The Cenozoic paleoelevation and paleogeographic history of the southwestern US Cordillera: a combined sedimentologic and isotopic approach

by

Alex R. Lechler

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Geology) in The University of Michigan 2011

Doctoral Committee:

Assistant Professor Nathan A. Niemi, Chair Professor Kyger Lohmann Assistant Professor Nathan D. Sheldon Assistant Professor Allison L. Steiner © Alex R. Lechler 2011 To my Mom, Dawn Lechler (1956 – 2004)

Acknowledgements

I must first thank my dissertation advisor, Dr. Nathan Niemi, for not only being a great advisor throughout the PhD process but also for being a great collaborator and mentor. This dissertation research was an evolutionary process, and Nathan's clever mind and geologic know-how always pushed this work into new and exciting research directions that were not yet evident during this project's commencement. I thank my committee members, Kacey Lohmann, Nathan Sheldon, and Allison Steiner, for their thoughtful feedback and advice throughout the dissertation process. I also thank Marin Clark and Mike Hren both of whom consistently offered great insights and expertise that greatly benefitted this work. Mike is thanked, in particular, for the field support and lab instruction that made Chapter 5 of this dissertation possible.

I owe a debt of gratitude to all of my amazing colleagues in the Department of Geological Sciences at the University of Michigan. Most importantly, my SCALE lab mates and SCALE den family of Alison Duvall, Boris Avdeev, Nora Lewandowski, and Lydia Staisch who have kept my life balanced and full of laughter even during the long days and nights 'trapped' on the first floor of CC Little. Hopefully, one day we'll get that couch. I must also acknowledge all of my intramural volleyball teammates, particularly Dan Horton, Mike D'Emic and Boris Avdeev, for sticking through losing season after losing season but keeping the enthusiasm level high enough that we kept coming back.

I also really want to express my gratitude to all of the wonderful students I have had the privilege to teach during my time at UM. Teaching classes that ranged from Introductory Geology to graduate level computer programming was a definite challenge, but the hard work and enthusiasm of the countless students I have both taught and learned from made every class a joy to be a part of. I am particularly indebted to my GSI colleagues, Mike D'Emic, Kelly Umlauf, and Tim O'Brien, who offered support, comraderie, and insight in so many challenging situations.

Finally, I have to thank my dad, Mike Lechler, for his unending support and constant reminders that I can do and should do whatever I want in life, no matter the pay or prestige, as long as it made me happy. And to my mom, who passed away too soon, I thank her for the motivation she provided when I took my first geology class. I wouldn't be where I am today if it weren't for her shared enthusiasm for the 'coolness' of plate tectonics.

TABLE OF CONTENTS

DEDICATION		ii
ACKNOWLEDG	EMENTS	iii
LIST OF FIGUR	ES	ix
LIST OF TABLE	S	xii
CHAPTER		
I. Introduc	ction	1
1.1	Quantitative paleoaltimetry techniques	4
1.2	Thesis outline	9
1.3	References cited	12

II. Spatial variability of modern meteoric δ^{18} O: empirical constraints from the western US and east Asia and implications for stable isotope studies......16

Abstract	16
Introduction	17
Isotopic datasets	22
2.3.1 Western United States	22
2.3.2 East Asia	24
2.3.3 Geographic and climatic parameters	25
Statistical models of the spatial distribution of δ^{18} O in precipitation	26
2.4.1 Previous studies	26
2.4.2 A multivariate approach to modeling $\delta^{*8}O$ in modern	
precipitation	28
2.4.3 Application of a multivariate approach to the western US	
and East Asia	30
	Abstract Introduction Isotopic datasets 2.3.1 Western United States 2.3.2 East Asia 2.3.3 Geographic and climatic parameters Statistical models of the spatial distribution of δ^{18} O in precipitation 2.4.1 Previous studies 2.4.2 A multivariate approach to modeling δ^{18} O in modern precipitation 2.4.3 Application of a multivariate approach to the western US and East Asia

2.5	Model Results	32
	2.5.1 Western US $\delta^{i8}O$ analysis	33
	2.5.2 East Asia $\delta^{*8}O$ analysis	38
2.6	Calculating model uncertainty	43
	2.6.1 $\delta^{i8}O$ uncertainty	46
	2.6.2 Elevation uncertainty	47
2.7	Discussion and Implications	54
	2.7.1 Regional and subregional trends	54
	2.7.2 $\delta^{*8}O$ -elevation and $\delta^{*8}O$ -latitude gradient variability	56
	2.7.3 Basin and Range case study	60
	2.7.4 Implications for stable isotope paleoclimate, hydrologic, and	
	Paleoelevation studies	62
2.8	Conclusions	70
2.9	Acknowledgements	71
2.10) References cited	72
Contro	ols on the isotopic composition of spring and surface waters in t	he

3.1	Abstract	.79
3.2	Introduction	. 81
3.3	Study areas	. 85
	3.3.1 Physiographic and climatic background	. 85
	3.3.2 Modern water sampling	. 87
3.4	Southwestern US meteoric water δ^{18} O	. 90
	3.4.1 Spring and stream water isotopic results	. 90
	3.4.2 $\delta D - \delta^{18} O$ results	. 91
	3.4.3 Comparison to published southwestern US precipitation $\delta^{48}O$	
	data	. 92
3.5	Controls on meteoric water $\delta^{18}O$.96
3.6	Rayleigh distillation modeling of δ^{18} O	100
3.7	$\delta D - \delta^{18} O$ relationships	104
3.8	Additional mechanisms for δ^{18} O-elevation gradient variability	106

3.8.1 Alternative sources of δ^{18} Oevolution in a snowpack
3.8.2 Complications from bedrock springs
3.9 Implications of snow sublimation on stable isotope-based hydrologic and paleoelevation studies
3.9.1 Hydrologic studies
3.9.2 Stable isotope paleoaltimetry112
3.9.3 Isotopic relationships over continental plateaus
3.10 Conclusions
3.11 Acknowledgements
3.12 References cited

IV. Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California135

4.1	Abstract	135
4.2	Introduction	136
4.3	Early Cenozoic basins	137
4.4	Detrital zircon U-Pb and carbonate δ^{18} O data	140
4.5	Sedimentary provenance	142
4.6	Early Cenozoic paleotopography and paleogeography of the southern	
Sier	ra Nevada	144
4.7	Conclusions	148
4.8	Acknowledgements	148
4.9	References cited	149

V. Carbonate clumped isotope paleotemperature evidence for a high elevation Paleocene-Eocene 'Nevadaplano' in the Western US Cordillera..152

5.1	Abstract
5.2	Introduction153
5.3	Clumped isotope paleothermometry and paleoaltimetry applications 157
5.4	Geologic setting and sample locations
5.5	Analytical techniques
5.6	Isotopic and isotopologue results

5.7 Assessment of diagenetic influence
5.8 Discussion of clumped isotope results
5.8.1 Paleoelevation of the Paleocene-Eocene 'Nevadaplano'
5.8.2 Calculation of water $\delta^{is}O$
5.9 Conclusions
5.10 Acknowledgements
5.11 References cited

6.1.1 Chapter 2 summary1	89
6.1.2 Chapter 3 summary1	90
6.1.3 Chapter 4 summary1	91
6.1.4 Chapter 5 summary1	92
6.2 Conclusions1	92
6.3 References cited 1	.98

PPENDIX

LIST OF FIGURES

FIGURE

2.1 – 30 meter digital elevation models (DEM) for the western US (A) and east Asia (B)23
2.2 – DEM of the western US outlining the physiographic and climatic subregions analyzed as part of this study
2.3 – DEM of East Asia region outlining the physiographic and climatic subregions analyzed as part of this study
2.4 – Plots showing model predicted δ^{18} O versus actual site δ^{18} O values
2.5 – Western US model predicted elevations versus actual elevations
2.6 – East Asia model predicted elevations versus site elevations
2.7 – Western US model δ^{18} O residuals contoured using ArcGIS Inverse Distance Weighted algorithm
2.8 – Smoothed contour map of east Asia model δ^{18} O residuals
2.9 – Western US model-predicted elevation residuals
2.10 – East Asia model-predicted elevation residuals
2.11 – Mean annual precipitation (MAP) plotted as a function of site elevation for the Coast subregion of the western US

3.1 – (A) Digital elevation model (DEM) of the southwestern United States with locations of precipitation
$3.2 - \delta^{18}$ O versus elevation for precipitation
3.3 – δD versus $\delta^{18}O$ for terrestrial water transects of this study
3.4 – (A) Rayleigh distillation curves
3.5 – Stable isotope-based elevation underestimates calculated as a function of sublimation- derived mass loss from a seasonal snowpack
3.6 – Meteoric δ^{18} O in the southwestern US and east Asia
4.1 – Color digital elevation model (DEM) with sandstone (red stars), modern sand (yellow stars), and micrite (red circle) sample locations
4.2 – (A) 0-300 Ma detrital zircon U-Pb age-probability plots
4.3 – (A) Diagram of early Paleogene southern Sierra Nevada paleotopography and paleogeography constrained by U-Pb age spectra and correspondence with plutonic, volcanic, and siliciclastic source terranes
5.1 – Map of sample locations
5.2 – Geologic setting of carbonate sample locations
5.3 – Heated gas line and isotopic data
5.4 – Carbonate clumped isotope temperature record
5.5 – Calculated water δ^{18} O values for Goler and Sheep Pass carbonates

6.1 – Early Cenozoic paleotopography and paleogeography of the western US	
Cordillera	197
A4.1 – Simplified geologic maps of (A) San Emigdio Mountains (Nilsen, 1987), (B)	
Tehachapi Mountains (Dibblee and Louke, 1970) and (C) El Paso Mountains	
(Cox, 1982)	227
A4.2 – Full U-Pb age spectra for all detrital samples	228
A4.3 – Source of geologic mapping of plutonic volcanic, and siliciclastic rocks shown in	
Figure 4.2B	230
A4.3 – Source of geologic mapping of plutonic, volcanic, and siliciclastic rocks shown in Figure 4.2B	230

LIST OF TABLES

TABLE

2.1 – Reduced multiple regression models for Western US and East Asia	40
2.2 – Regression model coefficients for models with latitude and elevation	41
2.3 – Regression model elevation uncertainties	44
2.4 – Temperature Coefficients	63
3.1 – Sampled spring and surface water isotopic data and drainage basin characteristics	122
5.1 – Summary of clumped isotope thermometry and stable isotopic results	170
A2.1 – Compilation of western US precipitation δ^{18} O records	201
A2.2 – Compilation of east Asia meteoric water δ^{18} O records	206
A4.1 – Detrital zircon U-Pb analyses	213
A4.2 – Goler Fm. isotopic data	229
A4.3 – Sandstone and carbonate sample locations	231
A5.1 – All isotopologue and stable isotopic data	232

CHAPTER I

Introduction

Topography reflects the interplay among climatic, tectonic, geodynamic and erosion processes. As a result, accurate paleoelevation histories can inform models for orogen development by elucidating the complex interactions of Earth's atmosphere, lithosphere and asthenosphere during the lifespan of an orogenic system. Prior to recent developments of paleoaltimetry methodologies, direct estimates of regional paleoelevations for many of the world's prominent orogens (e.g., Himalaya-Tibetan Plateau, South American Andes, Western US Cordillera) were scarce. Early estimates of paleotopography were generally indirect and qualitative, often derived from documented changes in fluvial incision and sedimentation rates (e.g., Clark, 2007 and references therein) or expected isostatic compensation effects of thickened continental crust that formed as a result of significant crustal shortening (e.g., England and Houseman, 1989). While providing a reasonable first order approximation to regional paleoelevation histories, these indirect measures lack the resolution needed to fully constrain and validate competing models for orogen development, leaving the paleoelevation history for many of the world's dominant orogens poorly constrained.

The topographic evolution of the Western US Cordillera is of particular interest in geologic research as the complex tectonic history of the region, which is characterized by

1

Mesozoic-early Cenozoic convergence and subduction that transitioned to widespread Tertiary extension, has relevance to our understanding of convergent and extensional orogenic systems worldwide. The Sierra Nevada magmatic arc and the Basin and Range Province are of particular interest as the paleoelevation histories for each region have been subject to copious research (e.g., Axelrod, 1968; Gregory and Chase, 1992; Wolfe et al., 1997; Unruh, 1991; Wakabayashi and Sawyer, 2001; Poage and Chamberlain, 2002; Horton et al., 2004; Horton and Chamberlain, 2006; Kent-Corson et al., 2006; Mulch et al., 2006; Cassel et al., 2009; Hren et al., 2010) yet remain subject to contentious debate. In the case of the Sierra Nevada, debate centers on whether or not the Sierra Nevada is a young or ancient topographic feature (e.g., Unruh, 1991; Wakabayashi and Sawyer, 2001; Mulch et al., 2006; Hren et al., 2010). The answer to this question has far-reaching implications as evidence for young topography provides support for models citing delamination of thickened mantle lithosphere from below the range in late Cenozoic time as the primary driver for young surface uplift (e.g., Jones et al., 2004; Zandt et al., 2004). Similar delamination models have been proposed for the topographic evolution of the South American Andes (e.g., Garzione et al., 2006) and Tibetan Plateau (Molnar et al., 1993). Thus, the validity of delamination models to the topographic evolution of the Sierra Nevada will directly impact our understanding of orogenic systems across the globe.

Understanding the topographic evolution of the Basin and Range Province has equal or even greater relevance and importance to tectonics and geodynamics research as this region is the prototype for continental crustal extension. Despite this importance, however, fundamental questions remain concerning the primary driving forces for widespread Tertiary extension as well as the physical mechanisms by which this extension occurred. Observations of relatively high regional mean elevations (~ 1.5 km), uniform crustal thicknesses (~ 30 km) and a flat, regional Moho place specific constraints on the plausible mechanisms for Tertiary extension, but unanswered questions of how strain was partitioned throughout the crust and lithospheric mantle and whether or not mass was conserved throughout the extended region leave open the possibility for a wide-range of tectonic and geodynamic models (e.g., Clark, 2007). Regional variability in the timing and magnitude of extension (e.g., McQuarrie and Wernicke, 2005) and magmatism (Armstrong and Ward, 1991) places additional constraints on models for Basin and Range evolution, but the complexity of these trends makes it difficult to synthesize a province-wide model that satisfies all criteria.

Internal buoyancy forces of a high elevation continental plateau, plate boundary forces associated with a change in plate kinematics during the Cenozoic, and basal normal forces resulting from removal of the Farallon slab from below western North America have all been cited as possible drivers for Basin and Range extension (see Sonder and Jones, 1999 for review). Evaluating the respective role of each of these proposed mechanisms requires accurate and quantitative paleoelevation histories as each tectonic and/or geodynamic model is characterized by a unique and predictable topographic history (e.g., Clark, 2007). Accordingly, contrasting models for Basin and Range extension provide testable topographic hypotheses that can be evaluated directly through regional paleoelevation study. For example, internal buoyancy forces acting as a primary driver for Tertiary extension requires that a high elevation (> 3 km) orogenic plateau was located throughout much of the Cordilleran interior prior to extension (e.g.,

Ernst, 2010). If such a plateau existed, we expect to see direct evidence for it in the paleoaltimetry record. In contrast, if regional elevations were low or comparable to modern (~ 1.5 km) in the proto-Basin and Range province, distinct mechanisms of lower crustal flow from surrounding areas of high topography and/or magmatic additions at the base of the lithosphere are more likely to account for the observed modern crustal thicknesses and Moho character (Clark, 2007).

1.1. Quantitative paleoaltimetry techniques

The recent development of multiple quantitative paleoaltimetry techniques (Kohn, 2007 and references therein) has greatly enhanced the capability to make accurate and direct estimates of paleoelevations. The earliest quantitative paleoelevation studies utilized paleotemperature estimates derived from leaf types and morphologies (i.e. leaf physiognomy) in fossil flora assemblages in combination with empirical temperatureelevation relationships to make quantitative estimates of regional paleoelevations. This technique has been widely applied to Cenozoic basin systems throughout western North America (e.g., Axelrod, 1968; Gregory and Chase, 1992; Wolfe et al., 1997) as well as to the Tibetan Plateau (Spicer et al., 2003). Recent applications of this paleobotanical approach have been relatively scarce, however, due to the limited availability of dense, diverse and well-preserved fossil floral assemblages in the geologic record. Interpretations of paleobotanical-based paleotemperature and paleoelevation records are further limited due to the complex interaction of both climate and elevation on surface temperatures, thus requiring that climatic influences to fossil records are independently constrained.

More recently developed paleoaltimetry methodologies aim to circumvent complications arising from climatic influences by using proxy-elevation relationships that are climate independent. Basalt vesicularity (e.g., Sahagian and Maus, 1994), plant stomatal frequency (e.g., Kouwenberg et al., 2007), and cosmogenic nuclide paleoaltimetry (e.g., Riihimaki and Libarkin, 2007) techniques utilize the elevation dependence of atmospheric pressure, partial pressure of atmospheric CO₂, and cosmogenic nuclide production rates, respectively, to quantify paleoelevations. While each of these techniques has the benefit of investigating proxy-elevation relationships that are independent of climatic influence, each is significantly limited in terms of applicability and/or by high inherent uncertainties. Basalt vesicularity studies require specific geologic proxies (well-preserved basalt flows) that are spatially and temporally restricted in the geologic record. In addition, high inherent uncertainties ($\sim \pm 1.5$ km) also significantly limit application of basalt vesicularity techniques to paleoelevation studies. Limited proxy availability similarly restricts application of plant stomatal density techniques. This methodology is also characterized by large uncertainties due to the fact that the modern calibrations that are fundamental to quantifying pCO₂ values using the fossil leaf record are unable to account for stomatal trends under the high pCO₂ conditions that characterize much of the geologic past. Finally, cosmogenic nuclide techniques, while sound in theory, have yielded very few paleoelevation values to date due to the strict requirement that the complete depositional and burial history of a sample is known (Riihimaki and Libarkin, 2007), a restriction which is difficult to ensure in most settings.

By far, the most widely applied quantitative paleoelevation technique is stable isotope paleoaltimetry, which utilizes the stable isotopic compositions (δ^{18} O and δ D) of paleo-meteoric water proxies for paleoelevation reconstructions. Fundamental to this approach is the observation that the stable isotopic composition of modern precipitation exhibits a systematic relationship with elevation at the site where the precipitation falls (e.g., Chamberlain and Poage, 2000). Due to the preferential removal of heavy isotopes (¹⁸O and D) during condensation events, precipitation falling farther from the moisture source (i.e. at high elevations) is expected to be characterized by lower δ^{18} O and δ D values than at sites proximal to the source, with the δ value measured as:

$$\delta_{sample} = \frac{R_{sample} - R_{standard}}{R_{standard}} * 1000$$

Where R is the measured isotopic ratio (${}^{18}O/{}^{16}O$ or D/H), the reference standard is standard mean ocean water (SMOW), and δ is measured in units permil (‰). Both empirical (Poage and Chamberlain, 2001) and theoretical models using Rayleigh distillation principles (Rowley et al., 2001; Rowley and Garzione, 2007) show that such a systematic $\delta^{18}O$ (or δD)-elevation relationship (~ -2.8‰/km) does exist in most orographic settings. In theory, all that is then required for paleoelevation calculations is a proxy for the isotopic composition of paleo-meteoric waters. Meteoric water proxies are common constituents of sedimentary basin systems that commonly form in response to orogen growth and development. As a result, proxy materials that are contemporaneous with orogen development are often readily accessible.

Commonly analyzed stable isotopic proxies include lacustrine, riverine, and pedogenic carbonates, weathered volcanic ashes, and fossil teeth and bone (see Kohn,

2007). With these proxies, paleoelevations can be calculated in several different ways, including: (1) using changes in the isotopic composition of meteoric waters through time at a single site to propose changes in regional paleoelevations (e.g., Horton et al., 2004), (2) comparison of paleo-meteoric water isotopic compositions to those of modern waters to estimate elevation changes relative to the present (e.g., Garzione et al., 2000) and, in rare cases, (3) comparison of modern and paleo- δ^{18} O-elevation gradients to estimate regional paleotopographic distributions (Mulch et al., 2006). In cases 2 and 3, the isotopic composition of the water in which the proxy formed must first be calculated for direct comparison with modern values. Due to the temperature-dependent fractionation between source water and carbonate proxies (e.g., Kim and O'Neil, 1997), calculation of water δ^{18} O values requires that temperatures of carbonate formation are known or can be assumed. Uncertainty in paleotemperatures, therefore, can lead to significant uncertainties in paleoelevation calculations.

In addition to complications arising from uncertainty in the temperature of carbonate formation, stable isotope paleoaltimetry studies may be prone to significant elevation uncertainties due to factors that directly affect the variability of surface water $\delta^{18}O$ (or δD) values independent of elevation change. As with paleobotany-based paleoelevation estimates, meteoric water stable isotopic compositions are directly influenced by climate. Changes in local temperature, storm tracks, dominant moisture source, and seasonality of precipitation, as well as natural interannual variability in precipitation $\delta^{18}O$ (or δD) can all complicate interpretation of the proxy record. Additionally, the type of meteoric water proxy must be considered as the elevation signal derived from each proxy record is unique to the meteoric water system in which the

proxy formed. For example, lacustrine carbonates form in and reflect the isotopic composition of waters sourced from throughout the contributing catchment (e.g., Rowley and Garzione, 2007), whereas pedogenic carbonates form in local soil waters (e.g., Quade et al., 1989) and, accordingly, are more likely to reflect local precipitation isotopic compositions. As a result, the isotopic composition of lacustrine proxies inform about trends in elevation and topographic relief over a much greater spatial scale and are thus often not analogous to paleosol carbonate isotopic records. Accurate interpretation of paleo-meteoric water proxy records also requires that the influence of any process that alters the isotopic composition to preservation in the proxy record is accounted for. Evaluating evaporative influence to proxy records has been shown to be vital to stable isotope paleoaltimetry as evaporation acts in contrast to Rayleigh distillation rainout (i.e. increases δ^{18} O values) and can thus lead to significant paleoelevation underestimates (e.g., Quade et al., 2007).

In addition to the processes that may influence or alter meteoric water isotopic compositions independent of elevation effects, another major source of uncertainty in stable isotope paleoaltimetry is variability in the quantitative relationship between δ^{18} O (or δ D) and elevation. As noted above, the global average δ^{18} O-elevation gradient is -2.8 ‰/km, but observed δ^{18} O-elevation gradients are quite variable, ranging from ~ -1 to -5 ‰/km in mid-latitude regions. This variability is particularly evident in continental interior and high elevation orogenic plateau regions where observed isotope-elevation gradients are consistently reduced in magnitude compared to the global average (e.g., Blisniuk and Stern, 2005; Quade et al., 2007). If the global average gradient is incorrectly

applied to proxy records collected from these regions, we can expect that significant errors in paleoelevation calculations will result. The potential error and increased uncertainty associated with δ^{18} O-elevation gradient variability points to the need to better constrain the primary environmental influences on isotope-elevation gradients. Specifically, the degree to which these gradients are systematically related to physiographic and climatic characteristics must be further investigated so that more accurate interpretations of paleo-meteoric water proxy records can be made.

1.2 Thesis outline

Part I (Chapters 2 and 3) of this dissertation critically evaluates the stable isotope paleoaltimetry technique and its fundamental assumptions, with a primary focus on identifying systematic trends in isotope-elevation gradients and potential causes for observed gradient variability. Chapter 2 presents multivariate statistical analysis of compiled modern precipitation records from the western US and east Asia. In this analysis, precipitation δ^{18} O values were modeled as a function of geographic (latitude, longitude, elevation) and climatic (mean annual temperature, mean annual precipitation) variables at the precipitation site in order to determine which environmental variables exert a dominant control on modern δ^{18} O values as well as to quantify the magnitude of each environmental control. These statistical analyses also investigated the variability in modern isotopic relationships on a regional and subregional scale with particular focus on how isotope-elevation gradients are influenced by physiographic and climatic environment. This work reveals that continental interior rainshadows (e.g., Basin and Range) and high elevation orogenic plateau regions (e.g., Tibetan Plateau) are

characterized by δ^{18} O-elevation gradients (~ 1.5‰/km) that are a factor of two lower in magnitude than those observed in simple orographic settings (Sierra Nevada, Himalaya), where observed δ^{18} O-elevation gradients are similar in magnitude to empirical global average gradients and gradients derived from theoretical Rayleigh distillation models (~ -2.8‰/km; Poage and Chamberlain, 2001; Rowley et al., 2001). The work presented in Chapter 2 is currently in preparation for submission to *Water Resources Research* or a journal with similar focus.

Empirical δ^{18} O-elevation gradients derived from modern stream and spring water sampling in the orographic slope and orographic rainshadow of the southern Sierra Nevada region of the southwestern US (Chapter 3) builds on the statistical analyses presented in Chapter 2. Again, we observe a systematic shift to reduced isotope-elevation gradients in continental interior rainshadow regions, but to empirical magnitudes that are even lower (~ -0.8 %/km) than observed in the statistical analyses of modern precipitation (Chapter 2). The reduced isotope-elevation gradients observed for interior spring and stream waters is shown to be plausibly explained by post-depositional isotopic modification resulting from elevation-dependent sublimation processes that are likely to affect winter snowpacks in continental interior, alpine settings. This work has important implications for future stable isotope paleoaltimetry studies, particularly in areas where snowmelt-derived meteoric waters dominate regional hydrology. An additional implication of our modern stream and spring water sampling is that stable isotope-based hydrologic studies must also account for snow sublimation influences, particularly in light of current trends toward earlier onset of spring season snowmelt (e.g., Cayan et al., 2001) and increased proportion of annual precipitation falling as rain instead of snow in the arid, mountainous western US. This work has undergone peer-review and is currently in revision for *GSA Bulletin*.

Part II of this dissertation (Chapters 4 and 5) shifts focus to applications of paleoaltimetry techniques to better constrain the Cenozoic paleoelevation history of the southwestern US Cordillera. A primary aim of this section is to investigate potential complimentary techniques to pair with standard stable isotope paleoaltimetry in order to circumvent the limitations and uncertainties outlined in this Introduction and in Part I of the dissertation. Chapter 4 presents the results of a combined sedimentologic and isotopic study of Paleocene-Eocene sedimentary basin systems in the southern Sierra Nevada region. U-Pb detrital zircon provenance studies of basin sediments indicates that the southernmost Sierra Nevada was located at or near sea level in early Paleogene time, thus, requiring $\sim 1.5-2$ km of post-Eocene uplift to account for modern exposure elevations. This work provides new constraints on the Paleogene paleotopographic and paleogeographic evolution of the region and suggests that significant along-strike variations may explain the discrepancy among published Sierran paleoelevation models. The results of this study are published in the April 2011 issue of *Geology*. The format and content of the published manuscript match that presented in this dissertation.

Chapter 5 utilizes the novel carbonate clumped isotope paleothermometry technique to constrain Late Cretaceous-Eocene paleoelevations in the proposed high elevation orogenic plateau region of the western US Cordilleran interior (termed the 'Nevadaplano' by DeCelles, 2004). This work combines clumped isotope paleotemperature data with standard stable isotopic analysis of Tertiary carbonate paleometeoric water proxies from the Goler basin of the southern Sierra Nevada region and the

11

Sheep Pass basin of east-central Nevada. These carbonate clumped isotope temperatures are some of the earliest temperature values produced in the University of Michigan Stable Isotope Lab, and they provide definitive evidence for a high elevation (≥ 2.6 km) continental plateau immediately prior to widespread Basin and Range extension. This work also points to the utility of carbonate clumped isotope paleoaltimetry as calculated water δ^{18} O values provide direct evidence for significant evaporative influence to continental interior proxy records. This work is in preparation for submission to *Nature Geoscience* or a similar, high-impact journal.

Chapter 6 summarizes the primary conclusions of this dissertation. Appendices provide complete data tables for compiled modern precipitation records (Chapter 2), zircon U-Pb analyses and corresponding sample locations (Chapter 4), and detailed clumped isotope analytical results (Chapter 5).

1.3 References cited

- Armstrong, R. L., and Ward, P., 1991, Evolving geographic patterns of Cenozoic magmatism in the North American Cordillera - the temporal and spatial association of magmatism and metamorphic core complexes: Journal of Geophysical Research-Solid Earth and Planets, v. 96, no. B8, p. 13201-13224.
- Axelrod, D. I., 1968, Tertiary floras and topographic history of Snake River Basin Idaho: Geological Society of America Bulletin, v. 79, no. 6, p. 713-734.
- Blisniuk, P. M., and Stern, L. A., 2005, Stable isotope paleoaltimetry: A critical review: American Journal of Science, v. 305, no. 10, p. 1033-1074.
- Cassel, E. J., Graham, S. A., and Chamberlain, C. P., 2009, Cenozoic tectonic and topographic evolution of the northern Sierra Nevada, California, through stable isotope paleoaltimetry in volcanic glass: Geology, v. 37, no. 6, p. 547-550.

- Cayan, D. R., Kammerdiener, S. A., Dettinger, M. D., Caprio, J. M., and Peterson, D. H., 2001, Changes in the onset of spring in the western United States: Bulletin of the American Meteorological Society, v. 82, no. 3, p. 399-415.
- Chamberlain, C. P., and Poage, M. A., 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals: Geology, v. 28, no. 2, p. 115-118.
- Clark, M. K., 2007, The significance of paleotopography: Paleoaltimetry: Geochemical and Thermodynamic Approaches, v. 66, p. 1-21.
- DeCelles, P. G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, no. 2, p. 105-168.
- England, P., and Houseman, G., 1989, Extension during continental convergence, with application to the Tibetan Plateau: Journal of Geophysical Research-Solid Earth and Planets, v. 94, no. B12, p. 17561-17579.
- Ernst, W. G., 2010, Young convergent-margin orogens, climate, and crustal thickness-A Late Cretaceous-Paleogene Nevadaplano in the American Southwest?: Lithosphere, v. 2, no. 2, p. 67-75.
- Garzione, C. N., Molnar, P., Libarkin, J. C., and MacFadden, B. J., 2006, Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere: Earth and Planetary Science Letters, v. 241, no. 3-4, p. 543-556.
- Garzione, C. N., Quade, J., DeCelles, P. G., and English, N. B., 2000, Predicting paleoelevation of Tibet and the Himalaya from δ^{18} O vs. altitude gradients in meteoric water across the Nepal Himalaya: Earth and Planetary Science Letters, v. 183, no. 1-2, p. 215-229.
- Gregory, K. M., and Chase, C. G., 1992, Tectonic significance of paleobotanically estimated climate and altitude of the Late Eocene erosion surface, Colorado: Geology, v. 20, no. 7, p. 581-585.
- Horton, T. W., and Chamberlain, C. P., 2006, Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range Province: Geological Society of America Bulletin, v. 118, no. 3-4, p. 475-490.
- Horton, T. W., Sjostrom, D. J., Abruzzese, M. J., Poage, M. A., Waldbauer, J. R., Hren, M. T., Wooden, J. L., and Chamberlain, C. P., 2004, Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal of Science, v. 304, no. 10, p. 862-888.

- Hren, M. T., Pagani, M., Erwin, D. M., and Brandon, M., 2010, Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada: Geology, v. 38, no. 1, p. 7-10.
- Jones, C. H., Farmer, G. L., and Unruh, J., 2004, Tectonics of Pliocene removal of lithosphere of the Sierra Nevada, California: Geological Society of America Bulletin, v. 116, no. 11-12, p. 1408-1422.
- Kent-Corson, M. L., Sherman, L. S., Mulch, A., and Chamberlain, C. P., 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in Western North America: Earth and Planetary Science Letters, v. 252, no. 3-4, p. 453-466.
- Kim, S. T., and O'Neil, J. R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates: Geochimica Et Cosmochimica Acta, v. 61, no. 16, p. 3461-3475.
- Kohn, M. J., 2007, Paleoaltimetry: Geochemical and thermodynamic approaches, Reviews in Mineralogy and Geochemistry, v. 66, 278 p.
- Kouwenberg, L. L. R., Kurschner, W. M., and McElwain, J. C., 2007, Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry: Paleoaltimetry: Geochemical and Thermodynamic Approaches, v. 66, p. 215-241.
- McQuarrie, N., and Wernicke, B. P., 2005, An animated tectonic reconstruction of southwestern North America since 36 Ma: Geosphere, v. 1, no. 3, p. 147-172.
- Molnar, P., England, P., and Martinod, J., 1993, Mantle Dynamics, Uplift of the Tibetan Plateau, and the Indian Monsoon: Reviews of Geophysics, v. 31, no. 4, p. 357-396.
- Mulch, A., Graham, S. A., and Chamberlain, C. P., 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, no. 5783, p. 87-89.
- Poage, M. A., and Chamberlain, C. P., 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change: American Journal of Science, v. 301, no. 1, p. 1-15.
- Poage, M. A. and Chamberlain, C.P., 2002, Stable isotopic evidence for a pre-Middle Miocene rain shadow in the western Basin and Range: Implications for the paleotopography of the Sierra Nevada: Tectonics, v. 21, no. 4, p. 16-1 - 16-10.
- Quade, J., Cerling, T. E., and Bowman, J. R., 1989, Systematic variations in the carbon and oxygen isotopic composition of pedogenic carbonate along elevation transects

in the southern Great Basin, United-States: Geological Society of America Bulletin, v. 101, no. 4, p. 464-475.

- Quade, J., Garzione, C., and Eiler, J., 2007, Paleoelevation reconstruction using pedogenic carbonates: Paleoaltimetry: Geochemical and Thermodynamic Approaches, v. 66, p. 53-87.
- Riihimaki, C. A., and Libarkin, J. C., 2007, Terrestrial cosmogenic nuclides as paleoaltimetric proxies: Paleoaltimetry: Geochemical and Thermodynamic Approaches, v. 66, p. 269-278.
- Rowley, D. B., and Garzione, C. N., 2007, Stable isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463-508.
- Rowley, D. B., Pierrehumbert, R. T., and Currie, B. S., 2001, A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 188, no. 1-2, p. 253-268.
- Sahagian, D. L., and Maus, J. E., 1994, Basalt vesicularity as a measure of atmospheric pressure and palaeoelevation: Nature, v. 372, no. 6505, p. 449-451.
- Sonder, L. J., and Jones, C. H., 1999, Western United States extension: How the West was widened: Annual Review of Earth and Planetary Sciences, v. 27, p. 417-462.
- Spicer, R. A., Harris, N. B. W., Widdowson, M., Herman, A. B., Guo, S. X., Valdes, P. J., Wolfe, J. A., and Kelley, S. P., 2003, Constant elevation of southern Tibet over the past 15 million years: Nature, v. 421, no. 6923, p. 622-624.
- Unruh, J. R., 1991, The uplift of the Sierra Nevada and implications for Late Cenozoic epeirogeny in the Western Cordillera: Geological Society of America Bulletin, v. 103, no. 11, p. 1395-1404.
- Wakabayashi, J., and Sawyer, T. L., 2001, Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California: Journal of Geology, v. 109, no. 5, p. 539-562.
- Wolfe, J. A., Schorn, H. E., Forest, C. E., and Molnar, P., 1997, Paleobotanical evidence for high altitudes in Nevada during the Miocene: Science, v. 276, no. 5319, p. 1672-1675.
- Zandt, G., Gilbert, H., Owens, T. J., Ducea, M., Saleeby, J., and Jones, C. H., 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, no. 7004, p. 41-46.

CHAPTER II

Spatial variability of modern meteoric δ^{18} O: empirical constraints from the western US and east Asia and implications for stable isotope studies^{*}

2.1 Abstract

We conduct a statistical analysis of modern precipitation and meteoric waters from the western US and east Asia to determine the dominant environmental controls (latitude, longitude, elevation, MAT, MAP) on meteoric water isotopic (δ^{18} O and δ D) compositions as a function of physiographic and climatic environment. Multiple linear regression analysis reveals that latitude and elevation act as dominant controls on meteoric δ^{18} O in much of the western US and east Asia but independent influences from site longitude, MAT, and MAP can be significant depending on location. Our regression analysis also indicates that the magnitude of environmental controls is region-dependent. Isotope elevation gradients are reduced by approximately a factor of two in continental interior rainshadows (e.g., Basin and Range) and high elevation continental plateaus (e.g., Tibetan Plateau) in comparison to Rayleigh distillation-type isotope-elevation gradients

^{*} **Citation:** Lechler, A.R. and Niemi, N.A., *in prep*, Spatial variability of modern meteoric δ^{18} O: empirical constraints from the western US and east Asia and implications for stable isotope studies.

which characterize orographic settings with a single dominant moisture source and relatively simple storm track trajectories (e.g., Sierra Nevada, Himalaya). This statistical analysis of modern meteoric waters informs stable isotope paleoclimate, hydrologic, and paleoelevation studies by providing quantitative constraints on isotopic relationships with multiple environmental parameters and identifying how isotopic relationships are influenced by physiographic and climatic environment. The results of this study can greatly improve the accuracy of stable isotope-based determinations of climatic change, location of groundwater recharge, and changes in or absolute paleoelevations, particularly for cases where paleogeographic setting of proxy formation site can be constrained.

2.2 Introduction

The stable isotopic composition (δ^{18} O and δ D) of precipitation is a reflection of the integrated effects of all atmospheric and isotopic fractionation processes taking place between the time of initial evaporation from the oceanic source region to the time of deposition. Temperature along the moisture path, distance from the moisture source, precipitation amount, and overall degree of rainout from the initial moisture parcel are all well-documented controls on the isotopic composition of precipitation (e.g., Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996). Having the ability to isolate and quantify the relationship between isotopic composition and each isotopic control, however, is the challenge fundamental to paleoclimate, hydrologic and paleoelevation studies utilizing meteoric water stable isotope proxies (e.g., ice, lacustrine sediments, plant material, fossil teeth and bone). These stable isotope studies are further limited by the inaccessibility to

studying paleo-isotope-environment relationships, thus requiring a robust calibration using modern isotopic relationships. Regional and global precipitation isotopic monitoring networks provide such a calibration by giving researchers the opportunity to study and quantify meteoric water isotopic relationships as a function of various climatic and geographic parameters. Studies of the dense datasets produced by these monitoring networks (e.g., Dansgaard, 1964; Yurtsever and Gat, 1981; Rozanski et al., 1993; Araguás-Araguás et al., 1998, Welker, 2000; Bowen and Wilkinson, 2002) reveal both the systematic trends in isotopic compositions of precipitation in relation to individual environmental parameters (temperature, elevation, mean annual precipitation), as well as indicate the significant variability exhibited in isotopic relationships as a function of temporal and spatial scale (e.g., Rozanski et al., 1993; Vachon et al., 2010).

The International Atomic Energy Agency's (IAEA) global network for isotopes in precipitation (GNIP) has been the basis for seminal works (e.g., Dansgaard, 1964; Rozanski et al., 1993) that enhanced our understanding of water isotopes in the hydrologic cycle, particularly in continental environments. The recognized relationships between temperature, precipitation amount, elevation, and distance from the moisture source and degree of rainout from a moisture parcel, and, ultimately, isotopic composition of precipitation, has since served as the foundation for stable isotope-based paleoclimate, hydrologic, and paleoelevation research. Paleoclimate studies utilize the documented δ^{18} O (or δ D)-temperature relationship to interpret changes in mean annual temperature through time (Jouzel et al., 1997 and references therein). Hydrologic studies can make use of either the seasonal fluctuations in precipitation isotopic compositions, which are controlled by the interactions of changes in temperature, moisture source,

and/or precipitation type throughout the year, or the elevation dependence of precipitation δ^{18} O and δ D to assess both timing and location of groundwater recharge (e.g., Allison, 1988). The observed depletion in precipitation isotopic compositions as a function of increasing elevation has also served as the basis for stable isotope paleoelevation studies in orogenic systems worldwide (e.g., Poage and Chamberlain, 2001; Rowley and Garzione, 2007). Each of the highlighted research directions utilizes the observed isotope-rainout relationships in a unique way, but in all cases a quantitative understanding of the relationship between isotopic composition and the climatic or geographic parameter of interest must be known or assumed.

While the GNIP database acts as a solid foundation for isotopic studies utilizing paleo-meteoric water proxies, its coarse spatial resolution, particularly in the western US and central Asia, requires regional and local precipitation and surface meteoric water (i.e. streams, rivers, lakes) sampling campaigns to attain the spatial resolution needed to produce an accurate modern calibration. These higher resolution sampling campaigns (e.g., Friedman and Smith, 1972; Friedman et al., 1992, 2002b; Garzione et al., 2000; Stern and Blisniuk, 2002; Hren et al., 2009) not only add to global precipitation isotope datasets but also reveal that there is a high degree of regional variability in terms of both: (1) which climatic (i.e. temperature, precipitation amount) and geographic (i.e. latitude, longitude, elevation, distance from the moisture source) factors exert dominant controls on precipitation isotopic compositions and (2) the magnitude of the quantitative relationship between isotopic composition and individual environmental parameters, findings which are also supported by analyses of regional isotopic network datasets (Rozanski and Araguás-Araguás, 1995; Araguás-Araguás et al., 1998; Tian et al., 2001;

Johnson and Ingram, 2004; Vachon et al., 2010). This observed regional variability points to the need to better constrain and quantify meteoric water isotopic relationships to individual environmental parameters on a range of spatial scales and in variable physiographic and climatic environments.

Of particular research interest is the degree of variability in the δ^{18} O-elevation and δ^{18} O-temperature relationship as these gradients serve as the foundation for stable isotope paleoaltimetry and paleoclimate studies, respectively. A global compilation of δ^{18} Oelevation gradients revealed that an average gradient of -2.8%/km characterizes most orographic settings (Poage and Chamberlain, 2001), but the observed variability in this dataset (\sim -1 to -5‰/km) requires attention as application of the global average to regions characterized by significantly lower (or higher) δ^{18} O-elevation gradients will lead to significant under- or overestimates of absolute paleoelevation or changes in paleoelevation through time. Theoretical models assuming Rayleigh distillation rainout processes predict δ^{18} O-elevation gradients similar in magnitude to the empirical global average in relatively simple orographic settings (e.g., Rowley et al., 2001), but these same models fail to capture the observed variability in meteoric water isotopic relationships in continental interior settings and over high elevation plateaus (Araguás-Araguás et al., 1998; Quade et al., 2007; Lechler and Niemi, in revision). In order to refine theoretical models so that they more accurately predict isotopic compositions in these continental interior and plateau settings, we must first assess, empirically, the primary controls on isotopic and isotope-elevation gradient variability in order to determine which of the proposed mechanisms [e.g., amount effects (Lee and Fung, 2008), seasonality (Araguás-Araguás et al., 1998; Tian et al., 2001), convective storm activity

(Liu et al., 2008), snow sublimation (Lechler and Niemi, *in revision*)] are likely causes for the observed variability. Similarly, δ^{18} O-temperature gradients have been shown to vary (0.1 – 0.6‰/°C) depending on physiographic setting (e.g., Vachon et al., 2010 and references therein). Identification of the primary controls on and reasons for both δ^{18} Oelevation and δ^{18} O-temperature gradient variability will greatly improve the accuracy of stable isotope-based determinations of paleoelevation and paleotemperature.

For this study, we compiled annual and multi-year precipitation and meteoric water isotope monitoring records collected from the western US and east Asia in order to perform a new statistical analysis of modern annual precipitation δ^{18} O on a regional (e.g., western US) and subregional (e.g., Basin and Range) scale. The western US and east Asia were selected for this study due to each region: (1) having good spatial coverage of modern meteoric water δ^{18} O (or δ D) data, (2) consisting of distinct physiographic and climatic regions that are likely to be characterized by unique isotopic relationships and (3) being an area of active stable isotope paleoclimate (e.g., Quade et al., 1989; Koch et al., 1995; Thompson et al., 1997; Tian et al., 2001) and paleoelevation (e.g., Garzione et al., 2000; Horton et al., 2004; Cyr et al., 2005; Kent-Corson et al., 2006; Mulch et al., 2006; Rowley et al., 2006; DeCelles et al., 2007; Saylor et al., 2009) research and debate. In this analysis, we investigate and quantify the degree of influence climatic (mean annual temperature, mean annual precipitation) and geographic (latitude, longitude, elevation) site parameters exert on modern meteoric δ^{18} O values and how these controls vary in different topographic and climatic settings. The investigated parameters were selected because they have been proposed to be major controls on precipitation isotopic compositions (e.g., Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996) and can be

potentially constrained in the proxy record. The capability to perform both regional and subregional analyses is afforded by the dense spatial coverage of our compiled dataset (Figure 2.1), and this increased spatial coverage allows for the derivation of robust predictive equations for isotopic distributions in each environment.

2.3 Isotopic datasets

2.3.1 Western United States

We compiled published precipitation isotopic (δ^{18} O and δ D) records for 206 sites distributed throughout the western US (Figure 2.1; see Table A2.1 in the Appendix for references for data sources). GNIP sites make up a substantially small proportion (3 out of 206) of the western US compiled dataset as spatial coverage of GNIP stations is sparse in this region. Good spatial coverage with a relatively uniform distribution, however, is obtained through the United States Network for Isotopes in Precipitation (USNIP) dataset (Welker, 2000), which was accessed online as recently as February 2011 (http://www.uaa.alaska.edu/enri/databases/usnip/index.cfm). Compiled datasets varied in terms of spatial and temporal sampling with some studies providing isotopic data for a single station while others provided a regional dataset (e.g., Friedman and Smith, 1972; Friedman et al., 1992, 2002b). Sampling for most datasets was conducted on a seasonal basis but some studies include higher resolution weekly (e.g., USNIP) and monthly sampling. However, in most cases only seasonal or annual precipitation δ^{18} O (or δ D) values were reported in the literature. Due to seasonal and storm-by-storm variability in precipitation isotopic composition at a single site (Gat, 1996; Friedman et al., 2002b), only stations with records of at least one continuous annual cycle of precipitation

Figure 2.1 – 30 meter digital elevation models (DEM) for the western US (A) and east Asia (B) showing modern distribution of precipitation-weighted mean annual δ^{18} O values for each region, color-coded by δ^{18} O value. Sites in (A) are exclusively precipitation stations. Sites in (B) are both precipitation station stations (GNIP) as well as small stream and tributary sampling, primarily focused in the Himalaya and Tibetan Plateau (Garzione et al., 2000; Hren et al., 2009). See Appendix Table A2.1 for reference sources for precipitation and streamwater sampling sites.
collection were included in this analysis. The one exception to this protocol is the inclusion of Sierra Nevada snowcore data (Friedman and Smith, 1972) which includes yearly samples with only one recorded season of precipitation (winter). However, the dominance of winter season precipitation over summer precipitation in the Sierra Nevada region (winter-summer ratio \geq 4; Pandey et al., 1999) supports inclusion of this dataset as the dominant seasonal isotopic signal in this region (winter) is recorded.

Whenever possible, annual precipitation-weighted mean δ^{18} O and δ D values were calculated for each site. In cases where precipitation amounts were not provided (15 out of 206 sites), annual arithmetic mean δ^{18} O and δ D values were calculated. Comparison of arithmetic and weighted mean annual isotopic compositions for stations with precipitation amount data reveal that arithmetic averages approximate weighted averages quite well (average |weighted – arithmetic| δ^{18} O = 0.21‰). As a result, inclusion of arithmetic means should not significantly alter model results. For studies that provided seasonal isotopic values and precipitation amounts (e.g., Friedman et al., 1992; 2002b), we selected records with only paired winter and summer seasons for our weighted mean annual calculations in order to ensure no bias towards a particular season for sites where some seasonal records had been lost or were unavailable. We also calculated precipitation-weighted seasonal averages (winter, summer) for these datasets in order to investigate how isotopic controls varied on a seasonal basis.

2.3.2 East Asia

We compiled 298 meteoric water records collected from east Asia (Figure 2.1B; Table A2.2 in Appendix). Unlike the western US compilation, which includes only precipitation records, the majority of isotopic records in east Asia are derived from small stream and tributary sampling campaigns (Garzione et al., 2000; Hren et al., 2009). We included these surface meteoric waters in order to ensure good regional spatial coverage, particularly within the Himalaya and Tibetan Plateau physiographic subregions. In all cases, the measured meteoric water isotopic compositions are shown to approximate closely precipitation-weighted hypsometric mean elevations for the contributing catchment (see Hren et al., 2009 for calculations). As a result, these values effectively reflect weighted mean annual precipitation 'point' measurements analogous to the GNIP stations that comprise the remainder (50 out of 298) of the east Asia dataset. Duration of sampling at GNIP sites is site-dependent. In cases where multiple publications reported weighted mean annual isotopic compositions for the same station, the record with the longest duration was selected for this analysis. For stations with published records that did not overlap in time (e.g., Johnson and Ingram, 2004 and Liu et al., 2008) an arithmetic average of the reported values was calculated unless precipitation amounts for each record were provided.

2.3.3 Geographic and climatic parameters

Geographic (latitude, longitude, elevation) and climatic (mean annual temperature (MAT), mean annual precipitation (MAP)) parameters were also compiled for each isotopic sample site (Table A2.1 in Appendix). In cases where required parameters were not reported in original data sources, information was acquired from independent datasets. Site elevations were extracted from the US Geological Survey STOPO30 digital elevation model (DEM) using reported site latitude and longitude locations. MAT and MAP site values were provided for most GNIP stations in both the western US and east

Asia. At locations with no reported MAT or MAP, values were extracted from global gridded temperature and precipitation datasets compiled and interpolated by Matsuura and Wilmott at the University of Delaware and accessed online (http://climate.geog.udel.edu/~climate, August 2008).

2.4 Statistical models of the spatial distribution of δ^{18} O in precipitation

2.4.1 Previous studies

Investigating how best to interpolate precipitation site δ^{18} O values to locations lacking a nearby precipitation monitoring station, Bowen and Revenaugh (2003) showed that the interpolation scheme of Bowen and Wilkinson (2002) produced global δ^{18} O distributions with the highest degree of accuracy. The Bowen and Wilkinson model (hereafter referred to as the BW model) utilized the GNIP dataset to model empirically precipitation-weighted mean annual δ^{18} O distributions on a global scale. Deconvolving the temperature and rainout effect on δ^{18} O values into geographic parameters (latitude and elevation) alone, the BW model provides a predictive equation that calculates an expected mean annual precipitation δ^{18} O value at any geographic location: $\delta^{18}O = -0.0051(LAT^2) + 0.1805|LAT| - 0.0020(ELEV) - 5.247$ (latitude in degrees, elevation in meters). By accounting for the general trend of greater heavy isotope depletion at high latitude and/or high elevation sites, the BW model, to a first degree, predicts global δ^{18} O distributions reasonably well. While this global model is a powerful predictive tool, particularly in regions with sparse GNIP station coverage (e.g., western United States, central Asia), it does not account for potential regional variability, both in

terms of which environmental parameters are dominant controls on precipitation δ^{18} O as well as the magnitude of the respective control on δ^{18} O values.

Following the procedure of Bowen and Wilkinson (2002), Dutton and others (2005) and Liu and others (2008) augmented GNIP datasets with regional precipitation isotope sampling campaigns (see references within each manuscript) to create predictive regional models for δ^{18} O distributions in the western US [δ^{18} O = -0.0057(LAT²) + 0.1078|LAT| -0.0029(ELEV) - 1.6544; Dutton et al., 2005)] and east Asia [$\delta^{18}O = -0.0073(LAT^2) +$ 0.3261|LAT| - 0.0015(ELEV) - 9.7776; Liu et al., 2008], respectively. The general trends observed in these regional studies (i.e. depleted isotopic compositions with increasing latitude and elevation) also characterize our compiled datasets from the western US (Figure 2.1A) and east Asia (Figure 2.1B). However, comparison of the derived equations for these regional studies with one another, as well as to the global BW model, reveals significant variability in both δ^{18} O-latitude and δ^{18} O-elevation relationships across different regions. Presumably, this regional variability in isotopic relationships may also reflect variable influences from climatic parameters, such as MAT and MAP, as well. Furthermore, both the western US (Dutton model) and east Asia (Liu model) predictive models are characterized by significant δ^{18} O residuals (approximately -5% to +5%) when comparing model-predicted values with observed station values. In particular, in both the Dutton and Liu models, continental interior regions (Basin and Range, Rocky Mountain Cordillera in the western US; Tibetan Plateau in east Asia) are characterized by large model residuals. This result is not surprising due to sparse precipitation station coverage in these continental interior regions, but this pattern of model residuals also suggests these continental interior and high elevation continental

plateau regions may be characterized by isotopic relationships distinct from those in simple orographic settings.

2.4.2 A multivariate approach to modeling $\delta^{18}O$ in modern precipitation

In this study, we expand on earlier modern precipitation δ^{18} O modeling efforts by investigating a wider spectrum of possible environmental controls at a range of spatial scales. Our approach aims to identify the dominant climatic (MAT, MAP) and geographic (latitude, longitude, elevation) controls on modern δ^{18} O distributions on a regional and subregional scale. For each analysis, we model the observed isotopic (δ^{18} O or δ D) composition of meteoric water at a specific site as a multiple linear regression of the unique set of environmental parameters for a given site:

$$\delta^{18}O = \beta_0 + \beta_1 x_1 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + \beta_5 x_5 + \dots + \beta_n x_n \quad (Eq. 1)$$

where $x_1, x_{2,...,}, x_{n-1}, x_n$ represent independent climatic and geographic parameters (MAT, MAP, latitude, longitude, and elevation) and $\beta_1, \beta_2,..., \beta_{n-1}, \beta_n$ are the linear coefficients for each independent variable. In this multiple regression approach the dependent variable (δ^{18} O or δ D) can be analyzed as either a linear function of independent variables (as shown in Eq. 1, with all variables raised to a power of 1) or as a polynomial function (e.g., LAT² + LAT, as in the BW, Dutton and Liu models).

Our approach differs from published predictive models for global (Bowen and Wilkinson, 2002) and regional (Dutton et al., 2005; Liu et al, 2008) isotopic distributions in two ways. First, the BW, Dutton and Liu models investigated only latitude and elevation as dominant controls on precipitation δ^{18} O. This approach neglects to account

for the influence continentality and amount (i.e. MAP) effects might have on δ^{18} O compositions by assuming that latitudinal and altitudinal effects are the only dominant controls on precipitation isotopic compositions. Second, these models calculate coefficients for latitude and elevation separately. Latitudinal coefficients are solved for by using only the subset of precipitation sampling stations that are at low elevations (< 200 m). Elevation coefficients are then calculated by dividing the δ^{18} O residual (difference between observed isotopic composition and isotopic composition calculated using the derived latitudinal effect alone) by the station elevation (see Bowen and Wilkinson, 2002 and Dutton et al., 2005 for details).

We investigate the impact of proposed controlling 'effects' on precipitation δ^{18} O and δ D values (Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996) by including environmental parameters that directly relate to each of these effects: (1) the temperature effect (MAT), (2) the amount effect (MAP), (3) continentality effect (longitude, latitude) and (4) the altitude effect (elevation). Additionally, our model approach solves for each parameter coefficient simultaneously as part of a single linear model. For example, in this approach the relationship between isotopic composition and elevation is calculated with the quantitative influence of every other parameter taken into account. This approach allows for the component of the isotopic signal attributable to each parameter, as is commonly done when performing simple one-to-one comparisons of isotopic composition to an individual environmental parameter. These one-to-one comparisons often account for only a modest amount of isotopic variability, as evidenced by low R² values (generally < 0.5) and are only informative in cases where each independent

parameter (e.g., latitude, elevation) is uncorrelated with the others. In most settings, however, this assumption of independence is difficult to ensure. For example, a precipitation monitoring transect trending N-S from the Indian subcontinent up the southern flank of the Himalaya would exhibit a high degree of correlation between latitude and elevation as elevation steadily increases from south to north along the Himalayan front. As a result, it may be difficult to discern whether latitude or elevation is the dominant control on the observed decrease in isotopic values as a function of northward position. It's important to point out, however, that this issue of covariance can be partially circumvented if the quantitative relationships between individual environmental parameters and δ^{18} O values differ significantly in terms of magnitude. For example, expected depletion due to latitudinal effects alone ($\sim 1-2\infty$) is likely to be an order of magnitude less than depletion from expected altitudinal effects (~20‰) for a mid-latitude region with a topographic gradient comparable to the Himalaya Mountains. As a result, elevation effects should still be discerned from the isotopic record in regions characterized by high relief. In any case, this simple example reveals the potential for complications to arise when interpreting one-to-one comparisons in settings characterized by significant covariance among the environmental parameters influencing isotopic compositions, thus pointing to the need to investigate quantitative relationships within the context of other influential parameters.

2.4.3 Application of a multivariate approach to the western US and east Asia

For each regional and subregional analysis we start by modeling precipitation weighted mean annual δ^{18} O as a multiple regression model that includes all investigated parameters (latitude, longitude, elevation, MAT, MAP) (full linear model). Using

regression diagnostics for the full linear model we test the null hypothesis for each independent parameter by identifying parameters that do not exert a statistically significant influence on the dependent isotopic composition through analysis of the corresponding p-value (probability of obtaining a t-value greater than that observed). High p-values (> 0.05) indicate that the null hypothesis for the corresponding variable is statistically satisfied; in other words, the independent variable does not exert significant control on the dependent variable (δ^{18} O). We then create a regression model that includes only the statistically significant independent variables with the aim of reducing the model to include only the parameters that significantly influence observed isotopic compositions. We repeat this process iteratively to test how p-values for independent variables change with a new subset of parameters. After these iterations, we arrive at a reduced linear model that has the minimum number of independent predictor variables (i.e. out of latitude, longitude, elevation, MAT, MAP) but a maximum coefficient of determination (R^2) . This reduced linear model is verified statistically using analysis of variance (ANOVA) tests which compare the reduced linear models to the full linear models and test the null hypothesis that the difference in prediction between the two models is not statistically significant, i.e. the reduced model has the same predictive capabilities as the full linear model.

This statistical approach is built on a number of assumptions that must be satisfied in order to ensure reliable results. As discussed above, covariance among independent variables (multicollinearity) complicates multiple regression analysis. As part of each regional and subregional analysis we calculate variance inflation factors (VIF) for all full and reduced linear models to assess the degree of multicollinearity. VIF values increase with higher degree of multicollinearity and, in practice, the cutoff for acceptable VIF values ranges from 5 (e.g., Marquardt, 1980) to 10 (O'Brien, 2007) depending on the system being studied and accuracy required. In models with VIF values greater than 5 (i.e. high multicollinearity) we eliminate individual parameters that exhibit a high level of covariance with other independent variables (e.g., temperature) in order to reduced model VIF values to acceptable levels.

Another assumption that must be verified in our statistical analysis is normal distribution of independent variables and model residuals in order for relevant t- and p-values to be calculated. Independent environmental variables that are not sufficiently normally distributed require transformation in order to be included in the regression analysis. Biased model residuals indicate that the fitted regression model does not accurately predict isotopic compositions. The requirement that independent environmental parameters are normally distributed can be difficult to ensure in a natural system, particularly with non-uniform geographic distributions of sample sites. Fortunately, in all our analyses both independent variables and model residuals are reasonably well-fit by a normal distribution and do not require subsequent transformations or re-analysis.

2.5 Model Results

Statistical analyses for each region and subregion (Figure 2.2) followed the iterative procedures outlined above. Regression models for both a linear and polynomial (e.g., BW model) fit for latitude were analyzed for all regions and subregions to assess

the degree to which a polynomial fit for latitude is required by the data. For the east Asia dataset, in addition to exploring the effects of a polynomial fit for latitude, we also investigated non-linear parameterization of elevation as suggested by Rayleigh distillation modeling studies of precipitation processes at high elevations over the Himalaya-Tibetan Plateau system (Rowley et al., 2001). Table 2.1 summarizes the most reduced multiple regression model that is accepted for each subregion based on the p-value, ANOVA, and VIF criteria outlined in section 2.4.3. For direct comparison of our model results to the BW and regional (Dutton for western US; Liu for east Asia) regression models, model coefficients for the regression model consisting exclusively of latitude (both linear and polynomial fits) and altitude alone are also provided (Table 2.2). In specific subregions (e.g., Basin and Range, North-Central Tibetan Plateau), latitude and elevation alone are statistically verified to sufficiently explain the observed variability in isotopic data. In these cases, the latitude and elevation model is also termed the 'reduced' model.

2.5.1 Western US δ^{18} Oanalysis

The compiled precipitation isotopic dataset for the western US region was subdivided into four subregions based on physiographic and climatic characteristics (Figure 2.2): (1) Coast, (2) Basin and Range, (3) Rocky Mountain-Colorado Plateau (RMCP) and (4) Great Plains. The Coast and Great Plains subregions are characterized by a proximal dominant seasonal moisture source (Pacific Ocean for the Coast; Gulf of Mexico for the Great Plains), while the Basin and Range and RMCP provinces are subject to complex moisture source interactions (Figure 2.2) and are generally distal from moisture sources. Due to the relatively sparse spatial coverage in the RMCP subregion

Figure 2.2 – DEM of the western US outlining the physiographic and climatic subregions analyzed as part of this study. Four primary subregions were analyzed in the western US: (1) Coast, (2) Basin and Range, (3) Rocky Mountain-Colorado Plateau (RMCP), and (4) Great Plains. We also analyzed two subregion reorganizations: Coast-Gulf of CA (outlined with red dashed line) and the Continental Interior subregion which combines the Basin and Range and RMCP subregions. Note that the Basin and Range subregion includes all of the Gulf of CA area that is also part of the Coast-Gulf of CA subregion. Arrows indicate the dominant annual moisture sources that deliver moisture to the western US (see Friedman et al., 2000a for discussion). Dominant moisture source varies seasonally depending on location.

and similarity in physiography and moisture source complexity with the Basin and Range subregion, a statistical analysis of a joint Basin and Range-RMCP subregion (Continental Interior) was also performed. A final subregion reorganization was explored based on the influence of the North American monsoon in areas of the southern Basin and Range and Colorado Plateau (Adams and Comrie, 1997). The influence of Gulf of California and Gulf of Mexico-derived moisture to this region during the summer season gives it characteristics more akin to that of the Coast subregion (i.e. close to moisture source, no orographic barrier). The corresponding subregion is termed Coast-Gulf of CA.

