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ABSTRACT

Phase-Field Simulations of Multicomponent Lipid Membranes Coupling
Composition with Deformation

by

Chloe M. Funkhouser

Co-Chairs: Katsuyo S. Thornton and Michael Mayer

In this work, we have developed a model and simulation method to study the

thermodynamics and kinetics of phase-separating multicomponent lipid bilayer mem-

branes. A continuum-level phase-field method is applied to model the phase separa-

tion, and a Helfrich free energy is used to couple the composition with the mechanical

properties of the two separated phases, accounting for their bending rigidities and

spontaneous curvatures. Four specific models are presented: a planar background

model for nearly planar portions of membranes, a spherical background model for

vesicles, a cylindrical background model for tubules, and an extension of the planar

background model that additionally accounts for interactions between the two leaflets

of the bilayer.

The planar background model is used to investigate what types of initial compo-

sitional and geometric configurations lead to a stripe phase morphology. We observe

that, while patterned rigid supports are able to reliably induce such a morphology,

perturbations in composition produce stripes less reliably. With the vesicle model,

we investigate the effects of initial vesicle shapes, phase fractions, spontaneous cur-

xxv



vatures, and bending rigidities on vesicle dynamics. We find that (i) a phase with

spontaneous curvature closer to the vesicle surface curvature is favored to form con-

tinuous domain morphologies, even when present at or slightly less than 50%; and (ii)

mixtures with small amounts of a phase with extreme spontaneous curvature, as well

as vesicles with elongated shapes, can have enhanced stability in configurations with

multiple minority phase domains as a result of the bending energy. The tubule model

is applied to investigate whether bending energy can stabilize the pearling instability

observed experimentally. We find that appropriate spontaneous curvature and bend-

ing rigidity can indeed stabilize the tubule. Lastly, we use the planar bilayer model

to investigate the effects of the interleaflet coupling strength, finding that strong cou-

pling can cause phase compositions to shift, such that the effective phase fraction

becomes closer to 50% and the stripe morphology is more favored. Overall, we find

that composition and shape are closely related, where compositional morphologies

can alter the membrane shape and vice versa.

xxvi



CHAPTER I

Introduction

1.1 Membrane Composition, Structure, and Function

Biological membranes are ubiquitous structures at the cellular level of life. While

they can be composed of lipids, proteins, and carbohydrate residues, the common

component in many different forms of cellular membranes is the lipid. The most

common membrane lipid molecules are glycerophospholipids, which typically have one

or two hydrocarbon chains (lipid “tailgroups,” or acyl chains) with an even number

of carbon atoms ranging between 14 and 24 atoms. These tailgroups are attached

via a glycerol group to a polar phosphate-containing group (lipid “headgroup”). The

structures of some common lipids are presented in Fig. 1.1.

A lipid bilayer is the most common structure formed by in vivo membranes, com-

posed of two opposing leaflets, defined as oriented planes of approximately aligned

lipids. A schematic of a lipid bilayer is presented in Fig. 1.2. In a lipid bilayer, the

lipids orient themselves such that the polar headgroups interface the aqueous environ-

ment of the intra or extracellular space while the nonpolar tailgroups in the leaflets

face each other to avoid interacting with the surrounding water. The thermodynamic

driving force for the formation of a lipid bilayer is the hydrophobic force, which can

be explained with the following entropic argument.

Following Ref. 1, consider two configurational scenarios: one where a handful of
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Figure 1.1: Chemical structures of lipids commonly found in mammalian membranes.
Reproduced from Ref. 1.

Figure 1.2: A schematic of a lipid bilayer membrane, composed of lipids with polar
headgroups (blue) and nonpolar tailgroups (yellow). Reproduced from
Ref. 2.
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lipid molecules are individually surrounded by water, and a second where the lipid

molecules form a cluster so that no water separates them. In the first scenario, a

“cage” of water molecules encases each lipid, including the tailgroups. Each water

molecule has a particular orientation to maximize its hydrogen bonds with neighbor-

ing water molecules, but the water molecules in contact with the lipid tailgroups have

configurational constraints imposed upon them since they have fewer neighboring wa-

ter molecules than those in the bulk. This constraint imparts an ordering in the water

molecules forming the cages around each lipid, decreasing entropy. In the second sce-

nario, the clustered lipids together have a single water cage, and overall the amount

of ordering imposed on the water molecules in this single large cage is less than that

of the combined ordering that would occur with the individual water cages, each con-

taining an individual molecule, as described in the first scenario. This second scenario

therefore has higher entropy (i.e., less order) than the first, making it more energeti-

cally favorable. While the polar headgroups also impose some ordering of the water

molecules in their cage, the favorable electrostatic interactions between the polar wa-

ter and polar headgroups compensates for the decrease in entropy. Therefore, as a

result of this hydrophobic force, the nonpolar tailgroups preferentially associate with

other nonpolar tailgroups rather than water, and the polar headgroups are turned

outward to interface with the water (1).

Since the lipid molecules in a bilayer membrane associate with each other only via

hydrophobic interactions, which are relatively weak compared with chemical bonds,

the lipids are free to move about laterally within the leaflet they reside in. The

lipids have so much freedom to move about within the plane of the membrane that,

at physiological temperatures, the membrane is considered to be in a liquid state.

Thus, membranes constitute an intriguing system from a materials science perspec-

tive, where they are essentially a two-dimensional surface consisting of components

with liquid-like mobility within that surface.
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So far the discussion of biological membranes has focused on lipids, however,

proteins are commonly incorporated into the lipid bilayer structure also. The classic

model of a biological membrane is the Singer-Nicholson fluid mosaic model, where pro-

teins “float” in a “sea” of lipids (3), as illustrated in Fig. 1.3. Membrane proteins are

classified as either peripheral or integral, meaning they either associate with only the

hydrophilic surface of the membrane (peripheral) or penetrate into the hydrophobic

core of the membrane (integral). Many integral proteins are transmembrane, mean-

ing they span the entire thickness of the membrane, often several times (i.e., they

have more than one membrane-spanning domain) (2). The degree to which a protein

is incorporated into the membrane depends on how hydrophobic or hydrophilic the

outer-facing segments of the protein are. For example, for a protein to have an in-

tegral configuration, it must have hydrophobic segments in the portion that contacts

the tailgroups of the lipids in the bilayer; if it does not have exposed hydrophobic

segments, it will more likely be a peripheral protein. Some peripheral proteins have a

lipid anchor which incorporates into the lipid bilayer. Lastly, carbohydrate residues

can be associated with membranes by their attachment to either a lipid (e.g., a gly-

colipid) or a membrane protein (e.g., the oligosaccharide chains of a glycoprotein).

These carbohydrate residues would typically be found on the extracellular face of the

plasma membrane of a mammalian cell.

Membranes are found in a variety of contexts in cells. A lipid bilayer membrane

known as the plasma membrane surrounds cells to form a barrier between intracellular

(cytoplasmic) and extracellular space, isolating the cellular components and serving

as a gate for material entering and leaving the cell. Membrane proteins perform a

large variety of tasks, and the plasma membrane serves as a structural platform for

them, in addition to actively sorting and directing their behavior. The interactions

between membrane lipids and proteins will be discussed further in Sec. 1.2. The

plasma membrane also links to the cytoskeleton, which is a mesh of fibers that sup-
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Figure 1.3: Fluid mosaic model representation of a cell plasma membrane, consisting
of a lipid bilayer with proteins and carbohydrate moieties. Reproduced
from Ref. 2.

ports the cell mechanically. In addition to the plasma membrane, some organelles

have lipid membranes encasing them, including mitochondria and chloroplasts, the

nucleus, the endoplasmic reticulum, Golgi apparatus, lysosomes, and peroxisomes (1).

Additionally, transport vesicles are simple lipid bilayer capsules typically containing

water, allowing them to bud off from or fuse with the plasma membrane to allow

material to enter or leave the cell.

1.2 Membrane Heterogeneity

Several different varieties of lipid molecules are commonly found in membranes,

varying by the cell type, although a single cell will have multiple kinds of lipids in

all of its various membranes. These lipid mixtures forming the membranes are not

necessarily homogeneous mixtures, and there is much experimental evidence that

membrane lipids are distributed heterogeneously (4–8). This heterogeneity manifests

as patches termed lipid rafts, defined as membrane structures of 10-200 nm in size,
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highly dynamic, and enriched in sphingolipids and sterols (9). Sphingolipids, as

opposed to the majority of other membrane lipids, have long, largely saturated acyl

chains, causing them to pack together differently than other lipids. Cholesterol, with a

small polar group and a rigid ringed structure, fits into the voids between sphingolipids

to function as a spacer. This molecular packing of sphingolipids and cholesterol,

differing from how lipids with polyunsaturated acyl chains pack, is the basis for

phase separation into raft and non-raft phases (10, 11). The presence of cholesterol

in lipid membranes is known to broaden the thermal phase transition from the (solid)

gel phase observed at low temperature to the liquid-disordered phase (Ld) observed

at higher temperatures, introducing an intermediate phase, the liquid-ordered phase

(Lo). The Lo phase has a molecular order characterized by tightly packed acyl chains

similar to the (solid) gel phase, but lateral mobility similar to the Ld phase (12–15).

It is this Lo phase that rafts exist in. Schematics of these three phases are shown in

Fig. 1.4 to illustrate the difference in the packing and ordering.

A variety of experimental methods have been used to study lipid rafts. In many

mammalian cells, it has been found that certain portions of membrane are insoluble

in detergents such as Triton X-100 when used at 4◦C. The fragments of detergent-

resistant membrane (DRM) have been found to be rich in sphingolipids and cholesterol

compared with the rest of the membrane, making the connection between DRMs and

lipid rafts (17, 18). When DRMs are isolated from cells, they contain lipid-anchored

proteins and integral proteins, which would indicate that those proteins preferentially

associate with lipid rafts (10, 14, 19). In addition to using detergents to study lipid

rafts and associated proteins, techniques that deplete membranes of cholesterol can be

used to show that protein function is altered in the absence of cholesterol, indicating

the protein function is raft-related (20–22). Single-molecule techniques have been

employed to study raft dynamics in living cells, finding that molecules thought to be

associated with lipid rafts including saturated lipids, sphingolipids, and GPI-anchored
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a)

b)

c)

Figure 1.4: Schematics illustrating the molecular order of three lipid bilayer phases:
(a) the liquid-disordered (Ld) phase, (b) the solid gel phase, and (c) the
liquid-ordered (Lo) phase. The diffusion coefficients in the Ld and Lo

phases are larger than in the gel phase, and the ordering of the acyl chains
in the Lo and gel phases is higher than in the Ld phase. Reproduced from
Ref. 16.
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proteins, are transiently confined to raft-sized regions of the membrane (4, 23–27).

It has been shown that lipid rafts are involved in various cellular processes carried

out by proteins associating with lipid rafts. The rafts can help to concentrate certain

proteins spatially, or in some cases the lipids could directly alter protein function

by affecting conformation (14). Rafts have been found to modulate protein-protein

interactions in resting and activated immune cells, including T-cells, B-cells, and mast

cells (11, 28–30). Other examples of raft-associated proteins are caveolin, a protein

involved in caveolar endocytosis (31–33), integrin proteins and receptors (34–36), and

the integral membrane protein LAT involved in signaling (37). Rafts have also been

implicated in bacterial and viral invasion (38, 39).

1.2.1 Model Membrane Systems

The plasma membrane of mammalian cells can be composed of hundreds of lipid

species in some cases, and therefore it can be desirable to study lipid phase dynamics

in simpler membrane systems such as planar lipid bilayers and vesicles (similar to

those used for transport in cells). Additionally, since lipid rafts are thought to be

on the order of tens of nanometers in size, and are also highly dynamic, they have

proven difficult to observe in intact cells. Planar bilayers and vesicles composed of

ternary lipid mixtures (typically an unsaturated lipid, a sphingolipid, and cholesterol

at physiologically relevant levels) have been studied by a number of groups to eluci-

date lipid phase behavior (6, 40–42) since these types of mixtures can separate into

micron-scale Ld and Lo (raft-like) phases, analogous to membrane non-raft and raft

domains. In these simple membranes, the phase-separated domains are on the order

of tens of microns in size and therefore they can be observed using fluorescence mi-

croscopy, where a small amount of a fluorescent molecule that is known to partition

into one of the phases is added (see Figs. 1.5 and 1.6). Other techniques have also

demonstrated phase separation in ternary model membranes, including Atomic Force
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Figure 1.5: Fluorescence micrographs of ternary giant unilamellar vesicles (GUVs)
approximately 30 microns in diameter imaged over time near the miscibil-
ity transition temperature. The Lo phase appears dark and the Ld phase
appears bright. The GUV in (a) is a 1:1 mixture of dioleoylphosphatidyl-
choline (DOPC) and dipalmitoylphosphatidylcholine (DPPC), plus 25%
cholesterol, and evolves from a configuration with many small Lo domains
to a completely phase-separated state in order to decrease its line-tension
energy. The GUV in (b) is a 1:1 mixture of DOPC and DPPC, plus 35%
cholesterol, and separates into striped domains in a process resembling
spinodal decomposition early in the evolution, eventually forming large
round domains to reduce line-tension energy as in part (a). The system in
(b) has approximately an equal mixture of the two phases. Reproduced
from Ref. 5.

Microscopy (AFM) (43) and Fluorescence Correlation Spectroscopy (FCS) (44, 45).

AFM has the benefit that it does not use light to probe the membrane surface, and

can therefore access structures on the nanometer length scale (46). AFM studies

have shown membrane regions with different heights but smooth edges indicating the

presence of phase-separated Lo and Ld domains rather than solid gel domains, which

would not form smooth edges (47). FCS is a tool that can be used to measure dif-

fusion coefficients, and has been able to demonstrate that the separated phases in

ternary vesicles have distinctly different diffusion coefficients, even though both are

liquid phases (48–51). Specifically, the Lo phase has been found to have a diffusion

coefficient approximately an order of magnitude larger than the solid gel phase but

also an order of magnitude lower than in the Ld phase (48).

While these simple membrane systems do reproduce the essential lipid phase be-
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Figure 1.6: Confocal fluorescence micrographs of ternary GUVs composed of mixtures
of sphingomyelin, cholesterol, and a phosphatidylcholine (PC) lipid where
the acyl chain (tailgroup) length was varied. The red dye partitions into
the Ld phase while the green dye partitions into the Lo phase. All images
are sections of the GUVs, except (b), which is a three-dimensional pro-
jection; scale bars represent 10 microns. The GUVs in (a) and (b) have
the longest-chain PC and do not exhibit phase separation since both dyes
appear to be distributed uniformly throughout the membrane. The next
longest acyl-chain PC was used for the system in (c) and (d), where neg-
ative curvatures appear at the interfaces, and a small budding vesicle
appears in (d). The next longest acyl-chain PC was used for (e) and (f),
and very little deviation from a spherical shape is observed, and finally,
with the shortest acyl-chain PC in (g-j), the interfaces appear to have
a positive curvature with budding structures. These illustrate that dif-
ferences in thickness between the two phases (a function of acyl chain
length) can induce discontinuous curvature at phase interfaces. Figure
copied and modified from Ref. 52.
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havior, they neglect the effects of membrane proteins and the underlying cytoskeleton.

Both proteins and the cytoskeleton have been hypothesized to play a role in lipid raft

dynamics, potentially acting to limit the size that lipid rafts can achieve (24, 53–55).

This may account for the discrepancy between the nanometer-scale lipid rafts found

in cells and the micron-scale lipid raft-like domains observed in model membrane

systems.

In addition to planar bilayers and vesicles being simple membrane models of the

cell plasma membrane, they also have great potential for application in biotechnol-

ogy and biomedical engineering. Planar lipid bilayers have potential to be used as

biosensors, where they could be engineered such that demixing and particular phase

morphologies would be induced by the presence of an analyte of interest. Vesicles can

be used as drug delivery vehicles (56–59), where perhaps lipid phase behavior could

be tuned in order to target particular cell types for more specific therapy. Addition-

ally, vesicles have potential for use as microreactors and as biomimetic surfaces for

studying signaling cascades and chemical reactions (60–62).

1.3 Membrane Morphology

The different geometries of various lipids can have an effect on the morphology

and mechanical properties of the membrane (1, 52, 63, 64). The degree of saturation

of the acyl chain tailgroups influences the amount of space they fill since each double

bond creates a kink in the tail. The shape of the overall lipid molecule is a function

of the cross-sectional area (in the plane of the membrane) occupied by the headgroup

compared with that of the tailgroups. When they occupy roughly the same amount

of area, the lipid is cylindrical, but if one is larger than the other, the lipid has the

shape of a cone or inverted cone. As illustrated schematically in Fig. 1.7, lipids with

two saturated tailgroups and an average-sized headgroup tend to be cylindrical; lipids

with two unsaturated tailgroups and a small headgroup tend to have a cone shape;
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Figure 1.7: Space-filling atomistic models of various lipids illustrating their overall
shapes, drawn in as truncated cones. (a) Cone-shaped lipids, (b) cylin-
drical lipids, and (c) inverted-cone-shaped lipids. Color key: hydrogen,
blue; oxygen, red; phosphate, purple; and carbon, gray. Abbreviations
are ganglioside (GM1), lysophosphatidylcholine (LPC), dioleoylphos-
phatidylcholine (DOPC), dinervonoylphosphatidylcholine (DNPC), di-
phytanoylphosphatidylcholine (DPhPC), and dioleoylglycerol (DOG).
Figure copied and modified from Ref. 64.

lipids with a single tailgroup and/or large headgroup tend to have an inverted-cone

shape (63).

An asymmetric bilayer is defined as a lipid bilayer where the two leaflets are com-

posed of different lipids. Natural biological membranes are asymmetric; for example,

in the plasma membrane of mammalian cells, the inner leaflet tends to be rich in

phosphatidylserine (PS) and phosphatidylethanolamine (PE), while the outer leaflet

tends to be rich in phosphatidylcholine (PC) and sphingomyelin (SM) (2, 65, 66).

Spontaneous curvature is a characteristic of membranes where the molecular shapes

of the membrane components give the membrane a tendency to adopt a particu-

lar curved morphology. For example, a single-component lipid monolayer with a lipid

headgroup that occupies a different cross-sectional area than the tailgroup would have

a nonzero spontaneous curvature. For a single-component (and therefore symmetric)

lipid bilayer, the dimensions of the lipids in the two opposing leaflets are all the same,

and the membrane would therefore have zero spontaneous curvature. However, for an
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Figure 1.8: Schematics of symmetric (a) and asymmetric membranes (b,c) and their
spontaneous or preferred curvatures. Positive (b) or negative (c) cur-
vatures can arise depending on which leaflets the different lipids reside
in. In these examples, the lipid shown with a green headgroup has an
overall inverted-cone shape with a small headgroup and two unsaturated
tailgroups, while the lipid shown with the blue headgroup has an overall
cone shape, with a large headgroup and saturated tailgroups. Cholesterol
is also shown in yellow, partitioning with the saturated lipid, as it tends
to do so in the Lo phase.

asymmetric bilayer, nonzero spontaneous curvature can arise if the dimensions of the

lipids in the two leaflets differ. Schematics of such configurations are illustrated in

Fig. 1.8. The phenomenon of spontaneous curvature is one way that the composition

of a lipid bilayer can alter the morphology of the membrane, by making a nonzero

curvature energetically favorable. Additionally, since the coexisting Lo and Ld phases

have different molecular packing, they can have different resistance to bending away

from this spontanoeous curvature, termed bending rigidity.

One example from nature where curved bilayer membranes with an asymmetric

composition are observed is in the thylakoid membrane of chloroplasts. The thylakoid

membrane has both zero curvature regions and regions with very high curvature of

approximately 10 nm−1 (67, 68). There is lateral and transverse heterogeneity in

the thylakoid membrane, which are both present for reasons related to protein func-

tion and also to help maintain the membrane structure. The two main lipids that

together compose 75% of the membrane are monogalactosyldiacylglycerol (MGDG)
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Figure 1.9: Schematic showing the budding of a membrane domain driven by line-
tension energy. The interface between the β domains and the α matrix is
shown with the double solid-dashed line, and is of higher energy than the
bulk. Progressing from (1) to (3), the length of this interface is greatly
reduced as the β domain bulges out (2) and finally forms a bud (3),
reducing the line-tension energy. Reproduced from Ref. 69.

and digalactosyldiacylglycerol (DGDG). MGDG is cone-shaped, where the tailgroups

occupy more cross-sectional area than the headgroup. DGDG has a large headgroup

and has the shape of an inverted cone. Therefore, it makes sense that to form the

highly-curved regions of the thylakoid membrane, the MGDG is enriched in the con-

cave inner leaflet while DGDG is enriched in the convex outer leaflet (67, 68).

Another way that the composition of a lipid membrane can affect its morphology

is related to line-tension energy. In a membrane with coexisting Lo and Ld phases,

the interfacial regions where the immiscible phases meet have higher energy than

the pure, bulk-phase regions. Therefore, there is a driving force to reduce the total

amount (or length) of interface. One way that this can be accomplished is if one

phase bulges away from the plane of the membrane, such that the length of interface

shortens, as illustrated in Fig. 1.9. Therefore, even a symmetric bilayer that has phase

separated can experience composition-driven deformation, as observed in some of the

systems in Fig. 1.6.

In this section so far, examples of how composition can affect the curvature of
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the membrane have been discussed. However, the interplay between composition and

morphology appears to be two-way, where altering the membrane morphology can af-

fect the distribution of the membrane components. Deforming a membrane can cause

compositional phases to redistribute, occupying portions of the membrane that best

satisfy their bending preferences. One example is shown in Fig. 1.10, where an osmot-

ically deflated vesicle (with excess surface area for its volume) shows the Lo and Ld

phases sorting themselves to low- and high-curvature regions, respectively (8). The Lo

phase, shown in blue, is more rigid and/or prefers to have a lower curvature compared

with the Ld phases shown in red, and therefore occupies the lower-curvature regions of

the membrane, even though the presence of these numerous domains is unfavorable in

terms of the line-tension energy. Another experiment illustrating phase sorting with

respect to membrane curvature utilized the micropipette aspiration technique to draw

a thin membrane tubule from a phase-separated vesicle, containing two fluorescent

dyes known to partition into each of the phases (70). When the tubule was drawn to a

diameter of 70±10 nm, the dyes were detected at equal levels throughout the tubule,

but when the tubule was pulled further down to a diameter of 20±2 nm, the dye that

partitioned into the Ld phase was detected at approximately twice the concentration

of the dye in the Lo phase, indicating that altering the membrane curvature caused

the membrane components to redistribute. Lastly, sorting of phase-separated lipid

domains in planar bilayers supported on a patterned surface with regions of high and

low curvature was observed in Ref. 71.

As a common theme in biological systems including membranes, form and func-

tion are closely related. Also, the local lipid environment can chemically affect how

the membrane interacts with proteins. Therefore, membrane composition, morphol-

ogy, and function are all intertwined. For example, in Ref. 72 it is reported that the

interaction of the HIV-1 Nef protein with membranes is sensitive to both membrane

composition (specifically, lipid charge) and membrane curvature, where the associa-
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Figure 1.10: A confocal fluorescence micrograph of an osmotically deflated GUV com-
posed of a mixture of DOPC, SM, and cholesterol. The red dye partitions
into the Ld phase while the blue dye partitions into the Lo phase. The
pattern of where the different phases appear suggests that the Lo phase is
preferentially occupying lower-curvature regions, so much so that it has
split into numerous isolated domains (increasing the line-tension energy
compared with a coarser configuration) to satisfy its bending energy.
The scale bar represents 5 microns. Reproduced from Ref. 8.

tion constant of Nef with liposomes varied with liposome size. This Nef protein is

essential for HIV-1 replication and the progression of the disease to AIDS. A general

example of how membrane composition can affect membrane function comes from the

concept of hydrophobic mismatch, where the thickness of the hydrophobic region of a

bilayer (a function mainly of the length of the lipid tailgroups, but also of molecular

packing interactions) determines the available locations for insertion as well as the

orientation of integral proteins, matching the hydrophobic regions of the protein with

those of the bilayer (73, 74). Other examples include the high-curvature membrane

regions required for vesicle budding (75, 76), and the curvature-sensing properties of

some protein motifs including BAR domains (77, 78), amphipathic helices (79, 80),

and membrane-anchored proteins (80, 81). This curvature-sensing can translate to

proteins being concentrated in areas of particular curvature, binding only to areas of

particular curvature, or being more active in areas of particular curvature, as a result

of physicochemical properties of curved membranes, as reviewed in Refs. 82 and 83.

