-first-out infinite capacity queues holding dif-

ferent classes of customers and a set of service resources. These resources are exter-

nally modulated by a stochastic process. The main issue is to allocate the available

resources to the queue in an appropriate manner so as to maximize the system’s

throughput. This system represents a canonical model for wireless data/voice trans-

missions, in flexible manufacturing and in call centers (for more details see Bambos

and Michailidis (2004)).

An important quality of service metric is the average delay of jobs (over all classes).
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This quantity can only be obtained through simulation of the system, due to its

analytical intractability. The average delay of the jobs in a two-class system as a

function of its loading under the optimal throughput policy introduced in Bambos

and Michailidis (2004) is shown in Figure 3.1. It can be seen that delay is, in general,

an increasing function of the loading. The response was obtained by a discrete event

simulation of the system for each loading, based on 2,000 events. Notice that our

ability to simulate the system at any loading in order to obtain the response, allows

us to easily implement the proposed two-stage procedure.

It is of interest to estimate d0 = f−1(θ0) for θ0 = 10 and 15 units of delay, since

around loadings corresponding to those levels the quality of service provided by the

system exhibits a significant deterioration. For comparing the one- and two-stage

procedures we fix a budget of n = 82. A fixed design wth spacing 0.01 was used in

the interval [0.14, 0.95] to obtain the one-stage data shown in Figure 3.1 (also in the

left-panel plots of Figure 3.4). It can be seen that the response is heteroskedastic,

but this does not affect the isotonic regression based estimation of f and thus of d0.

However, it impacts the construction of confidence intervals through the estimation

of the variance at d0. To overcome this issue, the variance function is estimated

locally by the method proposed in Müller and Stadtmuller (1987). More specifically,

we compute the initial local variance estimates with the weights (1/
√

2,−1/
√

2) and

the smoothed variance function by using glkerns in the R package lokern with an

adaptive bandwidth, shown in the left panel of Figure 3.3.
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Figure 3.3: Estimation of the Variance Function in POSP and PBTSP

When implementing the two-stage procedure, we selected every other point from

those used in the one-stage procedure (p = 0.5), thus resulting in a fixed design

with spacing 0.02 on the interval [0.14, 0.94]. The initial local variance estimates and
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smoothed variance function with the first-stage data are shown in the right panel of

Figure 3.3. After obtaining the 40 = 2× 20 second-stage responses, the second-stage

estimator of d0 was computed using weighted least squares, with weights being the

reciprocals of the estimated local variances at the corresponding sampling points.

The point estimates and the associated 95% confidence intervals from the POSP

and the PBTSP are given in Table 3.2 and plotted in Figure 3.4. It can be seen that

the point estimates are fairly similar. More significantly, the confidence intervals from

PBTSP are much shorter than those from POSP, especially for the case θ0 = 10. This

can be attributed to two factors: (i) the applicability of the linear model locally and

(ii) the presence of a strong signal (small noise) for the design points around 0.8.

Table 3.2: Comparing POSP and PBTSP

POSP n = 82 PBTSP n = 81 = 41 + 2× 20

θ = 10 estimates of d0 d̂
(1)
n = 0.803 d̃

(2)
n = 0.799

95% CI [0.764, 0.841] [0.794, 0.804]

θ = 15 estimates of d0 d̂
(1)
n = 0.863 d̃

(2)
n = 0.857

95% CI [0.839, 0.887] [0.845, 0.875]

3.6 Conclusions

In this study, a two-stage hybrid procedure for estimating an inverse regression

function at a given point was introduced. The proposed procedure, by first obtaining

a non-parametric estimate of the regression function and subsequently fitting a para-

metric linear model in an appropriately shrinking neighborhood of the parameter of

interest, achieves a
√
n rate of convergence for the corresponding estimator. Note that

isotonic regression was used in the first stage as it works with minimal assumptions

on the underlying monotone regression function; nevertheless, other non-parametric

procedures could be used. Further, the local approximation was primarily based on

a linear model, although quadratic and suitable higher-order approximations could

be used, especially in the presence of a small budget of design points, since the first

stage sampling interval may not be short enough.

A bootstrapped version of the two-stage procedure is provided to overcome the

difficulties posed by the requirement of estimating the derivative of the regression
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Figure 3.4: Comparing POSP and PBTSP

function at the unknown target point and the slow speed of convergence, especially

with moderate sample sizes. Its asymptotic properties are also investigated and its

strong consistency established (on this point see also Remark 3.7.4).

Our simulation results indicate that the practical bootstrapped procedure per-

forms well in a variety of settings. Note that all the plans can be equipped with

random designs for generating the first-stage data and similar asymptotic results fol-

low. Nevertheless, for relatively small budgets, fixed designs (e.g. quantile based)

usually yield improved performance.

Finally, we note that the main results generalize readily to heteroskedastic models

of the form Y = f(x) + σ(x)ε, where σ(x) is a scaling function that determines

the error variance. Further, the proposed procedure should also work for discrete

response models; for example, univariate binary and Poisson regression models with

a monotone mean function. Qualitatively, the results are expected to be analogous to

those established in this study; namely, a
√
n rate of convergence would be obtained

for the estimator of the parameter of interest. However, the asymptotic behavior

of the second-stage estimator and its bootstrap counterpart would be different and

depend in an explicit manner on the specific model under consideration.
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3.7 Appendix

3.7.1 Important Lemmas

In order to establish the strong consistency of the bootstrapped two-stage estima-

tor, we need a rate of the almost sure convergence for the one-stage isotonic regression

estimator d̂
(1)
n of d0. The following lemma, which is the fixed design version of Lemma

1 in Durot (2008), provides a useful tail probability for d̂
(1)
n .

Lemma 3.7.1. Suppose E|ε|q < ∞ for some q ≥ 2 and (A2) and (A3) hold. Then,

there exists K > 1, depending on q, such that for every θ ∈ R and η > 0,

P (|d̂(1)n − d0| ≥ η) ≤ K(nη3)−q/2.

Proof. It will be shown that (A2) implies

sup
u∈[0,1]

|F−1n (u)−G−1(x)| . n−1/2. (3.11)

Recall that “.” denotes that the left side is less than a constant times the right side.

Then, reworking the proof of Lemma 1 in Durot (2008) for our fixed design setting

and an increasing function, and replacing expression (13) in that Lemma with (3.11)

ensures that all subsequent steps go through yielding the desired conclusion. To show

(3.11) note that from (A2), we get |G−1(u)−G−1(v)| . |u− v| for every u, v ∈ [0, 1].

Then,

sup
u∈[0,1]

|F−1n (u)−G−1(u)|

= max{|G−1(G(xi))−G−1(i/n)|, |G−1(G(xi+1))−G−1(i/n)|,

for i = 1, 2, · · · , n− 1, |G−1(G(x1))|, |G−1(G(xn))− 1|}

. max{|G(xi)− i/n|, |G(xi+1)− i/n|, for i = 1, 2, · · · , n− 1,

|G(x1)− 0|, |G(xn)− 1|}

= sup
x∈[0,1]

|Fn(x)−G(x)|

gives (3.11) again by (A2).

With the help of Lemma 3.7.1, next we show that n1/3 is a boundary rate of almost

sure convergence.

89



Lemma 3.7.2. If (A2) to (A4) hold, for each α > 0,

P
(

lim
n→∞

n1/3−α|d̂(1)n − d0| = 0
)

= 1.

Thus, for every r < 1/3, lim
n→∞

nr(d̂
(1)
n − d0) = 0, (P − a.s.).

Proof. Use the notations K, q and η in Lemma 3.7.1. Denote K ′ = Kη−3q/2 and

An = {n1/3−α|d̂(1)n − d0| ≥ η}. By Lemma 3.7.1, P (An) ≤ K ′n−3αq/2 for each α > 0.

On the other hand, (A4) allows q to be arbitrarily large. Choosing q > 2/(3α) gives∑∞
n=1 P (An) ≤ K ′

∑∞
n=1 n

−3αq/2 < ∞. Note that η > 0 is arbitrary. Therefore,

n1/3−α|d̂(1)n − d0| converges to 0 almost surely (see Corollary on Page 254–255 in

Shiryaev (1995)), which completes the proof.

Remark 3.7.3. Note that Lemmas 3.7.1 and 3.7.2 hold for not only sequences, but

also triangular arrays of design points and random errors.

Remark 3.7.4. The proof of Lemma 3.7.2 implies n1/3−α(d̂
(1)
n − d0)

a.s.→ 0 for each

α ∈ (0, 1/3) given q > 2/(3α). Then, E|ε|8 < ∞ ensures nβ(d̂
(1)
n − d0)

a.s.→ 0 for each

β < 1/4. However, this almost sure convergence result actually holds under a weaker

condition E|ε|3 < ∞ by Theorem in Makowski (1975) and Remark 4 in Makowski

(1973). This shows that it might be possible to weaken the assumption (A4) a little.

Essentially, it means that it might be possible to weaken the condition on the random

error in Lemma 3.7.1. In fact, this possibility has been mentioned in Durot’s papers

on isotonic regression Durot (2002, 2007, 2008).

3.7.2 Proofs for Results in Subsection 3.3.1

For the simplicity of notation, from now on denote δd = d̂
(1)
n1 − d0, ε+i = ε′′i + ε′i,

ε−i = ε′′i −ε′i, f+
UL = f(U)+f(L), f−UL = f(U)−f(L), R+

UL = RU+RL, R−UL = RU−RL,

R
′+
UL = R′U +R′L, R

′−
UL = R′U −R′L. Recall Y +

i = Y ′′i + Y ′i and Y −i = Y ′′i − Y ′i .

Proof of Lemma 3.3.2. Consider the following Taylor’s expansions:

f(U) = f(d̂(1)n1
+Kn−γ1 ) = f(d0) + f ′(d0)(δd +Kn−γ1 )

+ (1/2)f ′′(d0)(δd +Kn−γ1 )2 +RU , (3.12)
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f(L) = f(d̂(1)n1
−Kn−γ1 ) = f(d0) + f ′(d0)(δd −Kn−γ1 )

+ (1/2)f ′′(d0)(δd −Kn−γ1 )2 +RL, (3.13)

where RU = f ′′′(ξ1)(δd + Kn−γ1 )3/6, RL = f ′′′(ξ2)(δd −Kn−γ1 )3/6, ξ1 lies between d0

and d̂
(1)
n1 + Kn−γ1 and ξ2 lies between d0 and d̂

(1)
n1 −Kn−γ1 . Since d̂

(1)
n1 converges to d0

in probability by Theorem 3.2.1, so do ξ1 and ξ2.

Then, from (3.5), the definitions of Y ′i and Y ′′i and the Taylor expansions (3.12)

and (3.13), we get

β̂1 = (2Kn−γ1 n2)
−1

n2∑
i=1

Y −i = (2Kn−γ1 )−1f−UL + (2Kn−γ1 n2)
−1

n2∑
i=1

ε−i

= f ′(d0) + f ′′(d0)δd + (2Kn−γ1 )−1R−UL + (2Kn−γ1 n2)
−1

n2∑
i=1

ε−i .

From Theorem 3.2.1, δd
P→ 0; and by the Lindeberg-Feller CLT for triangular

arrays, for γ ∈ (0, 1/2), (nγ1/n2)
∑n2

i=1 ε
−
i

P→ 0. Next we show that R−UL/(2Kn
−γ
1 )

P→ 0

for γ ∈ (0, 1). Hence, for γ ∈ (0, 1/2) we get β̂1
P→ f ′(d0). It suffices to show both

nγ1RU and nγ1RL converge to 0 in probability for γ ∈ (0, 1). We only show the former;

the latter follows in an analogous manner.

From the definition of RU , we have

nγ1RU = (1/6)nγ1f
′′′(ξ1)(δd +Kn−γ1 )3

= (1/6)f ′′′(ξ1)
[
nγ1δ

3
d + 3Kδ2d + 3K2n−γ1 δd +K3n−2γ1

]
. (3.14)

Theorem 3.2.1 coupled with Slutsky’s Lemma, shows that the sum of the four terms

within the square bracket in (3.14) is oP (1) for γ ∈ (0, 1). Thus, we have nγ1RU =

f ′′′(ξ1)oP (1). Since f ′′′(·) is uniformly bounded around d0 and ξ1 → d0 in probability,

f ′′′(ξ1)oP (1) = oP (1). This shows that nγ1RU converges to 0 in probability for γ ∈
(0, 1). Obviously, RU = oP (1).

Then, for γ ∈ (0, 1/2),

β̂0 = (2n2)
−1

n2∑
i=1

Y +
i − d̂(1)n1

β̂1 = f(d0) + (1/2)f ′′(d0)[δ
2
d +K2n−2γ1 ]

+ f ′(d0)δd + (1/2)R+
UL + (2n2)

−1
n2∑
i=1

ε+i − d̂(1)n1
β̂1

P→ f(d0)− d0f ′(d0).
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Finally, for γ ∈ (0, 1/2), the weak consistency of β̂1 and β̂0 gives d̃
(2)
n = (θ0 −

β̂0)/(β̂1)
P→ d0.

Proof of Theorem 3.3.3. First, suppose f ∈ F1. From (3.6), the definitions of Y ′i and

Y ′′i and the Taylor expansions (3.12) and (3.13), we get

d̃(2)n − d0 = (1/β̂1)[f(d0)− (2n2)
−1

n2∑
i=1

Y +
i ] + δd

= (1/f ′(d0))[f(d0)− (2n2)
−1

n2∑
i=1

Y +
i ] + δd

+ (f ′(d0)β̂1)
−1(f ′(d0)− β̂1)

[
f(d0)− (2n2)

−1
n2∑
i=1

Y +
i

]
= S1 + S2 × S3

where

S1 = −f ′′(d0)(2f ′(d0))−1
(
δ2d +K2n−2γ1

)
−(2f ′(d0))

−1R+
UL − (2f ′(d0)n2)

−1
n2∑
i=1

ε+i ,

S2 = (f ′(d0)β̂1)
−1

[
f ′′(d0)δd + (2Kn−γ1 )−1R−UL + (2Kn−γ1 n2)

−1
n2∑
i=1

ε−i

]
,

S3 = f ′(d0)δd + (1/2)f ′′(d0)
(
δ2d +K2n−2γ1

)
+ (1/2)R+

UL + (2n2)
−1

n2∑
i=1

ε+i .

Next consider the exact stochastic orders of the terms S1, S2 and S3. We start

with S1. From Theorem 3.2.1, δ2d = OP (n−2/3); for γ > 0, n−2γ1 = OP (n−2γ), RU =

OP (n−1) + OP (n−3γ), RL = OP (n−1) + OP (n−3γ), and n−12

∑n2

i=1 ε
+
i = OP (n−1/2).

Note that these are the exact rates of weak convergence. Then, for γ ∈ (0, 1/2),

S1 = T1 + T2 + oP (n−2γ ∨ n−1/2), where

T1 = −(2f ′(d0))
−1f ′′(d0)K

2n−2γ1 , T2 = −(2f ′(d0)n2)
−1

n2∑
i=1

ε+i .

Thus, the possible main terms of S1 are T1 and T2. In the same way, we can obtain

the main terms of S2 and S3 and then those of S2×S3. Finally we have S1+S2×S3 =
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T1 + T2 + T3 +R, where

T3 = (2Kβ̂1n
−γ
1 n2)

−1δd

n2∑
i=1

ε−i , R = oP (n−2γ ∨ n−1/2 ∨ nγ−5/6).

It is easy to see that among the three rates n−2γ, n−1/2 and nγ−5/6, the first, second

or last one is slowest according as γ belongs to the interval (1, 1/4), (1/4, 1/3), or

(1/3, 1/2), respectively; the first and the second are the slowest for γ = 1/4; while

the second and the last ones are the slowest for γ = 1/3. In other words, T1, T2 or T3

becomes the main term according as γ ∈ (0, 1/4), γ ∈ (1/4, 1/3) or γ ∈ (1/3, 1/2),

respectively. When γ = 1/4, both T1 and T2 become the main terms and when

γ = 1/3, both T2 and T3 become the main terms.