Analysis of the full regional dataset (all western US sites) reveals that all independent variables, with the exception of longitude, are required to explain the observed variability in δ^{18} O. The R² values for both the linear and polynomial models (0.66 and 0.68, respectively) suggest these models sufficiently capture the majority of observed isotopic variability but the magnitude of these R² values suggest that either isotopic controls and relationships to individual environmental parameters vary on a subregional spatial scale, or that our analysis has not considered important environmental controls (e.g., temperature at moisture source (Vachon et al., 2010); temperature during precipitation event (Kohn and Welker, 2005); individual storm precipitation amount).

Statistical analysis of the Coast subregion of the western US (Fig. 2.2) reveals that latitude, elevation, and mean annual precipitation amount (MAP) are the primary controls on the isotopic composition of regional precipitation and the high R² value associated with this reduced model (0.86) suggests that δ^{18} O distributions are well-modeled by these environmental parameters. Both latitude and elevation are negatively correlated with δ^{18} O (-0.64 ‰/°N and -3.0 ‰/km, respectively), whereas MAP exhibits a positive

correlation (0.025–0.029 ‰/cm/yr). A regression model of elevation alone reveals that elevation is highly correlated ($R^2 = 0.76$) with precipitation δ^{18} O, with a δ^{18} O-elevation gradient very similar in magnitude to the reduced linear model which also includes the influences of latitude and MAP.

The Great Plains subregion is characterized by a δ^{18} O-elevation gradient (-2.8 to -2.9 ‰/km) similar to that of the Coast subregion, as well as to the global empirical average (-2.8 ‰/km; Poage and Chamberlain, 2001) and the Dutton model (-2.9 ‰/km) gradients. In the Great Plains, latitude and elevation alone act as the primary controls on precipitation δ^{18} O but model fit (R² = 0.71) is not as high as in the Coast subregion. In contrast to the Coast subregion, elevation alone accounts for only a minor proportion of subregional δ^{18} O variability (R² = 0.2), perhaps due to the limited topographic relief in this geographic region.

The Basin and Range subregion is best-fit by either a reduced model including only latitude and elevation ($R^2 = 0.78$), analogous to the BW and Dutton models, or including mean annual temperature (MAT) alone ($R^2 = 0.76$). The derived δ^{18} O-elevation gradient (~ -1.5‰/km) is significantly reduced in magnitude compared to both the empirical global mean gradient (-2.8‰/km) and the regional gradient of the Dutton model (-2.9‰/km), as well as to those observed in our analysis of the Coast and Great Plains subregions. The similarity in predictive capabilities between the 'MAT-only' and 'latitude + elevation' reduced models is consistent with the high degree of absolute covariance observed among reduced model variables (latitude-MAT= 0.81; elevation-MAT = 0.83).

The Rocky Mountain-Colorado Plateau (RMCP) subregion is unique in that it is the only subregion where elevation is not a required parameter in the reduced linear model; instead latitude and MAT are the only statistically significant controls on precipitation δ^{18} O (R² = 0.75). Due to the covariance between elevation and MAT, however, a model of latitude and elevation also fits the data reasonably well (R²=0.66).

The joint Basin and Range-RMCP subregion ("Continental Interior") analysis exhibits similar characteristics to that of the Basin and Range subregion, with a δ^{18} O-elevation gradient lower than the global mean (~ -1.5‰/km), but requiring longitude as a predictor variable for regional δ^{18} O distribution, with longitude positively correlated with δ^{18} O (0.13‰/°E).

The reduced model of the Coast-Gulf of CA subregion has characteristics similar to those of the Coast subregion. Latitude, elevation and MAP are dominant controls on δ^{18} O, and, like the Coast analysis, this subset of environmental parameters produces a linear model with a high R² value (0.88) and δ^{18} O-elevation gradient (-2.8‰/km) similar to published global and regional averages (Poage and Chamberlain, 2001; Dutton et al., 2005).

As part of our western US analysis we also tested the sensitivity of our approach to single year records. Multi-year precipitation records reveal that significant interannual variability can influence isotopic records, particularly during climatic extremes (e.g., ENSO; Friedman and Smith, 1972; Cole et al., 1999). Over 75% (156 out of 206) of our compiled isotopic records from the western US provide $a \ge 2$ year record, with many having records of three years of more. The results of regional and subregional analyses (Table 2.1) for this data subset reveal that longer term records confirm the trends observed in the analyses utilizing annual records. Required environmental parameters and R^2 values are consistent for both long-term and single year records, and we again see a reduction in δ^{18} O-elevation gradient for the Basin and Range and Continental Interior subregions (Tables 2.1 and 2.2). The only region that displays any significant variability is the Coast region, with long-term records requiring a greater δ^{18} O-elevation gradient (-3.6 to -4.0‰/km).

2.5.2 East Asia δ^{18} Oanalysis

The east Asia dataset was subdivided into 3 subregions (Figure 2.3) based on physiographic and climatic characteristics: (1) eastern Asia, (2) Himalaya-Southern Tibet, and (3) North-Central Tibetan Plateau. The eastern Asia subregion is characterized by low to moderate elevations and relative proximity to the dominant annual moisture source, the western Pacific Ocean (Figure 2.3). The Himalayan Mountains are grouped with the southern Tibetan Plateau (south of Lhasa) based on published work indicating that this portion of the Tibetan Plateau receives the vast majority of its moisture from the South Asian monsoon and can thus be considered part of the same precipitation system as the Himalayan front (Tian et al., 2007; Hren et al., 2009). In contrast, interseasonal variability in moisture source, complex moisture source interaction and increased continental moisture recycling characterize much of the North-Central Tibetan Plateau subregion (Tian et al., 2001; Johnson and Ingram, 2004; Liu et al., 2008; Hren et al., 2009). With the exception of the eastern Asia subregion, including a polynomial parameterization for elevation has little to no effect in improving model R^2 values (Table 2.2).

Figure 2.3

Figure 2.3 – DEM of east Asia region outlining the physiographic and climatic subregions analyzed as part of this study: (1) Eastern Asia, (2) Himalaya-South Tibet and (3) North-Central Tibetan Plateau. Dominant annual moisture sources shown by arrows (modified from Liu et al., 2008 and Hren et al., 2009). The dominant summer moisture sources, highlighted by enlarged arrows (Indian monsoon and East Asian monsoon), contribute the vast majority of annual precipitation to the Himalaya-South Tibet and Eastern Asia subregions, whereas the North-Central Tibetan Plateau is subject to increased influence from moisture sources north and west of the Plateau.

	Coefficients								
Region/Subregion	Regression Model	LAT ²	LAT(°)	LON(°)	ELEV (m)	MAT (°C)	MAP (cm/yr)	Intercept	R ²
WESTERN US ALL RECORDS									
<u>All Sites</u> LAT+LON+ELEV+MAP	Linear Poly(LAT)	0.0006	-0.44 -0.49	0.10 0.10	-0.0025 -0.0025		0.017 0.017	18.7 19.6	0.77 0.77
<u>Coast</u> LAT+ELEV+MAP	Linear Poly(LAT)	0.0251	-0.64 -2.54		-0.0030 -0.0030		0.029 0.025	13.8 49.9	0.85 0.86
<u>Basin and Range</u> LAT+ELEV	Linear* Poly(LAT)*	0.0061	-0.57 -1.04		-0.0015 -0.0014			10.9 19.9	0.78 0.78
<u>RMCP</u> LAT+MAT	Linear Poly(LAT)	-0.0036	-0.27 0.03			0.49 0.50		-5.8 -11.9	0.75 0.75
<u>Continental Interior</u> LAT+LON+ELEV	Linear Poly(LAT)	0.0158	-0.52 -1.77	0.13 0.11	-0.0016 -0.0014			24.8 46.7	0.72 0.72
<u>Great Plains</u> LAT+ELEV	Linear* Poly(LAT)*	-0.0042	-0.41 -0.08		-0.0028 -0.0029			9.1 2.9	0.71 0.71
<u>Coast-Gulf of CA</u> LAT+ELEV+MAP	Linear Poly(LAT)	0.0217	-0.63 -2.24		-0.0028 -0.0027		0.026 0.023	13.6 43.3	0.81 0.81
		WE	STERN L	<u> JS ≥ 2 YE</u> /	AR RECO	<u>RDS</u>			
<u>All Sites</u> LAT+LON+ELEV+MAP	Linear Poly(LAT)	-0.0045	-0.42 -0.07	0.08 0.08	-0.0027 -0.0027		0.019 0.019	15.7 9.0	0.77 0.77
<u>Coast</u> LAT+ELEV+MAP	Linear Poly(LAT)	-0.0467	-0.71 2.73		-0.0037 -0.0040		0.036 0.052	17.8 -45.9	0.90 0.91
<u>Basin and Range</u> LAT+ELEV	Linear* Poly(LAT)*	0.0022	-0.51 -0.67		-0.0018 -0.0017			9.1 12.2	0.79 0.79
<u>Continental Interior</u> LAT+LON+ELEV	Linear Poly(LAT)	0.0112	-0.49 -1.39	0.14 0.12	-0.0017 -0.0016			24.7 40.3	0.72 0.72
<u>Great Plains</u> LAT+ELEV	Linear* Poly(LAT)*	-0.0042	-0.41 -0.08		-0.0028 -0.0029			9.1 2.8	0.70 0.70
<u>Coast-Gulf of CA</u> LAT+ELEV+MAP	Linear Poly(LAT)	-0.0421	-0.66 2.42		-0.0032 -0.0036		0.036 0.050	15.0 -41.2	0.87 0.88
EASTERN ASIA									
<u>All Sites</u> LAT+ELEV+MAT+MAP	Linear Poly(LAT)	-0.0264	0.29 2.03		-0.0012 -0.0014	0.09 0.11	0.013 0.010	-18.4 -45.6	0.66 0.68
<u>Eastern Asia</u> LAT+LON+ELEV	Linear Poly(LAT)	-0.0077	-0.07 0.42	-0.10 -0.06	-0.0022 -0.0020			6.6 -5.1	0.68 0.79
<u>Himalaya-S. Tibet</u> LAT+LON+ELEV	Linear Poly(LAT)	0.2048	0.58 -11.19	0.18 0.18	-0.0031 -0.0031			-35.3 133.7	0.85 0.86
<u>North-Central Tibet</u> LAT+ELEV	Linear* Poly(LAT)*	-0.1270	1.15 9.37		-0.0007 -0.0015			-47.1 -175.8	0.69 0.71
<u>Himalaya only</u> (LAT or Lon)+ELEV	Linear Linear B* Poly(LAT)*	0.0960	-0.26 -5.61	0.07	-0.0033 -0.0033 -0.0033			-8.6 4.7 79.1	0.92 0.91 0.91
<u>All Tibet</u> LAT+LON+ELEV	Linear Poly(LAT)	-0.1861	1.01 13.02	0.21 0.24	-0.0012 -0.0019			-59.4 -251.6	0.57 0.62

TABLE 2.1 – Reduced multiple regression models for Western US and East Asia

Table 2.1 Notes – Reduced multivariate linear regression models for all regions and subregions of the western US and east Asia with environmental parameter coefficients provided. Poly(LAT) indicates models fit with a polynomial function of latitude in combination with linear parameterization of remaining environmental parameters. *Indicates that the statistically-verified reduced regression model consists of only latitude and elevation.

- · · /				Coeffi	cients		
Region/ Subregion	Regression Model	LAT ²	LAT(°)	ELEV ²	ELEV(m)	Intercept	R ²
		WES	<u>TERN US</u>				
<u>All Sites</u>	LAT+ELEV		-0.37		-0.0028	6.1	0.69
	LAT ² +LAT+ELEV	0.0165	-1.67		-0.0027	31.1	0.70
	ELEV only				-0.0027	-8.3	0.55
Coast	LAT+ELEV		-0.24		-0.0031	1.0	0.78
	I AT ² +I AT+FI FV	0.0481	-3.98		-0.0030	73.5	0.81
	ELEV only	0.0.01	0.00		-0.0028	-8.5	0.76
Pasin and Pango			0.57		0.0015	10.0	0.78
Dasin and Nange		0.0061	-0.57		-0.0013	10.9	0.70
		0.0001	-1.04		-0.0014	19.9	0.70
	ELEV ONLY				-0.0024	-9.1	0.51
RMCP	LAT+ELEV		-0.63		-0.0021	16.1	0.66
	LAT ² +LAT+ELEV	-0.0022	-0.45		-0.0021	12.7	0.66
	ELEV only				-0.0009	-11.5	0.04
Continental Interior	I AT+FI FV		-0.53		-0.0015	9.6	0.69
<u>Continental Interior</u>	$ \Delta T^2 + \Delta T + E EV$	0 0252	-2 52		-0.0012	48.5	0.00
	ELEV only	0.0202	2.02		-0.0020	-9.6	0.34
					0.0020	0.0	0.01
Great Plains	LAT+ELEV		-0.41		-0.0028	9.1	0.71
	LAT ² +LAT+ELEV	-0.0042	-0.08		-0.0029	2.9	0.71
	ELEV only				-0.0029	-6.8	0.20
Coast-Gulf of CA	Ι ΔΤ+ΕΙ Ε\/		-0.23		-0 0028	03	0.75
	$ \Delta T^2 + \Delta T + E EV$	0 0442	-3.60		-0.0026	64 1	0.78
	ELEV only	0.0112	0.00		-0.0027	-8.4	0.72
4.4. 0.1		<u>EAS</u>	<u>ST ASIA</u>				
<u>All Sites</u>			0.10		-0.0019	-9.2	0.65
		-0.0292	2.04		-0.0021	-40.0	0.65
	LAI-+LAI+ELEV-+ELEV	-0.0302	2.09	4.50E-08	-0.0024	-40.4	0.65
	ELEV ONLY				-0.0019	-6.1	0.62
<u>Eastern Asia</u>	LAT+ELEV		-0.12		-0.0014	-3.4	0.60
	LAT ² +LAT+ELEV	-0.0090	0.47		-0.0015	-12.5	0.76
	LAT ² +LAT+ELEV ² +ELEV	-0.0083	0.42	-7.70E-07	-0.0003	-11.8	0.78
	ELEV only				-0.0010	-7.4	0.14
Himalava-S Tibet	Ι ΔΤ+ΕΙ Ε\/		0.48		-0 0029	-17.0	0 79
Thindidyd O. Tibol	$ \Delta T^2 + \Delta T + E EV$	0 1942	-10.69		-0.0020	143.3	0.00
	$ \Delta T^2 + \Delta T + E EV^2 + E EV$	0.1042	-12 10	-2 16E-07	-0.0016	161.8	0.81
	ELEV only	0.2100	12.10	2.102 07	-0.0028	-3.6	0.79
North-Central Tibet	LAT+ELEV		1.15		-0.0007	-47.1	0.69
		-0.1270	9.37		-0.0015	-1/5.8	0.71
	LAI ⁻ +LAI+ELEV ⁻ +ELEV	-0.1041	7.96	-2.35E-07	0.0005	-158.3	0.71
	ELEV only				-0.0019	-5.2	0.22
<u>Himalaya only</u>	LAT+ELEV		-0.26		-0.0033	4.7	0.91
	LAT ² +LAT+ELEV	0.0960	-5.61		-0.0033	79.1	0.91
	LAT ² +LAT+ELEV ² +ELEV	0.0747	-4.39	-3.37E-07	-0.0015	59.6	0.92
	ELEV only				-0.0034	-2.8	0.91
All Tibet	LAT+FLEV		0 91		-0 0018	-34 3	0 52
<u>, , 1000</u>	$ AT^2+ AT+F FV $	-0 1596	11 20		-0.0025	-196.2	0.56
	$I AT^2 + I AT + FI FV^2 + FI FV$	-0 1477	10 71	-4 68F-07	0.0019	-222.6	0.63
	ELEV only				-0.0018	-6.0	0.22

|--|

Table 2.2 notes – Regression model coefficients for models of latitude and elevation alone (i.e. analogous to the BW model). Coefficients and intercepts for elevation only (ELEV only) regression models also provided. In our east Asia statistical analysis, the influence of both elevation and latitude polynomial parameterization were also investigated.

Statistical analysis of all east Asia δ^{18} O collection sites constrains latitude, elevation, MAT, and MAP to be primary controls on δ^{18} O variability with an R² value of 0.68 (Table 2.1). In all subregional analyses, however, MAP and MAT are not significant independent parameters and δ^{18} O can be modeled as a function of geographic parameters alone. In the eastern Asia subregion, latitude, longitude, and elevation account for most of the observed variability in δ^{18} O (R² = 0.79), with a subregional δ^{18} O-elevation gradient of -1.5 to -2.0 ‰/km calculated, similar in magnitude to the regional Liu model (-1.5 ‰/km). The variability in δ^{18} O-elevation gradient magnitude in our analyses is dependent upon the inclusion of longitude in the regression model (Tables 2.1 and 2.2).

The Himalayan-South Tibet subregion analysis indicates latitude, longitude, and elevation are the dominant controls on and good predictors ($R^2 = 0.86$) of meteoric $\delta^{18}O$. The observed $\delta^{18}O$ -elevation gradient for this subregion is -3.1‰/km, similar in magnitude to empirical meteoric water isotope-elevation gradients along the Himalayan front (Garzione et al., 2000), global averages (Poage and Chamberlain, 2001), and gradients for the Coast and Great Plains subregions of the western US derived in this study. Analysis of only the Himalayan region (i.e. without South Tibet) produces similar trends ($R^2 = 0.91$; $\delta^{18}O$ -elevation gradient = -3.3‰/km) to the Himalaya-South Tibet analysis.

North-Central Tibetan Plateau δ^{18} O is modeled effectively (R² = 0.71) as a function of latitude and elevation alone with a corresponding δ^{18} O-elevation gradient of -1.5 ‰/km. Analysis of all Tibetan Plateau (South Tibet and North-Central Tibet) results

in a significantly reduced model R^2 value (0.56) as well as a higher magnitude δ^{18} Oelevation gradient of -2.5%/km.

2.6 Calculating model uncertainty

Model uncertainties were calculated for all regions and subregions through comparison of actual δ^{18} O and elevation values with δ^{18} O and elevation values calculated using model-derived coefficients and intercepts. We also compared our modeled-derived uncertainties with those derived from predicted isotopic and elevation values using BW, Dutton and Liu model parameters. Predicted δ^{18} O values are calculated using all appropriate independent environmental parameter coefficients for each reduced model. Model-predicted elevations are calculated using the following equation:

Model Elevation (m) =
$$\frac{(\delta^{18}O_{Actual} - \delta^{18}O_{Sea \, level})}{(\delta^{18}O/elevation)_{model}}$$
(Eq. 2)

where $\delta^{18}O_{\text{sea}\ \text{level}}$ is calculated using all model variables and coefficients except elevation, effectively calculating model $\delta^{18}O$ at zero elevation. The difference between actual $\delta^{18}O$ and model-predicted sea level $\delta^{18}O$ is thus assumed to be solely a function of site elevation which we calculate using the regional or subregional $\delta^{18}O$ -elevation gradient [$(\delta^{18}O/\text{elevation})_{\text{model}}$]. Table 2.3 lists and Figures 2.4 – 2.6 show model uncertainties at 95% (2 σ) confidence intervals for predicted $\delta^{18}O$ and elevation values. Model-predicted $\delta^{18}O$ (Figure 2.4) and elevation (Figures 2.5 and 2.6) values consistently plot along a 1:1 line for all statistical models derived in this study, which is required by

Subregion	Model	2σ (± m)	Slope	Intercept
Western US ALL	WESTERN This Study Dutton model BW model	1345 1359 2041	1.00 0.97 1.40	1 736 1130
<u>Coast</u>	This Study	898	1.00	3
	Dutton model	1168	1.09	692
	BW model	1675	1.53	1146
Basin and Range	This Study	1777	0.99	2
	Dutton model	974	0.65	1424
	BW model	1556	1.04	1931
<u>RMCP</u>	This Study	1964	1.00	0
	Dutton model	1688	0.58	1173
	BW model	2769	0.72	2091
Continental Interior	This Study	2156	1.00	9
	Dutton model	1195	0.59	1438
	BW model	1904	0.92	2019
<u>Great Plains</u>	This Study	1221	0.99	0
	Dutton model	1258	1.02	155
	BW model	2090	1.48	309
Coast-Gulf of CA	This Study	1059	1.00	3
	Dutton model	1177	0.97	888
	BW model	1683	1.40	1293
	EASTERN	ASIA		
<u>ASIA ALL</u>	This Study	2285	1.00	-7
	Liu model	3484	1.31	-546
	BW model	2622	0.98	700
<u>Eastern Asia</u>	This Study	629	0.99	3
	Liu model	950	1.07	-32
	BW model	747	0.79	1103
<u>Himalaya- S. Tibet</u>	This Study	1048	1.00	40
	Liu model	2625	1.83	-1833
	BW model	1971	1.37	-286
North-Central Tibet	This Study	2385	0.99	39
	Liu model	4073	1.35	-1689
	BW model	3061	1.01	-177

TABLE 2.3 – Regression model elevation uncertainties

Table 2.3 Notes – 2σ elevation uncertainty values for all western US and east Asia subregions. Uncertainties derived from BW, Dutton and Liu regression models are included for comparison. 2σ values were calculated from linear regression of model-predicted elevations versus actual elevations (Figures 2.5 and 2.6). See text for discussion on how model-predicted elevations were calculated. Note that in some cases published regional or global models have lower 2σ uncertainty values than uncertainties derived from this analysis. However, in many of these cases the published regression model is typified by model vs. actual slopes significantly different than 1 due systematic over- or underpredictions of site elevations as reflected by intercept values significantly different than 0 (e.g. Dutton model for Basin and Range).

Figure 2.4

Figure 2.4 – Plots showing model predicted δ^{18} O versus actual site δ^{18} O values. Predicted values are calculated using multiple regression model coefficients derived in this study and are compared to predicted values calculated using regional (Dutton et al., 2005; Liu et al., 2008) and global (Bowen and Wilkinson, 2002) regression model coefficients. Red lines mark the 95% (2σ) confidence interval on the best-fit regression and blue lines mark the 95% (2σ) prediction interval for the regression. Dashed green line indicates 1:1 line (actual δ^{18} O = model-predicted δ^{18} O). All models are plotted at the same scale for direct comparison.

our modeling approach as our statistical models are best fits to all data points in each region and subregion. Performance of the BW model and regional models (Dutton model for western US; Liu model for east Asia) is regionally variable and is discussed below. Figures 2.7 - 2.10 show contour maps for regional δ^{18} O and elevation residuals to highlight spatial trends in model (this study and published) predictive capabilities.

2.6.1 $\delta^{18}O$ uncertainty

Using the derived environmental parameter coefficients associated with the bestfit, reduced regression model for each subregion (Table 2.1), we calculate modelpredicted δ^{18} O values at precipitation collection sites in the western US and east Asia. Average model δ^{18} O residuals (difference between model predicted and observed δ^{18} O) ±1.1‰ and ±1.2‰ for the western US and east Asia, respectively. Compiling are subregional model-predicted δ^{18} O values to calculate average model residuals for the full region has the advantage of reducing average regional residual values in comparison to residuals calculated using a single best-fit regression model for the full regional dataset (±1.3‰ for western US; ±1.9‰ for east Asia), but the compilation of distinct, subregional regression models violates the assumption that all sites are fit equally well by the same model, resulting in slight deviations from a 1:1 line in plots of model-predicted δ^{18} O versus observed δ^{18} O (Figure 2.4; Western US slope = 0.83; East Asia slope = 0.85). High R^2 values for model versus predicted $\delta^{18}O$ values in both the western US $(R^2 = 0.82)$ and east Asia $(R^2 = 0.85)$ indicate that the regression models derived in this study account for a significant portion of the variability observed in modern δ^{18} O distributions in both regions. Additionally, our regression models consistently more

accurately predict modern δ^{18} O values in comparison to published regional (Dutton and Liu) and global (BW model) regression models (Figures 2.7 and 2.8). Application of regional model coefficients yields average model residuals of 2.3‰ for the western US (Dutton model) and 2.2‰ for east Asia (Liu model). In both regions, the BW model produces the highest absolute model residuals, with average values of 3.5‰ in the western US and 2.4‰ in east Asia. The BW model also consistently overpredicts δ^{18} O values, particularly for sites with low (< -15‰) weighted mean annual δ^{18} O values (Figure 2.4).

2.6.2 Elevation uncertainty

Similar to our δ^{18} O uncertainty analysis, the reduced regression models derived in this study consistently perform as well or better at predicting site elevations than existing regional and global predictive models in both the western US and east Asia (Table 2.3, Figures 2.5 and 2.6). Model accuracy, however, is subregion dependent. Elevation uncertainties (2 σ) for regression models derived in this study are lowest for the Coast (±898 m), Great Plains (±1221 m), and Coast-Gulf of CA (±1059 m) subregions and highest for the Basin and Range (±1777 m), Rocky Mountain-Colorado Plateau (±1964 m), and joint Continental Interior (±2156 m) subregions in the western US. In east Asia, 2 σ model uncertainties range from ±629 m for the eastern Asia subregion, to ±1048 m in the Himalayan-South Tibet subregion and up to ±2385 m in the North-Central Tibetan Plateau.

Regional (Dutton and Liu models) and global (BW model) regression models exhibit varying levels of accuracy at predicting site elevations depending on subregion

Figure 2.5 - Western US model predicted site elevations versus actual elevations. Calculated using regression coefficients of reduced linear models derived in this study (see text for discussion), as well as coefficients of published regional (Dutton et al., 2005) and global (Bowen and Wilkinson, 2002) regression models for comparison. Red lines mark the 95% (2σ) confidence interval on the best-fit regression and blue lines mark the 95% (2σ) prediction interval for the regression (2σ uncertainties also provided in Table 2.3). Dashed green line indicates 1:1 line (actual elevation = model-predicted elevation). All subregions and models are plotted at the same scale for direct comparison of model performance.

Figure 2.6 – East Asia model predicted elevations versus actual elevations. See Figure 2.5 caption for additional information on plots. In this region the relevant regional model is from Liu and others (2008). See Table 2.3 for uncertainty values.

Figure 2.7 – Western US model δ^{18} O residuals contoured using ArcGIS Inverse Distance Weighted algorithm. Dutton and BW models are shown for comparison. All model residuals are plotted at the same color-scale, but note that some sites are characterized by model residuals with magnitudes greater than the $\pm 5\%$ cutoff, particularly the BW model for sites in the northern Basin and Range and RMCP subregions. The majority of western US sites have model residuals between -2 and +2‰ when calculated using our model coefficients. Site locations shown by black dots.

Figure 2.8 – Smoothed contour map of east Asia model δ^{18} O residuals. Liu and BW models are shown for comparison. The color patterns indicate that both the regional (Liu model) and global (BW model) regression models significantly underpredict meteoric δ^{18} O values at most central and northern Tibetan Plateau sites and overpredict δ^{18} O values for Himalaya and southern Tibetan Plateau locations. In some cases the color code is saturated at the extremes due to absolute residual values greater than $\pm 5\%$ (see Table 2.3 for uncertainty values). Site locations shown by black dots. Note that some regions (e.g. India, northern margin of Tibetan Plateau) have sparse data coverage. As a result, caution should be taken when interpreting contoured residual values in these regions.

Figure 2.9 - Western US model-predicted elevation residuals. Dutton and BW models are shown for comparison. Some sites have elevation residuals > + 2km (darkest blues) and cannot be distinguished by the colorscale. Note that both the Dutton and BW models consistently overpredict site elevations in the Basin and Range and northern RMCP subregions with the BW model producing extreme overpredictions (> 2 km) at many of these sites (see Figure 2.5). Site locations shown by black dots.

Figure 2.10 – East Asia model-predicted elevation residuals. Liu and BW models are shown for comparison. Model-predicted elevations of this study are consistently more accurate than either the Liu or BW model (see also Figure 2.6), particularly in the Tibetan Plateau and Himalaya where the Liu and BW models are characterized by extreme (> 2 km) elevation underestimates and overestimates, respectively. Black dots mark site locations. As with regional residual $\delta^{18}O$ (Figure 2.8), caution must be taken when interpreting residual contours in regions of sparse data.

(Figures 2.5 and 2.6). The BW model consistently overpredicts site elevations by more than 1500 m for most subregions in the western US and in the Himalaya-South Tibet subregion of east Asia. The Dutton model predicts site elevations to a similar degree of accuracy to that of our statistical analysis (2σ uncertainty < 1300 m) in the Coast, Great Plains and Coast-Gulf of CA subregions of the western US, but significantly overestimates (> 1500 m) elevations in the continental interior subregions. The Liu model predicts eastern Asia site elevations to within ± 1000 m, but is characterized by significant elevation residuals (-2000 m to +4000 m) in both the Himalaya and Tibet subregions (Figures 2.6 and 2.10).

2.7 Discussion and Implications

2.7.1 Regional and subregional trends

Statistical analyses of modern precipitation δ^{18} O distributions in the western US and east Asia indicate a significant degree of variability in both type and magnitude of environmental controls on precipitation isotopic values for various physiographic and climatic subregions. In general, as proposed in earlier studies which deconvolved the temperature effect on precipitation isotopic compositions into geographic parameters alone (Bowen and Wilkinson, 2002; Bowen and Revenaugh, 2003; Dutton et al., 2005; Liu et al., 2008), we show that latitude and elevation are dominant controls on δ^{18} O distributions. The requirement of a polynomial function of latitude, however, appears to be region dependent, with the western US equally well fit by either a polynomial function of latitude or a strictly linear regression of environmental parameters. In contrast, some subregions of east Asia are better fit by a polynomial function of latitude (Tables 2.1 and 2.2), in particular the eastern Asia subregion. This variability in the parameterization of latitude is likely related to the latitudinal distribution of precipitation and meteoric water sampling sites in the western US and east Asia regions. The east Asia dataset spans tropical to temperate latitudes (~20–50°N) while the western US dataset is exclusively contained within the temperate mid-latitudes (~30–50°N). Compilation of GNIP δ^{18} O records plotted as a function of latitude (Bowen and Wilkinson, 2002 Figure 1; Dutton et al., 2005 Figure 4a) reveals an approximate linear δ^{18} O-latitude relationship for the mid-latitude range of western North America, whereas the relative lack of latitudinal dependence in the subtropics (20–30°N/S) requires a polynomial fit to latitude for regions spanning tropical to temperate latitudes (i.e. east Asia).

While latitude and elevation consistently act as dominant controls on modern meteoric δ^{18} O values, additional environmental parameters (e.g., longitude, MAT, MAP) also function as dominant isotopic controls depending on physiographic and climatic environment. In most cases, covariance of site MAT with latitude and elevation allows the influence of MAT on site δ^{18} O values to be sufficiently accounted for by latitude and elevation alone, whereas the influences of longitude and MAP are more likely to be independent of latitude and elevation effects. MAP acts as a dominant control, in addition to latitude and elevation, on δ^{18} O distributions in both the Coast and Coast-Gulf of CA subregions of the western US. Interestingly, though, the direct correlation between site elevation and δ^{18} O in these subregions (higher δ^{18} O with higher mean annual precipitation) is in contrast to the anticipated 'amount effect' which is known to be a major isotopic control in tropical and subtropical regions (Dansgaard, 1964; Rozanski et

al., 1993). The observed positive δ^{18} O-MAP correlation in the coast subregion of the western US is likely due to the steep elevation gradient in this region in contrast to a relatively weak precipitation gradient (Figure 2.11). As a result, the altitude effect dominates over any influence from the amount effect, as reflected by the strong dependence of δ^{18} O on elevation in the Coast subregion (R² = 0.76). The observed positive correlation between MAP and δ^{18} O, thus, likely reflects variability in δ^{18} O values at comparable elevations throughout this climatically diverse region. The influence of longitude in east Asia subregions is likely due to the variable influences of distinct moisture sources as a function of longitudinal position in this region. The Indian and East Asian monsoons are the dominant precipitation sources for Himalaya and eastern Asia subregions, respectively (Figure 2.3), with increasing influence of the East Asian monsoon to the east and vice versa. As a result, longitude reflects the relative contribution of each monsoonal system to annual precipitation δ^{18} O values in areas where both systems are influential.

2.7.2 δ^{18} O-elevation and δ^{18} O-latitude gradient variability

One of the most important results derived from statistical analysis of modern precipitation δ^{18} O is the systematic variability observed in δ^{18} O-elevation gradients. The Coast, Great Plains, and Coast-Gulf of CA subregions of the western US and the Himalaya-South Tibet subregion of east Asia are all characterized by δ^{18} O-elevation gradients similar in magnitude to the global empirical average (-2.8‰/km; Poage and Chamberlain, 2001) and to linear fits to Rayleigh distillation model-derived gradients at elevations less than 4000 m (estimated from Rowley et al., 2001). Annual precipitation in

Figure 2.11 – Mean annual precipitation (MAP) plotted as a function of site elevation for the Coast subregion of the western US, indicating that maximum MAP occurs at low elevation coastal sites and generally decreases with increasing elevation in the Sierra Nevada.

each of these subregions is derived predominantly from storm systems sourced proximally from an oceanic moisture source (e.g., Pacific Ocean, Gulf of Mexico, or Indian Ocean) that undergo simple orographic lifting and rainout, consistent with Rayleigh distillation assumptions. In contrast, observed δ^{18} O-elevation gradients in continental interior regions of the western US (Basin and Range, RMCP) and east Asia (North-Central Tibetan Plateau), as well as the eastern Asia subregion, are systematically lower in magnitude, approximately by a factor of two. Our modeled δ^{18} O-elevation gradient for the eastern Asia subregion is consistent with the regional Liu model (-1.5‰/km); a result which is not surprising considering that the vast majority of sites analyzed in the Liu et al. (2008) study are located within the eastern Asia subregion.

The observed trend toward muted isotope-elevation gradients in continental interiors and continental interior rainshadows (e.g., the Basin and Range) is consistent with published isotopic records from similar settings (Blisniuk and Stern, 2005; Quade et al., 2007; Lechler and Niemi, *in revision*). This trend indicates that isotopic variability in these physiographic and climatic settings cannot be solely attributed to Rayleigh distillation processes, which require that moisture parcels are isolated, well-mixed, open-fractionation systems in isotopic equilibrium, such that isotopic evolution is only a function of the degree of rainout. The influence of the monsoonal systems that dominate east Asia precipitation (Fig. 2.3), and the associated increase in convective storm activity which violates the assumption of isotopic equilibrium throughout a contributing air mass, have been proposed as a possible mechanism for the reduction in δ^{18} O-elevation gradients in this region (Liu et al., 2008). This hypothesis is consistent with studies of seasonal isotopic trends in monsoonal regions (Brown et al., 2008) and thus a plausible

cause for the reduced δ^{18} O-elevation gradient observed in our statistical analysis of the eastern Asia subregion.

In addition to convective storm influence, the increased likelihood of mixing of moisture sources, continental moisture recycling, below-cloud evaporation ("pseudoaltitude effect"; Moser and Stichler, 1971; Friedman et al., 1992) and post-depositional evaporation of surface waters are also likely causes for increased variability of precipitation isotope relationships (Blisniuk and Stern, 2005) in continental interior settings. Many of these processes characterize the continental interior rainshadow (e.g., Basin and Range) and high elevation continental plateau (e.g., Tibet) regions where we observe a systematic reduction in δ^{18} O-elevation gradient, thus providing probable causal mechanisms for the observed isotopic trends. The influence of complex moisture source interaction is clearly evident in the North-Central Tibetan Plateau subregion where latitude and δ^{18} O are positively correlated (i.e. increasing δ^{18} O to the north). This unique latitude- δ^{18} O relationship is the result of the increased influence of enriched isotopic moisture sources located north and west of the Tibetan Plateau (e.g., Tian et al., 2007) to sites in the central and northern Plateau (Figure 2.3), such that rainout progresses from the northern and western Plateau margin into the Plateau interior.

The increased complexity of rainout processes in continental interior settings is also reflected by poorer model fits (Tables 2.1 and 2.2) and increased elevation uncertainties (Table 2.3, Figures 2.5, 2.6, 2.9 and 2.10) in the Basin and Range, RMCP, Continental Interior, and North-Central Tibetan Plateau subregions. Region-dependent complexity in precipitation processes and moisture source interactions, as well as
variability in the covariance among independent environmental parameters, may also explain the variability observed in the absolute magnitude of the δ^{18} O-latitude relationship (Table 2.2). For comparable linear models [i.e. $\delta^{18}O = \beta_0 + \beta_1(LAT) + \beta_2(ELEV)$], $\delta^{18}O$ -latitude gradients tend to be shallower in subregions where elevation is the dominant control on $\delta^{18}O$ values (e.g., Coast, Himalaya-South Tibet) and steeper in regions where elevation control is minor (e.g., Basin and Range, RMCP), reflecting a tradeoff between elevation and latitude in controlling rainout processes. These trends appear to indicate that, like $\delta^{18}O$ -elevation gradients, $\delta^{18}O$ -latitude gradients may also directly relate to physiographic and climatic setting. It is important to note, however, that these trends can be complicated by variable latitudinal positions of dominant moisture sources such that rainout progresses in unique geographic directions yielding unsystematic isotope-latitude relationships (e.g., Tibet).

2.7.3 Basin and Range case study

Statistical analysis of modern meteoric δ^{18} O in the western US and east Asia indicates that simple orographic systems (i.e. single dominant moisture source, monotonic elevation increase) can be modeled well with Rayleigh distillation principles. Continental interior rainshadows, high elevation plateaus and areas dominated by monsoonal precipitation systems and associated convective storm activity, however, exhibit more complex isotopic relationships. The Basin and Range province of western North America is a good region to further explore and verify these systematic relationships as complexity of moisture source interaction and dominant moisture sources varies as a function of geographic position. Most of the Basin and Range is characterized by complex moisture source interaction and significant variability in storm track trajectory and associated degree of rainout (Friedman et al., 2002a) with many of the contributing storm tracks forced to traverse orographic barriers along the western coast of North America (e.g., Sierra Nevada, Cascades, Coast Ranges) prior to reaching interior sites. This high degree of rainout prior to reaching the continental interior appears to result in the reduced isotope-elevation relationships discussed above. At positions farther south (south of ~37°N), however, the North American summer monsoon, which derives moisture from the Gulf of California, tropical Pacific Ocean and Gulf of Mexico (Adams and Comrie, 1997), acts as a dominant source of seasonal (summer) precipitation. These southerly moisture sources are not subject to the same degree of orographic rainout as central and northern Pacific sources prior to reaching the Basin and Range, and, as a result, precipitation in the areas influenced by the monsoon may be better approximated by Rayleigh distillation processes.

We explore the idea of spatial variability in Basin and Range isotope-environment relationships through analysis of geographic subsets of Basin and Range precipitation stations. Basin and Range sites influenced by the North American monsoon (Basin and Range – Gulf of CA) are characterized by steeper δ^{18} O-elevation gradients (-1.9‰/km) and higher correlation between site elevation and δ^{18} O composition (R² = 0.53), whereas sites north of ~37°N (Basin and Range Interior) have muted δ^{18} O-elevation gradients (-1.2‰/km) and are dominantly controlled by MAT (R² = 0.56) instead of elevation (R² = 0.11). These trends are also reflected in the Coast-Gulf of CA analysis discussed above with δ^{18} O at sites in the vicinity of the Gulf of CA being accurately modeled by Coast subregion environmental parameters and coefficients which appear to be consistent with

Rayleigh distillation processes. Statistical analysis of Basin and Range seasonal data subsets (Friedman et al., 1992; 2002b) also supports the idea of variable isotopic relationships depending on seasonal moisture source. δ^{18} O-elevation gradients for winter season precipitation are reduced in magnitude (-0.8 to -1.2‰/km) compared to summer δ^{18} O-elevation gradients (-1.8 to -2.2‰/km). This seasonal variability in isotope-elevation relationships appears to reflect the fact that winter precipitation is more likely to traverse the Sierra Nevada, and produce the characteristic rainshadow effects (i.e. low δ^{18} O-elevation gradient), than summer storm systems derived from more southerly sources (e.g., Gulf of California). Winter season precipitation dominates over summer precipitation throughout much of the Basin and Range (average regional winter-summer ratio ~ 2–3; Friedman et al., 1992; 2002b). This seasonal trend is reflected in the reduced δ^{18} O-elevation gradient observed in our statistical analysis of modern Basin and Range precipitation δ^{18} O.

2.7.4 Implications for stable isotope paleoclimate, hydrologic and paleoelevation studies

The increased uncertainty for isotopic relationships in continental interior settings acts as a fundamental limitation to estimating absolute magnitudes or magnitudes of change in stable isotope-based paleoclimate, hydrologic and paleoelevation studies utilizing paleo-meteoric water proxies from these settings. Despite this increased uncertainty, more accurate interpretations from meteoric water proxy records can be made by accounting for the systematic variations in isotopic relationships as a function of environmental setting. Table 2.4 lists regional and subregional δ^{18} O-temperature relationships for statistical analyses where δ^{18} O was modeled solely as a function of

REGION	MAT(‰/°C)	Intercept	R²
WESTERN US			
All Sites	0.49	-17.4	0.55
Coast	0.59	-18.4	0.66
Basin and Range**	0.44	-9.1	0.76
RMCP**	0.64	-17.7	0.66
Continental Interior	0.41	-17.5	0.65
Great Plains	0.48	-14.2	0.61
Coast-Gulf of CA	0.44	-17.3	0.62
<u>EAST ASIA</u>			
All sites	0.34	-12.9	0.44
Eastern Asia	0.07	-8.5	0.26
Himalaya-S. Tibet	0.48	-13.5	0.67
North-Central Tibet	-0.05	-14.3	0.01
Himalaya only	0.54	-14.2	0.74
All Tibet	0.10	-14.1	0.02

 TABLE 2.4 – Temperature Coefficients

Table 2.4 Notes – Temperature coefficients for temperature-only regression models analyzed in this study. Variability of coefficient magnitude is discussed in the text. ** - indicates subregions where temperature-only models are acceptable reduced linear regression models.

MAT. With the exception of the Tibetan Plateau subregion, which is characterized by complex isotope-latitude and isotope-temperature relationships as a result of high δ^{18} O moisture sources north and west of the Plateau as discussed above, the observed trends in isotope-temperature relationships are similar to those documented in published studies (Rozanski et al., 1993; Vachon et al., 2010). Steep δ^{18} O-temperature gradients are observed in high altitude and continental interior settings (e.g., Coast, RMCP, and Basin and Range Interior of the western US; Himalaya-South Tibet in east Asia) whereas reduced gradients and poorly defined isotope-temperature relationships are more commonly found in low elevation coastal regions (e.g., eastern Asia). The Coast subregion of the western US falls into the former category as a result of the inclusion of Sierra Nevada sites whose high elevations and seasonal variability in average daily temperatures make this region more akin to the RMCP subregion than eastern Asia from an isotope-temperature perspective.

It is important to note that interpretation of isotope-temperature relationships derived in this study must be made with caution as previous work has shown that temperature during precipitation event (Kohn and Welker, 2005) and at the moisture source location (Vachon et al., 2010) are also dominant controls on isotope-temperature relationships. Without the high temporal resolution temperature data (i.e. on an individual storm basis) needed to make these calculations, our calculated isotope-temperature relationships only serve to provide general physiographic and climatic trends. However, these trends still have important first order implications for stable isotope-based paleoclimate studies as interpretability of temperature signals in proxy isotopic records is shown to be location dependent. Isotope-temperature relationships in low elevation

coastal settings are generally poorly correlated and low in magnitude ($\leq 0.3\%$ /°C), whereas isotope-temperature relationships are well defined and characterized by steep gradients (0.45 – 0.7‰/°C) in continental interior alpine settings and proxies formed in these settings should be assumed to reflect these phenomena.

Our statistical analyses also have far-reaching implications for stable isotopebased determinations of paleoelevations, both in terms of site of proxy formation and location of groundwater recharge. This work places quantitative constraints on the general isotope-elevation trends acknowledged in the literature (Blisniuk and Stern, 2005 and references therein) with reduced isotope-elevation relationships in arid, orographic rainshadows and high elevation continental plateaus. We show that the global empirical (Poage and Chamberlain, 2001) and Rayleigh distillation-derived average (e.g., Rowley et al., 2001) δ^{18} O-elevation gradients characterize simple orographic settings with a single dominant moisture source and transport direction (e.g., Sierra Nevada, Himalaya). Regions characterized by complex moisture source interaction, continental moisture recycling, and below-cloud and surface evaporation (e.g., Basin and Range, Tibetan Plateau) exhibit a systematic reduction in δ^{18} O-elevation gradients by approximately a factor of two (-1 to -1.5%/km). As a result, stable isotope-based elevation determinations require that the paleogeographic environment in which paleo-meteoric water proxies formed is considered.

For example, contradicting stable isotope-based paleoelevation estimates for the northern Tibetan Plateau (e.g., Cyr et al., 2005; DeCelles et al., 2007) can be better reconciled as a result of our statistical analysis. Application of low magnitude δ^{18} O-

elevation gradients that are comparable to modern gradients in the Plateau region suggest that high (> 4.5 km) regional paleoelevations have characterized the northern Tibetan Plateau since at least the Oligocene (DeCelles et al., 2007). In contrast, interpretation of proxy δ^{18} O records assuming Rayleigh distillation processes controlled northern Tibetan Plateau meteoric water isotopic compositions suggest that Paleocene-Eocene paleoelevations were significantly lower (≤ 2 km), requiring surface uplift in excess of 2 km since Oligocene time (Cyr et al., 2005). The systematic shift to reduced isotopeelevation gradients in continental interior plateau settings observed in our statistical analysis of modern precipitation δ^{18} O in the western US and east Asia suggests that reduced magnitude δ^{18} O-elevation gradients (~ -1.5‰/km) should be applied to proxy records obtained from the plateau interior for paleoelevation calculations. As a result, this study provides additional support for high regional paleoelevations in the northern Tibetan Plateau since at least the Oligocene.

The consistent trend of reduced isotope-elevation gradients in continental interiors also has important implications for how high magnitude isotopic shifts can be interpreted in the proxy record. Such isotopic shifts ($\geq 6\%$) have been observed in multiple Cenozoic meteoric water proxy records from the Basin and Range (e.g., Horton and Chamberlain, 2006; Mix et al., 2011) and Rocky Mountain Cordillera (Carroll et al., 2008; Davis et al., 2008; Doebbert et al., 2010). Assuming the reduced δ^{18} O-elevation gradient (~ -1.5‰/km) that characterizes these regions in the modern is also applicable through much of the Cenozoic, such high magnitude shifts are unlikely to reflect an elevation signal exclusively as changes of this magnitude would require implausible changes in elevation (≥ 4 km). Instead, these high magnitude isotopic shifts, especially when concentrated over short timescales (e.g., Carroll et al., 2008), are more likely to reflect drainage reorganization (Carroll et al., 2008; Davis et al., 2008; Doebbert et al., 2010) or changes in moisture source through time (Horton and Chamberlain, 2006). Such a change in moisture source is a probable influence on Neogene isotopic records from the central and southern Basin and Range as late Miocene-early Pliocene opening of the Gulf of California (Oskin et al., 2001) likely introduced isotopically-distinct moisture sources to the annual precipitation cycle in this region. Accordingly, accurate interpretation of paleo-meteoric water isotopic records requires that the potential influence of variable moisture source contributions to the proxy record are estimated, possibly by constraining regional paleogeography at the site of proxy formation to hypothesize the associated influences on storm track trajectories.

Cases where large isotopic shifts in continental interior meteoric water proxies actually do reflect high magnitude elevation change are systems where a high elevation orographic barrier acts as a dominant control on leeward precipitation δ^{18} O (or δ D). Precipitation δ^{18} O values for sites on the leeward side of, but proximal to, the Sierra Nevada in the western US and Himalaya in east Asia are consistently more depleted than would be predicted based on site parameters alone (Figures 2.7 and 2.8). This isotopic depletion is a direct result of the high degree of rainout occurring over the high elevations of the windward orographic barrier, making proximal leeward sites appear to be at high elevations (Figures 2.9 and 2.10). This effect supports the theory behind stable isotopebased paleoelevation studies using leeward side meteoric proxies to constrain orographic barrier elevations (Poage and Chamberlain, 2002; Mulch et al., 2006; Crowley et al., 2008; Mulch et al., 2008; Cassel et al., 2009), but caution has also been suggested for using such an approach as varying climate and atmospheric states may result in (1) variability in the degree of rainout occurring over the orographic barrier (Molnar, 2010) and (2) the tendency for storm tracks to be blocked by or travel around rather than over a high elevation orographic barrier (Galewsky, 2009).

The works of Galewsky (2009) and Molnar (2010), as well as studies discussing the controls on the isotopic composition of precipitation (e.g., Dansgaard, 1964; Rozanski et al., 1993), indicate the need to account for climatic variability when interpreting isotopic records as isotopic relationships are climate state dependent. For example, isotope-elevation gradients may be expected to be greater in magnitude, possibly by a factor of 2 or more, in simple orographic settings (e.g., Sierra Nevada) under a warmer and more humid climate, conditions believed to have characterized early Paleogene climate (Molnar, 2010). This trend toward steeper isotope-elevation gradients is proposed to result simply from greater moisture carrying capabilities of the warmer air masses, allowing for increased amounts of rainout and associated isotopic fractionation for inland sites. Conversely, warmer climates might also act to reduce isotope-elevation gradients through either increased relative humidity of the contributing air mass (Rowley and Garzione, 2007) or the influence of isotopically heavy upper troposphere moisture to high elevation sites (Poulsen and Jeffery, 2011). In any case, meteoric isotopic compositions can change significantly without a change in elevation simply as a function of varying climate state. Accordingly, how climatic conditions during the time of proxy formation may have altered modern isotope-environment relationships must be accounted for in proxy-based studies, particularly when proxies formed under climatic conditions significantly different than modern. This fundamental limitation to proxy studies can be addressed through the use of regional and global circulation models with stable isotopic monitoring capabilities such that constraints on the variability in isotopic relationships to specific environmental parameters can be quantified as a function of climatic or physiographic change (e.g., Insel et al., 2010).

Applicability of the modern isotopic relationships derived in this study are also proxy dependent as different forms of meteoric water (e.g., lakes, rivers, soil waters) have variable isotopic relationships with the original precipitation from which they were derived. For example, lacustrine and fluvial proxies reflect the integrated isotopic signal from throughout the contributing catchment, thus recording a range of site elevations and site temperatures in a single isotopic value. Pedogenic carbonates, in contrast, form in locally-derived soil waters that are more likely to reflect site δ^{18} O values (e.g., Sheldon and Tabor, 2009). In either case, proxy isotopic composition reflects all processes influencing isotopic composition during the transition from precipitation to integration into lake, river, or soil water system. A regional study of modern lake water isotopic compositions indicates that evaporative effects can lead to significantly higher isotopic compositions of lake waters in comparison to local precipitation in the arid, continental interior western US, particularly in closed basin systems (Henderson and Shuman, 2009). Similarly, soil waters can also be subject to significant evaporative influence (e.g., Quade et al., 2007). Proxies formed in these waters (e.g., lacustrine and pedogenic carbonates) may, thus, no longer preserve the isotopic signal of the original precipitation and its associated relationship to relevant environmental parameters. As a result, the degree of evaporative influence must be independently constrained for accurate interpretation of proxy records to be made.

2.8 Conclusions

Statistical analysis of modern precipitation δ^{18} O distributions in the western US and east Asia suggests that isotopic compositions can be accurately modeled as a function of geographic (latitude, longitude, elevation) and climatic (MAT, MAP) parameters. This work refines previous global (Bowen and Wilkinson, 2002; Bowen and Revenaugh, 2003) and regional (Dutton et al., 2005; Liu et al., 2008) statistical analyses by investigating the potential influence of a wider set of environmental parameters and constraining the influence of each parameter as part of single multiple regression model for a range of physiographic and climatic environments. Our analyses confirm that latitude and elevation act as dominant controls on precipitation δ^{18} O for nearly all regions and subregions, but the magnitude of the control, as well as the influence of other environmental parameters, varies on a subregional basis. In particular, δ^{18} O-elevation gradients in simple orographic settings of the Coast and Great Plains subregions of the western US and Himalaya-South Tibet subregion of east Asia are in general agreement with global empirical averages ($\sim -2.8\%$ /km) and gradients characteristic of Rayleigh distillation rainout processes. A systematic reduction in the magnitude of δ^{18} O-elevation gradients by approximately a factor of two (-1.5%/km) is observed in arid, continental interior rainshadows (Basin and Range) and high elevation continental plateaus (Tibet), regions often characterized by complex moisture source interaction, increased continental moisture recycling and/or convective storm activity. Identifying the dominant environmental controls on, and the corresponding quantitative relationship with,

precipitation δ^{18} O greatly informs stable isotope-based estimates of terrestrial climate change, locations of groundwater recharge, and paleoelevations. In particular, with independent estimates of paleo-precipitation (e.g., Sheldon and Retallack, 2004) and paleogeographic position, the influence of altitude and/or temperature on meteoric δ^{18} O can be more accurately quantified for stable isotope proxy records, assuming the influence of changes in paleoenvironment and climate state can be constrained.

2.9 Acknowledgements

Boris Avdeev's guidance on effectively using the statistical program R was instrumental to this study. Mike Hren is thanked for insightful discussions about interpretations of isotopic patterns as well as for providing access to various isotopic datasets.

2.10 References cited

- Adams, D. K., and Comrie, A. C., 1997, The North American monsoon: Bulletin of the American Meteorological Society, v. 78, no. 10, p. 2197-2213.
- Allison, G. B., 1988, A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge, *in* Simmers, I., ed., Estimation of Natural Groundwater Recharge: Dardrecht, D. Reidel Publishing Co., p. 509 pp.
- Araguás-Araguás, L., Froehlich, K., and Rozanski, K., 1998, Stable isotope composition of precipitation over southeast Asia: Journal of Geophysical Research-Atmospheres, v. 103, no. D22, p. 28721-28742.
- Blisniuk, P. M., and Stern, L. A., 2005, Stable istope paleoaltimetry: a critical review: American Journal of Science, v. 305, no. 10, p. 1033-1074.
- Bowen, G. J., and Revenaugh, J., 2003, Interpolating the isotopic composition of modern meteoric precipitation: Water Resources Research, v. 39, no. 10, p. 9-1 9-13.
- Bowen, G. J., and Wilkinson, B., 2002, Spatial distribution of delta ¹⁸O in meteoric precipitation: Geology, v. 30, no. 4, p. 315-318.
- Brown, D., Worden, J., and Noone, D., 2008, Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space: Journal of Geophysical Research-Atmospheres, v. 113, no. D15124.
- Carroll, A. R., Doebbert, A. C., Booth, A. L., Chamberlain, C. P., Rhodes-Carson, M. K., Smith, M. E., Johnson, C. M., and Beard, B. L., 2008, Capture of high-altitude precipitation by a low-altitude Eocene lake, Western US: Geology, v. 36, no. 10, p. 791-794.
- Cassel, E. J., Calvert, A. T., and Graham, S. A., 2009, Age, geochemical composition, and distribution of Oligocene ignimbrites in the northern Sierra Nevada, California: implications for landscape morphology, elevation, and drainage divide geography of the Nevadaplano: International Geology Review, v. 51, no. 7-8, p. 723-742.
- Cole, J. E., Rind, D., Webb, R. S., Jouzel, J., and Healy, R., 1999, Climatic controls on interannual variability of precipitation δ^{18} O: Simulated influence of temperature, precipitation amount, and vapor source region: Journal of Geophysical Research-Atmospheres, v. 104, no. D12, p. 14223-14235.
- Crowley, B. E., Koch, P. L., and Davis, E. B., 2008, Stable isotope constraints on the elevation history of the Sierra Nevada Mountains, California: Geological Society of America Bulletin, v. 120, no. 5-6, p. 588-598.

- Cyr, A. J., Currie, B. S., and Rowley, D. B., 2005, Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, North-Central Tibet: Implications for the paleoaltimetry of the Eocene Tibetan Plateau: Journal of Geology, v. 113, no. 5, p. 517-533.
- Dansgaard, W., 1964, Stable Isotopes in Precipitation: Tellus, v. 16, no. 4, p. 436-468.
- Davis, S. J., Wiegand, B. A., Carroll, A. R., and Chamberlain, C. P., 2008, The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland: Earth and Planetary Science Letters, v. 275, no. 3-4, p. 258-268.
- DeCelles, P. G., Quade, J., Kapp, P., Fan, M. J., Dettman, D. L., and Ding, L., 2007, High and dry in central Tibet during the Late Oligocene: Earth and Planetary Science Letters, v. 253, no. 3-4, p. 389-401.
- Doebbert, A. C., Carroll, A. R., Mulch, A., Chetel, L. M., and Chamberlain, C. P., 2010, Geomorphic controls on lacustrine isotopic compositions: Evidence from the Laney Member, Green River Formation, Wyoming: Geological Society of America Bulletin, v. 122, no. 1-2, p. 236-252.
- Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., and Lohmann, K.C., 2005, Spatial distribution and seasonal variation in ¹⁸O/¹⁶O of modern precipitation and river water across the conterminous USA: Hydrological Processes, v. 19, p. 4121-4146.
- Fredrickson, G. C. and Criss, R.E., 1999, Isotope hydrology and residence times of the unimpounded Meramec River basin, Missouri: Chemical Geology, v. 157, p. 303-317.
- Friedman, I., Harris, J.M., Smith, G.I., Johnson, C.A., 2002a, Stable isotope composition of waters in the Great Basin, United States 1. Air-mass trajectories: Journal of Geophysical Research-Atmospheres, v. 107, p. 14 pp.
- Friedman, I., and Smith, G. I., 1972, Deuterium Content of Snow as an Index to Winter Climate in Sierra-Nevada Area: Science, v. 176, no. 4036, p. 790-793.
- Friedman, I., Smith, G. I., Gleason, J. D., Warden, A., and Harris, J. M., 1992, Stable Isotope Composition of Waters in Southeastern California .1. Modern Precipitation: Journal of Geophysical Research-Atmospheres, v. 97, no. D5, p. 5795-5812.
- Friedman, I., Smith, G.I., Johnson, C.A., Moscati, R.J., 2002b, Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation: Journal of Geophysical Research, v. 107, p. ACL 15-11 - ACL 15-21.

- Galewsky, J., 2009, Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies: Geology, v. 37, no. 9, p. 791-794.
- Garzione, C. N., Quade, J., DeCelles, P. G., and English, N. B., 2000, Predicting paleoelevation of Tibet and the Himalaya from δ^{18} O vs. altitude gradients in meteoric water across the Nepal Himalaya: Earth and Planetary Science Letters, v. 183, no. 1-2, p. 215-229.
- Gat, J. R., 1996, Oxygen and hydrogen isotopes in the hydrologic cycle: Annual Review of Earth and Planetary Sciences, v. 24, p. 225-262.
- Harvey, F. E., 2001, Use of NADP archive samples to determine the isotope composition of precipitation: Characterizing the meteoric input function for use in ground water studies: Ground Water, v. 39, no. 3, p. 380-390.
- Harvey, F. E., 2005, Stable hydrogen and oxygen isotope composition of precipitation in northeastern Colorado: Journal of the American Water Resources Association, v. 41, no. 2, p. 447-459.
- Henderson, A. K., and Shuman, B. N., 2009, Hydrogen and oxygen isotopic compositions of lake water in the western United States: Geological Society of America Bulletin, v. 121, no. 7-8, p. 1179-1189.
- Horton, T. W., and Chamberlain, C. P., 2006, Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range Province: Geological Society of America Bulletin, v. 118, no. 3-4, p. 475-490.
- Horton, T. W., Sjostrom, D. J., Abruzzese, M. J., Poage, M. A., Waldbauer, J. R., Hren, M. T., Wooden, J. L., and Chamberlain, C. P., 2004, Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal of Science, v. 304, no. 10, p. 862-888.
- Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain, C. P., 2009, δ^{18} O and δ D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions: Earth and Planetary Science Letters, v. 288, no. 1-2, p. 20-32.
- Ingraham, N. L., Lyles, B. F., Jacobson, R. L., and Hess, J. W., 1991, Stable isotopic study of precipitation and spring discharge in southern Nevada: Journal of Hydrology, v. 125, no. 3-4, p. 243-258.
- Ingraham, N. L., and Taylor, B. E., 1991, Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada: Water Resources Research, v. 27, no. 1, p. 77-90.