16



1.4 Membrane Interleaflet Interactions

There is theoretical and experimental evidence that the phase behavior of one

leaflet can influence the behavior of the opposing leaflet (84–86). In asymmetric

planar lipid bilayer membranes composed of simple mixtures to mimic the inner and

outer leaflets of a cell plasma membrane, it has been found that phase separation can

be induced in the inner leaflet (or can be suppressed in the outer leaflet), depending

on the strength of the tendencies of the leaflets to phase separate (or to remain

homogeneous) (87). It has also been observed that in model membranes where both

leaflets phase separate, the domains in the two leaflets interact and tend to align

laterally (65, 88). New phases can also arise from the interleaflet interactions, where

intermediate phases form near phase boundaries when domains in opposing leaflets

cannot perfectly align because they are present in different fractions (87).

As an example of a process in living cells where there is evidence that inter-

leaflet coupling plays an important role, it has been observed that peripheral proteins

(interacting with only one leaflet of the membrane) can “sense” the presence of pe-

ripheral proteins interacting with the opposite leaflet to trigger signaling cascades.

In some cases, transmembrane proteins assist in this “sensing” by interacting with

both peripheral proteins, but in other cases the “sensing” is thought to occur via the

membrane lipids alone (89–93). In the latter case, it is hypothesized that specific

lipids in the outer leaflet first cluster around a peripheral protein, inducing lipids to

cluster at the same location in the inner leaflet, which then in turn attracts the second

peripheral protein to the inner leaflet (92).

Mechanisms to explain this transmembrane lipid coupling have been proposed,

although the dominant effect has not been fully determined. The possible mechanisms

include interdigitation of the tailgroups of the lipids in the opposing leaflets (94), the

exchange of cholesterol across the bilayer, and molecule-molecule interactions similar

to what liquid-disordered and liquid-ordered phases in a single leaflet experience at
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their interface (95, 96). Spontaneous flip-flop of lipids from one leaflet to the other

can occur, but typically on time scales much longer than the coupling observed in

experiments due to the energetic penalty of bringing a hydrophilic lipid headgroup

through the hydrophobic tail region of the bilayer.

1.5 Overview and Outline of Dissertation

Because of the rich connections between membrane composition, morphology, and

ultimately, function, the investigations in this work focus on the morphological aspects

of phase separation in lipid membranes.

The overall aim of this work was to develop an understanding of the thermodynam-

ics and kinetics involved in phase-separating lipid membrane systems, investigating

the interplay between membrane composition and morphology, in particular. In this

work, we have developed a continuum-level method for modeling phase separation in

multicomponent lipid membranes, where the composition is coupled to mechanical

properties of the phases. Since different lipids have different shapes, and mixtures of

lipids have different packing structures, the membrane composition is related to the

preferred morphology of the membrane. This means that as the composition evolves

from, for example, a random mixture to a macroscopically phase-separated configu-

ration, the membrane can deform in response. Also, since the phases have preferred

curvature, particular membrane morphologies can influence the locations and sizes of

the compositional domains.

In Chapter II, an outline of the main numerical methods used in this work is

presented. The chapter begins with a literature review of recent work using com-

putational modeling to investigate aspects of lipid membranes relevant to this work.

This is followed by an introduction to the phase-field model, a version of which is

used here to model the compositional evolution. Finally, the finite difference method

is presented, which is a scheme for numerical derivative calculations and numerical
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integrations via discretization.

Chapter III presents the first iteration of the model we have developed to simulate

compositional phase separation and the corresponding morphological evolution, in

this case for a nearly planar portion of a membrane. The model detailed in this

chapter was later modified to include additional aspects of the governing physics

or applied to membranes with different geometries. Therefore, the later chapters

will build on the model from this chapter, detailing only the modifications made.

Results produced with this nearly planar membrane model are presented, examining

the formation of stripe phase morphologies employing different initializations and

constraints.

Chapter IV describes the modification of the planar model from the previous

chapter to apply it to a spherical background geometry, in order to model lipid vesicles.

This model represents the membrane as a closed surface, including an internal pressure

to represent the fluid within the vesicle interior. A special meshing system, known

as the Yin-Yang grid system, is employed for this spherical background geometry

model, and its advantages as well as the implications for its implementation are

described. Results are presented examining different parameter sets, investigating

how the stationary states and dynamics are affected by factors such as the spontaneous

curvatures of the two phases in relation to the inverse of the size of the vesicle, the

fraction of the two phases, and the bending rigidities of the phases. Vesicles initialized

with ellipsoidal shapes are also studied.

Chapter V presents an alternative modification to the planar model, applying it to

a cylindrical background geometry in order to study lipid membrane tubules. Much

of this model is similar to the spherical model, although no special meshing scheme

is employed. The model is used to examine the morphologies formed in cylindrical

systems where the phases have mismatched spontaneous curvatures, producing a com-

plex system with shape features not observed using the spherical model. We observe
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what we believe to be Plateau-Rayleigh instabilities, where the tubule is driven to

pinch apart to decrease surface-tension energy.

Chapter VI describes the last iteration of the original planar model, this time

being extended to include an additional physical aspect of lipid membranes: how

the two leaflets of the bilayer individually affect each other and the entire membrane

system. The geometry is assumed to be of the nearly planar configuration, but the

compositions of the two leaflets are treated individually, and the spontaneous cur-

vature is defined as a function of the leaflet compositions and how the components

in the two leaflets preferentially interact. The effects of this interleaflet interaction

on the dynamics and equilibrium morphologies is investigated, producing morpho-

logical phase diagrams and contrasting them at different relative interleaflet coupling

strengths.

Lastly, Chap. VII discusses overarching conclusions drawn from the investigations

in each chapter, potential experimental studies that could be performed to comple-

ment this work, applications in medicine and biotechnology that the reported results

could impact, and ideas for future studies to build on this work.
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CHAPTER II

Background

2.1 Literature Review

This section will present a review of work that has been published in the field of

computational studies of lipid membranes. Although computational tools have been

applied to study a wide range of membrane phenomena, we focus on studies that

examine membrane aspects that are relevant to the work presented here. Some of

the membrane phenomena not discussed here include membrane poration and stalk

formation, the formation of nonbilayer phases, interactions between membranes and

proteins, and the effects of charged molecules on membranes. The following discussion

will cover two main modeling approaches: particle-based modeling and continuum-

level modeling. The particle-based models will further be broken up into molecular

dynamics modeling, coarse-grained modeling, and Monte Carlo methods.

Molecular Dynamics (MD) modeling is a particle-based approach using an atom-

istic representation. This representation can either treat each atom individually (all-

atom), or, more commonly, includes a small degree of coarse-graining where a carbon

bonded to hydrogen atoms is treated as a single particle (united-atom) (97). This

coarse-graining is done to improve computational efficiency; various degrees of coarse-

graining will be described later in this section. Whether the atoms or small particles

are represented, MD simulations use force fields to describe how the atoms/particles
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interact. For example, these force fields can be used to describe the nature of chemi-

cal bonds. The spatial location of each atom/particle is tracked, and using the force

fields governing their interactions with neighboring particles, trajectories can be gen-

erated using Newton’s equations of motion to map how the atom/particle locations

change over time. Commonly used simulation packages include CHARMM (98, 99),

GROMACS (100, 101), NAMD (102), and LAMMPS (103), as reviewed in Refs. 104

and 105.

While computational resources and parallelization methods continue to improve,

length and time scales accessible in MD simulations are limited to nanometers and

nanoseconds, respectively. This makes it difficult to apply MD methods to simu-

late heterogeneous membranes since in these systems diffusion occurs over time and

length scales larger than those accessible using MD. However, MD simulations of

pure, binary, and ternary mixtures have been carried out and are useful for mak-

ing connections between molecular properties, such as the structure and size of the

lipid headgroups and tailgroups or the presence of cholesterol, and local and global

properties of the membrane, including molecular order (106–108), hydrogen bonding

(106, 109), interactions between lipids and cholesterol (110–115), bilayer thickness

(112, 113), and elastic properties (104, 113). These simulations tend to include on

the order of one to two thousand (or less) lipids and in some cases roughly 50, 000

water molecules, for periods of 20 to 200 nanoseconds.

A variation on MD models called coarse-grained (CG) models have been devel-

oped, where instead of representing every molecule, clusters of molecules are repre-

sented, trading atomistic detail for access to larger length and time scales than tra-

ditional MD methods. Different levels of coarse-graining applied to a lipid molecule

are presented in Fig. 2.1, including the united-atom MD coarse-graining. While the

description of the molecules differs in CG compared to MD models, the same ba-

sic ideas carry over, where interaction potentials define molecule trajectories. CG
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Figure 2.1: Various representations of a lipid molecule: united-atom MD (A), and
two levels of coarse-grained representations, with more (B) or less (C)
atomistic detail. Representations with a higher degree of coarse-graining
can access larger length and time scales, though less atomistic detail is
retained. Reproduced from Ref. 97.

simulations have been used to investigate a wide variety of topics (104, 116, 117),

including measurements of fundamental membrane elastic properties (118–120), the

effects of factors such as tailgroup length or inclusion of cholesterol on lipid phase

behavior (at a larger length scale) (121–123), the dynamics of asymmetric lipid bilay-

ers (124), and entire phase-separated vesicles (125) (at an even larger length scale).

A particular version of the CG technique known as Dissipative Particle Dynamics

(DPD) uses a “bead-and-spring” model for lipid molecules, representing a lipid as

a hydrophilic headgroup bead and hydrophobic tailgroup beads, in a system with

water molecule beads. Soft, repulsive non-bonded potentials between molecules de-

fine the difference between hydrophilic and hydrophobic beads, such that like-beads

prefer to interact with each other (116). DPD techniques have been used to study

relationships between lipid architecture and surface tension (126), and the dynamics

of phase-separated lipid vesicles (127, 128).

An alternative to the MD and CG algorithm is a simulation technique known as
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the Monte Carlo (MC) method. In MC modeling, atom or particle configurations

are evolved with “trial moves,” where the energy of a potential new configuration

is calculated, and whether it is adopted or not depends on the change in energy it

accompanies in combination with a probability function to add a stochastic element.

This method has the advantage that, since actual trajectories are not computed,

equilibrium states can be reached relatively quickly by using the right trial moves.

However, MC trial steps introduce nonphysical kinetics into the model, and investi-

gations of certain time-sensitive properties (for example, those related to transport)

are not well-suited to MC simulations (116). Kinetic Monte Carlo (KMC) is a vari-

ation on the MC method that incorporates kinetics into the model. This is done by

assigning each trial move with an attempt frequency that reflects an effective rate

constant of the associated process, such that the trial moves allowing a particular

process to progress have a higher probability of being selected if that process occurs

more quickly.

MC simulations have been used to study membranes at atomistic scales and

more macroscopic scales, investigating phenomena ranging from bilayer self-assembly

(129, 130) to surface tension and bending and compression moduli (122, 129) to phase

separation and/or domain budding in membrane vesicles (131, 132). KMC simula-

tions have been used to investigate dynamic shape instabilities in membranes (133),

diffusion dynamics related to clathrin pits (134), and phase separation in asymmetric

membranes (135).

The second class of modeling, an alternative to particle-based models, is to em-

ploy continuum-level methods to study dynamical evolution at larger length and time

scales. Rather than representing atoms or groups of atoms, these models take the

membrane to be smooth and continuous, perhaps as an infinitely thin, deformable

sheet or defined as an interface in space (e.g., occupying the interface between oil and

water in an emulsion). The system is described with free energy functionals, where
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the evolution is directed toward the minima in the free energy landscape. These free

energy functionals are written in terms of fields or collective variables, such as order

parameters. Different values of the order parameter could correspond to different

materials or degrees of tailgroup ordering, for example. To solve for continuous vari-

ables numerically, they must be discretized on a grid of points distributed over the

domain, which can introduce difficulties and artifacts not encountered with particle-

based methods. Continuum-level models examining aspects of phase separation in

membranes will be the focus of the following discussion.

Continuum-level computational studies that consider coupling of membrane shape

with spatially varying composition have been performed in two dimensions with the

effects of hydrodynamic flow (136), and in three dimensions both excluding (137, 138)

and including (139, 140) spontaneous curvature effects. A continuum approach based

on the representation of a vesicle as a level set has been used by Du et al. to

study complex axis-symmetric shapes in Refs. 141 and 142, and unrestricted three-

dimensional shapes in Ref. 138, focusing on the effects of bending energy and line

tension. Taniguchi has studied two-phase lipid vesicles using a dissipative dynamical

model to investigate how the coupling of the membrane shape with composition can

affect the dynamics of domain coarsening (143). Processes contributing to membrane

compartmentalization, such as lipid trafficking and interactions with immobile pro-

teins, were examined in Refs. 144 and 145, providing possible explanations for how

domains in simple membrane systems can grow to be orders of magnitude larger than

lipid rafts in cell plasma membranes. Double membranes are considered in the model

in Ref. 139, such as those in some intracellular organelles, and the model includes

an interaction term to couple the two membranes, which have differing compositions.

Similarly, but in a single bilayer, the two leaflets of a membrane are considered in

Ref. 140, where the spontaneous curvature of each of the leaflets is included in the

free energy individually.
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A variation on pure continuum models is a quasi-particle method called Smooth

Particle Applied Mechanics (SPAM). SPAM is a Lagrangian scheme, in which indi-

vidual membrane mass elements are tracked in space, as if the “grid” follows their

trajectories, rather than discretizing the membrane by imposing a fixed grid of points

and tracking how state variables change in time at those points. Each SPAM particle

is like a small subsystem of the continuum membrane, possessing usual particle quan-

tities such as mass, position, and velocity, but also composition and chemical poten-

tial. Particles can exchange not only momentum, but also properties like composition

based on free energy functionals typical of traditional continuum models (146). SPAM

used with a Landau field theory model was used by Ayton et al. (137) to study how

domain formations on two-phase vesicle surfaces correlated with deformations. They

found that composition responded to geometrical surface perturbations imposed on

the vesicle.

In this work, we aim to simulate phase separation and deformation in multicom-

ponent membranes, and have chosen to employ a continuum model with mechanical

coupling to do so. A continuum model was selected since the processes we simulate

occur on length and time scales that are difficult to access with MD or even CG. Ad-

ditionally, the Thornton Group has extensive experience using the phase-field method

in materials science problems, and we therefore have chosen to use this method for

the biological material system of lipid membranes.

2.2 Phase-Field Model

The foundation for the compositional-evolution component of the simulations in

this work is the phase-field model (147, 148). This model stems from work done

by Cahn, Hilliard, Allen, Landau and Ginzberg beginning in the 1950s (149–153),

and has been applied to study a variety of physical phenomena including spinodal

decomposition (154, 155), solidification (156, 157), grain growth (158, 159), coarsening
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of a precipitate phase (160–162), and other phenomena that require interface tracking

(163–167) (see Refs. 168 and 169 for reviews on phase-field modeling). The phase-field

model uses partial differential equations to govern the spatial and temporal evolution

of bulk quantities, such as concentration. It is a diffuse-interface approach, meaning

that interfaces are assumed to have a finite volume rather than being infinitesimally

thin, making the model more numerically tractable compared with sharp interface

models. The locations of interfaces are specified by where these bulk quantities have

their interfacial value, and thus the location of the interface does not need to be

explicitly tracked.

There are two classes of phase-field models: the Allen-Cahn and the Cahn-Hilliard.

The Allen-Cahn models apply to systems with non-conserved quantities, such as

crystalline ordering, and will not be discussed further. The Cahn-Hilliard models

apply to systems with conserved bulk quantities, such as concentration, as is the case

in this work.

We first define a conserved order parameter, in the context of two-phase spinodal

decomposition. For a mixture of multiple species, the order parameter represents the

concentration of a single species, which is normalized such that the concentration

in the two bulk phases is 0 and 1. Such an order parameter, denoted as φ, can be

constructed from the local concentration of a species, C, and the concentration of

that species in the bulk phases at equilibrium, Ce
α and Ce

β:

φ =
C − Ce

β

Ce
α − Ce

β

. (2.1)

The free energy per unit volume, f̃ , within a body Ω is defined in terms of this

order parameter and its gradient. The total free energy then is given by the integral
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of this function over the body:

F =

∫

Ω

f̃(φ,∇φ)dV. (2.2)

If this free energy per unit volume is expanded around the bulk homogeneous value,

f̃(φ, 0), using a Taylor expansion, the following expression is obtained:

f̃(φ,∇φ) = f̃(φ, 0) + L · ∇φ+
1

2
∇φ←→K∇φ+ . . . . (2.3)

For a system where the homogeneous materials are isotropic, L = 0 and
←→
K = KI,

where I is the identity matrix, since the free energy does not have any directional

dependence on the gradient. In this simplified case, with higher-order terms of the

Taylor expansion being neglected, the free energy can be written as

F =

∫

Ω

(

f(φ) +
ε2

2
|∇φ|2

)

dV, (2.4)

with the notation ε2 being substituted for K and f(φ) = f̃(φ, 0). In this expression,

the first term describes the bulk free energy, while the second can be viewed as a

penalty for sharp composition gradients. The latter, the so-called gradient term, is

what gives the model diffuse interfaces, with the width of the interface depending

on the value of ε. Once again in the context of spinodal decomposition to form

two phases, the bulk free energy f(φ) is typically a double-well-shaped function with

minima at φ = 0 and φ = 1. One example of such functions is f(φ) = W
4
φ2(1 − φ)2,

used as an approximation of the thermodynamic Flory free energy for ideal mixtures,

g(φ) ∝ Aφ(1 − φ) + φ lnφ + (1 − φ) ln(1 − φ), where A is a constant, in order to

improve computational efficiency. Plots of the double-well polynomial used here as

well as the Flory free energy are presented in Fig. 2.2.

To model how changes in concentration affect the free energy, variational calculus
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Figure 2.2: Plots comparing the Flory free energy potential, g(φ) ∝ Aφ(1 − φ) +
φ lnφ + (1 − φ) ln(1 − φ) with A = 2.5, and the polynomial double-well
potential adopted in this model, f(φ) = W

4
φ2(1−φ)2 withW = 4, showing

qualitative correspondence. The minima of f(φ) are at φ = 0 and φ = 1,
as desired.
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is utilized. A quantity similar to chemical potential is defined as

µ =
δF
δφ

=
df

dφ
− ε2∇2φ =

W

2
φ(1− φ)(1− 2φ)− ε2∇2φ. (2.5)

When this chemical potential is uniform, there ceases to be a driving force for changes

in concentration and the system is defined to be at equilibrium. To model the con-

centration change in time, we can write the following expression as a form of Fick’s

second law, where a concentration changes with the divergence of its flux:

∂φ

∂t
= −∇ · J. (2.6)

We can write the flux in terms of the chemical potential defined in Eq. 2.5, since

concentration will flow from areas of high chemical potential to areas of lower chemical

potential:

J = −M∇µ, (2.7)

where M is the mobility, which may be a function of φ. Combining Eqs. 2.6 and 2.7,

we arrive at a relation between the time derivative of φ and spatial derivatives of φ:

∂φ

∂t
= ∇ · (M∇µ), (2.8)

which, for a constant mobility, M , and substituting in the form of µ, becomes

∂φ

∂t
=M∇2

(W

2
φ(1− φ)(1− 2φ)− ε2∇2φ

)

. (2.9)

For a two-component system in 1D, Eq. 2.9 has four possible steady-state solutions,

though three of them are trivial. The first two are for a homogeneous system where

φ = 0 or φ = 1 everywhere; the third is where φ = 0.5 but is unstable and unphysical.

The fourth solution is where there is a single interface between homogenous regions
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Figure 2.3: The interfacial profile of the order parameter φ vs. position. The width
of the interface as defined by the φ range of 0.1-0.9 is 4δ, where δ is a
parameter that sets the width in Eq. 2.10. The interface is approximately
8 position units on this plot.

with φ = 0 and φ = 1, where the interface has the form

φ(x) =
1

2

(

1− tanh
( x

2δ

))

, (2.10)

as illustrated in Fig. 2.3. The width of the interface as defined by the φ range of

0.1-0.9 is given by 4δ, where δ can be related to the parameters in the free energy, f ,

as

δ = ε
√

2/W. (2.11)

This interfacial width results from the competition between the gradient term that

drives the interface to widen and the bulk free energy term that drives it to be more

narrow. If the parameters are set such that the interface is too wide to accurately

model the physical system, then the diffuse interface approach has failed. To ensure

that the interface is sufficiently narrow, it must be significantly smaller than the

characteristic length of the system l, δ/l << 1.
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2.3 Finite Difference Method

The fourth-order partial differential equations presented in the previous section are

nonlinear, and must be solved numerically. This means that the continuous functions

and variables must be discretized so that numerical computations can be performed.

For a continuous variable x, where X1 < x < X2, its discretized representation will

have values at N points in the interval [X1, X2], as

xi = X1 +

i−1
∑

k=1

∆xk, 1 < i ≤ N, (2.12)

where ∆xk is the spacing between adjacent points, as ∆xk = xk+1−xk. A continuous

function can then be translated to a discrete function by being defined in terms of

the discrete variable points xi as

qi = f(xi). (2.13)

Of course there is information lost between a continuous function and a discrete

representation of that function, so care must be taken to ensure that the discrete

points are spaced closely enough to capture the sharpest features (i.e., the most

rapid changes) in the continuous function. The finite difference method can then

be used to calculate derivatives of the discrete function with respect to the discrete

variable based on Taylor expansions.

A Taylor expansion can be used to approximate the value of the function f at a

point near xi, such as q(xi+1). The expression for the Taylor expansion for q(xi+1)

around xi with uniform grid spacing, ∆x, is

q(xi+1) ≈ q(xi) + q′(xi)∆x+
1

2!
q′′(xi)(∆x)

2 +
1

3!
q′′′(xi)(∆x)

3 + . . . . (2.14)
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Similarly, the Taylor expansion for q(xi−1) around xi is

q(xi−1) ≈ q(xi)− q′(xi)∆x+
1

2!
q′′(xi)(∆x)

2 − 1

3!
q′′′(xi)(∆x)

3 + . . . . (2.15)

By subtracting the expression approximating q(xi−1) from the expression approxi-

mating q(xi+1), the derivative of interest, q′(xi), can be obtained:

q′(xi) ≈
q(xi+1)− q(xi−1)

2∆x
− 1

3!
q′′′(xi)(∆x)

2 − . . . . (2.16)

If the second term and the following higher-order terms in Eq. 2.16 are neglected, the

expression has an error on the order of (∆x)2, and can then be written as

q′(xi) ≈
q(xi+1)− q(xi−1)

2∆x
, (2.17)

giving a second-order-accurate expression for the derivative of q at xi in terms of

q(xi+1) and q(xi−1), making it a centered finite difference. This scheme is used to

calculate derivatives in space in this work. A forward Euler (fully explicit) scheme

is used to calculate temporal derivatives, which can be obtained similarly. As with

spatial variables, time is discretized, and the scheme can be expressed as

∂q(ti)

∂t
=
q(ti+1)− q(ti)

∆t
+O(∆t), (2.18)

where ∆t is the timestep. The expression can be rearranged to obtain the discretized

equation for integration in time:

q(ti+1) =
∂q(ti)

∂t
∆t + q(ti). (2.19)

In this form, it is clear that the value of the function q at the future time t+∆t can

be calculated from quantities at the current time t, making it an explicit method.
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This is computationally advantageous as only simple algebra is required to calculate

the value of the function at the future time. However, the size of the time step ∆t is

typically constrained to be quite small, on the order of (∆x)4, to maintain numerical

stability.
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CHAPTER III

Planar Membrane Model

3.1 Introduction

Planar lipid monolayers and bilayers are commonly used as model systems to study

phase separation in multicomponent membranes. Monolayers are typically formed at

a water/air or water/oil interface, while bilayers can be formed in aqueous environ-

ments in various configurations. Planar bilayers can be formed on a rigid surface,

with or without a spacer between the membrane and surface such as polymer chains

or multiple layers of membranes (71, 88, 170–173). A spacer would be used so that

the mobility of the membrane components is not altered as a result of interactions

between the membrane and surface. Bilayers can also be created in unsupported

configurations, where they may for example span a pore or gap in a rigid support

rather than sit on top of the support. This configuration is useful for studying mem-

brane protein transport between two chambers on either side of the bilayer-spanning

pore/gap (174–176).

While perfectly planar membranes are not found in nature, they are still a valid

membrane model since the physics of the lipid bilayer is intact. They are a suitable

approximation of a portion of a large, overall spherical membrane where the cur-

vature is negligible on the length scale studied. The model for planar membranes

presented here applies to such “nearly planar” portions of membrane structures that
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have curvature on much larger length scales, such as giant vesicles and cell plasma

membranes. The model is used to simulate unsupported and supported planar bi-

layers, since supported bilayers have potential for technological applications such as

biosensors, as discussed in Sec. 1.2.1.

We present a continuum-level method for modeling phase transitions and cor-

responding morphological evolution of binary lipid membranes with approximately

planar geometries, as presented in our work in Ref. 177. Our model is based on

Cahn-Hilliard-type dynamics as in Ref. 137, but it explicitly treats the full nonlinear

form of the geometrical scalars, tensors, and differential operators associated with

the curved shape of the membrane. The model is applied to examine morphological

evolution and stability of lipid membranes.