Then, by Theorem 3.2.1, the Lindeberg-Feller CLT for triangular arrays, Slutsky’s

Lemma and the Continuous Mapping Theorem, and noting that n
1/3
1 δd is independent

of n
−1/2
2

∑n2

i=1 ε
+
i and n

−1/2
2

∑n2

i=1 ε
−
i and that ε+i is uncorrelated with ε−i , we obtain

the results of the five cases for f ∈ F1 defined by the different ranges of γ in the

statement of the theorem.

For the purpose of illustration, we outline the case γ = 1/3, for which T2 + T3

is the main term with exact stochastic order OP (n−1/2). Thus n1/2(d̃
(2)
n − d0) and

n1/2(T2 + T3) have the same asymptotic distribution. Since(
n
1/3
1 δd, n

−1/2
2

n2∑
i=1

ε+i , n
−1/2
2

n2∑
i=1

ε−i

)
d→ (CZ, cZ1, cZ2),

where Z follows Chernoff distribution, independent of Z1, Z2 which are iid N(0, 1),

and c =
√

2σ, by Continuous Mapping Theorem, we have

n1/2(T2 + T3)
d→ −C2Z1 + (1/K)C2CZZ2.

Note that −C2Z1 can be replaced by C2Z1 since N(0, 1) and −N(0, 1) have the same

distribution. In similar fashion, we obtain the asymptotic results for the other four

cases.

Carefully examining the above proof reveals that the conclusions with γ ∈ (1/4, 1/2)

also hold for f ∈ F . Thus, it remains to show the cases f ∈ F2 and γ ∈ (1/8, 1/4].
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For f ∈ F2, consider the following Taylor’s expansions:

f(U) = f(d̂(1)n1
+Kn−γ1 ) = f(d0) + f ′(d0)(δd +Kn−γ1 )

+ (1/6)f ′′′(d0)(δd +Kn−γ1 )3 +R′U , (3.15)

f(L) = f(d̂(1)n1
−Kn−γ1 ) = f(d0) + f ′(d0)(δd −Kn−γ1 )

+ (1/6)f ′′′(d0)(δd −Kn−γ1 )3 +R′L, (3.16)

where R′U = f (4)(ξ1)(δd +Kn−γ1 )4/24, R′L = f (4)(ξ2)(δd −Kn−γ1 )4/24, ξ1 lies between

d0 and d̂
(1)
n1 +Kn−γ1 and ξ2 lies between d0 and d̂

(1)
n1 −Kn−γ1 .

Then, for γ ∈ (1/8, 1/2),

d̃(2)n − d0 = (1/β̂1)[f(d0)− (2n2)
−1

n2∑
i=1

Y +
i ] + δd

= (1/f ′(d0))

[
f(d0)− (2n2)

−1
n2∑
i=1

Y +
i

]
+ δd

+ (f ′(d0)β̂1)
−1(f ′(d0)− β̂1)

[
f(d0)− (2n2)

−1
n2∑
i=1

Y +
i

]
= S1 + S2 × S3,

where

S1 = −(6f ′(d0))
−1f ′′′(d0)δ

3
d − (2f ′(d0))

−1f ′′′(d0)δdK
2n−2γ1

−(2f ′(d0))
−1R

′+
UL − (2f ′(d0)n2)

−1
n2∑
i=1

ε+i ,

S2 = (f ′(d0)β̂1)
−1[(1/2)f ′′′(d0)δ

2
d + (1/6)f ′′′(d0)K

2n−2γ1

+(2Kn−γ1 )−1R
′−
UL + (2Kn−γ1 n2)

−1
n2∑
i=1

ε−i ],

S3 =

{
f ′(d0)δd +

f ′′′(d0)

6
δ3d +

f ′′′(d0)

2
δdK

2n−2γ1 +
1

2
R
′+
UL +

1

2n2

n2∑
i=1

ε+i

}
.

Similar to the previous argument on the exact weak convergence rates, S1 + S2 ×
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S3 = T1 + T2 +R′, where

T1 = −(2f ′(d0)n2)
−1

n2∑
i=1

ε+i , T2 = (1/β̂1)δd(2Kn
−γ
1 n2)

−1
n2∑
i=1

ε−i ,

and R′ is the sum of the remaining terms which converges to 0 faster than T1 and T2.

Then T1 becomes the main term for γ ∈ (1/8, 1/3) and the weak convergence result

for f ∈ F2 and γ ∈ (1/8, 1/4] follows easily from the Lindeberg-Feller central limit

theorem for triangular arrays and Slutsky’s lemma. This completes the proof.

3.7.3 Proofs for Results in Subsection 3.3.2

To simplify arguments, we introduce a notation on the rate of almost sure conver-

gence. Suppose {ζn} is a sequence of random variables and b ∈ R. Write ζn = Bas(b)

if nαζn converges to 0 almost surely for every α < b. It is easy to verify that

Bas(b1)+Bas(b2) = Bas(b1) and Bas(b1)Bas(b2) = Bas(b1+b2) if b1 ≤ b2 ∈ R. Note that

ζn = Bas(b) for some b > 0 implies ζn → 0 almost surely. Denote V +
i ≡ ε?+i = ε

′′?
i +ε

′?
i

and V −i ≡ ε?−i = ε
′′?
i − ε

′?
i . Recall Y ?+

i = Y
′′?
i + Y

′?
i and Y ?−

i = Y
′′?
i − Y

′?
i .

Proof of Lemma 3.3.7. The proof of Lemma 3.3.2 establishes the weak consistency of

β̂1 for the case γ ∈ (0, 1/2). In fact, under the setting of the bootstrapped two-stage

procedure, the strong consistency of β̂1 can be obtained.

From the proof of Lemma 3.3.2, it suffices to show δd, (nγ1/n2)
∑n2

i=1 ε
−
i and

R−UL/(2Kn
−γ
1 ) converge to 0 almost surely. Lemma 3.7.2 shows that δd converges

to 0 almost surely, while Lemma 3.7.7 establishes that (nγ1/n2)
∑n2

i=1 ε
−
i converges to

0 almost surely for γ ∈ (0, 1/2). Thus, it suffices to show that both nγ1RU and nγ1RL

converge to 0 almost surely for γ ∈ (0, 1). Next, we show the former; the latter follows

analogously.

Since ξ1 lies between d0 and d̂
(1)
n1 + Kn−γ1 and the latter converges to d0 almost

surely, we know ξ1 converges to d0 almost surely. On the other hand, f ′′′(·) is uniformly

bounded around d0; thus, f ′′′(ξ1) is almost surely bounded. Further, by Lemma 3.7.2,

the four terms within square brackets on the right-side of (3.14) are Bas(1 − γ),

Bas(2/3), Bas(1/3 + γ) and Bas(2γ). Thus, nγ1RU almost surely converges to 0 for

γ ∈ (0, 1).

So, for γ ∈ (0, 1/2), we have β̂1 → f ′(d0), (P − a.s.).
Next, we establish the conditional weak consistency of β̂?1 for f ∈ F . From (3.8),
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we get

β̂?1 = (2Kn−γ1 n2)
−1

n2∑
i=1

Y ?−
i = T1 + T2,

where

T1 = (2Kn−γ1 n2)
−1

n2∑
i=1

ε?−i , T2 = (2Kn−γ1 )−1f−UL.

Hence, we have T1 = T11 + T12, where

T11 = s(2Kn−γ1 n2)
−1

n2∑
i=1

(V −i − ν−)/s, T12 = (2Kn−γ1 n2)
−1

n2∑
i=1

ε−i ,

V −i = ε?−i , ν− = E?[V
−
i ] = (1/n2)

∑n2

i=1 ε
−
i , and

s2 = V ar?[V
−
i ] =

1

n2

n2∑
i=1

(ε′′i )
2 −

(
1

n2

n2∑
i=1

ε′′i

)2

+
1

n2

n2∑
i=1

(ε′i)
2 −

(
1

n2

n2∑
i=1

ε′i

)2

.

For γ ∈ (0, 1/2), gives that T12 → 0, (P − a.s.) by Lemma 3.7.7 and T11
P ?→

0, (P − a.s.) by Lemma 3.7.8 and Slutsky’s Lemma. Thus, T1
P ?→ 0, (P − a.s.).

Next, we consider T2. By the almost sure convergence of δd and R−UL/(2Kn
−γ
1 ),

we have, for γ ∈ (0, 1),

T2 = f ′(d0) + f ′′(d0)δd + (2Kn−γ1 )−1R−UL → f ′(d0), (P − a.s.).

Thus, for f ∈ F and γ ∈ (0, 1/2), T2 → f ′(d0), (P − a.s.). Therefore, we get

β̂?1
P ?→ f ′(d0), (P − a.s.).

Proof of Theorem 3.3.8. From (3.6) and (3.7),

n1/2(d̃(2)?n − d̃(2)n ) = −T1 + T2,
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where

T1 = (f ′(d0)2n2)
−1n1/2

n2∑
i=1

(
Y ?+
i − Y +

i

)
T2 = n1/2

[(
1/β̂?1 − 1/f ′(d0)

)(
f(d0)− (2n2)

−1
n2∑
i=1

Y ?+
i

)

−
(

1/β̂1 − 1/f ′(d0)
)(

f(d0)− (2n2)
−1

n2∑
i=1

Y +
i

)]
.

By the definitions of Y ′i , Y
′′
i , Y

′?
i , Y

′′?
i ,

T1 = n1/2(f ′(d0)2n2)
−1

n2∑
i=1

(
ε?+i − ε+i

)
= sn1/2(2f ′(d0)n

1/2)−1
n2∑
i=1

V +
i − ν+

s
√
n2

,

where

V +
i = ε?+i , ν+ = E?[V

+
i ] = (1/n2)

n2∑
i=1

ε+i ,

and s2 = V ar?[V
+
i ], equal to that s2 in the proof of Lemma 3.3.7.

Lemma 3.7.6 gives s2 → 2σ2, (P − a.s.) and Lemma 3.7.8 gives
∑n2

i=1(V
+
i −

ν+i )/(s
√
n2)

d?→ Z1, (P − a.s.). Note that
√
n/
√
n2 →

√
2/(1− p). Thus, Slutsky’s

lemma implies

T1
d?→ σ

f ′(d0)(1− p)1/2
Z1, (P − a.s.).

In Lemma 3.7.5 following this proof, we show that for γ ∈ (0, 1/3), T2
P ?→ 0, (P−a.s.).

Therefore, another application of Slutsky’s Lemma completes the proof.

Lemma 3.7.5. For f ∈ F and γ ∈ (0, 1/3), T2
P ?→ 0, (P − a.s.).

Proof. Let

I = β̂1 − f ′(d0), II = f(d0)− (2n2)
−1

n2∑
i=1

Y +
i ,

A = β̂?1 − β̂1, B = (2n2)
−1

n2∑
i=1

(
ε?+i − ε+i

)
,

T21 = n1/2A · I · II, T22 = n1/2I ·B,

T23 = n1/2II · A, T24 = n1/2A ·B.
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Then,

T2 = n1/2
{
−(β̂?1f

′(d0))
−1 [I + A] · [II −B] + (β̂1f

′(d0))
−1I · II

}
= (β̂1β̂

?
1f
′(d0))

−1n1/2A · I · II

−(β̂?1f
′(d0))

−1 [−n1/2I ·B + n1/2II · A− n1/2A ·B
]

= (β̂1β̂
?
1f
′(d0))

−1T21 − (β̂?1f
′(d0))

−1 [−T22 + T23 − T24] .

It will be shown that T2i
P ?→ 0, (P − a.s.), i = 1, 2, 3, 4 for γ ∈ (0, 1/3). Thus, by

Lemma 3.3.7 and Slutsky’ Lemma, the conclusion of this lemma holds.

We establish next the convergence of the terms T2i. From (3.5), (3.8), the defini-

tions of Y ′i , Y
′′
i , Y ′?i and Y ′′?i , and the Taylor’s expansions of f(L) and f(U) ((3.12)

and (3.13)), we have

A = (2Kn2)
−1nγ1

n2∑
i=1

(
ε?−i − ε−i

)
= (2Kn

1/2
2 )−1nγ1sn

−1/2
2

n2∑
i=1

(
V −i − ν−

)
/s,

B = (2n2)
−1

n2∑
i=1

(
ε?+i − ε+i

)
= (2n

1/2
2 )−1sn

−1/2
2

n2∑
i=1

(
V +
i − ν+

)
/s,

I = β̂1 − f ′(d0) = f ′′(d0)δd + (2K)−1nγ1R
−
UL + (2Kn2)

−1nγ1

n2∑
i=1

ε−i ,

II = f(d0)− (2n2)
−1

n2∑
i=1

Y +
i

= −f ′(d0)δd − (1/2)f ′′(d0)
(
δ2d +K2n−2γ1

)
− (1/2)R+

UL − (1/n2)

n2∑
i=1

ε+i .

First consider T21. We have

T21 = n1/2A · I · II = T ′21sn
−1/2
2

n2∑
i=1

(
V −i − ν−

)
/s,

where T ′21 = Cn · I · II and Cn = n1/2nγ1(2Kn
1/2
2 )−1. Lemmas 3.7.6 and 3.7.8 give

s→
√

2σ, (P − a.s.), n−1/22

n2∑
i=1

(
V −i − ν−

)
/s

d?→ Z2, (P − a.s.).

Next, it will be shown that T ′21 converges to 0 P -almost surely for γ ∈ (0, 5/12).

Then, an application of Slutsky’s Lemma gives T21
P ?→ 0, (P − a.s.).
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With the notation introduced at the beginning of this subsection and by Lemmas

3.7.7 and 3.7.2, we have, for γ > 0, nγ1 = Bas(−γ), (δd) = Bas(1/3),
∑n2

i=1(ε
′′
i +

ε′i)/n2 = Bas(1/2) and
∑n2

i=1(ε
′′
i − ε′i)/n2 = Bas(1/2). Both RU and RL are equal

to Bas(1) + Bas(γ + 2/3) + Bas(2γ + 1/3) + Bas(3γ). Thus we have Cn = Bas(−γ),

I = Bas(1/3)+Bas(−γ)[Bas(1)+Bas(γ+2/3)+Bas(2γ+1/3)+Bas(3γ)]+Bas(1/2−
γ) = Bas(1/3) +Bas(2γ) +Bas(1/2− γ) and II = Bas(1/3) + [Bas(2/3) +Bas(2γ)] +

(Bas(1) +Bas(γ + 2/3) +Bas(2γ + 1/3) +Bas(3γ)) +Bas(1/2) = Bas(1/3) +Bas(2γ).

Thus, for γ ∈ (0, 1/2),

T ′21 = Cn · I · II

= Bas(−γ)× [Bas(1/3) + (Bas(2γ)) +Bas(1/2− γ)]

×{Bas(1/3) +Bas(2γ)}

= Bas(2/3− γ) +Bas(1/3 + γ) +Bas(5/6− 2γ) +Bas(3γ).

It is easy to see that when γ ∈ (0, 5/12), the above upper bounds 1/2 − γ, 1/4 + γ,

3/4 − 2γ, and 3γ are all positive. This implies that T ′21 converges to 0 P -almost

surely for γ ∈ (0, 5/12). Therefore, for γ ∈ (0, 5/12), T21 converges to 0 in probability

(P − a.s.).
Similarly, we can show that T2i, i = 2, 3 or 4, converges to 0 in probability (P −

a.s.), but with different intervals for γ. We next list these results. For γ ∈ (0, 1/2),

T22 and T24 converge to 0 in probability (P − a.s.) and for γ ∈ (0, 1/3), T23 converges

to 0 in probability (P − a.s.). It is worthwhile to note that F can be considered

directly because the Bas(1/3 − γ) term in T23 does not depend on f ′′(d0). Since

1/3 < 5/12 < 1/2, T2i converges to 0 in probability (P − a.s.) for i = 1, 2, 3, 4 and

γ ∈ (0, 1/3). Thus, for f ∈ F and γ ∈ (0, 1/3), T2 converges to 0 in probability

(P − a.s.).