- Insel, N., Poulsen, C. J., and Ehlers, T. A., 2010, Influence of the Andes Mountains on South American moisture transport, convection, and precipitation: Climate Dynamics, v. 35, no. 7-8, p. 1477-1492.
- Johnson, K. R., and Ingram, B. L., 2004, Spatial and temporal variability in the stable isotope systematics of modern precipitation in China: implications for paleoclimate reconstructions: Earth and Planetary Science Letters, v. 220, no. 3-4, p. 365-377.
- Jouzel, J., Alley, R. B., Cuffey, K. M., Dansgaard, W., Grootes, P., Hoffmann, G., Johnsen, S. J., Koster, R. D., Peel, D., Shuman, C. A., Stievenard, M., Stuiver, M., and White, J., 1997, Validity of the temperature reconstruction from water isotopes in ice cores: Journal of Geophysical Research-Oceans, v. 102, no. C12, p. 26471-26487.
- Kent-Corson, M. L., Sherman, L. S., Mulch, A., and Chamberlain, C. P., 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in western North America: Earth and Planetary Science Letters, v. 252, no. 3-4, p. 453-466.
- Koch, P. L., Zachos, J. C., and Dettman, D. L., 1995, Stable-isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA):
 Palaeogeography Palaeoclimatology Palaeoecology, v. 115, no. 1-4, p. 61-89.
- Kohn, M. J., and Welker, J. M., 2005, On the temperature correlation of δ^{18} O in modem precipitation: Earth and Planetary Science Letters, v. 231, no. 1-2, p. 87-96.
- Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P., and Valley, J. W., 1990, Estimating groundwater exchange with lakes : 1. The stable isotope mass balance method: Water Resources Research, v. 26, no. 10, p. 2445-2453.
- Lechler, A. R., and Niemi, N. A., *in revision*, Topographic and environmental controls on terrestrial water isotopic compositions and isotope-elevation gradient variability in the southwestern United States: implications for stable isotope-based paleoaltimetry and hydrologic studies: Geological Society of America Bulletin.
- Lee, J. E., and Fung, I., 2008, "Amount effect" of water isotopes and quantitative analysis of post-condensation processes: Hydrological Processes, v. 22, no. 1, p. 1-8.
- Liu, Z. F., Tian, L. D., Chai, X. R., and Yao, T. D., 2008, A model-based determination of spatial variation of precipitation δ^{18} O over China: Chemical Geology, v. 249, no. 1-2, p. 203-212.
- Marquardt, D. W., 1980, You should standardize the predictor variables in your regression models: Journal of the American Statistical Association, v. 75, p. 74-103.

- Mix, H. T., Mulch, A., Kent-Corson, M. L., and Chamberlain, C. P., 2011, Cenozoic migration of topography in the North American Cordillera: Geology, v. 39, no. 1, p. 87-90.
- Molnar, P., 2010, Deuterium and oxygen isotopes, paleoelevations of the Sierra Nevada, and Cenozoic climate: Geological Society of America Bulletin, v. 122, no. 7-8, p. 1106-1115.
- Moser, H., and Stichler, W., 1971, Die Verwendung des Deuterium- und Sauerstoff-18-Gehalts bei hydrologischen Untersuchungen: Geologica Bavaria, v. 64, p. 7-35.
- Mulch, A., Graham, S. A., and Chamberlain, C. P., 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, no. 5783, p. 87-89.
- Mulch, A., Sarna-Wojcicki, A. M., Perkins, M. E., and Chamberlain, C. P., 2008, A Miocene to Pleistocene climate and elevation record of the Sierra Nevada (California): Proceedings of the National Academy of Sciences of the United States of America, v. 105, no. 19, p. 6819-6824.
- Nativ, R. and Riggio, R., 1990, Precipitation in the southern High Plains: meteorologic and isotopic features: Journal of Geophysical Research, v. 95, p. 22559-22564.
- O'Brien, R. M., 2007, A caution regarding rules of thumb for variance inflation factors: Quality & Quantity, v. 41, no. 5, p. 673-690.
- Oskin, M., Stock, J., and Martin-Barajas, A., 2001, Rapid localization of Pacific-North America plate motion in the Gulf of California: Geology, v. 29, no. 5, p. 459-462.
- Pandey, G. R., Cayan, D. R., and Georgakakos, K. P., 1999, Precipitation structure in the Sierra Nevada of California during winter: Journal of Geophysical Research-Atmospheres, v. 104, no. D10, p. 12019-12030.
- Poage, M. A., and Chamberlain, C. P., 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: Considerations for studies of paleoelevation change: American Journal of Science, v. 301, no. 1, p. 1-15.
- Poage, M. A., and Chamberlain, C. P., 2002, Stable isotopic evidence for a Pre-Middle Miocene rain shadow in the western Basin and Range: Implications for the paleotopography of the Sierra Nevada: Tectonics, v. 21, no. 4, 1034.
- Poulsen, C. J. and Jeffery, L.M., 2011, Climate change imprinting on stable isotopic compositions of high-elevation meteoric water: Geology, *in press*.

- Quade, J., Cerling, T. E., and Bowman, J. R., 1989, Development of Asian Monsoon Revealed by Marked Ecological Shift during the Latest Miocene in Northern Pakistan: Nature, v. 342, no. 6246, p. 163-166.
- Quade, J., Garzione, C. N., and Eiler, J., 2007, Paleoelevation reconstruction using pedogenic carbonates: Reviews in Mineralogy and Geochemistry, v. 66, no. 1, p. 53-87.
- Rowley, D. B., and Currie, B. S., 2006, Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet: Nature, v. 439, no. 7077, p. 677-681.
- Rowley, D. B., and Garzione, C. N., 2007, Stable isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463-508.
- Rowley, D. B., Pierrehumbert, R. T., and Currie, B. S., 2001, A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 188, no. 1-2, p. 253-268.
- Rozanski, K., and Araguás-Araguás, L., 1995, Spatial and temporal variability of stable isotope composition of precipitation over the South American continent: Bull. Inst. Fr. Etudes Andines, v. 24, p. 379-390.
- Rozanski, K. L., Araguás-Araguás, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation, *in* al., P. K. S. e., ed., Climate Change in Continental Isotopic Records, Geophys. Monogr. Ser.: Washington D.C., AGU, p. 1-36.
- Saylor, J. E., Quade, J., Dellman, D. L., DeCelles, P. G., Kapp, P. A., and Ding, L., 2009, The Late Miocene through present paleoelevation history of southwestern Tibet: American Journal of Science, v. 309, no. 1, p. 1-42.
- Sheldon, N. D., and Retallack, G. J., 2004, Regional paleoprecipitation records from the late Eocene and Oligocene of North America: Journal of Geology, v. 112, no. 4, p. 487-494.
- Sheldon, N. D., and Tabor, N. J., 2009, Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols: Earth-Science Reviews, v. 95, no. 1-2, p. 1-52.
- Simpkins, W. W., 1995, Isotopic composition of precipitation in central Iowa: Journal of Hydrology, v. 172, no. 1-4, p. 185-207.
- Stern, L. A. and Blisniuk, P. M., 2002, Stable isotope composition of precipitation across the southern Patagonia Andes: Journal of Geophysical Research, v. 107.

- Thompson, L. G., Yao, T., Davis, M. E., Henderson, K. A., MosleyThompson, E., Lin, P. N., Beer, J., Synal, H. A., ColeDai, J., and Bolzan, J. F., 1997, Tropical climate instability: The last glacial cycle from a Qinghai-Tibetan ice core: Science, v. 276, no. 5320, p. 1821-1825.
- Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., and Jouzel, J., 2001, Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes: Journal of Geophysical Research-Atmospheres, v. 106, no. D22, p. 28081-28088.
- Tian, L. D., Yao, T. D., MacClune, K., White, J. W. C., Schilla, A., Vaughn, B., Vachon, R., and Ichiyanagi, K., 2007, Stable isotopic variations in west China: A consideration of moisture sources: Journal of Geophysical Research-Atmospheres, v. 112, no. D10.
- Vachon, R. W., Welker, J. M., White, J. W. C., and Vaughn, B. H., 2010, Moisture source temperatures and precipitation δ^{18} O-temperature relationships across the United States: Water Resources Research, v. 46.
- Welker, J. M., 2000, Isotopic (δ^{18} O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies: Hydrological Processes, v. 14, no. 8, p. 1449-1464.
- Yurtsever, Y., and Gat, J.R., 1981, Atmospheric waters, *in* Gat, J. R. a. G., R., ed., Stable Isotope Hydrology, p. 103-142.
- Zhang, X., Nakawo, M., Yao, T., Han, J., and Xie, Z., 2002, Variations of stable isotopic compositions in precipitation on the Tibetan Plateau and its adjacent regions: Science in China Series D-Earth Sciences, v. 45, no. 6, p. 481-493.

CHAPTER III

Topographic and environmental controls on terrestrial water isotopic compositions and isotope-elevation gradient variability in the southwestern United States: implications for stable isotope-based paleoaltimetry and hydrologic studies^{*}

3.1 Abstract

Meteoric water stable isotopic compositions (δD and $\delta^{18}O$) result from complex interactions among atmospheric processes that are active during precipitation and isotopic modification processes that occur following deposition. In stable isotope paleoaltimetry and hydrologic studies, accurate interpretation of paleo-meteoric water proxy records requires that the relative effect of each process that controls isotopic composition can be reliably constrained. Assessing the role of post-depositional processes is possible through comparison of regional precipitation $\delta^{18}O$ (or δD) values with those of regional terrestrial waters (e.g., ground- and surface waters), as increased influence of post-depositional processes produces terrestrial water isotopic compositions that differ significantly from those of the original precipitation from which the waters were derived.

^{*} **Citation**: Lechler, A.R. and Niemi, N.A., *in revision*, Topographic and environmental controls on terrestrial water isotopic compositions and isotope-elevation gradients in the southwestern United States: implications for stable isotope-based paleoaltimetry and hydrologic studies: Geological Society of America Bulletin.

Comparison of the isotopic composition of precipitation with that of surface and spring waters from the southwestern United States along a latitudinal transect at ~36°N from the southern Sierra Nevada, CA to the Spring Mountains, NV reveals that precipitation and surface waters from the orographic slope of the southern Sierra Nevada exhibit similar isotopic compositions and isotope-elevation relationships. In contrast, Basin and Range surface and spring waters are characterized by less depleted stable isotopic compositions and δ^{18} O-elevation gradients that are a factor of 3–4 lower than those of the original precipitation from which these waters are derived. We demonstrate that altitude-dependent sublimation of the winter snowpack is a viable mechanism for the observed isotopic enrichment of spring and surface waters in the Basin and Range, as increased removal of light isotopes (H and 16O) from higher elevation snowpacks, sustained throughout the winter season, acts to reverse the isotopic depletion effects of Rayleigh distillation during precipitation. This suggests that atmospheric processes alone may be insufficient to explain globally observed variations in δ^{18} O-elevation gradients, and that the geologic record of the δ^{18} O composition of paleo-meteoric waters may not accurately reflect the δ^{18} O compositions of paleoprecipitation, particularly in arid environments dominated by winter precipitation in the form of snow. Consideration of this effect, particularly as can be constrained by paleoclimate reconstructions, is necessary to accurately derive quantitative estimates of paleoaltitude and seasonal groundwater recharge.

3.2 Introduction

Paleo-meteoric water proxies (ice cores, lacustrine and pedogenic carbonates, fluid inclusions, etc.) are fundamental to a diverse array of geologic and paleoclimate studies. As such, understanding the controls on the stable isotopic composition (\deltaD and δ^{18} O) of meteoric waters is fundamental to accurate interpretation of these proxy records. Environmental variables such as temperature, distance from moisture source, seasonality of precipitation and elevation are all known to influence the isotopic composition of precipitation at a single site (Dansgaard, 1964; Rozanski et al., 1993; Gat, 1996; Jouzel et al., 1997, 2003; Insel et al., 2010), and, presumably, the meteoric waters derived from this precipitation. The combined effects of these variables can complicate interpretation of the proxy record, but when the influence of individual environmental parameters can be isolated, isotopic records can inform a wide-range of paleoclimate, hydrologic, and paleoelevation studies. Isotope-temperature relationships have been widely applied to paleoclimate studies of both terrestrial and marine proxy records (e.g., Koch et al., 1995; Zachos et al., 2001) over a range of timescales. Hydrologic studies often utilize seasonal differences in, or the elevation dependence of, the isotopic composition of meteoric waters to estimate the timing and location of groundwater recharge (Allison et al., 1988; de Vries and Simmers, 2002). Correlations between elevation and stable isotopic composition are also a tenet of stable isotope-based paleoelevation methodologies (e.g., Rowley et al, 2001; Poage and Chamberlain, 2001; Blisniuk and Stern, 2005; Rowley and Garzione, 2007). In all such cases, the relationship between the environmental control, whether temperature, seasonality, or elevation, and the isotopic composition of the

meteoric water proxy must be quantified in order to make accurate estimates of paleotemperature, recharge, or paleoelevation.

The relationship between elevation and isotopic composition is of particular interest, as the field of quantitative paleoaltimetry has garnered significant attention in recent decades due to the importance accurate elevation histories have for constraining the geodynamic, tectonic, and climatic evolution of major orogenic systems (Kohn, 2007). The basic theoretical framework of stable isotope-based paleoaltimetry is built on Rayleigh distillation principles where heavy water isotopes (D and ¹⁸O) are preferentially removed during condensation from an air mass as part of an open fractionation system (Rowley and Garzione, 2007). Thus, waters at higher elevations are expected to be characterized by lower δ^{18} O and δ D values than waters at lower elevations along a single moisture trajectory (Dansgaard, 1964; Rowley et al., 2001). In theory, paleoelevation histories can then be constrained as long as proxies for the stable isotopic composition of paleo-meteoric waters can be obtained.

Commonly used stable isotope paleoaltimetry proxies include fluvial, lacustrine and pedogenic carbonates; hydrous silicates; and fossil teeth and bone (Kohn, 2007 and references therein). In all cases, the conditions under which the proxy formed (i.e. seasonality, growth rates) and the type of water in which it formed (e.g., lakes, soil waters, animal body waters) must be known or assumed. For example, lacustrine proxies reflect water isotopic compositions integrated across an entire catchment; in contrast, pedogenic carbonates derive their isotopic composition from local soil and meteoric waters (Tabor and Montanez, 2005). As a result, accurate interpretation of proxy records requires understanding the processes that influence meteoric water compositions for each proxy system, as each proxy records information about a unique set of hydrologic processes acting over specific spatial and temporal scales.

In addition to reliable proxy materials, paleoelevation reconstructions require that a quantitative relationship between isotopic composition of precipitation and elevation also be known or assumed. Commonly, an empirically-derived, global average δ^{18} Oelevation gradient of $\sim -2.8\%$ /km is used as a starting point for paleoelevation quantification (e.g., Chamberlain and Poage, 2000; Garzione et al., 2000; Horton et al., 2004; Blisniuk et al., 2005; Kent-Corson et al., 2006; Saylor et al., 2009). However, modern δ^{18} O-elevation gradients exhibit significant regional variability (Clark and Fritz, 1997; Poage and Chamberlain, 2001), and, in particular, δ^{18} O-elevation gradients appear to be significantly lower (< -2.8%/km) over large, high-standing orogenic plateaus (Blisniuk and Stern, 2005; Quade et al., 2007; Lechler, 2011). Mechanisms that have been proposed to explain regional variability in δ^{18} O-elevation gradients primarily consider the role of atmospheric processes, including (1) mixing of moisture sources (DeCelles et al., 2007), a process common in continental interiors, (2) the role of convective storms and their associated violation of open-system, Rayleigh distillation processes (Liu et al., 2008), (3) the re-evaporation and recycling of ¹⁸O-enriched continental waters (Tian et al., 2001) and (4) the "amount effect", which accounts for drop-size dependent isotopic equilibration times (Lee and Fung, 2008). Each of these processes may act to produce precipitation δ^{18} O-elevation gradients that differ from those predicted by simple Rayleigh distillation rainout (Rowley et al., 2001), increasing the uncertainty of quantitative, stable isotope-based paleoaltimetry estimates.

Understanding the controls on meteoric water δ^{18} O and δ^{18} O-elevation gradient variability is further complicated by processes that modify the isotopic composition of the original precipitation after deposition. For example, isotopic modification of seasonal and annual snowpacks is a well-documented, post-depositional phenomenon that has been shown to have important implications for paleoclimate studies utilizing these paleo-meteoric water reservoirs as terrestrial isotopic records (Epstein et al., 1965; Johnsen, 1977; Cuffey and Steig, 1998; Ekaykin et al., 2002; Neumann et al., 2005; Town et al., 2008). In the field of paleoaltimetry, the role of evaporative enrichment of ¹⁸O and ²H in meteoric waters, and the implications this has for paleoelevation reconstructions, is also well-established (Garzione et al., 2000; Horton et al., 2004; Blisniuk and Stern, 2005; Blisniuk et al., 2005; Cyr et al., 2005; DeCelles et al., 2007; Quade et al., 2007; Polissar et al., 2009) with empirical evidence suggesting paleoelevation estimates can be underestimated by >2 km in regions of significant evaporative influence (Quade et al., 2007).

The dramatic influence that post-depositional isotopic modification processes can have on meteoric water isotopic compositions points to the need to understand the controls on the isotopic composition and isotope-elevation relationships of both precipitation (rain and snow) and terrestrial waters (groundwater, lakes, rivers, late season snowpack and snowmelt). In this study we investigate the regional variability of meteoric water δ^{18} O and associated δ^{18} O-elevation relationships through modern spring and surface water sampling from the orographic slope to the orographic rainshadow of the Sierra Nevada mountains of the southwestern United States (Fig. 3.1). Comparison of δ^{18} O values and δ^{18} O-elevation gradients for terrestrial waters with those of published precipitation datasets elucidates the role that regionally-specific, post-depositional processes play in controlling the stable isotopic composition of modern terrestrial waters in this region. We demonstrate that understanding and quantifying these processes is important for any stable isotope-based paleoaltimetry, paleoclimate and hydrologic study utilizing isotopic records subject to post-depositional isotopic modification.

3.3 Study area

3.3.1 Physiographic and climatic setting

In the western United States, south of ~42°N, the Sierra Nevada acts as the primary orographic barrier and first order control on regional precipitation patterns. Annual precipitation amounts range from ~10 cm in the San Joaquin Valley on the western margin of the orogen up to ~250 cm at the highest elevation regions of the northern Sierra Nevada (PRISM Climate Group, <u>www.prism.oregonstate.edu</u>; accessed October 2010). Winter-season, Pacific-sourced storms deliver the majority of annual precipitation to the Sierra Nevada region (winter/summer ratio \geq 5; Friedman and Smith, 1972; Friedman et al., 1992), in the form of both rain and snow, with increased snow accumulation at higher latitudes and elevations (Sierran winter snowline ~ 1500 m; Dahlgren et al., 1997). The influence of summer season precipitation, primarily sourced in the eastern tropical Pacific Ocean and Gulf of California, increases to the south with a minimum regional winter/summer precipitation ratio (W:S) of ~0.9 southeast of the southernmost Sierra Nevada in Goldstone, CA (Friedman et al., 1992). Due to the predominance of winter precipitation in the annual precipitation budget, spring snowmelt

and runoff leads to peak discharges during the spring in the Sierra Nevada and adjacent Basin and Range fluvial and groundwater systems.

Topographically, the Sierra Nevada is characterized by an asymmetric profile with peak elevations located along the eastern range front, resulting in a series of major, west-flowing, moderate gradient fluvial systems on the western (windward) slope of the orogen. The low elevation (< 200 m) San Joaquin Valley forms the western boundary of the Sierra Nevada and is base level for many of these fluvial systems (Fig. 3.1). Fluvial headwaters range in elevation from > 4000 m in the central Sierra Nevada (in the vicinity of Mt. Whitney) to 1500–2500 m in the southern and northern Sierra Nevada.

In the orographic rainshadow of the southern Sierra Nevada, late Cenozoic central Basin and Range extension has created a region characterized by a series of alternating low elevation basins and high elevation ranges producing high local relief (Fig. 3.1). West of Death Valley, CA, the Panamint Mountains expose a sequence of metamorphosed Proterozoic basement gneisses and schists overlain by upper Precambrian siliciclastic units (Labotka et al., 1980) that reach a maximum elevation at Telescope Peak (3369 m). Below- and near-sea-level basins (< 300 m) in the surrounding Panamint and Death valleys provide local relief exceeding 3000 m (Fig. 3.1C). This region has an arid climate with annual precipitation amounts ranging from ~5 cm in the valleys to < 38 cm at the highest peaks (Webb et al., 1987). The majority of annual precipitation falls during the winter season, with snow dominating the precipitation budget at high range elevations (> 2000 m).

Farther to the east, the Spring Mountains of southern Nevada are another high relief range formed as a result of Basin and Range extension. The range exhibits

86

topographic relief exceeding 2500 meters, from elevations of ~1000 m in the adjacent Pahrump and Las Vegas valleys to 3632 m at Mt. Charleston. Faulted and fractured Paleozoic carbonates comprise the vast majority of the Spring Mountains bedrock (Burchfiel et al., 1974). The fractured nature of the bedrock is a dominant control on regional hydrology, as the Spring Mountains act as a primary water source for the metropolitan areas of the Las Vegas Valley, in addition to feeding the Pahrump Valley to the west. The Spring Mountains are an arid to semiarid region with annual precipitation ranging from 20 cm in the foothills to > 60 cm at the range crest (Winograd and Thordarson, 1975). Winter season precipitation comprises approximately two-thirds of the annual precipitation budget in the Spring Mountains, yet accounts for ~90% of groundwater recharge (Winograd et al., 1998).

3.3.2 Modern water sampling

Spring and surface waters were collected from four elevation transects at a latitude of ~ 36° N in the southern Sierra Nevada and central Basin and Range region of the southwestern United States (Table 3.1, Fig. 3.1). Springs, streams and tributaries with small upstream drainage areas (< 5 km²; Table 3.1), as determined from GIS-based hydrologic grids, were targeted for sampling in order to approximate a point source as closely as possible. In some cases, larger drainage area basins (up to ~2600 km²; e.g., the Kern River, Table 3.1) were also sampled in order to test these point source approximations. The latitudinal range of sampling was also minimized in order to eliminate or reduce any latitudinal influence on the stable isotopic composition of meteoric waters. In this study, two surface water transects (Tule River and Southern Sierra, Fig. 3.1B) were sampled within the southern Sierra Nevada in order to constrain

Figure 3.1 - (A) Digital elevation model (DEM) of the southwestern United States with locations of precipitation (central and northern Sierra Nevada: Ingraham and Taylor, 1991; southern Sierra Nevada and Basin and Range: Ingraham et al., 1991; Friedman et al., 1992), early season snowpack (Basin and Range: Hershey, 1989; Winograd et al., 1998), snowmelt (Basin and Range: Hershey, 1989; Winograd et al., 1998), spring and surface water (this study), and late season snowpack (central and northern Sierra Nevada: Friedman and Smith, 1972; Ingraham and Taylor, 1991; Basin and Range: this study) samples, color coded by δ^{18} O value. Samples collected as part of this study are denoted by heavy outline. Inset map shows approximate DEM extent. (B) DEM of southern Sierra Nevada region showing location of snow, precipitation and surface water samples. (C) DEM of Panamint Mountains, CA showing location of spring water samples. (D) DEM of Spring Mountains, NV showing snow, snowmelt, and spring water sample locations. B, C, and D have same color code as (A).

the isotope-elevation relationships of terrestrial waters across this orographic slope. Within the Sierran rainshadow, spring and surface waters were collected from the Panamint Mountains, ~75 km to the east of the southern Sierra Nevada (Fig. 3.1C), and in the Spring Mountains, which are located ~30 km northwest of Las Vegas, NV (Fig. 3.1D). Additionally, six late season (May 2009) snowpack samples were collected from the Spring Mountains over an elevation range of ~ 2500–3000 m for comparison with the sampled spring waters.

In order to investigate the relationships between isotopic composition and elevation, and the degree to which this relationship varies, we calculated the mean elevation of the contributing drainage basin for each water sample using GIS-based hydrologic analysis. Previous studies have shown that precipitation-weighted mean basin elevations are the most accurate representations of mean recharge elevations for surface waters (Rowley and Garzione, 2007), but with small drainage basin areas (< 250 km²) the influence of uneven precipitation distributions appears to be negligible (Hren et al., 2009). As all of our sampled waters have small upstream drainage areas (<< 250 km²), with the exception of the Kern River, mean basin elevation calculations using basin hypsometry alone are presumed to be sufficient. It is important to note that basin elevation calculations can be complicated for bedrock spring systems where surface topography may not accurately reflect the source areas for sampled waters, as discussed later. However, most of our collected springs were characterized by minimal flow rates, often only minor trickles and areas of ponding, in contrast to documented bedrock springs which are easily identifiable based on high discharges and mismatches between isotopic compositions and GIS-derived mean basin elevations. As such, the majority of springs sampled in this study are likely locally sourced and thus surface hydrology-based calculations provide accurate estimates of the mean elevation of contributing drainage areas.

Isotopic measurements were completed at the University of Michigan Stable Isotope Laboratory. δ^{18} O values were measured via a Thermo Finnigan Gas Bench II coupled to the inlet of a Thermo Finnigan Delta V Plus mass spectrometer. δD measurements were performed using a continuous flow via a Thermo Finnigan High Temperature Conversion Elemental Analyzer (TC-EA) device coupled to the inlet of a Thermo Finnigan Delta V Plus mass spectrometer through a Thermo Finnigan ConFlo IV interface. Isotopic values were calculated based on isotopic analyses of lab standards (SLAP, Ann Arbor snow, evaporated H₂O), and most sample waters (~80% of the 98 analyzed waters) were subject to replicate analysis. Replicate and internal standard isotopic analyses constrained accuracy and precision of reported isotopic values to \pm 0.1‰ for δ^{18} O and \pm 2‰ for δ D. All δ^{18} O and δ D values are reported relative to Vienna Standard Mean Ocean Water (VSMOW).

3.4 Southwestern US meteoric water δ^{18} O

3.4.1 Spring and stream water isotopic results

Orographic slope data

Low elevation sample sites in both the Tule River and Southern Sierra sample transects (orographic slope) exhibit the highest δ^{18} O values of all analyzed samples. Tule River δ^{18} O values range from -9.6‰ to -12.5‰ over an elevation range of 1132–2403 m, yielding a mean δ^{18} O-elevation gradient of -2.1‰/km (Fig. 3.2). For the Southern Sierra

transect, δ^{18} O values exhibit a wider δ^{18} O range of -7.6‰ to -14.6‰ for an elevation range of 881–2612 m resulting in a slightly higher magnitude, mean δ^{18} O-elevation gradient of -3.1‰/km (Fig. 3.2). If the North and South Fork Kern River samples (drainage basin areas > 500 km²; Table 3.1) are removed from the calculation, the mean δ^{18} O-elevation gradient reduces to -2.8‰/km.

Basin and Range data

Compared to Tule River and Southern Sierra waters, maximum δ^{18} O values (i.e. low elevation values) are lower (by 2–5‰) in the Panamint Mountains and Spring Mountains transects, both of which are located within the Sierra Nevada orographic rainshadow. Panamint Mountains spring waters range from -12.6‰ to -14.1‰ over an elevation range of 1360–2579 m, resulting in a mean δ^{18} O-elevation gradient of -0.9‰/km (Fig. 3.2). Spring waters in the Spring Mountains exhibit a similar magnitude δ^{18} O-elevation gradient of -0.8‰/km, derived from a δ^{18} O range of -11.7‰ to -13.8‰ over elevations of 1106–3041 m (Fig. 3.2). Spring Mountains snow samples consistently exhibit higher δ^{18} O values (-10.0 to -12.5‰) compared to equal elevation spring waters, and show a trend of increasing δ^{18} O values with elevation (+3.6‰/km, Fig. 3.2), in contrast to the inverse δ^{18} O-elevation relationships expected based on Rayleigh distillation processes.

3.4.2 δD - $\delta^{18}O$ results

All field samples were also analyzed for deuterium concentration (δD). Both the Tule River and Southern Sierra transects are characterized by highly correlated ($R^2 > 0.8$; Figure 3.3) δD - $\delta^{18}O$ relationships in general agreement with the Global Meteoric Water Line (GMWL: $\delta D = 8*\delta^{18}O + 10$; Craig, 1961). Our two Basin and Range datasets

(Spring Mountains and Panamint Mountains), however, exhibit a poor correlation between δD and $\delta^{18}O$ (R² < 0.3) with variable δD - $\delta^{18}O$ slopes (Fig. 3.3).

3.4.3 Comparison to published southwestern US precipitation $\delta^{18}O$ data

In order to assess how accurately surface and spring waters preserve the isotopic composition of precipitation and the degree to which post-depositional isotopic modification occurs in the southwestern US study area, we compare our stream and spring water isotopic records to published regional isotopic records of both terrestrial waters (springs, late season snowpack, surface waters) and precipitation (rain and snow). For this comparison, we compiled published datasets for the northern and central Sierra Nevada (Friedman and Smith, 1972; Ingraham and Taylor, 1991), the southern Sierra Nevada (Friedman et al., 1992) and the Basin and Range (Hershey, 1989; Ingraham et al., 1991; Winograd et al., 1998) of the southwestern US (Fig. 3.2).

In the orographic slope region of the southwestern US (central and northern Sierra Nevada, southern Sierra Nevada), both precipitation and terrestrial waters (published and this study) exhibit a similar range in δ^{18} O values as well as similar magnitude δ^{18} O-elevation gradients, whereas systematic differences are observed between precipitation and terrestrial δ^{18} O values and δ^{18} O-elevation gradients derived from the Basin and Range (orographic rainshadow) datasets (Fig. 3.2). Specifically, Basin and Range spring water δ^{18} O-elevation gradients (-0.8‰/km and -0.9‰/km) are a factor of 2–3 lower in magnitude compared to published regional precipitation isotopic gradients (-2.1‰/km; Ingraham et al., 1991; Fig. 3.2) and are also a factor of 3–4 lower than δ^{18} O-elevation gradients observed for surface waters collected from the Sierra Nevada orographic slope

Figure 3.2 - δ^{18} O versus elevation for precipitation (rain, early season snowpack) and terrestrial waters (late season snowpack, springs, surface waters) in the orographic slope (central and northern Sierra Nevada, southern Sierra Nevada), and orographic rainshadow (Basin and Range) regions of the southwestern US. See Figure 3.1 caption for references and data sources. δ^{18} O-elevation gradients and associated R² values are included for each dataset. Note the reduction in δ^{18} O-elevation gradients for terrestrial waters in the Basin and Range by a factor of 3-4 compared with isotopic gradients of regional precipitation as well as in comparison to both precipitation and terrestrial waters in the orographic slope region. Dotted line at -15‰ included for Basin and Range datasets to highlight isotopic differences between early season snowpack and snowmelt-derived spring waters.

Figure 3.3 - δD versus $\delta^{18}O$ for terrestrial water transects of this study. Best-fit regression shown for each dataset relative to the Global Meteoric Water Line (GMWL): $\delta D=8 \times \delta^{18}O +10$ (Craig, 1961). $\delta D-\delta^{18}O$ slopes derived from Tule River and Southern Sierra surface water transects and Spring Mountains spring waters approximate GMWL. Panamint Mountains spring waters and Spring Mountains late season snow samples show significant deviation from GMWL.

(-2.1‰/km and -3.1‰/km). This systematic reduction in δ^{18} O-elevation gradient is observed not only in our spring and surface water datasets, but also in published datasets from the Spring Mountains (Winograd et al., 1998) where snowmelt samples are characterized by a low δ^{18} O-elevation gradient (-0.5‰/km) and snowmelt δ^{18} O values are on average > 2‰ higher than equal-elevation snowcore values (Fig. 3.2; Hershey, 1989; Winograd et al., 1998). Snowmelt values, however, closely approximate the isotopic composition of spring waters from the Spring Mountains at comparable elevations (Fig. 3.2).

It is important to note that there is a statistically poor ($R^2 < 0.1$) correlation between δ^{18} O and elevation for published Spring Mountains early season snowpack and snowmelt data (Fig. 3.2; Winograd et al., 1998), complicating the discussion of δ^{18} Oelevation gradients and their relationship to spring water isotopic values. However, these snowpack and snowmelt samples were unsystematically collected in terms of both time and location during the early snow season (December-March; Winograd et al., 1998) and, as a result, provide only point source δ^{18} O data that likely reflects the δ^{18} O variability of individual precipitation events (Ingraham and Taylor, 1991) rather than the integrated isotopic value for each corresponding elevation. Spring waters are more likely to integrate over seasons or even years of precipitation and, thus, are more reliable indicators of δ^{18} O-elevation relationships, as suggested by the relatively good correlation between δ^{18} O and elevation (R² = 0.71) for our Spring Mountains spring water samples. Even with these limitations, Spring Mountains snowcore and snowmelt datasets inform our interpretation of spring water isotopic compositions, as there is a clear shift to higher δ^{18} O values (> -15‰) in the snowmelt and spring water datasets relative to early season
snowcore δ^{18} O values, which are consistently lower (often < -15‰ (VSMOW)), particularly at elevations greater than 2000 m (Fig. 3.2).

3.5 Controls on meteoric water δ^{18} O

Southwestern US terrestrial water isotopic datasets, both published and derived from this study, exhibit systematic regional differences in isotopic compositions and isotope-elevation relationships. Additionally, similarity in isotopic trends across all compiled datasets (Fig. 3.2), which span ~ 40 years of meteoric water sampling, suggests that, despite the limited duration of sampling for this study (1-2 seasons; Table 3.1), the observed isotopic trends in our southwestern US meteoric water datasets are representative on at least the decadal scale. The observed ranges in δ^{18} O values for Basin and Range transects (Spring and Panamint mountains) are reduced by a factor of 2-4 relative to δ^{18} O ranges for transects with comparable relief from the orographic slope (Tule River and Southern Sierra). Maximum δ^{18} O values (i.e. lowest elevations) in the Spring and Panamint mountains are 2–5‰ lower than Tule River and Southern Sierra maximums, simply due to orographic rainout over the Sierra Nevada prior to reaching the continental interior. However, minimum δ^{18} O values are comparable among all spring and surface water transects (~ -15 to -13‰), resulting in lower magnitude δ^{18} O-elevation gradients for Basin and Range transects (Fig. 3.2). These results point to region-specific and elevation-dependent processes controlling the isotopic composition of Basin and Range terrestrial waters. Precipitation and terrestrial water δ^{18} O values and δ^{18} Oelevation gradients are similar for all of the orographic slope datasets, suggesting that the processes influencing the isotopic composition of Basin and Range terrestrial waters are not significant in the orographic slope region. As discussed previously, a number of mechanisms have been proposed to account for variability in δ^{18} O-elevation gradients, but many of these are only relevant to depositional (i.e. atmospheric) processes and, thus, are unlikely to account for the isotopic shifts observed for the spring and surface waters relative to precipitation values in the continental interior of the western US.

Evaporation is one process that affects the isotopic composition of meteoric waters after deposition by systematically removing light isotopes (H and ¹⁶O), thereby increasing δD and $\delta^{18}O$ values of the remaining water. However, in order to reduce $\delta^{18}O$ -elevation gradients, the evaporative processes must be elevation dependent, with increased evaporative isotopic enrichment at higher elevations needed to reduce the isotopic gradient between low and high elevation sites. In the southwestern US, such an evaporation-elevation relationship is unlikely as peak evaporation commonly occurs in low elevation basins where temperature and aridity are at a maximum (e.g., Death Valley).

Snow sublimation is a process similar to, but distinct from, evaporation, which influences the isotopic composition of late season snowpacks and snowpack-derived meteoric waters (e.g., snowmelt, integrated spring and surface waters). Like evaporation, sublimation driven mass loss of snow after deposition will change the isotopic composition of the remaining snowpack to higher δ^{18} O values (Moser and Stichler, 1975; Stichler et al., 2001; Konishchev et al., 2003; Ekaykin et al., 2009). It has been proposed that snowpack sublimation would result in no net isotopic change to the remnant snowpack (Friedman et al., 1991); however this view is limited to only whole-grain, ice-vapor transitions and layer by layer mass loss from the snowpack. In an alpine snowpack,

however, the ice-vapor transition often involves an intermediate step of local melting and associated evaporation of this minor liquid phase, thus producing a similar isotopic effect to that of standard water evaporation (Neumann et al., 2008). Accordingly, the use of the term 'snow sublimation' in the remainder of this work encompasses the inter-snowpack ice-water-vapor phase changes occurring and is not limited to only whole-grain, ice-vapor transitions.

The effect of post-depositional isotopic modification due to snow sublimation has been studied extensively due to its relevance to paleoclimate reconstructions (Moser and Sitchler, 1975; Sommerfeld et al., 1991; Cooper, 1998; Stichler et al., 2001; Konishchev et al., 2003; Sinclair and Marshall, 2008; Ekaykin et al., 2009; Sokratov and Golubev, 2009), but has been largely ignored in the field of paleoaltimetry. Due to the fact that high elevation snowpacks are sustained later into the melt season than those at lower elevations, it is likely that snowpack mass loss due to sublimation is altitude dependent (e.g., Vuille, 1996). As a result, higher elevation snowpacks will experience increased sublimation-induced enrichment of ¹⁸O, which reduces the isotopic gradient between low and high elevation snowpacks, ultimately producing a decreased δ^{18} O-elevation gradient across the remnant snowpack. The isotopic composition of meltwater derived from a sublimated snowpack will thus record a δ^{18} O-elevation gradient that is substantially lower than that of the original precipitation, as observed in the Panamint Mountains and Spring Mountains datasets of this study (Fig. 3.2).

The influence of sublimation on the isotopic composition of meteoric waters is also likely to be region-dependent, as sublimation requires a specific set of environmental conditions, namely, high radiation input, low relative humidity, low vapor pressure, and high wind speeds, all of which characterize mountain ranges in the Basin and Range, and high relief continental interiors, in general. This, along with the fact that annual precipitation in the Basin and Range is dominated by winter season precipitation in the form of snow, suggests that sublimation may be a primary influence on the isotopic evolution of meteoric waters in this region. If so, sublimation may account for the systematic isotopic differences between precipitation and terrestrial waters in our Basin and Range transects. Sublimation is unlikely to be as dominant of a process in the orographic slope of the Sierra Nevada, due to the high relative humidity of this region in comparison to the continental interior, and as reflected in the lack of net isotopic change in Sierran snowpacks over the course of the winter season (Taylor et al., 2001). The reduced sublimation potential in the Sierra Nevada may explain the similarity between precipitation and terrestrial water δ^{18} O-elevation gradients in the orographic slope region as well as the difference between orographic slope and Basin and Range spring and surface water δ^{18} O-elevation gradients.

The wealth of meteoric water isotopic datasets from the Spring Mountains, in addition to the spring water sampling of this study (Fig. 3.2), makes this a key region to investigate the role of snow sublimation in post-depositional isotopic enrichment and modification of δ^{18} O-elevation gradients. The > +2‰ shift for snowmelt samples compared to early season (December–March) snowcores (Fig. 3.2; Hershey, 1989; Winograd et al., 1998), suggests that processes specific to snowpack isotopic modification exert a primary influence on meteoric water isotopic values. A shift of even greater magnitude (~ +3–5‰) is observed in the six late-season (May) snowpack samples collected as part of this study, further supporting the idea of post-depositional isotopic

modification of the snowpack throughout the winter season. Similarity of snowmelt (Winograd et al., 1998) and spring water (this study) δ^{18} O values and δ^{18} O-elevation gradients (Fig. 3.2) suggests that winter season precipitation and the processes affecting this precipitation following deposition are the primary influences on the isotopic composition of meteoric waters recharged in this region (Winograd et al., 1998). Using the data and evidence presented above, in combination with a range of reasonable environmental parameters, we use a Rayleigh distillation snow sublimation model to calculate the effects of sublimation processes on the isotopic composition of snowmelt-derived spring and surface waters.

3.6 Rayleigh distillation modeling of δ^{18} O

We assess the plausibility of snow sublimation as a primary driver for the isotopic composition of snowmelt-derived meteoric waters through a Rayleigh distillation model, which quantifies the isotopic evolution of snowpacks as a function of elevation. Initial (early season) snowpack δ^{18} O value is controlled by the isotopic composition of individual precipitation events that occur at a given site. The δ^{18} O value of these individual precipitation events can be quite variable at a single location and early season snowpacks often preserve this initial variability. Over the course of the winter season, however, the snowpack undergoes δ^{18} O homogenization due to snowpack metamorphism and a variety of isotopic exchange processes (Friedman et al., 1991; Cooper, 1998; Taylor et al., 2001; Unnikrishna et al., 2002; Earman et al., 2006; Neumann et al., 2008). As a result, seasonal snowpacks evolve to a uniform, average δ^{18} O value that correlates to site elevation (Fig. 3.2; Friedman and Smith, 1972). In the Basin and Range, compiled early season snowpack δ^{18} O-elevation gradients, albeit poorly constrained (Winograd et al., 1998), are similar to regional precipitation (rain) gradients and are of a similar magnitude (~ -2‰/km) to Rayleigh distillation-derived gradients (Rowley et al., 2001).

Initial parameters of the Rayleigh distillation model are based on published data from southern Nevada, including an initial δ^{18} O value of -11‰ at 1000 m (Friedman et al., 2002) and a precipitation δ^{18} O-elevation gradient of -2.0%/km (Fig. 3.2; Ingraham et al., 1991; Winograd et al., 1998). We apply an experimentally determined snow-vapor fractionation factor (Neumann et al., 2008) and assume that the fraction of mass loss due to sublimation increases linearly with elevation, consistent with available observational constraints (Vuille, 1996, Hood et al., 1999; Schulz and de Jong, 2004). Rayleigh distillation applies to open fractionation systems such that sublimated snow is completely removed from the system after phase change. In real world settings, this sublimated vapor may interact with the remaining snowpack at a later time or position downwind. For the sake of model simplicity, we assume that the influence of vapor-snowpack isotopic exchange is minor but the possible implications of these interactions are discussed later. The applied, experimentally-derived fractionation factor (Neumann et al., 2008) assumes snowpack temperature is held constant at -5°C, independent of elevation. Inclusion of an adiabatic lapse rate would only serve to increase isotopic fractionation with altitude (i.e. increased ¹⁶O removal at colder temperatures and higher elevations), thus amplifying the effects of altitude-dependent sublimation on δ^{18} O-elevation gradients. The isotopic evolution of snow with increasing fraction of sublimation-derived mass loss is shown by a suite of Rayleigh distillation curves (gray lines in Fig. 3.4A) described by the following function:

$$\delta^{18}O_{final} = (\delta^{18}O_{initial} + 1000) \times (1 - f)^{\left(\frac{1}{\alpha} - 1\right)} - 1000$$
(Eq. 3.1)

where *f* is the fraction of the snowpack sublimated and α is 1.013, the snow-vapor fractionation factor at -5°C (Neumann et al., 2008).

The isotopic evolution of discrete points undergoing altitude-dependent sublimation is shown by suites of colored dots (Fig. 3.4), assuming sublimation is 0% at 1500 m (the approximate winter snow line in the Spring Mountains) and increases linearly with elevation (Fig. 3.4A). For example, navy blue dots represent the evolution of the original snowpack at 500-m increments for an altitude-dependent sublimation gradient of 5%/km (Fig. 3.4A). The suite of dots from black to light blue along the 4500 m distillation curve represent the final isotopic composition of the snowpack at 4500 m with increasing sublimation gradients (e.g., 0, 5, 10, 20, and 30%/km) representing 0, 15, 30, 60, and 90% total mass loss due to sublimation (Fig. 3.4A). The effect of sublimation on δ^{18} O-elevation gradient is shown by plotting the final (late season) isotopic composition of the snowpack versus elevation for our range of modeled sublimation gradients (Fig. 3.4B). Black dots (0% sublimation) represent the original δ^{18} O-elevation gradient of the snowpack, -2‰/km (Fig. 3.4B). With increasing sublimation amounts, the δ^{18} O-elevation gradient of the snowpack is reduced (Fig. 3.4B). If sublimation gradients are high enough (> 15%/km), the δ^{18} O-elevation gradient may actually invert at higher elevations (> 3000 m), and the snowpack will exhibit increasing δ^{18} O with elevation, similar to that observed in our late season snow samples (Fig. 3.2) and documented in the European Alps (Moser and Stichler, 1975).

Figure 3.4

Figure 3.4 - (A) Rayleigh distillation curves (gray lines at elevations of 500-4500 m) for a theoretical snowpack undergoing mass loss due to sublimation with a $\delta^{18}O$ composition of -11‰ at 1000 m and a precipitation $\delta^{18}O$ -elevation gradient of -2.0‰/km. Dots indicate the $\delta^{18}O$ isotopic shifts for discrete elevations on the snowpack with increasing gradients of altitude-dependent mass loss due to sublimation (see text for discussion). (B) $\delta^{18}O$ composition of snowpack after sublimation-derived mass loss versus elevation, colored to match models in (A). The slope of a line through each group of colored dots represents the $\delta^{18}O$ -elevation gradient resulting from isotopic evolution due to sublimation, with black dots representing the original, unmodified $\delta^{18}O$ -elevation gradient of -2.0‰/km. A sublimation gradient of 10%/km (medium blue dots) results in a shift in post-depositional $\delta^{18}O$ -elevation gradient similar to that observed in the Spring and Panamint mountains (from -2.0‰/km to ~ -0.8‰/km).

In the Spring Mountains, spring water and snowmelt δ^{18} O-elevation gradients are a factor of 3–4 lower than rain and early season snowpack gradients (Fig. 3.2). Modeling results indicate that such a reduction of δ^{18} O-elevation gradient magnitudes can be achieved with a sublimation gradient of ~10%/km. Snowpack δ^{18} O datasets are not available from the Panamint Mountains, but the similarity of Panamint Mountains spring water δ^{18} O values and δ^{18} O-elevation gradients to Spring Mountains datasets suggests a sublimation gradient of $\sim 10\%$ /km may also apply to the Panamint Mountains. Although compelling observational constraints on sublimation rates and gradients are scarce, such a sublimation gradient is consistent with field-based estimates of sublimation in other regions of the western US. Detailed calculations using measurements of latent heat fluxes from Niwot Ridge, CO estimate annual snowpack mass loss due to sublimation is ~15% at elevations of 3500 m (Hood et al., 1999). A field-based study monitoring the evolution of snowpacks in the Magdalena Mountains in central New Mexico provides another estimate, with observed sublimation amounts of ~13% at an elevation of 2560 m (Earman et al., 2006). Thus, despite a lack of hard constraints on regional sublimation amounts in the Spring and Panamint mountains, expected sublimation rates based on observed δ^{18} Oelevation gradient evolution are of a reasonable magnitude when compared to available constraints from throughout the western United States.

3.7 δD - $\delta^{18}O$ relationships

Regional δD - $\delta^{18}O$ trends observed for our sampled spring and stream waters (Fig. 3.3) provide additional support for sublimation influence on Basin and Range meteoric waters. Sublimation, like evaporation, is a kinetically influenced process, and, as such,

will tend to drive $\delta D - \delta^{18} O$ relationships away from the GMWL. Both field (Stichler et al., 2001; Earman et al., 2006) and experimental (Lee et al., 2009) studies suggest that $\delta D - \delta^{18} O$ slopes of ~5–6 characterize snowpacks undergoing sublimation. Late season snowpack samples from the Spring Mountains, collected as part of this study, have a δD - δ^{18} O slope of 3.7 (Fig. 3.3), consistent with significant post-depositional isotopic modification by kinetic processes. Spring water samples from the Spring Mountains, however, are characterized by a δD - $\delta^{18}O$ slope of ~7.3, similar to that of the GMWL (Fig. 3.3). One possible explanation for this higher than expected $\delta D - \delta^{18} O$ slope for sublimation-influenced waters is that sampled spring waters integrate meltwaters from throughout the melt season, not just from the late season snowpacks most heavily influenced by sublimation. Based on our Rayleigh distillation models, the total mass loss necessary to sufficiently alter δ^{18} O compositions and produce the reduced δ^{18} O-elevation gradients observed in Spring Mountains spring and meltwaters is quite modest ($\leq 15\%$). As such, the total kinetic effects of sublimation on the isotopic compositions should also be modest and result in only minor deviations from the GMWL for meltwaters, as observed (Fig. 3.3).

The very low $\delta D - \delta^{18}O$ gradient observed for Panamint Mountains waters (~ 2.6; Fig. 3.3) is also consistent with significant influence from kinetic processes, but interpretations of this dataset should be made with caution as the regression is constrained by a small sample population (n = 8) and the best-fit regression is poorly constrained (R² = 0.11). Published meteoric water datasets from neighboring Death Valley exhibit similarly low $\delta D - \delta^{18}O$ gradients (~ 3.5; Jahren and Sanford, 2002) suggesting that post-depositional kinetic processes exert a dominant influence on regional meteoric water isotopic compositions. The Jahren and Sanford (2002) dataset also provides additional support for our proposal of sublimation influence to regional snowpack isotopic compositions as snowpacks that showed clear evidence for sublimation-derived mass loss had δ^{18} O values 3–4‰ higher than those for recent accumulations of fresh snow at the same site.

It is important to note, however, that sublimation alone is unlikely to account for all of the observed regional variability in δD - $\delta^{18}O$ trends. Continental moisture recycling, seasonal variability in moisture source and below cloud evaporation of rain and snow can all lead to deviations from the GMWL (Araguás-Araguás et al., 2000). Each of these processes may account for at least part of the increased variability in δD - $\delta^{18}O$ relationships for the Basin and Range waters observed in this and published (e.g., Jahren and Sanford, 2002) studies, as high regional aridity promotes increased moisture recycling as well as both depositional and post-depositional evaporation, and the seasonal influence of multiple moisture sources (Pacific Ocean, Gulf of California) complicates isotopic relationships for precipitation and associated meteoric waters in the Basin and Range. Unraveling the effects of each of these individual processes on δD - $\delta^{18}O$ relationships in the Basin and Range is complex and requires highly-controlled field and lab-based methodologies that are beyond the scope of this study.

3.8 Additional mechanisms for δ^{18} O-elevation gradient variability

3.8.1 Alternative sources of $\delta^{18}O$ evolution in a snowpack

While sublimation can plausibly explain the alteration of the isotopic composition of a snowpack and resulting δ^{18} O-elevation gradients, the roles of other isotopic

exchange processes also need to be considered. Temperature-gradient metamorphism and partial melting and refreezing (Colbeck, 1987) serve to homogenize the isotopic composition of a snowpack, but generally do not lead to isotopic exchange with external reservoirs, and thus would not alter net snowpack δ^{18} O, or change δ^{18} O-elevation gradients. One process that could account for relative ¹⁶O depletion (¹⁸O enrichment) through isotopic exchange with an external reservoir is the condensation of atmospheric water vapor onto, or into, the snowpack (Moser and Stichler, 1975; Cooper, 1998). This process dominates over sublimation during the late spring and early summer when regional relative humidity and atmospheric temperature increase. Atmospheric water vapor during these seasons tends to be characterized by higher δ^{18} O values than that of winter snow, and, as a result, condensation of this vapor onto the snowpack would result in an increase in snowpack $\delta^{18}O$ value. However, the importance of condensation of atmospheric moisture vapor to modifying snowpack δ^{18} O compositions appears minor, as net mass gain due to condensation is often insignificant in comparison to annual mass loss due to sublimation (Hood et al., 1999; Earman et al., 2006), particularly in regions characterized by low relative humidity, such as the Basin and Range.

Isotopic exchange between snow and atmospheric water vapor is another mechanism that may contribute to the observed isotopic enrichment of a snowpack, as demonstrated in a controlled experiment monitoring the isotopic evolution of snow in the presence of an isotopically distinct (low δ^{18} O value) brine (Earman et al., 2006). Snow-atmospheric water vapor exchange is most likely to occur during the spring as the snowpack warms (Fred Phillips, pers. comm., 2008) and when atmospheric water vapor is characterized by higher δ^{18} O values than that of the snow. The significance of this

process to modifying the δ^{18} O composition of snow remains poorly constrained (Earman et al., 2006), and thus fully quantifying this effect on δ^{18} O-elevation gradients is not possible at present, but the applicability of this mechanism to the reduction of δ^{18} Oelevation gradients can be assessed from a theoretical perspective. If the rate, or amount, of isotopic exchange is not altitude dependent, the effect will be to shift snowpack δ^{18} O to higher values but not to reduce δ^{18} O-elevation gradients. However, snowpacks at higher elevations are sustained later into the spring or early summer than at lower elevations, and, as a result, are subject to longer exposure times and associated atmospheric isotopic exchange. Thus, it is possible that in some cases the amount of isotopic exchange would be elevation dependent, and, as seen with elevation-dependent mass loss via sublimation, could lead to a reduction in snowpack δ^{18} O-elevation gradient through the melt season. In order to fully validate this mechanism, the magnitude of isotopic enrichment in late season snowpacks as a function of seasonal variability of δ^{18} O (i.e. the difference in isotopic composition between warm and cool season precipitation and atmospheric water vapor) must be quantified through future study.

3.8.2 Complications from bedrock springs

Meteoric water samples collected from the Spring and Panamint mountains were obtained from bedrock springs, in contrast with surface water (runoff) samples obtained from the orographic slope of the southern Sierra Nevada. Collecting from bedrock springs can potentially complicate the interpretation of isotope-elevation relationships due to the possible deep infiltration and transport of high elevation (low δ^{18} O value) waters to low elevation springs, which would reduce the apparent δ^{18} O gradient between low and high elevation sites. Such transport may account for the slightly lower δ^{18} O

values (1–2‰) for the lowest elevation Spring and Panamint mountains spring water samples when compared to precipitation δ^{18} O values from comparable elevations in nearby regions (Fig. 3.2). However, this bedrock spring effect cannot account for all of the observed variability in isotopic compositions and isotope-elevation relationships because transport of high elevation waters will lead to decreased δ^{18} O values at lower elevation sites, but will have no effect on high elevation water δ^{18} O values. The observation that the highest elevation spring samples (δ^{18} O ~ -14 to -13‰; Fig. 3.2) of this study exhibit the greatest deviation from equal elevation winter precipitation $\delta^{18}O$ values (-22 to -15%; Fig. 3.2) suggests that complications from bedrock hydrology are a secondary influence on δ^{18} O-elevation gradients and that elevation dependent processes. such as altitude-dependent snow sublimation, act as a first order control on the isotopic composition of our sampled Basin and Range spring waters. While uncertainty in recharge locations for bedrock springs cannot account for the observed isotopic trends at high elevations in Spring and Panamint mountains spring waters, it can alter the absolute magnitude of δ^{18} O-elevation gradients. Thus, constraining the amount of regional sublimation using isotopic proxies will be subject to increased uncertainty in areas where regional hydrology is poorly understood.

3.9 Implications of snow sublimation on stable isotope-based hydrologic and paleoelevation studies

3.9.1 Hydrologic studies

An understanding of the processes that modify the isotopic composition of precipitation after deposition is important for any paleoaltimetry, paleoclimate, or hydrologic study utilizing the stable isotopic composition of meteoric water proxies. Modern spring and surface waters collected for this study suggest significant postdepositional isotopic modification of terrestrial waters in the continental interior of the southwestern US has occurred. Specifically, the process of altitude-dependent snow sublimation in the mountain environments of the continental interior appears to be a primary control on isotopic composition, a finding with implications for future hydrologic studies in this region, especially in the context of current global warming trends. For example, groundwater isotopic compositions are commonly used to determine the seasonality and location of annual recharge in mountain settings (e.g., Winograd et al., 1998). Hydrologic studies often consider only the depositional isotopic compositions of winter and summer season precipitation, and apply two-component (warm and cool season) mixing models to estimate seasonal influence on groundwater recharge. Snowpack sublimation, however, leads to increased meltwater δ^{18} O values, yielding an isotopic signature that modifies winter precipitation to become more "summer-like". This effect leads to an underestimate of the contribution of winter season precipitation to groundwater recharge (Earman et al., 2006), which can potentially misrepresent regional hydrologic processes. In the continental interior western US, average winter season precipitation δ^{18} O values are ~3–6‰ lower than those of summer rain (Friedman et al., 1992; Friedman et al., 2002). This seasonal difference can be at least partially erased through sublimation or other post-depositional processes, as indicated by the observed $\sim 2-5\%$ shift between precipitation and terrestrial continental interior waters of this study (Fig. 3.2), an effect that will complicate quantification of seasonal influence to groundwater recharge. In the Spring Mountains, observation of the \geq +2‰ shift in the

 δ^{18} O of spring snowmelt relative to mean winter snowpack, has led to more accurate quantification of seasonal recharge amounts, specifically the increased influence of winter season recharge (~90%) to the annual groundwater budget (Winograd et al., 1998). Future hydrologic studies must also be aware of the likelihood of post-depositional increases in δ^{18} O values, particularly for winter season snowpacks, in order to avoid significantly underestimating the contribution of winter season recharge.

Accurate assessment of the timing and location of groundwater recharge is also fundamental to proper water resource management in the arid, continental interior of the western United States. The results of this study indicate that altitude-dependent snow sublimation exerts a first order influence on the stable isotopic compositions of the terrestrial meteoric waters that ultimately feed regional groundwater systems. Understanding the isotopic evolution of snowpack systems is especially important considering snowpacks are often the largest reservoirs for annual precipitation, and spring season snowmelt is the dominant source of water recharge, in the water-stressed western US (e.g., Mote et al., 2005; Henderson and Shuman, 2010). Recent trends of declining mountain snowpack and earlier onset of spring snowmelt as a result of global climate warming have been well-documented throughout the western US (Mote et al., 2005; Knowles et al., 2006; Clow, 2010; Kapnick and Hall, 2010; Minder, 2010). In combination with the isotopic effects of snowpack sublimation, these trends of declining snowpack and earlier onset of snowmelt have important implications for hydrologic studies utilizing stable isotopic compositions to understand recharge processes. With shorter snow seasons, and associated increases in the percentage of annual precipitation falling as rain instead of snow, the magnitude of isotopic modification due to snow

sublimation will likely be reduced. Accordingly, the isotopic signatures of winter precipitation and their difference relative to those of summer precipitation may be better preserved under these new climatic conditions. Since sublimation leads to increased $\delta^{18}O$ (and δD), if current warming trends continue, it follows that, in mountain catchments where snowmelt is a dominant groundwater contributor, there may be a shift to more negative $\delta^{18}O$ and δD values of meteoric waters, independent of a change in seasonal precipitation amounts or timing and location of groundwater recharge. For accurate hydrologic assessments, these possible climate change-induced shifts must not be interpreted as a change to higher elevation sources or increased contribution of winter season precipitation to the groundwater budget.

3.9.2 Stable isotope paleoaltimetry

Paleoaltimetry reconstructions often utilize isotopic relationships from modern precipitation to constrain paleoelevation histories (Rowley et al., 2001; Currie et al., 2005; Garzione et al., 2006; Mulch et al., 2006; DeCelles et al., 2007). As the results of this study indicate, however, meteoric water proxies subject to post-depositional isotopic modification may not accurately reflect the isotopic composition of the precipitation from which they are derived. Specifically, the process of snow sublimation systematically increases the δ^{18} O and δ D composition of the snowpack, and the meteoric waters derived from it, throughout the snow and snowmelt seasons. The elevation-dependent behavior of snow sublimation leads to reduced isotopic differences between high and low elevations, thus reversing the effects of Rayleigh distillation processes and ultimately leading to underestimates of paleoelevation. The degree to which these isotopic shifts influence paleoelevation estimates depends on the amount of sublimation-derived mass loss occurring over the course of the snow season. Using the same Rayleigh distillation equation above (Eq. 3.1), the net snowpack isotopic change for a corresponding sublimation amount can be calculated. Combining this isotopic shift with commonlyapplied δ^{18} O-elevation gradients of -2 to -3‰/km, a resulting paleoelevation underestimate can be calculated (the difference between elevation calculated using postdepositional δ^{18} O value and 'actual' elevation; Fig. 3.5).

Estimates for seasonal sublimation mass losses in alpine environments are highly variable, ranging from 10-90% (Strasser et al., 2008). In most empirical studies of the continental interior western US, however, observed annual sublimation mass loss is generally moderate, on the order of 5-40% (Hood et al, 1999; Earman et al., 2006; Strasser et al., 2008). Corresponding maximum paleoelevation underestimates for these sublimation amounts would be ~ 2 and 3 km for applied δ^{18} O-elevation gradients of -3%/km and -2%/km, respectively (Fig. 3.5), which are similar to underestimates resulting from significant evaporative influence (Quade et al., 2007). It should be noted that these calculations assume sublimated snowpacks are the only contributor to terrestrial waters and, thus, provide maximum paleoelevation underestimates. Surface and groundwater contributions that are not influenced by post-depositional isotopic change (e.g., cool season rain) will reduce the isotopic impact of snowpack sublimation and, as a result, the degree to which paleoelevations would be underestimated. The fact that winter season precipitation, primarily in the form of snow, is the dominant contributor to groundwater recharge in the mountainous, continental interior US, however, suggests that these calculations provide good first order approximations of the impact sublimationinduced isotopic change can have on paleoelevation quantification. The magnitude of these underestimates highlights the need to constrain the influence of snow sublimation on the isotopic composition of terrestrial waters in order to make accurate estimates of paleoelevation. As a specific example, attempts to estimate the "paleoelevation" of the Spring Mountains using the δ^{18} O composition of present-day spring and surface waters in combination with either the modern precipitation δ^{18} O-elevation gradient (-2.0‰/km) or a global average δ^{18} O-elevation gradient (-2.8‰/km; Poage and Chamberlain, 2001) would result in an underestimate of range elevations (or relief) by a factor of 3 to 4.