3.2 Methods

The morphological behavior of homogeneous vesicles and membranes can be quan-

tified by the Helfrich free energy (178). This free energy is based on a continuum

model that treats the membrane as a smooth surface. The spatial shape of the sur-

face can be described by a three-dimensional coordinate function x(u) that depends

on a two-dimensional coordinate u, which parametrizes the surface. This model con-

siders the energy cost of bending deformations away from conformations with the

spontaneous curvature, i.e., the preferred curvature originating from the molecular

shapes and interactions. This model applies to monolayers and asymmetric bilayers.

In addition, this formulation includes a Lagrangian multiplier, the surface tension, to

control the value of the total area of the membrane.

The basic Helfrich model can be extended to multicomponent systems (179, 180).

In a binary system with components A and B, we consider phase coexistence be-

tween two phases, α and β, with majority components A and B, respectively. The

concentration of B in these phases is cα and cβ , respectively; we denote the position-
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dependent concentration of B simply as c. We introduce a scaled composition function

φ = (c− cβ)/(cα − cβ) that takes values between 0 and 1, which is referred to as an

order parameter in phase-field modeling. In the strong-segregation limit, when the

components are highly immiscible, most of the membrane area is occupied by single-

phase regions with compositions of φ = 0 or φ = 1. In the boundary region between

two phases, the composition field smoothly transitions between these values. Com-

pared to the homogenous case, the energy of the system is modified in two ways; first,

it is necessary to describe the immiscibility of the components, and second, each of

the phases may have different mechanical properties.

Below, we write all contributions to the energy density and the resulting dynamical

equations in covariant form. Specifically, the equations are independent of both the

coordinate systems used for the position of the membrane surface and those used to

parametrize it. At the end of the section we specialize the resulting equations to a

particular type of coordinate system, the Monge gauge.

3.2.1 Free Energy Contributions

The modified Helfrich free energy F of a binary membrane can be written as an

integral of an energy density H over the surface of the membrane. We decompose the

density H into three terms,

F =

∫

HdA =

∫

(H0 +H1 +H2)dA. (3.1)

The first energy density H0 describes the thermodynamics of the mixture. We use

the standard Landau form (147),

Ho =
w

4
φ2(1− φ)2 + ζ2

2
∇iφ∇iφ, (3.2)
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where w defines the barrier height in the double-well free energy (as in Fig. 2.2)

and ζ sets the energetic penalty for composition gradients. In the absence of other

interactions, the double-well free energy in the first term produces two phases at φ = 0

or φ = 1. The second term penalizes the presence of composition gradients. The

coefficients w and ζ can be adjusted to describe the strength of the immiscibility with

respect to the mechanical effects. In this work, we examine the strong-segregation

regime, where, for flat systems, the equilibrium line tension of a straight interface

between species can be identified as λ = (wζ2/72)1/2.

The gradient, divergence, and Laplace operators that appear in this formulation

act on functions defined only at the surface of the membrane. We use the standard no-

tation of subindices and superindices for contravariant and covariant vectors, respec-

tively, as well as the index summation convention. These indices identify generalized

coordinates that parametrize the surface. Explicit expressions for these differential

operators are derived by applying the standard techniques used in general relativ-

ity. The results are given in covariant form and in the Monge gauge in Appendix A.

Vector quantities appear in bold face, vector components are written within square

brackets, and unit vectors are denoted with hats.

The second energy density is a modification of the original Helfrich Hamiltonian

that describes the mechanical properties of the membrane,

H1 =
Λα

2
p(φ)(K − Cα)

2 +
Λβ

2
(1− p(φ))(K − Cβ)

2, (3.3)

which represents the energy penalty for having a curvature that differs from the spon-

taneous curvature. In this expression, each term is a standard bending energy with

bending rigidity Λα or Λβ and spontaneous curvature Cα or Cβ, and we introduce an

interpolation function p(φ) to interpolate the energies in regions that do not corre-

spond to a single phase (φ 6= 0, 1), as discussed later. We have written the Helfrich
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expressions in terms of K, the trace of the curvature tensor Kab, which is equal to

twice the mean curvature. We will refer to this quantity as the curvature trace, for

short, following the notation used in Ref. 181. We consider in this chapter only the

case in which the two phases have equal bending rigidities Λα = Λβ but have different

spontaneous curvature values. These values are Cα for the phase with φ = 1, and Cβ

for the phase with φ = 0. To interpolate the energy between these values, we use a

smooth function p(φ) = φ3(10 − 15φ + 6φ2) that has the properties that p(0) = 0,

p(0.5) = 0.5, p(1) = 1, and dp
dφ

∣

∣

φ=0
= dp

dφ

∣

∣

φ=1
= 0. This particular form of an inter-

polation function is obtained by integrating φ2(1 − φ)2 (182), which has the form of

the double-well function we adopted. However, other choices of interpolation func-

tions satisfying these prescribed properties are equally valid (e.g., p(φ) = φ2(3−2φ)),

given that the function is numerically resolved and that the interfacial (interpolated)

region is taken to be sufficiently thin. They provide thermodynamic consistency as

discussed in Ref. 182. While a very simple interpolation function could be considered

(p(φ) = φ for example), the chosen form has a proper behavior near φ = 0 and φ = 1

and helps to ensure that the positions of the free energy minima remain at φ = 0 and

φ = 1 for all curvatures outside of interfacial regions. We define a local average of

the spontaneous curvature as Cf = p(φ)Cα + (1− p(φ))Cβ.

We note that this mechanical energy term has a contribution to the magnitude of

the line tension, and thus in general the line tension does not have the value given

nominally by the well height of the double-well free energy and the gradient-energy

coefficient appearing in Eq. (3.2). The change in the line tension is described by

the Gibbs adsorption equation (153, 183, 184), and the resulting effect is similar to

that obtained for surface stress effects in solidification (185). However, when the

interfacial thickness is much smaller than the length scale given by the ratio of the

interfacial energy to the bulk energy density, the excess becomes negligible (185–

187). This is because the excess energy resulting from the bulk energy term scales
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with the interfacial thickness, while the parameters are set such that the line tension

is independent of the interfacial thickness. A similar principle applies here. To ensure

accuracy, we choose the interfacial thickness to be much smaller than the inverse of

the spontaneous curvatures and a length scale given by the approximate ratio of the

line tension to the mechanical energy density ∼ λ/Λα,β.

The third term controls the total area of the membrane, and is given simply by a

constant surface tension:

H2 = σ. (3.4)

The tension σ is an isotropic contribution to the stress tensor that opposes an increase

in the membrane area. This term arises from a coarse-graining of cohesive forces

between the molecules that form the membrane, including hydrophobic forces. Upon

integration of this density, we obtain a linear coupling of the tension and the total

area of the membrane, A.

3.2.2 Deformations and Dynamics

Our model describes both the equilibrium configurations and the dynamical ap-

proach toward equilibrium of lipid membranes. The equilibrium configurations that

result from the above free energy are determined from suitable minimization of the

functional with respect to shape and local composition. To describe the dynamics

of the system, more information is required. We propose a simple dynamical scheme

that couples shape deformations and compositional redistribution.

The structure of the dynamical equations of a homogeneous membrane that obey

the covariant condition has been previously studied by Cai and Lubensky (188).

Among the possible reductions of the full dynamics to a manageable set of variables,

they considered a Rouse model without inertial terms. This approximation is still

covariant, but neglects inertial terms and tangential forces. The forces generated by

deformations of the membrane are then compensated for by friction terms propor-
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tional to the normal velocity of the membrane. We adopt this approach to the study

of the dynamics of multicomponent systems. The free energy change associated with a

normal deformation ψn̂ (see Fig. 3.1) can be written as the integral δF = −
∫

Tψ dA.

T is the generalized force density that couples to the displacement ψ. Expressions for

this force are well known for homogeneous membranes. In the case of multicomponent

systems, the proper expressions are most easily obtained using the covariant methods

of Capovilla et al. (181), and are presented explicitly below and derived in Ref. 177.

The normal velocity field is vn = ∂tψn̂, where ∂t denotes a partial derivative with

respect to t, and the friction force opposing the motion is given by

fv = −vn/Γ = −∂tψn̂/Γ, (3.5)

where Γ is the inverse of the friction coefficient. The dynamical equation is then

obtained from the condition T n̂+ fv = 0:

∂ψ

∂t
= ΓT, (3.6)

−T = HK +Q(R −K2) (3.7)

−∇2Q− ζ2Kab∇aφ∇bφ,

where Q = ∂H1

∂K
= Λαp(φ)(K − Cα) + Λβ(1 − p(φ))(K − Cβ), ∇2 is the Laplace

operator, and Kab is the curvature tensor (see Appendix A). The shape equation

(i.e., the equation governing the morphology of the membrane surface) in equilibrium

is simply T = 0. The shape equation of a homogeneous membrane is recovered when

the composition field is set to one of the two equilibrium phase values.

The local composition of the membrane is modified both by diffusion processes

and advection by tangential displacements. As mentioned above, to obtain a simple

effective dynamical scheme we assume that the local composition field evolves by

means of diffusional processes. The diffusion is driven by gradients in the chemical
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Figure 3.1: A schematic illustrating membrane deformations, showing how each point
of the membrane can be mapped onto a new point in the deformed mem-
brane located a distance ψ away from its initial location, in the direction
of the unit normal vector n̂ at that point.
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potential of the species. For a binary system it is sufficient to consider the diffusion of

just one of the components, say B, which is proportional to φ. A chemical potential

µ for phase composition is obtained from variation of the free energy with respect

to the composition field φ, δF =
∫

dAµδφ. Simple model dynamics are obtained

by assuming that the flux, ji, of the scaled composition (per unit time and unit

area) is proportional to the gradient of the chemical potential, i.e., ji = −M∇iµ,

where M is an effective mobility, assumed constant throughout this work. The rate

of composition change is then given by ∂tφ = −∇iji. Combining these equations we

obtain a Cahn-Hilliard-type dynamics for the composition:

∂φ

∂t
= M∇2µ, (3.8)

µ =
w

2
φ(1− φ)(1− 2φ)− ζ2∇2φ (3.9)

+
p′(φ)

2
(K2(Λα − Λβ) + 2K(ΛαCα − ΛβCβ) + (ΛαC

2
α − ΛβC

2
β)).

Equilibrium is achieved when the chemical potential becomes uniform so that its

gradient is zero. Normal deformations that change the shape leave the composition

invariant. It is necessary, however, to consider the change of composition at fixed

background points induced by the normal motion; this is considered at the end of

this section.

The dynamical equations proposed above can be solved numerically using various

methods. Since the dynamics of the shape has been reduced to that of a single scalar

variable, it is viable to use the Monge gauge. That is, after setting a fixed geometrical

background, we describe the shape of a membrane by specifying its projection onto

the background. We require that this projection be one-to-one. These shapes are then

described by a single “height” function, h(u), as shown in Fig. 3.2. The dynamical

behavior of the system can then be reduced to the time evolution of the composition
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Figure 3.2: A schematic illustrating one-to-one projection of the membrane surface
onto the background surface. In this case, every shape can be described
by a single “height” function h(u).

φ and the height variable. To obtain an explicit numerical scheme, it is necessary

to write all the geometric invariants and differential operators that appear in our

equations in terms of the height.

We consider only membrane shapes that can be projected one-to-one onto the

background plane. A point within the surface is described by its Cartesian coordinates

x = [x1, x2, x3], and we define the reference plane to lie in the x3 = 0 plane so that

a point in the reference plane has coordinates u = [u1, u2, 0] = [x1, x2, 0]. The third

coordinate of a point on the surface is then x3 = h(u1, u2), and

x = [u1, u2, h(u1, u2)]. (3.10)

We can write expressions for vectors tangent to the surface as

e1 =
∂x

∂u1
= [1, 0, h1], (3.11)

e2 =
∂x

∂u2
= [0, 1, h2], (3.12)

where we use the shorthand hi for the partial derivatives of h with respect to ui.
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The explicit forms of the relevant geometric quantities and operators are presented

in Appendix A. To use our dynamical equations in this setting, we need to (i)

transform the normal deformation rate, ∂ψ/∂t, into a rate of change of the height

function, ∂h/∂t, and (ii) describe the rate of change of the composition at a physical

point in terms of the rate of change at a fixed background point.

Let us consider the first problem, with the vectors in the following discussion

illustrated in Fig. 3.3. For a normal deformation of ψn̂, the height changes from hẑ

to (h + ∆h)ẑ, where ẑ is a unit vector in the z-direction (normal to the reference

plane). If n̂ and ẑ are not parallel, the projection of ẑ along the membrane surface

lies along a unit vector t̂ tangent to the surface such that ẑ = (ẑ · t̂)̂t + (ẑ · n̂)n̂. A

general height change can then be written as ∆hẑ = ψn̂ + st̂. By taking the dot

product of both sides of this equation with n̂, we arrive at

∆h(ẑ · n̂) = ψ, (3.13)

∆h =
ψ

ẑ · n̂ =
ψ√
g
, (3.14)

where g is the metric factor as defined in Appendix A. Finally, the rate of change of

the height function can be written as

∂h

∂t
= Γg1/2T. (3.15)

To address the second problem, the composition at a point above a background

plane point u changes not only due to diffusion but also due to the motion of the

surface:

∂tφ
∣

∣

u

= ∂tφ
∣

∣

diff
+ ∂tφ

∣

∣

ad
, (3.16)

∂tφ
∣

∣

ad
= (gijzi∇jφ)∂th.
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Figure 3.3: Illustration of the vectors involved in the conversion from deformation ψ
to a change in height ∆h. The current deformed surface is shown in black
and the future deformed surface in gray. The black vector hẑ is drawn
from the reference plane at h = 0 (not shown), and all other vectors are
drawn from the grid point on the current surface. The unit vectors ẑ, n̂,
and t̂ lie in the z direction, normal to the deformed surface, and tangent
to the deformed surface, respectively. The height change vector, ∆hẑ,
can be expressed in terms of the normal deformation vector, ψn̂, and a
scaled version of the tangent vector, st̂.
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In these expressions, zi is the inner product of ẑ and the basis vectors ei, zi = ẑ · ei.

The derivative ∂tφ
∣

∣

u

measures the composition change at fixed background coordi-

nates. The diffusional contribution, ∂tφ
∣

∣

diff
, is determined by the Cahn-Hilliard-type

dynamics as given in Eq. (3.8). The advection term, ∂tφ
∣

∣

ad
, is determined as fol-

lows. The Lagrangian derivative is related to the Eulerian derivatives by Dφ/Dt =

∂φ/∂t + ∂tu
i∂iφ, and is identically zero when only advection is considered. There-

fore, we have ∂tφ
∣

∣

ad
= −∂tui∂iφ. To express ∂tu

i in terms of known quantities, we

first decompose the height change rate vector ∂thẑ into two vectors, one the normal

deformation and the other tangential to the surface. Thus,

∂thẑ = ∂tψn̂+ ξjej . (3.17)

The advection rate in the reference plane is ∂tu
iŵi, where ŵi is a unit vector within

the reference plane. Since ei projects onto the unit vector ŵi, we have ξ
i = −∂tui, or

∂thẑ = ∂tψn̂− ∂tujej . (3.18)

Taking the inner product of both vectors with the ei basis, we obtain ∂thzi = −∂tujgij
that can be rearranged to ∂tu

j = −gjizi∂th, and the expression in Eq. (3.16) follows.

3.2.3 Numerical Methods

The dynamical scheme presented above for the geometric and compositional changes

can be studied numerically in terms of two fields: the phase composition and height

with respect to a background geometry. Orthogonal lattices consisting of 64 by 64

mesh points are used to discretize the composition and height on a computational

domain of size 2.25 by 2.25. This cell size was selected to ensure that the lowest

energy morphological phase is stripes. Energy and length scales of the system can

be set by the bending rigidity and spontaneous curvature of phase α. Specifically,
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we measure all energies in units of the bending rigidity of the α phase, Λα, and all

lengths in units of the radius of spontaneous curvature of the α phase, C−1
α . The line

tension, surface tension, spontaneous curvature of phase β, and compositional area

fraction are all independent parameters.

Derivatives are calculated using the finite difference method, with a second-order

centered-differencing scheme for spatial derivatives and an explicit time-stepping

scheme for time derivatives, as discussed in Chapter II. The size of the time step is de-

termined to provide numerical stability. Periodicity is imposed on all four boundaries

of the computational domain. Mass and surface area are not conserved quantities as

we allow deformation of the surface. However, in the cases considered herein, they

deviate only minimally from the initial values throughout the evolution (typically,

surface area increases by 1% − 4%, resulting in area fraction changes of 1% − 4%).

Compositional interfaces are resolved with a minimum of six lattice points to preserve

numerical accuracy.

An analytical extended phase diagram (including compositional and morphological

phases) presented in Ref. 179 indicates a phase with a periodic stripe-like arrangement

of single-phase domains for a range of concentrations, spontaneous curvatures, line

and surface tensions. Harden et al. (180) have also studied membranes analytically;

their model predicts a similar stripe morphology in systems with low line tension and

near-symmetric compositions. In order to further investigate this stripe morphology,

we numerically simulate the approach toward equilibrium using parameters suggested

in Ref. 179, defined as follows: λ = 0.5, σ = 0.4, Cα = 1, Cβ = −1, φavg = 0.4,Λα =

Λβ = 1. In addition, we set w = 120, ζ =
√
0.15,M = 1, and Γ = 30. Figure 3.4

shows a plot of a cross-section of the height profile for the stripe morphological phase,

comparing analytical results (189) and the simulation.
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Figure 3.4: One-dimensional plot of a cross-section of the height profile for a stripe
morphological phase, comparing analytical (189) and simulation results.
Line: the analytical result, symbol: the simulation result.

3.3 Results and Discussion

In the membrane systems investigated, dynamical mechanisms and a competition

between multiple driving forces determine the evolution and stable late-stage config-

urations. These driving forces result from the system’s attempt to reduce the sum

of surface-tension energy, line-tension energy, and bending energy. In addition, the

model includes two pathways for relaxation of non-equilibrium states: the normal de-

formation of the membrane and diffusional processes that transport material within

the membrane. Surface-tension energy is minimized when the membrane is exactly

planar; any deformation away from the plane increases the surface-tension energy.

The line-tension energy is lowered when the length of the interface between phases is

reduced. This can be accomplished both by the process of coarsening, where multiple

small domains evolve into fewer, larger domains, and also by domains bulging away

from the membrane plane. Bending energy is minimized when domains are able to

adopt the curvature preferred by that phase (the spontaneous curvature). We assume

that the diffusion process is slower than normal deformations, and thus the evolution
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Table 3.1: Summary of compositional and geometrical initial conditions used for the
simulations.

Case Number
1 2 3 4

Composition Random Noise Random Noise Random Noise Random Noise
and Stripe Perturbation or No Perturbation or No Perturbation

Geometry Flat Flat Ripple Fixed Ripple
Perturbation

is effectively governed by diffusion, with the geometric shape minimizing the total

energy for a given membrane composition.

While there exists a lowest-energy state for a given parameter set, it is unknown

whether a phase-separating system will reach such a state or how it evolves toward

it. Thus, we investigate membrane systems with the same parameter set but different

initial conditions. The height profile is initialized in one of two ways: set to zero

everywhere (flat) or offset from zero with a small perturbation imposing a periodic

ripple structure. Furthermore, in one of the cases where the height profile is initialized

with a ripple perturbation, the height is held fixed and not allowed to evolve with time

to simulate a membrane supported on a rigid surface possessing a fixed topography.

Composition is initialized in one of three ways: set to a constant value everywhere,

set with a small amplitude of uniform random noise perturbation centered around

an average value φavg, or superposition of this random noise with an additional small

perturbation imposing a periodic stripe-like structure. A summary of these initial

conditions is presented in Table 3.1.

3.3.1 Evolution of Initially Planar Membranes

Systems initialized as flat membranes with random noise in the composition field

(Case 1) will be discussed first. At early stages of the evolution, an initially planar

height profile remains nearly flat while the composition changes to the thermodynamic

equilibrium values as the mixture separates, forming small domains of minority phase

in a matrix of majority phase (see Fig. 3.5). These small minority-phase domains
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then coarsen into larger ones, a process driven by the line-tension energy, reducing

the total interfacial length. As larger domains form, the height profile responds to

the changes in the composition field, and the domains then bulge inward or outward,

depending on their spontaneous curvatures. The contour plots in Fig. 3.5 illustrate the

correspondence between local composition and shape. The minority phase α (shown

in red in all figures) has a positive spontaneous curvature while the majority phase β

(shown in black in all figures) has a negative spontaneous curvature. The curvature

effects are evident in the height plots, which show the minority phase bulging outward

and the majority phase inward. It should be noted that, in some simulations, the

average height slowly deviates from zero during evolution because the dynamics for

the height is non-conserving. In these cases, the height values are shifted so that the

average height remains at zero.

The process of domains bulging away from the initial membrane plane illustrates

the competition among driving forces that governs the compositional and morpholog-

ical evolution in these membrane systems. Domain bulging increases surface-tension

energy, decreases line-tension energy, and could increase or decrease bending energy,

depending on the curvature properties possessed by the phases. The bending energy

is minimized when domains adopt their spontaneous curvatures; this is generally

accomplished by each domain forming a shape resembling either a portion of a half-

cylinder or a spherical cap, with a curvature trace equal to the local spontaneous

curvature. However, to minimize line-tension energy, a circular domain (or spherical

cap) is preferred over a long, cylindrical domain. This is illustrated in Fig. 3.5c at

t = 7.64 × 10−3; after coarsening has occurred, minority-phase domains have long,

partial-cylinder shapes. In the system in Fig. 3.5, the composition field eventually

evolves to a state with a caplet morphology (i.e., a single circular minority-phase

domain), as the line-tension energy dominates the energetic competition. Thirty dif-

ferent Case 1 simulations were performed, each using a difference random seed in the
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initialization, and each of these systems evolved to a caplet morphology.

Systems initialized with a small stripe-like perturbation superimposed on random

noise (Case 2) will now be discussed. These systems begin in a less random mixture

than in Case 1, with the stripe structure visible in the composition plot (Fig. 3.6a

at t = 1.53× 10−6). Systems are simulated with random-noise amplitudes, Anoise, of

5.0×10−3, 1.0×10−2, and 5.0×10−2, along with stripe perturbations of sinusoidal form

with amplitude, Astripe, of 5.0×10−5, 5.0×10−4, 5.0×10−3, 1.0×10−2, and 5.0×10−2,

with the wavelength equal to the simulation cell size. The system represented in

Fig. 3.6 has (Anoise, Astripe) = (5.0 × 10−2, 5.0 × 10−2). In this system, as phase

separation occurs, domains of the minority phase form, which are initially small

and isolated. However, the membrane shape has already responded to the initial

compositional stripe perturbation, forming a ripple structure in the height profile

(Fig. 3.6b, t = 1.91×10−3; 3.6c, t = 6.11×103). To better visualize the height profile

at t = 1.91×10−3, it is presented as a surface plot in Fig. 3.7a. We note that Fig. 3.7a

shows four unit cells (two in each direction) for clarity. Figure 3.7b shows a contour

plot of the curvature trace, also at t = 1.91× 10−3. Once the small domains begin to

coarsen, the largest domain oriented along the axis of the computational domain is

able to grow and connect to itself, spanning the computational domain and forming

a stripe structure (Fig. 3.6d at t = 1.76 × 10−2). The material in the remaining

minority-phase domains apart from the largest domain diffuses to the largest stripe

domain in order to reduce line-tension energy as well as surface-tension and bending

energies. This creates the stable stripe structure shown in Fig. 3.6e at t = 2.75×10−1.

The stable stripe structure can be obtained when a sufficient amount of stripe

perturbation is imposed on the initial composition field. We find that, regardless of

the magnitude of the random noise in the chosen range, a sufficiently large amplitude

of perturbation is required in order to create a stable stripe structure. This amplitude

was found to be Astripe = 5.0× 10−2. However, stripes do not form deterministically
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Figure 3.5: Contour plots representing the composition and corresponding height
fields from a Case 1 simulation with Anoise = 5.0 × 10−2. From top
to bottom, (a) t = 7.64 × 10−6, (b) t = 3.06× 10−3, (c) t = 7.64× 10−3,
(d) t = 3.06 × 10−2, and (e) t = 1.83 × 10−1. Without any special per-
turbation imposed on composition or geometry (Astripe = Aripple = 0), all
systems evolve similarly to this, forming a caplet morphology rather than
stripes.
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Figure 3.6: Contour plots representing the composition and corresponding height
fields from a Case 2 simulation with (Anoise, Astripe) = (5.0 × 10−2, 5.0 ×
10−2). From top to bottom, (a) t = 1.53× 10−6, (b) t = 1.91× 10−3, (c)
t = 6.11×10−3, (d) t = 1.76×10−2, and (e) t = 2.75×10−1. In this case,
the perturbation Astripe = 5.0× 10−2 is sufficient to create a stable stripe
morphology by t = 2.75× 10−1.
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Figure 3.7: Surface plot representing membrane geometry (a) and contour plot repre-
senting the curvature trace (equal to twice the mean curvature) (b) from
a Case 2 simulation with (Anoise, Astripe) = (5.0 × 10−2, 5.0 × 10−2) at
t = 1.91× 10−3. Note that the surface plot shows four unit cells (two in
each direction) for clarity. Compare with the contour plot of height in
Fig. 3.6b, which presents the same data in two dimensions.
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Table 3.2: Stationary-state morphologies observed for Case 1 and Case 2 simulations
in terms of noise amplitude and stripe amplitude. Caplet and stripe mor-
phologies are denoted by ‘c’ and ‘s’, respectively; numbers indicate how
many different simulations, using different random seeds, formed the indi-
cated morphology.