Proof of Theorem 3.3.9. Consider 0 < γ < 1/3. Given an arbitrary subsequence

{nk}∞k=1 of {n}∞n=1, let n1 = np and nk,1 = nkp. By Theorem 3.2.1, we know that

nγ1(δd) ≡ (np)γ(d̂
(1)
np − d0)

P→ 0. It follows, by the relationship between convergence in

probability and almost sure convergence (for example, see Theorem 20.5 in Billings-

ley (1995)), that there exists {nk(i)}∞i=1, a further subsequence of {nk}, such that

nγk(i),1(d̂
(1)
nk(i),1 − d0)→ 0, (P − a.s.). It now suffices to show that

n
1/2
k(i)(d̃

(2)?
nk(i)
− d̃(2)nk(i)

)
d?→ C2Z1, (P − a.s.).
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Let nk(i),2 = nk(i)(1−p)/2. Write ζnk(i)
= Bas(b) if nαk(i)ζnk(i)

converges to 0 almost

surely for every α < b. As in the proof of Theorem 3.3.8, write n
1/2
k(i)(d̃

(2)?
nk(i) − d̃

(2)
nk(i))

as −T1 + T2, where both T1 and T2 are now indexed by nk(i). It is then not difficult

to show that the conditional distribution of T1 converges to that of C2Z1 P -almost-

surely by replacing n, n1 and n2 by nk(i), nk(i),1 and nk(i),2 respectively, and essentially

repeating the steps in Theorem 3.3.8.

It remains to show that T2
P ?→ 0 (P − a.s.). The proof of this follows from that

of Lemma 3.7.5 by replacing n, n1 and n2 by nk(i), nk(i),1 and nk(i),2 respectively, and

noting that d̂
(1)
nk(i),1 − d0 = Bas(1/3).

3.7.4 Some Auxiliary Lemmas

First we state a special almost sure convergence result on a triangular array of

iid mean zero random variables. For the general result, see Proposition in Hu et al.

(1989).

Lemma 3.7.6. If a triangular array of random variables {Xni}mni=1 for n ∈ N are iid

copies of a mean 0 random variable X with mn increases to ∞ as n goes to ∞ and

E|X|2p <∞ for some p ∈ [1, 2), P
(

limn→∞m
−1/p
n

∑mn
i=1Xni = 0

)
= 1.

Suppose a triangular array of random variables {εni}mni=1 for n ∈ N are iid copies

of ε with mean 0, where mn increases to ∞ as n goes to ∞. Then Lemma 3.7.6 tells

that ε̄n = (1/mn)
∑mn

i=1 εni and (1/mn)
∑mn

i=1 ε
2
ni converge to 0 and σ2 almost surely

given Eε2 <∞ and Eε4 <∞, respectively. Further, the following lemma shows that

n1/2 is an upper boundary rate of the almost sure convergence of ε̄n.

Lemma 3.7.7. If Eε4 <∞, P (limn→∞m
α
n ε̄n = 0) = 1 for each α < 1/2.

Proof. A direct application of Lemma 3.7.6 gives that if E|ε|2p <∞ for some p ∈ [1, 2),

P
(

limn→∞m
1−1/p
n ε̄n = 0

)
= 1. On the other hand, Eε4 <∞ implies that E|ε|2p <∞

for every p ∈ [1, 2). Thus, the conclusion follows.

Suppose {ε′i}ni=1, {ε′′i }ni=1, {ε
′?
i }ni=1 and {ε′′?i }ni=1 are the second-stage random errors

and the corresponding bootstrapped ones defined in Subsection 3.3.2. Note that the

subscripts of these random variables indicating the sample size are suppressed for

the simplicity of notation and that here “n” is understood as a dummy variable,

not the total sample size. Recall V +
i = ε′′?i + ε′?i , ν+ = E?[V

+
i ], V −i = ε′′?i − ε′?i and

ν− = E?[V
−
i ], where E? means the expectation conditioning on the second-stage data.
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Since V ar?[V
+
i ] = V ar?[V

−
i ], we denote both as s2. The following lemma shows that

both V +
i and V −i are asymptotically normal P -almost surely.

Lemma 3.7.8. If Eε6 <∞, we have

1√
n

n∑
i=1

V +
i − ν+

s

d?→ Z, (P − a.s.), 1√
n

n∑
i=1

V −i − ν−

s

d?→ Z, (P − a.s.),

where Z follows a N(0, 1) distribution.

Proof. We only prove the former and the latter can be shown similarly. Let ξni =

(V +
i − ν+)/(

√
ns), for i = 1, 2, · · · , n, and Sn =

∑n
i=1 ξni. It is easy to see that

E?[ξni] = 0 and V ar?[Sn] = 1. Thus, it suffices to check that the following Lindeberg

condition holds for each η > 0 (see, for example, Theorem2 on Page 334 of Shiryaev

(1995)):
∑n

i E?[ξ
2
ni{|ξni| ≥ η}]→ 0, (P − a.s.). Note that

n∑
i

E?[ξ
2
ni{|ξni| ≥ η}] = E?

([
(V +

1 − ν+)/s
]2 {|(V +

1 − ν+)/s)| ≥
√
nη
})

≤ (
√
nη)−1|s|−3E?|V +

1 − ν+|3,

s2 =
1

n

n∑
i=1

(ε′′i )
2 −

(
1

n

n∑
i=1

ε′′i

)2

+
1

n

n∑
i=1

(ε′i)
2 −

(
1

n

n∑
i=1

ε′i

)2

→ 2σ2, (P − a.s.),

then it is sufficient to show limn→∞E?|V +
1 − ν+|3 <∞, (P − a.s.). Since

E?|V +
1 − ν+|3 ≤ E?

[
|V +

1 |3 + |ν+|3 + 3|V +
1 |2|ν+|+ 3|V +

1 ||ν+|2
]

= E?|V +
1 |3 + 3|ν+|E?|V +

1 |2 + 3|ν+|2E?|V +
1 |+ |ν+|3,

and ν+ = 1
n

∑n2

i=1 (ε′′i + ε′i) → 0, (P − a.s.), it suffices to show limn→∞E?|V +
1 |k <

∞, (P − a.s.), for k = 1, 2, 3. We only need to show the case where k = 3. From

(a+ b)3 ≤ 4(a3 + b3) for nonnegative a and b,

E?|V +
1 |3 =

1

n2

n∑
i=1

n∑
j=1

|ε′′i + ε′j|3 ≤ 4

(
1

n

n∑
i=1

|ε′′i |3 +
1

n

n∑
i=1

|ε′i|3
)
.

By Lemma 3.7.6, both (1/n)
∑n

i=1 |ε′′i |3 and (1/n)
∑n

i=1 |ε′i|3 converges almost surely

under the assumption Eε6 <∞. Therefore, limn→∞E?|V +
1 |3 <∞, (P − a.s.), which

completes the proof.
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CHAPTER IV

Two Stage Nonparametric Procedures for

Estimating A Threshold Value of A Regressor

4.1 Introduction

The basic problem in this chapter is the same as that in the previous chapter.

For completeness, we restate it below with slightly different notations. Consider the

regression model

Y = m(X) + ε, (4.1)

where the design point X takes values in [a, b], the regression function m is non-

decreasing and the random error ε has mean 0 and finite variance σ2. Suppose there

exist d0 ∈ (a, b) and θ0 ∈ (m(a),m(b)) such that d0 = m−1(θ0) = inf{x ∈ (a, b) :

m(x) ≥ θ0}. It is of interest to estimate d0 given θ0 in a design setting where design

points can be chosen.

Since we have a design setting under consideration, we can first spend part of the

sample points to identify a small interval around d0 and then allocate the remaining

sample points within the interval to estimate m locally. This two-stage idea has

been implemented in the previous chapter, where we propose the hybrid two-stage

procedure with isotonic regression at stage one and local linear approximation for

m at stage two to accelerate the convergence rate of the resulting estimator to the

parametric rate
√
n. To fully exploit the advantage of the local linear approximation,

the second-stage design points are evenly allocated at the two ends of the small

interval around d0.

If m is locally linear in a neighborhood of d0, the local linear approximation

approach usually works well in practice. However, ifm is locally very nonlinear around
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d0 and at the same time the sample size is not large enough, the local linear fitting over

a relatively long second-stage sampling interval would bring significant bias into the

estimate of d0, which would further cause low coverage rates for confidence intervals.

To remedy this situation, our idea is to estimate m at the second stage purely non-

parametrically. More specifically, at stage two, we allocate the second-stage design

points within the second-stage sampling interval, for example evenly, and then re-

estimate m over the interval by isotonic regression. Although this two-stage isotonic

regression procedure (TSIRP) produces an estimator for d0 with a slower convergence

rate than the parametric one
√
n, it usually handles well the case where m is locally

quite nonlinear at d0 in practice. This TSIRP can be extended to a K-stage isotonic

regression procedure (KSIRP) by repeating the zoom-in step in TSIRP. The conver-

gence rate of the estimator for d0 from KSIRP strictly ascends to the parametric rate

as the number of stages K increases to infinity. This discovery reveals an essential

difference in terms of convergence rates between parametric methods and a special

nonparametric method: isotonic regression. Naturally, this discovery drives us to ask

a further question: can a K-stage purely nonparametric procedure achieve or even

exceed the parametric rate if a nonparametric method with a one-stage convergence

rate faster than n1/3, the one-stage convergence rate for isotonic regression, is utilized

at each stage? We have considered smoothed isotonic regression, a combination of

isotonic regression and kernel smoothing, whose one-stage convergence rate can reach

n2/5. Unfortunately, it turns out that such a K-stage smoothed isotonic regression

procedure can not exceed the parametric rate. This, to some extent, indicates that the

difference between parametric approaches and nonparametric ones is so fundamental

that continuously improving data quality can not make nonparametric approaches

outperform parametric ones. However, a heuristic derivation shows that a two-stage

smoothed isotonic regression procedure (TSSIRP) can already achieve the parametric

rate
√
n, just like the hybrid two-stage procedure.

We also introduce variants of practical TSIRP and TSSIRP. A simulation study

shows that practical TSSIRP usually produces somewhat better confidence intervals

for d0 than practical TSIRP when regression functions are well behaved. However,

practical TSIRP continues to exhibit adequate performance with irregular regression

functions while practical TSSIRP suffers significantly. Therefore, practical TSIRP

produces a stable choice that, by and large, circumvents the need for model checking,

which is of practical interest.
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We introduce preliminary one-stage isotonic regression procedure and one-stage

smoothed isotonic regression procedure in Section 4.2. In Section 4.3, we propose the

two-stage isotonic regression and smoothed isotonic regression procedures. Practical

variants of the one-stage and two-stage procedures are introduced in Section 4.4 and

a simulation study is carried out in Section 4.5. After a real data analysis in Section

4.6, Section 4.7 concludes with discussion and the Appendix 4.8 contains technical

proofs.

4.2 Preliminaries

We begin with an introduction of a one-stage isotonic regression plan (OSIRP)

and a one-stage smoothed isotonic regression plan (OSSIRP) for estimating d0. Al-

though OSIRP has been described in the previous chapter, to make this chapter

self-contained, we next introduce it again.

4.2.1 One-Stage Isotonic Regression Procedure (OSIRP)

We first consider a one-stage isotonic regression procedure (OSIRP) for estimating

d0 and constructing confidence intervals for it.

Suppose the sample size is n and the fixed design points {Xi}ni=1 follow a distri-

bution G defined on [a, b]. This means that there exists a distribution G such that

supx∈[a,b] |Fn(x) − G(x)| = o(n−1/3), where Fn is the empirical distribution of the

design points. We adopt this fixed design in this work because it is usually more

popular than a random design in practice. The case with a random design can be

similarly handled. For simplicity of notation, we assume that the design points Xi’s

have already been increasingly sorted. After obtaining the corresponding responses

{Yi}ni=1, we have the one-stage data {(Xi, Yi)}ni=1.

To rigorously state the theoretical results, the following assumptions are needed:

(A1) The derivative of the regression function m′ is continuous in a neighborhood

of d0 and m′(d0) > 0

(A2) The Lebesgue density of G, denoted by g, is continuous and g(d0) > 0.

We denote the above two assumptions together by (A).
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The isotonic regression of m at Xi’s is given by

{m?
i }ni=1 = argmin

m1≤m2≤···≤mn

n∑
i=1

(Yi −mi)
2. (4.2)

The minimizer {m?
i } exists uniquely. (For example, see Chapter 1 of Robertson et al.

(1988).) We define the isotonic regression of m as the following right continuous

function

mI(x) =


m?

1 if x ∈ [a,X1],

m?
i if x ∈ [Xi, Xi+1), i = 1, 2, · · · , n− 1,

m?
n if x ∈ [Xn, b].

(4.3)

Then, for θ0 ∈ (m(a),m(b)), the one-stage isotonic regression estimator of d0 is given

by

dI = m−1I (θ0) = inf{x ∈ [a, b] : mI(x) ≥ θ0}, (4.4)

where inf{∅} = b. Its asymptotic distribution is given in the following Theorem.

Theorem 4.2.1. Under assumption (A), we have

n1/3(dI − d0)
d→ CdIg(d0)

−1/3Z, (4.5)

where CdI = (4σ2/m′(d0)
2)

1/3
and Z follows the standard Chernoff distribution.

Remark 4.2.2. The standard Chernoff distribution is the distribution of

Z = argmin
t∈R

(W (t) + t2),

where {W (t), t ∈ R} is a two-sided Brownian Motion with W (0) = 0. Accurate

numerical quantiles are available in Groeneboom and Wellner (2001).

The proof of Theorem 4.2.1 follows by a minor adaptation of the arguments from

Theorem 1 in Banerjee and Wellner (2005). A sketch of this proof is provided in

Appendix 4.8.1. From Theorem 4.2.1 and the symmetry of the Chernoff distribution,

the theoretical Wald-type 1− α asymptotic confidence interval of d0 is given by

[dI ± n−1/3CdIg(d0)
−1/3q(Z, 1− α/2)], (4.6)

where q(ξ, p) is the pth quantile of a random variable ξ.
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Next, consider log-likelihood ratio type (LR-type) confidence intervals for d0. The

pair of hypotheses of interest are

H0 : m−1(θ0) = x0 ↔ Ha : m−1(θ0) 6= x0. (4.7)

Then, the LR-type test statistic is given by

2 log λI = 2 log λI(x0) = 2 [ln(mI)− ln(mIc)] , (4.8)

where

ln(m) = − 1

2σ2

n∑
i=1

(Yi −m(Xi))
2, (4.9)

and mIc is the constrained isotonic regression of m under the above null hypothesis. It

is known thatmIc uniquely exists (For example, see Banerjee (2000)). The asymptotic

distribution of 2 log λI is given in the following Theorem.

Theorem 4.2.3. Under assumption (A) and the null hypothesis H0 : m−1(θ0) = x0,

we have

2 log λI
d→ D,

where D is a pivot random variable.

Remark 4.2.4. The theoretical characterization of D is derived in Banerjee and Well-

ner (2001).

From Theorem 4.2.3, the LR-type (1 − α) asymptotic confidence region of d0 is

given by

{x ∈ [a, b] : 2 log λI(x) ≤ q(D, 1− α)}. (4.10)

This LR-type confidence region is an interval. It is usually asymmetric around dI ,

unlike the Wald-type confidence interval (4.6). Note that in the Wald-type confidence

interval (4.6), both m′(d0) and σ are unknown. On the other hand, in the LR-type

confidence interval (4.10), only σ is unknown. Since it is usually difficult to estimate

m′(d0) well without a large sample, the LR-type confidence interval offers practical

advantages.

Thus, there are two kinds confidence intervals for d0, the Wald-type and LR-type

ones. The corresponding plans are denoted by OSIRP-Wald and OSIRP-LR, which

are briefly summarized as follows.
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• Procedure for OSIRP-Wald:

1. Generate the fixed design points {Xi}ni=1 and obtain the corresponding

responses {Yi}ni=1.

2. Compute the one-stage isotonic regression mI of m with the one-stage data

{(Xi, Yi)}.

3. Calculate the one-stage isotonic regression estimator dI of d0 from mI and

θ0.

4. Construct Wald-type confidence intervals by (4.6).

• Procedure for OSIRP-LR:

1. Do the first two steps in OSIRP-Wald.

2. Compute the constrained isotonic regression mIc of m with a given x0 ∈
(a, b).

3. Construct LR-type confidence intervals by (4.10).

4.2.2 One-Stage Smoothed Isotonic Regression Procedure (OSSIRP)

From Theorem 4.2.1, we see that the convergence rate of the isotonic regression

estimator dI of d0 in OSIRP is only n1/3. In order to increase the convergence rate,

we next consider a one-stage smoothed isotonic regression procedure (OSSIRP).