The influence of sublimation isotopic modification processes to paleoelevation reconstructions will also be proxy-dependent as each proxy system informs about regional hydrology in a unique way. As this study indicates, paleo-terrestrial water (e.g., lakes, rivers, springs) proxy records (e.g., lacustrine carbonates, fossil shells and teeth deriving their isotopic signatures from lake, river, and/or spring waters) are likely to be directly affected by sublimation effects, particularly in meteoric water systems where seasonal snowpack is a dominant contributor to the annual hydrologic cycle. Lake, river and spring waters integrate the isotopic signal from throughout the contributing catchment. Contributions from upstream water sources (i.e. higher elevations, lower δ^{18} O values) often result in terrestrial water δD and $\delta^{18}O$ values that are lower than those of equal elevation precipitation (e.g., Dutton et al., 2005). As a result, lacustrine and fluvial proxies more reliably inform about basin hypsometry than about elevations at the site of proxy formation (e.g., Dettman and Lohmann, 2000; Rowley et al., 2001; Rowley and Garzione, 2007). In cases where lacustrine and fluvial proxy systems are subject to significant sublimation influence, paleoelevation reconstructions using these proxy records will be prone to errors in paleo-hypsometric calculations, specifically

underestimation of catchment relief and maximum elevations. In contrast, pedogenic carbonates, and similar paleo-precipitation proxies (e.g., weathered volcanic ashes), are less likely to be influenced by sublimation processes as they more reliably record paleo-precipitation isotopic compositions and thus are subject to reduced post-depositional isotopic modification. Sublimation influence to pedogenic carbonate proxy records is also expected to be significantly reduced due to the tendency for soil carbonates to form exclusively during summer months when temperature, evaporation and soil degassing rates are at a maximum (Quade et al., 2007) and when local soil waters are more likely to be derived from warm season precipitation characterized by minimal or no snowfall.

Sublimation can significantly increase stable isotope-based paleoelevation uncertainties (Fig. 3.5), but these uncertainties can be constrained due to the fact that snow sublimation requires a specific set of environmental conditions in order to significantly influence the stable isotopic composition of terrestrial waters. As a result, sublimation influence can be estimated, at least to a first degree, by characterizing the paleo-environment from which isotopic records are derived. In general, sublimation will be most influential in areas dominated by winter season precipitation in the form of snow, where regional meteoric water recharge is derived primarily from spring season snowmelt, and in regions of high aridity, high wind speeds, high solar radiation and low vapor pressure. This combination of environmental characteristics is common in a number of modern orogenic systems subject to current paleoaltimetry debate, such as the arid, continental interior of the western US (Houghton, 1969), the South American Altiplano (Houston and Hartley, 2003) and portions of Tibet (Wu and Qian, 2003; Shreve et al., 2009). Continued work to better quantify modern annual sublimation amounts,

Figure 3.5 - Stable isotope-based elevation underestimates calculated as a function of sublimation-derived mass loss from a seasonal snowpack. Elevation values are calculated using Rayleigh distillation model-derived δ^{18} O increases for a sublimated snowpack (see text for discussion) in combination with commonly applied δ^{18} O-elevation gradients. Inset plot limits focus to sublimation rates (0-50%) that are characteristic of modern, continental interior montane settings, particularly in the western US Cordillera.

particularly in arid, continental interior montane and high-standing plateau regions, will greatly aid the interpretation of sublimation-influenced isotopic records in future studies.

3.9.3 Isotopic relationships over continental plateaus

Interior continental plateaus are commonly the focus of paleoaltimetry study (e.g., Western US, Tibet, Altiplano) as their paleoelevation histories are integral to constraining the geodynamic and climatic evolution of major orogenic systems. Often, though, these interior plateaus are characterized by complex isotope-elevation relationships that complicate standard stable isotope approaches (e.g., Blisniuk and Stern, 2005; Quade et al., 2007). Figure 6 shows meteoric water δ^{18} O compositions as a function of elevation and distance from the major regional orographic barrier across the Himalayan-Tibetan Plateau orogen (Fig. 3.6A, see caption for references) and in the western US at a latitude of ~36°N (Fig. 3.6B, this study). In both regions, there is a well-defined relationship between δ^{18} O and elevation along the orographic slope (Sierra Nevada for the western US; Himalaya for the Tibetan Plateau) with δ^{18} O mimicking topography (low δ^{18} O values at high elevations). In the continental interior, however, δ^{18} O-elevation relationships are less straightforward. As discussed, in the western US, continental interior meteoric water δ^{18} O-elevation relationships are muted relative to the orographic slope, which we propose here results, at least partially, from post-depositional, altitude-dependent isotopic modification processes, such as snow sublimation. In the Tibetan Plateau, a similar disconnect between δ^{18} O and elevation is observed, with increasing δ^{18} O values correlating with increasing distance from the Himalayan front.

It is important to point out that the spatial scale over which the Tibetan Plateau δ^{18} O-elevation relationships are shown is significantly greater than that for the

southwestern US (Fig. 3.6), introducing additional influences to regional δ^{18} O patterns. The increase in δ^{18} O as a function of distance from the Himalayan front (i.e. latitude) is believed to be largely due to the complex interaction of multiple moisture sources over northern Tibet (Liu et al., 2008) as well as the increased influence of continental moisture recycling over the Tibetan Plateau (Tian et al., 2001), but this increase may at least partially result from isotopic modification of meteoric waters through either evaporation or snowpack sublimation in this high elevation, arid region. The influence of sublimation may have been even more important in the Tibetan Plateau region during the geologic past when winter season snow was a more dominant contributor to the annual precipitation budget. For example, the Tibetan Plateau is presently dominated by summer precipitation (W:S precipitation ratios of ~0.25), but has experienced periods of greater winter precipitation in the recent geologic past (e.g., W:S ratios of ~0.75; Wang et al., 2001), as well as arid, and potentially winter-dominated precipitation conditions, in early Cenozoic time (DeCelles et al., 2007).

Lacustrine carbonates from the northern Tibetan Plateau provide estimates for the δ^{18} O values of regional Eocene-Oligocene meteoric waters of ~-10‰ (VSMOW). Using Rayleigh distillation-derived δ^{18} O-elevation gradients (~-2.8‰/km), an Eocene paleoelevation of ≤ 2 km has been proposed for the basin in which these lacustrine carbonates formed (Cyr et al., 2005). In contrast, application of a more modest δ^{18} O-elevation gradient of ~-1.5‰/km, characteristic of modern precipitation in this region, yields paleoelevation estimates indistinguishable from modern Tibetan Plateau elevations (~ 4.5–5 km; DeCelles et al., 2007). If the early Cenozoic physiographic and climatic environment of the Tibetan Plateau was comparable to modern (i.e. arid, continental

Figure 3.6 - Meteoric δ^{18} O in the southwestern US and east Asia. Topographic swath profiles (left y-axis) and meteoric water δ^{18} O (right y-axis) plotted as a function of distance from the major regional orographic barrier for the (A) Himalaya-Tibetan Plateau (δ^{18} O values compiled from Araguás-Araguás et al., 1998; Tian et al., 2007; and Hren et al., 2009) and (B) western US at ~36°N (this study; SS = Southern Sierra; PM = Panamint Mountains; SM = Spring Mountains). Maximum and minimum elevations marked by upper and lower bounds of the gray swath, respectively. Dark gray lines mark mean elevations. (A) and (B) plotted with the same vertical exaggeration (V:H ~ 80). (C) and (D) Location maps for east Asia (C) and the western US (D). Black boxes outline the extent of topographic swath profile and δ^{18} O data coverage.

interior), the work presented in this study suggests that Eocene-Oligocene meteoric water δ^{18} O-elevation gradients were likely low in magnitude and paleo-meteoric water δ^{18} O values calculated from Tibetan proxies provide only minimum elevation estimates, particularly if snowmelt was a dominant contributor to Tibetan meteoric water systems. Thus, measured and calculated δ^{18} O values are consistent with high regional paleoelevations in northern Tibet since the Late Eocene (e.g., DeCelles et al., 2007).

In order to quantify accurately regional paleoelevations, all possible influences on the depositional (i.e. precipitation) and post-depositional isotopic compositions of meteoric waters and the associated modification of isotope-elevation relationships must be taken into account. Altitude-dependent snowpack sublimation is only one such process, but its systematic behavior (i.e. reduction in δ^{18} O-elevation gradients correlative with sublimation amount) makes its influence relatively straightforward to constrain. This, along with the fact that snowmelt contribution to groundwater recharge is often greater than suggested solely by the relative proportion of winter snow to annual precipitation amounts (Earman et al. 2006, and references therein), points to the need to consider these post-depositional effects, much as evaporative effects are considered, in constraining paleoelevation histories using stable isotope proxies. To the extent that contributions from snowmelt to paleo-meteoric waters can be inferred on the basis of δ^{18} O compositions (Norris et al., 1996; Dettman and Lohmann, 2000), it can be assumed that paleoelevations determined from these proxies using a globally-averaged, precipitation δ^{18} O-elevation gradient are minimum estimates.

3.10 Conclusions

Modern spring and surface water transects from the Sierra Nevada orographic slope and the Basin and Range in the Sierran rainshadow reveal that altitude-dependent snow sublimation reduces δ^{18} O-elevation gradients by a factor of 3–4 in snowmelt and spring waters of the Panamint and Spring mountains relative to regional precipitation (rain, early season snowpack) isotopic gradients. This reduction in δ^{18} O-elevation gradient is not observed in Tule River and Southern Sierra surface water transects along the Sierran orographic slope, likely due to high relative humidity limiting the role of snow sublimation in this region. The results of this study indicate that snow sublimation may be a first order influence on the isotopic composition of meteoric waters in arid regions dominated by winter precipitation in the form of snow. As a result, snowmeltderived waters in these regions are unlikely to preserve the isotopic composition of the original precipitation from which they were derived. Common seasonal sublimation amounts of 5-40% in continental interior, montane settings will result in 0.5-6.5% increases in snowpack δ^{18} O values throughout the winter season. Such isotopic shifts can lead to significant underestimates of both paleoelevation and the contribution of winter season precipitation to groundwater recharge. This study points to the need to constrain post-depositional influences on the isotopic composition of meteoric waters and associated proxies, as the isotopic compositions of these waters and proxies are fundamental data for a wide-range of paleoclimate, hydrologic, and paleoaltimetry applications.

IABLE 3.1 - Sampled S	oring and sur	lace water isou	opic uata anu	urainage ba	SIII CHAFACIEIIS	ncs				
Description	Latitude	Longitude	Sample Elevation	Drainage Area	Mean Basin Elevation	Sample ID	Date	δD	0 ₈₁ 8	d-excess
	(N°)	(M°)	(m)	(km ²)	(m)			(% VSMOW)	(%º VSMOW)	(%º VSMOW)
Tule River										
Cow spring	36.12879	118.77326	418	4.69	1132	TR-01-09	May-09	-66	-9.6	11.3
Wishon Camp 1	36.19200	118.66520	1226	0.29	1407	TR-02-09	May-09	-74	-10.0	6.2
Wishon Camp 2	36.19168	118.66492	1217	0.29	1406	TR-03-09	May-09	-68	-10.2	13.8
N. fork Tule River	36.19042	118.66475	1196	86.20	2164	TR-04-09	May-09	-86	-12.6	14.9
Meadow Creek	36.18828	118.67084	1163	2.89	1723	TR-05-09	May-09	-75	-11.1	13.7
Wishon Rd. 1	36.18656	118.68448	1059	09.0	1469	TR-06-09	May-09	-76	-10.0	4.2
Wishon Rd. 2	36.17766	118.70116	955	0.91	1253	TR-07-09	May-09	-72	-9.7	5.9
Hossack Creek	36.18361	118.64916	1480	4.17	2142	TR-08-09	May-09	-79	-11.6	13.9
Soda Creek tributary	36.15749	118.66212	1202	3.76	1501	TR-09-09	May-09	-76	-10.4	7.3
Unnamed spring Hwy 190	36.14083	118.63349	1363	0.13	1476	TR-10-09	May-09	-83	-11.4	8.5
Nelson Creek 1	36.15031	118.61178	1590	2.19	1996	TR-11-09	May-09	-80	-11.7	13.3
Belknap Creek	36.15358	118.59712	1701	4.35	2184	TR-12-09	May-09	-86	-12.2	11.8
Nelson Creek 2	36.15662	118.61267	1753	1.35	2115	TR-13-09	May-09	-84	-11.6	9.1
Nelson Creek 3	36.16058	118.61015	1947	0.70	2246	TR-14-09	May-09	-82	-11.9	13.2
unnamed spring	36.16564	118.62455	2008	0.51	2141	TR-16-09	May-09	-80	-11.4	11.7
Cedar Slope stream	36.14928	118.57729	1828	1.44	2258	TR-18-09	May-09	-77	-11.5	14.7
Boulder Creek	36.14173	118.56031	1983	7.13	2305	TR-19-09	May-09	-82	-12.2	15.7
Dome Creek	36.06958	118.54215	2193	1.27	2397	TR-20-09	May-09	-87	-12.4	11.8
Horse Canyon stream	36.05282	118.54752	2052	0.29	2403	TR-22-09	May-09	-88	-12.0	7.9
Ice Creek	36.03746	118.55011	1976	0.36	2237	TR-23-09	May-09	-87	-12.5	13.4
Alder Creek	36.02987	118.55924	1974	0.13	2022	TR-24-09	May-09	-88	-12.2	9.4
Last Chance meadow	36.00718	118.57408	1832	2.25	2133	TR-25-09	May-09	-81	-11.9	14.1
Southern Sierra										
Big Pine Meadow	35.94821	118.08332	2173	8.33	2326	SS-01-09	May-09	-105	-13.4	2.7
S. fork Kern River	36.02233	118.13599	1823	543.89	2612	SS-02-09	May-09	-110	-14.2	3.4
Nine Mile Creek	35.84314	117.92664	1055	27.24	1611	SS-03-09	May-09	-92	-10.7	-6.0
quail feeder	35.44221	117.78847	1111	0.00	1111	SS-06-09	May-09	-67	-9.0	5.1
Kelso feeder	35.46699	118.21153	1313	17.02	1553	SS-07-09	May-09	-86	-10.6	-1.8

and drainage basin characteristics water isotonic data and surface Samulad enrino TARLE31

)		-)						
Description	Latitude	Longitude	Sample Elevation	Drainage Area	Mean Basin Elevation	Sample ID	Date	δD	۵ ¹⁸ 0	d-excess
	(N _o)	(M°)	(m)	(km ²)	(m)			(%0 VSMOW)	(%• VSMOW)	(%0 VSMOW)
Burning Moscow spring	35.46110	118.25563	1778	1.80	1900	SS-08-09	May-09	-94	-12.2	3.6
Lander station camp	35.45512	118.31295	1928	0.25	1928	SS-09-09	May-09	-91	-12.5	9.2
Waterhole Mine spring	35.43845	118.31215	1940	5.02	2064	SS-10-09	May-09	06-	-12.6	10.6
Claraville	35.44392	118.32789	1915	5.06	2142	SS-11-09	May-09	-89	-11.6	4.2
French Meadow	35.47240	118.34864	2104	3.32	2294	SS-12-09	May-09	-93	-12.7	9.5
Piute Mtn. Rd.	35.45220	118.36290	2210	0.78	2376	SS-13-09	May-09	-83	-12.0	13.0
Cold spring	35.46699	118.39651	2436	0.10	2429	SS-14-09	May-09	-86	-12.4	13.6
Piute Spring seep	35.44644	118.38935	2461	0.08	2499	SS-15-09	May-09	-83	-11.4	8.5
Setimo Creek tributary	35.40483	118.41469	1525	2.52	1908	SS-16-09	May-09	-78	-10.9	8.5
Dutchman Creek 1	35.48048	118.54194	1244	1.87	1700	SS-17-09	May-09	-72	-10.4	11.1
Dutchman Creek 2	35.47910	118.54234	1264	2.74	1590	SS-18-09	May-09	-75	-9.9	4.4
Breckenridge campground	35.46696	118.58256	2052	0.47	2115	SS-19-09	May-09	-75	-11.0	13.3
Breckenridge Mtn. 1	35.46443	118.64740	1571	0.21	1801	SS-20-09	May-09	-65	-9.7	12.3
Breckenridge Mtn. 2	35.45417	118.70407	855	13.41	1225	SS-21-09	May-09	-65	-8.3	1.7
Rock spring	35.42256	118.74075	717	1.15	881	SS-22-09	May-09	-64	-8.1	1.1
Dougherty Creek	35.47277	118.71334	488	4.21	1019	SS-23-09	May-09	-83	-10.4	0.2
Cow Flat spring 1	35.52734	118.65671	765	0.10	931	SS-24-09	May-09	-73	-9.3	1.6
Cow Flat spring 2	35.52116	118.66420	887	0.45	1180	SS-25-09	May-09	-63	-8.7	6.5
Cow Flat seep	35.51620	118.67181	911	0.27	1156	SS-26-09	May-09	-70	-9.3	4.3
Democrat spring	35.50673	118.67870	987	0.78	1300	SS-27-09	May-09	-68	-9.7	10.1
Cow Flat spring 3	35.49623	118.67915	964	6.30	1540	SS-28-09	May-09	-62	-9.0	9.5
N. fork Kern River	35.75367	118.42381	808	2613.43	2490	SS-29-09	May-09	-111	-14.6	5.2
Wik spring	35.33745	118.58460	817	2.39	1062	SS-30-09	May-09	-66	-7.7	-3.9
Dead Horse spring	35.32743	118.59135	690	5.33	989	SS-31-09	May-09	-65	-7.6	-3.9
Panamint Mtns.										
Pleasant Canyon	36.03383	117.18084	807	31.08	1938	PM-04	May-09	-105	-12.6	-4.2
Warm Sulphur Springs	36.12042	117.21437	605	53.34	1659	PM-05	May-09	-107	-12.8	-4.6
unnamed Wildrose spring 1	36.12130	117.21397	605	75.37	1913	PM-06	May-09	-115	-14.1	-2.2
unnamed Wildrose spring 2	36.26575	117.19341	1246	0.32	1413	PM-07	May-09	-103	-12.7	-1.7

	S
•	Ę
	E
	ē
	С
	g
	a
-	5
	ž
•	E
	ä
-	0
	e D
	a
	Ξ
·	a
-	G
-	ð
	ă
	а
	ta
-	la
ĺ	2
	Ξ
	g
	Ĕ
	SC
•	Ξ
	ē
	a
	≩
	o
	g
د	Ë
	Ξ
	s
	g
	aī
	bn
	q
•	Ē
	C.
	S
-	D S
-	led s
-	pled s
-	mpled s
	sampled s
	- Sampled s
	I - Sampled S
- - -	.I - Sampled S
	3.1 - Sampled s
	L 3.1 - Sampled S
	iLE 3.1 - Sampled S
	BLE 3.1 - Sampled S
	ABLE 3.1 - Sampled S

TABLE 3.1 - Sampled s	pring and sur	face water isot	opic data and	drainage ba:	sin characteris	tics				
Description	Latitude (°N)	Longitude (°W)	Sample Elevation (m)	Drainage Area (km²)	Mean Basin Elevation (m)	Sample ID	Date	åD (‰ VSMOW)	(MOMSV 0%) 0 ⁸¹ 8	d-excess (‰ VSMOW)
Charcoal Kilns spring	36.24758	117.07172	2208	0.13	2372	PM-08	Mav-09	-102	-13.7	7.8
Wildrose Canyon spring	36.23435	117.07452	2397	0.40	2579	60-M4	May-09	-102	-14.1	10.4
Upper Emigrant spring	36.42560	117.19353	1244	0.53	1414	PM-10	May-09	-102	-12.9	1.5
Emigrant spring	36.43497	117.19533	1158	0.36	1360	PM-11	May-09	-101	-13.1	3.6
Spring Mtns.										
Mazie spring	36.24487	115.65451	2769	0.01	2766	SM-07-08	Oct-08		-13.6	
Mule spring	36.03129	115.58093	1463	0.61	1685	SM-19-09	May-09	-92	-12.3	6.7
Cave spring	36.16594	115.59797	1911	< 0.01	1964	SM-20-09	May-09	-103	-12.9	0.7
Warner spring	36.02110	115.50747	1621	0.03	1664	SM-21-09	May-09	-91	-12.5	9.8
						SM-17-08	Oct-08		-12.6	
Wheeler Camp spring	36.05277	115.41686	1010	0.07	1105	SM-22-09	May-09	-77	-12.1	20.4
						SM-01-08	Oct-08		-11.8	
White Rock spring	36.17380	115.47982	1439	0.04	1496	SM-23-09	May-09	-94	-12.6	7.3
						SM-02-08	Oct-08		-12.6	
Red spring	36.14446	115.42045	1089	0.04	1154	SM-24-09	May-09	06-	-12.3	8.5
						SM-03-09	Oct-08		-12.4	
Calico spring	36.14991	115.42203	1073	0.01	1117	SM-25-09	May-09	-108	-11.7	-14.1
						SM-04-08	Oct-08		-11.9	
Little Falls	36.25604	115.65536	2430	0.23	2842	SM-30-09	May-09	-95	-13.2	11.1
						SM-05-08	Oct-08		-13.1	
Mary Jane Falls	36.27913	115.67147	2871	0.67	3041	SM-32-09	May-09	-97	-13.0	7.3
						SM-08-08	Oct-08		-13.1	
Edna Grey spring	36.32057	115.67999	2558	0.19	2710	SM-34-09	May-09	-108	-13.6	0.7
						SM-09-08	Oct-08		-13.4	
Lee Canyon	36.32867	115.66611	2515	0.05	2572	SM-35-09	May-09	-98	-13.0	6.4
						SM-10-08	Oct-08		-13.5	

	TISt
	cte
	ura
-	chê
	ISIN
-	õ
	age
•	ain
-	9
-	and
	ata
	ರ ೧
•	do
	ISOU
	Ę
	Wa
ç	Tace
	Sul
	and
	pring
-	с S
-	ē
	amt
ζ	ñ
,	-
	5
F	÷
÷	1
F	9
	_

TABLE 3.1 - Sampled	spring and sur	face water isoto	ppic data and	drainage bas	sin characteris	stics				
Description	Latitude	Longitude	Sample Elevation	Drainage Area	Mean Basin Elevation	Sample ID	Date	δD	8 ¹⁸ O	d-excess
	(N°)	(M°)	(m)	(km²)	(m)			(%° VSMOW)	(%0 VSMOW)	(‰ VSMOW)
Mack Canyon 1	36.34974	115.67990	2512	0.44	2666	SM-36-09	May-09	-115	-13.7	-5.1
						SM-11-08	Oct-08		-13.8	
Mack Canyon 3	36.33723	115.68835	2644	0.62	2856	SM-37-09	May-09	-104	-13.7	5.9
Mack Canyon 2	36.34095	115.68882	2611	0.01	2692	SM-39-09	May-09	-97	-13.2	8.9
Mud Springs	36.37150	115.68424	2267	0.40	2508	SM-40-09	May-09	-106	-13.5	2.7
						SM-13-08	Oct-08		-13.4	
Whisky spring	36.38289	115.74559	2340	< 0.01	2380	SM-41-09	May-09	-104	-13.7	5.9
						SM-14-08	Oct-08		-13.6	
Cold Creek spring	36.41176	115.74418	1905	1.07	2249	SM-42-09	May-09	-101	-13.8	9.7
						SM-15-08	Oct-08		-13.8	
Gold spring	36.46330	115.96174	2060	0.23	2261	SM-43-09	May-09	-96	-13.3	10.2
						SM-16-08	Oct-08		-13.2	
Snow Samples										
	36.24589	115.65355	2737			SM-26-09	May-09	-75	-10.9	12.1
	36.25036	115.65020	2521			SM-27-09	May-09	-83	-12.5	17.7
	36.25051	115.64822	2500			SM-29-09	May-09	-76	-10.0	4.0
	36.25604	115.65536	2430			SM-31-09	May-09	-89	-12.4	10.8
	36.27913	115.67147	2871			SM-33-09	May-09	-82	-10.2	-0.4
	36.33723	115.68835	2644			SM-38-09	May-09	-91	-11.7	2.8
Table 3.1 - Geograph collected and analyzed	nic coordinate	s, drainage bas his study. 'Des	sin character scription ² col	istics, and is	sotopic data f	for all spring official name	/surface w	ater and late	season snowp: stream or trib	ack samples utarv or an
unofficial name given	by the author.	s of this study	to distinguish	h individual	samples. Spri	ing Mountain	s spring w	aters were san	apled in two se	eparate field
seasons (October 2008	and May 200	9). Where avai	lable, isotopi	c data from (sach field seas	son is include	d. Similari	ty of paired O	ctober 2008 an	d May 2009
isotopic values sugges recharge season.	ts spring wate.	rs are integrate	d over multif	ole seasons o	f meteoric wa	ter recharge	and not sig	nificantly influ	tenced by a sir	ıgle (winter)

•	terisi
-	charac
•	Dasin
	drainage l
-	and
	data
	otopic
•	ater 1SC
ر	rtace wa
-	ng pui
	pring a
-	led s
ζ	Samt
	1
((1 .7
	VBLI

3.11 Acknowledgements

Kacey Lohmann and Lora Wingate are thanked for help with stable isotope analyses and sample collection strategies. David Azzolini assembled GIS databases that were instrumental to this study. Hope Jahren and Fred Longstaffe are thanked for thoughtful and insightful reviews, and Nathan Sheldon provided comments that improved the presentation of this work. The isotopic analyses were funded in part by a grant from the Turner Fund at the University of Michigan to ARL.

3.12 References cited

- Allison, G. B., 1988, A review of some of the physical, chemical and isotopic techniques available for estimating groundwater recharge, *in* Simmers, I., ed., Estimation of Natural Groundwater Recharge: Dardrecht, D. Reidel Publishing Co., 509 pp.
- Araguás-Araguás, L., Froehlich, K., and Rozanski, K., 1998, Stable isotope composition of precipitation over southeast Asia: Journal of Geophysical Research-Atmospheres, v. 103, no. D22, p. 28721-28742.
- Araguás-Araguás, L., Froehlich, K., and Rozanski, K., 2000, Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture: Hydrological Processes, v. 14, no. 8, p. 1341-1355.
- Blisniuk, P. M., and Stern, L. A., 2005, Stable isotope paleoaltimetry; a critical review: American Journal of Science, v. 305, no. 10, p. 1033-1074.
- Blisniuk, P. M., Stern, L. A., Chamberlain, C. P., Idleman, B., and Zeitler, P. K., 2005, Climatic and ecologic changes during Miocene surface uplift in the southern Patagonian Andes: Earth and Planetary Science Letters, v. 230, no. 1-2, p. 125-142.
- Burchfiel, B. C., Fleck, R. J., Secor, D. T., Vincelette, R. R., and Davis, G. A., 1974, Geology of the Spring Mountains, Nevada: Geological Society of America Bulletin, v. 85, no. 7, p. 1013-1022.
- Chamberlain, C. P., and Poage, M. A., 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals: Geology, v. 28, no. 2, p. 115-118.

- Clark, I. D., and Fritz, P., 1997, Environmental isotopes in hydrogeology: Boca Raton, FL, Lewis Publishers, 328 p.
- Clow, D. W., 2010, Changes in the timing of snowmelt and streamflow in Colorado: a response to recent warming: Journal of Climate, v. 23, no. 9, p. 2293-2306.
- Colbeck, S. C., 1987, Snow metamorphism and classification, *in* Jones, H. G., and Orville-Thomas, W. J., eds., Seasonal Snowcovers: Physics, Chemistry, Hydrology: New York, Springer, p. 1-35.
- Cooper, L. W., 1998, Isotopic fractionation in snow cover, *in* Kendall, C., and McDonnell, J. J., eds., Isotope Tracers in Catchment Hydrology: New York, Elsevier, p. 119-136.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, no. 3465, p. 1702-1703.
- Cuffey, K. M., and Steig, E. J., 1998, Isotopic diffusion in polar firn: implications for interpretation of seasonal climate parameters in ice-core records, with emphasis on central Greenland: Journal of Glaciology, v. 44, no. 147, p. 273-284.
- Currie, B. S., Rowley, D. B., and Tabor, N. J., 2005, Middle Miocene paleoaltimetry of southern Tibet; implications for the role of mantle thickening and delamination in the Himalayan Orogen: Geology, v. 33, no. 3, p. 181-184.
- Cyr, A. J., Currie, B. S., and Rowley, D. B., 2005, Geochemical evaluation of Fenghuoshan Group lacustrine carbonates, north-central Tibet; implications for the paleoaltimetry of the Eocene Tibetan Plateau: Journal of Geology, v. 113, no. 5, p. 517-533.
- Dahlgren, R. A., Boettinger, J. L., Huntington, G. L., and Amundson, R. G., 1997, Soil development along an elevational transect in the western Sierra Nevada, California: Geoderma, v. 78, no. 3-4, p. 207-236.
- Dansgaard, W., 1964, Stable Isotopes in Precipitation: Tellus, v. 16, no. 4, p. 436-468.
- de Vries, J. J., and Simmers, I., 2002, Groundwater recharge: an overview of processes and challenges: Hydrogeology Journal, v. 10, no. 1, p. 5-17.
- DeCelles, P. G., Quade, J., Kapp, P., Fan, M., Dettman, D. L., and Ding, L., 2007, High and dry in central Tibet during the late Oligocene: Earth and Planetary Science Letters, v. 253, no. 3-4, p. 389-401.
- Dettman, D. L., and Lohmann, K. C., 2000, Oxygen isotope evidence for high-altitude snow in the Laramide Rocky Mountains of North America during the Late Cretaceous and Paleogene: Geology, v. 28, no. 3, p. 243-246.

- Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., and Lohmann, K.C., 2005, Spatial distribution and seasonal variation in ¹⁸O/¹⁶O of modern precipitation and river water across the conterminous USA: Hydrological Processes, v. 19, p. 4121-4146.
- Earman, S., Campbell, A. R., Phillips, F. M., and Newman, B. D., 2006, Isotopic exchange between snow and atmospheric water vapor; estimation of the snowmelt component of groundwater recharge in the Southwestern United States: Journal of Geophysical Research, v. 111, p. D09302.
- Ekaykin, A. A., Hondoh, T., Lipenkov, V.Y., and Miyamoto, A., 2009, Post-depositional changes in snow isotope content: preliminary results of laboratory experiments, *in* Climate of the Past Discussions, p. 2239-2267.
- Ekaykin, A. A., Lipenkov, V.Y., Barkov, N.I., Petit, J.R., and Masson-Delmotte, V., 2002, Spatial and temporal variability in isotope composition of recent snow in the vicinity of Vostok station, Antarctica: implications for ice-core record interpretation: Annals in Glaciology, v. 35, p. 181-186.
- Epstein, S., Sharp, R. P., and Gow, A. J., 1965, 6-year record of oxygen and hydrogen isotope variations in South Pole firn: Journal of Geophysical Research, v. 70, no. 8, p. 1809-1814.
- Friedman, I., Benson, C., and Gleason, J., 1991, Isotopic changes during snow metamorphism, *in* Taylor Jr., H.P., O'Neil, J.R., and Kaplan, I.R., eds., Stable Isotope Geochemistry: A Tribute to Samuel Epstein: The Geochemical Society Special Publication No. 3, p. 211-221.
- Friedman, I., Smith, G.I., Johnson, C.A., Moscati, R.J., 2002, Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation: Journal of Geophysical Research, v. 107, p. ACL 15-11 - ACL 15-21.
- Friedman, I., and Smith, G. I., 1972, Deuterium content of snow as an index to winter climate in Sierra Nevada area: Science, v. 176, no. 4036, p. 790-793.
- Friedman, I., Smith, G. I., Gleason, J. D., Warden, A., and Harris, J. M., 1992, Stable isotope composition of waters in southeastern California .1. Modern Precipitation: Journal of Geophysical Research, v. 97, no. D5, p. 5795-5812.
- Garzione, C. N., Quade, J., DeCelles, P. G., and English, N. B., 2000, Predicting paleoelevation of Tibet and the Himalaya from δ^{18} O vs. altitude gradients in meteoric water across the Nepal Himalaya: Earth and Planetary Science Letters, v. 183, no. 1-2, p. 215-229.

- Garzione, C. N., Molnar, P., Libarkin, J. C., and MacFadden, B. J., 2006, Rapid late Miocene rise of the Bolivian Altiplano; evidence for removal of mantle lithosphere: Earth and Planetary Science Letters, v. 241, no. 3-4, p. 543-556.
- Gat, J. R., 1996, Oxygen and hydrogen isotopes in the hydrologic cycle: Annual Review of Earth and Planetary Sciences, v. 24, p. 225-262.
- Henderson, A. K., and Shuman, B.N., 2010, Differing controls on river- and lake-water hydrogen and oxygen isotopic values in the western United States: Hydrological Processes.
- Hershey, R. L., 1989, Hydrogeology and hydrogeochemistry of the Spring Mountains, Clark County, Nevada [M.S. thesis]: Las Vegas, University of Nevada at Las Vegas, 236 p.
- Hood, E., Williams, M., and Cline, D., 1999, Sublimation from a seasonal snowpack at a continental, mid-latitude alpine site: Hydrological Processes, v. 13, p. 1781-1797.
- Horton, T. W., Sjostrom, D. J., Abruzzese, M. J., Poage, M. A., Waldbauer, J. R., Hren, M. T., Wooden, J. L., and Chamberlain, C. P., 2004, Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal of Science, v. 304, no. 10, p. 862-888.
- Houghton, J., 1969, Characteristics of rainfall in the Great Basin: University of Nevada, Reno, 205 p.
- Houston, J., and Hartley, A. J., 2003, The central Andean west-slope rainshadow and its potential contribution to the origin of hyper-aridity in the Atacama desert: International Journal of Climatology, v. 23, no. 12, p. 1453-1464.
- Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain, C. P., 2009, δ^{18} O and δ D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions: Earth and Planetary Science Letters, v. 288, no. 1-2, p. 20-32.
- Ingraham, N. L., Lyles, B. F., Jacobson, R. L., and Hess, J. W., 1991, Stable isotopic study of precipitation and spring discharge in southern Nevada: Journal of Hydrology, v. 125, no. 3-4, p. 243-258.
- Ingraham, N. L., and Taylor, B. E., 1991, Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada: Water Resources Research, v. 27, no. 1, p. 77-90.
- Insel, N., Poulsen, C. J., and Ehlers, T. A., 2010, Influence of the Andes Mountains on South American moisture transport, convection, and precipitation: Climate Dynamics, v. 35, no. 7-8, p. 1477-1492.

- Jahren, A. H., and Sanford, K. L., 2002, Ground-water is the Ultimate Source of the Salt Creek Pupfish Habitat, Death Valley, USA: Journal of Arid Environments, v. 51, no. 3, p. 401-411.
- Johnsen, S. J., 1977, Stable isotope homogenization of polar firn and ice, *in* Proceedings of the Symposium on Isotopes and Impurities in Snow and Ice, I.U.G.G. XVI, General Assembly, Grenoble, 1975, p. 210-219.
- Jouzel, J., Froehlich, K., and Schotterer, U., 1997, Deuterium and oxygen-18 in presentday precipitation: data and modelling: Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, v. 42, no. 5, p. 747-763.
- Jouzel, J., Vimeux, F., Caillon, N., Delaygue, G., Hoffmann, G., Masson-Delmotte, V., and Parrenin, F., 2003, Magnitude of isotope/temperature scaling for interpretation of central Antarctic ice cores: Journal of Geophysical Research, v. 108, 4361, 10 p.
- Kapnick, S., and Hall, A., 2010, Observed climate-snowpack relationships in California and their implications for the future: Journal of Climate, v. 23, no. 13, p. 3446-3456.
- Kent-Corson, M. L., Sherman, L. S., Mulch, A., and Chamberlain, C. P., 2006, Cenozoic topographic and climatic response to changing tectonic boundary conditions in western North America: Earth and Planetary Science Letters, v. 252, no. 3-4, p. 453-466.
- Knowles, N., Dettinger, M. D., and Cayan, D. R., 2006, Trends in snowfall versus rainfall in the Western United States: Journal of Climate, v. 19, no. 18, p. 4545-4559.
- Koch, P. L., Zachos, J. C., and Dettman, D. L., 1995, Stable isotope stratigraphy and paleoclimatology of the Paleogene Bighorn Basin (Wyoming, USA):
 Palaeogeography Palaeoclimatology Palaeoecology, v. 115, no. 1-4, p. 61-89.
- Kohn, M. J., 2007, Paleoaltimetry: Geochemical and Thermodynamic Approaches, Reviews in Mineralogy and Geochemistry: Mineralological Society of America, v.66, 278 p.
- Konishchev, V. N., Golubev, V. N., and Sokratov, S. A., 2003, Sublimation from a seasonal snow cover and an isotopic content of ice wedges in the light of a palaeoclimate reconstruction: International Conference on Permafrost, Proceedings, v. 8, p. 585-590.
- Labotka, T. C., Albee, A. L., Lanphere, M. A., and McDowell, S. D., 1980, Stratigraphy, structure, and metamorphism in the central Panamint Mountains (Telescope Peak

Quadrangle), Death Valley Area, California - Summary: Geological Society of America Bulletin, v. 91, no. 3, p. 125-129.

- Lechler, A. R., 2011, The Cenozoic paleoelevation and paleogeographic history of the southwestern US Cordillera: a combined sedimentologic and isotopic approach [PhD thesis]: University of Michigan, Ann Arbor, 245 p.
- Lee, J. E., and Fung, I., 2008, "Amount effect" of water isotopes and quantitative analysis of post-condensation processes: Hydrological Processes, v. 22, no. 1, p. 1-8.
- Lee, J. H., Feng, X. H., Posmentier, E. S., Faiia, A. M., and Taylor, S., 2009, Stable isotopic exchange rate constant between snow and liquid water: Chemical Geology, v. 260, no. 1-2, p. 57-62.
- Liu, Z., Tian, L., Chai, X., and Yao, T., 2008, A model-based determination of spatial variation of precipitation δ^{18} O over China: Chemical Geology, v. 249, no. 1-2, p. 203-212.
- Minder, J. R., 2010, The sensitivity of mountain snowpack accumulation to climate warming: Journal of Climate, v. 23, no. 10, p. 2634-2650.
- Moser, H., and Stichler, W., 1975, Deuterium and oxygen-18 contents as an index of the properties of snow covers, *in* Snow Mechanics Symposium, Grindelwald, Bernese Oberland (Switzerland), p. 122-135.
- Mote, P. W., Hamlet, A. F., Clark, M. P., and Lettenmaier, D. P., 2005, Declining mountain snowpack in western North America: Bulletin of the American Meteorological Society, v. 86, no. 1, p. 39-49.
- Mulch, A., Graham, S. A., and Chamberlain, C. P., 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, no. 5783, p. 87-89.
- Neumann, T. A., Albert, M. R., Lomonaco, R., Engel, C., Courville, Z., and Perron, F., 2008, Experimental determination of snow sublimation rate and stable-isotope exchange: Annals of Glaciology, v. 49, p. 1-6.
- Neumann, T. A., Waddington, E. D., Steig, E. J., Grootes, P. M., 2005, Non-climate influences on stable isotopes at Taylor Mouth, Antarctica: Journal of Glaciology, v. 51, no. 173, p. 248-258.
- Norris, R. D., Jones, L. S., Corfield, R. M., and Cartlidge, J. E., 1996, Skiing in the Eocene Uinta Mountains? Isotopic evidence in the Green River Formation for snow melt and large mountains: Geology, v. 24, no. 5, p. 403-406.
- Poage, M. A., and Chamberlain, C. P., 2001, Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change: American Journal of Science, v. 301, no. 1, p. 1-15.
- Polissar, P. J., Freeman, K. H., Rowley, D. B., McInerney, F. A., and Currie, B. S., 2009, Paleoaltimetry of the Tibetan Plateau from D/H ratios of lipid biomarkers: Earth and Planetary Science Letters, v. 287, p. 64-76.
- Quade, J., Garzione, C. N., and Eiler, J., 2007, Paleoelevation reconstruction using pedogenic carbonates: Reviews in Mineralogy and Geochemistry, v. 66, no. 1, p. 53-87.
- Rowley, D. B., and Garzione, C. N., 2007, Stable isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463-508.
- Rowley, D. B., Pierrehumbert, R. T., and Currie, B. S., 2001, A new approach to stable isotope-based paleoaltimetry; implications for paleoaltimetry and paleohypsometry of the High Himalaya since the late Miocene: Earth and Planetary Science Letters, v. 188, no. 1-2, p. 253-268.
- Rozanski, K. L., Araguás-Araguás, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation, *in* Swart, P.K., Lohmann, K.C., McKenzie, J., and Savin, S., eds., Climate Change in Continental Isotopic Records, Geophysics Monograph Series No. 78: Washington D.C., American Geophysical Union, p. 1-36.
- Saylor, J. E., Quade, J., Dettman, D. L., DeCelles, P. G., Kapp, P. A., and Ding, L., 2009, The late Miocene through present paleoelevation history of southwestern Tibet: American Journal of Science, v. 309, no. 1, p. 1-42.
- Schulz, O., and de Jong, C., 2004, Snowmelt and sublimation: field experiments and modelling in the High Atlas Mountains and Morocco: Hydrology and Earth System Sciences, v. 8, no. 6, p. 1076-1089.
- Shreve, C. M., Okin, G. S., and Painter, T. H., 2009, Indices for estimating fractional snow cover in the western Tibetan Plateau: Journal of Glaciology, v. 55, no. 192, p. 737-745.
- Sinclair, K. E., Marshall, S.J., 2008, Post-depositional modification of stable water isotopes in winter snowpacks in Canadian Rocky Mountains: Annals of Glaciology, v. 49, p. 96-106.
- Sokratov, S. A. and Golubev, V.N., 2009, Snow isotopic content change by sublimation: Journal of Glaciology, v. 55, no. 193, p. 823-828.

- Sommerfeld, R. A., Judy, C., and Friedman, I., 1991, Isotopic changes during the formation of depth hoar in experimental snowpacks: Special Publication -Geochemical Society, v. 3, p. 205-209.
- Stichler, W., Schotterer, U., Froehlich, K., Ginot, P., Kull, C., Gaeggeler, H., and Pouyaud, B., 2001, Influence of sublimation on stable isotope records recovered from high-altitude glaciers in the tropical Andes: Journal of Geophysical Research, v. 106, no. D19, p. 22,613-22,620.
- Strasser, U., Bernhardt, M., Weber, M., Liston, G. E., and Mauser, W., 2008, Is snow sublimation important in the alpine water balance?: Cryosphere, v. 2, no. 1, p. 53-66.
- Tabor, N. J., and Montanez, I. P., 2005, Oxygen and hydrogen isotope compositions of Permian pedogenic phyllosilicates: Development of modem surface domain arrays and implications for paleotemperature reconstructions: Palaeogeography Palaeoclimatology Palaeoecology, v. 223, no. 1-2, p. 127-146.
- Taylor, S., Feng, X., Kirchner, J. W., Osterhuber, R., Klaue, B., and Renshaw, C. E., 2001, Isotopic evolution of a seasonal snowpack and its melt: Water Resources Research, v. 37, no. 3, p. 759-769.
- Tian, L., Masson-Delmotte, V., Stievenard, M., Yao, T., and Jouzel, J., 2001, Tibetan Plateau summer monsoon northward extent revealed by measurements of water stable isotopes: Journal of Geophysical Research, v. 106, no. D22, p. 28,081-28,088.
- Town, M. S., Warren, S. G., Walden, V. P., and Waddington, E.D., 2008, Effect of atmospheric water vapor on modification of stable isotopes in near-surface snow on ice sheets: Journal of Geophysical Research, v. 113, p. 1-16.
- Unnikrishna, P. V., McDonnell, J. J., and Kendall, C., 2002, Isotope variations in a Sierra Nevada snowpack and their relation to meltwater: Journal of Hydrology, v. 260, no. 1-4, p. 38-57.
- Vuille, M., 1996, Zur raumleitlichen dynamik von schneefall und ausaperung im bereich des sudlichen Altiplano, Sudamerika: Geographica Bernensia, v. G45, 118 p.
- Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., and Dorale, J. A., 2001, A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China: Science, v. 294, no. 5550, p. 2345-2348.
- Webb, R. H., Steiger, J. W., and Turner, R. M., 1987, Dynamics of Mojave desert shrub assemblages in the Panamint Mountains, California: Ecology, v. 68, no. 3, p. 478-490.

- Winograd, I. J., Riggs, A. C., and Coplen, T. B., 1998, The relative contributions of summer and cool-season precipitation to groundwater recharge, Spring Mountains, Nevada, USA: Hydrogeology Journal, v. 6, no. 1, p. 77-93.
- Winograd, I. J., and Thordarson, W., 1975, Hydrogeologic and hydrochemical framework, south-central Great Basin, Nevada-California, with special reference to the Nevada test site: U. S. Geological Survey Professional Paper 712-C, Reston, VA, 126 p.
- Wu, T. W., and Qian, Z. A., 2003, The relation between the Tibetan winter snow and the Asian summer monsoon and rainfall: An observational investigation: Journal of Climate, v. 16, no. 12, p. 2038-2051.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, no. 5517, p. 686-693.

CHAPTER IV

Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California^{*}

4.1 Abstract

Detrital zircon U-Pb provenance and stable isotopic studies of three Paleogene southern Sierra Nevada (California) basins place new constraints on the paleoelevation history of the region. Age spectra from the Paleocene Witnet Formation within the southernmost Sierra Nevada link these sediments to source terranes that were at or near sea-level in the early Cenozoic, while age spectra from the Paleocene Goler Formation, east of the Sierra Nevada, demonstrate isolation of southern Sierra Nevada basins from the continental interior and tapping of Jurassic and Triassic arc flank sources during the Paleocene. West of the Sierra Nevada, strata of the Eocene Tejon Formation are dominated by Cretaceous zircons sourced from the Sierran batholith. Goler Formation carbonate δ^{18} O suggests Paleocene paleoelevations of 1–2 km for the central and southern Sierra Nevada. Taken together, these data indicate a Paleogene southern Sierra

^{*} **Citation:** Lechler, A.R., and Niemi, N.A., 2011, Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California: *Geology*, v. 39,

no. 4, p. 379-382.

Nevada with modest elevations, locally dissected to sea-level by rift basins formed by Late Cretaceous lithospheric collapse. These results place new limits on the amount of regional mid- to late Cenozoic elevation gain that may have resulted from the loss of dense, mantle lithosphere from below the central and southern Sierra Nevada and point to possible north-south variations in the topographic evolution of the Sierra Nevada.

4.2 Introduction

The topographic evolution of the Sierra Nevada (California) is a key constraint on tectonic and geodynamic models of the southwest United States; however, various elevation histories have been proposed. At one end of the spectrum, geomorphic evidence has been used to argue for a low elevation (< 1 km) northern (north of the San Joaquin River) and moderate elevation (2–2.5 km) central Sierra Nevada (Mt. Whitney region) throughout much of the Cenozoic, with modern elevations achieved by 1.5-2 km of Late Miocene-Early Pliocene uplift (Unruh, 1991; Wakabayashi and Sawyer, 2001). At the other end, low temperature thermochronologic data has been interpreted as requiring a high-standing (~ 4.5 km) central Sierra since the Late Cretaceous (House et al., 1998), while in the northern Sierra, stable isotope and molecular proxies suggest Eocene range elevations comparable to the modern (2–2.5 km; Mulch et al., 2006; Hren et al., 2010). A multi-stage evolution for the central Sierra Nevada, based on thermochronometric and geomorphic evidence, has also been proposed in which early Cenozoic surfaces (~ 1.5 km) experienced ≥ 2 km of uplift sometime between 32.5 and 3.5 Ma, raising the central Sierra to its modern (~ 4 km) elevations (Clark et al., 2005).

The contrasting elevation histories for the central and northern Sierra Nevada may

in part be the result of along-strike variations (e.g., Busby and Putirka, 2009). Validation of this idea is limited, however, due to a lack of robust paleoelevation constraints for the Sierra Nevada south of Mt. Whitney. This region has experienced a unique tectonic evolution including early Cenozoic lithospheric collapse (e.g., Saleeby et al., 2007) and late Cenozoic loss of a dense lithospheric root (the seismically imaged 'Isabella anomaly', e.g., Zandt et al., 2004; Fig. 4.1). Recent thermochronologic and structural data suggest the southern Sierra Nevada experienced a multi-stage uplift history consistent with the Clark et al. (2005) model for the central Sierra (Maheo et al., 2009), but the magnitude and timing of regional uplift is poorly constrained. We present new detrital zircon U-Pb dates and δ^{18} O data from southern Sierra Nevada Paleogene basins (Fig. 4.1) to provide constraints on early Cenozoic regional paleogeography and paleotopography.

4.3 Early Cenozoic basins

The Sierra Nevada magmatic arc formed in response to Mesozoic subduction along the western margin of North America (Evernden and Kistler, 1970). A shift to lowangle subduction during the latest Cretaceous-early Paleogene led to widespread oblique extension throughout much of the arc and arc flank that resulted in a sequence of local rift basins that preserve early Cenozoic sediments in the southern Sierra Nevada region (Wood and Saleeby, 1997). East of the Sierra Nevada, these sediments are represented by the Paleocene Goler Formation, a 4-km-thick, fossil-bearing, continental clastic sequence best exposed in the El Paso Mountains (Fig. 4.1). The early Paleocene lower Goler Formation (Members 1–3; Cox, 1982) is interpreted as a sequence of alluvial fan conglomerates and sandstones derived primarily from local Triassic plutonic rocks (Cox,

Figure 4.1

Figure 4.1 - Color digital elevation model (DEM) with sandstone (red stars), modern sand (yellow stars), and micrite (red circle) sample locations (see Figure A4.1 in appendix for local geology of sample sites). Goler Formation samples are marked by numbered stars. Blue swath shows approximate position of Isabella anomaly imaged at ~150 km depth (Zandt et al., 2004). Inset map of southwest United States shows approximate DEM extent. **NFKR**- North Fork Kern River, **SFKR** - South Fork Kern River, **EPM** - El Paso Mtns., **TM** - Tehachapi Mtns., **SEM** - San Emigdio Mtns.

1982). Middle Paleocene upper Goler Formation (Members 4a–d) fluvial sandstones and conglomerates contain a diverse clast assemblage of plutonic, volcanic, and siliciclastic cobbles indicative of a more distal source (Cox, 1982). Marine mollusks in Member 4d, along with ray teeth, turtle and crocodilian fossils in Members 3, 4a and 4b, require the Goler basin to have been alternately inundated by or adjacent to the paleo-Pacific Ocean during the Paleocene (e.g., Lofgren et al., 2008).

Within the southernmost Sierra Nevada, the Witnet Formation comprises the oldest preserved Cenozoic sediments (Fig. 4.1). This sequence of plutonic- and volcanic-cobble conglomerates and sandstones (Buwalda, 1954) is lithologically indistinguishable from the lower Goler Formation (Members 1 and 2). This similarity has led to speculation that the two units are correlative (Cox, 1982). However, poor age control on the Witnet Formation, with estimates spanning from latest Cretaceous (Wood and Saleeby, 1997) to Oligocene (Buwalda, 1954), preclude a definitive correlation.

West of the southern Sierra Nevada, the oldest Cenozoic sediments preserved are the Middle Eocene Tejon Formation, which was deposited in a shallow marine basin directly on top of crystalline basement rocks now exposed in the San Emigdio Mountains (Fig. 4.1). Like the Witnet and Goler formations, the siliciclastic Tejon Formation contains abundant plutonic and volcanic detritus. Sandstone petrology suggests Tejon sediments were derived from sources in the southern Sierra Nevada, northern Mojave Desert, and basement rocks of the San Emigdio and Tehachapi Mountains (Critelli and Nilsen, 2000).

4.4 Detrital zircon U-Pb and carbonate δ^{18} O data

Six medium- to coarse-grained, arkosic to lithic sand and sandstone samples from the southern Sierra Nevada region (Fig. 4.1) were analyzed at the University of Arizona LaserChron Center (see Table A4.1 in the appendix for the complete U-Pb dataset). In total, 578 analyses satisfied concordance and reproducibility requirements (Table A4.1) and were incorporated into age-probability plots for each basin (Fig. 4.2A).

In order to constrain the amount of Sierran detritus deposited in early Cenozoic basins, U-Pb age spectra were compiled from two modern river sand samples collected from the Kern River, which drains the southern Sierra Nevada batholith (Fig. 4.1). Both North (NFKR) and South (SFKR) Fork samples are dominated by mid-Cretaceous and Late Jurassic zircons with subordinate Middle Jurassic age peaks. A minor Early Jurassic age peak is also evident in the SFKR sample (Fig. 4.2A).

Two sandstone samples were collected from the fluvial portion of the Goler Formation (EPM-1 from Member 4d, EPM-2 from Member 4b; Fig. A4.1 in the Appendix). Both Goler samples are dominated by Middle and Late Jurassic ages, with a minor peak of Late Triassic-Early Jurassic ages (Fig. 4.2A). A shift to younger ages is observed in the upper Goler sample (EPM-1), which also contains a well-defined peak of mid-Cretaceous zircons not observed in EPM-2.

Age spectra from the Witnet (TM-1) and Tejon (SEM-1) formations are distinct from the upper Goler Formation. Witnet sediments are dominated by mid-Cretaceous and Early Triassic zircons, while mid-Cretaceous zircons are the only significant population in the Tejon sample (Fig. 4.2A).

All samples display a paucity of pre-Mesozoic zircons (Fig. A4.2 in the

140

Figure 4.2

Figure 4.2 - (A) 0-300 Ma detrital zircon U-Pb age-probability plots (see Appendix Figure A4.2 for full age spectra). Colored swaths highlight diagnostic age populations. (B) digital elevation model (DEM) of Sierra Nevada region with modern distribution of igneous and siliciclastic rocks, color-coded by age (compiled from various sources, see Appendix Fig. A4.3). Location of diagnostic ages denoted by colored dots with same color-code as (A). Stars mark sample locations. **WI** - White-Inyo Mtns.; **SR** - Slate Range; **SNB** - Sierra Nevada batholith.

Appendix). Proterozoic and Paleozoic ages comprise ~9% of the Goler samples, and are even rarer in the Witnet (4%) and Tejon (2%) samples.

Lacustrine micrite sampled from Goler Formation Member 4a (Cox, 1982) provides isotopic (δ^{18} O) constraints on Goler basin waters. The micrite has an average $\delta^{18}O_{PDB}$ value of -12.3‰ (Table A4.2 in the Appendix). The $\delta^{18}O$ of the water in which the micrite precipitated was calculated (O'Neil et al., 1969) using a regional Eocene sea level temperature range of 20–25 °C (Yapp, 2008; Hren et al., 2010). Corresponding $\delta^{18}O_{SMOW}$ values of -10.1‰ to -11.2‰ are presumed to represent Goler basin waters at the time of micrite deposition.

4.5 Sedimentary provenance

We identify prospective source regions for each Paleogene basin using the modern distribution of igneous and siliciclastic rocks in the Sierra Nevada region (Fig. 4.2B). This approach is limited by the assumption that modern distributions are representative of early Cenozoic exposures, but the uniqueness of detrital age spectra (Fig. 4.2A) and the systematic age distribution of igneous rocks in this region (Fig. 4.2B) permit this approach.

The Sierran batholith is discounted as a major source for Goler sediments based on the dominance of Middle to Late Jurassic zircon U-Pb ages over Cretaceous ages and the presence of a mixed plutonic and volcanic clast assemblage in the upper Goler Formation, an interpretation consistent with the observation that Sierran detritus is a minor component of El Paso basin sediments prior to 8 Ma (Loomis and Burbank, 1988). Middle and Late Jurassic plutonic and volcanic rocks are currently exposed east of the Sierra Nevada (Fig. 4.2B) in the White-Inyo Mountains (Dunne et al., 1998) and the Slate Range (Dunne and Walker, 2004). The Slate Range has been proposed as a source region for the upper Goler Formation, based on west-directed paleocurrent indicators and clast lithologies (Cox, 1982). Our data do not preclude the Slate Range as a sedimentary source for the upper Goler Formation, but observed 190–210 Ma and 155–165 Ma zircon age populations have no known source in the Slate Range. The 190–210 Ma zircon population is perhaps most diagnostic, as igneous rocks of this age are scarce in the Sierra Nevada region. The most viable source for 190–210 Ma zircons, as well as 155–165 Ma and Proterozoic populations, is west of the northern White Mountains (Fig. 4.2B).

Witnet Formation U-Pb ages require a sedimentary source distinct from that of the upper Goler Formation (Fig. 4.2A). Mid-Cretaceous zircons in the Witnet Formation are likely derived from local Sierran basement sources (Fig. A4.1). The prominent peak of Early Triassic ages, however, must be derived from a more distal source. The most likely sources are Triassic plutons in the basement of the El Paso Mountains and northern Mojave Desert (Fig. 4.2B; Cox, 1982). These plutons were also the primary source for locally-derived sediments in the lower Goler Formation (Cox, 1982), which supports proposed correlations of the lower Goler and Witnet formations, and suggests both were part of the same sedimentary system, with proximal Goler alluvial fans supplying sediment to the Witnet basin via a west-flowing, trans-Sierran river. This interpretation places new bounds on the age and paleoelevation of the Witnet Formation, constraining deposition to early Paleocene time, at elevations at or below those of the near-sea-level Goler basin.

The dominance of mid-Cretaceous zircons in the Tejon Formation indicates that

the Tejon basin was fed by a fluvial system with headwaters in the Sierran batholith, and was isolated from the arc flank regions sourcing the Goler and Witnet Formations. Thus, the Paleocene rivers transecting the southernmost Sierra Nevada appear to have been cutoff or redirected during the Eocene.

The small proportion of pre-Mesozoic zircons in all detrital samples ($\leq 9\%$) places additional constraints on sedimentary provenance. Paleo- and Mesoproterozoic zircon ages dominate Neoproterozoic and Paleozoic quartzite-rich strata in the Great Basin (e.g., Gehrels et al., 1995). As a result, Proterozoic zircons and associated quartzite clasts would have been abundant in continental interior-sourced Paleogene fluvial systems, as observed in Amargosa paleoriver deposits (Fig. 4.3A; Howard, 1996; Wernicke, 2011). Quartzite is subordinate to igneous clasts throughout the upper Goler Formation (Cox, 1982). This, along with the relative lack of pre-Mesozoic zircons in the Goler, Witnet and Tejon formations, suggests that southern Sierra Nevada fluvial systems were isolated from the continental interior during the early Paleogene (Fig. 4.3A), a result consistent with observed endemism of Goler fossil species (Lofgren et al., 2008).

4.6 Early Cenozoic paleotopography and paleogeography of the southern Sierra Nevada

Our provenance work on southern Sierra Nevada Paleogene basins places important constraints on the early Cenozoic paleoelevation history of the region. Paleontologic evidence puts the Goler basin at or near sea level during deposition (Lofgren et al., 2008). As Witnet sediments appear to be coeval with, lie downstream from, and share a common source with the lower Goler Formation, the Witnet Formation must have also been deposited at or near sea level, ~1500 m lower than modern exposure elevations.

Water $\delta^{18}O_{SMOW}$ values of -10.1‰ to -11.2‰ derived from Goler Formation lacustrine micrites are significantly depleted relative to Eocene sea level $\delta^{18}O_{SMOW}$ estimates of -6.7% to -8.9% (Yapp, 2008; Hren et al., 2010). Goler Formation paleosol carbonate nodules from the same stratigraphic interval as the micrite (Member 4a) exhibit remarkably similar $\delta^{18}O_{SMOW}$ values (-10.5 to -11.6%, calculated from Torres, 2010) to the micrite. Paleosol carbonate δ^{18} O reflects local precipitation falling directly into the basin, whereas lacustrine carbonates integrate the isotopic signal from throughout the contributing catchment. The observed isotopic depletion in each proxy system suggests that all waters falling (precipitation) and transported (fluvial) into the Goler basin were subject to orographic rainout over a topographic barrier on the windward side of the Goler basin and White-Invo Mtn. source region, likely in the Paleocene central and southern Sierra Nevada. With early Cenozoic δ^{18} O-elevation gradients of ~-2‰/km (Mulch et al., 2006; Hren et al., 2010), a δ^{18} O depletion of -1.2‰ to -4.5‰ for Goler waters relative to Eocene sea level indicates that the Paleocene central and southern Sierra Nevada had paleoelevations of 1–2 km.

In combination, the provenance and isotopic data suggest that the Paleocene southern Sierra Nevada had modest elevations, in agreement with estimates derived for the Paleocene-Eocene central Sierra Nevada (~1.5 km; Clark et al., 2005); however, on a local scale, near-sea-level basins transected the range. These basins likely developed in response to Late Cretaceous orogenic collapse of the southernmost Sierra Nevada (Saleeby et al., 2007). Localization of the source terranes for Goler sediments adjacent to

the position of Late Cretaceous dextral shear zones associated with Sierran orogenic collapse further underscores the apparent tectonic control on the paleogeographic evolution of the early Cenozoic southern Sierra (Fig. 4.3A; Bartley et al., 2007). During the Eocene, the west-directed fluvial systems feeding the Goler and Witnet basins appear to have been cutoff or redirected. This truncation may record a phase of regional Eocene uplift (e.g., Goodman and Malin, 1992); however, based on similarities between the net post-Paleocene uplift of the Witnet Formation (~1500 m), and the proposed post-Eocene uplift of the central and southern Sierra Nevada (~2000 m; Clark et al., 2005), the amount of early Eocene uplift was presumably minor.

The results presented here provide a coherent Cenozoic uplift history for the central and southern Sierra Nevada, consistent with previous models (Clark et al., 2005; Maheo et al., 2009). The applicability of this history to the entire orogen, however, depends on whether the northern Sierra Nevada is a long-lived (e.g., Mulch et al., 2006) or young (e.g., Wakabayashi and Sawyer, 2001) topographic feature. Additionally, the work presented here, along with existing paleontologic (Lofgren et al., 2008) and sedimentologic (Cecil et al., 2011) evidence, suggests that Sierra Nevada coastal basins were isolated from continental interior drainages in Paleocene-Eocene time (Fig. 4.3A). This contrasts with Oligocene reconstructions in which fluvial systems rising in the Great Basin traversed the Sierra Nevada (north of 38°N), connecting the high-standing continental interior to the coast (e.g. Henry and Faulds, 2010) and calls into question models in which a high-standing orogenic plateau over present-day Nevada extended as far south as the latitude (~36°N) of the southern Sierra (e.g., Ernst, 2010).