Astripe

Anoise 0 5.0× 10−5 5.0× 10−4 5.0× 10−3 1.0× 10−2 5.0× 10−2

5.0× 10−3 c s (x3)
1.0× 10−2 s (x3)
5.0× 10−2 c (x30) c c c c s (x2), c (x1)

at this amplitude. Different sets of random numbers used to initialize composition

occasionally result in very different evolution, as can be observed by comparing Fig.

3.6 and Fig. 3.8. Both of these cases are initialized with the same sinusoidal and

random-noise amplitudes, although one evolves to stripes while the other evolves to

a caplet morphology. The difference is evident in the fourth row of plots in each of

the figures (Fig. 3.6d and Fig. 3.8d, at t = 1.76× 10−2). As coarsening occurs in the

system in Fig. 3.6, the largest minority-phase domain is able to connect with itself

to span the computational domain. Once this connection has been made, a stripe

structure begins to form, which becomes more stable with time. Contrastingly, in

the system in Fig. 3.8, no domains make a connection spanning the entire width of

the computational domain, and line-tension energy then drives the minority phase to

form round, isolated domains that coarsen to a single caplet. While this illustrates

the stochastic nature of the evolution of these systems, stripes do typically form in

cases where Astripe ≥ 5.0×10−2. Table 3.2 tabulates which morphology was observed

in all Case 1 and Case 2 simulations, including the results when multiple simulations

initialized with different sets of random numbers were performed.

The above example indicates that a stripe structure is able to form only when

a single minority-phase domain connects with itself across the simulation cell, as in

Fig. 3.6. As a result of the periodicity we impose on the computational domain, this

single connection is all that is necessary to cause the system to evolve into stripes.
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Figure 3.8: Contour plots representing the composition and corresponding height
fields from a Case 2 simulation with (Anoise, Astripe) = (5.0 × 10−2, 5.0 ×
10−2). From top to bottom, (a) t = 1.53× 10−6, (b) t = 1.91× 10−3, (c)
t = 6.11 × 10−3, (d) t = 1.76 × 10−2, and (e) t = 2.75 × 10−1. In this
case, Astripe = 5.0× 10−2 is insufficient to create stable stripes, although
Case 2 simulations with these parameters do typically create a stable
stripe morphology (see Fig. 3.6). This is one example illustrating how
the dynamics and final configurations of these systems are very sensitive
to initial conditions.
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However, in a physical system where there is no periodicity, such connections would

need to form between all isolated domains in order for a similar stripe structure to

form. Without an imposed periodicity, line-tension energy overcomes the tendency

toward a stripe structure, and the minority phase is expected to form circular caplet

domains, as in Fig. 3.8.

3.3.2 Evolution of Membranes with Initial Sinusoidal Height Perturba-

tions

Systems initialized with a periodic sinusoidal, or ripple, structure imposed on the

height profile (Case 3) will now be discussed. In these simulations, composition is

initialized with Anoise = 0, 5.0×10−4, 5.0×10−3, or 5.0×10−2, and Astripe = 0 for all,

while the height is initialized to a sinusoidal shape of amplitude Aripple = 5.0× 10−2,

1.0× 10−1, or 2.0× 10−1, with wavelength equal to the size of the simulation cell. In

the case where composition is constant (Anoise = 0), the order parameter is initially

set to φavg = 0.4 everywhere (Fig. 3.9). In this constant composition case, even at

very early times a stripe structure begins to form in the composition field, although

the minimum and maximum values of the order parameter have changed only slightly

from φavg = 0.4. As the system phase separates and the order parameter approaches

the equilibrium phase values, the system develops a stripe structure, with a different

periodicity than the ripple that was imposed initially on the height profile (Fig. 3.9d

at t = 1.53 × 10−2). Since the ripple perturbation in the initial height profile is

not fixed in time, the height responds to changes in the composition field at later

times during phase separation. While a stripe structure has formed in the system

at t = 1.53 × 10−2, these stripes later merge with each other to form fewer, wider

stripes in order to reduce the line-tension energy. The final configuration of the

system we observe is a stripe structure, which still has a different periodicity than the

structure initialized in the height. While this periodicity is higher in energy than the

58



equilibrium state with the periodicity used for the height initialization, the driving

force for stripes to coarsen is too small to push the system out of this relatively stable

configuration, at least in the time scale of simulations we are able to perform.

The results from simulations using Anoise 6= 0 differ significantly from those using

Anoise = 0. The ripple structure tends to remain in the height profile only until the

composition order parameter approaches the equilibrium phase values as the system

phase separates (Fig. 3.10c at t = 3.82 × 10−3). The random noise imposed in the

composition determines roughly where domains of the two phases will form. Unlike in

the Anoise = 0 case, the random noise causes the composition to initially deviate from

the periodicity of the height profile, and compact minority-phase domains form in all

regions of the membrane. The height profile then follows the evolving composition,

losing all of the ripple structure it initially possessed. The system then evolves just

as the Case 1 systems do, eventually forming a caplet morphology. In one Case 3

simulation, where (Anoise, Aripple) = (5.0×10−3, 2.0×10−1), the evolution is similar to

the Anoise = 0 simulation (Fig. 3.9). Since Anoise is small, the relatively large height

perturbation is able to impose a stripe structure before the height begins to follow the

phase separation, and therefore the stripe morphology forms. In general, however,

if a ripple perturbation is imposed only as the initial condition, it is insufficient to

drive the system to form a stable stripe morphological phase, unless the composition

is nearly uniform. Table 3.3 tabulates which morphology was observed in all Case 3

simulations.

3.3.3 Evolution of Membranes Supported on Rigid Surfaces with a Sinu-

soidal Height Profile

Systems where the height is fixed with a periodic ripple structure throughout the

entire evolution will now be discussed (Case 4). In these simulations, Anoise = 0,

5.0 × 10−2, 1.0 × 10−1, 2.0 × 10−1, or 3.0 × 10−1, and Astripe = 0, while Aripple =
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Figure 3.9: Contour plots representing the composition and corresponding height
fields from a Case 3 simulation with (Anoise, Aripple) = (0, 5.0 × 10−2).
From top to bottom, (a) t = 0, (b) t = 3.06 × 10−4, (c) t = 4.96 × 10−3,
(d) t = 1.53×10−2, and (e) t = 1.91×10−1. As the system phase separates,
domains of the two phases form where their spontaneous curvatures are
best satisfied. However, the height evolution follows the compositional
evolution, and consequently the final stripe morphology we observe at-
tains a different periodicity than the initial ripple.
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Figure 3.10: Contour plots representing the composition and corresponding height
fields from a Case 3 simulation with (Anoise, Aripple) = (5.0× 10−3, 2.0×
10−1). From top to bottom, (a) t = 7.64 × 10−6, (b) t = 1.53 × 10−3,
(c) t = 3.82 × 10−3, (d) t = 1.22 × 10−2, and (e) t = 3.36 × 10−1.
As the system phase separates, the ripple structure is disappearing (b-
d, t = 1.53 × 10−3 - 1.22 × 10−2) because the height evolution follows
the compositional evolution that is dictated by the initial random noise.
Therefore, no stripes form and the system evolves to a caplet morphol-
ogy.
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Table 3.3: Stationary-state morphologies observed for Case 3 simulations in terms of
noise amplitude and ripple amplitude. Caplet and stripe morphologies are
denoted by ‘c’ and ‘s’, respectively.

Aripple

Anoise 5.0× 10−2 0.1 0.2
0 s

5.0× 10−4 c s
5.0× 10−3 c c c
5.0× 10−2 c c c

1.0 × 10−2, 1.5 × 10−2, 2.0 × 10−2, 2.5 × 10−2, 3.0× 10−2, 4.0 × 10−2, 5.0 × 10−2, or

6.0×10−2. The Anoise = 0 simulation (Fig. 3.11) initially behaves very similarly to the

Case 3 system with Anoise = 0 (Fig. 3.9). In both cases, minority-phase stripes form

in the composition plot as the system phase separates, with a different periodicity

than the initial ripple in the height profile. Very quickly, the stripes widen and merge

to reduce line-tension energy. Finally, unlike the Case 3 Anoise = 0 simulation, the

remaining stripes merge together to match the periodicity of the fixed ripple structure

in the height profile. These Anoise = 0 Case 4 simulations evolved to stripes for the

entire range of ripple amplitudes investigated.

In the cases where composition begins with random noise (Fig. 3.12, (Anoise, Aripple)

= (5.0×10−2, 5.0×10−2)), the evolution resembles Fig. 3.6 where stable stripes form

in Case 2 simulations. In both of these cases, the presence of a ripple in the height

profile during phase separation causes single-phase domains to form in locations which

best satisfy their spontaneous curvatures. This means that the domains conform to

the ripple shape of the membrane, forming stripes in the composition profile. How-

ever, there is a threshold value of Aripple for each amplitude of random noise, below

which stripes do not form. The final stationary state that is reached in these cases

is a single caplet domain within the periodic simulation box, positioned on the re-

gion of positive curvature of the fixed ripple structure. The results from all Case 4

simulations are presented in Table 3.4. The general trend is that membranes with a
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Figure 3.11: Contour plots representing composition and height fields for a Case 4
simulation, with (Anoise, Aripple) = (0, 5.0× 10−2). From top to bottom,
left to right, composition at (a) t = 0, (b) t = 2.29 × 10−3, (c) t =
4.58 × 10−3, (d) t = 9.17 × 10−3, and (e) t = 4.58 × 10−2; (f) height
at all t. The fixed ripple geometry, simulating a membrane on a rigid
patterned surface, causes the two phases to form where their spontaneous
curvatures are best satisfied, creating a stripe morphology.
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Figure 3.12: Contour plots representing composition and height fields for a Case 4
simulation with (Anoise, Aripple) = (5.0 × 10−2, 5.0 × 10−2). From top
to bottom, left to right, composition at (a) t = 7.64 × 10−6, (b) t =
3.82 × 10−3, (c) t = 9.17 × 10−3, (d) t = 2.60 × 10−2, and (e) t =
1.53× 10−1, (f) height at all t. The fixed ripple geometry has amplitude
above the threshold for stripes formation, and therefore the two phases
form where their spontaneous curvatures are best satisfied, despite the
initial compositional fluctuation.

higher amplitude of random noise in composition require a larger ripple amplitude

to induce a stripe structure. Overall, a membrane initially having either a uniform

composition or random mixture, resting on a surface that is fixed with a sufficiently

large ripple amplitude will, after phase separation, conform its composition profile to

match the height profile and form a stripe morphological phase. Thus, we find that

topographical patterns with sufficiently large amplitude have a strong influence on

the morphological evolution in these systems.
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Table 3.4: Stationary-state morphologies observed for Case 4 simulations in terms of
noise amplitude and fixed ripple amplitude. Caplet and stripe morpholo-
gies are denoted by ‘c’ and ‘s’, respectively.

Aripple

Anoise 0.01 0.015 0.02 0.025 0.03 0.04 0.05 0.06
0 s s

0.05 c s s s s s
0.1 c c s s s s s
0.2 c c s s s s s
0.3 c c s s s s

3.4 Conclusions

In this chapter, we examined phase separation in nearly planar lipid membranes

using a coupled composition-deformation phase-field method. We focused on a sys-

tem that has a stripe morphology as the lowest energy state. We found that, for the

membrane system investigated, the final configuration (morphological phase) is highly

sensitive to initial conditions. When there was no initial stripe-type or ripple-type per-

turbation, the stripe morphological phase was consistently not observed. In initially

planar systems, we showed that stripes form only when an initial compositional per-

turbation with sufficiently large amplitude is imposed. Therefore, it is unlikely that

a stripe structure would form spontaneously from a random lipid mixture on a flat

background even if it is the lowest-energy morphology. Similarly, a sinusoidal ripple

perturbation initially imposed on the height that is allowed to evolve is insufficient to

induce stripes when random fluctuations in composition exist. Stripes formed in this

case only when the composition was initially nearly uniform (Anoise ≈ 0). Typically,

as isolated single-phase domains form from the compositional random fluctuations,

the height profile follows composition, and the ripple perturbation that had initially

been imposed in the height dissipates. Although the lowest-energy morphology for the

given parameter set is stripes, the dynamics of their formation have specific symmetry

requirements that are rarely met in systems with random fluctuations.
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Contrastingly, for a membrane with a rigid sinusoidal ripple structure of suffi-

ciently large amplitude, stripes will form regardless of the initial conditions in com-

position. Thus, we find that rigid topographical surface patterns have a strong effect

on the phase separation and compositional evolution in these systems. Experiments

with supported multicomponent lipid bilayers have been performed on patterned sur-

faces, reporting that the phases can be sorted by the patterns to satisfy their bending

energy (71, 190). One study found that a micropatterned surface with curved ridges

could be used to sort liquid-ordered and liquid-disordered phases, where the liquid-

ordered phase, which is more rigid, preferred to reside in areas of lower curvature (71).

A second study used a surface with nanosmooth patches in an otherwise nanocorru-

gated background, finding that similarly, the liquid-ordered phase segregated to the

nanosmooth parts of the surface (190). While both of these studies used symmet-

ric bilayers with zero spontaneous curvature, they concluded that separated phases

partitioned to particular regions of a patterned surface in order to best satisfy their

bending energies, similar to the finding reported here.
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CHAPTER IV

Spherical Vesicle Membrane Model

4.1 Introduction

As introduced in Sec. 1.2.1, lipid vesicles are often used as a model membrane

system when studying lipid phase separation. Vesicles can be thought of as simple,

empty cells, since the bilayer forms an approximately spherical shell that encapsulates

an inner volume. In experiments, giant unilamellar vesicles (GUVs) are typically used

(also known as giant liposomes), defined as vesicles with a diameter on the order of

tens of microns, and consist of only one lipid bilayer (as opposed to multilamellar

vesicles, which are essentially a system of multiple vesicles housed within each other).

GUVs are a desirable model membrane system because they are relatively simple

to create, are large enough to view using optical microscopy techniques, and are

a good geometric approximation of the plasma membrane, being a curved, closed

surface as opposed to supported or unsupported planar lipid membranes. In addition

to GUVs created in vitro (starting from lipid solutions), giant plasma membrane

vesicles (GPMVs) have also been used to study lipid behavior (42, 191). GPMVs are

similar to GUVs, although they are made by inducing living cells to produce blebs,

or budded-off vesicles from their plasma membranes. The GPMVs then have a lipid

composition equivalent (or nearly equivalent) to that of the cell, while still lacking

cytoskeletal components. GPMVs are a better representation of living cells than the
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laboratory-fabricated GUVs, typically composed of simple, ternary mixtures of lipids.

To simulate vesicular systems, the model presented in Chapter III must be extended

to accommodate the spherical background geometry of vesicles.

In this chapter, a model for unilamellar vesicles is presented, as an extension

of the nearly planar membrane model from Chapter III to a spherical background

geometry (192). This model is a closer representation of in vivo membranes since

these membranes form a closed surface with an internal volume. This chapter will

present the modifications made to the original nearly planar model to achieve this

spherical extension, and will present results obtained with this vesicle model.

4.2 Methods: Extending the Nearly Planar Membrane Model

to a Spherical Geometry

The first modification made to the nearly planar model is related to the volume

within the closed vesicle surface, adding an additional term to the free energy:

F =

∫

HdA− PV =

∫

(H0 +H1 +H2)dA− PV, (4.1)

where P is the internal pressure of the vesicle and V is the internal volume. Since

water molecules can pass through lipid membranes largely unhindered, while other

larger and/or charged molecules cannot, osmotic effects can be used to alter the

internal pressure of the vesicle. For example, if the solution inside the vesicle has a

higher solute concentration than the solution outside the vesicle, water will flow into

the vesicle in response to the osmotic gradient, increasing the internal pressure. In

our model, P is an input parameter to which V responds to reduce the free energy.

The expressions for H0 and H1 are unchanged, and are given by Eqs. 3.2 and 3.3,

to model the free energy of the mixture and coupling composition with mechanical

properties, respectively. However, the term H2 for the surface-tension energy has
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been modified to implement a new area conservation scheme, as discussed in the next

section.

4.2.1 Area Conservation

In the nearly planar model, the surface area was not explicitly conserved, but

rather the system had an energetic penalty imposed if the surface area increased,

scaled by the constant Lagrange multiplier σ. The changes in surface area in simu-

lations using the nearly planar model were observed to be approximately 1% − 4%,

which was considered acceptable since the molecules in the membrane do have a small

amount of leeway with regard to their separation distance. For the spherical case,

however, using a similar scheme led to much larger changes in surface area, which

were deemed unphysical. Therefore, a more sophisticated scheme was developed and

implemented to conserve the surface area of the vesicle.

Area conservation is accomplished using two Lagrange multipliers, σα and σβ ,

which are applied to the areas occupied by the α and β phases, respectively. This

gives rise to additional terms, σα(Aα − Aα,0) + σβ(Aβ − Aβ,0), in the free energy,

where Aα and Aβ are the areas occupied by the α and β phases, respectively, and the

subscript ‘0’ denotes their initial values. Without loss of accuracy, the free energy

can be shifted to eliminate the constant initial area terms, σαAα,0 and σβAβ,0, leaving

only σαAα + σβAβ . Since Aα =
∫

φdA and Aβ =
∫

(1 − φ)dA, the surface-tension

energy term H2 can be written as

H2 = σαφ+ σβ(1− φ) (4.2)

= σ +
∆σ

2
(2φ− 1), (4.3)

where we define σ = (σα + σβ)/2 and ∆σ = σα − σβ . The Lagrange multipliers are

uniform over the surface of the vesicle at any time, but are variable in time and are
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determined dynamically at each time step. While this causes the constant initial area

terms that were eliminated from the free energy to vary in time, they are constant in

space at each time step, and thus the dynamics are accurately modeled. The following

scheme for calculating σ and ∆σ not only conserves the surface area of the vesicle, but

also the area fractions of the α and β phases. In response to a normal deformation

ψn̂, the variation in total area and the variation in the difference in area between the

two phases can be written as

δA =

∫

ψn̂ ·Kn̂dA, (4.4)

δ(∆A) =

∫

(2φ− 1)ψn̂ ·Kn̂dA, (4.5)

where ∆A = Aα−Aβ , which will be referred to as the area difference. As in previous

chapters, vector quantities are shown in bold, and unit vectors are denoted with hats.

The variation in the total free energy with respect to ψn̂ can be written, with

Hm = H0 +H1, as

δF = δ

(
∫

HmdA− PV
)

+ σδ

∫

dA+
∆σ

2
δ

∫

(2φ− 1)dA (4.6)

= −
∫

fm · ψn̂dA+ σ

∫

ψn̂ ·Kn̂dA+
∆σ

2

∫

(2φ− 1)ψn̂ ·Kn̂dA (4.7)

= −
∫

f · ψn̂dA, (4.8)

where fm is the force density (force per unit area) associated with mechanical and

chemical energy, while the net force density f includes surface tension terms, i.e.,

f = fm − Kσn̂ − K(∆σ/2)(2φ − 1)n̂. In scalar form, these force densities can be

written as

Tm = fm · n̂ = −(HmK +Q(R −K2)−∆Q− ζ2Kab∇aφ∇bφ− P ), (4.9)

T = f · n̂ = Tm −Kσ −
K∆σ

2
(2φ− 1), (4.10)
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where Eq. 4.9 is very similar to Eq. 3.7 presented with the nearly planar membrane

model, only with the surface tension terms absent and the addition of the pressure

term.

We calculate σ and ∆σ specifying that the two variations in Eq. 4.4 and 4.5 be zero

to conserve the total area and the area difference. To begin, we examine area changes

that result from small deformations occurring during a single time step, ψ = ∂tψδt,

where ∂tψ = ∂ψ/∂t. We can rewrite this expression for the deformation ψ using the

relationship in Eq. 3.5 that relates the friction force density to the velocity ∂tψ, and

substitute the net force density f since it is equal and opposite to the friction force

density fv:

∂tψ = −Γfv · n̂ = Γf · n̂, (4.11)

ψ = Γδtf · n̂ = ΓδtT. (4.12)

Using this expression to substitute for the small deformation ψ in the area variations

(Eqs. 4.4 and 4.5), we arrive at the following expressions:

δA = Γδt

∫

KTdA, (4.13)

δ(∆A) = Γδt

∫

(2φ− 1)KTdA. (4.14)

Further, we can substitute in the expression for T from Eq. 4.10:

δA = Γδt

(
∫

KTmdA− σ
∫

K2dA− ∆σ

2

∫

K2(2φ− 1)dA

)

, (4.15)

δ(∆A) = Γδt

(
∫

KTm(2φ− 1)dA− σ
∫

K2(2φ− 1)dA (4.16)

−∆σ
2

∫

K2(2φ− 1)2dA

)

.

Setting the two variations δA and δ(∆A) to zero in order to conserve total area and

71



area difference, we obtain a set of linear equations, which can be solved to determine

the instantaneous values of σ and ∆σ:







∫

K2dA
∫

K2(2φ− 1)dA
∫

K2(2φ− 1)dA
∫

K2(2φ− 1)2dA













σ

∆σ
2






= (4.17)







∫

KTmdA
∫

KTm(2φ− 1)dA






.

To implement these equations numerically, it is important to note that small numeri-

cal errors at any given time step cause the area and area difference to not identically

equal the initial values, A0 and ∆A0, respectively. The multipliers σ and ∆σ are

then chosen so as to compensate for these differences. Using Eqs. 4.15 and 4.16 with

δA = A(t+∆t)−A(t) = A0−A, we obtain the following numerical scheme to deter-

mine the values of σ and ∆σ so that the numerical values of A and ∆A approximate

A0 and ∆A0, respectively, with high accuracy:







∫

K2dA
∫

K2(2φ− 1)dA
∫

K2(2φ− 1)dA
∫

K2(2φ− 1)2dA













σ

∆σ
2






= (4.18)







∫

KTmdA− 1
Γ∆t

(A0 −A)
∫

KTm(2φ− 1)dA− 1
Γ∆t

[(Aα,0 − Aβ,0)− (Aα − Aβ)]






.

4.2.2 Shape Evolution in Terms of a Radius

In the nearly planar model, the membrane surface was defined as a height at

locations specified by (x, y) coordinates in a reference plane at h = 0. Similarly, the

nearly spherical membrane surface here is defined as a single-valued radial distance

function, r(θ, ξ). This function is written with respect to two angles of the spherical

coordinate system defined in Fig. 4.1, where ξ is the azimuthal angle and θ is the polar

angle. These angles are defined such that ξ = 0 at the positive x-axis, and θ = 0
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at z = 0 (i.e., the equator) and takes positive values where z < 0. The reference

geometry in this system is a sphere with a radius equal to the value of the local radial

distance function. Figure 4.2 illustrates this radial distance function specifying the

deformed surface in relation to the local reference surface patch, where the deformed

surface is projected one-to-one onto the reference surface patch.

P

Z

Y

X

y

x

z
θ

ξ

r

Figure 4.1: Definitions of the coordinates used for the spherical vesicle model, with
azimuthal angle ξ and polar angle θ. The location P is expressed in
terms of (r, θ, ξ), which can be expressed in Cartesian coordinates as the
position vector r in Eq. 4.19. With the convention used, the θ coordinate
for point P illustrated here has a negative value.