Suppose we have the same one-step data {(Xi, Yi)} as in OSIRP. After obtain-

ing the one-stage isotonic regression mI of m, we compute the smoothed isotonic

regression mIs with a kernel K and a bandwidth hn. More specifically, the smoothed

isotonic regression is given by

mIs(x) =
n∑
i=1

Wi(x)mI(Xi)/
n∑
i=1

Wi(x), for x ∈ [a, b], (4.11)

where Wi(x) = K((x−Xi)/hn). When K is log concave, mIs is increasing. (See, for

example, Remark 2.1 in Mukerjee (1988).) Then, the one-stage smoothed isotonic

regression estimator of d0 is dIs = m−1Is (θ0). For further analysis, we formulate hn as

cn−γ with c > 0 and γ > 0 and make the following assumptions:
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(B1) The regression functionm is three-times continuously differentiable andm′(d0) >

0.

(B2) The design density g is three-times continuously differentiable and g(d0) > 0.

(B3) The kernel function K is a symmetric density function around 0 defined on a

compact interval and has log-concavity.

We denote these three assumptions together as (B). Then, the following theorem

gives the asymptotic distributions of dIs.

Theorem 4.2.5. Suppose assumption (B) holds. For γ = 1/5, we have

n2/5 (dIs − d0)
d→ BdIs + CdIsN(0, 1); (4.12)

whereas for γ ∈ (1/5, 1/3), we have

n(1−γ)/2 (dIs − d0)
d→ CdIsN(0, 1), (4.13)

where

BdIs = −m′(d0)−1c2B(d0), CdIs = m′(d0)
−1
√
κ/(cg(d0))σ, κ =

∫
K2(t)dt,

and

B(x) = (2g′(x)m′(x) + g(x)m′′(x)) /(2g(x))

∫
t2K(t)dt.

A sketch of the proof of Theorem 4.2.5 is provided in Appendix 4.8.1.

Remark 4.2.6. The restriction γ < 1/3 is due to the fact that the smoothing band-

width hn should be asymptotically larger than the automatic bandwidth of the iso-

tonic regression, which is of order n−1/3, to make the smoothing step effective. For

γ > 1/3, the smoothing step is ignorable and mIs = mI holds asymptotically.

By (4.12) of Theorem 4.2.5, with the bandwidth hn = cn−1/5, the theoretical 1−α
Wald-type confidence interval of d0 is given by

[
dIs − n−2/5BdIs ± n−2/5CdIszα/2

]
, (4.14)

where zα/2 is the upper α/2 quantile of N(0, 1). Similarly, by (4.13) of Theorem

4.2.5, with hn = cn−γ and γ ∈ (1/5, 1/3), the theoretical 1− α Wald-type confidence
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interval of d0 is given by

[
dIs ± n−(1−γ)/2CdIszα/2

]
. (4.15)

Since the convergence rate of dIs for the case where hn = cn−1/5 is faster, the former

confidence interval (4.14) is asymptotically shorter.

A brief summary of OSSIRP is as follows:

• Procedure of OSSIRP

1. Follow the first two steps in OSIRP-Wald.

2. Compute the smoothed one-stage isotonic regression mIs of m with the

one-stage data.

3. Calculate the one-stage isotonic regression estimator dIs of d0.

4. Construct Wald-type confidence intervals by (4.14) or (4.15).

4.3 Two-Stage Procedures

Although the convergence rate of dIs can be n2/5, faster than that of dI , it is still

slower than the parametric rate
√
n. Since we are in a design setting, we can further

improve the convergence rate by collecting data in two stages.

Specifically, at stage one, an initial isotonic regression (IR) or smoothed isotonic

regression (SIR) estimator of d0 is obtained by using a limited number of sample

points. At stage two, all the remaining design points are allocated in a neighborhood

of d0 to increase the sample resolution around d0 and the corresponding second-stage

responses are obtained. Then, the convergence rates of the second-stage IR and

SIR estimators of d0 are expected to increase since they both depend on the sample

resolution around d0.

There are four combinations of the two estimation methods IR and SIR in two

stages. In this work, we mainly consider two of them, where IR is used in the first

stage for its practical simplicity and without loss of theoretical generality. The other

two combinations with SIR at the first stage can be similarly considered. We call

the procedure where IR is also used at the second stage as the two-stage isotonic

regression procedure (TSIRP) and the procedure where SIR is used at the second

109



stage as the two-stage smoothed isotonic regression procedure (TSSIRP). Next, we

consider TSIRP and TSSIRP in detail.

4.3.1 Two-Stage Isotonic Regression Procedure I + I (TSIRP)

We first consider the two-stage isotonic regression procedure (TSIRP). Suppose

the first-stage sample proportion is p ∈ (0, 1) and denote the first and second-stage

sample sizes by n1 = bnpc and n2 = n − n1, respectively. In the first stage, the

sample {(X1,i, Y1,i)}n1
i=1 with a design density g1 on [a, b] is used with OSIRP to obtain

the first-stage IR estimator d1,I of d0. Then, a neighborhood of d0 for the second-

stage sampling is specified as [L1, U1] = [d1,I ± C1n
−γ1

1 ] ∩ [a, b] with C1 > 0 and

0 < γ1 < 1/3. Note that γ1 being less than 1/3 ensures that [L1, U1] contains d0 with

probability going to one. Next, the remaining design points {X2,i}n2
i=1 are allocated

in the second-stage sampling interval [L1, U1] with a Lebesgue design density g2 and

the corresponding second-stage responses {Y2,i}n2
i=1 are obtained. The density g2 on

[L1, U1] can be defined as g2(x) = (C1n
−γ1

1 )−1ψ((x − d1,I)/(C1n
−γ1

1 )) with ψ being a

positive and continuous Lebesgue density on [−1, 1]. This assumption on ψ is denoted

by (A3) and included in the assumption set (A) for TSIRP. From the second-stage

data, an upgraded estimator m2,I of m is computed over [L1, U1]. The second-stage

IR estimator of d0 is d2,I = m−12,I(θ0) and its asymptotic distribution is given in the

following proposition.

Proposition 4.3.1. Under assumption (A), we have

n(1+γ1)/3(d2,I − d0)
d→ Cd2,I

Z,

where

Cd2,I
= CdI

(
C1

(1− p)pγ1ψ(0)

)1/3

.

A sketch of the proof of Proposition 4.3.1 is given in Appendix 4.8.3.

From Proposition 4.3.1, the theoretical Wald-type 1 − α asymptotic confidence

interval of d0 is given by

[d2,I ± n−(1+γ1)/3Cd2,I
q(Z, 1− α/2)]. (4.16)

From Proposition 4.3.1 and Theorem 4.2.1, both d2,I and dI are consistent esti-

mators of d0. The rate of convergence of d2,I is n(1+γ1)/3, faster than that of dI , which
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is n1/3. In fact the asymptotic relative efficiency (ARE) of d2,I with respect to dI is

ARE(d2,I , dI) =
s.d.(dI)

s.d.(d2,I)
=

(
(1− p)pγ1ψ(0)

C1g(0)

)1/3

nγ1/3 →∞ as n→∞.

Thus, d2,I is a superior estimator for d0 than dI , in terms of asymptotic mean squared

error.

Remark 4.3.2. One intuition behind the result in Proposition 4.3.1 is as follows. From

Theorem 4.2.1, we have

(g(d0)n)1/3(d1,I − d0)
d→ CdIZ, (4.17)

where g(d0)n can be viewed as the sample resolution at d0. On the other hand, since

the second-stage sampling interval (L1, U1) contains d0 with probability increasing

to one as the sample size goes to infinity, we can roughly think that d0 ∈ (L1, U1).

Thus, the second-stage sample resolution around d0 becomes g2(d0)n2 in TSIRP. Since

isotonic regression is essentially a kind of local average of the responses, according to

Theorem 4.2.1, we have

(g2(d0)n2)
1/3(d2,I − d0)

d→ CdIZ, (4.18)

which leads to Proposition 4.3.1 by noting that ψ((d0 − d1,I)/(C1n
−γ1

1 ))
P→ ψ(0) for

γ ∈ (0, 1/3).

Similarly to OSIRP, we also consider the second-stage LR-type confidence interval

of d0 with the hypotheses (4.7). After obtaining the second-stage data {(Xi, Yi)} and

the second-stage isotonic regression m2,I , we compute the constrained second-stage

isotonic regression, m2,Ic, under the null hypothesis H0. Then, the LR-type test

statistic is given by

2 log λ2,I = 2 log λ2,I(x0) = 2 [ln(m2,I)− ln(m2,Ic)] , (4.19)

where

ln(m) = − 1

2σ2

n2∑
i=1

(Y2,i −m(X2,i))
2. (4.20)

and its asymptotic distribution is given in the following Proposition.
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Proposition 4.3.3. Under assumption (A) and the null hypothesis H0: m
−1(θ0) = x0,

2 log λ2,I
d→ D.

From Proposition 4.3.3, the LR-type (1− α) asymptotic confidence interval of d0

is given by

{x ∈ [a, b] : 2 log λ2,I(x) ≤ q(D, 1− α)}. (4.21)

Similar to OSIRP, there are two kinds of confidence intervals for d0 in TSIRP, the

Wald-type and LR-type ones. The corresponding plans are denoted by TSIRP-Wald

and TSIRP-LR, which are briefly described next:

• Procedures of TSIRP-Wald and TSIRP-LR:

1. Implement OSIRP with the first-stage sample of size n1 and obtain an

initial estimator d1,I of d0.

2. Specify the second-stage sampling interval [L1, U1] and generate the second-

stage data.

3. Compute the unconstrained second-stage isotonic regression m2,I (and the

constrained one m2,Ic) of m from the second-stage data.

4. Construct the Wald-type confidence intervals (4.16) (or the LR-type ones

(4.21)).

4.3.1.1 Using Two Stage Data

In the previous TSIRP, only the second-stage data are used to estimate d0 and

construct confidence intervals after a small neighborhood around d0 is identified. In

fact, after generating the second-stage data, it is more practical to first pool the

two-stage data together and then compute the two-stage or pooled estimator of d0

and the LR-type test statistic. Denote them as dI,pooled and 2 log λ̂I,pooled, respectively.

Asymptotically speaking, since both dI,pooled and 2 log λI,pooled depend on the sam-

ple resolution around d0, which is determined by the second-stage data, they are

equivalent to d2,I and 2 log λ2,I . More specifically, we have the following two proposi-

tions.
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Proposition 4.3.4. Under assumption (A), we have

n(1+γ1)/3(dI,pooled − d0)
d→ CdI,pooledZ,

where CdI,pooled = Cd2,I
.

Proposition 4.3.5. Under assumption (A) and the null hypothesis H0 : m−1(θ0) = d0,

2 log λI,pooled
d→ D.

From Propositions 4.3.4 and 4.3.5, the theoretical Wald-type and LR-type 1− α
asymptotic confidence intervals for d0 are given by

[dI,pooled ± n−(1+γ1)/3CdI,pooledq(Z, 1− α/2)], (4.22)

and

{x ∈ [a, b] : 2 log λI,pooled(x) ≤ q(D, 1− α/2)} . (4.23)

Although dI,pooled and 2 log λI,pooled are asymptotically equivalent to d2,I and 2 log λ2,I ,

they usually have better finite sample properties since they use more sample points.

Remark 4.3.6. Our intuition for the result in Proposition 4.3.4 is similar to that in

Remark 4.3.2. When two-stage data are used, the sample resolution at d0 becomes

g1(d0)n1 + g2(d0)n2. Thus, similar to (4.18), we get

(g1(d0)n1 + g2(d0)n2)
1/3(dI,pooled − d0)

d→ CdIZ,

which leads to Proposition 4.3.4 by noting g1(d0)n1 = o(g2(d0)n2).

4.3.1.2 Multistage Isotonic Regression Procedure

It is straightforward to extend TSIRP to a multistage isotonic regression proce-

dure. Specifically, the M -stage procedure with M ≥ 2 is given by:

1. Specify the ith stage sample proportion pi > 0 such that
∑M

i=1 pi = 1. Then,

define the ith stage sample size ni accordingly.

2. Generate the ith stage data over [Li−1, Ui−1] for 1 ≤ i ≤M − 1 with [L0, U0] =

[a, b].
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3. Obtain the ith-stage isotonic regression estimator di,I of d0 with the ith-stage

data.

4. Specify the (i + 1)th-stage sampling interval [Li, Ui] = [di,I ± Cin
−γi
i ], where

Ci > 0, γi ∈ (0, ri) and nrii is the convergence rate of di,I .

5. Repeat the above steps until i = M . Then compute the Mth-stage isotonic

regression estimator dM,I of d0.

We assume that assumption (A1) holds in the M -stage procedure. Then, one

characterization of the convergence rate of dM,I is given in the following proposition.

Proposition 4.3.7. The convergence rate of dM,I is always less than 1/2. However, it

increasingly converges to 1/2 as M goes to infinity.

Proof. The convergence rate r1 of d1,I is 1
3
, so the order of the length of the second-

stage sampling interval γ1 is in (0, 1
3
). The convergence rate r2 of d2,I is 1

3
(1 + γ1), so

the order of the length of the third-stage sampling interval γ2 is in (0, 1
3
(1 + γ1)). In

this way, we can see that the convergence rate rk of dk,I is 1
3
(1 + γk−1), and γk is in

(0, 1
3
(1+γk−1)), for any k ≥ 2. Now since γ1 <

1
2
, we have γ2 < r2 = 1

3
(1+γ1) <

1
2
. In

this way, we have rk = 1
3
(1 + γk−1) <

1
2

for any k ≥ 2, which means the convergence

rate of dM,I is less than 1
2
.

On the other hand, for a small ε > 0, in order to find a k such that rk+1 =
1
3
(1 + γk) >

1
2
− ε, it is sufficient to have a γk such that γk >

1
2
− 3ε. In order to find

such a γk, it is sufficient to have a γk−1 such that rk = 1
3
(1 + γk−1) >

1
2
− 3ε, which

leads to γk−1 >
1
2
− 9ε. In this way, we can see that it is sufficient to find a γk−l such

that γk−l >
1
2
− 3l+1ε for some integers k > l. Letting 1

2
− 3l+1ε < r1 = 1/3 gives

l > −log6ε3 − 1. This means if k > −log6ε3 , we have rk+1 >
1
2
− ε, which means that

the convergence rate of dM,I can be larger than 1/2− ε with M large enough.

Recall that rk = (1/3)(1 + γk−1) is the convergence rate of dk,I with γ0 = 0 and

that γk < rk determines the order of the length of the (k + 1)th-stage sampling

interval. Now suppose γk has the form γk = αrk where α ∈ (0, 1) is a constat. Then,

the asymptotic behavior of rk is is given in the following proposition.

Proposition 4.3.8. If γk = αrk = α(1 + γk−1)/3 for k ∈ N with γ0 = 0 and α ∈ (0, 1),

then the convergence rate rk converges to 1/(3− α), which is less than 1/2.
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Proof. Let b = α/3
1−α/3 , then γk = α · 1

3
(1 + γk−1) leads to (γk − b) = α

3
(γk−1− b). Thus

γk = α
3−α − (α

3
)k( α

3−α) → α
3−α as k → ∞. So the convergence rate rk converges to

1
3
(1 + α

3−α) = 1
3−α <

1
2
.

Suppose there exists another one stage regression estimator of d0 whose conver-

gence rate is η > 0. If this regression method can be extended to a multistage plan

like the isotonic regression, keeping the same pattern on the sequence of convergence

rates, that is, rk = η(1 + γk−1) with k ≥ 1 and γ0 = 0, then, one limit behavior is

provided in the following Proposition.

Proposition 4.3.9. If η > 1/3, then there exists an interger M such that the conver-

gence rate rM of the estimator of the M -stage plan is greater than 1/2.