Figure 4.3

Figure 4.3 - (A) Diagram of early Paleogene southern Sierra Nevada regional paleotopography and paleogeography constrained by detrital zircon U-Pb age spectra and correspondence with plutonic, volcanic, and siliciclastic source terranes (Fig. 4.2B). Late Cretaceous dextral shear zones (LCDSZ) and rift basins provided fluvial pathways and depocenters for Paleogene sediment transport and deposition. Amargosa River paleogeography from Howard (1996) and Wernicke (2011). * - Lower Goler Formation detrital composition constrained by clast and sandstone point counts (Cox, 1982), not through detrital zircon U-Pb dating. (B) Schematic north-south cross-sections showing the Late Cretaceous to modern mean elevation distributions of the Sierra Nevada. Red star marks position of Witnet basin through time.

4.7 Conclusions

Combined zircon U-Pb provenance and δ^{18} O data constrain the Paleocene paleoelevation of the southern Sierra Nevada to be modest (1–2 km), with local dissection by low elevation basins and fluvial systems tapping the eastern arc flank region. Near-sea-level deposition of the Witnet Formation requires ~1500 m of absolute uplift of the southern Sierra Nevada since the Paleocene. Most of this uplift is likely post-Eocene, given similarities to published uplift estimates of the central and southern Sierra Nevada based on geomorphic criteria (Clark et al., 2005), and may be the result of the loss of a dense lithospheric root. These results contrast with models of a topographically stable northern Sierra Nevada (e.g., Mulch et al., 2006), thus underscoring the possibility of spatial variability in Cenozoic Sierra Nevada paleogeography, and highlighting the roles that local tectonic events have played in controlling the topographic and geodynamic evolution of the Cordilleran margin.

4.8 Acknowledgements

We thank G. Gehrels and A. Pullen at the University of Arizona LaserChron Center for assistance with U-Pb analyses, and K. Lohmann and L. Wingate at the University of Michigan Stable Isotope Lab for collaboration on isotopic analyses. C. Henry, E. Nadin, and K. Putirka are thanked for thoughtful reviews. U-Pb analysis was supported by National Science Foundation grants EAR-0310252 (NAN) and EAR-0607458 (M. K. Clark) and a University of Michigan Turner Award (ARL).

4.9 References cited

- Bartley, J.M., Glazner, A.F., Coleman, D.S., Kylander-Clark, A., Mapes, R., and Friedrich, A.M., 2007, Large Laramide dextral offset across Owens Valley, California, and its possible relation to tectonic unroofing of the southern Sierra Nevada, *in* Till, A.B., Roeske, S.M., Sample, J.C., and Foster, D.A., eds., Exhumation Associated with Continental Strike-Slip Fault Systems: Boulder, Colorado, Geological Society of America, p. 129–148.
- Busby, C.J., and Putirka, K., 2009, Miocene evolution of the western edge of the Nevadaplano in the central and northern Sierra Nevada: palaeocanyons, magmatism, and structure: International Geology Review, v. 51, p. 670–701, doi:10.1080/00206810902978265.
- Buwalda, J.P., 1954, Geology of the Tehachapi Mountains, California: Bulletin California. Division of Mines and Geology, v. 170, p. 131–142.
- Cecil, M.R., Ducea, M., Mulch, A., Allen, C., and Campbell, I., 2011, Provenance of Eocene river sediments from the central-northern Sierra Nevada and implications for paleotopography: Tectonics, v. 30, doi:10.1029/2010TC002717.
- Clark, M.K., Maheo, G., Saleeby, J., and Farley, K.A., 2005, The non-equilibrium landscape of the southern Sierra Nevada, California: GSA Today, v. 15, p. 4–10, doi:10.1130/1052-5173(2005)015[4:TNLOTS]2.0.CO;2.
- Cox, B.F., 1982, Stratigraphy, sedimentology, and structure of the Goler Formation (Paleocene), El Paso Mountains, California: Implications for Paleogene tectonism on the Garlock Fault Zone [Ph.D. Thesis]: Riverside, University of California, 248 p.
- Critelli, S., and Nilsen, T.H., 2000, Provenance and stratigraphy of the Eocene Tejon Formation, Western Tehachapi Mountains, San Emigdio Mountains, and Southern San Joaquin Basin, California: Sedimentary Geology, v. 136, p. 7–27, doi:10.1016/S0037-0738(00)00080-4.
- Dunne, G.C., Garvey, T.P., Oborne, M., Schneidereit, D., Fritsche, A.E., and Walker, J.D., 1998, Geology of the Inyo Mountains Volcanic Complex: Implications for Jurassic paleogeography of the Sierran magmatic arc in eastern California: Geological Society of America Bulletin, v. 110, p. 1376–1397, doi:10.1130/0016-7606(1998)110<1376:GOTIMV>2.3.CO;2.
- Dunne, G.C., and Walker, J.D., 2004, Structure and evolution of the East Sierran thrust system, east central California: Tectonics, v. 23, p. TC4012, doi:10.1029/2002TC001478.
- Ernst, W.G., 2010, Young convergent-margins, climate, and crustal thickness A Late Cretaceous-Paleogene Nevadaplano in the American Southwest?: Lithosphere, v. 2,

p. 67–75, doi:10.1130/L84.1.

- Evernden, J.F., and Kistler, R.W., 1970, Chronology of emplacement of Mesozoic batholithic complexes in California and western Nevada: U.S. Geological Survey Professional Paper 623, 42 p.
- Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H., and Howell, D.G., 1995, Detrital zircon reference for Cambrian to Triassic miogeoclinal strata of western North America: Geology, v. 23, p. 831–834, doi:10.1130/0091-7613(1995)023<0831:DZRFCT>2.3.CO;2.
- Goodman, E.D., and Malin, P.E., 1992, Evolution of the southern San Joaquin basin and mid-Tertiary transitional tectonics, central California: Tectonics, v. 11, p. 478–498, doi:10.1029/91TC02871.
- Henry, C.D., and Faulds, J.E., 2010, Ash-flow tuffs in the Nine Hill, Nevada, paleovalley and implications for tectonism and volcanism of the western Great Basin, USA: Geosphere, v. 6, p. 339–369, doi:10.1130/GES00548.1.
- House, M.A., Wernicke, B.P., and Farley, K.A., 1998, Dating topography of the Sierra Nevada, California, using apatite (U-Th)/He ages: Nature, v. 396, p. 66–69, doi:10.1038/23926.
- Howard, J.L., 1996, Paleocene to Holocene paleodeltas of ancestral Colorado River offset by the San Andreas fault system, southern California: Geology, v. 24, p. 783–786, doi:10.1130/0091-7613(1996)024<0783:PTHPOA>2.3.CO;2.
- Hren, M.T., Pagani, M., Erwin, D.M., and Brandon, M., 2010, Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada: Geology, v. 38, p. 7–10, doi:10.1130/G30215.1.
- Lofgren, D.L., Honey, J.G., McKenna, M.C., Zondervan, R.L., and Smith, E.E., 2008, Paleocene primates from the Goler Formation of the Mojave Desert in California, *in* Wang, X., and Barnes, L.G., eds., Geology and Vertebrate Paleontology of Western and Southern North America, Contributions in Honor of David P. Whistler, Volume Science Series 41, National History Museum of Los Angeles County, p. 11–28.
- Loomis, D.P., and Burbank, D.W., 1988, The stratigraphic evolution of the El Paso basin, southern California: Implications for the Miocene development of the Garlock Fault and uplift of the Sierra Nevada: Geological Society of America Bulletin, v. 100, p. 12–28, doi:10.1130/0016-7606(1988)100<0012:TSEOTE>2.3.CO;2.
- Maheo, G., Saleeby, J., Saleeby, Z., and Farley, K.A., 2009, Tectonic control on southern Sierra Nevada topography, California: Tectonics, v. 28, p. TC6006, doi:10.1029/2008TC002340.

- Mulch, A., Graham, S.A., and Chamberlain, C.P., 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, p. 87–89, doi:10.1126/science.1125986.
- O'Neil, J.R., Clayton, R.N., and Mayeda, T.K., 1969, Oxygen isotope fractionation in divalent metal carbonates: The Journal of Chemical Physics, v. 51, p. 5547–5558, doi:10.1063/1.1671982.
- Saleeby, J., Farley, K.A., Kistler, R.W., and Fleck, R.J., 2007, Thermal evolution and exhumation of deep-level batholithic exposures, southernmost Sierra Nevada, California: Geological Society of America Special Paper, v. 419, p. 39–66.
- Torres, M., 2010, Paleoclimatic and paleoenvironmental interpretations of the Paleocene Goler Formation of southern California [B.S. Thesis]: Pitzer College, 77 p.
- Unruh, J.R., 1991, The uplift of the Sierra Nevada and implications for Late Cenozoic epeirogeny in the Western Cordillera: Geological Society of America Bulletin, v. 103, p. 1395–1404, p. 1395–1404, doi:10.1130/0016-7606(1991)103<1395:TUOTSN>2.3.CO;2.
- Wakabayashi, J., and Sawyer, T.L., 2001, Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California: The Journal of Geology, v. 109, p. 539–562, doi:10.1086/321962.
- Wernicke, B., 2011, The California River and its role in carving the Grand Canyon: Geological Society of America Bulletin, v. 123, doi: 10.1130/B30274.1.
- Wood, D., and Saleeby, J., 1997, Late Cretaceous-Paleocene extensional collapse and disaggregation of the southernmost Sierra Nevada batholith: International Geology Review, v. 39, p. 973–1009, doi:10.1080/00206819709465314.
- Yapp, C.J., 2008, O-18/O-16 and D/H in goethite from a North American oxisol of the Early Eocene climatic optimum: Geochimica et Cosmochimica Acta, v. 72, p. 5838– 5851, doi:10.1016/j.gca.2008.09.002.
- Zandt, G., Gilbert, H., Owens, T.J., Ducea, M., Saleeby, J., and Jones, C.H., 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, p. 41–46, doi:10.1038/nature02847

CHAPTER V

Carbonate clumped isotope paleotemperature evidence for a high elevation Paleocene-Eocene 'Nevadaplano' in the Western US Cordillera^{*}

5.1 Abstract

Accurate paleoelevation histories for the western US Cordillera provide first order constraints on the climatic, tectonic, and geodynamic evolution of the region. It has long been speculated that a high elevation 'Nevadaplano' dominated much of the interior Cordillera in late Cretaceous-early Paleogene time, but at present direct and absolute estimates of regional paleoelevation are generally lacking or limited to paleobotanical studies limited by high inherent uncertainties. Measurement of lacustrine carbonate growth temperatures using the clumped isotope paleothermometry analytical technique reveals significant temperature differences between carbonate proxies formed within and external to the proposed high elevation plateau. Clumped isotope temperatures for

^{*} **Citation:** Lechler, A.R., Niemi, N.A., Hren, M.T., and Lohmann, K.C., *in prep.*, Carbonate clumped isotope paleotemperature evidence for a high elevation Paleocene-Eocene 'Nevadaplano' in the Western US Cordillera

lacustrine carbonates in the Paleocene Goler Formation, known to be deposited at a paleoelevation at or near sea level, are ~ 16°C warmer than clumped isotope temperatures of lacustrine carbonates and Unionid bivalve shells collected from the Late Cretaceous-Eocene Sheep Pass Formation in east-central Nevada. Using both modern and ancient lake water temperature lapse rates, the observed temperature difference indicates that the Sheep Pass basin of the Cordilleran interior was part of a high elevation (≥ 2.6 km) orogenic plateau that collapsed during subsequent Tertiary Basin and Range extension. This study provides direct evidence for high paleoelevations in the interior western US and thus supports models ascribing widespread crustal extension to internal buoyancy forces associated with excess gravitational potential energy of a high elevation continental plateau. Carbonate clumped isotope temperatures at multiple stratigraphic intervals in the Paleocene-Eocene section of the Sheep Pass Formation also constrain the amount of climate warming (~ 5°C) that occurred in the interior western US during the Early Eocene Climatic Optimum. Together, these results illustrate the utility of clumped isotope paleothermometry to paleoaltimetry and paleoclimate studies, particularly in regions where paleo-meteoric water proxy records are subject to significant evaporative influence.

5.2 Introduction

Quantitative paleoelevation histories are vital to the development and validation of tectonic and geodynamic models of orogen development. In the Western US Cordillera, accurate elevation histories are particularly relevant to resolving the driving forces for widespread Tertiary extension and the mechanism(s) by which this extension occurred. Competing models for the Cenozoic evolution of the Basin and Range are commonly characterized by unique topographic histories, thus providing testable predictions for the topographic evolution of the region (Clark, 2007). As a result, the relative influences of plate boundary, internal buoyancy, and basal normal forces on Basin and Range extension can be better understood if elevation distributions both prior to and concomitant with regional crustal extension and magmatism can be constrained (e.g., Sonder and Jones, 1999).

Excess gravitational potential energy of a high elevation (> 3 km) continental plateau with a crustal thickness > 50 km is commonly cited as a primary driver for Basin and Range extension (Coney and Harms, 1984; Jones et al., 1996, 1998; Dilek and Moores, 1999; Sonder and Jones, 1999; Flesch et al., 2007). In such a scenario, longlived Mesozoic and early Cenozoic convergence and subduction of the Farallon oceanic plate off the western margin of North America is speculated to have created a high elevation orogenic plateau in the hinterland of the active Sierra Nevada magmatic arc that was flanked on its eastern margin by the Sevier fold-thrust belt (Coney and Harms, 1984; Jones et al., 1998; Dilek and Moores, 1999; DeCelles, 2004). This orogenic plateau has been termed the 'Nevadaplano' (DeCelles, 2004) due to proposed similarity with the Altiplano-Puna Plateau of the South American Andes and would have been a dominant physiographic feature in the Cordilleran interior during the Late Cretaceous-early Cenozoic. Beyond analogy, however, evidence for such high regional paleoelevations is generally restricted to indirect estimates derived from mass balance calculations that assume pre-extension crustal thicknesses in excess of 50 km are required to account for the ~ 30 km thick crust that characterizes much of the highly extended, modern Basin and

Range Province (e.g., Coney and Harms, 1984; Gans, 1987; Wernicke et al., 1996; Best et al., 2009; Ernst, 2010). Assuming the pre-extended crust of the Cordilleran interior was isostatically compensated, the proto-Basin and Range plateau would have been characterized by high regional paleoelevations (\geq 3km; e.g., DeCelles, 2004; Ernst, 2010).

More direct measures of paleoelevations in the Paleogene 'Nevadaplano' region have been produced using stable isotope and paleobotanical paleoaltimetry techniques, but interpretation of these paleoelevation histories must be made with caution due to the inherent assumptions and uncertainties associated with each technique. Stable isotopic records derived from Basin and Range lacustrine paleo-meteoric water proxies exhibit high magnitude isotopic shifts in δ^{18} O values that are proposed to reflect surface uplift > 2km from the middle Eocene to early Oligocene (Horton et al., 2004), followed by 1 - 3km of surface lowering since the middle Miocene (Horton et al., 2004; Horton and Chamberlain, 2006). This surface uplift history implies that the Cordilleran interior had high paleoelevations (> 3 km) prior to Neogene extension, but these records do not provide absolute paleoelevation estimates and instead potentially constrain only relative changes in surface elevations through time. Isolating the elevation signal in these meteoric water proxy records is further complicated by uncertainty in how changes in climate, moisture source, and storm track trajectory influence proxy isotopic records, as well as how the evolution of regional paleofluvial systems in the western US Cordillera might account for the observed large isotopic shifts, independent of elevation change at the site of proxy formation (Carroll et al., 2008; Davis et al., 2008; Davis et al., 2009). Paleoelevation estimates for the 'Nevadaplano' have also been derived from

paleobotanical studies utilizing the physiognomy of fossil leaf assemblages to propose high regional elevations (≥ 2.5 km) throughout much of the region during the early Paleogene (e.g., Wolfe et al., 1997; Gregory-Wodzicki, 1997). Recent work, however, reveals that accurate quantification of paleoelevation uncertainties using the leaf physiognomy paleoaltimetry technique is subject to debate (Peppe et al., 2010; Spicer et al., 2010) and that uncertainties may be excessively high (≥ 2 km; Peppe et al., 2010).

In this study, we use clumped isotope paleothermometry of early Paleocene-Middle Eocene lacustrine micrites and Unionid bivalve shells collected from sites that would have been located within and external to the proposed 'Nevadaplano' to add constraints on the paleoelevation history of this region prior to widespread Tertiary extension. The carbonate sample site external to the 'Nevadaplano' has a known paleoelevation near sea level during the time of carbonate deposition. This sea level reference makes quantification of the relative temperature difference between sea level and the early Cenozoic 'Nevadaplano' possible, and, as a result, allows for direct inference of absolute paleoelevations. This work provides some of the first direct estimates of continental interior paleoelevations in the proto-Basin and Range Province during a time of relative tectonic quiescence following the end of the Sevier Orogeny when the proposed orogenic plateau may have attained a limiting crustal thickness and elevation (McQuarrie and Chase, 2000; DeCelles, 2004). As a result, this work has the potential to elucidate the probable driving mechanisms for the widespread Tertiary extension that controls the modern physiography of the region.

5.3 Clumped isotope paleothermometry and paleoaltimetry applications

Carbonate clumped isotope paleothermometry utilizes the temperature dependence of ¹³C-¹⁸O bond abundance (degree of 'clumping') in the carbonate crystal lattice to constrain temperatures of carbonate formation, independent of the carbonate stable isotopic composition (e.g., Ghosh et al., 2006). The higher bond energies of these multiply-substituted isotopologues (i.e. molecules with more than one rare isotope) result in a higher degree of 'clumping' (i.e. more ¹³C-¹⁸O bonds) at colder formation temperatures. In practice, carbonate clumped isotope analysis focuses on measuring the abundance of mass-47 isotopologues in CO₂ gas (primarily ¹³C¹⁸O¹⁶O) derived from phosphoric acid digestion of carbonate material. The measured enrichment of mass-47 isotopologues relative to a stochastic mass-47 distribution in CO₂ with equivalent isotopic compositions (δ^{18} O and δ^{13} C), termed the Δ_{47} value, is then used for temperature determinations through application of the empirically derived 'clumping'-temperature relationship of Ghosh et al. (2006): $\Delta_{47} = 59200/T^2 - 0.02$, where T is in Kelvin (see Huntington et al., 2009 for additional details on the method).

Obtaining independent measures of temperature for carbonate growth and/or diagenetic resetting is a powerful tool for paleoclimate, hydrologic, and paleoelevation studies utilizing carbonate proxies for the stable isotopic composition of paleo-meteoric waters. For many of these studies, and particularly in stable isotope paleoaltimetry, the environmental parameter of interest is the isotopic composition of the water in which the carbonate proxy precipitated, as this water is assumed to reflect meteoric precipitation and/or surface water isotopic compositions at the time of proxy formation. Quantifying the relationship between water and carbonate isotopic compositions can be complicated, however, due to temperature-dependent fractionation between the two phases (e.g., Kim and O'Neil, 1997). As a result, significant uncertainties in the temperature of lacustrine carbonate formation lead to significant uncertainties in the calculation of water isotopic compositions. With independent measures of the temperature of carbonate formation, the δ^{18} O value of the original water can be directly calculated, and, as a result, these carbonate proxy records can be more reliably interpreted.

Quantification of carbonate formation temperatures can also function as a powerful tool in paleoaltimetry studies independent of calculated water δ^{18} O values due to the covariance of surface temperature with elevation. This covariance leads to the testable hypothesis that carbonates precipitated at high elevation sites will be characterized by colder carbonate growth temperatures than contemporaneous carbonates formed at lower elevations, assuming carbonate growth occurs over equivalent times of the year and local climatic variations don't supersede elevation effects. This temperaturebased paleoaltimetry application of clumped isotope paleothermometry can be an especially powerful tool in settings where the violation of Rayleigh distillation rainout processes significantly limits the application of standard stable isotope paleoaltimetry techniques. For example, regions with complex isotope-elevation relationships [e.g., continental interior of the western US (Ingraham and Taylor, 1991; Friedman et al., 2002; Lechler and Niemi, in revision, Chapter 2 of this thesis); Tibetan Plateau (Tian et al., 2007; Hren et al., 2009; this thesis)] and areas where surface waters are subject to evaporative influence are prone to producing stable isotope-based paleoelevation estimates with significant uncertainties (e.g., Quade et al., 2007; this thesis).

Huntington et al. (2010) used carbonate clumped isotope analysis of modern and ancient lacustrine carbonates collected over an elevation range of ~ 2 km in the Colorado Plateau region to suggest that middle Miocene paleoelevations and paleotopographic gradients were comparable to the modern, as well as to constrain a regional climatic change of \sim 7°C cooling since the late Miocene. Here we apply an analogous approach to address the paleotopographic and paleoclimatic evolution of the proto-Basin and Range during the Late Cretaceous-early Paleogene. If an orogenic plateau with elevations in excess of 3 km did characterize the western US interior in early Cenozoic time, we expect significant differences in carbonate growth temperatures between sites internal and external to the high elevation plateau, a hypothesis that can be directly tested with clumped isotope paleothermometry.

5.4 Geologic setting and sample locations

The Western US Cordillera was subject to oceanic subduction and associated compressive stresses throughout much of the Mesozoic and early Cenozoic Sevier and Laramide orogenies, resulting in a spatially extensive orogenic system bounded on its western margin by the Sierra Nevada magmatic arc. During the latest Cretaceous-early Paleogene synconvergent extension in both the magmatic arc region (e.g., Wood and Saleeby, 1997) and the Sevier-Laramide orogen (e.g., Wells et al., 1990; Hodges and Walker, 1992; Wells and Hoisch, 2008) created a series of local rift basins that preserve some of the oldest Cenozoic sediments in the region. Immediately east of the southernmost Sierra Nevada, these early Cenozoic sediments are represented by the Paleocene Goler Formation which outcrops in the El Paso Mountains of southeastern CA

(Figure 5.1). The Goler Formation is a > 4 km thick continental clastic sequence of dominantly alluvial and fluvial sandstones and conglomerates that has been subdivided into four lithologic members (Cox, 1982). The lower Goler Formation (Members 1 and 2) consists of pebble and cobble conglomerates proposed to have been locally derived from the Triassic plutonic basement of the Goler basin (Cox, 1982). Sedimentary provenance studies of the quartzite-cobble-rich and volcanic-cobble-rich strata in Members 4a and 4c indicates that upper Goler Formation sediments were sourced within the arc flank regions of the eastern Sierra Nevada (Chapter 4; Lechler and Niemi, 2011). A diverse fossil assemblage (ray teeth, crocodiles, turtles, primates, conodonts) throughout Members 3 and 4, in combination with the presence of marine mudstones and molluscs in the uppermost Goler Formation (Member 4d), suggests that the Goler basin resided at or near sea level throughout the early Paleogene (e.g., Lofgren et al., 2008). This fossil assemblage also provides depositional age constraints, indicating that the upper Goler Formation was deposited during the middle and late Paleocene (Torrejonian and Tiffanian North American Land Mammal Ages [NALMA]; Lofgren et al., 2008). Recent magnetostratigraphic study places more definitive bounds of $\sim 62 - 57.5$ Ma for the timing of Goler Formation deposition (Albright et al., 2009).

Late Cretaceous-early Paleogene synconvergent extension also produced a series of extensional basins within the interior of the Cordilleran orogen (Wells and Hoisch, 2008; Druschke et al., 2009b). The late Cretaceous-Eocene Sheep Pass Formation is an alluvial, fluvial, and lacustrine sedimentary sequence deposited on the hanging wall of one of these actively subsiding rift basins. The > 1 km thick Sheep Pass Formation currently outcrops in the Pancake, Grant and southern Egan ranges of east-central Nevada

(Figure 5.1) and provides one of the earliest records of extension-related sedimentary basin formation in the continental interior of the western US (Druschke et al., 2009a and b). Previous workers have subdivided the Sheep Pass Formation into six lithologic members (A-F) (Figure 5.2B; Fouch, 1979; Druschke et al., 2009b). Clastic-dominated alluvial fan and distal alluvial fan/marginal lacustrine environments characterize Members A and C, respectively, whereas carbonate-dominated sediments in Members B and D-F are interpreted to have been deposited in lacustrine environments (e.g., Fouch, 1979; Druschke et al., 2009b). Abundant molluscan specimens throughout Members B, C, and E suggest the Sheep Pass basin evolved from a single, regionally extensive lake environment into a series of isolated and ephemeral ponds in a wetland terrain through the early Paleogene (Good, 1987). Recent U-Pb detrital zircon dating provides a maximum depositional age of 81.3 ± 3.7 Ma in the middle of Sheep Pass Member A and a minimum age for the Sheep Pass Formation of 37.7 Ma ± 0.6 Ma based on U-Pb dating in the Stinking Springs Conglomerate member of the overlying Garrett Ranch Group volcanics (Druschke et al., 2009b). U-Pb carbonate dating at the base of Member B (Druschke et al., 2009a), in combination with biostratigraphic study of molluscan fossil assemblages in Members B and C (Good, 1987), suggests a late Campanian through Early Paleocene ($\sim 71.5 - 61$ Ma) age for Member B. Molluscan biostratigraphy (Good, 1987) also constrains the depositional ages of Members C (middle to late Paleocene, ~ 61 -55 Ma), D (early Eocene, $\sim 55 - 50$ Ma) and E (Bridgerian NALMA: 50.3 - 46.2 Ma).

Samples were collected from both the Goler and Sheep Pass Formations for clumped isotope paleothermometry analysis (Figures 5.1 and 5.2). Clastic sediments dominate much of the Goler sedimentary sequence but a single micritic limestone lens

FIGURE 5.1

Figure 5.1 – Map of sample locations. Upper map shows carbonate sample locations (stars) in modern geographic coordinates with major physiographic provinces of the western US shown in gray. Inset map of the continental US indicates map extent. Lower map shows sample site locations in their Paleocene paleogeographic positions prior to Tertiary Basin and Range extension. Paleocene sample locations and paleogeography of retrodeformed state boundaries and physiographic provinces are based on palinspastic reconstructions of McQuarrie and Wernicke (2005). SP = Sheep Pass Formation; Goler = Goler Formation.

FIGURE 5.2

Figure 5.2 – Geologic setting of carbonate sample locations. (A) Geologic map of the El Paso Mountains of southeastern California, modified from Cox (1982). The Paleocene Goler Formation unconformably overlies metamorphic rocks of the Paleozoic Garlock Formation and Mesozoic plutonic rocks associated with the onset of regional Sierra Nevada arc magmatism and is unconformably overlain by Miocene Ricardo Formation volcanics. Red star marks location of micritic carbonate sampling from Member 4a. (B) Detailed geology of Sheep Pass Canyon, southern Egan Range, Nevada where the type section of the late Cretaceous-Eocene Sheep Pass Formation is exposed (modified from Druschke et al., 2009b). Yellow stars mark Sheep Pass carbonate sample locations. Both lacustrine carbonate and fossil mollusc shells were collected from the same location within Member B (K-Pspb). The E-W striking Ninemile Fault is a proposed synconvergent normal fault that was active throughout the deposition of the Sheep Pass Formation (Druschke et al., 2009a and b). See Figure 5.1 for additional location information for (A) and (B).

(1–2 m thick), believed to represent a small pond formed in the floodplain of a braided river system that traversed the Goler basin (Cox, 1982), is found within Member 4a and was sampled as part of this study (Figure 5.2A). The dominance of lacustrine environments and associated carbonate throughout much of the Sheep Pass Formation afforded the opportunity to collect carbonate samples at multiple stratigraphic intervals. All Sheep Pass Formation samples were collected from the type section, which is exposed in Sheep Pass Canyon in the southern Egan Range (Figure 5.2B). Lacustrine micrite samples were collected from Sheep Pass Members B, D and E. The sample from Member B also contained abundant fossil molluscs (*Unionid* bivalves), that were analyzed as part of this study.

5.5 Analytical techniques

Carbonate sample preparation and isotopic analysis was completed at the University of Michigan Stable Isotope Lab. All samples were analyzed for both standard stable (δ^{18} O and δ^{13} C) and clumped (Δ_{47}) isotopic compositions. Stable isotopic analyses were completed in October 2010 and isotopologue measurements were made in January 2011. Carbonate samples were drilled following standard micromilling procedures (Dettman and Lohmann, 1995). For δ^{18} O and δ^{13} C measurements, ~ 1 mg of drilled carbonate powder for each sample was placed under vacuum at 200°C for one hour to remove volatile contaminants and water. Samples were then placed in individual borosilicate reaction vessels and reacted at 77°C ± 1°C with 4 drops of anhydrous phosphoric acid for 8 minutes in a Finnigan MAT Kiel IV preparation device coupled

directly to the inlet of a Finnigan MAT 253 triple collector isotope ratio mass spectrometer. Measured precision is < 0.1% for both δ^{18} O and δ^{13} C.

For clumped isotope analyses, a specific CO₂ extraction procedure is required in order to ensure purity of analyte CO₂ gas (Huntington et al., 2009). Approximately 5 mg of drilled carbonate powder was loaded into a rotary, multisample carousel that dropped individual powder samples into a common acid bath composed of ~ 20 ml of anhydrous phosphoric acid that was held at a constant temperature of 75°C using a circulating water bath. CO₂ was produced by reacting carbonate powders for 1 hour at 75°C. The CO₂ purification process followed the cryogenic procedures under vacuum conditions outlined in Ghosh et al. (2006) and Huntington et al. (2009), to remove residual water vapor and other contaminants. To eliminate hydrocarbon and halocarbon contaminants, CO₂ gas was entrained in a He carrier gas that flowed at a rate of 2 ml/min through a HP 5890 gas chromatograph (GC) column (Supel-Q-PLOT with 530 µm i.d., 30 m long) held at -20°C for 40 minutes. After flowing through the GC column, CO₂ was frozen out in a cold trap using liquid N₂ and He carrier gas was pumped away. CO₂ pressure was measured prior to and following the GC purification step in order to ensure consistent yields. Purified CO₂ then went through two subsequent cryogenic purification cycles and was eventually trapped in an evacuated glass vessel and transferred for isotopologue analysis.

 CO_2 masses 45–49 were measured on a dual-inlet Thermo-Finnigan MAT 253 mass spectrometer following the methods of Eiler and Schauble (2004). Normalized Δ_{47} values were calculated using the stochastic reference heated gas line for the January 2011 analysis period. Heated gases with stochastic isotopologue distributions were produced by heating CO_2 gases of variable isotopic compositions in a muffle furnace at 1000°C for

2 hours. The heated gas reference line for our analysis period is shown in Figure 5.3. Each isotopologue analysis requires ~ 3 hours of mass spectrometer time in order to achieve precisions on the order of 10^{-6} for Δ_{47} and each carbonate sample was subject to at least triplicate analysis in order to reduce temperature uncertainties to values as low as ~ ±1.5°C (1 S.E.). Final temperature values were corrected for empirically-determined acid fractionation factors at 75°C and calculated following the methods of Ghosh et al. (2006) using both intralab (Huron River mussel, Jolters ooids) and interlab (Carrara marble) carbonate standards.

The small size of bivalve shells in Sheep Pass Member B (\leq 5 mm in diameter) prevented high resolution temporal (i.e. seasonal) sampling of individual shells. Thus, only bulk isotopic and temperature values are presented in this study. Depending on the growth habits of these organisms, these bulk values likely integrate over multiple seasons and/or years of carbonate precipitation, similar to the lacustrine carbonates analyzed as part of this work.

5.6 Isotopic and isotopologue results

Table 5.1 summarizes isotopic (δ^{18} O, δ^{13} C) and isotopologue (Δ_{47}) analyses for all Goler and Sheep Pass carbonate samples. Detailed isotopic and isotopologue results (δ_{47} , δ_{48} , δ_{49} , Δ_{47} , Δ_{48} , Δ_{49}) are provided in Appendix Table A5.1. δ^{18} O and δ^{13} C values are reported relative to the Peedee Belemnite standard (PDB).

Goler Formation micrite (EP0803) is characterized by highly reproducible δ^{18} O and δ^{13} C values of -12.3‰ (± 0.1) and -3.2‰ (± 0.2), respectively. Sheep Pass

FIGURE 5.3

Figure 5.3 – Heated gas line and isotopologue data. Δ_{47} versus δ_{47} for Goler and Sheep Pass carbonate samples, the Carrara marble interlab carbonate standard, and heated CO₂ gases. See text for discussion of heated gas line. Linear regression of heated gas isotopologue values includes analyses of heated CO₂ gases with δ_{47} values ranging from -54 to +10‰. Temperature values for carbonate samples are determined by normalizing measured Δ_{47} values using stochastic heated gas compositions at equal δ_{47} values. See Table 5.1 for detailed analytical results and calculated temperatures.
carbonates exhibit a higher degree of variability in δ^{18} O and δ^{13} C values depending on the type of carbonate material (i.e. micrite, bivalve shell) and stratigraphic position (Table 5.1). Despite this variability, Sheep Pass carbonate δ^{13} C and δ^{18} O values are characterized by higher δ^{18} O and δ^{13} C values than those measured in the Goler Formation, except in cases where easily identifiable diagenetic calcite spar was analyzed (e.g., Sample 10SP03). Carbonate (10SP06) and bivalve shell (10SP06-S) samples from Sheep Pass Member B have high δ^{13} C values of 4.2‰ and 9.0‰, respectively, and distinct average δ^{18} O compositions of -11.4‰ for the carbonate matrix and -5.9‰ for bivalve shells. The Member D carbonate sample (10SP02) has an average δ^{13} C value of 0.5‰ and an average δ^{18} O value of -4.2‰. Isotopic values for our Member E sample (10SP03) are -0.3‰ (δ^{13} C) and -6.9‰ (δ^{18} O).

The results of clumped isotope analyses, including both individual analyses and sample averaged Δ_{47} values, are listed in Table 5.1. In addition to investigating mass-47 compositions, plots of Δ_{48} versus δ_{48} were analyzed for all carbonate samples to identify contaminated analyte CO₂ gases (following the method of Huntington et al., 2009). Only analyses that exhibited Δ_{48} - δ_{48} relationships in agreement with heated gas values were accepted for subsequent temperature calculations and inclusion in Table 5.1. All reported uncertainties are \pm one standard error (S.E.) since final sample temperature magnitudes are averages of individual Δ_{47} values which are themselves derived from multiple measurement cycle averages. The average carbonate clumped isotope temperature for Goler Formation micrite (39.9 \pm 1.9°C) is consistently higher than those observed throughout the Sheep Pass Formation. The average clumped isotope temperature for Sheep Pass Formation Member B (24.9 \pm 1.5°C) is statistically indistinguishable from temperatures derived from the bivalve shells collected from the same stratigraphic level $(22.1 \pm 2.2^{\circ}C)$. Member D carbonate exhibits a warmer average temperature $(29.5^{\circ}C)$ and is also characterized by a higher degree of scatter in individual temperature analyses $(S.E. = 3.9^{\circ}C)$. Member E carbonate has an average carbonate clumped isotope temperature $(24.0 \pm 1.7^{\circ}C)$ indistinguishable from Member B carbonates.

5.7 Assessment of diagenetic influence

Petrographic analysis of carbonate samples suggests all analyzed samples are primary in origin and not significantly recrystallized or altered by diagenetic processes. Most analyzed carbonates preserve a cryptocrystalline, micritic texture with minimal evidence for major recrystallization or calcite spar formation. This is particularly true for micrite samples collected from the Goler Formation and Sheep Pass Members D and E. Sheep Pass Member B carbonate exhibits a higher degree of crystallinity, similar to that observed in bivalve shell material at the same stratigraphic interval, but we suggest this crystallinity does not significantly alter our isotopic or clumped isotope temperature results as primary stable isotopic values and carbonate temperatures appear to be preserved. Member B bivalve shells exhibit distinct isotopic compositions from those of the corresponding carbonate matrix (Table 5.1). If major resetting had influenced Member B carbonates we expect all affected material will exhibit similar, reset isotopic values. The preservation of distinct isotopic compositions supports interpretations that the primary isotopic signature is preserved in Member B carbonates and bivalve shells.

Member B carbonate clumped isotope temperatures are also inconsistent with diagenetic resetting during burial, as calculated formation temperatures are consistent

				Sun	nmary	
	Δ_{47}	Corrected Δ_{47}^{\dagger}	$\delta^{13}C_{PDB}$	$\delta^{18}O_{PDB}$	Avg. Corrected	Temperature
Sample	(‰)	(‰)	(‰)	(‰)	Δ_{47} (‰) ± 1 S.E.	(°C) ± 1 S.E.
		Paleo	cene Goler Foi	rmation		
EP0803	0.5226	0.5885	-3.2 ± 0.2	-12.3 ± 0.1	0.5948 ± 0.008	39.9 ± 1.9
35.4640 <i>°</i> N	0.5198	0.5858				
117.8539°W	0.5442	0.6102				
		Late Cretaceous	s-Eocene Shee	p Pass Formatio	n	
10SP06 <i>(Mbr. B)</i>	0.6052	0.6712	4.2 ± 0.4	-11.4 ± 0.8	0.6585 ± 0.007	24.9 ± 1.5
38.7376 <i>°</i> N	0.5819	0.6479				
114.9570°W	0.5905	0.6565				
	0 5007	0.0507	0.0 . 1.2	E 0 . 0 E	0.6712 . 0.011	00.4 . 0.0
105P06-5 (WDr. B)	0.5927	0.0007	9.0 ± 1.2	-5.9 ± 0.5	0.0713 ± 0.011	$ZZ.1 \pm Z.Z$
38.7370 N	0.6265	0.6925				
114.9570 W	0.5969	0.0020				
10SP02 (Mbr. D)	0 5345	0 6005	05+04	-42+09	0 6388 + 0 017	295+39
38 7335 °N	0 6048	0.6708				
114 9438°W	0 5543	0 6203				
	0.5975	0.6635				
10SP03 <i>(Mbr. E)</i>	0.5815	0.6475	-0.3 ± 0.6	-6.9 ± 0.7	0.6626 ± 0.008	24.0 ± 2.9
38.7339°N	0.6023	0.6683				
114.9409°W	0.6061	0.6721				
Spar			-2.8 ± 0.1	-16.4 ± 0.1		

Table 5.1 – Summary of clumped isotope thermometry and stable isotopic results

Table 5.1 Notes: Isotopic and isotopologue data for analyzed carbonates from the Goler and Sheep Pass Formations. Samples that exhibited evidence for significant contamination of analyte CO₂, based on measured Δ_{48} and δ_{48} ratios, were omitted from this analysis. Reported δ^{13} C and δ^{18} O values are averages of analyses performed in October 2010. Clumped isotope analyses were conducted in January 2011. $\dagger - \Delta_{47}$ values were corrected for empirically derived acid fractionation factors for anhydrous phosphoric acid reaction at 75°C (Hren et al., *in prep.*) prior to calculation of clumped isotope temperatures. Geographic coordinates for sample site locations provided below sample ID. Corresponding Sheep Pass Member noted in parentheses. with near surface conditions and are very similar to those derived from Member E which exhibits minimal petrographic evidence for diagenetic recrystallization. A final piece of evidence for preservation of primary signatures in Sheep Pass carbonates is the low δ^{18} O value observed for easily identifiable calcite spar in sample 10SP03 collected from Member E (Table 5.1). This crystalline calcite spar is indicative of late-stage diagenetic alteration which is consistent with measured low δ^{18} O values that likely reflect later-stage equilibration with isotopically depleted meteoric waters. This degree of crystallinity and isotopic depletion is not observed in any other Sheep Pass sample analyzed in this study.

Carbonate formation temperatures in the Goler Formation (~ 40°C) are significantly warmer than modern surface temperatures, particularly for mid-latitude regions. As a result, caution must be taken to ensure that we are reliably recording temperatures of carbonate formation and not resetting during burial diagenesis. In addition to petrographic analysis suggesting analyzed carbonate is primary, the paleogeographic and paleoclimatic setting of the Goler basin is also consistent with the proposed interpretation that the measured temperatures accurately reflect near surface conditions during Paleocene carbonate formation. Abundant evidence indicates that the Goler basin resided at or near sea level throughout the Paleocene (e.g., Lofgren et al., 2008), but throughout much of its existence it appears to have been cutoff from direct marine influences based on the lack of contemporaneous marine deposits elsewhere in the surrounding region. As a low elevation, inland continental site, the Goler basin would have been subject to greater seasonal temperature extremes than coastal sites where temperature is moderated by direct marine influence. Modern mean monthly air temperatures can reach 33-35°C at inland sites in southern California (e.g., Blythe, CA;

Huntington et al., 2010). Similarly, surface water temperatures in excess of 30°C are commonly observed in the Salton Sea during summer months (Huntington et al., 2010). Marine isotope (e.g., Zachos et al., 1994) and paleobotanical (Wolfe, 1994) records indicate that coastal regions of western North America were $\geq 7^{\circ}C$ (and possibly up to 12°C) warmer than the modern during the early Paleogene. These proposals of warm early Cenozoic climates are consistent with independent evidence from fossil assemblages (Lofgren et al., 2008) and geochemical analysis of paleosols (Torres, 2010) in the Goler Formation that suggests a tropical climate characterized the Paleocene Goler basin. Taken together, modern trends in air and surface water temperatures in combination with proposed temperature changes since Paleocene time indicate that surface water temperatures of ~ 40°C for the shallow, ephemeral floodplain lake in which Goler micrite precipitated are quite plausible, especially considering the tendency for lacustrine calcite to precipitate during spring/summer months when air and lake water temperatures are at a maximum (e.g., Leng and Marshall, 2004; Huntington et al., 2010).

5.8 Discussion of clumped isotope results

Carbonate clumped isotopic study of Paleocene-Eocene carbonates from multiple sites in the western US Cordillera indicate that carbonate formation temperatures in the continental interior Sevier-Laramide orogen are significantly lower than temperatures from contemporaneous proxies formed in near sea level basins in the vicinity of the paleo-Pacific coast. Average carbonate formation temperatures in Sheep Pass Members B and E are consistently in the range of 22–25°C, whereas analyzed carbonate from Member D has a significantly higher average temperature of 29.5°C (Table 5.1). Cenozoic carbonate material is limited to a single stratigraphic interval in the Goler Formation (middle Paleocene Member 4a), so a similar time-temperature history is not possible for the Goler basin. Thus, it is important to identify the causes for the observed temperature fluctuation in Sheep Pass Member D and whether this temperature shift reflects changes in elevation or simply changes in regional/global climate through time.

Sheep Pass Formation Member D deposition is constrained to the early-middle Eocene based on molluscan fossil assemblages in the overlying and underlying conformable members (Good, 1987). This time of deposition coincides with the well documented Early Eocene Climatic Optimum when deep marine δ^{18} O values (VPDB) decreased by > 1%, reflecting a period of significant climate warming (~ 5–7°C; Zachos et al., 2001). Direct comparison of the time-temperature history of Sheep Pass carbonates with the Cenozoic marine δ^{18} O record reveals a high degree of correlation between measured temperatures and marine isotopic trends (Figure 5.4), suggesting that the increase in temperature observed in Member D simply reflects the influence of continental climate change during the Early Eocene. The observed ~ 5°C increase in Sheep Pass carbonate temperatures between Members B and D is consistent with estimates of temperature change during this time (Zachos et al., 2001), but interpretation of the magnitude of the temperature change observed in the Sheep Pass carbonate record must be made with caution as Member D samples exhibit a high degree of variability in measured Δ_{47} values and associated calculated temperatures (Table 5.1).

If the influence of continental climate change is accounted for in our clumped isotope temperature record, we observe a 15–17°C shift between Goler Formation micrites and contemporaneous Sheep Pass carbonates. The observed difference in

173

FIGURE 5.4

Figure 5.4 – Carbonate clumped isotope temperature record. Age-temperature plot for Goler and Sheep Pass carbonate samples. Dashed gray line marks average carbonate clumped isotope temperature for Sheep Pass Formation Members B and E (~ 23.5°C). Zachos et al. (2001) marine δ^{18} O record is shown for reference. Simplified stratigraphic columns (Goler Fm. - Cox, 1982; Sheep Pass - Fouch, 1979; Druschke et al., 2009b) are included to provide stratigraphic correlation of the Goler (red lines) and Sheep Pass (blue lines) Formations. Dashed lines indicate approximate correlations. Stars mark approximate stratigraphic position of analyzed carbonate samples. Sampled molluscs from Sheep Pass Member B also shown. North American Land Mammal Age (NALMA) assignments and age uncertainties are based on Sheep Pass molluscan biostratigraphy (Good, 1987) and radiometric dating (Druschke et al., 2009b) and Goler Formation biostratigraphy (e.g. Lofgren et al., 2008) and magnetostratigraphy (Albright et al., 2009). NALMA abbreviations: Puer. = Puercan, Torr. = Torrejonian, Tiff. = Tiffanian, Clark. = Clarkforkian, Was. = Wasatchian, Brdg. = Bridgerian, Uint. = Uintan.

carbonate formation temperatures implies significant differences in elevation between the two sites. In order to calculate the absolute elevation difference the regional lake water temperature-elevation relationship during the early Cenozoic must be known or assumed. Modern mean annual temperature (MAT) lapse rates in the western US vary between 6.8 and 8.1°C/km (Meyer, 1992). Regional modern lake surface water temperature (LST) as well as modern and middle to late Miocene lake water carbonate temperature (LCT) lapse rates are lower in magnitude (LST = -5.6°C/km; LCT = -4.2°C/km) and more closely approximate the moist adiabat for the atmosphere (Huntington et al., 2010). Since our sampled lacustrine systems are analogous to the study sites of Huntington et al. (2010), we expect a temperature lapse rate of -4 to -6°C/km characterized Paleocene-Eocene lacustrine systems of the western US.

5.8.1 Paleoelevation of the Paleocene-Eocene 'Nevadaplano'

To isolate the elevation signal in our carbonate temperature records, we must first account for environmental variables, such as latitude, that influence lake water temperatures independent of elevation. During the early Paleogene, the Sheep Pass basin was located ~3°N of the Goler basin (Figure 5.1, Table 5.1). Using the modern latitudinal temperature gradient for mid-latitude western North America (-0.33°C/°N; Gregory and Chase, 1992) this latitudinal difference equates to a temperature difference of ~1°C, which is likely an upper limit as latitudinal-temperature gradients are expected to have been reduced during the Paleogene (e.g., Zachos et al., 1994). Thus, the influence of latitude effects on the observed temperature difference appears to be quite minor, suggesting that elevation acts as a primary control on the measured carbonate formation temperatures. Accounting for latitudinal effects, the temperature difference between

Goler micrite (39.9 \pm 1.9°C) and the average clumped isotope temperature for Sheep Pass carbonate and bivalve shells from the approximately contemporaneous Member B (23.5 \pm 2.0°C) is 15.4 \pm 2.7°C. Applying temperature lapse rates of -4 and -6°C/km, this equates to elevation differences of 3.9 \pm 0.7 km and 2.6 \pm 0.5 km, respectively.

For these calculations, we assume that Goler and Sheep Pass carbonates precipitated and/or grew during the same time of the year. If timing of carbonate precipitation was highly variable among Goler and Sheep Pass carbonate samples, some of the observed temperature difference could be the result of seasonal fluctuations in lake temperature. For example, if Goler micrite precipitation was restricted to only summer months whereas Sheep Pass carbonates formed throughout the year, Goler temperatures would be biased toward higher values and elevation differences would be overestimated, and vice versa. Even with this uncertainty, the plausible shift in temperatures due to seasonal bias is not sufficient to account for the high magnitude temperature difference (15–17°C) observed between Goler and Sheep Pass carbonates in its entirety. Thus, this significant temperature difference is likely to reflect differences in basin elevations. Furthermore, we are confident in the assumption that measured Goler and Sheep Pass carbonates are equivalent temperature proxies due to abundant evidence suggesting lacustrine carbonate precipitation is promoted during, or even restricted to, summer months (e.g., Leng and Marshall, 2004; Huntington et al., 2010) when water temperatures and CO_2 outgassing rate are at a maximum. Accordingly, we expect that the calculated elevation differences reliably reflect topographic distributions during the time of carbonate proxy formation.

With a known sea level elevation datum for the Goler basin, calculated elevation differences of 2.6 - 3.9 km indicate the Sheep Pass basin was located at high elevations during Paleocene carbonate deposition of Member B. The similarity of carbonate growth temperatures and marine δ^{18} O values during the early Paleocene (Member B) and earliest middle Eocene (Member E; Figure 5.4) further suggests these high regional elevations were maintained at least into the middle Eocene, suggesting a sustained period of tectonic quiescence in the 'Nevadaplano' during the early Paleogene.

Calculated elevation difference is sensitive to the choice of temperature lapse rate due the linearity of the temperature-elevation gradient, but application of either endmember lapse rate (-4 or -6°C/km) suggests the Sheep Pass basin was part of a high elevation (≥ 2.6 km) orogenic plateau ('Nevadaplano') system in the Paleocene-Eocene western US Cordilleran interior. As a result, this study provides direct estimates for early Cenozoic paleoelevations of the Sevier orogenic plateau ('Nevadaplano') and confirms proposed models for high regional elevations in the western US Cordillera prior to widespread Tertiary extension (e.g., Dilek and Moores, 1999; Sonder and Jones, 1999; DeCelles, 2004; Ernst, 2010). High elevations in the Sheep Pass basin predate the commencement of regional volcanism and tectonism in the Sheep Pass region during the late Eocene-early Oligocene (e.g., Armstrong and Ward, 1991; Best and Christiansen, 1991; Axen et al., 1993; Mueller and Snoke, 1993; Best et al., 2009). If regional uplift of ~ 2 km occurred concurrently with the southward sweep of magmatism that progressed through the US Cordillera during the Paleogene as has been proposed (Horton et al., 2004), regional mean elevations ≥ 5 km were attained immediately prior to Basin and Range extension. Such elevation magnitudes are at the upper limits of elevation estimates

based on crustal shortening amounts and proposed crustal thicknesses (e.g., DeCelles, 2004; Ernst, 2010). Thus, we think it is unlikely that the southward sweep in magmatism was associated with significant changes in surface uplift, at least in the Sheep Pass region of the Cordillera.

5.8.2 Calculation of water $\delta^{18}O$ values

Independent measure of carbonate growth temperatures provides the capability to directly calculate water δ^{18} O values which also have potential applications for paleoelevation determinations (e.g., Chamberlain and Poage, 2000; Rowley and Garzione, 2007). Water δ^{18} O values (VSMOW) were calculated using the fractionation equations of Kim and O'Neil (1997) along with corresponding carbonate $\delta^{18}O$ and temperature values. A plot of water δ^{18} O as a function of age is shown in Figure 5.5. Water δ^{18} O generally mirrors the pattern of carbonate δ^{18} O (Table 5.1) with Sheep Pass carbonates consistently having higher δ^{18} O values than the Goler micrite. Rayleigh distillation principles predict precipitation at high elevation sites, such as the early Paleogene 'Nevadaplano', will be characterized by low $\delta^{18}O$ values as a result of increased rainout, and associated preferential removal of heavy isotopes (D, ¹⁸O) from the contributing airmass (Rowley et al., 2001; Chapters 2 and 3 of this thesis). The observed high δ^{18} O values in the Sheep Pass formation are inconsistent with these Rayleigh distillation trends. We interpret this inconsistency as evidence for significant evaporative enrichment of Sheep Pass basin waters. Independent sedimentologic and fossil evidence for hypersaline conditions in Member D of the Sheep Pass Formation (e.g., Good, 1987) is consistent with the high water $\delta^{18}O$ values -1.0‰, VSMOW) observed in this stratigraphic interval. Bivalve shells in Member B and lacustrine micrite in Member E

Figure 5.5 – Calculated water δ^{18} O values for Goler and Sheep Pass carbonates. Age assignments described in Figure 5.4 caption. Sheep Pass water δ^{18} O values are labeled by sample ID (Table 5.1) for clarification. Evolution of Sheep Pass (SP) lacustrine environments ('SP lake environment') during the early Cenozoic is constrained by molluscan biostratigraphy (Good, 1987); Sheep Pass Member D hypersaline lake conditions are noted.

exhibit similar high δ^{18} O values (-4.0 and -4.7‰, VSMOW). The very high δ^{13} C values (~ 9‰, VPDB) of Member B bivalve shells are also consistent with formation from evaporative lake waters as δ^{18} O and δ^{13} C are known to covary in closed basin, evaporative lake systems (Talbot, 1990). High shell δ^{13} C values may also indicate that bivalve growth periods were restricted to times of high photosynthetic activity and rapid lake vegetation production, and associated ¹²C removal from surface waters, which is likely to dominate lacustrine systems during summer months when evaporative water loss is at a maximum.

The utility of clumped isotope paleothermometry for paleoaltimetry studies is clearly evident in light of calculated water δ^{18} O values. Without independent estimates of temperature, it would be difficult to discern the degree of evaporative influence on measured δ^{18} O values. A simple interpretation of the stable isotopic results would suggest that the high δ^{18} O values for Sheep Pass carbonates reflect formation in a low elevation basin system deriving precipitation from a nearby, marine source. Inclusion of carbonate clumped isotope temperatures, however, provides definitive evidence that the Sheep Pass basin was located at high elevations during the early Paleogene, indicating that the observed stable isotopic trends are heavily influenced by lake water evaporation.

5.9 Conclusions

Clumped isotope paleothermometry studies of lacustrine carbonates from the Goler Formation of southeastern California and the Sheep Pass Formation of east-central Nevada provides direct and robust evidence for a Late Cretaceous-Eocene high elevation (2.6 - 3.9 km) orogenic plateau in the western US Cordilleran interior. This high

elevation 'Nevadaplano' formed in response to crustal shortening and associated crustal thickening during the Sevier and Laramide orogenies of western North America and likely acted, in conjunction with changes in plate boundary forces and basal normal stresses, to drive the mid-Tertiary Basin and Range extension that collapsed the plateau to its modern mean elevations of ~ 1.5 km. Questions on the southward extent of this orogenic plateau still remain (e.g., Lechler and Niemi, 2011; Chapter 4 of this thesis), but the results of this study are consistent with proposals of an externally-drained plateau system characterized by trans-Sierran fluvial systems that connected the 'Nevadaplano' to the paleo-Pacific coast during the Oligocene (Cassel et al., 2009; Henry and Faulds, 2010). Combined clumped isotope paleothermometry and stable isotopic analysis of carbonate proxies also highlights the importance of constraining evaporative influence on paleo-meteoric proxies for paleoelevation studies as proxy records derived from ephemeral and/or closed lacustrine systems are prone to producing significant paleoelevation underestimates.

5.10 Acknowledgements

This work was supported by a University of Michigan Turner Grant to ARL. We thank Lora Wingate for her assistance with isotopic analyses. Will Defliese contributed to clumped isotope analyses and provided beneficial discussion on the clumped isotope technique.

5.11 References cited

- Albright, L. B., Lofgren, D.L., and McKenna, M.C., 2009, Magnetostratigraphy, mammalian biostratigraphy, and refined age assessment of the Goler Formation (Paleocene), California, *in* L. B. Albright, *ed.*, Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honor of Michael O. Woodburne, 65, p. 259-278.
- Armstrong, R. L. and Ward, P., 1991, Evolving geographic patterns of Cenozoic magmatism in the North American Cordillera - the temporal and spatial association of magmatism and metamorphic core complexes: Journal of Geophysical Research-Solid Earth and Planets, v. 96, B8, 13201-13224.
- Axen, G. J., Taylor, W. J., and Bartley, J. M., 1993, Space-time patterns and tectonic controls of Tertiary extension and magmatism in the Great Basin of the western United States: Geological Society of America Bulletin, v. 105, no. 1, p. 56-76.
- Best, M. G., Barr, D. L., Christiansen, E. H., Gromme, S., Deino, A. L., and Tingey, D. G., 2009, The Great Basin Altiplano during the middle Cenozoic ignimbrite flareup: insights from volcanic rocks: International Geology Review, v. 51, no. 7-8, p. 589-633.
- Best, M. G., and Christiansen, E. H., 1991, Limited extension during peak Tertiary volcanism, Great Basin of Nevada and Utah: Journal of Geophysical Research-Solid Earth and Planets, v. 96, no. B8, p. 13509-13528.
- Carroll, A. R., Doebbert, A. C., Booth, A. L., Chamberlain, C. P., Rhodes-Carson, M. K., Smith, M. E., Johnson, C. M. and Beard, B. L., 2008, Capture of high-altitude precipitation by a low-altitude Eocene lake, Western US: Geology, v. 36, no. 10, p. 791-794.
- Cassel, E. J., Calvert, A. T. and Graham, S. A., 2009, Age, geochemical composition, and distribution of Oligocene ignimbrites in the northern Sierra Nevada, California: implications for landscape morphology, elevation, and drainage divide geography of the Nevadaplano: International Geology Review, v. 51, no. 7-8, p. 723-742.
- Chamberlain, C. P. and Poage, M. A., 2000, Reconstructing the paleotopography of mountain belts from the isotopic composition of authigenic minerals: Geology, v. 28, no. 2, p. 115-118.
- Clark, M. K., 2007, The significance of paleotopography: Reviews in Mineralogy and Geochemistry, v. 66, no. 1, p. 1-21.
- Coney, P. J. and Harms, T. A., 1984, Cordilleran metamorphic core complexes -Cenozoic extensional relics of Mesozoic compression: Geology, v. 12, no. 9, p. 550-554.

- Cox, B. F., 1982, Stratigraphy, sedimentology, and structure of the Goler Formation (Paleocene), El Paso Mountains, California: implications for Paleogene tectonism on the Garlock Fault Zone: [Ph.D. Thesis]: Riverside, University of California, 248 p.
- Davis, S. J., Mix, H. T., Wiegand, B. A., Carroll, A. R. and Chamberlain, C. P., 2009, Synorogenic evolution of large-scale drainage patterns: isotope paleohydrology of sequential Laramide basins: American Journal of Science, v. 309, no. 7, p. 549-602.
- Davis, S. J., Wiegand, B. A., Carroll, A. R. and Chamberlain, C. P., 2008, The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland: Earth and Planetary Science Letters, v. 275, no. 3-4, p. 258-268.
- DeCelles, P. G., 2004, Late Jurassic to Eocene evolution of the Cordilleran thrust belt and foreland basin system, western USA: American Journal of Science, v. 304, no. 2, p. 105-168.
- Dettman, D. L. and Lohmann, K. C., 1995, Microsampling carbonates for stable isotope and minor element analysis - physical separation of samples on a 20 micrometer scale: Journal of Sedimentary Research Section a-Sedimentary Petrology and Processes, v. 65, no. 3, p. 566-569.
- Dilek, Y., and Moores, E. M., 1999, A Tibetan model for the early Tertiary western United States: Journal of the Geological Society, v. 156, p. 929-941.
- Druschke, P., Hanson, A. D., Wells, M. L., Rasbury, T., Stockli, D. F. and Gehrels, G., 2009a, Synconvergent surface-breaking normal faults of Late Cretaceous age within the Sevier hinterland, east-central Nevada: Geology, v. 37, no. 5, p. 447-450.
- Druschke, P., Hanson, A. D. and Wells, M. L., 2009b, Structural, stratigraphic, and geochronologic evidence for extension predating Palaeogene volcanism in the Sevier hinterland, east-central Nevada: International Geology Review, v. 51, no. 7-8, p. 743-775.
- Eiler, J. M. and Schauble, E., 2004, ¹⁸O¹³C¹⁶O in Earth's atmosphere: Geochemica et Cosmochemica Acta, v. 68, no. 23, p. 4767-4777.
- Ernst, W. G., 2010, Young convergent-margin orogens, climate, and crustal thickness A Late Cretaceous-Paleogene Nevadaplano in the American Southwest?: Lithosphere, v. 2, no. 2, p. 67-75.

- Flesch, L. M., Holt, W. E., Haines, A. J., Wen, L. X. and Shen-Tu, B., 2007, The dynamics of western North America: stress magnitudes and the relative role of gravitational potential energy, plate interaction at the boundary and basal tractions: Geophysical Journal International, v. 169, no. 3, p. 866-896.
- Fouch, T. D., 1979, Character and paleogeographic distribution of Upper Cretaceous(?) and Paleogene nonmarine sedimentary rocks in east-central Nevada, *in* J. M. Armentrout, Cole, M.R., and Terbest, H., *eds.*, Cenozoic paleogeography of the western United States: Pacific Coast Paleogeographic Symposium 3: Pacific Section, SEPM, p. 97-111.
- Friedman, I., Smith, G.I., Johnson, C.A., Moscati, R.J., 2002, Stable isotope compositions of waters in the Great Basin, United States 2. Modern precipitation: Journal of Geophysical Research, 107 ACL 15-11 - ACL 15-21.
- Gans, P. B., 1987, An open-system, 2-layer crustal stretching model for the eastern Great Basin: Tectonics, v. 6, no. 1, p. 1-12.
- Ghosh, P., Adkins, J., Affek, H., Balta, B., Guo, W. F., Schauble, E. A., Schrag, D. and Eller, J. M., 2006, ¹³C-¹⁸O bonds in carbonate minerals: A new kind of paleothermometer: Geochimica Et Cosmochimica Acta, v. 70, no. 6, p. 1439-1456.
- Good, S. C., 1987, Mollusc-based interpretations of lacustrine paleoenvironments of the Sheep Pass Formation (Latest Cretaceous to Eocene) of east central Nevada: Palaios, v. 2, no. 5, p. 476-478.
- Gregory, K. M. and Chase, C. G., 1992, Tectonic significance of paleobotanically estimated climate and altitude of the Late Eocene erosion surface, Colorado: Geology, v. 20, no. 7, p. 581-585.
- Gregory-Wodzicki, K. M., 1997, The Late Eocene House Range flora, Sevier Desert, Utah: paleoclimate and paleoelevation: Palaios, v. 12, no. 6, p. 552-567.
- Henry, C. D., Faulds, J. E., 2010, Ash-flow tuffs in the Nine Hill, Nevada, paleovalley and implications for tectonism and volcanism of the western Great Basin, USA: Geosphere, v. 6, p. 339-369.
- Hodges, K. V. and Walker, J. D., 1992, Extension in the Cretaceous Sevier Orogen, North American Cordillera: Geological Society of America Bulletin, v. 104, no. 5, p. 560-569.
- Horton, T. W. and Chamberlain, C. P., 2006, Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range Province: Geological Society of America Bulletin, v. 118, no. 3-4, p. 475-490.