A point within the surface is described by its three-dimensional position vector:

r = [r cos ξ cos θ, r sin ξ cos θ,−r sin θ]. (4.19)

As in the previous chapter, we write vector components within square brackets. We

use the indices i = 1 and 2 to refer to the θ and ξ coordinates, respectively. The

derivatives of r with respect to the θ and ξ coordinates are defined as

r1 =
∂r

∂θ
, r2 =

∂r

∂ξ
. (4.20)
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Figure 4.2: The membrane shape is described by a single-valued radial distance func-
tion r(θ, ξ). The figure shows the one-to-one projection of the deformed
vesicle surface (blue grid) onto the local reference surface (orange grid),
which is a spherical patch with radius r(θ, ξ) corresponding to the ra-
dius at the center point marked in red. ûr is a unit vector in the radial
direction.
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Vectors tangent to the deformed surface can then be defined as

e1 =
∂r

∂θ
= [−r cos ξ sin θ + r1 cos ξ cos θ,−r sin ξ sin θ + r1 sin ξ cos θ, (4.21)

−r cos θ − r1 sin θ],

e2 =
∂r

∂ξ
= [−r sin ξ cos θ + r2 cos ξ cos θ, r cos ξ cos θ + r2 sin ξ cos θ, (4.22)

−r2 sin θ].

As discussed in Chapter III, the dynamical equation for the deformation is given

by

∂ψ

∂t
= ΓT, (4.23)

and the conversion into the rate of change in radius, ∂r/∂t, is performed as follows. An

illustration defining the vectors in this discussion is presented in Fig. 4.3. We define a

unit vector in the r direction as ûr = ∂r/∂r = [cos ξ cos θ, sin ξ cos θ,− sin θ], so that

the deformed surface is specified by rûr at a coordinate (θ, ξ). For a deformation of

ψn̂ in the radius, the radius changes from rûr to (r+∆r)ûr. If the unit vector normal

to the deformed surface, n̂, is not parallel to ûr, then the projection of ∆rûr along

the membrane surface lies along a unit vector t̂ tangent to the deformed surface such

that ûr = (ûr · t̂)̂t + (ûr · n̂)n̂. Using this unit vector t̂, the general radial change

∆rûr can be written as ∆rûr = ψn̂+ st̂. If we take the dot product of both sides of

this equation with the unit normal to the deformed surface n̂, we arrive at

∆r(ûr · n̂) = ψ, (4.24)

∆r =
ψ

ûr · n̂
. (4.25)

We now rewrite the unit vectors ûr and n̂ using the metrics of the deformed and

reference surfaces,
√
g and

√

g0, respectively. The deformed surface metric (as in

Appendix A) is given by the determinant of the metric tensor gij, and the reference
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Figure 4.3: Illustration of the vectors involved in the conversion from deformation
ψ to a change in radius ∆r. The reference surface is shown in orange,
the current deformed surface in black, and the future deformed surface
in gray. The black vector rûr is drawn from the origin (not shown), and
all other vectors are drawn from the grid point on the current surface.
The unit vectors ûr, n̂, and t̂ lie in the radial direction, normal to the
deformed surface, and tangent to the deformed surface, respectively. The
radial change vector, ∆rûr, can be expressed in terms of the normal
deformation vector, ψn̂, and a scaled version of the tangent vector, st̂.
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surface metric is this same expression with a constant radius equal to the local radius:

√
g = r(r2 cos2 θ + r21 cos

2 θ + r22)
1/2, (4.26)

√

g0 = r2 cos θ. (4.27)

These metrics can be related to the unit vectors ûr and n̂ using the tangent vectors

to the surfaces (basis pairs), where e0i is the projection of ei onto the reference surface

patch:

√
gn̂ = e1 × e2, (4.28)

√

g0ûr = e01 × e02. (4.29)

By taking the dot product of these two vectors,
√

g0ûr ·
√
gn̂ = (e01 × e02) · (e1 × e2),

we find that this expression reduces simply to g0 by the properties of dot and cross

products. Finally, we rearrange and make substitutions to relate the radial evolution

to the velocity of the deformation:

√

g0ûr ·
√
gn̂ = g0, (4.30)

ûr · n̂ =

√

g0√
g
, (4.31)

∆r =
ψ

ûr · n̂
=

√
g

√

g0
ψ, (4.32)

∂r

∂t
=

√
g

√

g0
∂ψ

∂t
. (4.33)

4.2.3 Numerical Methods

4.2.3.1 Yin-Yang Grid System

To solve the governing equations above, a discretization of the angular space is

required. For the nearly planar model, grid points were defined as a simple orthogonal
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grid in Cartesian space. However, for the spherical geometry in this vesicle model,

defining these grid points is a more complex problem. In standard spherical coordi-

nates, a longitude-latitude system of mesh points is an intuitive way to place a grid

on a spherical surface; however, this system has features that can create non-physical

artifacts in numerical calculations. One such feature is the large amount of variability

in the size of the grid cells (or distances between adjacent mesh points) when com-

paring mesh points at the equator to those near the poles. Ideally, all grid cells would

be identical in size so that the surface is uniformly resolved. A second such feature is

the convergence of the longitudinal lines at the poles of the sphere. Using the finite

difference method, derivatives of functions are calculated at a specified location in

terms of their values at neighboring points. However, the points at the poles of the

sphere have a large (arbitrary) number of neighboring points, and would need to be

treated specially to calculate derivatives.

In order to avoid both of these disadvantages, we have implemented the Yin-Yang

grid system developed by Kageyama and Soto for computational geoscience studies

(193). The Yin-Yang grid system uses two identical grids to cover the spherical

surface, as illustrated in Fig. 4.4. Each grid covers the middle range of latitude and

wraps around three-quarters of the equator of the sphere, covering the coordinate

ranges of ξ = [−3π/4, 3π/4] in the azimuthal angle and θ = [−π/2, π/2] in the polar

angle (with θ = 0 at the equator). By covering only this portion of the sphere, the

variation in the size of the grid cells is minimal and the polar points are eliminated.

The two grids are used to cover the spherical surface by rotating one of them using

the following transformation, which can be written simply as

x′ = −x (4.34)

y′ = −z

z′ = −y.
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Figure 4.4: The Yin and Yang grids used to discretize the angular space, separated
(top) and combined (bottom). The two grids are identical, and cover the
spherical surface with minimal overlap.

Using this transformation, the grids cover the entire surface with a small amount of

overlap and with boundaries similar to the locations of the seams on a tennis ball.

Calculations are performed separately in each grid within their local coordinate

systems. In order to have the two grids together create a single, coherent surface,

they must communicate at each time step in the simulations to account for overlap-

ping regions. All overlapping regions are considered to have “real” data in one grid,

occupying “primary zones,” while in the other grid they are considered as “ghost

zones.” The locations of these ghost zones are shown schematically in Fig. 4.5, rep-

resentative of a flattened version of either the Yin or Yang grid. The regions marked

in green are determined to be in the ghost zone based solely on their θ coordinate,

since these ghost zones are simply defined as boundary points. The regions marked

in blue are more complex, since their boundary is curved with respect to the grid

lines, and so points are determined to be in these ghost zones if they are outside

of the semicircle traced by ~rghost originating from the point Oghost nearest to them.
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Figure 4.5: The unrolled view of one of the Yin-Yang grids is shown, with the four
quadrants separated by red lines and labeled 1 − 4. The ghost-zone re-
gions, where the two grids overlap and the primary data is contained in
the other grid, are colored in green and blue, while the primary zone is
not colored. The green regions are defined by their θ coordinate, while
the blue regions are defined by the semicircle traced by the vectors ~rghost
originating from the points Oghost.

Ghost-zone points need to have data copied onto them from primary-zone points on

the other grid because they are used for calculating derivatives at primary-zone points

that are located near ghost zone boundaries. However, since the points from the two

grids are not perfectly coincident in overlapping regions, an interpolation scheme is

implemented using a second-order Taylor series approximation to calculate the value

of a ghost-zone point from values in the primary zone of the other grid as shown in

Fig. 4.6:

WY in(θ + a, ξ + b) = WY ang(θ, ξ) + a
∂WY ang

∂θ

∣

∣

∣

∣

(θ,ξ)

+ b
∂WY ang

∂ξ

∣

∣

∣

∣

(θ,ξ)

(4.35)

+ a2
∂2WY ang

∂θ2

∣

∣

∣

∣

(θ,ξ)

+ b2
∂2WY ang

∂ξ2

∣

∣

∣

∣

(θ,ξ)

+ ab
∂2WY ang

∂θ∂ξ

∣

∣

∣

∣

(θ,ξ)

,

where W represents either the composition φ or the radius r, and is labeled for

interpolating in the Yin ghost zones from Yang primary-zone points.
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Yin point

Yang point

Figure 4.6: Illustration of interpolation for a ghost-zone point in the Yin grid from
primary-zone points in the Yang grid. Interpolation must be performed
since the points in the grids do not coincide perfectly in overlap regions.
The interpolation for the Yin grid ghost-zone point (pink) at (θ+a, ξ+b)
is done using Eq. 4.35 with the value of the nearest Yang point (yellow),
marked (θ, ξ), and the offset distances a and b.

The calculation to determine the locations of the four nearest-neighbor points in

the other grid is accomplished as follows (note that this calculation needs to only be

performed once and can be done on the angular grid (θ, ξ)). For each mesh point

in the Yin grid located in a ghost zone, its coordinates (specified in terms of the

Yin grid angles, (θ, ξ)) are converted into Cartesian coordinates (x, y, z) using the

components of the three-dimensional position vector in Eq. 4.19. Then, these Yin

coordinates are converted to the Cartesian coordinates of the Yang grid, (x′, y′, z′),

using the expressions in Eq. 4.34, and finally to the spherical coordinate angles on

the Yang grid, (θ′, ξ′), using

θ′ = arcsin

(−z′
r

)

, (4.36)

ξ′ = arccos

(

x′

r cos θ′

)

sgn(y′), (4.37)

where sgn(y′) has the sign of y′ and magnitude of unity.

Now the ghost-zone point in the Yin grid has its location specified in terms of the

spherical angles in the Yang grid, and the nearest-neighbor points can then easily be
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found by rounding the coordinate values to those closest that are occupied by Yang

grid points. The offset distances between the Yin grid point and the nearest-neighbor

Yang grid points are then calculated.

4.2.3.2 Area Integral Calculations

In order to calculate the surface area of the deformed vesicle, or to calculate

integrals taken with respect to the deformed vesicle surface, care needs to be taken in

the overlapping ghost-zone regions of the Yin and Yang grids to ensure that no area

is double-counted or neglected. This is done by summing over all of the grid cells

the integrand (which is equal to unity for the surface area calculation) multiplied by

the metric factor and the weighting factor, which is 1 for cells completely within the

primary zone, 0 for cells completely within ghost zones, and a value between 0 and

1 for cells located partially within a ghost zone. In order to calculate the weighting

factor, each grid cell needs to be placed into one of these three categories. A grid cell

at a point (i, j) is defined to span [i−1/2, i+1/2] and [j−1/2, j+1/2], as shown in Fig.

4.7. Working with grid cells rather than points makes the determination of whether a

grid cell lies inside, outside, or on top of the ghost-zone border more complex than in

the case of interpolation in the previous section since a grid point may not lie within

a ghost zone, while part of its grid cell does.

Similar to the setup for the interpolation calculations, the regions shown in blue

and green in Fig. 4.5 are treated differently, since the green regions are defined simply

by their θ coordinate, while the blue regions need more special treatment because their

boundaries do not generally coincide with grid cells boundaries. Each Yin and Yang

grid is split into four quadrants, divided by the lines θ = 0 and ξ = 0. While the

following algorithm is the same for each quadrant, the signs differ in each one. For

this discussion, the quadrant with positive θ and ξ will be described. For each grid

point in the blue region in this quadrant, (i, j), the corner of its cell at (i+1/2, j+1/2)
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Figure 4.7: The grid cell corresponding to the point (i, j) is defined to span the in-
tervals [i− 1/2, i+1/2] and [j− 1/2, j+1/2], as shown shaded in purple.

is further away from the origin Oghost than the corner of its cell at (i− 1/2, j − 1/2),

and thus these locations are referred to as the far corner and near corner, respectively.

The grid point is determined to require a weight of 1 if the distance between the origin

Oghost and both the near and far corners is less than |~rghost|, since that indicates it is

located entirely inside the primary zone. Similarly, the grid point requires a weight

of 0 if the distance between the origin Oghost and both the near and far corners is

greater than |~rghost|, indicating that it is located entirely inside the ghost zone. If

the distance between the origin Oghost and the far corner is greater than |~rghost|, but

the distance between the origin Oghost and the near corner is less than |~rghost|, this

indicates the grid cell is straddling the ghost-zone boundary and requires a weight

somewhere between 0 and 1 to account for only its partial area inside the primary

zone. One very important piece of this calculation is that the distances calculated

between these points are not in a Euclidean geometry, but rather follow the surface of

the sphere. This means that the simple distance formula cannot be used, but rather

the spherical distance formula taken from the field of spherical trigonometry, where

the distance d between points P and Q on a sphere is given by

d = arccos(P ·Q). (4.38)
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For the points requiring a weight between 0 and 1, the curve forming the boundary

of the ghost zone will intersect with exactly two of the four edges of the cell. An α

intersection point is defined as one with the j−1/2 cell edge, a β intersection point is

defined as one with the i−1/2 edge, a γ intersection point with the j+1/2 edge, and

a δ intersection point with the i+1/2 edge. Again, for any boundary cell, exactly two

of these points will exist. By determining which two types of points exist, the cell can

be placed into one of four configuration categories specifying the geometry of the area

within the cell inside the primary zone, and the coordinates of the intersection points

are determined. The configuration categories are shown in Fig. 4.8 for each of the four

quadrants. The partial area in the cells is calculated based on the intersection points

and geometry, assuming that the curved boundary can be approximated by a line

connecting the two intersection points. Specifically, the area inside the primary zone

in configuration A can be calculated as a trapezoid and rectangle; for configurations

B and C, a triangle and rectangle; and for configuration D, simply a triangle. This

area divided by the area of the square cell is the weight used for that cell. (Here, we

have not included the effect of the curvature of the surface because this is accounted

for in the metric factor in the numerical integration.) With this scheme the surface

area can be calculated to within a 0.2% error.

4.2.4 Interfacial Length Calculations

One measure that we use to analyze the evolution observed in our vesicle simula-

tions is the total interfacial length. Since p′(φ) = 0 in the bulk phases and p′(φ) = 1

in interfacial regions (note that p(φ) appears in the bending energy, Eq. 3.3), the

total interfacial length at a given time, L, is proportional to L̃ =
∫

p′(φ)dA. To

determine the proportionality, L̃ was calculated for a number of vesicles (simulated

using different parameters) in their stationary states. Once in a stationary state, the

vesicles used for this measurement have a single cap of each phase, forming hemi-
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Figure 4.8: All of the possible configurations in each of the four quadrants for how
the ghost-zone boundary could intersect with a grid cell straddling the
boundary. The quadrant numbers are defined in Fig. 4.5. In each config-
uration, there are exactly two intersection points, labeled as α, β, γ, and
δ, depending on which edge of the cell they lie on. Given the quadrant
and configuration, the weight for the cell can be determined geometrically
as the fraction of the cell within the primary zone, as shaded in purple.
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spheres for an equal mixture, and differently sized caps for unequal mixtures. This

configuration allows for a simple geometric calculation of the interfacial length, since

there is a single interface with a length that can be calculated as the circumference

from the radius where it is located. A linear relationship was established between

L and L̃, and the proportionaility factor determined is used for all interfacial length

calculations presented. The approach was found to be accurate to approximately 3%

by plotting L̃ vs. L for 8 cases.

4.2.5 Simulation Parameters and Initializations

While some parameters are varied from one simulation to another in order to

examine their effects on evolution, the following set of parameters are specified to

have the same value in all simulations: Λα = 1, Cα = 1, w = 86, ζ = 0.458, M = 1,

Γ = 0.05, and P = 5. The parameters Λα = 1 and the inverse of Cα = 1 set the energy

and length scales of the system, respectively, and all other quantities are measured

with respect to these and are thus dimensionless in the model. Each Yin and Yang

grid consists of 270 grid points in ξ and 90 grid points in θ. The shape is initialized as

a perfect sphere (unless otherwise specified) with a radius of 3, which has a curvature

trace of K = 2/3 (note that a sphere with a radius of 2 would minimize the bending

energy for the α phase with Cα = 1). The composition is initialized with a small

amplitude of uniform random noise centered around the phase fraction, φavg. The

parameters w and ζ are selected to satisfy two constraints: (i) since they determine

the width of the diffuse interfaces, they are chosen such that a minimum of 6 grid

points resolve the interfaces, and (ii) as a result of the bending energy term, the

minima of the double-well potential in Eq. (3.2) can shift, and w and ζ are specified

to set the line tension to be large enough such that this shift is no more than 2%. The

friction coefficient and pressure are selected such that the vesicle is slightly inflated in

order to remain overall convex, as the model cannot simulate extreme shape changes
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such as during a budding process.

4.3 Results and Discussion

In this investigation, the particular effects of spontaneous curvature, phase frac-

tion, and bending rigidity are studied in approximately spherical vesicles. In each of

the following sections, two of these parameters will be fixed across simulations while

the other is varied. Additionally, the effects of phase fraction are studied in vesicle

systems initialized with an elongated, non-spherical shape.

4.3.1 Varying Spontaneous Curvature in Equal Mixtures

The systems discussed in this section have equal mixtures of the two phases (φavg =

0.5), r = 3, and equal bending rigidities Λα = Λβ = 1. The spontaneous curvature

of the α phase is Cα = 1 as in all cases in this chapter, while the spontaneous

curvature of the β phase, Cβ, is varied to isolate the effects of differences between the

spontaneous curvatures of the α phase, the β phase, and the curvature of the vesicle

surface. Simulation results are presented for systems with Cβ = −1, 0.5, 1, 2, and 3,

in addition to a control case where the bending energy is not included and the shape

is a fixed, rigid sphere. This control case is referred to as the “no shape change” case,

since there is no coupling between the phases and any mechanical shape effects.

Figure 4.9 presents plots of interfacial length vs. time as well as snapshots from

systems with Cβ = −1, 2, and 3. In all of these cases, the α phase has a spontaneous

curvature closer to the curvature of the undeformed vesicle (K = 2/3) than does the β

phase. As a result, the α phase behaves like a majority phase, forming a continuous

domain structure around isolated β phase domains, even while being present at a

phase fraction of 50%. From the interfacial length plots, it is clear that the case

with Cβ = 3 takes significantly longer to reach a stationary state than the other two

cases. This is because the β phase domains prefer to have such a high curvature
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that smaller domains are favored over larger domains with respect to bending energy,

and also because the β phase domains tend to bulge away from the surface more

than when Cβ = 2 or −1. For the Cβ = −1 case, while the bending energy alone

would produce β phase domains that would curve inward, the internal pressure and

conserved surface area of the vesicle largely prevent this from occurring, except for

in regions nearby interfaces. Figure 4.10 presents snapshots at the same time as t1 in

Fig. 4.9 plotting the curvature trace. The plot for the case with Cβ = −1 shows the β

phase domains having a negative curvature near the interfaces, though these negative

curvature regions are compensated for with high curvature areas in the centers of the

β phase domain from the internal pressure. Only when a β phase domain becomes

small enough such that the negative curvature ring covers the entire domain area does

it bulge inward. This occurs slightly later than time t2 in Fig. 4.9, as can be observed

in Fig. 4.11 showing a cross-section illustrating the negative, inward curvature of

small β phase domains.

The jogs in the interfacial length curves in Fig. 4.9 indicate events where a domain

disappears either by diffusion or by coalescing with another domain, and while the

curves for the Cβ = −1 and 2 cases appear similar at earlier times, coarsening proceeds

more quickly with Cβ = 2. This is because, of the three systems presented, the β phase

in the Cβ = 2 system has a spontaneous curvature that is closest to the spontaneous

curvature of the α phase, and therefore the bending energy plays less of a role in

the dynamics of this system than it does in the other two presented here. The plot

of curvature for Cβ = 2 in Fig. 4.10 has the smallest range of curvatures, and has

a positive curvature everywhere, whereas for the Cβ = 3 case, the β domain bulges

outward with a higher curvature, and the extreme positive curvature just inside the

β phase domains actually imposes a slight negative curvature on the other side of the

interface in the α phase, slowing coarsening by forming barriers to domain coalescence.

In contrast, Fig. 4.12 presents interfacial length vs. time as well as snapshots from
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Figure 4.9: Interfacial length vs. time for three systems with Cα = 1, 50% α, r = 3,
Λα = Λβ = 1, and Cβ = −1, 2, and 3. Snapshots at two times (marked
as t1 and t2 on the time axis) from all three systems are presented in the
inset, where the color indicates the composition variable φ such that the
α phase is shown in red, the β phase is shown in blue, and the spectrum
of colors in between represents interfaces. The small plots show a view of
the back side of the vesicles. The red α phase forms continuous domain
morphologies, appearing as a majority phase in these equal mixtures since
its spontaneous curvature is closer to the overall vesicle surface curvature.
The β phase domains then bulge inward or outward (depending on Cβ),
deforming the vesicle and slowing the coarsening, with the effect most
pronounced with Cβ = 3, being the case where Cβ differs most from the
overall vesicle surface curvature.
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a) Cβ= -1 b) Cβ= 2 c) Cβ= 3

Figure 4.10: Snapshots of three systems with Cα = 1, 50% α, r = 3, Λα = Λβ = 1,
and Cβ = −1 (a), Cβ = 2 (b), and Cβ = 3 (c), at time t = 2.0. The
color bars indicate values of the curvature trace as plotted on the large
images. The color on the small plots indicates the composition as a
reference, with the α phase in red and the β phase in blue (the small
plots are the same snapshots that appear at time t1 = 2.0 in Fig. 4.9).
In (a), the β phase domains are only able to adopt negative curvatures
near their edges, since the surface tension and internal pressure prevent
them from bulging inward over the entire area they occupy. Similarly,
the β phase domains in (c) are only able to have a relatively high positive
curvature at their edges, which imposes a slightly negative curvature in
the adjacent α phase regions, acting as a barrier to domain coalescence
and slowing the evolution. The bending energy plays a smaller role in
(b) since the difference between the spontaneous curvatures of the two
phases and the amount that they differ from the vesicle surface curvature
is the smallest of all three systems.
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Figure 4.11: A snapshot from the system with Cβ = −1 from Fig. 4.9 at t = 4.66
with two of the three β phase domains adopting negative curvatures to
satisfy their spontaneous curvature, shown as a surface plot in (a) and
a cross-sectional view in (b). The small plot in (a) shows the back side
of the vesicle.

systems with Cβ = 1/3, 1 and the “no shape change” case. The Cβ = 1/3 value

was chosen because the spontaneous curvatures of the α and β phases differ from the

overall vesicle surface curvature (K = 2/3) with equal magnitude but opposite sign,

and therefore both phases are equally consistent with the overall vesicle surface cur-

vature. Similarly, with Cβ = 1 the two phases have the same spontaneous curvature,

thus differing equally from the overall curvature of the vesicle surface. The snapshots

and the interfacial length vs. time curves for these three cases appear very similar.

As the systems phase separate and continue to evolve, each phase remains continuous

and does not separate into multiple isolated domains. This behavior is expected for

equal mixtures with no shape coupling since neither phase is a majority or minority

phase. However, this behavior was not observed in all systems investigated in this

work, as in Fig. 4.9. The similarity of the three systems is an indication that when

the spontaneous curvatures of the two phases are such that neither is closer to the

overall vesicle surface curvature, the phase morphologies are largely unaffected by

the bending energy, as the results appear very similar to the “no shape change” case

where bending energy is completely excluded from the model.
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Figure 4.12: Similar to Fig. 4.9, with Cα = 1, 50% α, r = 3, Λα = Λβ = 1, and
Cβ = 1, 1/3, and a third control case without shape change or bending
energy. These values of Cβ were chosen because they differ from the
overall curvature of the vesicle surface with equal magnitude as does Cα,
with the same sign for Cβ = 1 and opposite sign for Cβ = 1/3. All
three systems appear quite similar, with neither phase behaving as a
majority or minority phase and evolving to have a single domain of each
phase quickly, as the smooth interfacial length vs. time curves indicate.
This behavior is expected with equal mixtures in the absence of bending
energy.
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4.3.2 Varying Phase Fraction

Here a single set of spontaneous curvatures is used for all simulations (Cα = 1 as in

all cases in this chapter, and Cβ = 3), while the fraction of the two phases is varied.

The β phase therefore prefers to assume a curvature more than three times larger

than the initial curvature of the vesicle surface, while the α phase prefers a curvature

only 50% larger than the curvature of the vesicle surface. Figure 4.13 presents the

interfacial length vs. time curves as well as snapshots from systems with equal or

nearly equal mixtures, having 40%, 45%, 47.5%, or 50% α phase. The snapshots

for the systems with 47.5% α and 50% α show the α phase acting as a majority

phase, while the snapshots for the system with 40% α show the β phase acting as the

majority phase. The system with 45% α behaves like an equal mixture, based on the

snapshots as well as the smooth appearance of the interfacial length vs. time curve.

The interfacial length vs. time curves for the 40% α and 50% α systems both have

jogs (indicating isolated domains of the apparent minority phase), and also extend

to later times than do the curves for the 45% α and 47.5% α cases, indicating that

the isolated domains prolong the evolution toward a stationary state. With this set

of spontaneous curvatures, we find that a mixture at and possibly around 45% α

behaves like an equal mixture.