Proof. It is sufficient to show that there exists a k ∈ N such that η(1 + γk) > 1/2,

which means γk >
1
2η
− 1. This is equivalent to η(1 + γk−1) >

1
2η
− 1, which means

γk−1 >
1

2η2 − 1
η
− 1. In this way, we can see that a sufficient condition is that there

exist 1 ≤ l < k such that

γk−l >
1

2ηl+1
− 1

ηl
− · · · − 1

η
− 1.

Letting the right side of the above inequality be less than η gives

ηl+2 + ηl+1 + · · ·+ η > 1/2.

Now since η > 1/3, we have

lim
l→∞

l∑
i=1

ηi =
η

1− η
>

1

2
,

which means there always exists a large M such that rM > 1/2.

Remark 4.3.10. Proposition 4.3.9 perhaps can be used to show the nonexistence of

such a nonparametric regression method, whose one stage convergence rate is larger

than 1/3 and which can be extended to a multistage plan without change of the pat-

tern of convergence rates, if, on the other hand, we can prove that all nonparametric

regressions methods can at most achieve the parametric rate
√
n.
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4.3.2 Two-Stage Smoothed Isotonic Regression Procedure I+Is (TSSIRP)

From Theorem 4.3.1, we know that the convergence rate of the isotonic regression

estimator d2,I of d0 in TSIRP is n(1+γ1)/3. In order to further increase the conver-

gence rate, we next consider the two-stage smoothed isotonic regression procedure

(TSSIRP). For this part, we assume the second-stage sampling density is uniform

without loss of generality.

In TSIRP, after generating the second-stage data with the uniform desnisty, we

estimate m again by the second-stage isotonic regression m2,I over the second-stage

sampling interval [L1, U1] and then obtain the second-stage estimator d2,I of d0 by

taking the inverse of m2,I at θ0. Since smoothed isotonic regression has a faster

convergence rate than isotonic regression, at the second stage of TSSIRP, we smooth

m2,I with a kernel K and a bandwidth hn, obtain the second-stage smoothed isotonic

regression m2,Is of m over [L1, U1], and then estimate d0 by the second-stage smoothed

isotonic regression estimator d2,Is = m−12,Is(θ0).

Since the second-stage sampling density is uniform over [L1, U1], the second-stage

sample resolution around d0 is given by

nr =
n2

U1 − L1

= Cnrn
1+γ1 ,

where γ1 ∈ (0, 1/3) and Cnr = pγ1q/(2C1). Note that Cnr just means the coefficient

of nr and does not depend on n. To do further analysis, suppose the bandwidth for

the kernel smoothing is of the form hn = cn−γ2
r with constants c > 0 and γ2 > 0.

Asymptotically, there are two internal constraints for m2,Is to be an effective

estimator. Firstly, since kernel smoothing is applied over a shrinking interval, the

effective bandwidth should be less than half of the length of the second-stage sampling

interval, i.e. hn < C1n
−γ1

1 . This inequality holds when γ2 > γ1/(1+γ1), or, when γ2 =

γ1/(1+γ1) and c < c? = c?(γ2) = 2−γ2C1−γ2

1 [(1−p)/p]γ2 . Secondly, in order to ensure

that m2,Is = m2,s with probability going to one, the bandwidth needs to be larger

than the automatic bandwidth of isotonic regression, i.e. n−(1+γ1)γ2 > n−(1+γ1)/3,

which is equivalent to γ2 < 1/3.

Besides the above two internal requirements for γ1 and γ2, there is another tech-

nical one γ2 > 1/7, which is used to avoid complicated bias terms in the asymptotic

results of d2,Is. (See more details in Theorem 4.8.10 in the Appendix 4.8.4.) Thus,

if (γ1, γ2) with a proper c lies in the region enclosed by the black dashed borders in
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Figure 4.1: The left panel shows the admissible region of (γ1, γ2) for d2,Is enclosed
by the solid and dashed borders. The pair (γ1, γ2) can be on the solid
borders but not on the dashed ones. When (γ1, γ2) lies on the red solid
segment and curve in the left panel, the convergence rate of d2,Is for each
γ1 ∈ (0, 1/3) is optimized. The corresponding optimal rate as a function
of γ1 is shown in the right panel.

the left panel of Figure 4.1, all the previous constraints are satisfied simultaneously.

With the intuition from Theorem 4.8.10, for each γ1 ∈ (0, 1/3), the optimal γ2 (and

a proper c) to maximize the convergence rate of d2,Is is as follows. For γ1 ∈ (0, 1/4],

let γ2 = 1/5; for γ1 ∈ (1/4, 1/3), let γ2 = γ1/(1 + γ1) with c < c?. The optimal pair

(γ1, γ2) lies on the red solid segments in the left panel of Figure 4.1 and the optimal

convergence rate of d2,Is(d0) as a function of γ1 is shown in the right panel of Figure

4.1.

Further, the asymptotic distributions on d2,Is with optimal convergence rates are

given in the following Proposition.

Proposition 4.3.11. Suppose assumption (B) holds. If 1/4 < γ1 < 1/3, γ2 = γ1/(1 +

γ1) and c < c?(γ2), we have

n1/2(d2,Is − d0)
d→ Cd2,Is

(γ2)N(0, 1); (4.24)

If γ1 = 1/4, γ2 = 1/5 and c < c?(1/5), we have

n1/2(d2,Is − d0)
d→ Bd2,Is

+ Cd2,Is
(1/5)N(0, 1); (4.25)
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If 0 < γ1 < 1/4 and γ2 = 1/5, we have

n2(1+γ1)/5(d2,Is − d0)
d→ Bd2,Is

+ Cd2,Is
(1/5)N(0, 1); (4.26)

where Cd2,Is
(γ) = m′(d0)

−1C
−(1−γ)/2
nr σ

√
κ/c, Bd2,Is

= −m′(d0)−1C−2/5nr c2B1(d0) and

B1(d0) = m′′(d0)
∫
t2K(t)dt/2.

A sketch of the proof of Proposition 4.3.11 is provided in Appendix 4.8.4.

From the asymptotic results (4.24), (4.25) and (4.26), the theoretical Wald-type

1− α asymptotic confidence intervals for d0 are given by

[d2,Is ± n−1/2Cd2,Is
(γ2)zα/2], (4.27)

[d2,Is − n−1/2Bd2,Is
± n−1/2Cd2,Is

(1/5)zα/2] (4.28)

and

[d2,Is − n−2(1+γ1)/5Bd2,Is
± n−2(1+γ1)/5Cd2,Is

(1/5)zα/2]. (4.29)

4.4 Practical Procedures

In practice, it is of interest to consider procedures with all unknown parameters

specified or estimated, which provide both point estimators of d0 with small mean

square errors and confidence intervals for d0 with good coverage rates and small

average lengths. Next, we consider the practical variants of OSIRP, OSSIRP, TSIRP

and TSSIRP.

4.4.1 Practical OSIRP (POSIRP)

Denote the practical versions of OSIRP-Wald and OSIRP-LR by POSIRP-Wald

and POSIRP-LR. In POSIRP-Wald, we need to estimate both σ2 and m′(d0); in

POSIRP-LR, we only need to estimate σ2. We first consider the estimation of σ2 and

then m′(d0).

For the estimation of σ2, we employ the nonparametric estimator proposed by

Gasser et al. (1986), which is an average of local estimators from local linear fitting.

Suppose the data {(Xi, Yi)}ni=1 are already sorted in ascending order of the Xi’s.
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Then, we calculate

S2 = (n− 2)−1
n−1∑
i=2

c2i ε̃
2
i ,

where ε̃i = aiYi−1 + biYi+1 − Yi, c2i = (a2i + b2i + 1)−1, ai = (Xi+1 −Xi)/(Xi+1 −Xi−1)

and bi = (Xi −Xi−1)/(Xi+1 −Xi−1), for i = 2, 3, · · · , n− 1.

An estimate of m′(d0) is obtained through the local quadratic regression esti-

mator proposed by Fan and Gijbels (1996), at the estimate dI . Specifically, let

K(·) denote the Epanechnikov kernel function and h > 0 the bandwidth, so that

Kh(·) = (1/h)K(·/h). Further, let η̂ = (η̂0, η̂1, η̂2) be given by

η̂ = argminη∈R3

n∑
i=1

[
Yi −

2∑
j=0

ηj(Xi − dI)j
]2
Kh(Xi − dI).

Then, the local quadratic regression estimator ofm′(dI) is given by η̂1. The bandwidth

h is chosen by first fitting a fifth order polynomial function to the data to obtain

m̂pol(x) =
∑5

j=0 α̂jx
j . Next, the estimate of the third order derivative of m at dI is

obtained by m̂
(3)
pol(dI) = 6α̂3 + 24α̂4dI + 60α̂5d

2
I . Finally the practically optimal value

for the bandwidth h is given by

ĥopt = C1,2(K)
[
S2/(m̂

(3)
pol(dI))

2
]1/7

n−1/7,

where C1,2(K) = 2.275.

4.4.2 Practical OSSIRP (POSSIRP)

Denote the Practical version of OSSIRP as POSSIRP. For the smoothing step for

mI in POSSIRP, we need to specify the kernel K and the bandwidth hn. For example,

we can use the triangular kernel K(x) = 1− |x| for x ∈ [−1, 1], which is log-concave

and thus guarantees the isotonicity of mIs (see Remark 2.1 of Mukerjee (1988)). With

this triangular kernel, we have
∫
x2K(x)dx = 1/6 and

∫
K2(x)dx = 2/3.

As to the bandwidth, we are interested in hn = cn−1/5, since the convergence rate

of the corresponding mIs reaches
√
n, the parametric rate. A rule of thumb suggests

choosing c to be the sample standard deviation of the design points Xi’s. Usually the

design density g is uniform if there is no prior information on d0. For this case, we

can also let c be the standard deviation of the uniform distribution on [a, b].

For constructing the confidence interval (4.14), we need to estimate unknown
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parameters σ2, m′(d0) and m′′(d0). The first two can be estimated with the same

methods described for POSIRP. The last one can be estimated in the same way of

estimating m′(d0) except using local cubic regression and fitting a pilot sixth degree

polynomial function to the data.

4.4.3 Practical TSIRP (PTSIRP)

Since the point estimator of d0 from TSIRP has a faster convergence rate than

the OSIRP one, it is certainly of interest to consider the practical version of TSIRP,

which is denoted by PTSIRP.

In PTSIRP, one important step is to specify the second-stage sampling interval

[L1, U1]. We can use a high probability Wald-type confidence interval as [L1, U1].

Specifically, in TSIRP, [L1, U1] is defined as [d1,I ± C1n
−γ1

1 ] with C1 > 0 and γ1 ∈
(0, 1/3). Then, we need to specify or estimate C1 and γ1 properly. One practical idea

is to employ a high probability confidence interval as [L1, U1]. From Theorem 4.2.1,

[L1, U1] can be taken as the following 1− β Wald-type confidence interval

[d1,I ± n−1/31 ĈdIg1(d1,I)
−1/3q(Z, 1− α/2)] ∩ [a, b], (4.30)

where ĈdI is a consistent estimator of CdI , which can be obtained by first estimating

σ2 and m′(d0) with the methods described for POSIRP, and β is a small positive

number such as 0.01. With this confidence interval, we essentially choose C1 and γ1

such that

C1n
−γ1

1 = n
−1/3
1 ĈdIg1(d1,I)

−1/3q(Z, 1− α/2). (4.31)

That is,

γ1 = 1/3 and C1 = ĈdIg1(d1,I)
−1/3q(Z, 1− α/2). (4.32)

Although γ1 = 1/3 is not in (0, 1/3), as required in TSIRP, we expect that Propo-

sitions 4.3.1 and 4.3.3 provide good approximations in practice, since 1/3 is at the

boundary of (0, 1/3).

This Wald-type second-stage sampling interval [L1, U1] requires the estimation

of σ2 and m′(d0). Although they can be estimated by the methods introduced for

POSIRP, usually it is difficult to estimate m′(d0) well, especially by using only the

first-stage data. In order to avoid this difficult estimation of m′(d0), an alternative
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approach is to consider a LR-type confidence interval based on the first-stage data:

[L1, U1] = {x ∈ [a, b] : 2 log λ1,I(x) ≤ dβ} ∩ [a, b]. (4.33)

Although this LR-type sampling interval is not centered at d1,I , and thus Propositions

4.3.1 and 4.3.3 for TSIRP might not be applicable, it is practically attractive since

it follows the essential two-stage idea and avoids the estimation of difficult unknown

parameters like m′(d0).

Next, we consider the specification of the first-stage sample proportion p and the

first stage and second-stage design densities g1 and g2 or equivalently ψ).

By Proposition 4.3.1, the asymptotic standard deviation of d2,I is given by

a.s.d.(d2,I) = n−(1+γ1)/3Cd2,I
σZ ,

where

Cd2,I
= CdI

(
C1

(1− p)pγ1ψ(0)

)1/3

=

(
4σ2

m′(d0)2

)1/3(
C1

(1− p)pγ1ψ(0)

)1/3

and σZ is the standard deviation of Z. As a function of p, a.s.d.(d2,I) is minimized

when p = γ1/(1 + γ1). With this p, a.s.d.(d2,I), as a function of γ1 ∈ (0, 1/3], is

minimized when γ1 = 1/3. Although theoretically γ should not be 1/3, practically it

can be used since it is at the boundary. Thus, in practice we let p = 1/4.

When there is no information about d0 at the first stage, g1 is usually taken to be

the uniform density on [a, b] . If there is some prior information about d0, We should

incorporate the prior information by using a non-uniform density. From Proposition

4.3.1, large h(0) makes the asymptotic variance of d2,I small. So theoretically it is

proper to let h peak at 0. However, in practice [L1, U1] is taken to be a high proba-

bility confidence interval. Thus, it is safer to let h be uniform on [−1, 1], otherwise

big bias might occur. That is, g2 is uniform on [L1, U1].

After having the second-stage data, we can compute the second-stage isotonic

regression d2,I of d0 and construct a practical version of the Wald-type 1−α confidence

interval (4.16) or the LRT-type one (4.21) with the second-stage data, where α is a

small positive real, for example 0.05. Again, in order to obtain practical Wald-type
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confidence intervals, we need estimators of σ2 and (or) m′(d0), which can be obtained

by the same methods used in POSIRP with the second-stage data.

Since both stage data become available at the second stage, practically it is better

to combine them together to obtain the two-stage isotonic regression dI,pooled of d0

and the practical Wald-type 1−α confidence interval (4.22), or LRT-type one (4.23),

where σ2 and (or) m′(d0) can be estimated as before with the two-stage data.

Thus, a typical procedure of PTSIRP is as follows:

1. Let the first-stage sample proportion be p = 1/4 and the first stage and second

stage sample sizes be n1 = bnpc and n2 = n − n1, respectively, where n is the

total sample size.

2. Use n1 design points on [a, b] with a continuous density g1 (usually the uniform

density) and obtain the first-stage data {(X1,i, Y1,i)}n1
i=1.

3. Compute the first stage isotonic regression d1,I of d0 with the first-stage data.

Then, let the second-stage sampling interval [L1, U1] be the 1 − β Wald-type

confidence interval (4.30) or LR-type one (4.33), where β is a small positive

real.

4. Use n2 design points on [L1, U1] with a continuous density g2 (usually the uni-

form density) and obtain the second-stage data {(X2,i, Y2,i)}n2
i=1.

5. Compute the two-stage isotonic regression dI,pooled of d0 with the two-stage data

and construct a practical version of the Wald-type 1 − α confidence interval

(4.22) or the LRT-type one (4.23) with the combined two-stage data, where α

is a small positive real such as 0.05.

Note that if we employ LR-type confidence intervals for both the second-stage

sampling interval [L1, U1] and the final 1 − α confidence interval, we only need to

estimate σ2. It is easy to implement, usually more robust and often preferred in

practice.

4.4.4 Practical TSSIRP (PTSSIRP)

Since the convergence rate of the estimator of d0 from TSSIRP reaches the para-

metric rate
√
n, it is of interest to consider the practical version of TSSIRP, which
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is denoted by PTSSIRP. The average lengths of confidence intervals from PTSSIRP

are expected to be relatively short.