- Horton, T. W., Sjostrom, D. J., Abruzzese, M. J., Poage, M. A., Waldbauer, J. R., Hren, M. T., Wooden, J. L. and Chamberlain, C. P., 2004, Spatial and temporal variation of Cenozoic surface elevation in the Great Basin and Sierra Nevada: American Journal of Science, v. 304, no. 10, p. 862-888.
- Hren, M. T., Bookhagen, B., Blisniuk, P. M., Booth, A. L., and Chamberlain, C. P., 2009, δ^{18} O and δ D of streamwaters across the Himalaya and Tibetan Plateau: Implications for moisture sources and paleoelevation reconstructions: Earth and Planetary Science Letters, v. 288, no. 1-2, p. 20-32.
- Hren, M. T., Sheldon, N.D., Grimes, S.T., Collinson, M.E., Hooker, J.J., Bugler, M., and Lohmann, K., Coupled CO₂ and temperature declines across the Eocene-Oligocene transition, *in prep*.
- Huntington, K. W., Eiler, J. M., Affek, H. P., Guo, W., Bonifacie, M., Yeung, L. Y., Thiagarajan, N., Passey, B., Tripati, A., Daeron, M. and Came, R., 2009, Methods and limitations of 'clumped' CO₂ isotope (Δ_{47}) analysis by gas-source isotope ratio mass spectrometry: Journal of Mass Spectrometry, v. 44, no. 9, p.1318-1329.
- Huntington, K. W., Wernicke, B. P. and Eiler, J. M., 2010, Influence of climate change and uplift on Colorado Plateau paleotemperatures from carbonate clumped isotope thermometry: Tectonics, v. 29.
- Ingraham, N. L. and Taylor, B. E., 1991, Light stable isotope systematics of large-scale hydrologic regimes in California and Nevada: Water Resources Research, v. 27, no. 1, p. 77-90.
- Jones, C. H., Sonder, L. J. and Unruh, J. R., 1998, Lithospheric gravitational potential energy and past orogenesis: Implications for conditions of initial basin and range and Laramide deformation: Geology, v. 26, no. 7, p. 639-642.
- Jones, C. H., Unruh, J. R. and Sonder, L. J., 1996, The role of gravitational potential energy in active deformation in the southwestern United States: Nature, v. 381, no. 6577, p. 37-41.
- Kim, S. T. and O'Neil, J. R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates: Geochimica Et Cosmochimica Acta, v. 61, no. 16, p. 3461-3475.
- Lechler, A. R., and Niemi, N.A., 2011, Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California: Geology, v. 39, no. 4, p. 379-382.
- Leng, M. J. and Marshall, J. D., 2004, Palaeoclimate interpretation of stable isotope data from lake sediment archives: Quaternary Science Reviews, v. 23, no. 7-8, p. 811-831.

- Lofgren, D. L., Honey, J.G., McKenna, M.C., Zondervan, R.L., Smith, E.E., 2008, Paleocene primates from the Goler Formation of the Mojave Desert in California, *in* X. Wang, and Barnes, L.G., *eds.*, Geology and Vertebrate Paleontology of Western and Southern North America, Contributions in Honor of David P. Whistler:Science Series 41, p. 11-28.
- McQuarrie, N. and Chase, C. G., 2000, Raising the Colorado Plateau: Geology, v. 28, no. 1, p. 91-94.
- McQuarrie, N. and Wernicke, B. P., 2005, An animated tectonic reconstruction of southwestern North America since 36 Ma: Geosphere, v. 1, no. 3, p. 147-172.
- Meyer, H. W., 1992, Lapse rates and other variables applied to estimating paleoaltitudes from fossil floras: Palaeogeography Palaeoclimatology Palaeoecology, v. 99, no. 1-2, p. 71-99.
- Mueller, K. J., and Snoke, A. W., 1993, Progressive overprinting of normal fault systems and their role in Tertiary exhumation of the East Humboldt-Wood Hills metamorphic complex northeast Nevada: Tectonics, v. 12, no. 2, p. 361-371.
- Peppe, D. J., Royer, D. L., Wilf, P., and Kowalski, E. A., 2010, Quantification of large uncertainties in fossil leaf paleoaltimetry: Tectonics, v. 29.
- Quade, J., Garzione, C. N. and Eiler, J., 2007, Paleoelevation reconstruction using pedogenic carbonates: Reviews in Mineralogy and Geochemistry, v. 66, no. 1, p. 53-87.
- Rowley, D. B. and Garzione, C. N., 2007, Stable isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463-508.
- Rowley, D. B., Pierrehumbert, R. T. and Currie, B. S., 2001, A new approach to stable isotope-based paleoaltimetry: implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene: Earth and Planetary Science Letters, v. 188, no. 1-2, p. 253-268.
- Sonder, L. J. and Jones, C. H., 1999, Western United States extension: How the West was widened: Annual Review of Earth and Planetary Sciences, v. 27, p. 417-462.
- Spicer, R. A., and Yang, J. A., 2010, Quantification of uncertainties in fossil leaf paleoaltimetry: Does leaf size matter?: Tectonics, v. 29.
- Talbot, M. R., 1990, A review of the paleohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates: Chemical Geology, v. 80 no. 4, p. 261-279.

- Tian, L. D., Yao, T. D., MacClune, K., White, J. W. C., Schilla, A., Vaughn, B., Vachon, R. and Ichiyanagi, K., 2007, Stable isotopic variations in west China: A consideration of moisture sources: Journal of Geophysical Research-Atmospheres, v. 112, D10112.
- Torres, M., 2010, Paleoclimatic and Paleoenvironmental Interpretations of the Paleocene Goler Formation of Southern California, [B.S. thesis]: Claremont, California, Pitzer College, 77 p.
- Wells, M. L., Dallmeyer, R. D. and Allmendinger, R. W., 1990, Late Cretaceous extension in the hinterland of the Sevier thrust belt, northwestern Utah and southern Idaho: Geology, v. 18, no. 10, p. 929-933.
- Wells, M. L. and Hoisch, T. D., 2008, The role of mantle delamination in widespread Late Cretaceous extension and magmatism in the Cordilleran orogen, western United States: Geological Society of America Bulletin, v. 120, no. 5-6, p. 515-530.
- Wernicke, B., Clayton, R., Ducea, M., Jones, C. H., Park, S., Ruppert, S., Saleeby, J., Snow, J. K., Squires, L., Fliedner, M., Jiracek, G., Keller, R., Klemperer, S., Luetgert, J., Malin, P., Miller, K., Mooney, W., Oliver, H., and Phinney, R., 1996, Origin of high mountains in the continents: The southern Sierra Nevada: Science, v. 271, no. 5246, p. 190-193.
- Wolfe, J. A., 1994, Tertiary climatic changes at middle latitudes of western North America: Palaeogeography Palaeoclimatology Palaeoecology, v. 108, no. 3-4, p. 195-205.
- Wolfe, J. A., Schorn, H. E., Forest, C. E. and Molnar, P., 1997, Paleobotanical evidence for high altitudes in Nevada during the Miocene: Science, v. 276, no. 5319, p. 1672-1675.
- Wood, D., and Saleeby, J., 1997, Late Cretaceous-Paleocene extensional collapse and disaggregation of the southernmost Sierra Nevada batholiths: International Geology Review, v. 39, no. 11, p. 973-1009.
- Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K., 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present: Science, v. 292, no. 5517, p. 686-693.
- Zachos, J. C., Stott, L. D. and Lohmann, K. C., 1994, Evolution of early Cenozoic marine temperatures: Paleoceanography, v. 9, no. 2, p. 353-387.

CHAPTER VI

Summary and Conclusions

6.1 Summary of results

This dissertation presents new results and interpretations for two primary research themes. Part I (Chapters 2 and 3) aims to critically evaluate standard stable isotope paleoaltimetry methodologies and assumptions. Stable isotope paleoaltimetry techniques have served as the foundation for the vast majority of recent paleoelevation studies due to the relative ubiquity of paleo-meteoric water proxies in the geologic record, but the technique is potentially significantly limited by fundamental assumptions and inherent uncertainties that require further study. The studies presented in Part II (Chapters 4 and 5) utilize the implications of the work discussed in Part I to investigate the Cenozoic paleoelevation history of the western US Cordillera. Application of standard stable isotope paleoaltimetry techniques, in conjunction with U-Pb detrital zircon provenance (Chapter 4) and carbonate clumped isotope paleothermometry (Chapter 5) studies, provides new and robust paleoelevation estimates for the early Cenozoic southern Sierra Nevada region (Chapter 4) and Cordilleran interior 'Nevadaplano' (Chapter 5).

6.1.1 Chapter 2 summary

Multivariate statistical analysis of a dense compilation of modern precipitation δ^{18} O records from the western US and east Asia reveals that precipitation isotopic relationships with individual environmental parameters (i.e. latitude, longitude, elevation, MAT, MAP) are dependent on physiographic and climatic setting. As proposed in published models for global (Bowen and Wilkinson, 2002) and regional (Dutton et al., 2005; Liu et al., 2008) δ^{18} O distributions, latitude and elevation are dominant controls on modern precipitation δ^{18} O values. However, additional environmental controls (i.e. longitude and mean annual precipitation) are also shown to be primary controls on δ^{18} O distributions in specific subregions (e.g., Himalaya, Coast subregion of western US).

Furthermore, the magnitude of individual environmental parameter- δ^{18} O relationships is also shown to be setting-dependent. δ^{18} O-elevation gradients in continental interior rainshadow (e.g., Basin and Range) and orogenic plateau regions (e.g., Tibetan Plateau) are a factor of two lower (~ -1.5‰/km) than gradients observed in 'simple' orographic settings that are characterized by relatively straightforward storm track trajectories derived from a single, dominant moisture source (e.g., western US Coast, Himalaya-South Tibet). The magnitude of observed isotope-elevation gradients in these simple orographic settings are in agreement with gradients predicted by Rayleigh distillation models (e.g., Rowley and Garzione, 2007), suggesting violation of basic Rayleigh distillation assumptions is the dominant cause for the observed isotopic variability in continental interior settings. This finding has important implications for stable isotope paleoaltimetry studies as changes in elevation in continental interior regions are likely to be more difficult to discern from the proxy record. This work also

has immediate relevance to stable isotope-based studies of paleoclimate and hydrology. In all cases, the physiographic and climatic setting in which the proxy originally formed must be taken into account in order to improve accuracy of paleoelevation, paleotemperature and paleo-groundwater recharge determinations.

6.1.2 Chapter 3 summary

Modern stream and spring water sampling from the orographic slope and orographic rainshadow of the southern Sierra Nevada region confirms the trends observed in the multivariate statistical analysis discussed in Chapter 2. The magnitude of δ^{18} O-elevation gradients for spring water transects collected from the Panamint and Spring mountains are significantly reduced in comparison to surface water transects along the western slope of the Sierra Nevada. The low magnitudes of Spring and Panamint mountains' δ^{18} O-gradients (~ -0.8%/km) cannot be accounted for by atmospheric processes alone, suggesting that post-depositional isotopic change has further modified meteoric water isotopic compositions in these rainshadow regions. Altitude-dependent snow sublimation is shown to be a viable mechanism for the reduced isotopic gradients, as high elevation snowpacks that are sustained later in the year are likely subject to more extensive isotopic fractionation and associated ¹⁸O enrichment than snowpacks at lower elevation. This variable isotopic enrichment reverses the effects of initial Rayleigh distillation rainout effects and leads to the observed low magnitude δ^{18} Oelevation gradients. Accordingly, influence of snowmelt-derived meteoric waters to proxy systems must be constrained, especially in arid, mountainous regions where sublimation is a dominant ablation mechanism. This work also provides reference data

for future hydrologic studies investigating the influence of changing climatic conditions on the evolution of groundwater systems in the arid, western US.

6.1.3 Chapter 4 summary

Combined sedimentologic and isotopic study of early Cenozoic sedimentary basin systems in the southernmost Sierra Nevada region places new constraints on the paleotopographic and paleogeographic evolution of the region. Zircon U-Pb provenance study of the early Paleocene Witnet Formation, the Paleocene Goler Formation and the Eocene Tejon Formation provides robust evidence that the southernmost Sierra Nevada was located at near sea level paleoelevations during the early Paleogene. Isotopic study of lacustrine micrite collected from the upper Goler Formation suggests that Goler basin waters were subject to orographic rainout over a moderate elevation (1 - 2 km)topographic barrier, constrained to be located in the central Sierra Nevada based on sedimentary provenance study of contemporaneous siliciclastic Goler sediments. Taken together, these data constrain post-Eocene surface uplift in the central and southern Sierra Nevada to be on the order of 1.5 - 2 km, a finding in agreement with independent thermochronologic study in the region (Clark et al., 2005). Additionally, zircon U-Pb ages suggest that early Cenozoic sedimentary basins in the southern Sierra Nevada region were isolated from continental interior sediment source regions, in contrast to Oligocene basins in the northern Sierra Nevada region that appear to have been fluvially connected to the continental interior (e.g., Cassel et al., 2009). This finding provides evidence for along-strike variations in the topographic development of the Sierra Nevada and calls into question whether a high elevation (> 3 km), orogenic plateau extended as far south as the

latitudes of the southernmost Sierra Nevada (~ 36°N) during the early Cenozoic (e.g., Ernst et al., 2010).

6.1.4 Chapter 5 summary

Carbonate clumped isotope paleothermometry study of Late Cretaceous-Eocene lacustrine carbonates provides absolute paleoelevation estimates for the proposed early Cenozoic 'Nevadaplano' orogenic plateau. Carbonate formation temperatures were significantly warmer in the near sea level Goler basin in comparison to carbonate formation temperatures in the continental interior Sheep Pass Formation. The observed temperature difference (~ 16°C) indicates that a high elevation (\geq 2.6 km) continental plateau dominated the western US Cordilleran interior prior to widespread Basin and Range extension. In addition to providing absolute paleoelevation constraints for the early Cenozoic western US Cordillera, this study also highlights the utility of clumped isotope paleothermometry for paleoelevation studies, particularly in regions where meteoric water proxies are subject to significant evaporative influence.

6.2 Conclusions

In recent decades, the development of stable isotope paleoaltimetry techniques has greatly enhanced our capability to make quantitative estimates of paleoelevations in orogenic systems. Variability in isotope-elevation relationships, as well as influence from post-depositional isotopic fractionation processes, changes in climate, and complex moisture source interactions, however, significantly limit paleoelevation determinations derived from paleo-meteoric proxy records. These uncertainties and limitations have been particularly impactful for paleoelevation studies in continental interior rainshadows and high elevation orogenic plateaus where fundamental Rayleigh distillation processes are often violated. This dissertation enhances the capability for accurate paleoelevation determinations through critical evaluation of the technique. Multivariate statistical analysis of modern precipitation δ^{18} O distributions indicates that isotopic relationships are dependent on physiographic and climatic setting. Proxy-based studies in continental interior regions and high elevation orogenic plateaus must acknowledge that isotopeelevation gradients are systematically reduced in these regions in comparison to orographic settings where Rayleigh distillation processes dominate. If empirical global average or Rayleigh distillation-derived isotope elevation gradients are incorrectly applied to continental interior proxy records, paleoelevations are likely to be significantly underestimated. Significant paleoelevation uncertainties can also result from the influences of post-depositional isotopic fractionation processes (e.g., evaporation, snowpack sublimation) to the proxy record. Accordingly, these post-depositional processes must also be accounted for in stable isotope paleoaltimetry studies.

The investigation of isotopic relationships in modern meteoric water systems presented in Chapters 2 and 3 of this dissertation also has direct implications for applications of stable isotope paleoaltimetry to the Cenozoic paleoelevation history of the western US Cordillera. In light of the systematic trends and variability in δ^{18} O-elevation gradients observed in modern records, models citing significant decreases in proxy δ^{18} O values (~ 8‰) since middle Miocene time as evidence for widespread surface downdrop (2–3 km) in the Basin and Range (e.g., Horton and Chamberlain, 2006) must be reconsidered. Such large isotopic shifts equate to unreasonable estimates of regional

elevation change (> 5 km surface downdrop) when more accurate δ^{18} O-elevation gradients for continental interior settings (~ -1.5‰/km) are applied. A more likely cause for large magnitude isotopic shifts are changes in the relative contribution of moisture source through time or reorganization of regional drainage systems (e.g., Davis et al., 2008). As a result, many of the published estimates for Cenozoic Basin and Range paleoelevations are subject to significant uncertainties that challenge their reliability.

The complications inherent to stable isotope paleoaltimetry calls for the application of complimentary and independent techniques in order to more reliably interpret proxy records. One such approach is pairing zircon U-Pb provenance techniques with standard stable isotope methodologies to elucidate isotopic records by providing independent constraints on the source regions for not only basin sediments, but basin waters as well. Provenance study can also be utilized to investigate how regional paleogeography and paleo-fluvial systems evolved through time. Accordingly, shifts in the proxy isotopic record resulting from drainage reorganization are more readily identifiable, which, in turn, allows for the elevation signal in the proxy record to be more reliably quantified.

Carbonate clumped isotope paleothermometry is additional powerful analytical tool to pair with stable isotopic study of meteoric water proxies as it allows for more accurate interpretation of the proxy record in two primary ways. First, carbonate formation temperatures can be used for paleoelevation determinations independent of proxy stable isotopic compositions through straightforward applications of temperature lapse rates. Furthermore, in cases where a contemporaneous near sea level temperature value can be obtained, absolute paleoelevation calculations are even possible (e.g., Chapter 5). Second, knowing the temperature of carbonate formation also allows for direct calculation of water δ^{18} O values, which can themselves be used for paleoelevation determinations through comparison with modern meteoric water δ^{18} O distributions. Independent and reliable measures of water isotopic compositions also enhances our ability to identify evaporative influences to the proxy record, which without independent sedimentologic evidence, are often difficult to quantify.

As part of the work presented in this dissertation, application of zircon U-Pb provenance and carbonate clumped isotope paleothermometry techniques in conjunction with standard stable isotope paleoaltimetry methodologies provides new and robust paleoelevation estimates for the early Cenozoic southern Sierra Nevada and continental interior regions of the western US Cordillera. Near sea level paleoelevations in the southernmost Sierra Nevada during the early Paleogene indicate that regional surface uplift of 1.5 - 2 km has occurred since Eocene time. These surface uplift estimates are consistent with published estimates for the central and southern Sierra Nevada derived from independent geomorphic and thermochronologic studies (e.g., Clark et al., 2005) and, thus, provide additional support for models attributing late Cenozoic uplift to delamination of mantle lithosphere form below the central and southern Sierran arc (e.g., Jones et al., 2004; Zandt et al., 2004). Clumped isotope paleotemperature estimates for lacustrine carbonates of the continental interior Sheep Pass Formation indicate that high regional elevations (\geq 2.6 km) characterized the Cordilleran interior prior to Basin and Range extension. Direct evidence for high regional paleoelevations during the early Cenozoic validates models citing excess gravitational potential energy of a high elevation, continental plateau as the primary driver for Tertiary extension (e.g., Jones et al., 1996; Dilek and Moores, 1999), at least in the Northern Basin and Range where the direct estimates of regional paleoelevations presented in this dissertation have been made.

Integration of the primary findings present in this dissertation produces a clearer picture of early Cenozoic western US paleotopography (Figure 6.1). Long-lived Mesozoic-early Cenozoic convergence and subduction of the Farallon oceanic plate constructed a spatially extensive, high elevation continental plateau in the hinterland of the Sierra Nevada magmatic arc. The southward extent of this high topography, however, remains poorly constrained. Near sea level rift basins in the southern Sierra Nevada region appear to have been cut off from continental interior sediment sources during the early Paleogene, suggesting that the early Cenozoic high elevation, orogenic plateau did not extend to the latitude of the southern Sierra Nevada, and that, instead, this region of the continental interior was characterized by a gradual topographic gradient with elevations decreasing to the south (Figure 6.1). As a result, central Basin and Range extension is unlikely to have been driven by buoyancy forces alone, suggesting that plate boundary and/or basal normal forces played a significant role in the late Cenozoic tectonic evolution of this region. At present this proposal of driving forces for central Basin and Range extension is highly speculative. Future work should center on constraining the paleoelevation history of the central Basin and Range prior to the middle Miocene onset of crustal extension in order to assess whether dominant driving mechanisms for Basin and Range extension varied in time and space.

Figure 6.1 – Early Cenozoic paleotopography and paleogeography of the western US Cordillera. Paleocene paleogeographic and paleotopographic map of the western US with retrodeformed state boundaries. Locations of reference physiographic provinces (gray polygons) from McQuarrie and Wernicke, 2005. Paleotopographic contours and paleodrainages for the southern Sierra Nevada and 'Nevadaplano' region are based on peleoelevation studies presented in this thesis (Lechler and Niemi, 2011; Chapters 4 and 5). Remaining contours and paleodrainages compiled from various sources (Sierra Nevada: Mulch et al., 2006; Cassel et al., 2009; Hren et al., 2010; Cecil et al., 2011; southern Basin and Range: Abbott and Smith, 1989; Howard, 2000; Wernicke, 2011; Sevier orogen: Henry, 2008; Fan and Dettman, 2009). SN = Sierra Nevada.

6.3 References cited

- Abbott, P. L., and Smith, T. E., 1989, Sonora, Mexico, source for the Eocene Poway Conglomerate of southern California: Geology, v. 17, no. 4, p. 329-332.
- Bowen, G. J., and Wilkinson, B., 2002, Spatial distribution of δ¹⁸O in meteoric precipitation: Geology, v. 30, no. 4, p. 315-318.
- Cassel, E. J., Calvert, A. T., and Graham, S. A., 2009, Age, geochemical composition, and distribution of Oligocene ignimbrites in the northern Sierra Nevada, California: implications for landscape morphology, elevation, and drainage divide geography of the Nevadaplano: International Geology Review, v. 51, no. 7-8, p. 723-742.
- Cecil, M.R., Ducea, M., Mulch, A., Allen, C., and Campbell, I., 2011, Provenance of Eocene river sediments from the central-northern Sierra Nevada and implications for paleotopography: Tectonics, v. 30, doi:10.1029/2010TC002717.
- Clark, M. K., Maheo, G., Saleeby, J., Farley, K.A., 2005, The non-equilibrium landscape of the southern Sierra Nevada, California: GSA Today, v. 15, no. 9, p. 4-10.
- Davis, S. J., Wiegand, B. A., Carroll, A. R., and Chamberlain, C. P., 2008, The effect of drainage reorganization on paleoaltimetry studies: An example from the Paleogene Laramide foreland: Earth and Planetary Science Letters, v. 275, no. 3-4, p. 258-268.
- Dilek, Y., and Moores, E. M., 1999, A Tibetan model for the early Tertiary western United States: Journal of the Geological Society, v. 156, p. 929-941.
- Dutton, A., Wilkinson, B.H., Welker, J.M., Bowen, G.J., and Lohmann, K.C., 2005, Spatial distribution and seasonal variation in ¹⁸O/¹⁶O of modern precipitation and river water across the conterminous USA: Hydrological Processes, v. 19, p. 4121-4146.
- Ernst, W. G., 2010, Young convergent-margin orogens, climate, and crustal thickness-A Late Cretaceous-Paleogene Nevadaplano in the American Southwest?: Lithosphere, v. 2, no. 2, p. 67-75.
- Fan, M. J., and Dettman, D. L., 2009, Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water: Earth and Planetary Science Letters, v. 286, no. 1-2, p. 110-121.
- Henry, C. D., 2008, Ash-flow tuffs and paleovalleys in northeastern Nevada: Implications for Eocene paleogeography and extension in the Sevier hinterland, northern Great Basin: Geosphere, v. 4, no. 1, p. 1-35.

- Horton, T. W., and Chamberlain, C. P., 2006, Stable isotopic evidence for Neogene surface downdrop in the central Basin and Range Province: Geological Society of America Bulletin, v. 118, no. 3-4, p. 475-490.
- Howard, J. L., 2000, Provenance of quartzite clasts in the Eocene-Oligocene Sespe Formation: Paleogeographic implications for southern California and the ancestral Colorado River: Geological Society of America Bulletin, v. 112, no. 11, p. 1635-1649.
- Hren, M.T., Pagani, M., Erwin, D.M., and Brandon, M., 2010, Biomarker reconstruction of the early Eocene paleotopography and paleoclimate of the northern Sierra Nevada: Geology, v. 38, p. 7-10, doi:10.1130/G30215.1
- Jones, C. H., Farmer, G. L., and Unruh, J., 2004, Tectonics of Pliocene removal of lithosphere of the Sierra Nevada, California: Geological Society of America Bulletin, v. 116, no. 11-12, p. 1408-1422.
- Jones, C. H., Unruh, J. R., and Sonder, L. J., 1996, The role of gravitational potential energy in active deformation in the southwestern United States: Nature, v. 381, no. 6577, p. 37-41.
- Lechler, A. R., and Niemi, N.A., 2011, Sedimentologic and isotopic constraints on the Paleogene paleogeography and paleotopography of the southern Sierra Nevada, California, Geology, v. 39, no. 4, p. 379-382.
- Liu, Z. F., Tian, L. D., Chai, X. R., and Yao, T. D., 2008, A model-based determination of spatial variation of precipitation δ¹⁸O over China: Chemical Geology, v. 249, no. 1-2, p. 203-212.
- Mulch, A., Graham, S.A., and Chamberlain, C.P., 2006, Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada: Science, v. 313, p. 87-89, doi:10.1126/science.1125986.
- Rowley, D. B., and Garzione, C. N., 2007, Stable isotope-based paleoaltimetry: Annual Review of Earth and Planetary Sciences, v. 35, p. 463-508.
- Wernicke, B., The California River and its role in carving the Grand Canyon: Geological Society of America Bulletin, v. 123, doi: 10.1130/B30274.1.
- Zandt, G., Gilbert, H., Owens, T. J., Ducea, M., Saleeby, J., and Jones, C. H., 2004, Active foundering of a continental arc root beneath the southern Sierra Nevada in California: Nature, v. 431, no. 7004, p. 41-46.

APPENDIX

This appendix contains additional data tables, maps and figures for Chapters 2, 4, and 5 of this dissertation (see individual chapters for additional information). Tables A2.1 and A2.2 list geographic, isotopic, and climatic information for all precipitation and surface water collection sites in the western US and east Asia, respectively, that were compiled for statistical analysis of modern meteoric water δ^{18} O (Chapter 2).

Supplementary information for Chapter 4 includes a full U-Pb data table (Table A4.1) for zircon analyses performed at the University of Arizona LaserChron Center in January 2010. Figure A4.1 shows simplified geologic maps for the detrital zircon sample sites in the southern Sierra Nevada region. Figure A4.2 shows the full U-Pb age spectra, highlighting the fact that early Cenozoic basins in the southern Sierra Nevada region have a scarcity of zircon U-Pb ages older than 300 Ma (see text for discussion). Table A4.2 lists isotopic data for Goler Formation micrite. Figure A4.3 is a map indicating the relevant data sources for the igneous and siliciclastic zircon-age source regions shown in Figure 4.2B. Table A4.3 provides geographic coordinates and lithologic descriptions for the samples collected for U-Pb and isotopic analysis.

Table A5.1 provides detailed isotopic and isotopologue data for the clumped isotope paleothermometry analysis of carbonates collected and analyzed from the Goler and Sheep Pass formations (Chapter 5).

Table A2.1 – Con	<u>npilation o</u>	f wester	n US prec	sipitatio	n 8 °O	record	S	đ			
Location	Subregion	CAT ©	(©)	(m) ELEV	MAT (°C)	MAP (cm)	W:S	Wgt. 8 °0 (% SMOW)	Reference	Sample Period	Number of seasons
Agua Dulce, CA	COAST	34.5033	-118.3100	810	16.1	34.1	9.02	-9.4	Friedman et al., 1992	1982-1989	4 (dD); 1 (d18O)
Alsea Guard Station, OR	COAST	44.3900	-123.6200	104	11.6	173.4	4.10	-7.0	USNIP	1989-2001	NR
Badger Flat	COAST	37.2650	-119.1083	2530	5.3	70.1	5.02	-15.1	Friedman and Smith, 1972	1969-71	с
Big Bear, CA	COAST	34.2633	-116.8533	2055	7.9	60.8	4.72	-11.4	Friedman et al., 1992	1982-1989	5 (dD); 2 (d18O)
Big Whitney Meadow	COAST	36.4400	-118.2550	2970	2.2	62.6	4.00	-18.3	Friedman and Smith, 1972	1969-71	° N
Bishop Park	COAST	37.2433	-118.5967	2530	1.5	38.4	3.25	-16.9	Friedman and Smith. 1972	1970-71	2
Bishon Pass	COAST	37 1000	-118 5567	3415	0 0	66.7	3.36	-19.8	Friedman and Smith 1972	1969-71	101
Center Mountain	D AST	38 1500	-110 4667	2865	100	75.0	0.00 2 7 0	16.0	Friedman and Smith 1072	1071) -
		0001-000	1004-01-	1007	1 C 1 I			0.01-			- c
Clover Meadow	COASI	37.5283	-119.2750	2135	1.9	/3.2	5.36	-14.0	Friedman and Smith, 1972	1970-71	'n
Cottonwood Lakes 2	COAST	36.4833	-118.2167	3385	2.9	70.5	3.63	-19.7	Friedman and Smith, 1972	1970	-
Deadman Summit	COAST	37.7750	-119.0150	2445	4.9	45.6	3.38	-16.6	Friedman and Smith, 1972	1969-71	ო
Echo Summit	COAST	38.8283	-120.0367	2270	5.6	8.66	4.47	-14.4	Friedman and Smith 1972	1969-71	с.
	Tavoo	0020.00		1010	0 F	0.00	90.9		Eriodmon and Omith 1072	1060 1071	о с
		0000-10	-119.0000	2120	0.7	00.0	0.0	- 17.9		1909, 1971	1
Gem Pass	COASI	37.7800	-119.1/00	3170	4.U	12.4	3.57	-18.9	Friedman and Smith, 1972	1.7-6061	n
Gin Flat	COAST	37.7650	-119.7733	2135	8.6	98.9	5.90	-13.2	Friedman and Smith, 1972	1969-71	ო
Herring Creek	COAST	38.2417	-119.9417	2225	7.6	102.8	5.15	-13.0	Friedman and Smith, 1972	1970-71	0
HJ Andrews Exp. Forest,											
OR	COAST	44.2100	-122.2500	436	9.3	187.4	3.34	-9.8	USNIP	1989-2001	NR
Hopland. CA	COAST	39.0000	-123.0800	253	14.4	101.6	8.53	-7.7	USNIP	1989-2001	NR
Incraham Tavlor 1	COAST	41 R070	-124 1447	50	11 7	195.6	4 40	-7.3	Indraham&Tavlor 1991	lan-March 1985	-
Ingraham Tavlor 10	COAST	39 1629	-122 7536	955	13.8	105.9	7.68	-12.7	Incraham&Tavlor 1991	Jan-March 1985	
Increhem Tevlor 11	COAST	30 1620	-122 4021	610	15.0	74.4	7 0.4	-11 4	Indraham&Taylor 1001	Der 1084 - March 1085	• र
		0301029	- 1264.221-		0.01	1 U	10.1		Ingranamentaryor, 1991	Dec 1904 - March 1005	- •
Ingranam_1aylor_12	COASI	39.1Z13	-122.3039	040 000	0.01	0.00	0.00	0.11- 0.01	ingranam&i aylor, 1991	Nov 1964-March 1965	
Ingranam_1aylor_13		39.1/92	-122.4010	300	0.01	1.76	1.8.1	0.11-	Ingranam& Laylor, 1991		 .
Ingraham_Iaylor_14	COAST	39.1502	-122.3454	245	16.1	53.0	7.73	-10.6	Ingraham&Taylor, 1991	Nov 1984 - Jan 1985	, - 1
Ingraham_Taylor_15	COAST	39.1502	-122.2342	37	16.1	45.3	7.39	-0.0	Ingraham&Taylor, 1991	Nov 1984-March 1985	~
Ingraham_Taylor_16	COAST	39.2011	-122.0507	14	16.1	42.1	6.94	-10.0	Ingraham&Taylor, 1991	Nov - Dec 1984	~
Ingraham_Taylor_17	COAST	39.1502	-121.9191	12	16.1	44.5	7.07	-9.4	Ingraham&Taylor, 1991	Nov 1984-March 1985	~
Ingraham Taylor 18	COAST	39.1502	-121.5669	18	16.1	55.7	7.54	-10.1	Ingraham&Taylor, 1991	Nov 1984-March 1985	-
Ingraham Taylor 19	COAST	39.2444	-121.4181	180	16.1	75.6	8.18	-10.3	Ingraham&Taylor, 1991	Nov 1984-March 1985	-
Ingraham Taylor 2	COAST	41.7924	-124.0873	66	11.7	208.2	4.78	-7.9	Ingraham&Taylor, 1991	Jan-March 1985	-
Ingraham Taylor 20	COAST	39.2011	-121.3065	218	16.1	87.0	7.83	-10.8	Ingraham&Taylor, 1991	Nov 1984-March 1985	~
Ingraham Taylor 21	COAST	39.2299	-121.2321	422	15.4	101.5	7.39	-12.0	Ingraham&Taylor, 1991	Nov 1984-March 1985	
Ingraham Taylor 22	COAST	39.2299	-121.1018	728	14.2	136.3	7.52	-11.8	Ingraham&Tavlor, 1991	Dec 1984 - March 1985	~
Ingraham Taylor 23	COAST	39.3021	-121.0274	792	13.7	143.2	7.38	-11.8	Ingraham&Tavlor, 1991	Dec 1984 - March 1985	-
Ingraham Taylor 24	COAST	39.3021	-120.7855	1400	11.9	177.4	6.41	-9.6	Ingraham&Tavlor 1991	Winter 1985	- -
Indraham Tavlor 25	COAST	39,3097	-120.6708	1401	10.3	170.9	6.15	-12.1	Indraham&Tavlor 1991	Winter 1985	- -
Ingraham Tavlor 26	COAST	39,5988	-120.6147	1660	7.7	123.4	4.96	-13.2	Ingraham&Tavlor 1991	Winter 1985	
Indraham Tavlor 27	COAST	39,6132	-120 4840	2021	99	1027	4.36	-15.2	Indraham&Tavlor 1991	Winter 1985	- .
Incraham Tavlor 28	COAST	30 3388	-120 3348	2197	о С С	108.3	4 58	10.71-	Incraham&Tavlor 1001	Winter 1985	
Indraham Tavlor 20	COAST	39.4986	-120.2792	1950	1 v 2	87.3	4 20	-14.7	Indraham&Tavlor 1991	Winter 1985	
Indraham Tavlor 3	COAST	41 8799	-123 8101	402	11.6	180.2	5.41	-101	Indraham&Tavlor 1001	Jan-March 1985	- .
	COAST	419660	-123 7492	610	104	1550	5.05	-11.4	Incraham&Tavlor 1991	Jan-March 1985	
	COAST	42 7151	-122 2362	1410		0.00	3.44	t C (* 1	Incraham&Tavlor 1991	Jan-March 1985	
Ingraham Tavlor 6	COAST	42 3672	-123 5326	366	100	112.6	200	-13.3	Ingraham&Tavlor 1991	Jan-March 1985	
	COAST	30 1336	-123 7044	26		103.6	6.00 6.14	0.0	Indraham&Taylor 1001	Nov 1084-March 1085	
Ingraham Taylor 8	TSACO	30.0174	-123 3005	605 605		128.0	7 80	0.0- 7 0.4	Ingranani Kravlor, 1991 Ingraham & Tavlor, 1001	Nov 1904-March 1903 Nov 1984 - Jan 1985	
Indraham Tavlor 9	COAST	30 1484	-122 8843	426	2 C	20.01	202. C		Indraham&Tavlor 1001	Der 1984 - March 1985	
	->->>>	->->>	200.11	1	2.2	>>>>	2	1			-

reco
δ ¹⁸ Ο
cipitation
US pre
western
oilation of
1 - Comp
A2.
able

Table A2.1 – Com	pilation of	westerr	n US pred	cipitatio	n 8 ¹⁸ 0	record	S				
Location	Subregion	LAT (%)	() ON	(m) ELEV	MAT (°C)	MAP (cm)	W:S	Wgt. 8 ¹⁸ O (‰ SMOW)	Reference	Sample Period	Number of seasons
					r						
Jacumba, CA	COAST	32.6167	-116.1633	860	16.0	28.8	3.56	-8.4	Friedman et al., 1992	1982-1989	4 (dD); 2 (d18O)
Kingvale, CA	COAST	39.3167	-120.2833	1845	5.1	102.4	4.93	-12.3	Friedman and Smith, 1972	1970-71	2
Mammoth Lakes	COAST	37.6533	-118.9900	2485	4.7	48.2	3.59	-15.0	Friedman and Smith, 1972	1970-71	2
Mammoth Mid Station	COAST	37.6417	-119.0283	2945	4.7	58.4	3.53	-16.3	Friedman and Smith, 1972	1969-71	с С
Mono Craters, South	COAST	37.8367	-119.0000	2530	5.5	43.3	3.17	-17.1	Friedman and Smith, 1972	1970-71	7
Mono Pass	COAST	37.4383	-118.7733	3490	ю. -	71.5	3.24	-19.9	Friedman and Smith, 1972	1969-71	с С
Mount Dyer No. 1	COAST	40.2433	-121.0350	2165	7.2	95.2	3.57	-13.9	Friedman and Smith, 1972	1969-71	ო
Mount Laguna, CA	COAST	32.8817	-116.4267	1735	11.6	63.8	4.65	-10.5	Friedman et al., 1992	1982-1989	4 (dD); 2 (d18O)
Mount Rose A-2	COAST	39.2983	-119.9183	2590	3.9	82.2	3.46	-14.9	Friedman and Smith, 1972	1969-71	с
Mount Rose C-1	COAST	39.3017	-119.8983	2710	4.6	80.7	3.40	-15.1	Friedman and Smith, 1972	1969-71	с
Mount Rose G	COAST	39.3267	-119.8850	2480	5.3	75.1	3.33	-15.7	Friedman and Smith, 1972	1969-71	с
Mount San Jacinto, CA	COAST	33.8150	-116.6383	2540	13.3	73.6	4.12	-11.9	Friedman et al., 1992	1982-1989	4 (dD); 2 (d18O)
Olympic Nat'l Park, WA	COAST	47.8600	-123.9200	176	9.3	272.9	3.10	8.8 ⁻	USNIP	1989-2001	NR
Quail Lake, CA	COAST	34.7433	-118.7117	1225	14.1	33.1	9.01	-11.1	Friedman et al., 1992	1982-1989	5 (dD); 2 (d18O)
Rock Creek 1	COAST	37.4917	-118.7167	2650	3.8	45.9	3.09	-21.0	Friedman and Smith, 1972	1969-70	2
Rock Creek 3	COAST	37.4500	-118.7417	3050	1.9	53.0	3.22	-20.0	Friedman and Smith, 1972	1969-70	2
Round Meadow	COAST	35.9650	-118.3600	2745	7.0	70.9	5.09	-14.0	Friedman and Smith, 1972	1969-71	с
Santa Maria, CA	COAST	34.9000	-120.4500	79	14.1	34.0	11.58	-5.4	GNIP	1963-1965, 1973-1975	9
Sonora Pass	COAST	38.3133	-119.6067	2680	2.8	79.1	3.94	-16.6	Friedman and Smith, 1972	1970-71	2
Table Mountain, CA	COAST	34.3750	-117.6750	2280	10.3	72.9	7.13	-14.0	Friedman et al. 1992	1982-1989	4 (dD); 1 (d18O)
Tehachapi, CA	COAST	35.1383	-118.4417	1220	12.3	28.1	6.04	-10.3	Friedman et al. 1992	1982-1989	5 (dD); 2 (d18O)
Walker Pass, CA	COAST	35.6600	-118.0183	1585	14.3	32.4	5.27	-12.8	Friedman et al. 1992	1982-1989	6 (dD); 2 (d18O)
Whitney Portal	COAST	36.5867	-118.2400	2550	4.5	51.1	3.96	-16.5	Friedman and Smith, 1972	1970-71	2
Yosemite Nat'l Park	COAST	37.8000	-119.8600	1408	10.6	101.4	6.44	-9.1	USNIP	1989-2001	NR
Alamo, NV	BR*	37.3633	-115.1933	1134	14.0	17.6	1.18	-12.5	Friedman et al., 2002	1991-1997	4 (dD); 1 (d18O)
Amboy, CA	BR*	34.5650	-115.7500	205	21.3	6.7	0.92	6.3 9	Friedman et al., 1992	1982-1989	5 (dD); 2 (d18O)
Austin, NV	BR	39.4683	-117.1950	1747	8.3	24.3	1.21	-17.5	Friedman et al., 2002	1991-1997	4 (dD); 2 (d18O)
Baker, CA	BR*	35.2850	-116.0800	280	20.4	6.4	1.13	-9.5	Friedman et al., 1992	1982-1989	5 (dD); 2 (d18O)
Bear Lake, ID	BR	42.2467	-111.3383	1807	5.0	35.1	0.97	-17.2	Friedman et al., 2002	1991-1997	3 (dD); 1 (d18O)
Bend, OR	BR	44.0933	-121.1983	1052	8.3	25.3	1.63	-17.4	Friedman et al., 2002	1991-1997	4 (dD); 1 (d18O)
Big Creek, NV	BR	39.3217	-117.1217	2204	6.2	30.7	1.19	-16.3	Friedman et al., 2002	1991-1997	4 (dD); 3 (d18O)
Bishop, CA	BR*	37.3733	-118.3650	1256	13.7	15.3	2.92	-13.9	Friedman et al., 2002	1991-1997	5 (dD); 4 (d18O)
Blackcap Pass	BR	37.6667	-118.7700	3140	7.5	34.8	3.15	-17.9	Friedman and Smith, 1972	1969-71	ო
Blythe, CA	ж ВЦ	33.6200	-114.7183	120	22.8	7.6	1.24	φ i	Friedman et al., 1992	1982-1989	6 (dD); 2 (d180)
Borrego, CA	BK*	33.2583	-116.3233	160	21.0	14.5	3.14	-8.5	Friedman et al., 1992	1982-1989	4 (dD); 2 (d180)
Brawley, CA	יא גרמ נ	32.9900	-115.5150	40	27.8	5.9 000	1.69	-0.2	Friedman et al., 1992	1982-1989	5 (dD); 1 (d180)
Burns, OR	Ϋ́	43.5917	-118.9533	1263	 	29.2	1.7	-14.8	Friedman et al., 2002	1991-1991	4 (dU); 2 (d18U)
Carson City, NV	Ϋ́	39.1917	-119./350	1432	9.9 4.0	24.4	2.44	-14.7	Friedman et al., 2002	1991-1997	6 (dD); 4 (d180)
Cave Mountain, NV	뷨	39.1583	-114.6083	3246	6.9	57.3	1.25	-15.8	Friedman et al., 2002	1991-1997	4 (dU); 2 (d180)
Cedar City, UT	Жű	37.7017	-113.0967	1714	0.0 0.0	30.6	1.05	-13.1	Friedman et al., 2002	1991-1997	6 (dD); 4 (d180)
Cherry Creek Range, NV	Ϋ́́	40.1217	-114.8/50	2880	0.7	48.4	07.L	-15.3	Friedman et al., 2002	1991-1991	5 (dD); 3 (d18U)
Chiriaco Summit, CA	ΒR*	33.6650	-115.7083	520	19.8	11.6	1.28	-9.7	Friedman et al., 1992	1982-1989	5 (dD); 2 (d180)
Clark Mountain, CA	יי אם נ	35.5033	-115.5633	1645	13.9	26.4	1.41	-11.5 0.11	Friedman et al., 1992	1982-1989	5 (dD); 2 (d180)
Connors Pass, NV	ж К	39.0250	-114.641/	2522	0.7	37.2	1.01	-15.3	Friedman et al., 2002	1991-1997	6 (dU); 4 (d18U)
Conway Summit	х л	38.0883	-119.1833	2480	0.0 0	4/./	3.12 2.12	-1/./	Friedman and Smith, 1972	1969-71	το <mark>Έ</mark>
Craters of the Moon, IU		43.4000	0000011-	1001	0.0	2/.7 200	04.1	0.01-		1989-2001	
	ביים ממ	34.855U	108/011-	200	19.14	ء م. د		0.0L-	Friedman et al., 1992 Eriodmon et al 1000 2000	1982-1989	6 (aU); 2 (a18U)
Dantes view, CA	מצ	30.2.101	-1 10.7 Iðs	C/CI	0.01	10.1	1.xU	- 13.3	Friedman et al. 1992, 2002	1903-1900; 1991-1991	12 (du); e (di løu)

ē
°
δ
tion
pita
preci
SU
western
of
pilation
Com
-
A2.
Ð
ab

		LAT		ELEV	MAT	MAP	W:S	Wgt. 8 ¹⁸ O			Number of
Location	Subregion	(0)	(0)	(m)	() ((cm)		(%° SMOW)	Reference	Sample Period	seasons
Darwin, CA	BR*	36.2633	-117.8267	1435	10.6	33.4	3.65	-11.4	Friedman et al., 1992	1982-1989	5 (dD); 1 (d18O)
Death Valley, CA	BR*	36.4600	-116.8800	-65	22.7	5.2	2.25	-9.5	Friedman et al. 1992, 2002	1982-1997	11 (dD); 5 (d18O)
Delta, UT	BR	39.3833	-112.5083	1449	9.7	20.2	1.18	-14.9	Friedman et al., 2002	1991-1997	5 (dD); 3 (d18O)
Elko, NV	BR	40.8233	-115.7900	1937	7.2	26.3	1.38	-15.6	Friedman et al., 2002	1991-1997	4 (dD); 2 (d18O)
ELY, NV	BR	39.3000	-114.8417	1907	8.0	24.9	0.83	-14.4	Friedman et al., 2002	1991-1997	5 (dD); 3 (d18O)
Goldstone, CA	BR*	35.3467	-116.8883	920	16.8	11.1	1.92	-10.4	Friedman et al., 1992	1982-1989	4 (dD); 2 (d18O)
Hawthorne, NV	BR	38.5450	-118.6333	1298	11.8	13.9	1.14	-13.9	Friedman et al., 2002	1991-1997	4 (dD); 2 (d18O)
Hayford Peak, NV	BR*	36.6583	-115.1950	2999	9.5	50.7	1.52	-13.3	Friedman et al., 2002	1991-1997	3 (dD); 1 (d18O)
Invokern, CA	BR*	35.6583	-117.8267	750	18.0	11.1	3.90	-13.6	Friedman et al., 1992	1982-1989	6 (dD); 1 (d18O)
Jackpot, NV	BR	41.4717	-114.6583	1590	7.0	26.8	0.91	-15.6	Friedman et al., 2002	1991-1997	4 (dD); 3 (d18O)
Joshua Tree, CA	BR*	34.0200	-116.1900	1280	15.0	30.9	2.36	-10.8	Friedman et al., 1992	1982-1989	6 (dD); 2 (d18O)
Lakeview, OR	BR	42.1617	-120.3983	1441	7.2	39.8	1.99	-13.3	Friedman et al., 2002	1991-1997	4 (dD); 2 (d18O)
Lehman Caves, NV	BR	39.0100	-114.2200	2067	8.0	32.2	0.93	-11.0	USNIP	1989-2001	NR
Leviathan Peak	BR	38.6733	-119.6067	2485	6.8	69.3	3.44	-15.7	Friedman and Smith, 1972	1970-71	2
Logan, UT	BR	41.6600	-111.9000	1370	8.3	47.5	1.27	-14.8	USNIP	1989-2001	NR
Lone Pine, CA	BR*	36.5900	-118.0517	1130	14.7	18.0	3.79	-12.3	Friedman et al., 1992	1982-1989	4 (dD); 2 (d18O)
McDermitt, OR	BR	42.0017	-117.7217	1366	8.3	24.4	1.28	-15.4	Friedman et al., 2002	1991-1997	4 (dD); 3 (d18O)
Middle Canyon, UT	BR	40.4617	-112.1917	2134	5.2	76.7	1.71	-14.9	Friedman et al., 2002	1991-1997	6 (dD); 4 (d18O)
Mitchell Caverns, CA	BR*	34.9433	-115.5117	1315	17.3	24.0	1.40	-11.5	Friedman et al., 1992	1982-1989	5 (dD): 1 (d18O)
Mount Hamilton, NV	BR	39.2400	-115.5400	3216	6.7	53.5	1.26	-14.2	Friedman et al. 2002	1991-1997	2 (dD): 1 (d18O)
Mount Moriah. NV	BR	39.3183	-114.2383	2858	4.7	49.2	1.15	-16.3	Friedman et al. 2002	1991-1997	3 (dD): 1 (d18O)
Mount Wilson, NV	BR	38.2400	-114.3883	2804	8.0	47.6	1.22	-14.7	Friedman et al. 2002	1991-1997	3 (dD): 2 (d18O)
Needles. CA	BR*	34.7700	-114.6200	295	21.7	11.6	1.37	6 9	Friedman et al. 1992	1982-1989	5 (dD); 2 (d18O)
Organ Pipe Cactus Nat'											
Mon.	BR*	31.9500	-112.8000	506	20.6	23.0	0.76	-8.6	USNIP	1989-2001	NR
Owyhee, NV	BR	41.9533	-116.1867	1638	7.2	30.7	1.34	-13.5	Friedman et al., 2002	1991-1997	1 (dD); 1 (d18O)
Parker, NV	BR*	34.1517	-114.2717	135	22.8	12.1	1.46	-8.3	Friedman et al., 1992	1982-1989	6 (dD); 2 (d18O)
Pine Mountain, OR	BR	43.7917	-120.9400	1920	6.6	54.0	2.06	-15.7	Friedman et al., 2002	1991-1997	4 (dD); 3 (d18O)
Potosi Peak, NV	BR*	35.9450	-115.5000	2463	11.6	38.4	1.56	-12.9	Friedman et al., 2002	1991-1997	5 (dD); 3 (d18O)
PT1	BR	37.2811	-116.3016	2200	9.4	26.5	1.38	-12.5	Ingraham et al., 1991	1982-1986	NR
PT2	BR	37.2854	-116.3529	2060	9.4	24.9	1.35	-13.2	Ingraham et al., 1991	1982-1986	NR
PT3	BR	37.2240	-116.4576	1890	10.7	22.0	1.37	-12.2	Ingraham et al., 1991	1982-1986	NR
Randsburg, CA	BR*	35.3533	-117.6667	1340	17.2	20.2	4.43	-10.6	Friedman et al., 1992	1982-1989	6 (dD); 2 (d18O)
Red Rock Canyon, NV	BR*	36.1400	-115.4300	1137	15.8	16.4	1.33	-9.7	USNIP	1989-2001	NR
Rowland Creek	BR	40.0133	-120.2933	2040	6.6	60.6	2.94	-14.5	Friedman and Smith, 1972	1970-71	2
RT1	BR	37.2038	-116.2054	2230	10.4	28.5	1.42	-12.7	Ingraham et al., 1991	1982-1986	NR
RT2	BR	37.1598	-116.2179	1900	11.3	24.4	1.40	-12.9	Ingraham et al., 1991	1982-1986	NR
RT3	BR	37.1316	-116.2894	1590	11.4	19.3	1.41	-11.0	Ingraham et al., 1991	1982-1986	RN
SB1	BR	36.8566	-115.9508	096	16.1	13.4	1.54	-9.5	Ingraham et al., 1991	1982-1986	NR
Searchlight, NV	BR*	35.4417	-114.9000	1040	18.3	18.0	1.25	-10.5	Friedman et al. 1992, 2002	1983-1988; 1991-1997	11 (dD); 5 (d18O)
Sheep Peak, NV	*X 8	36.5833	-115.2500	2926	9.9 0	49.4	1.53	-13.0	Friedman et al., 2002	1991-1997	2 (dD); 1 (d18O)
Smith valley, NV	X C	38.8000	-119.2600	1061	9.0	18.5		-16.0		1989-2001	Ĕ
S11 010	XX XX XX XX	36.9454	-116.2591	2133	0.21	24.8	1.50	-12.5 -	Ingranam et al., 1991	1982-1986	Ϋ́
S12	н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н Н	36.9396	-116.2504	1830	12.2	23.0	1.49	-12.4	Ingraham et al., 1991	1982-1986	Ϋ́
S13 011	יי אם מ	36.1929	-116.2648	1520	c. / l	17.1	1./4	7.11-	Ingranam et al., 1991	1982-1986	Ϋ́
		30.8301	10.2084	0771	0.0	0.01	0.1	0.1.1-		1962-1960	
		40.0533	-120./083	800L	7.7	47.0	202	-13.0 2.01	Friedman et al., 2002	1991-1997	Z (dD); Z (d180)
	КO	20.0000	1000.111-	+co1	0.01	0.01	0.78	- 10.4	Friedinian et al., 2002	122 1-1221	5 (UU), 4 (UIOU)