Figure 4.14 presents cases similar to those in Fig. 4.13, although these are com-

posed of mixtures further away from the effective equal mixture of 45% α, having

30% α, 55% α, and 70% α. All of the interfacial length vs. time curves for these

systems exhibit jogs, as would be expected for unequal mixtures. The system where

the α phase is the minority phase (30% α) evolves to a stationary state more quickly

than the other cases. This is because when the α phase forms small, isolated do-

mains, they do not bulge outward as much as isolated β phase domains do; the highly

bulged β phase domains must overcome a highly unfavorable curvature in order to co-

alesce, and also cause the entire vesicle to adopt a deformed shape that in some cases
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Figure 4.13: Similar to Fig. 4.9, with Cα = 1, Cβ = 3, r = 3, Λα = Λβ = 1, and 40%,
45%, 47.5% and 50% α phase. With this set of spontaneous curvatures,
the system with 45% α appears to behave as an equal mixture, rather
than the systems with 47.5% or 50% α. This is because Cα is closer
to the overall vesicle surface curvature than is Cβ by a factor of 7, and
is therefore favored to form more continuous domain morphologies even
when present at less than 50%. The numerous isolated α phase domains
in the system with 40% α, and similarly the isolated β phase domains in
the system with 50% α, slow down the evolution compared to the other
two systems (as evidenced in the interfacial length vs. time curves), since
the isolated domains prefer to have a different curvature than the matrix
phase, and must overcome curvature barriers to coalesce.
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Figure 4.14: Similar to Fig. 4.9, with Cα = 1, Cβ = 3, r = 3, Λα = Λβ = 1, and 30%,
55%, and 70% α phase, representing cases that are further away from the
effectively equal mixture fraction (45% α) compared to those shown in
Fig. 4.13. Here, diffusion must take place over longer distances during
ripening. Also the smaller isolated domains are able to better adopt
their spontaneous curvatures since their deformation is less hindered by
the internal pressure than it would be for larger domains. The system
with 55% α exhibits special behavior, as explained in the text.
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pushes the β domains further apart. This behavior is much less significant when the

lower-curvature α phase domains are in the minority. Comparing with the systems

in Fig. 4.13, the time axis on the interfacial length vs. time plots is much longer here,

since the systems here have less of the minority phase, and longer distances must

be overcome for diffusion and coalescence. Also, smaller domains are able to adopt

their spontaneous curvatures more easily than larger domains, leading to an energetic

penalty for ripening and coalescence.

The system with 55% α takes significantly longer to reach its stationary state than

do the other similar systems. As the snapshots show, this is because three β phase

domains have reached a favorable size in terms of the bending energy, where they

bulge outward enough to resist coalescence even in close proximity to each other. This

observation can be explained in terms of the line-tension and bending energies plotted

over time in Fig. 4.15. At the three times marked ta, tb, and tc, the system has evolved

to have three, two, and one β phase domain remaining, respectively, and at each of

these times the line-tension energy decreases while the bending energy increases.

During ripening, the shrinking domain is able to adopt a curvature close to Cβ as

it becomes small enough, lowering the bending energy temporarily. However, as the

shrinking domain gets closer to disappearing, the remaining domain or domains grow,

which are then forced to adopt less favorable curvatures. The shrinking domain also

has a decreasing contribution to the bending energy as it decreases in area with time.

While the increase in bending energy associated with ripening slows the evolution,

the larger decrease in line-tension energy continues to drive the ripening, and the

system eventually forms a single β phase domain.

4.3.3 Varying Bending Rigidity

Two simulations were run using unequal bending rigidities for the two phases,

setting Λα = 1 and Λβ = 1.5 and either Cβ = −1 or 0, along with Cα = 1, r = 3, and
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Figure 4.15: Line-tension energy, H0 (blue); bending energy, H1 (red); and combined
energies H0 +H1 (black) vs. time for the system with Cβ = 3 and 55%
α. The three times marked ta, tb, and tc are the times when the system
has evolved to have three, two, and one β phase domain remaining,
respectively (see Fig. 4.14 for a snapshot of the morphology with three
domains at t = 10.5). While the line-tension energy decreases when
a shrinking domain disappears, the bending energy increases and thus
provides an energy barrier for reducing the number of domains.
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Figure 4.16: Similar to Fig. 4.9, with Cα = 1, r = 3, 50% α, and Λα = 1, with
either Cβ = −1 or 0 and either Λβ = 1 or 1.5. Both of the systems
with Λβ = 1.5 evolved to extreme shapes with overhangs not able to be
resolved with our model rather than reaching a stationary state. These
systems evolved more slowly since the interfacial length vs. time curves
are higher at all times. Compared to the equal rigidity simulation snap-
shots with the same parameters, the deformations are more severe, hin-
dering domain coalescence and hence slowing evolution.

50% α. Figure 4.16 presents plots of interfacial length vs. time as well as snapshots

for these two cases, along with comparable cases with Λα = Λβ = 1. The systems

with the larger Λβ have interfacial length vs. time curves that have similar features

as the curves of their comparable cases with equal rigidities. However, at any given

time, the systems with larger bending rigidity have more interfacial length and are

therefore evolving more slowly than cases with smaller bending rigidity. Additionally,

the deformation in the larger-rigidity cases is more extreme, to the degree that the

single-valued radial function that is used to parametrize the vesicle surface was no

longer able to resolve the highly deformed surface and the simulations ceased to run

at the time when their interfacial length vs. time curves end.
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4.3.4 Cases with Anomalous Kinetics

One particular point in parameter space, with Cα = 1, Cβ = 2, r = 3, Λα = Λβ =

1, and 60% α, exhibits enhanced stability in a configuration with two β phase domains

on the ends of a vesicle that has evolved to a shape resembling an ellipsoid. Two

simulations using different sets of random noise for the compositional initialization

were run using these parameters; one of these (60% α Case A) took more than twice

as long to reach the configuration with a single domain of each phase compared with

systems with all of the same parameters but with 55% α or 65% α, and the other

(60% α Case B) appeared to have enhanced stability with two β phase domains for

approximately nine times longer than it took for the 55% α and 65% α to reach a

stationary state (the simulation was discontinued at that time). Figure 4.17 presents

the interfacial length vs. time plots as well as representative snapshots, illustrating the

relative time scales over which the 60% α simulations remain stable with two β phase

domains. This parameter set has the unique property that the configuration with

more than one domain has a low enough total energy that the system can maintain

such a configuration for a significant length of time.

Figure 4.18 compares the curvature trace and bending energy of the single-domain

stable configuration for the 55% α and 65% α cases with that of the double-domain

configuration for the 60% α cases. The curvature profiles in both phases appear quite

similar for the cases with 55% α, 65% α, and Case A, while for Case B, the curvature

in the β phase has higher values, closer to the spontaneous curvature Cβ = 2. This is

also indicated in the bending energy plots, where the bending energy in the β phase

domains of the Case B simulation is lower than in the β phase domains of any of the

other three simulations, explaining their enhanced stability compared with a single-

domain configuration. The difference between Cases A and B seems to stem from the

shape of the vesicle, which for Case B has formed a more elongated ellipsoidal shape.

This allows the β phase domains to have higher curvature (more consistent with
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Figure 4.17: Similar to Fig. 4.9, with Cα = 1, Cβ = 2, r = 3, Λα = Λβ = 1, and
55%, 60%, and 65% α phase. The 60% α Cases A and B differ only
in the random seed used for the initialization. Both of the simulations
with 60% α evolved to morphologies with two domains of the β phase,
persisting through very late times in Case B, as indicated by the inter-
facial length vs. time curves (the Case B simulation was discontinued at
approximately t = 130).
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Figure 4.18: Plots of the curvature trace (top row) and bending energy H1 (bottom
row) for systems with Cα = 1, Cβ = 2, r = 3, Λα = Λβ = 1, and 55%,
60%, and 65% α phase. The 60% α Cases A and B differ only in the
random seed used for the initialization. In the top row, the color bars in-
dicate values of the curvature trace as plotted on the large images, while
the color on the small plots indicates the composition as a reference, with
the α phase in red and the β phase in blue. The plots for Cases A and
B show their configuration with two β phase domains, while the other
plots show stationary states. Comparing the curvature trace plots, they
appear quite similar qualitatively and quantitatively, with the exception
of Case B, where a larger portion of the β phase domains have adopted
the maximum curvature (closer to Cβ = 2), resulting in lower bending
energy compared with the single β phase domains in the other systems.
This lower bending energy gives the configuration in Case B enhanced
stability, despite having a larger line-tension energy than systems with
one β phase domain.

their spontaneous curvature), and also presents a larger barrier for their coalescence

or diffusion. For Case A, this elongation was not achieved from the random seed.

However, the process of arriving at a single β phase domain still took significantly

longer for Case A than for the cases with 55% and 65% α, indicating that this

particular parameter set is prone to having enhanced stability in configurations with

multiple β phase domains.
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4.3.5 Ellipsoidal Vesicles

While all vesicle systems reported in this work thus far have been initialized as

perfect spheres, two simulations were performed where the shape was initialized as

an ellipsoid instead. The prolate spheroidal ellipsoid shape utilized has a major axis

of 3 and minor axes of 2. The parameters used for these cases are Cα = 1, Cβ = −1,

Λα = Λβ = 1, and either 50% or 40% α. Both systems exhibit enhanced stability in

a state with multiple domains of one of the phases, as opposed to the configuration

where there is only a single domain of each phase (the configuration with lowest

line-tension energy). Figure 4.19 shows these enhanced-stability states, plotting the

curvature trace and bending energy (from Eq. 3.3) on the surface.

In Sec. 4.3.1, we reported that a system with Cβ = −1 and 50% α (initialized

as a sphere) had the α phase behaving as a majority phase, isolating individual β

phase domains. We observe this here in the same system but with the ellipsoidal

initialization, and find that the β phase domains partition to the low-curvature parts

of the vesicle, while the α phase covers the areas with the highest positive curvature.

From the snapshots displaying the curvature trace, it appears that the α phase is able

to adopt its spontaneous curvature over a large region of the vesicle, and would need

to significantly alter that favorable curvature in order to allow the β phase domains

to coalesce, contributing to the enhanced stability of this configuration.

With only 40% α phase, there is enough of the β phase such that the α phase

behaves as the minority phase, and the isolated α phase domains are able to segregate

to the higher-curvature regions of the ellipsoid, achieving curvatures very close to Cα

at the ends of the vesicle. Over time, we observe that the vesicle becomes more

elongated with less outward bulging around the lower-radius middle portion, as the α

phase domains form caps on the ends to satisfy their spontaneous curvature while the

negative curvature preference of the β phase also favors this deformation to reduce

(positive) curvature. Here, the bending energy drives the system further from a state
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Figure 4.19: Plots of the curvature trace (top row) and bending energy H1 (bottom
row) for systems initialized with ellipsoidal shapes (major axis=3, minor
axes=2) with Cα = 1, Cβ = −1, Λα = Λβ = 1, and 50% phase in (a) and
40% α phase in (b). In the top row, the color bars indicate values of the
curvature trace as plotted on the large images, while the color on the
small plots indicates the composition as a reference, with the α phase in
red and the β phase in blue. Each plot represents the morphologies with
enhanced stability observed in the simulations. In both systems, the
α phase has partitioned to the regions of the ellipsoid with the highest
positive curvature, as would be expected given Cα = 1 and Cβ = −1.
However, since the α phase behaves as the majority phase in the 50%
α case and the minority phase in the 40% α case, the morphologies are
quite different. These distributions of the phases allow the system to
adopt curvatures closer to the spontaneous curvatures of the phases.
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with a single α phase domain with time, despite the driving force for the α phase

domains to combine from the line-tension energy. In these ellipsoidal vesicles with

enhanced stability of multiple minority phase domains (in addition to the vesicle

in the previous section, initialized as a sphere but later evolving into an ellipsoidal

shape), the bending energy contribution stabilizes the system against coarsening that

would reduce the line-tension energy. This is unique in that all other parameter

sets investigated eventually reached the stationary state of a single domain of each

phase. The elongated shape is the common thread in all of the systems that maintain

multiple domains for extended time, where the phases are able to migrate to locations

that best satisfy their spontaneous curvatures and remain there, as opposed to when

they are on an overall spherical vesicle where no one location is preferable for forming

domains over another, and the line-tension energy is able to drive coalescence.

This observation that the shape of the membrane influences the compositional

dynamics is similar to the observations reported for the nearly planar case with ripple

perturbations in Sec. 3.3.2 and Sec. 3.3.3. In all of these systems, we observe that

the membrane shape can be used to direct compositional morphologies. While much

of the discussion in this work has revolved around how membrane composition can

affect the shape, these are examples of the reverse effect, where membrane shape can

affect composition.

4.4 Conclusions

Based on the results from the various parameter sets investigated in this chapter,

the following overall conclusions can be drawn. First, the dynamics appear to be

affected by the relationship between the overall curvature of the vesicle surface (a

function of the size of the vesicle) and the spontaneous curvatures of the two phases.

The spontaneous curvature does not appear to play a role in the dynamics if neither

phase has a spontaneous curvature more similar to the overall curvature of the vesicle
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compared to the other phase. This occurs when Cα and Cβ differ from the overall

vesicle surface curvature with equal magnitude, but not necessarily the same sign. If

this is not the case, and one phase has a spontaneous curvature closer to that of the

overall vesicle surface compared with the other phase, then the spontaneous curvature

has two primary effects, which are described below.

First, the phase with spontaneous curvature closer to the overall vesicle surface

curvature is favored to form more continuous domain morphologies, even if it is present

at an equal or slightly less than equal fraction as the other phase. In the absence

of curvature effects, an equal mixture of two phases means that neither phase is a

majority (or matrix) phase, and therefore the system phase separates into continuous,

interwoven domains that over time unweave to form hemispheres. An unequal mixture

will have isolated minority phase domains in a continuous background of the majority

phase. These two different evolution regimes can be distinguished by examining the

phase morphologies and the interfacial length vs. time curves, where the curves appear

very smooth for equal mixtures and have jogs for unequal mixtures. When one phase

is favored by curvature to form more continuous domain morphologies in an unequal

mixture, we observe the situation expected for equal mixtures. This was observed

when the phase favored to form continuous domains is present at less than 50%.

In these cases, an equal mixture has the curvature-favored phase behaving like a

majority phase, causing the minority phase domains to persist for longer times than

would occur in the absence of bending energy. This effect is more pronounced when

the unfavored curvature is less favored (i.e., it is further from the overall vesicle

surface curvature), lowering the phase fraction with interwoven domain morphologies

further from 50%.

Second, we find that the following factors can slow the evolution of the system

toward a single domain of each phase, by favoring multiple domains to persist for far

longer than the line-tension energy alone would permit. If the phase that has a spon-
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taneous curvature that differs more from the overall vesicle curvature is the minority

phase, then the resulting isolated domains experience larger deformations and their

coalescence is prevented by the unfavorable curvature of the other phase dividing

them. In some cases, the bending energy contribution to the total energy becomes

competitive to the line-tension energy and enhances the stability of configurations

with multiple domains of the extreme curvature phase, particularly with elongated

vesicle shapes. This observation is similar to that from the nearly planar membrane

systems with ripples imposed, where the imposed shape of the membrane can di-

rect compositional morphologies. Lastly, if one phase has a larger bending rigidity,

we observe larger deformations, which is another effect slowing the phase evolution

compared with similar systems where the phases have equal bending rigidities.

In summary, we have found that the coupling of compositional phases with me-

chanical effects leads to unexpected morphologies and often a slower evolution to

equilibrium, in some cases with multiple domains of a single phase persisting for very

long durations of time despite the driving force to reduce line-tension energy. Me-

chanical properties are thus important to the study of lipid phase behavior, and the

findings here could be useful for engineering vesicles with particular phase morpholo-

gies and behaviors, in the context of functionalized membranes as biomimetic surfaces

or drug delivery vehicles (62, 194, 195).
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CHAPTER V

Cylindrical Tubule Membrane Model

5.1 Introduction

Lipid membrane tubules are of interest because they not only appear in nature

and have potential technological applications, but also because they have a restricted

geometry useful for isolating certain phenomena. Tubule structures with diameters of

50 to 200 nm, referred to as tunneling nanotubes (TNTs), have been observed forming

connections between live cells. The TNTs were stretched between the closest points

between two cells, and were observed to not be in contact with the substrate on which

the cells were grown. While their diameters were on the order of nanometers, their

lengths were in some cases equal to multiple cell diameters, and appeared to be used

for transmission of vesicles and even organelles between cells, making them important

for intercellular communication and transport (196). High-curvature tubules are also

associated with transport within the endoplasmic reticulum and in connection with

the Golgi complex (197, 198). In terms of technological applications, tubules can be

used to connect membrane vesicles to form microreactor networks of containers of

reactants and channels connecting them (61).

Most importantly for the investigation presented here, these long, thin tubules

have a restricted geometry, and can be useful for investigations of membrane behav-

ior. Tubules created in the laboratory are typically made using a technique known
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as micropipette aspiration, where a microbead is attached to one side of a vesicle,

and on the opposite side a part of the vesicle is aspirated into a pipette. As the

vesicle is aspirated into the pipette and it is drawn away from the microbead, a thin

tubule is pulled from the membrane as shown in Fig. 5.1. Since the geometry of the

vesicle is simple and the diameter of the pipette is known, the inner and outer di-

ameters of the tubule can be calculated mathematically, which is useful because they

are often smaller than what can be resolved by optical microscopy. Experiments have

been performed with tubules drawn from phase-separated vesicles showing that the

liquid-disordered (Ld) phase segregates to the high-curvature tubule (70), and in ho-

mogeneous lipid mixtures that tubule curvature could induce demixing (199). Other

methods for creating membrane tubules or tube-like vesicles include hydrodynamic

flow (200, 201), osmotic deflation (202, 203), and cationic nanoparticles placed inside

vesicles used to push tubules out from the vesicle membrane (204).

In this chapter, the model from Chapters III and IV is modified in order to simulate

membrane tubules with a cylindrical background geometry. The restricted geometry

of the tubule introduces new aspects to the membrane system, such as barriers to

coarsening (as observed in the work in Ref. 200, see Fig. 5.2), and also instabilities

originating from the surface tension of the tubule driving it to break up.

5.2 Methods: Modifying the Spherical Membrane Model to

a Cylindrical Geometry

The major modification made to the spherical vesicle model to develop this cylin-

drical model is the coordinate system; we here use cylindrical coordinates rather than

spherical coordinates. This means that the surface of the tubule is still described by

a radius function, but this radius function is written in terms of an azimuthal angle,

θ, and a vertical position, z. The three-dimensional position vector now appears as
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Figure 5.1: The micropipette aspiration technique. (a) A drawing of the technique,
with the microbead on the left, pulling the tubule out from the vesicle in
the center, while aspirated into the pipette on the right. Pi is the pressure
inside the vesicle, Po the pressure outside the vesicle, and Pp the pressure
within the micropipette. Radii are labeled as Rt for the tubule, Rv for
the vesicle, and Rp for the pipette. Lt is the length of the tubule, and Lp

is the length of the portion of the vesicle aspirated into the pipette. The
force from pulling the microbead is labeled as f . These quantities can be
used to calculate the radius of the tubule. (b) A combined transmitted
light/confocal fluorescence micrograph of the same setup in the schematic,
with the scale bar representing 5 microns. (c) A confocal line scan image
of the cross section of the tubule at the location in the shaded gray box
in (b). The scale bar represents 1 micron. Reproduced from Ref. 205.
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Figure 5.2: A confocal fluorescence micrograph of a phase-separated membrane
tubule, composed of a mixture of dioleoylphosphatidylcholine (DOPC),
sphingomyelin, and cholesterol. The red dye partitions into the Ld phase
while the blue dye partitions into the Lo phase. The Lo domains appear
to bulge outward from the high-curvature tubule, likely because of the
higher bending rigidity and lower curvature preference compared with
the Ld phase (200). Figure reproduced from Ref. 200.

r = [r cos θ, r sin θ, z]. (5.1)

In this tubule model the indices i = 1 and 2 correspond to θ and z, respectively,

and the notation ri indicates a partial derivative of r with respect to coordinate i.

The tangent vectors within the membrane surface in directions parallel to θ and z are

given by

e1 =
∂r

∂θ
= [−r sin θ + r1 cos θ, r cos θ + r1 sin θ, 0], (5.2)

e2 =
∂r

∂z
= [r2 cos θ, r2 sin θ, 1]. (5.3)

As with the vesicle model, these basis vectors can be used to construct the metric

tensor, curvature tensor, and differential operators with the expressions in Appendix

A. Aside from these geometrical tensors and operators, the theory of the tubule

model is identical to that of the spherical model.

5.2.1 Numerical Methods

For the vesicle model, special methods were used when imposing a mesh of points

over the vesicle surface in order to avoid the polar points and the variation in mesh size

from equator to pole. However, in this tubule model using a cylindrical background
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geometry, neither of these problems are encountered, since there are no poles, and the

geometry is only curved in the azimuthal direction so there is no “equator.” Therefore,

the Yin-Yang grid system is not needed for the tubule model, and a single, simple mesh

is used instead. This mesh spans the circumference of the tubule with θ = [−π, π],

and the length of the tubule in z. Periodic boundary conditions are imposed in the θ

direction as a result of the axial symmetry since f(θ = −π) = f(θ = π), and periodic

boundary conditions with various periodicities are used in the z direction. By not

requiring the Yin-Yang grid system, no interpolation is necessary, nor are any special

algorithms needed to calculate surface integrals because there is only a single grid.

5.2.2 Simulation Parameters and Initializations

Unless otherwise specified, all simulations use the following parameters: r = 1,

Λα = Λβ = 1, w = 367, ζ = 0.665, M = 1, Γ = 0.05, and P = 5. The parame-

ters Λα = 1 and the radius r = 1 set the energy and length scales of the system,

respectively, and all other quantities are measured with respect to them and are thus

dimensionless in the model. The computational grid consists of 128 points in θ, and

in z the number of grid points is set such that the grid spacing ∆z = ∆θ. The shape

is initialized as a perfect cylinder, which has a curvature trace of K = 1. As in the

previous chapters, the parameters w and ζ are selected to satisfy two constraints: (i)

they are chosen such that a minimum of 6 grid points resolve the interfaces, and (ii)

as a result of the bending energy term, the minima of the double-well potential in Eq.

(3.2) can shift, and w and ζ are specified to set the line tension to be large enough

such that this shift is less than 2%. The friction coefficient and pressure are selected

for numerical stability and such that the tubule is slightly inflated, respectively.
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Figure 5.3: A lipid bilayer tubule composed of a ternary lipid mixture exhibiting
the pearling instability, with image (b) taken 30 seconds after image (a),
where phase separation has been induced by lipid peroxidation. The
Ld phase appears light while the Lo phase appears dark, and it can be
observed that the Ld phase partitions to the higher-curvature neck regions
between the pearls. Reproduced from Ref. 200.

5.3 Results and Discussion

The cylindrical geometry of the membrane tubules discussed in this chapter intro-

duces a tendency for instability not present in the nearly planar and vesicle systems.

This instability is known as the Plateau-Rayleigh instability, where a cylinder of fluid

with the proper aspect ratio will break up into droplets as a result of surface ten-

sion (206). When the length of the cylinder is greater than the circumference, small

oscillatory perturbations in the shape will grow, leading to the cylinder pinching off

(207). In lipid bilayer membrane tubules, this type of instability has been observed

in the form of pearling, where the tubule pinches together in a series of locations, but

does not break apart, since the hydrophobic forces among the lipids drive the bilayer

to remain intact. An experimental image of this pearling instability is shown in Fig.

5.3.

5.3.1 Bending Energy as a Stabilizer Against Pearling

The bending energy of the membrane will also affect the stability of the tubule, and

the following simulations were performed to investigate whether or not the pearling

instability could be stabilized by the bending energy with nonzero spontaneous curva-

112



ture. Two simulations were run, each with a single phase assigned with a spontaneous

curvature C = 1. The Plateau-Rayleigh instability is theoretically predicted to occur

only if the tubule length is greater than a threshold value: the tubule circumference.

Therefore, we set the tubules to be twice as long as this threshold length, with radius

r = 1 and length ℓ = 4π. The shape of the tubules was initialized with a small

sinusoidal perturbation with an amplitude of 0.1, as shown in Fig. 5.4. For Case A,

the bending rigidity was set as Λ = 1, while in Case B, we set Λ = 0 to remove the

effects of the bending energy and spontaneous curvature. Both cases had no internal

pressure contribution (P = 0), leaving only the surface-tension energy (and bending

energy in Case A) to govern the evolution. In Case A, we observe the tubule evolving

toward a straight cylinder, where the initial perturbation diminishes over time, while

in Case B, the perturbation is amplified over time. A plot of the difference between

the maximum radius and minimum radius vs. time is presented in Fig. 5.5 for both

cases, illustrating the different behaviors. Since the only difference between these

two systems is the presence of the bending energy with spontaneous curvature, we

conclude that the bending energy must be the stabilizing factor.