In PTSSIRP, the second-stage sampling interval [L1, U1] is taken to be the 1− β
Wald-type confidence interval (4.30) as in PTSIRP. Thus, we essentially take γ1 =

1/3. Since 1/3 is at the boundary of (1/4, 1/3), the asymptotic result (4.24) in

Proposition 4.3.11 may still provide good approximation and we take the practical

version of the confidence interval (4.27) as the final 1− α confidence interval of d0.

The first-stage sample proportion p is taken to be γ1/(1 + γ1) to minimize the

asymptotic standard deviation of d2,Is, which is inversely proportional to (1 − p)pγ1

by the asymptotic result (4.24) in Proposition 4.3.11. Thus, we let p = 1/4 since

γ1 = 1/3. For the same reasons in PTSIRP, both g1 and g2 are set to be uniform on

[a, b] and [L1, U1], respectively.

In the smoothing step of computing d2,Is, we need to specify the kernel K and

smoothing bandwidth hn. Similar to POSSIRP, we can use the triangular kernel

K(x) = 1− |x| for x ∈ [−1, 1].

Recall the bandwidth hn is cn−γ2
r . The parameter γ2 needs to be γ1/(1 + γ1)

to accelerate the convergence rate of d2,Is to
√
n. Thus, we take γ2 = 1/4 because

of γ1 = 1/3. The second stage sample resolution nr depends on C1. Note that

c < c?(γ2 = 1/4) and that c? also depends on C1. Since [L1, U1] is the Wald-type

confidence interval (4.30), C1 depends on ĈdI , which can be obtained by estimating

σ2 and m′(d0) as in POSIRP but now with the two-stage data since they are already

available. Usually, we can set c = c?(1/4)/ρ for some ρ > 1. The parameter ρ

controls the ratio of the half length of the second-stage sampling interval [L1, U1] and

the bandwidth hn. If this ratio is too large, the smoothing step will not be practically

effective. On the other hand, if this ratio is too close to 1, there will be a serious

boundary effect and the estimator will usually have large bias. Our simulation studies

indicate that ρ ∈ [1.5, 2.0] usually works fine. So our empirical suggestion for ρ is

1.75.

Thus, all the unknown parameters in PTSSIRP have been estimated or specified

and we can obtain the final 1 − α confidence interval for d0, which is the practical

version of the confidence interval (4.27).

Thus, a typical procedure of PTSSIRP using the asymptotic result (4.24) in Propo-
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sition 4.3.11 is as follows.

1. Let the first-stage sample proportion be p = 1/4 and the first stage and second

stage sample sizes be n1 = bnpc and n2 = n − n1, respectively, where n is the

sample size.

2. Use n1 design points on [a, b] with a continuous density g1 (usually the uniform

density) and obtain the first-stage data {(X1,i, Y1,i)}n1
i=1.

3. Compute the first stage isotonic regression d1,I of d0 with the first-stage data.

Then, let the second-stage sampling interval [L1, U1] be the Wald-type 1 − β

confidence interval (4.30) (or the LR-type 1−β confidence interval (4.33)) with

β being a small positive real.

4. Use n2 design points on [L1, U1] with a continuous density g2 (usually the uni-

form density) and obtain the second-stage data {(X2,i, Y2,i)}n2
i=1.

5. Compute the second stage smoothed isotonic regression d2,Is of d0 with the

second-stage data, estimate σ2 and m′(d0) again with two-stage data, and con-

struct a practical version of the Wald-type 1 − α confidence interval (4.27) by

the asymptotic result (4.24) in Proposition 4.3.11, where α is a small positive

real such as 0.05.

4.5 Simulation Study

In the simulation study, we compare the practical procedures: POSIRP-Wald,

POSIRP-LR, POSSIRP with Wald-type confidence intervals, PTSIRP with LR-type

second-stage sampling intervals and LR-type second stage confidence intervals, and

PTSSIRP with Wald-type second-stage sampling intervals and Wald-type second-

stage confidence intervals.

The simulation settings are as follows: The design points lie in the interval [a, b] =

[0, 1]. The regression function m is the sigmoid function m(x) = exp(4(x− 0.5))/[1 +

exp(4(x − 0.5))], the quadratic function m(x) = x2 or the isotonic sine function

m(x) = (1/40) sin(6πx) + 1/4 + (1/2)x + (1/4)x2. The target point d0 is 0.4, 0.5 or

0.6. The random error follows N(0, σ2), where the standard deviation of the random

error σ is 0.1, 0.3 or 0.5. The total sample size n ranges from 100 to 700 in increments
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Figure 4.2: The left plot shows the regression functions: sigmoid, quadratic and iso-
tonic sine functions. The right plot shows their derivatives.

of 100. All the design densities g, g1 and g2 are uniform. The confidence level is 1−α
with α being 0.05. The default number of iterations is niter is 5000.

Figure 4.2 shows the regression functions and their derivatives. Figure 4.3 shows

the scatter plots of data with different regression functions, standard deviations and

sample sizes, where the design points are equally spaced.

In PTSIRP and PTSSIRP, the quantiles of D and Z for constructing the second-

stage sampling intervals are set to be 4 and 2, respectively. The corresponding values

of β are less than 0.01.

In the simulations for POSSIRP and PTSSIRP, we found that fitting pilot fifth or

sixth polynomial function usually gave bad initial estimators of m(3)(d0) or m(4)(d0),

though the resulting bandwidth seemed still reasonable. So, instead, we use local

polynomial smoothing with bandwidth b− a to obtain the pilot estimators.

The coverage rates and average lengths of the 95% confidence intervals for d0 are

obtained. Figure 4.4 shows the coverage rates and the average lengths of the five

practical procedures with the sigmoid and quadratic functions and different values of

σ and d0. We can see that usually the coverage rates are close to the nominal level

95%. A larger noise increases the variation of the coverage rates and a larger sample

size is usually needed to achieve better coverage rates, especially for POSIRP-Wald,

POSSIRP and PTSSIRP. Usually POSSIRP has some over coverage and PTSSIRP

under coverage. POSIRP-LR and PTSIRP consistently have best coverage rates. This
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Regression Data
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Figure 4.3: These scatter plots show data with different regression functions, stan-
dard deviations and sample sizes, where the design points follow the fixed
uniform design.

tells that usually LR-type confidence intervals are stable with respect to noise. The

average lengths decreases with the increase of the sample size and a larger noise results

in longer confidence intervals. The confidence intervals from POSIRP are longest and

those from PTSIRP are significantly shorter, but the shortest confidence intervals

are from PTSSIRP. So, PTSSIRP is the most aggressive procedure for constructing

confidence intervals and usually works well for the sigmoid and quadratic functions.

The left panel of Figure 4.5 shows the coverage rates of the five practical procedures

for the isotonic sine function. We can see that, for the case with d0 = 0.5, the coverage

rates of the confidence intervals from POSIRP-Wald and POSSIRP even decrease

as the sample size increases. This is because that the estimation of m′(d0) is not

accurate enough. More specifically, the true value of m′(d0) is around 0.279 and the

corresponding kernel estimators of m′(d0) are usually around 0.8, significantly larger

than the true value. This makes the confidence interval too short to cover d0 and

the coverage rates decrease. When d0 = 0.4 or 0.6 and σ = 0.3, the coverage rates

from PTSSIRP also decreases with the sample size. This is perhaps because that the

asymptotically ignorable bias term plays a practical role for these cases. Fortunately,

for this wiggly isotonic sine function, POSIRP-LR and PTSIRP usually have good

coverage rates for all simulation cases. This shows that LR-type confidence intervals
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Figure 4.4: The left and right panels show the coverage rates and average lengths of
the 95% confidence intervals for d0 from the five practical procedures with
the sigmoid and quadratic functions and different values of σ, d0 and n.

are usually robust with different regression functions. The average lengths of the

confidence intervals are shown in the right panel of Figure 4.5. Without surprise,

PTSIRP achieves shorter average lengths since it is a two-stage procedure.

Therefore, when the underlying regression function is well-behaved, we can use the

most aggressive PTSSIRP. Otherwise, we use the conservative but stable PTSIRP.

One way to decide if the underlying function is regular or not is to checking the

first-stage smoothed isotonic regression estimator of m. Sometimes, we can even

spend a larger number of sample points at the first stage to obtain a better first-stage

estimator of m and then make the judgement more reliable.

4.6 An Application to Real Data

In recent years, one of the most important features for a vehicle is its fuel ef-

ficiency or economy (FE) in the unit of miles per gallon (MPG). In the USA, the

National Highway Traffic Safety Administration (NHTSA) regulates the Corporate

Average Fuel Economy (CAFE) standards to encourage automobile manufacturers

to improve the average fuel economy of their fleets of vehicles. The CAFE standard

for 2011 model year is 30.2 MPG. A manufacturer must pay a penalty if the average

fuel economy of its annual fleet of production can not achieve or exceed the defined
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Figure 4.5: The left panel shows the coverage rates of the 95% confidence intervals for
d0 from the five practical procedures with the isotonic sine functions and
different values of σ, d0 and n. The right panel shows the average lengths
of the 95% confidence intervals for d0 from POSIRP-LR and PTSIRP.

standard. On the other hand, the US Energy Tax Act of 1978 imposes a gas guzzler

tax on the sale of new model year cars with low fuel efficiency. Although both the

penalty and tax only apply to manufactures and importers of vehicles, presumably

they are at least partially passed along to consumers in the form of higher prices. So

these regulations intend to encourage manufacturers and consumers to produce and

purchase vehicles with high fuel efficiency.

In the USA, while the CAFE standards are regulated by NHTSA, the vehicle

fuel efficiency is evaluated by the Environmental Protection Agency (EPA). From

2008, EPA measures the fuel efficiency of a vehicle in two testing modes, the city and

highway modes, with the consideration of faster speeds and acceleration, air condi-

tioner usage and colder outside temperatures to better approximate the real-world

fuel efficiency. From the unadjusted city and highway fuel efficiency, the unadjusted

combined fuel efficiency is calculated as follows:

Combined FE =
1

.495/City FE + .351/Highway FE
+ .15.

Since usually there is a decreasing relationship between a vehicle’s horse power

and its fuel efficiency, it is of interest to study this relationship and identify the horse
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Figure 4.6: The left panel shows the scatter plots on the relationships between the
horse power and the combined, city and highway fuel efficiency and the
right panel shows the scatter plot on the relationships between the horse
power and the combined fuel efficiency.

power at which the fuel efficiency is equal to a given fuel efficiency.

The web site www.fueleconomy.gov provides the fuel economy data of the 2011

model year vehicles. This data set contains the unadjusted city, highway and com-

bined fuel efficiency for 1052 vehicles. We collect the horse power data for 726 non-

hybrid vehicles with auto transmission gearboxes. The goal of this real data analysis

is to estimate the horse power at which the combined fuel efficiency is equal to 30

MPG, around the 2011 model year CAFE standard.

4.6.1 Preliminary Analysis

The scatter plots in the left panel of Figure 4.6 confirms the decreasing rela-

tionships between horse power and the unadjusted city, highway and combined fuel

efficiency. Since the combined fuel efficiency is a modified harmonic average of the

city and highway fuel efficiency, its plot lies in the middle. Regulations set require-

ments on the combined fuel efficiency. So we next focus on the relationship between

the horse power and the combined fuel efficiency, whose scatter plot is shown in the

right panel of Figure 4.6.

The left panel of Figure 4.7 is the same to the right panel of Figure 4.6 except

that the method of air aspiration is used as a group variable. It shows that the turbo
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Figure 4.7: The left panel shows the scatter plot on the relationship between horse
power and combined fuel efficiency grouped with three methods of air
aspiration. The right panel shows the scatter plot on the on the relation-
ship between horse power and combined fuel efficiency with the natural
air aspiration.

charged air aspiration method might significantly improve fuel efficiency. So, for the

homogeneity of the data, we next pay attention to the vehicles with the natural air

aspiration method since this method is currently most popular. The corresponding

scatter plot with the sample size 601 is shown in the right panel of Figure 4.7.

The frequency plot in the right panel of Figure 4.8 indicates that there are multiple

values of the fuel efficiency for many of the 153 distinguished values of the horse power.

We simply take the arithmetic average of the multiple values of the fuel efficiency at

a value of the horse power and the scatter plot with a sample size 153 in the left

panel of Figure 4.8 shows the decreasing relationship between the horse power and

the average combined fuel efficiency.

For the simplicity of analysis, we ignore the weights of the averages and view the

the 153 data points in the left panel of Figure 4.8 as i.i.d. sample points from the

regression model (4.1), with m now being a decreasing function. We are interested in

the estimation of d0 = m−1(30), the value of the horse power at which the combined

fuel efficiency is equal to 30 MPG.

The practical procedures in Section 4.4 are proposed in the design setting, but

the 153 sample points from the real data set are actually already observed. However,
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Figure 4.8: The left panel shows the scatter plot on the relationship between the horse
power and average combined fuel efficiency. The right panel shows the
frequencies of the values for the horse power.

we can simulate the design setting as follows. Suppose we have no knowledge of the

existence of the 153 observed sample points and the total budget for estimating d0

is 100 sample points. Then, for a one-stage procedure, we choose 100 sample points

from the 153 ones with the corresponding 100 values of the horse power more or

less equally spaced. On the other hand, for a two-stage procedure, we first choose

50 sample points and construct a second-stage sampling interval. Then, from the

remaining 103 sample points, choose another 50 sample points with the values of the

horse power located in the second-stage sampling interval if possible. If there are less

than 50 values of the horse power within that interval, we choose all of them. Thus,

we can compare the point estimators and confidence intervals for d0 from different

procedures. As for the practical “true” value of d0, we take the isotonic regression

estimator of d0 with all the 153 observed sample points, which is around 200.265.

4.6.2 Practical Procedures

We appliy the five practical procedures POSIRP-Wald, POSIRP-LR, POSSIRP,

PTSIRP and PTSSIRP evaluated in the simulation study of Section 4.5 to obtain the

point estimators and confidence intervals for d0.

For the one-stage procedures, the sample size is 100. From POSIRP, the one-

stage isotonic regression estimator of d0 is about 192.168 and the 95% Wald-type and
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Table 4.1: Data Analysis Results for the Five Practical Procedures
Procedure Estimator Distance 95% CI Coverage Length n

POSIRP-Wald 192.168 8.097 [189.185, 195.150] No 5.965 100
POSIRP-LR 192.168 8.097 [150, 198] No 48 100

POSSIRP 191.755 8.51 [177.191, 201.416] No 24.225 100
PTSIRP 200.265 0 [179, 204] Yes 25 80
PTSSIRP 191.422 8.843 [172.054, 210.790] Yes 38.736 60

LR-type confidence intervals are [189.185, 195.150] and [150, 198], respectively. The

one-stage smoothed regression estimator of d0 from POSSIRP is around 191.755 and

the corresponding 95% Wald-type confidence interval is [177.191, 201.416].

For the two-stage procedures, the first-stage sample size is 50. For PTSIRP, the

LR-type second-stage sampling interval is [136, 204], within which there are only an-

other 30 values for the horse power. So, the second-stage sample size is 30 and the

total or two-stage sample size is 80. The two-stage estimator of d0 is 200.265 and the

two-stage LR-type 95% confidence interval is [179, 204]. The Wald-type second-stage

sampling interval in PTSSIRP is [172.830, 191.248], centered at 182.039, the first-stage

isotonic regression estimator of d0. Since within this interval only 10 more values for

the horse power are available, the second-stage sample size is 10 and the two-stage

sample size is 60. The two-stage estimator of d0 from PTSSIRP is 191.422 and the

corresponding two-stage Wald-type 95% confidence interval is [172.054, 210.790].

All the results are summarized in Table 4.1 and plotted in Figure 4.9. In Table

4.1, “Procedure” indicates the name of a procedure, “Estimator” shows the value of

a point estimator for d0, “Distance” measures the distance between a point estimator

for d0 and the practical “true” value of d0, “CI” stands for “confidence interval”,

“Coverage” indicates whether a confidence interval covers the practical “true” value

of d0, “Length” shows the length of a confidence interval and “n” is the total sample

size.