Table A2.1 – Compilation of western US precipitation δ^{18} O records
Lotation Surveyion Qi					ELEV	MAT	MAP	S:W	Wat. 8 ¹⁸ O			Number of
Toole, UT RR -0.011 -1.12300 151 -0.01 -0.011 <th>Location</th> <th>Subregion</th> <th>(0)</th> <th>(0)</th> <th>(m)</th> <th>(°C)</th> <th>(cm)</th> <th></th> <th>(%° SMOW)</th> <th>Reference</th> <th>Sample Period</th> <th>seasons</th>	Location	Subregion	(0)	(0)	(m)	(°C)	(cm)		(%° SMOW)	Reference	Sample Period	seasons
Throw Matrix Matrix </td <td>1 - -</td> <td></td> <td>1.000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	1 - -		1.000							-		
Trans. Bits 370001 11124 000 1000	T OOGIE, U I	22	40.011/	-112.3500	2161	0.0L	35.U	0.1 00 00 00 00 00 00	-14./	Friedman et al., 2002	7661-1.661	5 (dD); 4 (d180)
111 111 <td>I rona, CA</td> <td>יי איז איז</td> <td>35.811/</td> <td>-11/.320/</td> <td>GZ G</td> <td>18.7</td> <td>с. С. С.</td> <td>707</td> <td>ο.</td> <td>Friedman et al., 1992</td> <td>1982-1989</td> <td>6 (dU); 2 (d18U)</td>	I rona, CA	יי איז איז	35.811/	-11/.320/	GZ G	18.7	с. С. С.	707	ο.	Friedman et al., 1992	1982-1989	6 (dU); 2 (d18U)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	111	НЧ	37.0587	-116.4445	1840	12.0	22.1	1.44	-10.3	Ingraham et al., 1991	1982-1986	YZ
Thrance Mathematical Sector Matrix Wetherwitting	TT2	BR	37.0494	-116.3854	1630	11.7	19.3	1.44	-11.3	Ingraham et al., 1991	1982-1986	NR
Therpwine Parma, CA Fire Art 31 Fire	TT3	BR	37.0465	-116.3233	1400	12.2	16.7	1.49	-11.4	Ingraham et al., 1991	1982-1986	NR
Wandbork (T, Wandbork), Wineshork (T, Wineshork (Twentynine Palms, CA	BR*	34.1283	-115.9450	570	19.9	11.3	1.09	-8.7	Friedman et al., 1992	1982-1989	6 (dD); 2 (d18O)
Minematic, N. Bit 3331 111 323 123 123 123 123 123 123 123 123 123 123 123 123 123 123 1333 <td>Wendover, UT</td> <td>BR</td> <td>40.7183</td> <td>-114.0300</td> <td>1292</td> <td>10.1</td> <td>14.6</td> <td>0.66</td> <td>-12.8</td> <td>Friedman et al., 2002</td> <td>1991-1997</td> <td>5 (dD); 3 (d18O)</td>	Wendover, UT	BR	40.7183	-114.0300	1292	10.1	14.6	0.66	-12.8	Friedman et al., 2002	1991-1997	5 (dD); 3 (d18O)
With memolices, NC BR 4.3660 11/3 (00) 2/3 2/3 1/4 Telentman et al. 2/3 1/4 Telentman et al. 2/3 1/4 Telentman et al. 2/3 1/3	White Mountain. CA	BR*	37.3517	-118.1833	2697	6.7	32.3	2.23	-16.0	Friedman et al. 2002	1991-1997	4 (dD); 3 (d18O)
Wind X, The second se	Winnemucca NC	RR	40 8967	-117 8050	1312	40	20.5	141	-14.3	Friedman et al 2002	1991-1997	5 (dD): 2 (d18O)
Bunchase UT Bios 7 2000 T2000		ڈ ڈ	100001	7303 111	1 1 0		0.04		0. F			
Description Construction Constructin Construction Construction <td>Tuma, AZ</td> <td></td> <td>1000.70</td> <td>-114.000/</td> <td>60</td> <td>0. 0 7</td> <td>n</td> <td>2 . 2 .</td> <td>- 0 - 7</td> <td>Friedman et al., 1992</td> <td>1902-1909</td> <td></td>	Tuma, AZ		1000.70	-114.000/	60	0. 0 7	n	2 . 2 .	- 0 - 7	Friedman et al., 1992	1902-1909	
Operation Constraint Constrai			0000.15	10040011-	2002	o i o o	- 1 0 1	47 47	- 10.0		1991-1991	4 (du); 2 (d180)
Unstant RMC 37:500 11:170 2471 6.0 9.0 0.71 1.13 USNIP 1999-2001 1999-2001 NR Deer Value, UT RMCP 35:100 111:1700 2157 4.1 5.1 1.1<	Brooklyn Lake, WY	RMCF	41.3600	-106.2400	3212	G.U-	58.1	0.91	-16.3	USNIP	1989-2001	NK
Unitability Mach and any any any any any any and any and any and any any and any and any and a	Bryce Canyon Nat'l Park,											!
Pervalay, UT RACP 9.055 1.11 1.15 1.16	UT	RMCP	37.6200	-112.1700	2477	6.0	36.0	0.87	-11.8	USNIP	1989-2001	RR
Flagstrik / Z much 36:1300 11167/00 217 81 56:6 113 9.6 ONIP 1962-1969 8 Riga Ciff Divenings Nati Mark Mir More 38:00 -11167/00 2137 81 -66 113 -73 USNIP 1962-1069 8 Roter Mari Park Mir Alacer Mari Park Mir Carler Carbon Nati Lon. RMCP 35:00 -1115700 2152 145 413 -13 -73 USNIP 1982-2001 NR Rater Mari Park Mir Mir RMCP 35:00 -1012400 2152 143 113 -73 USNIP 1982-2001 NR Rote Asson 113 712 0.63 0.63 0.64 113 0.74 0.84 -163 USNIP 1982-2001 NR NR Maynil, Ni River Park RWCP 35700 -1014400 272 0.84 -163 USNIP 1982-2001 NR RR 1989-2001 NR RR 1002-1982 1017 1017 1012 1012 1012	Deer Valley, UT	RMCP	40.6367	-111.4950	2195	4.8	67.6	1.65	-15.1	Friedman et al., 2002	1991-1997	6 (dD); 4 (d18O)
Old: Office Weinings Natt Old: Office Weinings Natt Glor Office Weinings Natt RMCP S32200 1772 11.7 41.2 0.48 52 USNIP 1989-2001 NR Possibility Natt RMCP NR Seder Natt Park, MT 1989-2001 NR Possibility Natt RMCP 113900 2153 113900 2153 113900 2153 113900 2153 113900 2153 213901 1989-2001 NR Possibility Natt RMCP 367700 1121500 2139700 21401 2139700 21401 2139700 2139700 2139700 2139700 2139700 2139700 2139700 2139700 2141 2130 213010 213010 213010 213010 213010 213010 213010 213010 213010 213010 213010	Flagstaff, AZ	RMCP*	35.1300	-111.6700	2137	8.1	56.6	1.13	-9.6	GNIP	1962-1969	œ
Mon. With Mon. Mit. RMCP 33.2200 1773 11.7 41.2 0.46 -8.2 USNP 1969-2001 NR Persons Carend Carryon Nati Park, Farend Mair Park, Carend Carryon Nati Park, More RMCP 33.2200 1732 11.7 41.2 0.46 -1.25 Finenment et al., 2002 1969-2001 NR Persons Farend Carryon Nati Park, Maynin, N RMCP 36.700 113.9700 217.5 0.66 -1.25 Finenment et al., 2002 1969-2001 NR Persons Maynin, N RMCP 35.700 113.9700 214.7 15.2 0.66 -1.13 0.05 -1.05 0.69 0.66 -1.05 0.05 0.67 0.73 0.60 0.65 0.05 0.66 -1.05 0.07 0.08 0.05	Gila Cliff Dwellings Nat'l											
Galadic Math Park, MIT RMCP 45/5100 113 113 -133 USNIP 1989-2001 NR Galadic Math Park, MIT RMCP 36/700 -112 1600 213 117 152 063 -123 USNIP 1989-2001 NR Galadic Math Mon, It MCP 36/700 -112 1600 3570 -107 4400 957 52 053 -125 Friedman et al. 2002 1991-1997 5 (dD): 3 (d16C Uss Name RMCP 35700 -107 4400 957 83 0.59 -145 USNIP 1999-2001 NR Maynin Mon, Mitch RMCP 37200 -105 4000 212 98 441 102 -1110 USNIP 1999-2001 NR Maynin Mon, Xicon Acto RMCP 37700 -108 400 102 -111 103 102 -111 109 109 109 200 108 NR 1099-2001 NR NR 1099-2001 NR NR 1099-2001 NR 1010 1011	Mon., NM	RMCP	33.2200	-108.2300	1772	11.7	41.2	0.48	-8.2	USNIP	1989-2001	NR
Caract Carant Caracter Nat Park RMCP 36.00 11.12.1600 11.2	Glacier Nat'l Park, MT	RMCP	48.5100	-113.9900	968	5.0	69.3	1.13	-18.3	USNIP	1989-2001	NR
Hild Rightine, UT RMCP 334133 -110.7033 117 15.2 0.65 -12.6 Friedman et al., 2002 1997 5 (dD); 3 (d16C) MT RMCP 35470 -117 15.2 0.65 -12.6 Friedman et al., 2002 1999-2001 NR MSYNII, MCP 35570 -1014700 957 83 0.59 -14.5 USNIP 1989-2001 NR MSYNII, MCP 355700 -1054700 2019 10.5 44.1 0.24 -16.3 USNIP 1989-2001 NR MSYNII, MCP 372000 -1054700 2172 98 44.0 1.02 -11.0 USNIP 1989-2001 NR MSYNII, MCP 372000 -105400 272 98 44.0 1.02 -14.3 USNIP 1989-2001 NR MSYNII, MCP 372000 -105400 272 98 272 0.72 14.12 USNIP 1989-2001 NR MSNIP NMCP 372000 1173 16.5<	Grand Canyon Nat'l Park	RMCP	36.0700	-112.1600	2152	14.6	41.8	1.13	-7.3	USNIP	1989-2001	NR
Little Bighorn Nart Mon. Ministre Bighorn Nart Mon. M	Hanksville, UT	RMCP	38.4183	-110.7033	1170	11.7	15.2	0.65	-12.6	Friedman et al., 2002	1991-1997	5 (dD); 3 (d18O)
MT RMCP 455700 1714400 241 0.34 -165 USNIP 1989-2001 NR Nesh Miril IM RMCP 455700 -1074400 2441 0.34 -105 USNIP 1989-2001 NR Nesh Miril IM RMCP 325000 -1064700 2014 210 -1054700 2014 103 -110 USNIP 1989-2001 NR Neest Verde Nati Park, RMCP 372000 -108400 2172 9.8 44.0 1.02 -110 USNIP 1989-2001 NR Neest Verde Nati Park, RMCP 320700 -108400 2172 9.8 44.0 1.02 -110 USNIP 1989-2001 NR Neet Service NMCP 420500 -1014300 232 1.10 -121 USNIP 1989-2001 NR NR Parket NP Parket NP NR Parket NP Pa	Little Bighorn Nat'l Mon,											
Machili Ma. RMCP 45600 -1139700 244 25 489 0.84 -16.3 USNIP 1888-2001 NR Mayhili Ma. RMCP 323100 105.4700 2009 10.5 44.1 0.34 -16.3 USNIP 1989-2001 NR Meas Verte Natri Park, RMCP 37.200 -106.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.4700 2010 -105.400 -117.180 7 -11.0 USNIP 1989-2001 NR NR Plause Conservation RMCP 40.500 -110.7433 16.9 32.0 0.73 -6.8 USNIP 1989-2001 NR NR NR NR -105.4900 1173 101.0 101.0 101.0 101.0 101.0 101.0 101.0 101.0 101.0 101.0	MT	RMCP	45.5700	-107.4400	957	8.3	38.3	0.59	-14.5	USNIP	1989-2001	NR
Maynil, IM RMCP 32-910 -105 470 203 10.5 4.1 0.34 -10.6 USNP 1989-2011 NR OGa Vertice Natr Park, Co RMCP 37/2000 -106 4900 2172 9.8 4.40 1.02 -11.0 USNP 1989-2011 NR Oliver Kondi, Z RMCP 470000 -1053400 3520 1.2 7.83 1.7 0.14 USNP 1989-2011 NR Oliver Kondi, Z RMCP 45500 -107340 16.9 32.0 0.73 6.83 1.7 0.14 0.8NP 1989-2001 NR NR Plouse Conservation RMCP 4.5500 -117.1800 7.63 0.73 6.43 0.77 1.61 0.8NP 1989-2001 NR NR Pinedia, WY RMCP 4.5500 -116.7000 1984 0.77 1.51 1.61 0.899-2001 NR NR Finedia, WY RMCP 4.5000 -116.600 1442 0.77 1.51	Lost Trail Pass, MT	RMCP	45.6900	-113.9700	2414	2.5	48.9	0.84	-16.3	USNIP	1989-2001	NR
Mess Verde Nart Park, Nivor Saddle, CO RMCP 37.200 -108.400 -105.5900 37.201 -108.400 -108.400 NR NR -108.400 NR NR -108.400 NR NR NR -108.400 NR NR NR -108.400 -107.413 16.9 32.0 0.73 6.8 1.17 USNIP 1989-2001 NR NR Pancedu, WY RMCP 46.7600 -117.1800 766 8.3 5.43 1.87 -12.1 USNIP 1989-2001 NR NR Pinedu, WY RMCP 40.5000 -107.7000 1983 6.1 4.20 0.77 -14.3 0.01 1989-2001 NR NR <td>Mayhill, NM</td> <td>RMCP</td> <td>32.9100</td> <td>-105.4700</td> <td>2009</td> <td>10.6</td> <td>44.1</td> <td>0.34</td> <td>-10.6</td> <td>USNIP</td> <td>1989-2001</td> <td>NR</td>	Mayhill, NM	RMCP	32.9100	-105.4700	2009	10.6	44.1	0.34	-10.6	USNIP	1989-2001	NR
CC RMCP 37/2000 -1064900 2172 31 102 -11.0 USNIP 1989-2001 NR Palouse Conservation Fam. W RMCP 37/2000 -10654900 2172 38 110 -14.3 USNIP 1989-2001 NR Fam. W RMCP 33/700 -1095400 117 30.2 067 -14.7 USNIP 1989-2001 NR Fam. W RMCP 45.7600 -110.7480 766 8.3 54.9 187 -12.1 USNIP 1989-2001 NR Fam. W RMCP 45.7600 -110.7480 76 8.3 54.9 187 -12.1 USNIP 1989-2001 NR Fam. W RMCP 45.7600 -110.7480 90 20.67 -14.7 USNIP 1989-2001 NR Fam. W RMCP 43.500 -107.7400 198 61 42.0 027 -13.1 USNIP 1989-2001 NR Stand Sping, CO RMCP <td< td=""><td>Mesa Verde Nat'l Park,</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Mesa Verde Nat'l Park,											
Niwot Saddle, CO RMCP 400600 -165500 3520 1.2 78.3 1.10 -14.3 USNIP 1989-2001 NR Palouse Konl, AZ RMCP 430700 -1093400 1173 16.9 32.0 0.77 -16.1 USNIP 1989-2001 NR Palouse Conservation RMCP 46.7600 -117.1800 76 8.3 54.9 187 -12.1 USNIP 1989-2001 NR Prinedae, WY RMCP 46.7600 -117.1800 76 8.3 54.9 187 -12.1 USNIP 1989-2001 NR Prinedae, WY RMCP 4.5500 -107.7000 1993 6.1 42.0 0.77 -16.1 USNIP 1989-2001 NR Samiths Entry, ID RMCP 45.500 -118.5100 125.3 6.4 6.2.6 2.03 -17.4 USNIP 1989-2001 NR Starkey Exp. Forest, OR RMCP 45.500 -110.7400 1932 16185.2001 NR	00	RMCP	37.2000	-108.4900	2172	9.8	44.0	1.02	-11.0	USNIP	1989-2001	NR
Oliver Knoll, AZ RMCP* 33.0700 -109.9400 1173 16.9 32.0 0.73 6.8 USNIP 1889-2001 NR Palouses Conservation Farm, WA RMCP 45.7600 -117.1800 766 8.3 54.9 1.87 -12.1 USNIP 1989-2001 NR Prine, UT RMCP 45.7600 -117.1800 766 8.3 54.9 1.87 -12.1 USNIP 1989-2001 NR NR Prine, UT RMCP 45.700 -107.7003 1984 0.77 -15.1 USNIP 1989-2001 NR NR Sarrisy Farry, ID RMCP 44.3000 -116.6600 1442 5.0 6.03 2.03 -15.1 USNIP 1989-2001 NR Sarrisy Farry, ID RMCP 44.3000 -116.6600 1442 5.0 6.03 2.03 -15.1 USNIP 1989-2001 NR Sarrisy Farry, ID RMCP 45.7200 -116.5600 1442 0.23 -17.4	Niwot Saddle, CO	RMCP	40.0600	-105.5900	3520	1.2	78.3	1.10	-14.3	USNIP	1989-2001	NR
Palouse Conservation Palouse Conservation Telouse Conservation NR Find. WT RMCP 42,9200 -117,1800 766 8.3 54.9 1.4.7 USNIP 1989-2001 NR Find. WT RMCP 42,9200 -109,8000 2388 1.7 30.2 0.67 -14.77 15.1 Finedman et al., 2002 1989-2001 NR Price, UT RMCP 42,9200 -109,8000 2388 1.7 30.2 0.67 -14.77 15.1 Finedman et al., 2002 1999-2001 NR Price, UT RMCP 44,3000 -116,500 1923 6.4 6.2 2.03 -15.2 USNIP 1989-2001 NR Starkey Exp. Forest, OR RMCP 44,3000 -114,200 132 USNIP 1989-2001 NR Starkey Exp. Forest, OR RMCP 44,3000 1422 5.0 6.00 2.03 -17.2 USNIP 1989-2001 NR Starkey Exp. Forest, OR RMCP 45,200 1142 <td< td=""><td>Oliver Knoll, AZ</td><td>RMCP*</td><td>33.0700</td><td>-109.9400</td><td>1173</td><td>16.9</td><td>32.0</td><td>0.73</td><td>-6.8</td><td>USNIP</td><td>1989-2001</td><td>NR</td></td<>	Oliver Knoll, AZ	RMCP*	33.0700	-109.9400	1173	16.9	32.0	0.73	-6.8	USNIP	1989-2001	NR
Farm, WA RMCP 46.760 -117.1800 766 8.3 54.9 187 -12.1 USNIP 1898-2001 NR Pinedule, WY RMCP 42.500 -107.100 7386 1.7 -16.1 USNIP 1989-2001 NR Price, UT RMCP 42.9200 -107.7000 1998 6.1 42.0 0.97 -12.0 USNIP 1989-2001 NR Sand Spring, CO RMCP 4.05100 -107.7000 1998 6.1 42.0 0.97 -12.1 USNIP 1989-2001 NR Sandtspring, CO RMCP 4.4.3000 -116.160600 144.2 5.0 6.00 2.03 -13.2 USNIP 1989-2001 NR Sandtspring, CO RMCP 44.3000 1912 2.3 4.3 0.67 -10.2 109.2 101.8 NR NR NR NR NR 10892.2001 NR NR 10892.2001 NR NR 101.8 101.8 101.8 101.8	Palouse Conservation											
Pinedale, WY RMCP 42.9200 -109.8000 2388 1.7 30.2 0.67 -14.7 USNIP 1989-2001 MR Price, UT RMCP 39.6067 -110.7483 1804 9.0 26.4 0.77 -15.1 Friedman et al., 2002 1989-2001 MR Sinth's Fenry, ID RMCP 39.5007 -110.7483 1804 9.0 26.4 0.77 -15.1 Friedman et al., 2002 1989-2001 MR Sinth's Fenry, ID RMCP 44.5200 -116.500 1323 6.4 62.0 2.03 -13.2 USNIP 1989-2001 MR Visitive Fenry, ID RMCP 45.2200 -116.4200 1925 0.3 -17.4 USNIP 1989-2001 MR Visitive Fenry, ID RMCP 44.9200 1104.200 1912 2.3 4.3 0.67 -20.9 USNIP 1989-2001 MR	Farm, WA	RMCP	46.7600	-117.1800	766	8.3	54.9	1.87	-12.1	USNIP	1989-2001	NR
Price, UT RMCP 396067 -110.7433 1804 9.0 2.6.4 0.77 -15.1 Friedman et al., 2002 1991-1997 4 (db); 2 (d18C) Sand Spring, CO RMCP 40.5100 -107.7000 1998 6.1 42.0 0.37 -15.1 USNIP 1999-2001 NR Smith's Ferry, ID RMCP 45.200 -118.5100 1253 6.4 62.6 2.03 -13.2 USNIP 1989-2001 NR Voil Creek Pass, CO RMCP 45.2200 -118.5100 1253 6.4 62.6 2.03 -13.2 USNIP 1989-2001 NR Voil Creek Pass, CO RMCP 44.9200 -110.4200 1912 2.3 4.3 0.67 -20.9 USNIP 1989-2001 NR V W RMCP 44.9200 110.4200 1912 2.3 4.3 0.67 -20.9 USNIP 1989-2001 NR V W GP 35.2200 -101.8300 1091 1399 <t< td=""><td>Pinedale, WY</td><td>RMCP</td><td>42.9200</td><td>-109.8000</td><td>2388</td><td>1.7</td><td>30.2</td><td>0.67</td><td>-14.7</td><td>USNIP</td><td>1989-2001</td><td>NR</td></t<>	Pinedale, WY	RMCP	42.9200	-109.8000	2388	1.7	30.2	0.67	-14.7	USNIP	1989-2001	NR
Sand Spring, CO RMCP 40.5100 -107.7000 1998 6.1 42.0 0.07 1.12 USNIP 1989-2001 NR Simiths Ferry, ID RMCP 44.5100 -116.0600 1442 5.0 60.0 2.03 -15.1 USNIP 1989-2001 NR Starkey Exp. Crest, OR RMCP 45.200 -116.0600 1442 5.0 60.0 2.03 -17.4 USNIP 1989-2001 NR Volf Creek Pass, CO RMCP 45.200 -110.6790 3292 1.6 939 1.17 -17.4 USNIP 1989-2001 NR Vellowstone Nat1 Park, RMCP 44.9200 -110.4200 1912 2.3 438 0.67 -20.9 -110.410 NR V Cape Size -101.8300 1090 13.9 49.2 0.29 -11 -11 10989-2001 NR V K RMCP 44.9200 -101.8300 1090 0.29 -8.1 Nativ & Riggio, 1990 0Ct 1984 - Nov 1	Price, UT	RMCP	39.6067	-110.7483	1804	9.0	26.4	0.77	-15.1	Friedman et al., 2002	1991-1997	4 (dD); 2 (d18O)
Smith's Ferry. ID RMCP 44.3000 -116.0600 142 5.0 6.00 2.03 -15.1 USNIP 1989-2001 NR Starkey Exp. Forest, OR RMCP 45.2200 -118.5100 1253 6.4 62.6 2.03 -13.2 USNIP 1989-2001 NR Viol Creek Pass, CO RMCP 45.2200 -110.4200 1253 6.4 62.6 2.03 -17.4 USNIP 1989-2001 NR Viol Creek Pass, CO RMCP 44.9200 -110.4200 1912 2.3 43.8 0.67 -20.9 USNIP 1989-2001 NR Vi RMCP 44.9200 -110.4200 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 0ct 1984-Nov 1985 NR Amarillo, TX GP 35.2200 -101.8300 1390 13.9 49.2 0.29 -8.1 NRIV NR NR Amarillo, TX GP 42.0272 -93.6510 13.9 0.74 -2.8 USNIP 1989-	Sand Spring, CO	RMCP	40.5100	-107.7000	1998	6.1	42.0	0.97	-12.0	USNIP	1989-2001	NR
Starkey Exp. Forest, OR RMCP 45.2200 -118.5100 1253 6.4 6.2.6 2.03 -13.2 USNIP 1989-2001 NR Wolf Creek Pass, CO RMCP 37.4700 -106.7900 3292 1.6 93.9 1.17 -17.4 USNIP 1989-2001 NR Vellowstone Nart! Park, NMCP 84.9200 -110.4200 1912 2.3 43.8 0.67 -20.9 USNIP 1989-2001 NR W Marillo, TX GP 35.2200 -101.8300 1990 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 Oct1984 - Nov 1985 NR Ames, IA GP 35.2200 -101.8300 1090 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 Oct1984 - Nov 1985 NR Ames, IA GP 22.020 -104.3 0.74 -2.8 -9.0 1989-2001 NR Ames, IA GP 234.700 -91.6 0.41 0.52 -4.0 USNIP 1989-2001 N	Smith's Ferry, ID	RMCP	44.3000	-116.0600	1442	5.0	60.0	2.03	-15.1	USNIP	1989-2001	NR
Wolf Creek Pass, CO RMCP 37.4700 -106.7900 3292 1.16 -17.4 USNIP 1989-2001 NR Vellowstone Nartl Park, Vellowstone Nartl Park, Nellowstone Nartl Park, Ames, IA RMCP 44.9200 -110.4200 1912 2.3 43.8 0.67 -20.9 USNIP 1989-2001 NR Vellowstone Nartl Park, Vellowstone Nartl Park, Ames, IA GP 35.2200 -101.4300 1912 2.3 43.8 0.67 -20.9 USNIP 1989-2001 NR Ames, IA GP 35.2200 -101.8300 1930 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 Oct 1984 - Nov 1985 NR Ames, IA GP 23.2200 -101.8300 13.9 49.2 0.74 -2.8 0.051 1989-2001 NR Attwater Prairie Chicken GP 23.6500 54 20.6 104.3 0.74 -2.8 USNIP 1989-2001 NR Attwater Prairie Chicken GP 23.4700 97.7100 82 21.7 78.0	Starkey Exp. Forest, OR	RMCP	45.2200	-118.5100	1253	6.4	62.6	2.03	-13.2	USNIP	1989-2001	NR
Yellowstone Nat'l Park, WW WR H 3200 110.4200 1912 2.3 43.8 0.67 -20.9 USNIP 1989-2001 NR WW GP 35.2200 -101.8300 193.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 0ct 1984 - Nov 1985 NR Ames, IA GP 42.0272 -93.6317 287 9.4 83.5 0.42 -8.0 Simpkins, 1995 0ct 1984 - Nov 1985 NR Ames, IA GP 220.60 -96.2600 54 20.6 104.3 0.74 -2.8 USNIP 1989-2001 NR Attwater Prairie Chicken GP 23.4700 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Retuge, TX GP 23.4700 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Cadou valley, AR GP 34.1800 -136.8 1.08 0.52 -4.0 USNIP 1989-2001<	Wolf Creek Pass, CO	RMCP	37.4700	-106.7900	3292	1.6	93.9	1.17	-17.4	USNIP	1989-2001	NR
WY KMCP 443200 1710.4200 1912 2.3 4.3.6 0.07 -20.9 0.50 NF 1939-2001 NR Amearilo, TX GP 35.2200 -110.4300 1990 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 0ct 1984 - Nov 1985 NR Ames, IA GP 35.2200 -101.8300 1090 13.9 49.2 0.29 -8.1 Nativ & Riggio, 1990 0ct 1984 - Nov 1985 NR Ames, IA GP 25.2200 -96.2600 54 20.6 104.3 0.74 -2.8 USNIP 1989-2001 NR Refuge, TX GP 28.4700 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Reevile, TX GP 34.1800 -103.3800 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Cadol Valley, AR GP 34.1800 -103.390 73.3 -10.8 USNIP 1989-2001	Yellowstone Nat'l Park,		000011	0007 077	0.01	Ċ	007	1000				
Attractic Line (1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,			44.9200	1014200	1912	0 ¢	40.0	10.0	-20.9	Notive Diazio 1000		
America, Inc. 42.0212 -93.0317 201 9.14 0.02 0.04 0.01 <th0.01< th=""> 0.01 0.01<td></td><td></td><td>0022.00</td><td>-101.0300</td><td>797</td><td>0.0 V</td><td>1.04</td><td>67.0</td><td>- c o</td><td>Cimpline 1005</td><td>OCI 1304 - 1000 1300</td><td></td></th0.01<>			0022.00	-101.0300	797	0.0 V	1.04	67.0	- c o	Cimpline 1005	OCI 1304 - 1000 1300	
Refuge. TX GP 29.6600 -96.2600 54 20.6 104.3 0.74 -2.8 USNIP 1989-2001 NR Refuge. TX GP 28.4700 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Caddo Valley, AR GP 38.41800 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Caddo Valley, AR GP 34.1800 -93.1000 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Cadulo Valley, AR GP 36.7800 -103.9800 2205 9.4 48.3 0.33 -10.8 USNIP 1989-2001 NR Mon., NM GP 34.4050 -103.2050 1300 13.9 41.1 0.25 -8.8 Nativ & Riggio, 1990 Oct 1984- Nov 1985 NR	Attwater Prairie Chicken	b	7170.74	100.08-	107	t. D	00.00	74.0	0.0	OIIIIDAIIIS, 1990		
Becomile, TX GP 28.4700 -97.7100 82 21.7 78.0 0.52 -4.0 USNIP 1989-2001 NR Caddo Valley, AR GP 34.1800 -93.1000 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Caddo Valley, AR GP 34.1800 -93.1000 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Caddo Valley, AR GP 34.1800 -103.3800 2205 9.4 48.3 0.33 -10.8 USNIP 1989-2001 NR Mon., NM GP 34.4050 -103.2050 1300 13.9 41.1 0.25 -8.8 Nativ & Riggio, 1990 Oct 1984 - Nov 1985 NR		ЧÇ	29,6600	-96 2600	54	20.6	104.3	0.74	8 6-	IISNIP	1989-2001	NR
Caddo Valley, AR GP 34,1800 -93,1000 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Capulin Volcano Nat'l GP 34,1800 -93,1000 71 16.7 136.8 1.08 -4.9 USNIP 1989-2001 NR Capulin Volcano Nat'l GP 36,7800 -103,9800 2205 9.4 48.3 0.33 -10.8 USNIP 1989-2001 NR Mon., NM GP 34,4050 -103.2050 13.0 13.9 41.1 0.25 -8.8 Nativ & Riggio, 1990 Oct 1984 - Nov 1985 NR	Beeville. TX	5 G	28.4700	-97.7100	82	21.7	78.0	0.52	i 4	USNIP	1989-2001	NR
Capulin Volcano Naťl Capulin Volcano Naťl GP 36.7800 -103.9800 2205 9.4 48.3 0.33 -10.8 USNIP 1989-2001 NR Mon., NM GP 34.4050 -103.2050 1300 13.9 41.1 0.25 -8.8 Nativ & Riggio, 1990 Oct 1984 - Nov 1985 NR	Caddo Valley, AR	GР	34.1800	-93.1000	71	16.7	136.8	1.08	4.9	USNIP	1989-2001	NR
Mon., NM GP 36.7800 -103.9800 2205 9.4 48.3 0.33 -10.8 USNP 1989-2001 NR Clovis, NM GP 34.4050 -103.2050 1300 13.9 41.1 0.25 -8.8 Nativ & Riggio, 1990 Oct 1984 - Nov 1985 NR	Capulin Volcano Nat'l											
CIONS, NM GF 34,400 -103,200 1300 13.9 41.1 0.20 -0.8 NBUY & MBUA MBUO 1390 -0011964 - NOV 1360 NK	Mon., NM	G P G P	36.7800	-103.9800	2205	9.6	48.3	0.33	-10.8		1989-2001	R C
	CIOVIS, NIVI	L D	34.4050	-103.2000-	1300	0.9	4	CZ-U	Q.Q	Nativ & Riggio, 1990	OCT 1984 - NOV 1965	NN

recol
δ ¹⁸ Ο
cipitation
US pre
western I
on of
Compilatio
-
A2.
ble

Table A2.1 – Com	pilation of	westeri	n US prec	ipitatio	n 8 ¹⁸ 0 r	ecord	s				
Location	Subregion	LAT (º)	(0)	(m) ELEV	MAT (°C)	MAP (cm)	W:S	Wgt. 8 ¹⁸ 0 (‰ SMOW)	Reference	Sample Period	Number of seasons
										_	
Cottonwood, SD Goodwell Research	GP	43.9500	-101.8600	733	8.3	42.3	0.37	-9.7	USNIP	1989-2001	NR
Station. OK	GР	36.5900	-101.6200	666	13.9	43.8	0.30	-7.8	USNIP	1989-2001	NR
Great Plains Apiaries. OK	GР	34.9800	-97.5200	331	16.1	90.6	0.60	-5.8	USNIP	1989-2001	NR
Huron Well Field. SD	Ъ	44.3600	-98.2900	398	7.2	51.4	0.40	-7.1	USNIP	1989-2001	RN
Icelandic State Park. ND	ЧG	48.7800	-97.7500	306	3.5	47.6	0.31	-9.7	USNIP	1989-2001	RN
Konza Prairie, KS	GP	39.1000	-96.6100	350	12.4	86.2	0.39	-10.5	USNIP	1989-2001	NR
Ladue, MO	GP	38.6300	-90.3700	187	12.8	97.4	0.86	7.7-	Fredrickson & Criss, 1999	June 1995-May 1998	NR
Lake Geneva, WI	GP	42.5800	-88.5000	288	8.3	90.3	0.61	-7.8	USNIP	1989-2001	NR
Lake Scott State Park,	Ċ	0010 00		000	1		10.0	0			2
KS.	ب و 1	38.6700	-100.9200	803	7.LL	48.9	0.35	2.01-		1989-2001	YZ :
Lamberton, MN	GP	44.2400	-95.3000	343	7.2	65.9	0.41	-8.6	USNIP	1989-2001	NR
LBJ National Grassiands,	1										!
×	- 19 19	33.3900	-97.6400	312	18.3	86.7	0.65	4 I		1989-2001	XX I
Lubbock, TX	GP	33.5000	-101.8730	975	15.6	47.5	0.29	-7.2	Nativ & Riggio, 1990	Oct 1984 - Nov 1985	NR
Mead, NE	GР	41.1520	-96.4910	352	10.6	78.0	0.40	-7.4	Harvey, 2001		NR
Midland, TX	GР	32.0000	-102.1000	850	17.2	39.4	0.31	-6.5	Nativ & Riggio, 1990	Oct 1984 - Nov 1985	NR
Morcell Experimental											
Forest	GР	47.5300	-93.4700	431	3.9	68.8	0.32	-14.9	USNIP	1989-2001	NR
Newcastle, WY	GP	43.8700	-104.1900	1466	7.3	42.8	0.41	-17.9	USNIP	1989-2001	NR
North Platte Agr. Station,											
NE	GР	41.0600	-100.7500	919	9.4	50.5	0.34	-9.6	USNIP	1989-2001	NR
Paducah, TX	GР	34.0100	-100.3000	560	17.2	56.5	0.39	-6.5	Nativ & Riggio, 1990	Oct 1984 - Nov 1985	NR
Pawnee National									;		
Grasslands, CO	GP	40.8063	-104.7547	1641	8.3	36.4	0.40	-10.6	Harvey, 2005	1994-1998	NR
Salt Plains Nat'k Wildlfe											
Refuge, OK	GP	36.8100	-98.2000	345	15.0	72.1	0.50	-8.7	USNIP	1989-2001	NR
Sparkling Lake, WI	GP	46.0010	-89.6990	150	3.9	81.5	0.44	-10.9	Krabbenhoft, 1990	Nov 1985 - Aug 1987	NR
Theodore Roosevelt Nat'											
Park, ND	GР	47.6000	-103.2600	611	6.0	38.8	0.31	-10.1	USNIP	1989-2001	NR
Trout Lake, WI	GР	46.0500	-89.6500	501	3.9	82.0	0.45	-14.4	USNIP	1989-2001	NR
Waco, TX	GP	31.6200	-97.2200	143	19.4	82.1	0.81	-4.3	GNIP	1962-1965, 1973-1976	7
Table A2.1 Notes -	Modern pre	cipitation	δ ¹⁸ Ο recoi	duco sp.	iled fron	n variou	ildud sı	shed sources	(see 'Reference' colum	in). Reported δ^{18} O valı	tes are annual
weighted mean valu	es. In cases	where w	eighted me	ean annu	al value:	s were	not pro	vided, δ^{18} O ,	values were calculated	as part of this study u	sing reported
precipitation amount	ts (see text 1	for discus	sion). Latit	ude (LA'	T), long	itude (L	ON), a	nd elevation	(ELEV) values were ex	xtracted using the USC	5S ETOPO30
digital elevation mo-	del (DEM)	in cases '	where geog	graphic c	oordinat	es and	elevatic	ons were not	reported in the origina	l reference. MAT and	MAP values

and Wilmott dataset was also used for calculation of W:S values. Subregion abbreviations: BR = Basin and Range; RMCP = Rocky Mountains-Colorado Plateau; GP = Great Plains. Subregion labels with an asterisk (*) indicate sites that were also part of the 'Coast-Gulf of CA' subregion analysis. Sites in the RMCP and BR subregions were included in the 'Continental Interior' analysis. NR = not reported. were obtained from the Matsuura and Wilmott dataset (http://climate.geog.udel.edu/~climate/) for sites with no climate parameters reported. The Matsuura

Record length		1979-1980	2000	1988-1992	45 months	71 months		1980-0881	1980-1989	1983-1990	1988-1992	1986-1989	1988-1997	1973-2001	1987	67 months	1988-1992	26 months	58 months	1986-1987	1988-1992	1979-1980	76 months	1985-1992	1985	1995-1999	1996-1998	1985-1992	1986-1987	1986-1991	57 months	1986-1992	Stream/tributary															
Reference	-	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Araguás-Araguás et al. (1998) Averace of Liu et al. (2008) and		JUIIISUII AIIU IIIGI AIII (2004) 1 i:: -1 -1 -2000)	LIU et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Araguás-Araguás et al. (1998)	Liu et al. (2008)	Araguás-Araguás et al. (1998)	Araguás-Araguás et al. (1998)	Liu et al. (2008)	Liu et al. (2008)	Liu et al. (2008)	Araguás-Araguás et al. (1998)	Liu et al. (2008)	Araguás-Araguás et al. (1998)	Liu et al. (2008)	Hren et al. (2009)																					
Wgt. 8 ¹⁸ O (‰ SMOW)		α 20 20	-10.1	-5.7	-7.5	60	 	L./-	5.C-	-6.2	-8.3	-10.2	-6.1	-6.6	-8.5	-10.4	-6.5	-7.5	-8.4	-7.1	-10.6	-7.5	-7.8	-8.5	-8.4	-7.7	-6.7	-7.4	-7.2	-7.2	-7.6	6 9 9	-11.2	-14.7	-14.8	-13.6	-17.2	-17.2	-17.0	-13.7	-10.5	-11.6	-11.4	-13.1	-12.2	-12.8	-13.0	-13.6
MAP (cm)		59.5	60.2	127.1	88.8	110 2	0.14 1	1.10 1.10	1/2.4	148.7	91.0	57.0	165.8	189.3	56.7	94.2	104.1	122.9	110.8	86.9	58.1	107.1	55.1	41.5	156.0	52.3	105.1	51.9	54.1	56.8	53.6	95.8	68.0	95.0 	/5.0	38.0	42.0	35.0	39.0	53.0	100.0	82.0	87.0	81.0	109.0	110.0	109.0	87.0
MAT (°C)		4.6	-16.2	17.2	15.7	10.6	0.0 1		7777	19.2	15.2	-18.6	25.3	22.9	-9.6	15.0	20.9	25.7	4.6	-0.4	4.3	6.8	13.1	10.3	6.3	4.0	16.4	13.5	-3.8	13.1	14.2	15.4	-0. 4	0.3	0.2	4.1-	3.7	3.8	3.4	-1.8	-1.8	-1.6	-1.6	-1.6	-1.5	4.1-	4.	4.1-
(m) Ppt		43	273	37	506	46	010	3/8	~!	170	1071	172	15	99	99	1841	97	305	26	458	147	4	80	778	1648	ო	23	397	1020	47	110	844	2969	5037	5183	3587	4717	4884	4711	2705	3548	3866	3657	4057	3430	3897	3357	4075
Site ELEV (m)		43	273	37	506	4	010	3/8	<u>, , , , , , , , , , , , , , , , , , , </u>	170	1071	172	15	99	99	1841	67	305	26	458	147	4	80	778	1648	ო	23	397	1020	47	110	844	2969	5037	5183	3587	4717	4884	4711	2705	3548	3866	3657	4057	3430	3897	3357	4075
(e)		116.4600	125.2200	113.0400	104.0200	110 1700	1001000	109.1000	113.3200	110.0800	106.4300	126.6200	110.2100	114.1700	121.1000	102.6800	109.4000	102.1300	118.1800	106.9300	123.5500	121.4800	114.2500	112.5500	98.3000	117.1000	114.1300	108.9300	109.4700	121.4000	113.6500	106.8800	94.3473	94.9410	94.9410	94.8817	92.0144	92.0265	91.7949	94.9744	94.9578	94.9239	94.8965	94.8811	94.8726	94.8470	94.8138	94.8026
LAT (9		39.9200	43.9000	28.1200	30.6700	26 0500		34.5500	23.1300	25.0700	26.3500	45.6800	20.0200	22.3200	41.1300	23.0200	24.3500	19.8800	32.1800	33.0000	47.2300	31.2200	38.0200	37.7800	25.0100	39.0600	30.6200	34.3000	36.6000	37.5300	34.7200	27.7000	29.3077	29.6162	29.6064	29.5203	29.2193	29.2787	29.1352	30.0089	30.0089	29.9969	30.0034	29.9984	29.9866	29.9617	29.9561	29.9484
Subregion		eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	eastern Asia	Himalaya-S. Tibet	Himalaya-S. Tibet	Himalaya-S. Libet	Himalaya-S. Tibet												
Location	:	Beijing	Changchun	Changsha	Chengdu	Eusbour		Gaoling	Guangznou	Gullin	Guiyang	Haerbin	Haikou	Hongkong	Jinzhou	Kunming	Liuzhou	Luang-Prabang	Nanjing	Nanzheng	Qiqihar	Shanghai	Shijiazuang	Taiyuan	Tangchong	Tianjin	Wuhan	Xian	Yanan	Yantai	Zhengzhou	Zunyi	04Tibet66	04Tibet67	0411bet68	04Tibet72a	05Tibet100	05Tibet101	05Tibet103	05Tibet38	05Tibet39	05Tibet40	05Tibet41	05Tibet42	05Tibet43	05Tibet44	05Tibet45	05Tibet46

Table A2.2 – Compilation of east Asia meteoric water $\delta^{18} O$ records

Record length	O terro co lévilo - teorer		Stream/tributary	oucaninunal y																																												
Reference			Hren et al. (2009)																																													
Wgt. 8 ¹⁸ O (‰ SMOW)	0.44		-11.9	-13.2	-13.2	-13.8	-13.6	-13.8	-14.0	-13.6	-11.0	-11.0	-13.2	-12.7	-11.6	-14.3	-13.1	-12.3	-11.9	-12.5	-12.6	-12.4	-13.0	-10.4	-9.8	-12.0	-13.4	-13.9	-12.4	-13.6	-14.7	-15.1	-15.4	-13.9	-15.2	-15.6	- 14.4	-15.5	-15.7	-15.9	-16.0	-15.9	-17.3	-11.4	-11.6	-12.9	-13.6 13.5	- 10.0
MAP (cm)	0.07	0.0	41.0	93.0	104.0	93.0	87.0	79.0	90.06	69.0	39.0	35.0	29.0	33.0	26.0	30.0	142.0	158.0	37.0	36.0	46.0	65.0	35.0	34.0	61.0	23.0	24.0	37.0	25.0	24.0	38.0	22.0	32.0	24.0	29.0	34.0	30.0	42.0	48.0	60.0	68.0	64.0	45.0	33.0	64.0	40.0	79.0 116.0	10.0
MAT (°C)	7	- - -	4. L-	- 	-1.2	-1.2	-1.3	-1.3	-1.3	-1.2	-2.1	-2.3	-2.6	-2.7	-1.4	0.2	-1.0	-1.2	-1.5	-3.2	-3.2	-3.9	-3.5	1.1	0.0	-1.3	-2.7	4.9	-6.1	-5.3	-8.4	-8.6	ю. Э	9.0 9	φ.	φ.	-7.9	-7.8	-7.4	-0.8	-3.9	-3.2	-0.7	-5.1	4.8	4.6	ი, ი ი, ი	- <u>,</u> +
Ppt (m)	0207	4410	4384	3754	3950	4136	3994	4057	3677	4263	4346	4484	3970	3704	4049	445	3173	3050	4179	3965	4370	2950	4142	3965	3762	4127	4136	4304	4349	4366	3640	4503	4595	4543	4693	4399	4445	4229	4482	4234	4367	4316	4945	4092	3018	4153	3208 265 0	0000
Site ELEV (m)	0207	4210	4384	3754	3950	4136	3994	4057	3677	4263	4346	4484	3970	3704	4049	445	3173	3050	4179	3965	4370	2950	4142	3965	3762	4127	4136	4304	4349	4366	3640	4503	4595	4543	4693	4399	4445	4229	4482	4234	4367	4316	4945	4092	3018	4153	3208	0000
(°)	0,000	94.0032	94.7209	94.7973	94.7901	94.7844	94.7557	94.7412	94.7418	94.7394	94.7139	94.6970	94.5379	94.5447	94.4162	94.9374	94.8925	94.8898	94.8810	94.8288	94.8326	94.6502	94.8157	94.2477	94.1913	94.1276	94.0588	93.9523	93.8697	93.9103	93.7403	93.6335	93.4454	93.3206	93.2337	93.1651	93.0764	92.9994	92.8251	92.7221	92.5613	92.5186	92.2632	94.7258	94.7043	94.6936	94.6103 04 9426	24.0470
LAT (º)		29.349	29./328	29.9110	29.8999	29.8814	29.8466	29.8287	29.8166	29.7666	29.6686	29.6419	29.4319	29.4378	29.3436	29.6013	29.5449	29.5254	29.5145	29.4611	29.4412	29.4627	29.4573	29.2394	29.1859	29.1908	29.1896	29.1849	29.1185	29.1158	29.1251	29.1483	29.1040	28.9996	28.9987	29.0128	29.0442	29.0448	29.0633	29.0764	29.1406	29.1409	29.0430	29.4427	29.4430	29.4509	29.4648	29.3025
Subregion			Himalaya-S. Libet	Himalaya-S. libet	Himalaya-S. Tibet	Himalava-S. Tibet	Himalava-S. Tibet	Himalaya-S. Tibet	Himalava-S. Tibet	Himalava-S. Tibet	Himalaya-S. Tibet	Hinalaya-o. Ilber																																				
Location	CET ibott	001106(4/	051106149	05 l ibet50	05Tibet51	05Tibet52	05Tibet53	05Tibet54	05Tibet55	05Tibet56	05Tibet57	05Tibet58	05Tibet63	05Tibet63a	05Tibet65	05Tibet69	05Tibet70	05Tibet71	05Tibet72	05Tibet73	05Tibet74	05Tibet75	05Tibet76	05Tibet77	05Tibet78	05Tibet79	05Tibet80	05Tibet81	05Tibet82	05Tibet84	05Tibet85	05Tibet86	05Tibet87	05Tibet89	05Tibet90	05Tibet91	05Tibet92	05Tibet93	05Tibet95	05Tibet96	05Tibet97	05Tibet98	05Tibet99	NB-15	NB-16	NB-17	NB-19A	KO-GN

Table A2.2 – Compilation of east Asia meteoric water δ^{18} O records

Record length	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary
Reference	Hren et al. (2009)		Hen et al. (2009) Hran et al. (2009)	Hren et al (2000)	Hren et al. (2009)	Garzione et al. (2000)																																									
Wgt. 8 ¹⁸ O (‰ SMOW)	-16.3	-16.5	-17.4	-18.4	- 19.9	-19.6	-20.5	-20.1	-20.8	-18.9	-19.8	-19.8	-19.7	-19.9	- 19.8	-18.5	-19.7	-20.1	-20.4	-16.2	-18.2	-17.1	-17.7	-18.8	-18.9	-17.5	-17.5	-17.6	-18.3	-17.5	-17.4	-20.5	-19.3	- 19.5	-21.2	-18.5	- 19.8	-19.1	-18.8	-16.5	-13.7	-15.7	-11.2	-13.4	-12.8	-12.2	-13.0
MAP (cm)	10.3	49.0	0.01	0.10	21.0	23.0	26.0	26.0	20.0	34.0	29.0	38.0	34.0	47.0	34.0	36.0	31.0	38.0	27.0	10.0	17.0	17.0	42.5	39.1	34.4	36.2	38.6	40.8	44.4	42.2	40.8	38.2	39.0	36.3	35.2	36.1	38.8	35.9	36.4	33.7	34.1	39.7	36.0	44.3	40.7	42.3	72.3
MAT (°C)	4.7	. u	γq		- 8-	-9.2	-8.0	-8.3 -	-8. 4	-8.2	-8.0	-6.2	-6.2	-5.2	-5.5	4.0	-3.2	-7.5	-5.8	4.5	4.6	-5.8	-1.1	-2.1	-2.4	-2.2	-1.5	-3.1	4.0	4.3	-5.0	9.3	9.2 9	9.9	-0.6	-7.6	-7.1	-5.5	-5.1	3.0	3.4	2.8	2.8	2.2	2.1	1.9	3.1
(m) ELEV	4087	5537	5183	4703	5288	5274	5258	5297	5065	4716	4702	4693	4614	4654	4995	3830	4995	4641	4839	5164	5185	5459	4450	3960	4000	3960	4250	4670	4800	4900	4750	4700	4700	4300	4300	4500	4550	4280	4410	3800	3700	3750	3600	3500	3500	3440	3300
Site ELEV (m)	4087	5537	5183	4793	5288	5274	5258	5297	5065	4716	4702	4693	4614	4654	4995	3830	4995	4641	4839	5164	5185	5459	3450	2960	3000	2960	3250	3670	3800	3900	3750	3700	3700	3300	3300	3500	3550	3280	3410	2800	2700	2750	2600	2500	2500	2440	2300
(0)	79.7447	81 2750	81 8708	83 0142	84.6182	85.2341	85.4051	85.4946	86.3408	86.8967	87.0385	88.4075	87.5988	87.9339	88.8227	89.3965	90.2804	88.2570	87.6697	79.9818	80.1417	81.0460	83.8590	83.8520	83.8300	83.8180	83.7970	83.8160	83.8170	83.8340	83.8530	83.8770	83.8920	83.9560	83.9450	83.9970	84.0190	83.9550	83.9500	83.7660	83.7470	83.7290	83.6830	83.6480	83.6360	83.6160	83.6070
LAT (°)	31.4787	30.0577	30,6003	20,000	29.5433	29.4272	29.3347	29.3782	29.5061	29.3604	29.3126	29.3266	29.1047	29.3429	29.3685	29.3277	29.3344	29.3965	29.1139	31.5342	31.4532	31.0579	28.8750	28.9170	28.9380	28.9370	28.9230	28.9710	29.0020	29.0040	29.0250	29.0660	29.0700	29.0590	29.0590	29.0950	29.0610	29.0080	28.9890	28.7980	28.7940	28.7960	28.7520	28.7280	28.7200	28.7030	28.6390
Subregion	Himalava-S. Tibet	Himalava-S Tihet	Himalava-S. Tibet	Himalava-S Tihet	Himalava-S. Tibet	Himalava-S. Tibet	Himalaya-S. Tibet	Himalava-S. Tibet*	Himalaya-S. Libet*	Himalaya-S. Tibet*																																					
Location	SUTI E.I	W-2-10	W-2-10	W-2-12	W-2-13	W-2-14	W-2-15	W-2-16	W-2-17	W-2-18	W-2-19	W-2-2	W-2-20	W-2-21	W-2-22	W-2-23C	W-2-25	W-2-3	W-2-4	W-2-6	W-2-7	W-2-9	99kg01	99kg02	99kg03/97kg1	99kg04	99kg05	99kg06	99kg08	99kg09	99kg10	99kg11	99kg12	99kg13	99kg14	99kg15	99kg16	99kg17	99kg18	99kg20	99kg21	99kg22	99kg23	99kg24	99kg25	99kg26	99kg27

Table A2.2 – Compilation of east Asia meteoric water $\delta^{18} O$ records

Record length	Stream/tributarv	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	Stream/tributary	1993; 1995-1996	1993-1996	1961-1996	1996-1999	Stream/tributary	1969-1978	Stream/tributary	Stream/tributary																
Reference	Garzione et al. (2000)	Garzione et al (2000)	Garzione et al. (2000)	Zhang et al. (2002)	Zhang et al. (2002)	Zhang et al. (2002)	Liu et al. (2008)	Garzione et al. (2000)	Zhang et al. (2002)	Hren et al. (2009)	Hren et al. (2009)																																				
Wgt. 8 ¹⁸ O (‰ SMOW)	-11.9	-11.2	-12.0	-11.4	-10.0	-10.7	-9.6	-10.7	-9.8	-9.5	-9.6	-9.3	-9.6	-9.8	-9.4	-9.7	-8.2	-8.7	-8.8	-9.0	-9.2	-8.7	-8.1	-6.2	-14.3	-5.9	-14.2	-8.8	-9.3	-9.5	-9.7	-8.4	-0.1	-9.7	-10.2	-10.5	-10.4	-7.7	-7.8	-7.4	-7.7	-7.7	-7.7	-7.2	6.4	-6.2	-5.8
MAP (cm)	123.0	176.3	120.7	241.8	234.2	261.0	237.6	257.0	249.5	174.5	174.6	213.2	201.0	199.6	249.7	190.0	183.1	188.2	188.5	173.1	177.7	174.7	170.4	126.0	64.9	80.6	65.0	158.2	150.4	150.2	146.0	135.9	121.6	115.0	115.9	108.1	105.4	158.4	162.2	160.3	159.2	153.5	151.3	152.6	206.4	179.0	245.0
MAT (°C)	4 3	0.4	5.6	5.5	0.9	9.9	7.3	7.9	7.5	8.5	11.9	13.2	12.9	12.7	12.7	12.6	12.7	12.9	12.9	13.9	14.0	14.3	14.4	18.6	1.6	25.0	-11.7	9.5	8.4	7.8	6.9	4.6	3.9	3.1 1	2.1	<u>ر</u> ،	0.8	10.4	10.8	11.4	12.0	12.8	13.1	14.2	16.8	11.3 0	9.6
Ppt (m)	3000	2850	2800	2700	2400	2350	2240	2140	2040	1870	1760	1680	1800	1720	1790	1720	1620	1720	1620	1855	1820	1660	1480	1340	3880	212	3180	1510	1730	1820	1910	2060	2190	2310	23/0	2640	2950	1420	1320	1210	1170	1130	1090	1030	1598	1934	1003
Site ELEV (m)	2000	1850	1800	1700	1400	1350	1240	1140	1040	870	760	680	800	720	790	720	620	720	620	855	820	660	480	1340	3880	212	3180	910	1130	1220	1310	1460	1590	1710	0//1	2040	2350	820	720	610	570	530	490	430	1598	1934	1003
(°)	83,6330	83.6410	83,6550	83.6340	83.6360	83.6470	83.6480	83.6300	83.6050	83.5600	83.6230	83.6880	83.6680	83.6390	83.6280	83.5950	83.5760	83.6100	83.6030	83.5420	83.5440	83.5350	83.5270	85.3700	85.5700	77.2000	85.9700	80.9930	81.1370	81.1660	81.2100	81.3070	81.3210	81.3410	81.3450	81.3020	81.2600	80.8720	80.7830	80.8490	80.8940	80.9900	81.0250	81.0790	91.8800	94.9515	95.0408
LAT (9)	28,6150	28.5960	28.5830	28.5630	28.5410	28.5280	28.4970	28.4510	28.4490	28.3710	28.2710	28.2090	28.1640	28.1330	28.1000	28.0890	28.0420	28.0010	27.9890	27.8370	27.8180	27.7850	27.7730	27.7000	28.2000	28.5800	28.1800	29.4760	29.4980	29.5160	29.5440	29.6060	29.6330	29.6660	29.6800	29.7510	29.7820	29.4270	29.3730	29.2790	29.2380	29.2170	29.2030	29.1140	25.5700	28.2365	28.3548
Subregion	Himalava-S. Tibet*	Himalava-S Tihet*	Himalava-S. Tibet*	Himalava-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Libet"	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. Tibet*	Himalaya-S. I Ibet																											
Location	99kn28		99ka30	99kg31	99kg32	99kg33	99kg34	99kg35	99kg36	99kg37	99kg38	99kg39	99kg40	99kg41	99kg42	99kg43	99KG44	99kg45	99kg47	99kg48	99kg49	99kg50	99kg51	Kathmandu	Kyangjin	New Delhi	Nyalam	Seti 06	Seti 09	Seti 12	Seti 14	Seti 24	Seti 26	Seti 27	Sett 30	Seti 33	Seti 42	Seti 49	Seti 54	Seti 58	Seti 59	Seti 61	Seti 63	Seti 66	Shillong	WA-1	WA-11

δ ¹⁸ O records
5
wate
<u>ں</u>
ž
ĕ
et
Ε
g
S.
∢
east
ę
c
<u>.0</u>
at
i
ŭ
p
Ű
1
2
Ŋ
4
e e
ac
F

Record length	Otroom (tributtory)	Sileanikunuary	Stream/tributary	1001-1001																																												
Reference			Hren et al. (2009)	Hren et al. (2009) Liu et al. (2008)																																												
Wgt. 8 ¹⁸ O (‰ SMOW)	0	0 0 0 0	9.7- 0.0	-0.0	-7.2	-7.2	-6.7	-6.8	-6.6	-5.8	-6.3	-6.5	-6.7	-6.4	-6.5	-17.8	-17.6	-17.0	-17.0	-17.1	-17.4	-16.7	-16.9	-17.0	-16.9	-18.9	-16.7	-15.9	-15.7	-16.2	-15.8	-15.7	-16.2	-15.4	-15.5	-15.1	-13.5	-13.7	-14.5	-14.2	-16.5	- 18.4	-10.5	-17.3	-10.7	-12.2	-18.0 -7 7	1.1-
MAP (cm)		0.000	324.0	281.0	204.0	261.0	235.0	134.0	224.0	215.0	243.0	205.0	204.0	206.0	212.0	20.0	23.0	27.0	31.0	34.0	30.0	26.0	27.0	44.0	32.0	38.0	29.0	34.0	29.0	35.0	41.0	36.0	45.0	50.0	55.0	49.0	60.0	37.0	42.0	31.0	37.0	34.0	49.0	30.0	59.0	31.0	28.0 15 ה	2.2
MAT (°C)	0	0.0	0.01	х.х С	7.9	8.6	11.3	11.0	10.0	7.0	7.2	7.4	8.1	8.7	0.0	4.1	4.9	-5.1	-5.1	4.9	-5.0	-5.3	-5.4	-5.0	-5.0	 	-5.1	-5.6	-5.5	-5.5	-5.5	-5.4	-5.5	-3.5	-2.6	-0.8	0.8	1.9	1.1	1.4	-3.3 -	-3.4	-1.8	-3.4	-1.7	-0.4	ن. م. ۵	1.0-
Ppt ELEV (m)	1606	6061	0001	1191	1622	1624	096	866	1301	1110	1355	935	1296	1242	755	5027	5105	5081	4950	4902	5026	5025	4979	4728	4778	5221	4617	4753	4863	4586	4613	4650	4694	4360	4323	4314	4315	4377	4371	4458	5115	5139	4495	4917	4333	4280	4963 2081	1007
Site ELEV (m)	1505	COC 1	0001	1191	1622	1624	096	866	1301	1110	1355	935	1296	1242	755	5027	5105	5081	4950	4902	5026	5025	4979	4728	4778	5221	4617	4753	4863	4586	4613	4650	4694	4360	4323	4314	4315	4377	4371	4458	5115	5139	4495	4917	4333	4280	4963 2981	1001
(°)	04 0644	04.0044	94.7682	94.9236	95.0492	95.2020	95.0930	94.9469	94.9992	95.0693	95.0359	95.0993	95.1007	95.0798	95.0743	92.5229	92.6848	92.8182	92.8580	92.9007	93.0166	93.1498	93.1723	92.9866	93.0386	92.3279	93.1033	93.2547	93.3513	93.4367	93.5251	93.5721	93.6677	93.9051	93.9604	94.0763	94.1678	94.2391	94.3546	94.3102	92.3495	92.3658	94.6068	92.3822	94.5659	94.3984	92.4580 97 3700	00.00.10
LAT (9)	00 673 00	00/07	28.1169	28.7305	28.5260	28.3022	28.1405	28.2880	28.3497	28.5952	28.6224	28.5120	28.4361	28.4030	28.3753	29.8725	29.8737	29.9443	29.9557	30.0295	30.0052	29.9344	29.9110	30.0130	29.9996	29.8745	29.9758	29.8886	29.8916	29.8889	29.8904	29.8979	29.8645	29.7943	29.7925	29.7337	29.7473	29.7555	29.6776	29.6662	29.9006	29.9135	29.6017	29.9090	29.5679	29.4699	37 3700	0010.10
Subregion	Limologo C Tibot*		Himalaya-S. Libet	Himalaya-S. Libet	Himalaya-S. Tibet*	N-C Tibet																																										
Location	10.10	21-AVV	WA-13	WA-14	WA-15	WA-16	WA-17	WA-2	WA-3	WA-4	WA-5	WA-6	WA-7	WA-8	WA-9	05Tibet10	05Tibet11	05Tibet12	05Tibet13	05Tibet14	05Tibet15	05Tibet16	05Tibet17	05Tibet18	05Tibet19	05Tibet2	05Tibet20	05Tibet21	05Tibet22	05Tibet23	05Tibet24	05Tibet25	05Tibet26	05Tibet27	05Tibet28	05Tibet29	05Tibet30	05Tibet32	05Tibet33	05Tibet36	05Tibet4	05Tibet5	05Tibet59	05Tibet6	05Tibet60	05Tibet61	05Tibet9 Delingha	Пешина

Table A2.2 – Compilation of east Asia meteoric water δ^{18} O records

Location	Subreaion	LAT (°)	(0)	Site ELEV (m)	ELEV ELEV	MAT (°C)	MAP (cm)	Wgt. 8 ¹⁸ O (‰ SMOW)	Reference	Record length
										D
Gaize	N-C Tibet	32.3000	84.0500	4416	4416	4.4	17.0	-11.6	Liu et al. (2008)	1998-2003
Hetian	N-C Tibet	37.0800	79.5600	1375	1375	7.9	23.8	-5.7	Liu et al. (2008)	1988-1992
Lanzhou	N-C Tibet	36.0500	103.8800	1517	1517	10.0	30.4	-5.7	Zhang et al. (2002)	1985-1987; 1996-1997
									Average of Liu et al. (2008) and	
Lhasa	N-C Tibet	29.7167	91.0330	3650	3650	8.0	48.0	-17.3	Johnson and Ingram (2004)	1988-1990; 1993-1999
Nagqu	N-C Tibet	31.4800	92.0700	4507	4507	-0.7	41.6	-16.6	Liu et al. (2008)	2000-2003
Nam Co	N-C Tibet	30.7700	90.9900	4730	4730	-1.3	31.4	-18.4	Liu et al. (2008)	2005-2006
Shiquanhe	N-C Tibet	32.5000	80.1000	4279	4279	-10.2	7.1	-11.3	Liu et al. (2008)	1999-2002
T99-1	N-C Tibet	34.3235	89.9730	5303	5303	-12.0	13.0	-13.0	Hren et al. (2009)	Stream/tributary
T99-10	N-C Tibet	33.0073	88.5518	5261	5261	-5.9	15.0	-14.3	Hren et al. (2009)	Stream/tributary
T99-11	N-C Tibet	31.8211	87.5237	4917	4917	-6.2	7.0	-15.5	Hren et al. (2009)	Stream/tributary
T99-12	N-C Tibet	31.3704	90.5952	4859	4859	-1.8	13.0	-15.5	Hren et al. (2009)	Stream/tributary
T99-13	N-C Tibet	31.1499	90.7560	4910	4910	-0.9	13.0	-14.6	Hren et al. (2009)	Stream/tributary
T99-14	N-C Tibet	30.8301	91.0638	5037	5037	-1.3	17.0	-17.2	Hren et al. (2009)	Stream/tributary
T99-15	N-C Tibet	30.6712	91.0968	5514	5514	-1.1	16.0	-16.8	Hren et al. (2009)	Stream/tributary
T99-16	N-C Tibet	30.6058	91.1098	5399	5399	-0.8	16.0	-16.8	Hren et al. (2009)	Stream/tributary
T99-17	N-C Tibet	30.2639	90.6711	4902	4902	-0.4	19.0	-15.7	Hren et al. (2009)	Stream/tributary
T99-18	N-C Tibet	29.8339	90.7470	5252	5252	1.9	18.0	-16.3	Hren et al. (2009)	Stream/tributary
Т99-2	N-C Tibet	34.3649	88.8754	5242	5242	-16.9	13.0	-11.4	Hren et al. (2009)	Stream/tributary
T99-3	N-C Tibet	34.2522	88.9311	5268	5268	-16.5	13.0	-12.3	Hren et al. (2009)	Stream/tributary
T99-4	N-C Tibet	34.1595	88.9078	5312	5312	-15.6	12.0	-11.4	Hren et al. (2009)	Stream/tributary
199-0		00.0044	0/00.00	1110	110	1.21-	4 1 1 1 1 1	0.11-		
1 99-0 T 00-7	N-C liber	33.0173	88 0047	5206	5100 5206	7.0 F	12.0	- 10.0	Hen et al. (∠009) Hren et al. (2000)	Stream/tributary Stream/tributary
		22.0510 22.0510		5154	5157	р a	110			Stream/tributary
1 33-0 T 90-0	N-C Tibet	33 0292	88.6683	5206	5206	0.0 	13.0	- 10.0	Hen et al. (2009) Hran et al. (2009)	Stream/tributary
TP 1	N-C Tibet	33 1909	88 8364	5298	5298	5 4	13.0	-11.3	Hren et al (2009)	Stream/tributary
TS 1	N-C Tibet	34.0223	88.8810	5487	5487	-14.2	15.0	-11.5	Hren et al. (2009)	Stream/tributary
TS 10	N-C Tibet	33.3978	88.7952	5579	5579	-7.9	16.0	- 10.5	Hren et al. (2009)	Stream/tributary
TS 11	N-C Tibet	33.0567	88.6336	5356	5356	-6.0	15.0	-12.0	Hren et al. (2009)	Stream/tributary
TS 12	N-C Tibet	33.1719	88.8114	5529	5529	-5.9	15.0	-11.0	Hren et al. (2009)	Stream/tributary
TS 13	N-C Tibet	33.1374	88.7680	5514	5514	-9.0	16.0	-11.1	Hren et al. (2009)	Stream/tributary
TS 14	N-C Tibet	33.0918	88.7327	5037	5037	-5.9	15.0	-10.7	Hren et al. (2009)	Stream/tributary
TS 15	N-C Tibet	33.0908	88.7316	5514	5514	-5.9	16.0	-11.3	Hren et al. (2009)	Stream/tributary
1S 16	N-C libet	33.0540	88.6907	5399	5399	-5.8 -	15.0 2.0	-9.5	Hren et al. (2009)	Stream/tributary
15 17 TO 10	N-C libet	33.0292	88.6683	4902	4902	-5.7	9.0	-12.3	Hren et al. (2009)	Stream/tributary
TS 18	N-C libet	32.9/91	88.45/5	5252	2222	р. – 1. 1.	15.0	-11.4	Hren et al. (2009)	Stream/tributary
TC 20		32.031 I	00.1340	2120	2120	о, ч	0.0	- 10.0		Stroom/tributal y
TS 21	N-C Tibet	32.4706	88 0690	5264	5264	ין די לי רי	0.0	-11.3	Hen et al. (2009) Hren et al. (2009)	Stream/tributary
TS 22	N-C Tibet	33.5622	88.0040	5207	5207	-13.2	12.0	-13.2	Hren et al. (2009)	Stream/tributary
TS 24	N-C Tibet	32.0191	88.4111	4759	4759	4.0	8.0	-13.0	Hren et al. (2009)	Stream/tributary
TS 25	N-C Tibet	32.3732	87.9984	5341	5341	-5.0	12.0	-13.5	Hren et al. (2009)	Stream/tributary
TS 26	N-C Tibet	32.3223	87.9568	5287	5287	4.9	11.0	-12.8	Hren et al. (2009)	Stream/tributary
TS 27	N-C Tibet	32.2825	87.9083	5421	5421	4 8.	10.0	-12.5	Hren et al. (2009)	Stream/tributary
TS 4	N-C Tibet	33.0445	88.6387	5616	5616	-5.9	15.0	-12.5	Hren et al. (2009)	Stream/tributary
TS 6	N-C Tibet	33.2809	88.8439	4979	4979	-6.4	15.0	-10.3	Hren et al. (2009)	Stream/tributary

records
°
50
water
eoric
a met
Asia
east
5
pilation
Com
I
A2.2
able

		LAT	ron		ELEV	MAT	MAP	Wgt. 8 ¹⁸ O		
-ocation	subregion	6	6	Ē	Ē	5	(cm)	(%0 SMUW)	Kerence	Kecord length
LS 9	N-C Tibet	33.3187	88.8455	5450	5450	-6.8	15.0	-11.0	Hren et al. (2009)	Stream/tributary
Tuotuohe	N-C Tibet	34.2200	92.4300	4533	4533	-3.5	28.0	-12.0	Liu et al. (2008)	1991-1999
NT06-1	N-C Tibet	30.5494	91.0652	5194	5194	-0.5	32.0	-18.0	Hren et al. (2009)	Stream/tributary
NT06-10	N-C Tibet	33.0083	91.9730	5032	5032	-6.0	33.7	-15.2	Hren et al. (2009)	Stream/tributary
NT06-2	N-C Tibet	30.5163	91.0168	5344	5344	-0.3	33.0	-18.1	Hren et al. (2009)	Stream/tributary
NT06-3	N-C Tibet	29.9398	90.2656	5462	5462	-7.3	38.0	-19.0	Hren et al. (2009)	Stream/tributary
NT06-4	N-C Tibet	30.0732	90.3286	5518	5518	-6.3	27.0	-18.5	Hren et al. (2009)	Stream/tributary
NT06-5	N-C Tibet	30.1492	90.4898	5546	5546	-3.4	37.0	-18.5	Hren et al. (2009)	Stream/tributary
NT06-6	N-C Tibet	30.3072	90.6340	5720	5720	<u>-</u> -	36.0	-18.5	Hren et al. (2009)	Stream/tributary
NT06-7	N-C Tibet	30.3564	90.7233	5505	5505	0.2	65.0	-18.2	Hren et al. (2009)	Stream/tributary
NT06-8	N-C Tibet	32.6982	91.8773	4981	4981	-4.7	34.7	-12.5	Hren et al. (2009)	Stream/tributary
NT06-9	N-C Tibet	32.8305	91.9153	5128	5128	-5.5	33.9	-17.1	Hren et al. (2009)	Stream/tributary
Xining	N-C Tibet	36.6200	101.7700	2261	2261	-5.0	37.2	-6.8	Liu et al. (2008)	1991-1992
Yushu	N-C Tibet	33.0167	97.0167	3682	3682	3.0	48.2	-12.5	Liu et al. (2008)	2000-2002
Zhangye	N-C Tibet	38.9300	100.4300	1483	1483	7.5	13.5	-6.3	Araguás-Araguás et al. (1998)	52 months
	0		0010 001		1001	ı r		0		
Baotou	NS	40.6700	109.8500	1067	1067	7.5	35.4	-8.0	Johnson and Ingram (2004)	1986-1992; 1988-1990
Jrumqi	NS	43.7800	87.6200	918	918	7.4	28.3	-10.9	Zhang et al. (2002)	1986-1992; 1995-1997
Yinchuan	NS	38.2900	106.1300	1112	1112	8.9	20.5	-6.6	Liu et al. (2008)	1988-1992
Table A33 Not	ac Madam ar	a contrations	and atton	040111 00	~ s18	data fo:	A 4000 -	cio como cio	I, ees) seemes successing most	Defenses' action

records
ő
~~
2
ē
a
≥
C
Ξ.
Ň
ž
e
2
<u>a</u>
S
٩
st
ğ
.
5
C
ō
Ē
Q
Ξ
0
Q
2
Ŋ
∢
Ð
ā
L 0

elevations (Site ELEV) and precipitation-weighted hypsometric mean basin elevations (Ppt ELEV) for Garzione et al. (2000) stream water datasets from Matsuura and Wilmott climate datasets (http://climate.geog.udel.edu/~climate/) using reported geographic coordinates. Both sample site are listed. Only precipitation-weighted hypsometric mean basin elevations are listed for Hren et al. (2009) stream and tributary samples. See references cited in the Liu et al. (2008) precipitation dataset for additional information on precipitation δ^{18} O values and original references. Sites marked with an asterisk (*) in the Himalaya-S. Tibet subregion were also analyzed as part of a Himalaya-only statistical analysis. Subregion Table A2.2 Notes – Modern precipitation and stream water δ^{10} data for east Asia compiled from various sources (see 'Keterence' column). Weighted mean annual δ^{18} O values were provided in original data sources. For sites with no reported climate values, MAT and MAP were extracted designations 'NS' = no subregion. However, NS sites were included in the full regional analysis.