5.3.2 Two-Phase Tubules

We now focus on two-phase tubule systems where the phases have mismatched

spontaneous curvatures of Cα = 0 and Cβ = 2, with a tubule radius of r = 1 (and

therefore a curvature trace of K = 1). Thus the α phase prefers to have a lower

curvature than the initial shape while the β phase prefers to have a higher curvature,

while both differ from the overall curvature of the tubule with equal magnitude.

Simulations were performed with 50% α and 40% α using a tubule of length ℓ = 8π,

which is large enough to render the effect of the boundary condition in z negligible.

Figures 5.6 and 5.7 present snapshots taken during the evolution of the tubules

with 40% and 50% α, respectively. As in the corresponding vesicle system, because
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Figure 5.4: Initial conditions for the Case A and Case B simulations used to test
whether spontaneous curvature can stabilize a tubule against the Plateau-
Rayleigh instability, using a sinusoidal radial perturbation with amplitude
0.1.
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Figure 5.5: Plot of the difference between the maximum and minimum radius (∆r)
vs. time for the Case A (with bending energy, solid black line) and Case
B (without bending energy, dashed blue line) single-phase tubule simu-
lations. The curve for the Case B simulation ends when the simulation
could no longer run. This illustrates that the bending energy can stabilize
tubules against the pearling instability.
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neither phase has a spontaneous curvature closer to the overall curvature of the tubule

surface, we observe that the system with 50% α indeed appears to behave like an equal

mixture, and the system with 40% α has the α phase behaving as the minority phase

as expected. The 50% α case coarsens more quickly at early times, as observed by

comparing the number of domains in the snapshots in Figs. 5.6b and 5.7b. The system

with 50% α initially forms both stripe and caplet domain morphologies, which ripen

to form rings over time. This is because the primary driving force for coarsening,

the interfacial energy reduction, has only a limited role when a stripe morphology

is established. For example, if the radius of the tubule is constant, the line-tension

contribution to the chemical potential is constant at the interfaces of rings. However,

when rings form in the tubule system here, the bending energy contribution deforms

the tubule, and ring interfaces are then located at regions with different radii, and

thus they have different curvatures. This creates a driving force for coarsening.

As in the vesicle simulations with mismatched spontaneous curvatures, we observe

that domains are able to adopt their spontaneous curvatures best in regions adjacent

to interfaces, but not far from interfaces. This is because the volume penalty for

bulging outward must generally be compensated by a region bulging inward. Fur-

thermore, since Cα = 0 and Cβ = 2 and the overall tubule has a curvature of 1,

it is natural for the morphology to best adopt the spontaneous curvatures near the

interfaces, where each phase prefers to deform is such a way that compensates for the

deformation in the other phase.

The system with 40% α at all times exhibits only caplet morphologies. Even

when a caplet becomes large at late times, it does not join to itself around the tubule

to form a ring. Such self-coalescence events are observed infrequently in the system

with 50% α also, where a ring domain that wraps around the tubule appears to form

only if the domain is already contiguous around the tubule following initial phase

separation. If the domain forms a caplet, it is difficult to form a ring from it because
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a) t=0.015 b) t=0.087 c) t=0.55 d) t=2.2

Figure 5.6: Snapshots of composition (top row) and curvature trace (bottom row)
throughout the evolution of a tubule with r = 1, Cα = 0, Cβ = 2, and
50% α, at (a) t = 0.015, (b) t = 0.087, (c) t = 0.55, and (d) t = 2.2. Both
phases form ring morphologies at later times, which coarsen as a result
of deformation driven by the bending energy.
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a) t=0.015 b) t=0.087 c) t=0.52 d) t=2.1

Figure 5.7: Snapshots of composition (top row) and curvature trace (bottom row)
throughout the evolution of a tubule with r = 1, Cα = 0, Cβ = 2, and
40% α, at (a) t = 0.015, (b) t = 0.087, (c) t = 0.52, and (d) t = 2.1. The
α phase forms caplet domains, which are able to adopt their spontaneous
curvatures in regions adjacent to interfaces.
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of the short-range repulsion of the interfaces due to bending energy, as explained

below. This is analogous to the 40% α systems in the nearly planar model with

no special perturbations, where a domain needed to connect with itself across the

enforced periodic cell in order for stripes to form; here, the periodicity comes from

the tubule’s continuous geometry in the θ direction.

The short-range repulsion between interfaces, which prevents the formation of a

ring from a caplet domain, even when the caplet domain is large enough to span the

tubule, can be understood as follows. Since the α phase domains prefer to have a

lower curvature than the overall curvature of the tubule, the bending energy can be

reduced if the radius of the tubule increases, which decreases the curvature in the θ

direction. However, the internal pressure penalizes the tubule for adopting a larger

radius over long distances in the z direction. Therefore, the local regions of larger

radius are adjacent to regions with smaller radius, creating a high curvature in the

z direction that increases the curvature trace. Consequently, only a region near the

interface of the caplet domain attains Cα. This is similar to observations made in

vesicle systems discussed in Chapter IV. On the other side of the interface in the

β phase, this low-curvature ring is compensated for with a high-positive curvature

region near the interface, as this is preferred by the β phase. As two interfaces of the

caplet come together, the curvature of the outer β phase (being pinched between the

interfaces) must undergo unfavorable deformation, resulting in a barrier to the caplet

forming a ring around the tubule. Thus, the channel of the β phase persists, taking

a width that allows it to more easily adopt Cβ.

It should be noted that both the 40% α and 50% α cases presented here ceased to

run shortly after the final time presented in Figs. 5.6 and 5.7, which could have re-

sulted from the extreme curvature adopted by small domains and/or could be related

to the Plateau-Rayleigh instability discussed in the previous section. The sponta-

neous curvatures used in these two-phase systems, particularly in the system with
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50% α, were hypothesized to have a stabilizing effect resulting from their symmetry;

however, deformations too extreme to be resolved still occurred. Since both systems

ceased to run at approximately the same time, this could suggest that the Plateau-

Rayleigh instability contributed to destabilizing the tubules, although it is difficult

to draw this conclusion based on only two simulations and more simulations with

different random initializations should to be performed to determine the statistical

behavior of these systems.

5.4 Conclusions

In this chapter, we presented a preliminary study of the morphological evolution

of model tubules. In particular, we focused on how the Plateau-Rayleigh-like pearling

instability in membrane tubules could be stabilized or enhanced by the bending en-

ergy. For a perturbed single-phase tubule with a spontaneous curvature favoring an

unperturbed state, the bending energy was found to stabilize the tubule and smooth

the perturbation. Additionally, the control case with no bending energy had only

surface tension governing its evolution and was found to be unstable with respect to

the perturbation, indicating that the instability observed here was indeed driven by

surface tension as it is for the Plateau-Rayleigh instability.

For two-phase tubules with mismatched spontaneous curvatures, we find the fol-

lowing: (i) ring morphologies are preferred for equal mixtures, while caplet mor-

phologies are preferred for nonequal mixtures; (ii) the 50% mixture that leads to

ring morphologies (analogous to stripes in nearly planar simulations) coarsens more

quickly than the 40% mixture that leads to caplet morphologies; (iii) the rings must

generally be formed during the initial stage of phase separation since they are un-

likely to form from caplets at later times due to repulsion between interfaces; (iv) the

bending energy driving deformations in the tubule destabilizes the interfaces of ring

domains, preventing multiple rings from becoming metastable; (v) spontaneous cur-
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vatures are best satisfied near domain interfaces; and (vi) the spontaneous curvatures

taking values differing from the overall tubule surface curvature with equal magnitude

but opposite sign were not sufficient to stabilize the tubule against extreme deforma-

tions, which could potentially have been related to the Plateau-Rayleigh instability,

although further studies will need to be done to conclude this.

To evaluate these observations experimentally, membrane tubules with nonzero

spontaneous curvature would need to be produced, which requires the composition

of the membrane to be asymmetric. Methods for producing tubules typically involve

drawing them from vesicles by means of micropipette aspiration or in transverse fluid

flow, subjecting them to external tensile forces that likely would affect the surface

tension. Natural tubules would not necessarily be subject to such forces, and therefore

creating tubules using a method that does not require the use of external tensile forces

would be ideal. One potential approach is the application of the electroformation

technique used to produce lipid vesicles (208). This involves applying an AC field

across two conductive glass slides that have been coated with hydrated lipid films.

After an hour or so, the hydrated lipid films have been disrupted sufficiently to form

vesicles that are attached to the surface of the slide via a lipid tubule. These tubules

are not under tension in static conditions. A microscopy technique such as confocal

laser scanning microscopy would likely need to be used for visualization of the tubules,

since the vesicles would be a large source of background fluorescence. With three-

dimensional reconstruction from two-dimensional confocal images, the morphologies

and distribution of phases could be evaluated on a large sample of tubules created

using electroformation. Additionally, by flowing fluid through the electroformation

chamber, the vesicles would drift in the direction of the flow applying tension to the

tubules, and therefore the fluid flow could be used to tune the surface tension of the

tubules by placing them under a controlled amount of flow, if desired. While we

do not have a precise estimate for the tubule diameter, our preliminary experiments
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Figure 5.8: An epifluorescence image of a tubule attached to a phase-separated elec-
troformed vesicle that has been harvested (i.e. it is no longer tethered
to the conductive slide). The scale bar is 10 microns. The image was
obtained using an inverted microscope (Nikon Eclipse TE2000-U) at 20x
magnification.

using a magnification of 20x (less than the equipment’s maximum capability) have

shown that tubules formed in this manner may be sufficiently resolved optically, as

shown in Fig. 5.8.
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CHAPTER VI

Planar Bilayer Membrane Model

6.1 Introduction

As discussed in Chapter I, theoretical and experimental studies have reported that

the phase behavior of one leaflet of a lipid bilayer can influence the behavior of the

opposing leaflet (84–86). Using asymmetric planar lipid bilayer membranes composed

of simple mixtures to mimic the inner and outer leaflets of a cell plasma membrane, is

was observed in Ref. 87 that phase separation can be induced in the inner leaflet (or

can be suppressed in the outer leaflet), depending on the strength of the tendencies of

the leaflets to phase separate (or to remain homogeneous). It has also been observed

that in model membranes where both leaflets phase separate, the domains in the two

leaflets interact and tend to align laterally (65, 88), as shown in Fig. 6.1. New phases

can also arise from the interleaflet interactions, where intermediate phases form near

phase boundaries where domains in opposing leaflets cannot perfectly align because

they are present in different fractions (87).

This chapter presents a model for planar lipid bilayers, similar to the model pre-

sented in Chapter III, but with an important extension. All of the other models

presented in this work have considered the two leaflets of the bilayer membrane to-

gether as a single entity, with the membrane properties essentially averaged across

the entire bilayer so that the membrane is represented as a two-dimensional sheet.
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Figure 6.1: A fluorescent micrograph of a supported asymmetric planar bilayer mem-
brane, composed of a 1:1:1 ternary lipid mixture of stearoyloleoylphos-
phatidylcholine (SOPC), sphingomyelin, and cholesterol, reproduced from
Ref. 88. The two leaflets of the bilayer have phase separated to form
liquid-ordered and liquid-disordered phases, and the fluorescent dye used
in both leaflets is known to partition into the liquid-disordered phase. In
the TYPE I case, the bilayer is directly in contact with the solid support,
and in the TYPE II and III cases a polymer spacer is used to separate the
bilayer from the solid support, with a longer polymer chain used for TYPE
III compared with TYPE II. It was found that the mobility in the TYPE
I and II bilayers was hindered by the solid support, therefore preventing
the phase-separated domains from aligning across the leaflets, creating
three fluorescence levels where liquid-disordered domains are present in
both, one, or neither leaflet. However, in the TYPE III case, the mobility
in the bilayer is unaffected by the solid support, and the domains are
observed to precisely register across leaflets, with only two fluorescence
levels observed. The scale bar represents 30 µm.
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By specifying nonzero spontaneous curvatures, we assumed that the membrane was

either a monolayer or an asymmetric bilayer. However, in this chapter we present a

planar bilayer model where each leaflet of the membrane is accounted for, and a new

term is introduced into the free energy to represent mechanisms that determine how

the lipids in the two leaflets communicate and interact across the bilayer. Rather

than assigning a separate spontaneous curvature to each monolayer, we compute the

composition-dependent spontaneous curvature of the bilayer as a whole based on a

simple geometrical model. The leaflets have different compositions, but we specify

that both leaflets adopt the same shape profile since they together form a bilayer

(i.e., the two leaflets cannot adopt different shapes since they must compose a single,

cohesive bilayer structure).

We simulate the evolution of the composition and the shape of asymmetric mem-

branes, governed by a competition between the line-tension, bending, and surface-

tension energies, as well as an energy dictating the coupling between the two leaflets

of the bilayer. The interleaflet coupling energy represents mechanisms that deter-

mine where phases prefer to be situated with respect to the opposing leaflet phases.

These mechanisms include the hydrophobic effect, where particular lipid ordering or

packing is entropically favored to make a cohesive bilayer (for example, a difference

in tailgroup length as in Refs. 124 and 209), as well as hypothesized mechanisms for

interleaflet “communication” such as cholesterol flip-flop. Since we are particularly

interested in the effects of nonzero spontaneous curvature, we specify that the lipids

in the two leaflets interact with each other across the bilayer such that lipid arrange-

ments leading to nonzero spontaneous curvatures are energetically favored over those

leading to zero spontaneous curvature.
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6.2 Methods: Extending the Planar Membrane Model to

Treat Individual Bilayer Leaflets

6.2.1 Bilayer Components in the Phase-Field Model

In this bilayer model each of the two leaftlets are treated individually using two

scaled composition variables, φ1 and φ2. Each leaflet is modeled as a ternary sys-

tem (representing, for example, a saturated lipid, an unsaturated lipid, and choles-

terol), with a pseudobinary representation across the phase transformation path of

the ternary phase diagram. We model leaflet 1 to be composed of species A and B,

while leaflet 2 is composed of species E and F . The α and β phases exist in leaflet

1, rich in components A and B, respectively; the γ and δ phases exist in leaflet 2,

rich in components E and F , respectively. A schematic illustration of the shapes of

species in the two leaflets is given in Fig. 6.2a. The phase fields in the two leaflets,

φ1 and φ2, are related to the concentrations of components A and E by

φ1 =
cA − cAβ
cAα − cAβ

, φ2 =
cE − cEδ
cEγ − cEδ

, (6.1)

where cAα specifies the concentration of species A in the α phase. This defintion

dictates that φ1 = 1 in the α phase and φ1 = 0 in the β phase, while φ2 = 1 in

the γ phase and φ2 = 0 in the δ phase. We choose the equilibrium concentrations

to be cAα = cEγ = 0.8 and cAβ = cEδ = 0.2 to approximate the compositions of the

liquid-ordered and liquid-disordered phases in ternary membrane systems below their

miscibility transition temperature (210).
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Figure 6.2: (a) Schematics of the molecules composing the two leaflets and the phases
that they tend to partition into. The α and γ phases are rich in compo-
nents A and E, respectively, and the third component that is not explicitly
tracked in our pseudobinary model. This third component is illustrated
to represent cholesterol, since it largely partitions with saturated lipids (A
and E). The tailgroup colors and the arrows indicate which components
prefer to interact. (b) The contour plot of H3, the interleaflet interaction
energy, with respect to the compositional phase fields φ1 and φ2. The lo-
cations of the minima and maxima determine which phases (represented
by the phase-field values) have preferred and non-preferred interactions.
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6.2.2 Free Energy

The total free energy in the model is defined by a sum of four terms:

F =

∫

HdA =

∫

(H0 +H1 +H2 +H3)dA. (6.2)

The first energy density H0 is the same expression as presented for H0 in Eq. 3.2, but

now describes the thermodynamics of the mixture in each leaflet p = 1, 2:

H0 =

2
∑

p=1

(

w

4
φ2
p(1− φp)

2 +
ζ2

2
∇iφp∇iφp

)

. (6.3)

As in Chapter III, w defines the barrier height in the double-well free energy and ζ

sets the energetic penalty for composition gradients. We use the standard notation

of subindices and superindices for contravariant and covariant vectors, respectively,

as well as the repeated index summation convention as shown in the notation of the

gradient term. These indices identify generalized coordinates that parametrize the

surface; refer to Appendix A for detailed expressions for differential operators.

The second energy density is a modified Helfrich Hamiltonian (178) describing the

mechanical properties of the membrane, coupling compositions and the membrane

shape:

H1 =
Λ

2
(K − C(φ1, φ2))

2. (6.4)

In this expression, Λ is the membrane bending rigidity, K is the trace of the curvature

tensor and is equal to twice the mean curvature, and C(φ1, φ2) is the spontaneous

curvature defined as a function of the two compositions in the leaflets, as discussed

in the next section.

The third contribution to the energy density controls the total area of the mem-
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brane, and is given by a surface tension, just as in Chapter III:

H2 = σ. (6.5)

Lastly, the fourth term in the free energy, H3, models the coupling between bilayer

leaflets and is a function of the two leaflet compositions, scaled with the coupling

strength, χ:

H3 =
χ

2

(

(φ1 + φ2 − 1)2 + ((φ1 − φ2)
2 − 1)2

)

(6.6)

A contour plot of H3 in (φ1, φ2) space is presented in Fig. 6.2b, where the locations of

valleys determine which phases prefer to align across the two leaflets of the bilayer. As

schematically indicated by the arrows in Fig. 6.2a, the phases that prefer to colocate

across the leaflets as defined by H3 are rich in species with different headgroup sizes,

which produces nonzero spontaneous curvatures. The magnitude of χ determines how

strong the coupling between leaflets is, with larger values imposing greater energetic

penalties for non-preferred interactions across the leaflets.

6.2.3 Relating Composition to Spontaneous Curvature

The spontaneous curvature appearing in the free energy contribution H1 is defined

as a function of the compositions in each leaflet. Since the spontaneous curvature is

a property stemming from the shapes of the lipid molecules in the two leaflets, we

introduce an intermediate variable in each leaflet: the effective headgroup diameter

of the lipid species, denoted as D. This variable is taken to be a function of the

local composition, and relates the spontaneous curvature to composition through the

following geometrical model.

For simplicity, it is assumed that components A and E are similar to each other in

geometry, as are B and F (but different from A and E) as illustrated in Fig. 6.2a. In

leaflet 1 at equilibrium, the α phase is rich in species A, while the β phase is rich in
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species B. Similarly, in leaflet 2 at equilibrium, the γ phase is rich in species E, while

the δ phase is rich in species F . The effective headgroup diameter in the α and γ

phases is denoted as dα,γ and similarly in the β and δ phases as dβ,δ, with dα,γ > dβ,δ.

The function Dp(φp) for each leaflet, p = 1 or 2, is defined to smoothly interpolate

between its local maximum at Dp(φp = 1) = dα,γ and local minimum at Dp(φp =

0) = dβ,δ using an interpolation function of the form f(x) = a(x2(3 − 2x)) + b that

ensures that the interpolated value slowly approaches f(x = 0) and f(x = 1) (where

the derivative vanishes) and rapidly changes away from these values. Specifically,

Dp(φp) = (dα,γ − dβ,δ)(φ2
p(3− 2φp)) + dβ,δ. (6.7)

We note that in some simulations, the minimum and maximum values of the

composition variables φ1 and φ2 reach values outside of [0, 1] by as much as ±0.25,

corresponding to concentrations of cA, cE = 0.05 and 0.95. This produces an error

in the function Dp(φp) of up to 5%, and therefore test simulations were performed

for cases with extreme values of φp where both φ1 and φ2 were truncated at [0, 1] for

spontaneous curvature calculations. These tests produced results nearly identical in

terms of dynamic and equilibrium phase morphologies to the results presented.

Finally, the spontaneous curvature function, C(φ1, φ2), can be defined as a func-

tion of D in each leaflet, C(D1(φ1), D2(φ2)). Using a simple geometric argument

based on similar triangles, as illustrated in Fig. 6.3, C is related to the headgroup

diameter and the bilayer thickness L by

C(D) =
2

L

D1 −D2

D1 +D2
. (6.8)

To examine the particular effects of nonzero spontaneous curvature, the interaction

energy H3 is set such that the α phase prefers to interact with δ and the β phase

prefers γ, as indicated by the arrows in Fig. 6.2a. When α is aligned with δ, we define
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Figure 6.3: Illustration of the simple geometric argument based on similar triangles
used to relate headgroup diameters in the two leaflets Di, i = 1, 2, with
spontaneous curvature C. L is the bilayer thickness, and R is the radius
of curvature equal to the inverse of the spontaneous curvature. Positive
curvatures are produced when D1 > D2, and negative curvatures are
produced when D2 > D1.

that C = 1; when β is aligned with γ, we define that C = −1. If α is aligned with γ or

if β is aligned with δ, the bilayer is symmetric with respect to molecular shapes, and

these configurations are therefore assigned to have C = 0. These configurations are

illustrated in Fig. 6.4. Spontaneous curvature values of C = 1 and C = −1 represent

curvatures of 20 nm−1 and −20 nm−1, respectively, with a bilayer thickness of L = 3.6

nm (211, 212). The headgroup diameters dα,γ and dβ,δ are representative of a generic

system with mismatched lipid headgroup sizes, rather than tuned to a specific system

of lipids.

6.2.4 Compositional Dynamics

The two leaflets of the membrane are assumed to maintain a constant separation

distance even during deformations, and therefore the membrane possesses only a

single shape adopted by the two leaflets together. Thus, the shape dynamics scheme
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Figure 6.4: Bilayer configurations and their spontaneous curvatures. The interac-
tion energy H3 specifies that the configuration shown in (a) with zero
spontaneous curvature is higher in energy than that in (b) with nonzero
spontaneous curvature. The schematics illustrate how, as a result of the
different lengths of the tailgroups in the phases, hydrophobic forces could
favor the configurations in (b) over (a) since the bilayer is more cohesive.
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described for the nearly planar model in Chapter III is directly applied in this model.

Similar to the dynamics in Chapter III, we use a Cahn-Hilliard-type expression for the

dynamics for the composition of each leaflet denoted by p = 1, 2, where µp = δF/δφp

is the chemical potential for the dimensionless composition, φp, of leaflet p. The

dynamics is described by an evolution equation,

∂φp

∂t
= M∇2µp, (6.9)

µ1 =
w

2
φ1(1− φ1)(1− 2φ1)− ζ2∇2φ1 + Λ

δC

δφ1
(C(φ1, φ2)−K) (6.10)

+χ
(

φ1 + φ2 − 1 + 2((φ1 − φ2)
2 − 1)(φ1 − φ2)

)

,

µ2 =
w

2
φ2(1− φ2)(1− 2φ2)− ζ2∇2φ2 + Λ

δC

δφ2
(C(φ1, φ2)−K) (6.11)

+χ
(

φ1 + φ2 − 1− 2((φ1 − φ2)
2 − 1)(φ1 − φ2)

)

,

where

δC

δφ1

=
2

L

dD1

dφ1

(

1

D1 +D2

−D1(D1 +D2)

)

, (6.12)

δC

δφ2
=

2

L

dD2

dφ2

(

1

D1 +D2
−D2(D1 +D2)

)

. (6.13)

Note that D1 and D2 are functions of φ1 and φ2, respectively.

6.3 Results

By scaling arguments, when the coupling constant χ is set to a value of 1, the

magnitude of the coupling energy in Eq. (6.6) is comparable to the magnitude of the

bending energy in Eq. (6.4). Simulations were performed for χ = 1, 10, and 20. To

illustrate the effect of interleaflet interactions on the morphologies of bilayer systems,

we have constructed phase diagrams that map equilibrium morphological phases for

three different values of the coupling strength χ, presented in Fig. 6.5. Each phase
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diagram is plotted in composition space, with the percentage of the α phase in leaflet

1 along the x-axis and the percentage of the γ phase in leaflet 2 along the y-axis,

both in intervals of 10%. Simulations were performed at compositions along and

below the diagonal running from (%α,%γ) = (0, 0) to (100, 100), which we will refer

to as the minor diagonal. The line running from (%α,%γ) = (0, 100) to (100, 0)

will be referred to as the major diagonal. Since the system is symmetric about the

minor diagonal, the simulation results are reflected onto the region above the minor

diagonal, and these patches are indicated with a dot pattern over the color. The term

“overall composition” will be used throughout this discussion, and is defined as the

total fraction of the entire bilayer occupied by the pair of preferentially interacting

phases, α and δ. For example, a system composed of 20% α (80% β) and 60% γ (40%

δ) has an “overall composition” of (20%+40%)/2 = 30%. A system with an “overall

composition” of 50% is termed an “overall equal” mixture, while a system with an

“overall composition” of 0% or 100% is termed an “overall pure” mixture.