Figure 4.9 includes four plots for the five procedures. POSIRP-Wald and POSIRP-

LR share the top-left plot. In these plots, a number “1” stands for a one-stage or

first-stage sample point and a number “2” for a second-stage one. Since the estima-

tors of d0 vary from about 190 to 200, the x-axes of the plots are all set to be from

60 to 300 to improve visualization. In each plot, the red curve is a final estimator

of the whole function m, the red round solid point and two red star points at the
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Figure 4.9: The top-left panel is for POSIRP-Wald and POSIRP-LR. The top-right
panel is for POSSIRP. The bottom-left panel is for PTSIRP. The bottom-
right panel is for PTSSIRP.
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x-axis indicate the location of an estimator of d0 and the two ends of a final 95%

confidence interval, while in the plot with the title “POSIRP-Wald and LR” the two

blue star points at the x-axis are for the Wald-type confidence intervals. The blue

curves in the plots for POSSIRP and the two-stage procedures are the piecewise-linear

isotonic regression estimators of m and in the plot for PTSSIRP the green curve is

the two-stage piecewise-linear isotonic regression estimator of m. In the plots for the

two-stage procedures, the blue round solid points stand for the first-stage estimators

of d0 and the blue star points for the ends of second-stage sampling intervals. Vertical

dashed lines with the same colors to the end points are draw for all the confidence

intervals and the second-stage sampling intervals to make comparison easier.

From Table 4.1 or Figure 4.9, we can see that, for OSIRP, the Wald-type confidence

interval is centered at the one-stage estimator of d0 while the LR-type confidence

interval is asymmetric. Further, the LR-type confidence interval is much larger than

the Wald-type one, especially for the low limit. This is because that the LR-type

confidence interval is more adaptive to the data. In fact, the top-left plot in Figure

4.9 shows that there is, to the left side of the one-stage estimator, a long flat part

in the isotonic regression of m, which is captured in the LR-type confidence interval.

The aggressiveness of the Wald-type confidence interval comparing to the LR-type

one is also revealed by comparing the second-stage stage sampling intervals in the

plots for the two-stage procedures.

Most of the estimators for d0 are around 190 and only the estimator from PTSIRP

is quite different. In this procedure, the second-stage sampling interval covers a proper

region so that the second-stage data have good quality with respect to the estimation

of d0. Together with the fact that isotonic regression is a local estimator, the second-

stage isotonic regression estimator of d0 in this procedure is just equal to the practical

“true” value of d0.

The one-stage confidence intervals do not cover the practical “true” value of d0,

but the two-stage confidence intervals do. The confidence interval from PTSSIRP is

significantly larger than that from PTSIRP. It is partially because the total sample

size for the former procedure is smaller. Although the sample size for PTSIRP is only

4/5 of that of POSSIRP, the lengths of their confidence intervals are similar, about

25. Therefore, from all the above analysis, PTSIRP performs best for this real data

set, in terms of providing the point estimator and 95% confidence interval.
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4.7 Conclusion

In this chapter, we consider the estimation of d0, the inverse of an increasing re-

gression function at a given point in a design setting. When the regression function is

locally linear around d0, the two-stage hybrid procedure in the previous chapter not

only has good theoretical properties but also usually performs well in practice. How-

ever, it usually can not handle the the case well where the regression function is very

locally nonlinear around d0 and the sample size is not large enough. To address this

problem, we propose alternative two-stage procedures: the two-stage isotonic regres-

sion procedure (TSIRP) and the two-stage smoothed isotonic regression procedure

(TSSIRP). The convergence rate of the second-stage estimator of d0 in TSSIRP can

even achieve the parametric rate
√
n. We also provide practical variants of TSIRP

and TSSIRP with all the unknown parameters being estimated and specified. A

simulation study shows that the practical TSSIRP usually does somewhat better for

well-behaved regression functions while the practical TSIRP can still provide confi-

dence intervals of d0 with good coverage rates for wiggly regression functions. This

stability of TSIRP is of practical interest.

4.8 Appendix

In this appendix, we provide proofs for some theorems in the main text.

4.8.1 Appendix for OSIRP

Here we provide a sketch of the proof for Theorem 4.2.1 based on Banerjee and

Wellner (2005).

The sketch of the proof of Theorem 4.2.1. For every x ∈ R,

P
(
n1/3(dI − d0) ≤ x

)
= P

(
dI ≤ d0 + xn−1/3

)
= P

(
θ0 ≤ mI(d0 + xn−1/3)

)
= P

(
n1/3(mI(d0 + xn−1/3)− θ0) ≥ 0

)
= P

(
n1/3(mI(d0 + xn−1/3)−m(d0)) ≥ 0

)
.

Then, the problem on dI is translated into the problem on the isotonic regression mI .

Let {W (t), t ∈ R} be a two-sided Brownian Motion with W (0) = 0; Xa,b = {Xa,b(t) =
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aW (t) + bt2, t ∈ R}, where a > 0, b > 0; Ga,b = {Ga,b(t), t ∈ R} the greatest convex

minorant function of Xa,b; ga,b = {ga,b(t), t ∈ R} the left derivative function of Ga,b.

Note that there is a little abuse of a and b. They are generic positive constants

here, but not the two end points of the original sampling interval [a, b]. With these

notations, we have that, under the assumption (A),

n1/3
(
mI(d0 + xn−1/3)−m(d0)

) d→ ga,b(x), (4.34)

where a = σ/
√
g(d0) and b = m′(d0)/2. Then, from the switching relationship

ga,b(x) ≥ λ⇐⇒ argmin
t∈R

(Xa,b(t)− λt) ≤ x, for λ ∈ R, (4.35)

we have

P
(
n1/3(dI − d0) ≤ x

)
= P

(
argmin

t∈R
Xa,b(t) ≤ x

)
. (4.36)

Further, from Problem 5 on Page 308 of van der Vaart and Wellner (1996), we have

argmin
t∈R

(Xa,b(t)− λt)
d
= (a/b)2/3argmin

t∈R
X1,1(t) + λ/(2b). (4.37)

Thus, we have

P
(
n1/3(dI − d0) ≤ x

)
= P

(
(a/b)2/3argmin

t∈R
X1,1(t) ≤ x

)
. (4.38)

Since argmin
t∈R

X1,1(t) is Z and (a/b)2/3 = CdIg(d0)
−1/3, Theorem 4.2.1 follows.

From (4.34), (4.35) and (4.37), we can obtain the asymptotic distribution on mI .

Theorem 4.8.1. Under the assumption (A), we have, for x ∈ (a, b),

n1/3(mI(x)−m(x))
d→ CmI (x)g(x)−1/3Z, (4.39)

where CmI (x) = (4σ2m′(x))
1/3

.

4.8.2 Appendix for OSSIRP

Before providing the sketch of the proof of Theorem 4.2.5, we state a related

Theorem on the smoothed isotonic regression mIs.
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Theorem 4.8.2. Suppose the assumption (B) holds ,nh3n →∞ and nh7n → 0 . Then,

for x ∈ (a, b),

√
nhn

(
mIs(x)−m(x)− h2nB(x)

) d→ N(0, κσ2/g(x)), (4.40)

where

B(x) = (2g′(x)m′(x) + g(x)m′′(x)) /(2g(x))

∫
t2K(t)dt, κ =

∫
K2(t)dt.

Proof. According to Mukerjee (1988) and Mammen (1991), for a fixed x ∈ (a, b),

mIs(x) = ms(x) with probability tending to 1. Then, by the classical asymptotic

results on ms (For example, see Theorem 2.2 in Li and Racine (2007)), where ms is

the kernel smoothing estimator of m. under the assumption (B) and γ ∈ (1/7, 1/3),

we have the asymptotic result (4.40).

From Theorem 4.8.2, we have the following Corollary under the formulation hn =

cn−γ with c > 0 and γ > 0.

Corollary 4.8.3. Suppose the assumption (B) holds. For x ∈ (a, b) and γ = 1/5, we

have

n2/5 (mIs(x)−m(x))
d→ c2B(x) +N

(
0, κσ2/(cg(x))

)
; (4.41)

for γ ∈ (1/5, 1/3), we have

n(1−γ)/2 (mIs(x)−m(x))
d→ N

(
0, κσ2/(cg(x))

)
. (4.42)

Next, we provide the sketch of the proof of Theorem 4.2.5.

The sketch of the proof of Theorem 4.2.5. We only show the sketch for the first result

(4.12) and the second result (4.13) can be shown in the same way.

By Corollary 4.8.3, for hn = cn−1/5 with c > 0, we have (4.41). On the other

hand, for each t ∈ R, we have

P
(
n2/5(dIs − d0) ≤ t

)
= P

(
mIs(d0 + tn−2/5)−m(d0) ≥ 0

)
= P (T1 + T2 ≥ 0) ,
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where

T1 = n2/5
(
mIs(d0 + tn−2/5)−mIs(d0)−m′(d0)tn−2/5

)
,

T2 = n2/5
(
mIs(d0)−m(d0) +m′(d0)tn

−2/5) .
Since T1

P→ 0, the asymptotic distribution of T1 + T2 is the same to that of T2. Then,

from

P (T2 ≥ 0) = P
(
−m′(d0)−1n2/5 (mIs(d0)−m(d0)) ≤ t

)
and the asymptotic result (4.41), the result (4.12) in Theorem 4.2.5 follows.

4.8.3 Appendix of TSIRP

To study the asymptotic properties of d2,I and 2 log λ2,I , the basic idea is to

approximate them by the corresponding statistics in the following ideal two-stage

isotonic regression procedure (ITSIRP). More specifically, the procedure of ITSIRP

is as follows:

1. Set the first-stage sample proportion p ∈ (0, 1) and let the first and second-stage

sample sizes be n1 = bnpc and n2 = n − n1, respectively, where n is the total

sample size.

2. Let the ideal second-stage sampling interval be [L1, U1] = [d0 ± C1n
−γ1

1 ] with

C1 > 0 and γ1 > 0.

3. Allocate the second-stage design points {X2,i}n2
i=1 with a Lebesgue density g2 on

[L1, U1] and then the corresponding i.i.d. second-stage responses {Y2,i}n2
i=1.

4. Compute the unconstrained isotonic regression moI (and the constrained one

moIc under the null hypothesis m−1(θ0) = d0) of m over [L1, U1] from the second-

stage data.

5. Obtain doI = m−1oI (θ0) and 2 log λoI = 2 log λoI(d0) = 2 [ln(moI)− ln(moIc)], the

ideal second-stage isotonic regression of d0 and log likelihood ratio test statistics

under H0 : m−1(θ0) = d0.

Note that ‘o’ means ‘ideal’ and the Lebesgue design density g2 on [L1, U1] is defined as

g2(x) = (C1n
−γ1

1 )−1ψ((x− d0)/(C1n
−γ1

1 )) with ψ being a Lebesgue density on [−1, 1].
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Comparing ITSIRP and TSIRP, we can see that ITSIRP is the same to TSIRP

except that in ITSIRP the second-stage sampling interval is centered at d0 but not

at d1,I . Since d1,I goes to d0 at the convergence rate of n1/3, the second-stage sample

resolution at d0 would be the same for those two procedures given γ1 < 1/3. On

the other hand, all the statistics d2,I , doI , 2 log λ2,I and 2 log λoI are asymptotically

determined by the sample resolution around d0. Then, heuristically speaking, both

n(1+γ1)/3(d2,I − doI) and 2log λ2,I − 2 log λoI would converge to 0 in probability. This

intuitive statement needs rigorous justification. Now, suppose the above heuristic

holds, the asymptotic distributions on d2,I and 2 log λ2,I are completely determined by

those on doI and 2 log λoI . The following theorems contains the limiting distributions

on moI , doI and 2 log λoI , from which the asymptotic results in Propositions 4.3.1 and

4.3.3 follow directly.

Theorem 4.8.4. Under the assumption (A), we have

n(1+γ1)/3(moI(d0)−m(d0))
d→ CmoIZ,

where

CmoI = CmI (d0)

(
C1

(1− p)pγ1ψ(0)

)1/3

and CmI is defined in Theorem 4.8.1.

Theorem 4.8.5. Under the assumption (A), we have

n(1+γ1)/3(doI − d0)
d→ CdoIZ,

where

CdoI = CdI

(
C1

(1− p)pγ1ψ(0)

)1/3

.

Theorem 4.8.6. Under the assumption (A) and the null hypothesis H0 : m−1(θ0) = d0,

2 log λoI
d→ D.

Next we provide a sketch of the proof of Theorem 4.8.5, which is similar to that

for Theorem 4.2.1 in Appendix 4.8.1. The convergence rate of doI is determined by

the sample resolution at d0, which is n1+γ1 . By the property of isotonic regression,
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the convergence rate of doI is n(1+γ1)/3. Then, we have, for every x ∈ R,

P
(
n
(1+γ1)/3
2 (doI − d0) ≤ x

)
= P

(
doI ≤ d0 + xn

(1+γ1)/3
2

)
= P

(
θ0 ≤ moI(d0 + xn

(1+γ1)/3
2 )

)
= P

(
n
(1+γ1)/3
2 (moI(d0 + xn

(1+γ1)/3
2 )− θ0) ≥ 0

)
= P

(
n
(1+γ1)/3
2 (moI(d0 + xn

(1+γ1)/3
2 )−m(d0)) ≥ 0

)
.

Thus, it is sufficient to derive the limiting distribution of n
(1+γ1)/3
2 (moI(d0+xn

(1+γ1)/3
2 )−

m(d0)). In fact, we have the following theorem.

Theorem 4.8.7. Under the assumption (A), we have, for every x ∈ R,

n
(1+γ1)/3
2 (moI(d0 + xn

−(1+γ1)/3
2 )−m(d0))

d→ ga,b(x),

where a = (σ2[(1− p)/p]γ1C1/ψ(0))1/2, b = m′(d0)/2.

Then, by the switching relationship (4.35), we have

P
(
n
(1+γ1)/3
2 (doI − d0) ≤ x

)
→ P

(
argmin

t∈R
Xa,b(t) ≤ x

)
. (4.43)

Further, by the equality in distribution (4.37), we have

P
(
n
(1+γ1)/3
2 (doI − d0) ≤ x

)
→ P

(
(a/b)2/3argmin

t∈R
X1,1(t) ≤ x

)
. (4.44)

Since

(a/b)2/3 =

(
4σ2

m′(d0)2
· (1− p)γ1C1

pγ1ψ(0)

)1/3

,

we have

n
(1+γ1)/3
2 (doI − d0)

d→ CdI

(
(1− p)γ1C1

pγ1ψ(0)

)1/3

Z,

which leads to n(1+γ1)/3(doI − d0)
d→ CdoIZ, the result in Theorem 4.8.5.

A sketch of the proof for Theorem 4.8.7 is as follows. Without loss of generality,

we let [a, b] = [0, 1]. It basically consists of three steps: the first one is to use a

switching relationship to change the original problem into an M-Estimation problem;

the second one is to solve the M-Estimation problem in the framework of the empirical

process theory; the third one is to simplify the final limit distribution.
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More specifically, in the first step, we show

Lemma 4.8.8. For t ∈ [0, 1] and and s ∈ R,

moI(t) ≤ s⇔ argmin
x∈[x0±C1n

−γ1
1 ]

{Vn2(x)− sGn2(x)} ≥ T (t), (4.45)

where, for any x ∈ [0, 1],

Vn2(x) =
1

n2

n2∑
i=1

Yi1(Xi ≤ x), Gn2(x) =
1

n2

n2∑
i=1

1(Xi ≤ x); (4.46)

T (t) is the least Xi greater than or equal to t given t ≤ Xn2 ; otherwise, T (t) = Xn2 .

By Lemma 4.8.8, for every x0 ∈ (0, 1) and z ∈ R,

P
(
n
(1+γ1)/3
2 (moI(x0 + xn

−(1+γ1)/3
2 )−m(x0)) ≤ z

)
= P

(
moI(x0 + xn

−(1+γ1)/3
2 ) ≤ m(x0) + zn

−(1+γ1)/3
2

)
= P

(
argmin

x∈[x0±Kn
−γ1
1 ]

{
Vn2(x)− (m(x0) + zn

−(1+γ1)/3
2 )Gn2(x)

}
≥ T (x0 + xn

−(1+γ1)/3
2 )

)
.

Then in the second step, we will show

Theorem 4.8.9. Under the assumption (A), we have, as n→∞,

P

(
argmin

x∈[x0±Kn
−γ1
1 ]

{
Vn2(x)− (m(x0) + zn

−(1+γ1)/3
2 )Gn2(x)

}
≥ T (x0 + xn

−(1+γ1)/3
2 )

)

→ P

(
argmin

h∈R

{
aW (h) + bh2 − zh

}
≥ x

)
,

where a = ((σ2[(1− p)/p]γ1K/h(0)))1/2 and b = m′(x0)/2.

In the third step, by the switching relationship (4.35), we have

P

(
argmin

h∈R

{
aW (h) + bh2 − zh

}
≥ x

)
= P (ga,b(x) ≤ z) .

Thus, Theorem 4.8.7 follows.

Finally, we provide a sketch of the proof for Theorem 4.8.6. Without the loss of

generality, we assume the second-stage sampling density is uniform on [L1, U1]. That
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is, g2(x) = (2C1n
−γ1

1 )−1 for x ∈ [L1, U1]. Then, similar to Theorem 4.8.7, we have(
n
(1+γ1)/3
2 (moI(d0 + xn

−(1+γ1)/3
2 )−m(d0))

n
(1+γ1)/3
2 (moIc(d0 + xn

−(1+γ1)/3
2 )−m(d0))

)
d→

(
ga,b(x)

goa,b(x)

)
, (4.47)

where a = (2C1σ
2[(1 − p)/p]γ1)1/2 and b = m′(d0)/2. In fact, the weak convergence

(4.47) holds not only finite dimensionally, but also in the L2 sense (more rigorously,

with the topology of L2 convergence on compacta times itself) because of the mono-

tonicity of both moI and moIc.

Denote Dn2 as the set on which moI and moIc are not equal. Then, given any

ε > 0, there exists a real number M > 0 such that n
(1+γ1)/3
2 (Dn2 − d0) ⊂ [−M,M ]

holds with probability larger than 1− ε. This fact can be derived by using the same

arguments in Banerjee et al. (2007).

We now consider the ideal second-stage likelihood ratio test statistics 2 log λoI .

By the definition of 2 log λoI , we have

2 log λoI = 2

[
1

2σ2

n2∑
i=1

(Y2,i −moIc(X2,i))
2 − 1

2σ2

n2∑
i=1

(Y2,i −moI(X2,i))
2

]

=
1

σ2

{
n2∑
i=1

[(Y2,i − θ0)− (moIc(X2,i)− θ0)]2 −
n2∑
i=1

[(Y2,i − θ0)− (moI(X2,i)− θ0)]2
}

= − 2

σ2

[
n2∑
i=1

(Y2,i − θ0)(moIc(X2,i)− θ0)−
n2∑
i=1

(Y2,i − θ0)(moI(X2,i)− θ0)

]

+
1

σ2

n2∑
i=1

[
(moIc(X2,i)− θ0)2 − (moI(X2,i)− θ0)2

]
= − 2

σ2

n2∑
i=1

(Y2,i −moIc(X2,i))(moIc(X2,i)− θ0)

+
2

σ2

n2∑
i=1

(Y2,i −moI(X2,i))(moI(X2,i)− θ0)

− 1

σ2

n2∑
i=1

[
(moIc(X2,i)− θ0)2 − (moI(X2,i)− θ0)2

]
=

1

σ2

n2∑
i=1

[
(moI(X2,i)− θ0)2 − (moIc(X2,i)− θ0)2

]
,

where the last equation is from the fact that both the unconstrained and constrained

isotonic regression estimators of m, moI and moIc, are block averages, which ensures
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that

n2∑
i=1

(Y2,i −moI(X2,i))(moI(X2,i)− θ0) and

n2∑
i=1

(Y2,i −moIc(X2,i))(moIc(X2,i)− θ0)

are both equal to 0.

Now denote Pn2 as the empirical measure of the second-stage covariates {X2,i}n2
i=1

and Pn2 as the corresponding uniform probability measure of X2,i. Then, we have

2 log λoI =
n2

σ2
Pn2

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

]
{x ∈ Dn2} = T1 + T2,

where

T1 =
n2

σ2
(Pn2 − Pn2)

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

]
{x ∈ Dn2},

T2 =
n2

σ2
Pn2

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

]
{x ∈ Dn2}.

Since (1− 2γ1)/3 < 1/2, both (moI(x)−θ0) and (moIc(x)−θ0) are OP (n
1+γ1

3
2 ) and

T1 =
n2

σ2
n

1−2γ1
3

2 (Pn2−Pn2)

{[
n

1+γ1
3

2 (moI(x)− θ0)
]2
−
[
n

1+γ1
3

2 (moIc(x)− θ0)
]2}
{x ∈ Dn2},

we can show that T1 converges to 0 in probability by empirical process theory argu-

ments.

From the definition of T2, it is equal to

n2

σ2

∫
Dn2

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

] nγ1

1

2C1

dx

=
1

2C1σ2

(
p

1− p

)γ1

n1+γ1

2

∫
Dn2

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

]
dx

=
1

a2
n1+γ1

2

∫
Dn2

[
(moI(x)− θ0)2 − (moIc(x)− θ0)2

]
dx

=
1

a2

∫ {[
n

1+γ1
3

2 (moI(d0 + tn
− 1+γ1

3
2 )− θ0)

]2
−
[
n

1+γ1
3

2 (moIc(d0 + tn
− 1+γ1

3
2 )− θ0)

]2}
dt

d→ 1

a2

∫ [
ga,b(t)

2 − goa,b(t)2
]
dt = D.
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The last equality above is from the change of variable x = d0 + tn
−(1+γ1)/3
2 and the

weak convergence is ensured by the weak convergence result (4.47) in the L2 sense.

Therefore, the likelihood ratio test statistic 2 logλn converges to D and Theorem 4.8.6

holds.

4.8.4 Appendix for TSSIRP

To study the asymptotic properties of d2,Is, the basic idea is to approximate it

by the corresponding statistics in the following ideal two-stage smoothed isotonic

regression procedure (ITSSIRP). More specifically, the procedure of ITSSIRP with

an ideal second-stage sampling interval is as follows:

1. Set the first-stage sample proportion p ∈ (0, 1) and let the first and second-stage

sample sizes be n1 = bnpc and n2 = n − n1, respectively, where n is the total

sample size.

2. Let the ideal second-stage sampling interval be [L1, U1] = [d0 ± C1n
−γ1

1 ] with

constants C1 > 0 and γ1 > 0.

3. Allocate the equally-spaced or uniformly distributed second-stage design points

{X2,i}n2
i=1 in [L1, U1] and obtain the corresponding independent second-stage

responses {Y2,i}n2
i=1.

4. Compute the ideal second-stage isotonic regression moI of m over [L1, U1].

5. Smooth moI to obtain the ideal second-stage smoothed isotonic regression moIs

of m over [L1, U1] with a kernel K and a bandwidth hn.

6. Obtain doIs = m−1oIs(θ0), the ideal second-stage smoothed isotonic regression

estimator of d0.

Comparing ITSSIRP and TSSIRP, we can see that ITSSIRP is the same to

TSSIRP except that the second-stage sampling interval of ITSSIRP is centered at

d0 but not d1,I . Since d1,I converges to d0 in probability at the rate of n1/3, the

second-stage sample resolution at d0 would be the same for both two procedures

given γ1 < 1/3. On the other hand, the estimators d2,Is and doIs are asymptotically

determined by the sample resolution around d0. Thus, heuristically speaking, the

difference d2,I − doI would converge to 0 in probability with a fast enough rate. This

intuition needs rigorous justification. Now, suppose the above heuristic holds. Then,
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the asymptotic distribution of d2,Is is completely determined by that of doIs. Next,

we focus on the properties of doIs.

In ITSSIRP, the second-stage sample resolution at d0 is nr, which is the same

to that in TSSIRP. Suppose the bandwidth for the kernel smoothing has the form

hn = cn−γ2
r with constants c > 0 and γ2 > 0. Similarly, the two internal constraints

for m2,Is described in Section 4.3.2 also apply for moIs. That is, to make moIs effective,

we need to pose the requirements that γ2 > γ1/(1+γ1) or γ2 = γ1/(1+γ1) with c < c?

and that γ2 < 1/3, with which we obtain the asymptotic distribution of moIs in the

following result.

Theorem 4.8.10. Suppose the assumption (B) holds. For γ1 ∈ (0, 1/2) and γ2 ∈
(1/7, 1/3), if γ2 > γ1/(1 + γ1) or if γ2 = γ1/(1 + γ1) and c < c?, we have

n(1+γ1)(1−γ2)/2 (moIs(d0)−m(d0))−n(1+γ1)(1−5γ2)/2C−2γ2
nr c2B1(d0)

d→ C−(1−γ2)/2
nr N(0, σ2κ/c),

where B1(d0) = m′′(d0)
∫
t2K(t)dt/2.

From Theorem 4.8.10, we can see there is an additional technical requirement

γ2 > 1/7, which is essentially used to avoid complicated bias terms. On the other

hand, note that now γ1 is allowed to take values larger than or equal to 1/3 since

the second-stage sampling interval centers at d0 but not d1,I . It is natural to pose

the restriction that γ1 < 1/2 since no essentially nonparametric one-stage estimation

method could achieve the parametric rate. Then, all the above requirements for γ1

and γ2 forms an admissible region for (γ1, γ2). It is clear that if (γ1, γ2) (with a

proper c) lies in the admissible region, Theorem 4.8.10 holds. The admissible region

is enclosed by the black dashed borders in the left panel of Figure 4.10.

Theorem 4.8.10 indicates that, for each γ1 ∈ (0, 1/2), the optimal γ2 (and a proper

c) to maximize the convergence rate is as follows. For γ1 ∈ (0, 1/4], let γ2 = 1/5; for

γ1 ∈ (1/4, 1/2), let γ2 = γ1/(1 + γ1) with c < c?. The optimal pair (γ1, γ2) lies on the

red solid segments in the left panel of Figure 4.10 and the optimal convergence rate

of moIs(d0) as a function of γ1 is shown in the right panel of Figure 4.10.

The asymptotic distributions on moIs(d0) with the optimal convergence rates fol-

low directly from Theorem 4.8.10.

Corollary 4.8.11. Suppose the assumption (B) holds. If 1/4 < γ1 < 1/2, γ2 =

γ1/(1 + γ1) and c < c?(γ2), we have

n1/2(moIs(d0)−m(d0))
d→ C−(1−γ2)/2

nr N(0, σ2κ/c). (4.48)
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Figure 4.10: The left panel shows the admissible region of (γ1, γ2) for moIs enclosed
by the solid and dashed borders. The pair (γ1, γ2) can be on the solid
borders but not on the dashed ones. When (γ1, γ2) is on the red solid
segment and curve in the left panel, the convergence rate of moIs for
each γ1 ∈ (0, 1/2) is optimized. The corresponding optimal rate as a
function of γ1 is shown in the right panel.

If γ1 = 1/4, γ2 = 1/5 and c < c?(1/5), we have

n1/2(moIs(x0)−m(d0))
d→ C−2/5nr c2B1(d0) + C−2/5nr N(0, σ2κ/c). (4.49)

If 0 < γ1 < 1/4 and γ2 = 1/5, we have

n2(1+γ1)/5(moIs(d0)−m(d0))
d→ C−2/5nr c2B1(d0) + C−2/5nr N(0, σ2κ/c). (4.50)

From Corollary 4.8.11, we can further derive the asymptotic distributions on doIs

with the optimal convergence rates.

Theorem 4.8.12. Suppose the assumption (B) holds. If 1/4 < γ1 < 1/2, γ2 =

γ1/(1 + γ1) and c < c?(γ2), we have

n1/2(doIs − d0)
d→ CdoIs(γ2)N(0, 1); (4.51)

If γ1 = 1/4, γ2 = 1/5 and c < c?(1/5), we have

n1/2(doIs − d0)
d→ BdoIs + CdoIs(1/5)N(0, 1); (4.52)
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If 0 < γ1 < 1/4 and γ2 = 1/5, we have

n2(1+γ1)/5(doIs − d0)
d→ BdoIs + CdoIs(1/5)N(0, 1), (4.53)

where CdoIs(γ) = m′(d0)
−1C

−(1−γ)/2
nr σ

√
κ/c and BdoIs = −m′(d0)−1C−2/5nr c2B1(d0).

A sketch of the proofs for Theorems 4.8.10 and 4.8.12. First, we consider the proof

for Theorems 4.8.10. Since the second-stage design density is uniform on [L1, U1], the

sample resolution at x is nr and the bandwidth is hn = cn−γ2
r with some c > 0 and

γ2 > 0. Then, it is sufficient to show that, for γ2 ∈ (1/7, 1/3),

n(1−γ2)/2
r (moIs(x)−m(x))− n(1−5γ2)/2

r c2B1(x)
d→ N(0, κσ2/c), (4.54)

which is equivalent to

(nrh)1/2
(
moIs(x)−m(x)−B1(d0)h

2
) d→ N(0, κσ2).

Since γ2 < 1/3 ensures that the ideal smoothed isotonic regression estimator moIs(d0)

and the ideal kernel smoothing estimator mos(d0) are the same with probability going

to 1, it is sufficient to show that

(nrh)1/2
(
mos(x)−m(x)−B1(d0)h

2
) d→ N(0, κσ2). (4.55)

From the definition of mos(d0), we have

mos(d0)−m(d0)

=

∑n2

i=1K((X2,i − d0)/h)Y2,i∑n2

i=1K((X2,i − d0)/h)
−m(d0)

=

∑n2

i=1K((X2,i − d0)/h)(Y2,i −m(d0))∑n2

i=1K((X2,i − d0)/h)

=

∑n2

i=1K((X2,i − d0)/h)(m(X2,i)−m(d0)) +
∑n2

i=1K((X2,i − d0)/h)ε2,i∑n2

i=1K((X2,i − d0)/h)

=(T1 + T2)/T3,

147



where

T1 = (U1 − L1)
1

n2h

n2∑
i=1

K((X2,i − d0)/h)(m(X2,i)−m(d0)),

T2 = (U1 − L1)
1

n2h

n2∑
i=1

K((X2,i − d0)/h)ε2,i,

T3 = (U1 − L1)
1

n2h

n2∑
i=1

K((X2,i − d0)/h).

Then, we have

mos(d0)−m(d0)−B1(d0)h
2 = (T1/T3 −B1(d0)h

2) + T2/T3

=(T1 −B1(d0)h
2T3)/T3 + T2/T3 =

[
T1 −B1(d0)h

2 +B1(d0)h
2(1− T3)

]
/T3 + T2/T3.

It can be shown that

T3 − 1 = OP (h3 + (n2h)−1/2)

T1 −B1(d0)h
2 = OP (h3 + (n2h)−1/2h)

T2 = OP ((n2h)−1/2).

Thus, for γ2 > 1/7, we have

(n2h)−1/2
[
T1 −B1(d0)h

2 +B1(d0)h
2(1− T3)

]
= oP (1).

By noticing that T3 converges to 1 in probability, we have

(n2h)−1/2(mos(d0)−m(d0)−B1(d0)h
2) = (n2h)−1/2T2 + oP (1).

Then, from U1 − L1 = oP (1), we have

(U1−L1)
1/2(n2h)−1/2(mos(d0)−m(d0)−B1(d0)h

2) = (U1−L1)
1/2(n2h)−1/2T2 +oP (1).

It can be shown that (U1 − L1)
1/2(n2h)−1/2T2 converges weakly to N(0, κσ2) simply

by involving the classical triangular central limit theorem. Thus, from the defintion

nr = n2/(U1 − L1), we have the desired result (4.55).
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We next consider the first asymptotic result (4.51) in Theorem 4.8.12 and the

other two cases can be handled in the same way. If 1/4 < γ1 < 1/2, γ2 = γ1/(1 + γ1)

and c < 2−γ2C1−γ2

1 [(1 − p)/p]γ2 , γ2 varies within (1/5, 1/3). Then, the bias term in

the above result (4.54) disappears. Thus, we have

n(1−γ2)/2
r (moIs(x)−m(x))

d→ N(0, κσ2/c).

Similar to the sketch of the proof of Theorem 4.2.5 in Appendix 4.8.2, we can obtain

(4.51).
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