Most of the square patches in the phase diagrams represent a single simulation

result, and each of these simulations was initialized using the same random seed

referred to as the standard random seed. The color of each patch is determined

by the result from the simulation using the standard random seed. However, for

certain compositions, four simulations were performed, each initialized with a different

random seed. These patches are additionally marked with a number indicating how

many of those four simulations produced the same result as the one initialized with

the standard random seed. For example, a dark blue patch with a number ‘3’ indicates

that the standard random seed simulation equilibrated to caplets in both leaflets, and

three of four of the simulations initialized with different random seeds also equilibrated

to caplets in both leaflets. If a number less than four is on a patch colored to indicate

caplets (dark blue), the other morphology observed was stripes, and if a number

less than four is on a patch colored to indicate stripes (red), the other morphology
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Figure 6.5: Morphological phase diagrams for bilayer systems at three different inter-
leaflet coupling strengths (weakest to strongest): (a) χ = 1, (b) χ = 10,
and (c) χ = 20. Each colored square patch along and below the minor
diagonal represents a simulation result; simulation results are copied to
the top half (patches shown with a dot pattern). In the legend, “no sep-
aration” means the leaflet did not phase separate. The numbers indicate
concentrations where four simulations using different random initializa-
tions were run; the number indicates how many of these four simulations
equilibrated in the morphology represented by the color of the patch (ei-
ther caplets or stripes in both leaflets).
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observed was caplets.

The phase diagrams in Fig. 6.5 are generally symmetric about the major diagonal

as well as the minor diagonal, although this is not as clear on the χ = 10 diagram

in Fig. 6.5b. This is because in the region in the center of the diagram, extending

out along the minor diagonal, equilibrium morphologies were found to be sensitive

to initial conditions, where different random seeds in the initialization would lead to

different equilibria, some of which are local, not global, equilibria. In each of these

simulations, either caplets or stripes were observed in equilibrium. Where a patch

shows a ‘4’, that set of concentrations was not sensitive to initial conditions and the

color is representative of the observed single morphology. On the other hand, where

a patch shows a ‘3’, three out of four different seeds produced the same (dominant)

morphology as the one observed with the standard seed. A patch showing a ‘1’ is

similar, with three out of four seeds producing the same result, with the standard

seed producing a different result. The patch at χ = 10 and (%α,%γ) = (50, 30)

is marked with a ‘1’, which is the only patch that breaks the symmetry across the

major diagonal. Therefore, in a representation showing the dominant morphologies,

the diagrams would all appear symmetric about both diagonals. Other patches that

show a ‘1’ run along the minor diagonal in the χ = 20 case, where stripes was the

dominant morphology almost the entire length of the diagonal (excluding the corner

patches).

Similarities across the different coupling strengths, as observed from the diagrams

in Fig. 6.5, include (i) the diagrams are generally symmetric about the major diag-

onal as well as the minor diagonal, (ii) the stripe morphology is favored when the

compositions of both leaflets are near equal mixtures ((%α,%γ) ≈ (50, 50)), and (iii)

no phase separation occurs when the bilayer is an “overall (nearly) pure” mixture.

These results are expected based on thermodynamic considerations.

However, there are also numerous differences in the results at the different coupling
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strengths. First, we find that stronger coupling tends to favor the stripe morphology

along the length of the minor diagonal, rather than just in the center of composition

space. For systems where phases have equal but oppositely signed spontaneous cur-

vatures, in the absence of interleaflet coupling, roughly equal mixtures tend to form

a stripe morphology while mixtures far from 50% tend to form a caplet morphology

(179). An important characteristic of the systems along the minor diagonal is that

they are “overall equal” mixtures. With strong coupling, the “overall composition”

has a greater effect, and an “overall equal” mixture system behaves like a simple

two-phase equal mixture system where the phases have mismatched spontaneous cur-

vatures and a stripe morphology is favored.

The tendencies of “overall equal” mixtures (or nearly “overall equal” mixtures) to

form stripes can be further understood by the detailed observation of the dynamics

of the morphological evolution. When the coupling constant is larger and thus phases

with preferred interactions have a stronger driving force to coincide, there are two

main consequences. The first is that stronger coupling drives the system to phase

separate more quickly, with sharper (yet resolved) interfaces, as well as more pre-

cisely aligned domains. These can be observed by comparing the series of snapshots

presented in Figs. 6.6 and 6.7. The second consequence of stronger coupling is that

the bulk phase values of φ1 and φ2 shift to accommodate the stronger driving force.

Since the average values of φ1 and φ2 remain fixed to conserve mass, the shift in

bulk phase compositions is balanced by changes in the fractions of the phases. For

example, consider a system with stronger coupling (χ = 20) initialized with 80% α

phase (φ1,avg = 0.8 and 20% β) and 70% γ phase (φ2,avg = 0.7 and 30% δ). Since

the α and δ phases are present in significantly different amounts yet have a strong

driving force to align, the bulk phase value for α and γ shifts in both leaflets from

φ1,2 = 1 to φ1,2 = 1.19, forming α′ and γ′ phases, and for β and δ this value shifts

in both leaflets from φ1,2 = 0 to φ1,2 = 0.25, forming β ′ and δ′ phases. To conserve
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mass and maintain the average composition values of φ1,avg = 0.8 and φ2,avg = 0.7,

the relative amounts of the phases shift toward 0.5. We observe in equilibrium the α′

phase present at 58.5% (defined with φ1 = 1.19) and the δ′ phase present at 41.5%

(defined with φ2 = 0.25). These altered phase fraction values are then close enough to

equal mixtures that stripes are observed in equilibrium, even though the initial phase

fractions were far from equal mixtures. This observation of shifting equilibrium phase

compositions is similar to the phenomenon observed in asymmetric bilayers in Ref.

87, where distinct new phases appear in a phase-separated leaflet that would not

be present if the opposing leaflet were absent (i.e., in a monolayer system). Our

simulation results provide evidence that such observations can be explained by the

contribution of interleaflet interactions to the thermodynamics of the bilayer system.

Second, we find that stronger coupling favors phase separation for composition

sets at the extremes of the minor diagonal, where the systems are “overall equal”

mixtures but the individual leaflets are nearly pure mixtures. With weaker coupling,

the “overall composition” has a smaller effect than the individual leaflet compositions.

Since there is less tendency toward spontaneous phase separation (spinodal decom-

position) for nearly pure mixtures in general, the composition sets at the extremes of

the minor diagonal are only driven to phase separate with strong interleaflet coupling.

This can be contrasted to regions at the extremes of the major diagonal, where phase

separation is not observed at any coupling strength, since the “overall composition”

and individual leaflet compositions are both nearly pure mixtures.

Lastly, we observe that stronger coupling drives both leaflets of the bilayer to

adopt the same phase morphologies, as the χ = 20 diagram in Fig. 6.5c is composed

entirely of such states, whereas the χ = 1 diagram in Fig. 6.5a shows roughly one-

quarter of the composition space exhibiting phase morphologies where the two leaflets

differ. Figure 6.8 presents a series of snapshots for one of the cases with χ = 1, where,

in equilibrium, one leaflet has adopted a caplet phase morphology while the other has
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Figure 6.6: Surface morphologies colored to represent the composition of a bilayer
system with χ = 1 and (%α,%γ) = (60, 40). The far left and right
columns represent leaflet 1 (φ1) and leaflet 2 (plotted as 1− φ2), respec-
tively, while the center column displays contours at the phase boundaries
in both leaflets to better visualize domain alignment. From top to bot-
tom, (a) t = 3.06× 10−3, (b) t = 4.58× 10−3, (c) t = 1.53× 10−2, and (d)
t = 4.58×10−1. At early times, domains align across leaflets only roughly,
but by the time equilibrium is reached they are aligned nearly precisely.
This is in contrast to the system with relatively stronger coupling in Fig.
6.7.

adopted a stripe morphology (Fig. 6.8d). The resulting shape of the membrane in

Fig. 6.8d is neither a caplet nor ripple, but rather a combination of the two.
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Reversed(a) t=2.29x10−4
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Figure 6.7: Similar to Fig. 6.6, but for a bilayer system with χ = 20 and (%α,%γ) =
(60, 40), from top to bottom, (a) t = 2.29 × 10−4, (b) t = 4.58 × 10−3,
(c) t = 1.53 × 10−2, and (d) t = 4.58 × 10−1. Even at early times, do-
mains align across leaflets quite precisely as a result of the strong coupling
between leaflets. This is in contrast to the system with relatively weak
coupling in Fig. 6.6. Note that the earliest time shown here in part (a) is
significantly earlier than the earliest time in Fig. 6.6a, to further empha-
size that the stronger coupling not only induces phase separation more
quickly, but also aligns interfaces very quickly.

6.4 Discussion and Conclusions

We have presented a phase-field model for lipid bilayer membranes that couples

the compositions of the two leaflets with the deformation of the membrane. We specif-

ically examined the effects of interleaflet interactions in systems where nonzero spon-

taneous curvatures are energetically favorable, investigating the interplay between the
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Figure 6.8: Similar to Fig. 6.6, but for a bilayer system with χ = 1 and (%α,%γ) =
(50, 20), from top to bottom, (a) t = 6.11× 10−3, (b) t = 1.83× 10−2, (c)
t = 3.06× 10−2, and (d) t = 4.58× 10−1. This case represents one of the
cases where the two leaflets adopt different morphologies in equilibrium,
even though they must have the same height profile. The center plot in
part (a) does not display any black interfaces since at that time leaflet 2
has not yet fully phase separated to have the interfacial value of 0.5.

compositions of each leaflet and the shape of the membrane. By mapping and con-

trasting phase diagrams as the interleaflet coupling strength increases, we have found

that the dynamics of phase separation and equilibrium morphologies increasingly de-

pend on a key parameter: an “overall composition,” defined as the total fraction of

the bilayer occupied by two phases that prefer to interact across the leaflets. We

have found aspects of these bilayer systems that are robust and sensitive with respect

to the strength of the coupling. Characteristics that are robust with varying cou-
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pling strength include (i) no spontaneous phase separation occurs in systems that are

“overall (nearly) pure” mixtures, and (ii) the stripe morphology is favored when both

leaflets are composed of (nearly) equal mixtures. On the other hand, when comparing

systems with weak coupling to those with stronger coupling we find that as the inter-

leaflet coupling strength increases (i) the compositions of the bulk phases and their

relative amounts are increasingly altered to accommodate preferred phase alignment

across leaflets, demonstrating that the strongly coupled leaflets of the bilayer form a

system that appears completely different from a system with the same composition

but two uncoupled monolayers; (ii) the stripe morphology is increasingly preferred;

(iii) the phases with preferred interleaflet interactions align faster and more precisely;

(iv) phase separation occurs more quickly; and (v) the two leaflets are more likely

to adopt the same phase morphology in equilibrium. These observations indicate

that as the degree of interleaflet coupling varies, membrane phase and morphological

behavior vary also.

These findings could be investigated experimentally using asymmetric planar lipid

bilayers composed of lipids selected for particular geometric properties, such that they

would resemble the lipid schematics in Fig. 6.2a. Geometric properties have been

reported for various lipid species, including spontaneous curvatures, as well as how

membrane curvature can be tailored with particular lipid compositions (7, 64, 213–

215). The lipids would also need to be selected such that they would interact across

the leaflets to provide a coupling energy landscape similar to that in Fig. 6.2b, which

could be accomplished with lipids of varying headgroup size and tailgroup length.

The strength of the coupling could perhaps be varied by changing the length of the

tailgroups, which would alter the degree of interdigitation and likely the strength of

the interleaflet coupling.
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CHAPTER VII

Conclusions and Future Work

7.1 Conclusions, Implications, and Potential Applications

In this work, we have investigated phase separation in multicomponent lipid mem-

branes using a computational model with various background geometries. In this

model, composition is coupled with the mechanical properties of the lipid phases,

and the membrane is allowed to deform. The evolution of the composition and shape

are governed by a competition between different energetic contributions from the

line tension between phases, bending energy from the mechanical properties of those

phases, and surface tension from the hydrophobic forces driving the lipids to form a

continuous membrane. These are implemented in three different overall geometries: a

planar geometry to model nearly planar portions of membranes (Chapter III), a spher-

ical geometry to model vesicles (Chapter IV), and a cylindrical geometry to model

tubules (Chapter V). Additionally, the nearly planar model was extended to include

interleaflet interactions, treating both leaflets of the lipid bilayer separately with an

additional energetic contribution to model the coupling of the leaflets (Chapter VI).

The overall aim of this work was to develop an understanding of the thermo-

dynamics and kinetics involved in phase-separating lipid membrane systems. More

specifically, we investigated how the lipid composition can affect the morphology of

the membrane and vice versa, and found that these two attributes are intimately
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related. We observed that membrane shapes are correlated with phase morphologies;

for example, bulges are induced by caplet phase morphologies in all three membrane

geometries investigated, and ripples are induced by stripe phase morphologies in pla-

nar and cylindrical geometries. Different membrane morphologies were observed at

different interleaflet coupling strengths. This was attributed to the shift in phase com-

positions induced by the coupling energy, the degree of which depends on the coupling

strength. This in turn changed the effective area fraction of the phases and altered

the shape of the membrane. With stronger coupling, a stripe phase morphology and

ripples in the shape resulted, instead of caplet morphologies that formed without such

a strong coupling. We also observed the shape of the membrane affecting the locations

different phases preferred to occupy and their morphologies relative to each other. In

the planar geometry, a rigid patterned surface was able to induce a stripe phase mor-

phology to form in a system with parameters that, on a non-patterned surface, did

not produce stripes. In the spherical and cylindrical models, domains bulging away

from the membrane surface were in some systems prevented from coalescing (as well

as self-coalescence to form rings in the cylindrical model), with coarsening proceeding

through diffusion only and therefore occurring on much longer time scales than when

domains did not bulge. In vesicle systems that either evolved to or were initialized

with elongated shapes, configurations with enhanced stability having more than one

domain of a phase were observed, where the system was able to reduce its bending

energy at the expense of line-tension energy, which would otherwise drive the system

to form a single domain of each phase.

With the findings that membrane composition and shape are interrelated to such

a degree, it is important that they both be examined and considered when proposing

models to explain observed phenomena when studying the behavior of multicompo-

nent lipid membranes. The location, organization, and function of many membrane

proteins have been linked to the local lipid environment, which interacts with the
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protein via hydrophobic and mechanical forces. Not only do these findings have im-

plications for studying cell biology, but also in areas of biotechnology. This relation-

ship between membrane phases and shapes could be exploited for use in biosensors,

where detection of a substance of interest could cause a change in the behavior of lipid

phases, which could then cause the membrane to change shape as the indication. The

finding that the arrangement of lipid phases can be directed using patterned surfaces

could be of use for functionalized surfaces, where different molecules can be attached

to the lipids, which can be rearranged as the system mixes and phase separates at

different temperatures, for example. Using vesicles for targeted drug delivery could

also take advantage of the findings here, where the morphology of vesicles could be

tuned by forming them from a lipid mixture that phase separates and deforms the

vesicle in a particular way, making its uptake in different cells variable.

While some of the findings reported in this work have been produced in experi-

ments to varying degrees, many have not. Various properties of some lipid molecules

such as cross-sectional area and packing preferences have been reported in the liter-

ature. Therefore, in theory lipid compositions could be selected to produce phases

that have specified properties such as bending rigidity and spontaneous curvature,

and established microscopy methods can be used to observe their static and dynamic

behavior. However, there are some barriers to performing such experiments currently.

First, spontaneous curvature has been measured for some lipids, but it is generally

not established for lipid mixtures. Furthermore, even if spontaneous curvatures could

be established for some particular mixtures, a theoretical relationship needs to be

elucidated so that the mechanical properties of the phases formed in a mixture could

be determined from the relative amounts and spontaneous curvature and packing

preference of individual lipids. It has been observed in experiments that different

membrane morphologies can be achieved by utilizing different lipid mixtures, but the

results were more qualitative than quantitative. Second, the majority of experiments
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performed to investigate the behavior of lipid phases are done using symmetric bilay-

ers, while natural membranes are asymmetric. The spontaneous curvature and inter-

leaflet interactions studied here require asymmetric bilayers, introducing numerous

effects present in natural membranes but absent from the model membranes studied

in many investigations in the past. Methods are well established for the synthesis of

asymmetric planar bilayers, but are less established for producing vesicles and tubules

with asymmetric composition.

In summary, this work has contributed to the knowledge of the biophysics of

multicomponent lipid membranes, the ubiquitous cellular structures that interact

closely with the protein machinery of the cell, and have great potential for application

in numerous biotechnology settings.

7.2 Future Work

Future work can be divided into two categories: performing further investigations

using the models as presented, and implementing extensions to the models to better

represent the physics governing lipid membranes. Since the liquid-ordered phase has

been found to be more rigid than that liquid-disordered phase, more extensive investi-

gations into systems with different bending rigidities should be performed using each

of the models presented. In the nearly planar (bilayer) model in particular, different

and more complexly patterned surfaces should be modeled, similar to the fixed ripple

substrate presented in this work, in order to further investigate the possibilities of

lipid phase self-assembly. In the vesicle model, the effects of internal pressure should

be investigated, to model osmotic effects that are often included in experimental work.

The tubule model is the most recently developed model presented, and many future

studies could be performed, including linear stability analysis accounting for the ef-

fects of spontaneous curvature, further work investigating different combinations of

bending rigidities and spontaneous curvatures in their relation to the stabilization of
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the pearling instability, and varying the radius of the tubule in space and/or time

to mimic the pulling of membrane tethers in micropipette aspiration experiments in

order to see how domains rearrange in response.

There are numerous aspects of membrane systems that contribute to the com-

positional and shape dynamics that could be incorporated into the model in future

iterations. These include implementing the bilayer method into the spherical and

cylindrical geometry models in order to treat interleaflet interactions in vesicle and

tubule systems, respectively. Additional effects stemming from the difference in the

areas of the inner and outer leaflet would need to be included also, which can con-

tribute to spontaneous curvature in tubules and small vesicles. Hydrodynamic flows

would be an important aspect in any of the geometries studied, where effects of the

solvent are included, which can affect the dynamics. Experimental work has found

that diffusion coefficients are significantly different in the liquid-ordered and liquid-

disordered phases, and the constant mobility that has been used in this work so far

could be modified to have a compositional dependence to better reflect this observa-

tion. Finally, interleaflet flip-flop of lipids that affects the local and overall composi-

tions of the leaflets has been hypothesized as a mechanism that prevents coarsening

in plasma membranes, and could be implemented in the bilayer model.
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APPENDIX A

Geometric Invariants and Difference Operators in

the Monge Gauge

As shown in Figs. 3.2 and 4.2, the we use the Monge gauge to describe a surface

one-to-one from a reference surface, being a plane, sphere, or cylinder for the nearly

planar, vesicle, and tubule models, respectively. All geometric invariants, vectors,

tensors, and differential operators can be explicitly written as functions and operators

acting in the reference surface, and their expressions in a form general enough to apply

to any of the three geometries considered in this work are presented in this appendix,

similarly to the presentation for the nearly planar case in our work in Ref. 177.

We define a number of objects that reflect the geometric properties of the surface.

These objects are vectors and tensors based on the two-dimensional space tangent

to the surface. Vector quantities appear in bold face, vector components are written

within square brackets, and unit vectors are denoted with hats. Tensors and vectors

within the surface are identified by their explicit indices. For example, the metric

tensor, gij, is a rank-two tensor in the tangent space, and each of its indices takes

only the values 1 and 2. Note that we use mixed objects, such as the basis pair

ei = [e1, e2]. Each entry is a vector in three-dimensional space, but the pair behaves

as a vector within the surface and consists of two vectors, and as such, is identified by
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Table A.1: Summary of the basic geometrical setup for each of the three models
presented in the body of this work.

Model
Coordinate Reference Indices 3D Position Unit Vectors in
System Geometry 1, 2 Vector Reference Surface

Nearly Cartesian plane x, y x = [u1, u2, h(u1, u2)] ŵ1 = ŵx = ∂x/∂x,

planar = [ux, uy, h(ux, uy)] ŵ2 = ŵy = ∂x/∂y

Vesicle spherical sphere θ, ξ r = [u1, u2, r(u1, u2)] ŵ1 = ŵθ = (∂r/∂θ)/r,

= [uθ, uξ, r(uθ, uξ)] ŵ2 =
ŵξ = (∂r/∂ξ)/(r cos θ)

Tubule cylindrical cylinder θ, z r = [u1, u2, r(u1, u2)] ŵ1 = ŵθ = (∂r/∂θ)/r,

= [uθ, uz, r(uθ, uz)] ŵ2 = ŵz = ∂r/∂z

its index i. Table A.1 summarizes the basic geometric properties of the three different

system configurations studied, along with more precise definitions of the index i for

each context. The expressions for the basis pairs for the three geometries studied are

presented within the chapters they are used in.

The magnitudes and inner products of the vectors ei form the metric tensor gij =

ei · ej . Its components are

gij =







e1·e1 e1·e2
e2·e1 e2·e2






. (A.1)

The determinant of the metric tensor is denoted by g, and is equal to the square of

the surface metric factor.

The matrix inverse gij of the metric tensor gij is used to raise indices of vectors

and tensors in the standard manner. Its components are

gij =
1

g







e2·e2 −e1·e2
−e2·e1 e1·e1






. (A.2)

The unit vector normal to the surface n̂ is obtained by the normalized cross
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product:

n̂ =
e1 × e2

|e1 × e2|
. (A.3)

The curvature tensor Kij is defined as the projection along the normal n̂ of the

derivative of the vector ej in the i direction:

Kij = −







n̂·∂1e1 n̂·∂1e2
n̂·∂2e1 n̂·∂2e2






. (A.4)

We obtain the two invariants of this tensor, its covariant trace and determinant. The

curvature trace, equal to twice the mean curvature, is given by

K = gijKij = g11K11 + g12K12 + g21K21 + g22K22. (A.5)

The determinant of the tensor gives the scalar curvature R, and the Gaussian curva-

ture G, as

G = R/2 = K2 −KijKij = K2 −K11K11 +K12K12 +K21K21 +K22K22. (A.6)

We use several differential operators. A basic quantity is the gradient ∇if of a

scalar function f . Its components are

∇if = [∂1f, ∂2f ]. (A.7)

Note that this vector is attached to the surface and is specified by just two compo-

nents. Energy terms of free energy functionals typically involve the magnitude of this

vector, ∇if∇if = gij∇if∇jf . We obtain

∇if∇if = g11(∂1f)
2 + g12(∂1f)(∂2f) + g21(∂2f)(∂1f) + g22(∂2f)

2. (A.8)

150



To calculate the contraction of the gradient with the curvature tensor, Kij∇if∇jf ,

we first state the covariant curvature. Due to the symmetry of our metric tensor

under transposition, the components of the contravariant curvature can be calculated

through a multiple matrix multiplication:

Kij =







g11 g12

g21 g22













K11 K12

K21 K22













g11 g12

g21 g22






. (A.9)

In turn, the desired contraction is

Kij∇if∇jf =

(

∂1f ∂2f

)







K11 K12

K21 K22













∂1f

∂2f






. (A.10)

To obtain directional derivatives, it is necessary to use information about the

derivatives of the vectors defining the local frame on the surface. This information is

contained in the Christoffel symbols, Γa
bc = gaded · ∂bec. We can present the compo-

nents of the symbols as the entries of two matrices, one for each value of the upper

index:

Γ1
bc =







(Γ1)11 (Γ1)12

(Γ1)21 (Γ1)22






(A.11)

=







g11e1 · ∂1e1 + g12e2 · ∂1e1 g11e1 · ∂1e2 + g12e2 · ∂1e2
g11e1 · ∂2e1 + g12e2 · ∂2e1 g11e1 · ∂2e2 + g12e2 · ∂2e2






, (A.12)

Γ2
bc =







(Γ2)11 (Γ2)12

(Γ2)21 (Γ2)22






(A.13)

=







g21e1 · ∂1e1 + g22e2 · ∂1e1 g21e1 · ∂1e2 + g22e2 · ∂1e2
g21e1 · ∂2e1 + g22e2 · ∂2e1 g21e1 · ∂2e2 + g22e2 · ∂2e2






. (A.14)
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The gradient of a vector is then defined as ∇ivj = ∂ivj − Γk
ijvk. Using this result, the

Laplacian of a scalar, defined as ∇2f = ∇i∇if = gij∇i∇jf , is given by

∇2f = g11∂11f + 2g12∂12f + g22∂22f (A.15)

−(g11Γ1
11 + 2g12Γ1

12 + g22Γ1
22)∂1f

−(g11Γ2
11 + 2g12Γ2

12 + g22Γ2
22)∂2f,

where we have again used the symmetry of the metric tensor.
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