Table A4.1	- De	strital zirco	n U-Pl	b analyses					ľ									
			1			Isotopic Rati	0			I			Apparent	t Age (Ma)			Best Age	(Ma)
Analysis	∩ (maa)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	Ŧ (%)	²⁰⁷ Pb/ ²³⁵ U	Ŧ (70)	²⁰⁶ Pb ^{/238} U	Ŧ (70)	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+ +	²⁰⁶ Pb/ ²⁰⁷ Pb	+ +	Age	+I
	(iiidd)				(0/)		(0/)		(0/)					(IVIG)		(IVIG)		
KR-09-01-1	448	4062	2.1	20.8408	9.4	0.0960	9.4	0.0145	1.0	0.11	92.9	0.9	93.1	8.4	98.4	222.2	92.9	0.9
KR-09-01-2	229	3902	0.9	20.9816	11.3	0.1505	11.3	0.0229	1.2	0.11	146.0	1.8	142.3	15.0	82.4	268.0	146.0	1.8
KR-09-01-3	318	4536	1.2	20.6465	6.9	0.1529	7.0	0.0229	1.3	0.19	145.9	1.9	144.4	9.5	120.5	162.8	145.9	1.9
KR-09-01-4	238	3856	9.0	21.1475	13.2	0.1547	13.3	0.0237	1.7	0.13	151.2	2.6	146.1	18.2	63.8	316.3	151.2	2.6
KR-09-01-5	238	4394	1.0	22.6628	10.1	0.1408	10.3	0.0231	2.3	0.22	147.4	3.3	133.7	13.0	-103.7	248.6	147.4	3.3
KR-09-01-6	68	523	2.5	-2091.9308	1618.0	-0.0015	1618.0	0.0226	2.9	0.00	144.0	4.1	-1.5	-24.5	0.0	0.0	144.0	4.1
KR-09-01-7	683	7952	1.4	20.6761	4.8	0.1807	5.1	0.0271	1.7	0.33	172.3	2.9	168.6	8.0	117.2	114.0	172.3	2.9
KR-09-01-8	514	4067	1.1	21.5078	4.8	0.1452	5.2	0.0226	1.9	0.36	144.4	2.7	137.7	6.7	23.4	115.9	144.4	2.7
KR-09-01-9	155	1245	3.5	30.8955	17.7	0.0987	17.9	0.0221	2.4	0.13	141.0	3.3	95.5	16.3	-931.5	519.9	141.0	3.3
KR-09-01-10	403	2217	2.8	24.7605	14.5	0.0887	14.7	0.0159	2.4	0.16	101.9	2.5	86.3	12.2	-326.1	375.1	101.9	2.5
KR-09-01-11	477	6232	0.8	20.9705	8.4	0.1500	9.1	0.0228	3.4	0.38	145.4	4.9	141.9	12.0	83.7	199.5	145.4	4.9
KR-09-01-13	430	6862	0.8	19.6832	6.3	0.1821	6.4	0.0260	1.3	0.20	165.5	2.1	169.9	10.0	232.0	144.6	165.5	2.1
KR-09-01-14	127	2376	1.3	48.3313	167.1	0.0389	167.2	0.0136	3.4	0.02	87.4	3.0	38.8	63.7	-2489.2	0.0	87.4	3.0
KR-09-01-15	314	4926	1.2	20.5639	13.0	0.1392	13.2	0.0208	2.0	0.16	132.4	2.7	132.3	16.3	130.0	306.9	132.4	2.7
KR-09-01-16	287	1814	1.3	25.1508	12.3	0.0854	12.6	0.0156	2.5	0.20	99.7	2.5	83.2	10.1	-366.5	320.5	99.7	2.5
KR-09-01-17	1044	6457	4.1	21.3154	5.4	0660.0	5.5	0.0153	0.8	0.15	97.9	0.8	95.9	5.0	44.9	130.1	97.9	0.8
KR-09-01-18	534	5492	1.1	20.6315	3.6	0.1838	3.8	0.0275	1.3	0.34	174.9	2.2	171.3	6.0	122.3	85.1	174.9	2.2
KR-09-01-19	507	2514	1.5	23.3050	8.7	0.0880	8.8	0.0149	1.6	0.18	95.2	1.5	85.6	7.2	-172.8	216.4	95.2	1.5
KR-09-01-20	1030	8849	1.5	20.9528	2.6	0.1760	4.3	0.0268	3.4	0.79	170.2	5.7	164.6	6.5	85.7	62.2	170.2	5.7
KR-09-01-21	142	2332	0.9	17.9170	17.7	0.1666	19.5	0.0216	8.3	0.42	138.1	11.3	156.5	28.4	444.9	396.5	138.1	11.3
KR-09-01-22	1171	16811	0.9	20.4113	2.3	0.1549	3.5	0.0229	2.6	0.75	146.1	3.8	146.2	4.8	147.4	54.6	146.1	3.8
KR-09-01-23	173	1695	1.7	23.9785	21.2	0.0884	21.2	0.0154	2.0	0.09	98.4	1.9	86.0	17.5	-244.4	539.8	98.4	1.9
KR-09-01-24	384	6632	1.4	23.0059	5.5	0.1347	5.9	0.0225	2.0	0.34	143.3	2.8	128.3	7.1	-140.8	137.0	143.3	2.8
KR-09-01-25	413	9694	0.8	22.3382	12.1	0.1346	12.2	0.0218	1.8	0.15	139.1	2.5	128.2	14.7	-68.3	296.2	139.1	2.5
KR-09-01-26	575	6730	1.6	20.3621	3.5	0.1835	3.9	0.0271	1.7	0.45	172.3	3.0	171.0	6.1	153.1	81.9	172.3	3.0
KR-09-01-27	453	2897	0.9	23.3920	9.2	0.0878	9.3	0.0149	1.6	0.17	95.3	1.5	85.4	7.7	-182.1	230.4	95.3	1.5
KR-09-01-28	210	1584	2.4	25.4763	14.5	0.0813	14.6	0.0150	1.9	0.13	96.1	1.8	79.4	11.1	-399.9	378.7	96.1	1.8
KR-09-01-29	33	331	1.8	14.6025	114.0	0.1784	114.1	0.0189	4.9	0.04	120.6	5.8	166.6	177.2	883.2	482.6	120.6	5.8
KR-09-01-30	526	3622	1.6	22.2657	10.9	0.0861	11.0	0.0139	1.1	0.10	89.0	1.0	83.8	8.8	-60.4	266.9	89.0	1.0
KR-09-01-31	116	1657	1.8	16.3073	52.1	0.1190	52.1	0.0141	2.6	0.05	90.1	2.3	114.1	56.4	650.5	1200.4	90.1	2.3
KR-09-01-32	341	8302	0.9	21.9373	8.6	0.1663	8.8	0.0265	2.0	0.23	168.4	3.4	156.2	12.8	-24.3	208.3	168.4	3.4
KR-09-01-33	218	2754	1.5	29.2562	31.5	0.0728	31.5	0.0154	2.2	0.07	98.8	2.2	71.3	21.7	-775.0	905.6	98.8	2.2
KR-09-01-34	186	2013	1.6	29.4060	36.8	0.0708	36.8	0.0151	2.6	0.07	96.6	2.4	69.4	24.7	-789.4	1069.7	96.6	2.4
KR-09-01-35	479	5531	2.0	25.0877	19.7	0.0784	20.1	0.0143	3.7	0.19	91.3	3.4	76.7	14.8	-360.0	514.8	91.3	3.4
KR-09-01-36	153	2072	0.9	25.0150	19.3	0.1256	19.8	0.0228	4.7	0.24	145.2	6.8	120.1	22.5	-352.5	501.9	145.2	6.8
KR-09-01-37	124	1796	3.5	47.6463	78.1	0.0622	78.1	0.0215	2.9	0.04	137.2	4.0	61.3	46.5	-2429.3	771.2	137.2	4.0
KR-09-01-38	370	3268	1.5	21.9051	6.8	0.0978	7.0	0.0155	1.4	0.20	99.4	1.4	94.7	6.3	-20.7	164.9	99.4	1.4
KR-09-01-39	901	5564	4.8	21.7064	5.7	0.0989	6.0	0.0156	1.7	0.29	99.5	1.7	95.7	5.5	1.2	137.8	99.5	1.7
KR-09-01-40	197	1912	1.5	24.4325	13.6	0.1315	14.1	0.0233	3.4	0.24	148.5	5.0	125.5	16.6	-292.0	349.4	148.5	5.0
KR-09-01-41	1295	20633	0.9	20.3709	1.8	0.1787	2.5	0.0264	1.7	0.68	168.0	2.8	167.0	3.9	152.1	43.3	168.0	2.8
KR-09-01-42	383	6014	1.1	19.8980	6.4	0.1593	6.7	0.0230	2.2	0.32	146.5	3.1	150.1	9.4	206.9	148.5	146.5	3.1
KR-09-01-43	238	3206	1.8	22.9789	11.1	0.1386	11.2	0.0231	1.6	0.14	147.2	2.3	131.8	13.9	-137.8	276.2	147.2	2.3

Table A4.1 - Detrital zircon U-Pb analy	ŝ
Table A4.1 - Detrital zircon U-Pb a	nal
Table A4.1 - Detrital zircon U-Pb	ติ
Table A4.1 – Detrital zircon U-	ď
Table A4.1 - Detrital zircon	⇒
Table A4.1 - Detrital	zircon
Table A4.1 – D	etrital
Table A4.1	
Table	A4.1
	able.

ital	zircon U	-Pb analyse	SS											,		
				Isotopic Ratic	0			I			Apparen	t Age (Ma)			Best Ag	e (Ma)
/ ²⁰⁴ Pb U/Th	ے	²⁰⁶ Pb/ ²⁰⁷ Pb	± (%)	²⁰⁷ Pb/ ²³⁵ U	± (%)	²⁰⁶ Pb ^{/238} U	± (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+I
21 1.4		20.0465	6.0	0.1888	6.1	0.0274	1.3	0.20	174.5	2.2	175.6	6.6	189.6	139.5	174.5	2.2
474 1.1		20.1138	1.9	0.1619	2.4	0.0236	1.5	0.61	150.5	2.2	152.4	3.5	181.8	45.4	150.5	2.2
02 1.5		25.2640	16.4	0.0871	16.6	0.0160	2.7	0.16	102.0	2.7	84.8	13.5	-378.1	427.3	102.0	2.7
777 1.5		20.5328	3.7	0.1045	4.3	0.0156	2.1	0.49	99.5	2.1	100.9	4.1	133.5	87.6	99.5	2.1
743 1.2		13.2325	1.3	1.9405	2.4	0.1862	2.1	0.85	1101.0	20.9	1095.2	16.2	1083.7	25.5	1083.7	25.5
161 3.2		22.5886	8.3	0.0947	8.4	0.0155	1.4	0.16	99.3	1.4	91.9	7.4	-95.6	204.4	99.3	1.4
338 1.0	_	20.6929	2.5	0.1578	2.7	0.0237	1.2	0.44	150.9	1.8	148.8	3.8	115.3	58.0	150.9	1.8
05 0.7		19.9072	21.7	0.1648	21.8	0.0238	1.5	0.07	151.6	2.2	154.9	31.3	205.8	508.9	151.6	2.2
92 2.3		19.0168	6.66	0.1603	100.1	0.0221	5.4	0.05	141.0	7.5	151.0	141.3	310.9	N/A	141.0	7.5
07 1.3		19.2768	62.4	0.1143	62.9	0.0160	7.2	0.11	102.2	7.3	109.9	65.6	280.0	1587.5	102.2	7.3
125 2.7		5.9424	177.4	0.3469	177.5	0.0150	5.9	0.03	95.7	5.6	302.4	501.2	2540.6	313.8	2540.6	313.8
59 1.8		28.9963	40.3	0.0716	40.6	0.0151	4.8	0.12	96.3	4.6	70.2	27.5	-749.9	1169.3	96.3	4.6
28 1.3		16.5658	118.4	0.1238	118.5	0.0149	4.0	0.03	95.1	3.8	118.5	133.2	616.7	709.0	95.1	3.8
42 1.9	_	20.1835	6.2	0.1600	6.5	0.0234	1.8	0.27	149.3	2.6	150.7	9.1	173.7	145.6	149.3	2.6
1.5		22.8210	42.5	0.1366	42.6	0.0226	2.7	0.06	144.1	3.8	130.0	52.0	-120.8	1092.8	144.1	3.8
84 0.8		22.0128	10.4	0.1609	10.6	0.0257	1.8	0.17	163.5	3.0	151.5	14.9	-32.6	253.1	163.5	3.0
04 1.8		24.4634	26.3	0.0847	26.7	0.0150	4.2	0.16	96.2	4.0	82.6	21.2	-295.2	682.3	96.2	4.0
87 1.7		26.9524	35.8	0.0748	35.8	0.0146	1.7	0.05	93.5	1.6	73.2	25.3	-549.1	988.1	93.5	1.6
99 2.3		21.8743	19.8	0.1420	19.9	0.0225	2.0	0.10	143.6	2.8	134.8	25.1	-17.3	483.3	143.6	2.8
1.9	_	23.4301	21.5	0.1399	21.6	0.0238	1.7	0.08	151.5	2.6	133.0	26.9	-186.2	543.3	151.5	2.6
64 0.9	-	21.5467	11.2	0.1515	11.2	0.0237	0.5	0.04	150.9	0.7	143.3	15.0	19.0	270.1	150.9	0.7
126 5.2		20.3626	6.8	0.1636	7.2	0.0242	2.3	0.32	153.9	3.5	153.9	10.2	153.1	158.9	153.9	3.5
1.3 1.3		24.1434	17.2	0.1303	17.3	0.0228	1.5	0.09	145.5	2.2	124.4	20.2	-261.7	439.1	145.5	2.2
1.5 1.5		21.0072	12.1	0.1514	12.5	0.0231	2.9	0.24	147.0	4.3	143.1	16.7	79.6	288.9	147.0	4.3
137 2.4		20.4940	18.1	0.1022	18.1	0.0152	0.5	0.03	97.2	0.4	98.8	17.0	138.0	428.1	97.2	0.4
16 1.2		22.1402	11.6	0.1504	11.8	0.0241	1.7	0.15	153.8	2.6	142.2	15.6	-46.6	283.5	153.8	2.6
514 2.4		20.9909	3.7	0.0979	3.9	0.0149	1.2	0.32	95.4	1.2	94.8	3.6	81.4	88.4	95.4	1.2
1.1 1.1		20.6582	21.6	0.1425	21.7	0.0213	1.8	0.09	136.2	2.5	135.2	27.4	119.2	514.2	136.2	2.5
1.1		23.6339	16.0	0.1240	16.1	0.0213	2.0	0.12	135.6	2.7	118.7	18.1	-207.9	404.0	135.6	2.7
33 2.4		23.2265	26.1	0.0898	26.1	0.0151	2.0	0.08	96.8	1.9	87.4	21.9	-164.5	658.0	96.8	1.9
1.5		21.4448	4.5	0.1450	4.9	0.0226	2.0	0.40	143.8	2.8	137.5	6.3	30.4	107.7	143.8	2.8
38 2.4		15.0457	35.3	0.1380	35.7	0.0151	5.6	0.16	96.3	5.3	131.2	44.0	821.1	759.7	96.3	5.3
49 2.0		23.6322	20.1	0.0856	20.3	0.0147	2.7	0.14	93.9	2.6	83.4	16.2	-207.7	507.9	93.9	2.6
61 1.8		29.7899	27.3	0.0698	27.4	0.0151	2.4	0.09	96.5	2.3	68.5	18.1	-826.3	789.2	96.5	2.3
39 1.6		37.5667	41.4	0.0501	41.4	0.0137	1.7	0.04	87.4	1.4	49.7	20.1	-1542.7	1437.8	87.4	1. 4.
33 1.7		13.5129	121.0	0.2376	121.1	0.0233	2.5	0.02	148.4	3.7	216.5	240.4	1041.5	416.9	148.4	3.7
93 1.5		20.6433	9.5	0.0902	9.9	0.0135	2.9	0.29	86.5	2.5	87.7	8.3	120.9	223.8	86.5	2.5
1.7 1.7		24.4636	19.4	0.0831	19.6	0.0147	2.6	0.13	94.3	2.4	81.0	15.2	-295.2	499.2	94.3	2.4
58 1.4		15.9685	79.3	0.2094	79.5	0.0242	6.3	0.08	154.4	9.6	193.0	140.7	695.5	2098.1	154.4	9.6
85 1.7		20.8523	5.4	0.1707	5.6	0.0258	1.6	0.28	164.3	2.6	160.1	8.3	97.1	127.1	164.3	2.6
38 2.6		20.8044	15.8	0.0966	16.1	0.0146	2.9	0.18	93.3	2.7	93.7	14.4	102.6	376.6	93.3	2.7
741 1.3		20.9161	4.1	0.1741	5.8	0.0264	4.1	0.71	168.1	6.8	163.0	8.7	89.9	96.0	168.1	6.8

Š
anal
dU
zircon
Detrital
<u> </u>
A4.1
Table

Table A4.1	1 – De	trital zirco	n U-P	b analyses														
						Isotopic Ratic	0						Apparent	t Age (Ma)			Best Age	(Ma)
Analysis	D	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	нŞ	²⁰⁷ Pb/ ²³⁵ U	+ ŝ	²⁰⁶ Pb ^{/238} U	+ á	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	Ŧ	Age	+1
	(mqq)				(%)		(%)		(%)			(Ma)		(Ma)		(Ma)		
KR-09-01-88	1067	15311	1.2	18.9667	9.9	0.1926	11.5	0.0265	5.8	0.50	168.6	9.6	178.9	18.8	316.9	225.4	168.6	9.6
KR-09-01-89	126	2271	2.0	24.2429	13.2	0.1256	13.2	0.0221	1.1	0.08	140.8	1.5	120.2	15.0	-272.2	336.8	140.8	1.5
KR-09-01-90	487	4213	1.7	21.4728	6.4	0.0915	6.6	0.0142	1.7	0.26	91.2	1.6	88.9	5.6	27.3	152.8	91.2	1.6
KR-09-01-91	102	1661	2.5	28.4256	34.1	0.1043	34.2	0.0215	3.1	0.09	137.2	4.2	100.8	32.8	-694.4	968.2	137.2	4.2
KR-09-01-92	288	4476	1.5	20.3273	12.8	0.1029	12.9	0.0152	1.2	0.09	97.0	1.1	99.4	12.2	157.1	301.1	97.0	1.1
KR-09-01-94	544	14648	1.5	19.7198	7.7	0.1866	8.3	0.0267	3.1	0.37	169.8	5.1	173.8	13.3	227.7	178.4	169.8	5.1
KR-09-01-95	336	5213	2.2	21.1394	11.3	0.1504	11.7	0.0231	3.1	0.26	147.0	4.5	142.3	15.6	64.7	270.5	147.0	4.5
KR-09-01-96	834	7784	1.8	21.6421	5.5	0.0890	5.8	0.0140	1.9	0.32	89.4	1.7	86.6	4.8	8.4	133.0	89.4	1.7
KR-09-01-97	162	3681	2.3	21.2764	16.0	0.1403	16.3	0.0216	2.6	0.16	138.0	3.5	133.3	20.3	49.2	385.3	138.0	3.5
KR-09-01-98	241	4007	1.7	20.8429	15.1	0.1383	15.2	0.0209	1.8	0.12	133.4	2.4	131.5	18.7	98.2	358.8	133.4	2.4
KR-09-01-99	390	3544	1.8	21.9348	11.6	0.0932	11.8	0.0148	2.0	0.17	94.9	1.9	90.5	10.2	-24.0	281.3	94.9	1.9
KR-09-01-100	835	17251	1.5	19.3443	2.6	0.2900	4.0	0.0407	3.1	0.77	257.1	7.7	258.6	9.1	271.9	58.5	257.1	7.7
KR-09-02-2	283	5599	1.6	19.6133	6.3	0.1900	6.5	0.0270	1.6	0.25	171.9	2.8	176.6	10.5	240.2	144.4	171.9	2.8
KR-09-02-3	443	7607	0.9	21.5372	5.4	0.1443	5.7	0.0225	1.7	0.30	143.7	2.4	136.9	7.3	20.1	130.3	143.7	2.4
KR-09-02-4	170	2249	2.1	22.1373	19.5	0.1003	19.6	0.0161	2.1	0.11	103.0	2.2	97.1	18.1	-46.3	477.3	103.0	2.2
KR-09-02-5	521	3775	3.3	17.5064	19.5	0.1783	20.3	0.0226	5.8	0.28	144.3	8.2	166.6	31.2	496.2	433.2	144.3	8.2
KR-09-02-6	208	4370	1.4	21.4934	11.3	0.1614	11.3	0.0252	1.3	0.12	160.2	2.1	151.9	16.0	25.0	270.7	160.2	2.1
KR-09-02-7	182	7730	1.4	19.7745	12.2	0.1980	12.3	0.0284	1.4	0.12	180.5	2.5	183.4	20.7	221.3	283.6	180.5	2.5
KR-09-02-8	241	4112	1.3	23.7099	10.6	0.1476	10.9	0.0254	2.3	0.21	161.6	3.6	139.8	14.2	-216.0	267.4	161.6	3.6
KR-09-02-9	81	2064	1.4	21.3135	23.3	0.1565	23.4	0.0242	2.1	0.09	154.1	3.2	147.6	32.1	45.1	562.9	154.1	3.2
KR-09-02-10	171	2884	1.2	20.4510	16.0	0.1510	16.1	0.0224	1.3	0.08	142.8	1.8	142.8	21.4	142.9	377.8	142.8	1.8
KR-09-02-11	77	2000	1.0	14.2221	87.7	0.2086	88.0	0.0215	6.6	0.08	137.2	9.0	192.4	155.4	937.5	261.9	137.2	9.0
KR-09-02-12	133	1249	1.4	19.6718	36.9	0.1479	37.6	0.0211	7.2	0.19	134.7	9.6	140.1	49.2	233.3	879.0	134.7	9.6
KR-09-02-13	400	4651	1.4	20.9722	8.7	0.1046	9.0	0.0159	2.2	0.25	101.7	2.2	101.0	8.7	83.5	207.8	101.7	2.2
KR-09-02-14	261	5177	1.6	23.8019	11.7	0.1337	11.7	0.0231	1.1	0.09	147.1	1.6	127.4	14.1	-225.7	295.3	147.1	1.6
KR-09-02-15	68	2147	3.3	22.2789	37.8	0.2255	37.9	0.0364	2.2	0.06	230.7	4.9	206.5	70.9	-61.8	952.7	230.7	4.9
KR-09-02-16	496	7616	2.5	21.7803	7.7	0.0993	7.9	0.0157	1.7	0.21	100.3	1.6	96.1	7.2	-6.9	186.3	100.3	1.6
KR-09-02-17	92	3165	2.2	19.8133	13.0	0.2739	13.3	0.0394	2.9	0.22	248.9	7.1	245.8	29.1	216.8	301.8	248.9	7.1
KR-09-02-18	171	3854	2.0	20.3866	9.8	0.1510	10.0	0.0223	2.3	0.23	142.4	3.2	142.8	13.4	150.3	229.8	142.4	3.2
KR-09-02-19	36	1287	2.5	1.5319	1921.3	3.1004	1921.3	0.0344	4.0	00.00	218.3	8.6	1432.8	N/A	0.0	469.0	218.3	8.6
KR-09-02-21	236	7942	2.9	13.6591	7.4	0.6099	10.6	0.0604	7.6	0.72	378.2	28.0	483.5	40.8	1019.8	149.1	378.2	28.0
KR-09-02-22	38	351	2.0	2.6335	1033.2	0.6136	1033.2	0.0117	4.4	0.00	75.1	3.3	485.8	N/A	3830.6	415.6	3830.6	415.6
KR-09-02-22	77	1306	2.5	23.7968	37.2	0.0887	37.3	0.0153	2.1	0.06	97.9	2.0	86.3	30.9	-225.2	966.6	97.9	2.0
KR-09-02-24	134	3174	1.3	23.8196	21.4	0.1610	21.5	0.0278	1.4	0.06	176.8	2.4	151.5	30.3	-227.6	545.5	176.8	2.4
KR-09-02-25	374	4544	1.7	24.6218	10.1	0.0783	10.3	0.0140	1.7	0.16	89.5	1.5	76.5	7.6	-311.7	260.5	89.5	1.5
KR-09-02-27	105	3003	1.9	21.9792	20.5	0.1424	20.6	0.0227	2.1	0.10	144.7	3.0	135.2	26.1	-28.9	501.8	144.7	3.0
KR-09-02-28	163	3706	0.7	20.8143	12.9	0.1697	12.9	0.0256	1.0	0.07	163.1	1.5	159.2	19.0	101.4	305.0	163.1	1.5
KR-09-02-29	133	2894	2.1	23.4212	11.6	0.1345	11.8	0.0228	1.9	0.16	145.6	2.7	128.1	14.2	-185.3	291.6	145.6	2.7
KR-09-02-30	200	6250	3.1	20.9775	8.9	0.2303	10.9	0.0350	6.4	0.59	222.0	14.1	210.4	20.8	82.9	210.4	222.0	14.1
KR-09-02-31	239	10837	1.6	21.5943	7.1	0.1657	7.6	0.0259	2.8	0.37	165.1	4.6	155.7	11.0	13.7	170.0	165.1	4.6
KR-09-02-32	78	2634	1.0	20.8494	33.2	0.1370	34.2	0.0207	8.5	0.25	132.2	11.1	130.4	41.9	97.4	804.7	132.2	11.1
KR-09-02-33	179	3613	1.2	23.1989	17.7	0.1346	17.7	0.0226	0.9	0.05	144.3	1.3	128.2	21.4	-161.5	443.5	144.3	1.3

÷.
anal
U-Pb
zircon
Detrital
<u> </u>
A4.
Table

1 - D	etrital zircc	JH-U NC	b analyses					ľ								ı	
		I			Isotopic Ratic				I			Apparen	t Age (Ma)			Best Ag	e (Ma)
(mqq)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	± (%)	²⁰⁷ Pb/ ²³⁵ U	± (%)	²⁰⁶ Pb ^{/238} U	± (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+I
80	1687	12	26.1176	46.3	0.1135	46.4	0.0215	3.0	0.07	137.2	4.1	109.2	48.1	-465.2	1283.6	137.2	4.1
125	3648	4.1	24.4171	19.8	0.1680	19.8	0.0298	0.9	0.04	189.0	1.6	157.7	29.0	-290.4	509.6	189.0	1.6
93	2068	1.5	26.5533	26.0	0.1107	26.1	0.0213	2.8	0.11	136.0	3.8	106.6	26.4	-509.1	701.8	136.0	3.8
214	6801	1.0	21.4475	7.4	0.1808	8.6	0.0281	4.5	0.52	178.8	7.9	168.8	13.4	30.1	176.7	178.8	7.9
110	2403	0.8	33.2832	56.3	0.0942	56.3	0.0227	1.8	0.03	144.9	2.6	91.4	49.3	-1154.3	1852.3	144.9	2.6
525	10729	4.	20.6909	7.6	0.1385	8.7	0.0208	4.4	0.50	132.6	5.8	131.7	10.8	115.5	178.5	132.6	5.8
68	2726	1.8	26.1099	24.2	0.1962	24.4	0.0372	3.2	0.13	235.2	7.4	181.9	40.7	-464.4	648.2	235.2	7.4
191	6121	1.1	19.3168	12.0	0.1928	12.2	0.0270	1.7	0.14	171.8	2.8	179.0	20.0	275.2	276.8	171.8	2.8
138	2650	2.0	21.3722	18.4	0.1441	18.5	0.0223	1.7	0.09	142.4	2.5	136.7	23.6	38.5	443.6	142.4	2.5
325	6741	2.4	24.3752	8.7	0.1283	9.0	0.0227	2.3	0.26	144.6	3.3	122.6	10.4	-286.0	222.6	144.6	3.3
95	2284	2.0	20.3678	37.3	0.1522	37.4	0.0225	2.8	0.07	143.3	4.0	143.8	50.2	152.5	901.8	143.3	4.0
92	812	1.4	26.0670	21.5	0.1163	21.7	0.0220	2.9	0.14	140.2	4.1	111.7	23.0	-460.1	572.7	140.2	4.1
413	4337	1.4	21.0075	12.6	0.0846	13.1	0.0129	3.5	0.27	82.6	2.9	82.5	10.4	79.5	301.2	82.6	2.9
461	6246	1.5	19.7370	4.7	0.1066	4.9	0.0153	1.4	0.29	97.6	1.4	102.8	4.8	225.7	108.3	97.6	4.
65	1277	1.4	14.2406	86.2	0.2095	86.3	0.0216	2.2	0.03	138.0	3.0	193.1	152.8	934.8	2388.5	138.0	3.0
651	7798	1.9	20.5619	5.3	0.0950	5.5	0.0142	1.7	0.31	90.6	1.5	92.1	4.9	130.2	123.7	90.6	1.5
53	1017	0.9	26.3184	27.9	0.1266	28.0	0.0242	3.0	0.11	154.0	4.5	121.1	32.0	-485.5	751.7	154.0	4.5
351	10132	1.6	20.2213	4.8	0.1585	5.1	0.0232	1.5	0.31	148.1	2.3	149.4	7.0	169.3	112.5	148.1	2.3
346	5097	0.5	19.7332	13.5	0.1078	13.7	0.0154	2.2	0.16	98.7	2.2	103.9	13.5	226.1	313.3	98.7	2.2
86	2971	2.8	19.8212	13.6	0.2618	13.8	0.0376	2.6	0.19	238.1	6.0	236.1	29.2	215.8	316.3	238.1	6.0
335	3992	1.3	24.2634	16.7	0.0789	17.7	0.0139	5.9	0.33	88.8	5.2	77.1	13.1	-274.3	426.3	88.8	5.2
116	2601	0.9	24.6179	28.2	0.1163	28.3	0.0208	2.1	0.07	132.5	2.7	111.7	30.0	-311.3	735.7	132.5	2.7
530	6438	2.5	20.4844	7.3	0.0947	8.3	0.0141	4.0	0.48	90.1	3.6	91.9	7.3	139.1	170.5	90.1	3.6
947	9529	3.9	21.1221	5.7	0.0977	5.9	0.0150	1.4	0.23	95.8	1.3	94.7	5.3	66.6	136.3	95.8	1.3
409	5153	1.7	21.5665	12.8	0.1002	12.9	0.0157	1.1	0.08	100.3	1.0	97.0	11.9	16.8	309.8	100.3	1.0
166	1869	2.3	22.9422	58.0	0.0819	58.4	0.0136	6.1	0.10	87.2	5.3	79.9	44.9	-133.9	1559.8	87.2	5.3
73	961	2.8	14.8629	31.1	0.1412	31.3	0.0152	3.5	0.11	97.4	3.4	134.1	39.4	846.5	662.7	97.4	3.4
252	5330	1.6	22.0472	10.2	0.1398	10.4	0.0224	2.2	0.21	142.5	3.1	132.9	13.0	-36.4	248.2	142.5	3.1
246	6296	1.7	21.1249	6.6	0.2022	6.7	0.0310	1.2	0.17	196.7	2.3	187.0	11.5	66.3	158.3	196.7	2.3
251	4999	1.1	21.1906	11.5	0.1702	11.9	0.0262	3.0	0.25	166.5	4.9	159.6	17.5	58.9	274.6	166.5	4.9
199	5225	0.7	20.6045	10.9	0.1534	11.2	0.0229	2.8	0.25	146.1	4.0	144.9	15.1	125.3	256.6	146.1	4.0
729	17740	1.4	19.8990	2.5	0.2021	3.3	0.0292	2.2	0.66	185.4	4.0	186.9	5.7	206.8	58.3	185.4	4.0
104	1826	0.8	45.9817	35.2	0.0663	35.2	0.0221	1.2	0.03	141.0	1.6	65.2	22.3	-2283.7	412.8	141.0	1.6
252	4267	1.4	21.7686	10.7	0.1435	10.8	0.0227	1.6	0.15	144.4	2.3	136.1	13.7	-5.6	257.9	144.4	2.3
167	5551	1.8	20.2358	9.5	0.2790	9.5	0.0409	1.1	0.11	258.7	2.7	249.9	21.1	167.7	221.8	258.7	2.7
96	3690	4.1	22.8385	28.2	0.2243	28.3	0.0371	2.4	0.08	235.1	5.4	205.4	52.7	-122.7	708.4	235.1	5.4
260	3452	2.0	29.1078	28.5	0.0735	28.5	0.0155	1.2	0.04	99.2	1.2	72.0	19.8	-760.7	814.6	99.2	1.2
170	4232	1.8	21.1751	13.8	0.1670	14.5	0.0256	4.4	0.30	163.3	7.1	156.8	21.1	60.7	330.4	163.3	7.1
103	1743	1.1	21.4008	24.0	0.1456	24.1	0.0226	1.6	0.07	144.0	2.3	138.0	31.1	35.3	582.7	144.0	2.3
329	7392	1.6	21.2013	4.3	0.1773	4.6	0.0273	1.6	0.35	173.4	2.8	165.8	7.1	57.7	103.2	173.4	2.8
141	3613	1.6	22.3301	10.3	0.1885	10.5	0.0305	2.1	0.20	193.9	4.0	175.4	17.0	-67.4	253.0	193.9	4.0
77	1648	13	31.6517	30.8	0.1129	30.9	0.0259	2.4	0.08	165.0	3.9	108.6	31.9	-1002.6	931.7	165.0	3.9

š.
analy
U-Pb
zircon
Detrital
Т
A4.1
Table

1.3 0.12 1738 2.3 147.6 15.8 -26 3.6 0.21 162.9 5.7 141.4 22.2 -20 4.0 0.80 88.5 3.5 89.7 4.3 12 1.4 0.21 251.1 3.4 246.2 14.3 16 2.0 0.13 149.2 2.9 132.2 19.5 -16 2.0 0.12 148.4 2.9 142.1 21.1 3
1.3 0.12 173.8 2.3 147.6 3.6 0.21 162.9 5.7 141.4 4.0 0.80 88.5 3.5 89.7 1.4 0.21 251.1 3.4 246.2 2.0 0.13 149.2 2.9 132.2 2.0 0.13 148.4 2.9 132.2
1.3 0.12 173.8 2.3 3.6 0.21 162.9 5. 4.0 0.80 88.5 3. 1.4 0.21 251.1 3. 2.0 0.13 149.2 2. 2.0 0.12 148.4 2.
3.6 0.21 4.0 0.80 1.4 0.21 2.0 0.13 2.0 0.13
.0 0.0138 .6 0.0397 .7 0.0234 .9 0.0233
.4 0.2744 6.6 0.0 .6 0.1391 15.7 0.0 .8 0.1503 15.9 0.0
23.2076 15.6 21.3750 15.8
1.0
2

Table A4.1	I Dei	trital zirco	n U-Pi	b analyses													,	
			I			Isotopic Ratio				ļ			Apparen	it Age (Ma)			Best Ag	e (Ma)
Analysis	U (maa)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	+ (%)	²⁰⁷ Pb/ ²³⁵ U	+ (%)	²⁰⁶ Pb ^{/238} U	Ŧ (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+I
SE-09-02-23	209	2030	2.1	25.8004	19.0	0.1226	19.1	0.0229	2.0	0.10	146.3	2.9	117.5	21.2	-433.0	502.6	146.3	2.9
SE-09-02-24	274	2055	1.8	25.1523	12.1	0.0907	12.2	0.0166	1.6	0.13	105.8	1.6	88.2	10.3	-366.6	314.5	105.8	1.6
SE-09-02-25	208	2338	1.5	23.2980	14.5	0.1350	14.7	0.0228	2.2	0.15	145.4	3.2	128.6	17.8	-172.1	364.0	145.4	3.2
SE-09-02-27	362	2934	5.8	21.0712	11:2	0.1076	12.5	0.0164	5.5	0.44	105.2	5.8	103.8	12.3	72.4	267.0	105.2	5.8
SE-09-02-28	78	835	3.5	40.9147	41.6	0.0619	41.6	0.0184	0.7	0.02	117.3	0.8	61.0	24.6	-1839.6	118.5	117.3	0.8
SE-09-02-29	424	4190	3.5	22.8890	9.9	0.0960	10.1	0.0159	1.7	0.17	101.9	1.7	93.1	0.0	-128.2	246.3	101.9	1.7
SE-09-02-30	161	1636	1.5	24.2512	21.5	0.0945	21.5	0.0166	0.9	0.04	106.3	0.9	91.7	18.8	-273.0	551.3	106.3	0.9
SE-09-02-31	105	966	4.0	29.6617	31.8	0.0726	32.1	0.0156	3.9	0.12	100.0	3.8	71.2	22.1	-814.0	925.0	100.0	3.8
SE-09-02-32	126	1441	5.3	28.7433	23.4	0.0879	23.5	0.0183	2.8	0.12	117.1	3.3	85.6	19.3	-725.3	659.2	117.1	3.3
SE-09-02-33	122	1110	4.1	26.8876	23.9	0.0833	24.0	0.0162	1.5	0.06	103.9	1.6	81.2	18.7	-542.6	650.6	103.9	1.6
SE-09-02-34	262	2432	3.6	25.1556	10.3	0.0864	10.4	0.0158	1.1	0.11	100.9	1.1	84.2	8.4	-367.0	267.7	100.9	1.1
SE-09-02-35	384	3423	3.0	23.1281	9.9	0.0916	10.1	0.0154	2.1	0.21	98.3	2.1	89.0	8.6	-153.9	246.2	98.3	2.1
SE-09-02-36	139	1253	2.4	18.8012	11.5	0.1217	12.9	0.0166	5.9	0.46	106.1	6.2	116.6	14.2	336.8	260.8	106.1	6.2
SE-09-02-37	264	2450	4.2	24.7154	13.9	0.0916	14.1	0.0164	2.3	0.16	105.0	2.4	89.0	12.0	-321.5	357.7	105.0	2.4
SE-09-02-38	52	773	3.5	43.8734	50.1	0.0782	50.2	0.0249	3.0	0.06	158.5	4.7	76.5	37.0	-2099.3	9.5	158.5	4.7
SE-09-02-39	345	3206	1.7	22.3886	7.4	0.1029	7.6	0.0167	1.8	0.23	106.9	1.9	99.5	7.2	-73.8	180.9	106.9	1.9
SE-09-02-40	186	2146	2.8	25.4495	15.9	0.1027	16.0	0.0190	1.7	0.11	121.0	2.1	99.3	15.2	-397.2	417.3	121.0	2.1
SE-09-02-41	104	1126	3.2	29.5778	21.4	0.0736	21.5	0.0158	2.7	0.13	101.0	2.7	72.1	15.0	-805.9	612.4	101.0	2.7
SE-09-02-42	150	2473	2.1	22.0478	6.2	0.1560	6.5	0.0249	1.9	0.30	158.8	3.1	147.2	8.9	-36.5	150.8	158.8	3.1
SE-09-02-43	226	2448	4.5	22.2025	14.6	0.0964	14.7	0.0155	1.7	0.11	99.3	1.7	93.4	13.1	-53.5	357.4	99.3	1.7
SE-09-02-44	576	6586	4.8	22.2709	8.3	0.0926	8.8	0.0150	3.0	0.34	95.7	2.8	89.9	7.6	-61.0	202.6	95.7	2.8
SE-09-02-45	82	1057	3.4	24.0306	30.4	0.1005	30.5	0.0175	2.4	0.08	111.9	2.6	97.2	28.3	-249.8	784.0	111.9	2.6
SE-09-02-46	330	2686	3.3	23.1932	12.4	0.0946	12.4	0.0159	1.0	0.08	101.8	1.0	91.8	10.9	-160.9	308.8	101.8	1.0
SE-09-02-47	470	3675	3.6	22.2392	8.7	0.0983	8.8	0.0159	1.0	0.11	101.4	1.0	95.2	8.0	-57.5	212.6	101.4	1.0
SE-09-02-48	51	502	2.2	97.3151	116.2	0.0203	116.5	0.0143	8.4	0.07	91.5	7.6	20.4	23.5	0.0	0.0	91.5	7.6
SE-09-02-49	222	2359	3.2	20.9658	17.4	0.1304	17.5	0.0198	2.1	0.12	126.6	2.7	124.4	20.6	84.2	415.9	126.6	2.7
SE-09-02-50	175	1920	3.1	27.1588	20.3	0.0894	20.3	0.0176	0.9	0.04	112.6	1.0	87.0	16.9	-569.6	551.9	112.6	1.0
SE-09-02-52	614	5310	2.6	22.4968	5.5	0.0970	5.5	0.0158	0.8	0.14	101.2	0.8	94.0	5.0	-85.6	134.6	101.2	0.8
SE-09-02-54	230	3771	0.9	20.6374	8.7	0.1723	8.8	0.0258	1.4	0.16	164.1	2.3	161.4	13.1	121.6	204.6	164.1	2.3
SE-09-02-55	141	1550	3.4	32.0261	43.3	0.0715	43.3	0.0166	1.6	0.04	106.2	1.7	70.2	29.4	-1037.6	1344.2	106.2	1.7
SE-09-02-56	587	3442	1.7	19.9672	5.1	0.1118	5.2	0.0162	0.9	0.18	103.6	0.9	107.6	5.3	198.8	118.1	103.6	0.9
SE-09-02-57	60	759	2.3	32.4889	47.5	0.0781	47.5	0.0184	2.3	0.05	117.6	2.7	76.4	35.0	-1080.7	1502.0	117.6	2.7
SE-09-02-58	752	9110	3.9	21.6312	3.7	0.1242	4.2	0.0195	1.8	0.43	124.4	2.2	118.9	4.7	9.6	90.0	124.4	2.2
SE-09-02-59	103	1272	1.2	31.4597	24.2	0.0799	24.3	0.0182	1.8	0.08	116.5	2.1	78.1	18.3	-984.6	724.4	116.5	2.1
SE-09-02-60	245	2152	2.4	23.2008	13.0	0.1046	13.5	0.0176	3.6	0.27	112.5	4.1	101.0	13.0	-161.7	323.5	112.5	4.1
SE-09-02-61	452	5469	3.9	21.6931	5.4	0.1146	5.7	0.0180	1.8	0.31	115.2	2.0	110.2	5.9	2.7	129.7	115.2	2.0
SE-09-02-62	25	385	2.9	23.6685	146.2	0.1435	146.2	0.0246	4.3	0.03	156.9	6.7	136.2	188.5	-211.6	0.0	156.9	6.7
SE-09-02-63	397	3587	3.8	23.2896	11.2	0.0927	11.2	0.0157	0.8	0.08	100.2	0.8	90.0	9.6	-171.2	278.5	100.2	0.8
SE-09-02-64	86	676	5.1	40.8855	30.9	0.0605	31.0	0.0179	3.3	0.11	114.5	3.8	59.6	18.0	-1837.0	1132.7	114.5	3.8
SE-09-02-65	213	2207	3.1	23.6800	15.4	0.1060	15.4	0.0182	0.9	0.06	116.3	1.0	102.3	15.0	-212.8	387.7	116.3	1.0
SE-09-02-66	48	750	4.8	78.4592	75.9	0.0360	76.3	0.0205	8.2	0.11	130.8	10.6	35.9	27.0	0.0	162.1	130.8	10.6
SE-09-02-67	108	1315	2.6	11.2771	416.3	0.2009	416.3	0.0164	1.5	0.00	105.1	1.6	185.9	873.7	1397.1	0.0	105.1	1.6

Š
anal
U-Pb
zircon
Detrital
Т
A4.1
able

Table A4.1	- De	trital zirco	I-U n	b analyses														
			I			Isotopic Ratic				I			Apparen	t Age (Ma)			Best Age	(Ma)
Analysis		²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	+	²⁰⁷ Pb/ ²³⁵ U	+I	²⁰⁶ Pb ^{/238} U	+I	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	+	Age	+
	(mdd)				(%)		(%)		(%)			(Ma)		(Ma)		(Ma)		
SE-09-02-68	281	1429	2.5	26.4561	13.5	0.0894	13.5	0.0172	1.1	0.08	109.7	1.2	87.0	11.3	-499.3	360.0	109.7	1.2
SE-09-02-69	750	6049	5.3	21.8655	4.8	0.0979	5.0	0.0155	1.1	0.22	99.3	1.1	94.8	4.5	-16.4	116.8	99.3	1.1
SE-09-02-70	49	616	3.2	12.5365	119.3	0.1797	119.4	0.0163	4.0	0.03	104.5	4.1	167.8	186.7	1191.2	301.5	104.5	4.1
SE-09-02-71	240	3636	2.1	21.7302	9.1	0.1776	9.4	0.0280	2.4	0.26	177.9	4.2	166.0	14.4	-1.4	219.0	177.9	4.2
SE-09-02-73	258	3014	3.6	24.5908	11.0	0.0936	11.0	0.0167	0.9	0.08	106.7	0.9	90.8	9.6	-308.5	282.2	106.7	0.9
SE-09-02-74	241	2608	3.2	22.6374	15.0	0.0986	15.1	0.0162	0.8	0.06	103.5	0.9	95.5	13.7	-100.9	371.5	103.5	0.9
SE-09-02-74B	529	6724	2.3	20.7214	6.7	0.1075	7.4	0.0162	2.9	0.40	103.3	3.0	103.7	7.2	112.0	159.2	103.3	3.0
SE-09-02-75	620	5542	2.2	22.5761	5.7	0.0908	5.9	0.0149	4.1	0.25	95.2	1. 4	88.3	5.0	-94.3	139.7	95.2	4.1
SE-09-02-76	81	1224	4.0	19.6992	27.0	0.1261	27.2	0.0180	2.9	0.11	115.1	3.3	120.6	30.9	230.1	634.1	115.1	3.3
SE-09-02-77	157	2447	3.5	22.1068	18.6	0.1006	18.8	0.0161	2.6	0.14	103.2	2.6	97.4	17.4	-43.0	455.1	103.2	2.6
SE-09-02-78	649	8689	2.7	21.2842	3.2	0.1027	3.7	0.0159	1.8	0.49	101.4	1.8	99.3	3.5	48.4	76.3	101.4	1.8
SE-09-02-79	194	2657	3.5	21.7827	13.0	0.1386	13.2	0.0219	1.9	0.14	139.6	2.6	131.8	16.3	-7.2	315.4	139.6	2.6
SE-09-02-80	245	2989	2.7	20.7992	11.4	0.1090	11.5	0.0164	1.2	0.11	105.2	1.3	105.1	11.5	103.1	270.4	105.2	1.3
SE-09-02-81	69	1088	3.1	31.7129	34.5	0.0781	34.5	0.0180	1.9	0.05	114.8	2.1	76.3	25.4	-1008.4	1048.0	114.8	2.1
SE-09-02-83	596	8796	2.4	22.2073	7.0	0.1041	7.4	0.0168	2.4	0.33	107.2	2.6	100.6	7.1	-54.0	170.3	107.2	2.6
SE-09-02-84	82	1287	2.0	20.8497	24.5	0.1182	24.7	0.0179	2.9	0.12	114.3	3.3	113.5	26.5	97.4	587.6	114.3	3.3
SE-09-02-85	75	1191	2.1	39.1365	46.5	0.0649	46.6	0.0184	1.4	0.03	117.7	1.6	63.9	28.8	-1682.4	44.5	117.7	1.6
SE-09-02-86	110	1215	2.8	30.6574	23.2	0.0709	23.2	0.0158	1.1	0.05	100.9	1.1	69.6	15.6	-908.9	679.9	100.9	1.1
SE-09-02-87	535	5158	2.9	20.9254	6.6	0.1103	6.6	0.0167	0.8	0.11	107.0	0.8	106.2	6.7	88.8	156.2	107.0	0.8
SE-09-02-88	290	3349	2.5	21.6067	10.9	0.1057	10.9	0.0166	0.6	0.05	105.9	0.6	102.0	10.6	12.3	263.6	105.9	0.6
SE-09-02-89	185	4220	2.5	21.3084	12.8	0.1584	13.0	0.0245	2.6	0.20	155.9	4.0	149.3	18.1	45.7	305.8	155.9	4.0
SE-09-02-90	197	3168	2.8	22.2395	13.5	0.1021	13.7	0.0165	2.4	0.18	105.3	2.6	98.7	12.9	-57.5	329.9	105.3	2.6
SE-09-02-91	423	6681	2.3	21.3535	8.5	0.1058	8.6	0.0164	1.7	0.19	104.8	1.7	102.1	8.4	40.6	203.0	104.8	1.7
SE-09-02-92	560	8437	2.2	22.4571	10.5	0.1112	11.6	0.0181	5.0	0.43	115.7	5.7	107.0	11.8	-81.3	256.5	115.7	5.7
SE-09-02-93	863	8418	2.5	20.0545	6.1	0.1033	6.3	0.0150	1.6	0.26	96.2	1.6	99.8	6.0	188.6	142.6	96.2	1.6
SE-09-02-94	373	5236	1.5	21.6002	9.1	0.1031	9.2	0.0161	0.8	0.08	103.3	0.8	99.6	8.7	13.1	219.7	103.3	0.8
SE-09-02-95	282	4215	3.0	22.4768	9.4	0.1194	9.5	0.0195	1.5	0.15	124.3	1.8	114.5	10.3	-83.5	229.8	124.3	1.8
SE-09-02-96	146	2068	1.7	17.9989	20.2	0.1270	20.2	0.0166	1.4	0.07	106.0	1.5	121.4	23.2	434.8	453.8	106.0	1.5
SE-09-02-97	112	1230	2.4	26.3908	32.8	0.0922	32.9	0.0176	1.3	0.04	112.7	4.1	89.5	28.2	-492.8	893.0	112.7	1.4
SE-09-02-98	1560	30397	4.1	20.4448	2.0	0.1728	3.2	0.0256	2.5	0.78	163.1	4.0	161.8	4.8	143.6	46.3	163.1	4.0
SE-09-02-99	110	14762	4.0	12.3408	2.4	1.9169	2.4	0.1716	0.6	0.25	1020.7	5.7	1087.0	16.3	1222.2	46.5	1222.2	46.5
SE-09-02-100	64	1674	2.6	20.2040	33.7	0.1707	33.9	0.0250	3.8	0.11	159.2	6.0	160.0	50.3	171.3	807.9	159.2	6.0
SE-09-02-103	530	1587	3.2	24.5354	7.0	0.0852	7.2	0.0152	1.7	0.24	97.0	1.6	83.0	5.8	-302.7	179.6	97.0	1.6
SE-09-02-104	244	1105	2.6	32.4871	19.4	0.0640	19.4	0.0151	0.8	0.04	96.6	0.8	63.0	11.9	-1080.6	589.2	96.6	0.8
SE-09-02-105	544	1684	1.5	23.5313	7.6	0.0887	7.7	0.0151	1.3	0.17	96.9	1.2	86.3	6.4	-197.0	190.7	96.9	1.2
SE-09-02-106	286	3747	4.3	21.4456	8.2	0.1160	8.9	0.0180	3.5	0.40	115.3	4.0	111.5	9.4	30.3	196.2	115.3	4.0
SE-09-02-107	211	3840	1.9	23.4491	12.1	0.1106	12.2	0.0188	1.3	0.11	120.1	1.6	106.5	12.3	-188.2	304.2	120.1	1.6
SE-09-02-108	173	2009	1.8	18.7068	16.3	0.1251	16.5	0.0170	2.4	0.14	108.5	2.5	119.7	18.6	348.2	370.4	108.5	2.5
SE-09-02-109	224	928	2.3	13.8450	43.4	0.1623	43.6	0.0163	4.1	0.09	104.2	4.3	152.7	61.9	992.4	926.2	104.2	4.3
SE-09-02-110	78	1443	3.3	27.5488	35.6	0.0925	35.9	0.0185	4.3	0.12	118.1	5.0	89.9	30.8	-608.3	995.4	118.1	5.0
TM-09-02A-1	51	1222	2.5	11.9345	190.3	0.4027	190.4	0.0349	5.8	0.03	220.9	12.6	343.6	622.8	1287.7	639.4	220.9	12.6
TM-09-02A-2	549	7070	1.6	21.4831	8.5	0.0956	8.7	0.0149	2.0	0.23	95.3	1.9	92.7	7.7	26.1	203.8	95.3	1.9

Ś
ja j
ŝ
σ
6
Ξ
5
ğ
Zİ.
-
Ë
ř
Å
-
<u> </u>
Ξ
¥
ð
Ť
at
F

Table A4.1	- De	trital zirco	n U-Pl	b analyses														
			I			Isotopic Ratio				l			Apparent	Age (Ma)			Best Ag	: (Ma)
Analysis	(maa)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	(%)	²⁰⁷ Pb/ ²³⁵ U	∓ (%)	²⁰⁶ Pb ^{/238} U	∓ (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+I
TM-09-02A-3	82	1714	1.8	28.5181	42.8	0.1083	42.8	0.0224	5.8 1	0.07	142.9	4.0	104.4	42.6	-703.4	1234.9	142.9	4.0
TM-09-02A-4	336	3096 4408	2.2	22.8869	12.2	0.0884 0.1411	126	0.0236	α α α	71.0 0.23	93.9 150.4	0.0 6.6	80.U 134 D	18.8 15.8	-127.9 -148.2	304.2	93.9 150.4	0.0 6 9
TM-09-02A-6	48	1356	2.4	22.3469	40.3	0.2158	40.3	0.0350	, t. 4	0.04	221.7	3.2	198.4	72.8	-69.3	1020.5	221.7	3.2
TM-09-02A-7	290	6355	1.8	19.5805	9.5	0.2759	9.6	0.0392	1.0	0.10	247.8	2.4	247.4	21.0	244.0	219.4	247.8	2.4
TM-09-02A-8	160	2889	1.0	21.3349	10.8	0.1585	11.4	0.0245	3.5	0.31	156.2	5.4	149.4	15.8	42.7	259.8	156.2	5.4
TM-09-02A-9	287	2270	2.1	22.3814	18.6	0.0963	18.7	0.0156	1.3	0.07	100.0	1.3	93.4	16.6	-73.0	458.5	100.0	1.3
TM-09-02A-10	221	7848	3.1	21.6029	12.2	0.2428	12.3	0.0380	1.8	0.15	240.7	4.2	220.7	24.4	12.8	293.5	240.7	4.2
TM-09-02A-11	62	1274	2.2	17.8156	30.0	0.2643	30.8	0.0341	7.1	0.23	216.5	15.0	238.1	65.4	457.6	678.5	216.5	15.0
TM-09-02A-13	560	9924	2.8	21.4422	10.1	0.1451	10.2	0.0226	1.6	0.15	143.8	2.2	137.5	13.2	30.7	243.2	143.8	2.2
TM-09-02A-14	68	3444	2.9	22.3134	29.3	0.2342	29.5	0.0379	3.2	0.11	239.8	7.5	213.7	56.9	-65.6	729.7	239.8	7.5
TM-09-02A-15	224	6177	4.6	20.3239	18.1	0.2438	18.2	0.0359	1.7	0.09	227.6	3.7	221.6	36.1	157.5	426.0	227.6	3.7
TM-09-02A-16	544	5350	4.6	22.7797	17.9	0.0882	18.0	0.0146	1.9	0.11	93.3	1.8	85.8	14.8	-116.3	445.1	93.3	1.8
TM-09-02A-17	61	2209	3.8	6.8421	371.8	0.7279	371.9	0.0361	3.6	0.01	228.7	8.0	555.3	N/A	2301.4	530.8	2301.4	530.8
TM-09-02A-18	103	992	2.0	31.4551	80.8	0.0570	81.0	0.0130	5.7	0.07	83.2	4.7	56.2	44.4	-984.2	2881.5	83.2	4.7
TM-09-02A-19	46	1622	4.0	49.1147	88.0	0.0954	88.5	0.0340	9.7	0.11	215.4	20.5	92.5	78.4	-2557.9	1277.8	215.4	20.5
TM-09-02A-20	213	2575	3.6	23.0672	17.6	0.0915	17.6	0.0153	1.5	0.08	97.9	1.4	88.9	15.0	-147.4	438.2	97.9	1.4
TM-09-02A-21	162	5559	3.2	25.9735	29.9	0.2060	30.0	0.0388	1.9	0.06	245.4	4.5	190.2	52.0	-450.6	803.0	245.4	4.5
TM-09-02A-22	635	7236	2.8	21.3682	9.7	0.0943	9.8	0.0146	1.0	0.10	93.5	0.9	91.5	8.6	38.9	233.4	93.5	0.9
TM-09-02A-23	179	5474	2.2	20.1096	12.4	0.2630	12.5	0.0384	1.8	0.15	242.6	4.4	237.1	26.5	182.2	289.4	242.6	4.4
TM-09-02A-24	134	1704	2.1	26.3791	36.1	0.0768	37.0	0.0147	7.9	0.21	94.1	7.4	75.2	26.8	-491.6	986.7	94.1	7.4
TM-09-02A-25	111	3090	2.7	25.8238	20.3	0.2031	20.3	0.0380	1.0	0.05	240.6	2.3	187.7	34.8	-435.4	537.0	240.6	2.3
TM-09-02A-27	100	5824	1.7	24.3962	38.9	0.2049	39.0	0.0363	3.6	0.09	229.6	8.2	189.3	67.5	-288.2	1024.1	229.6	8.2
TM-09-02A-28	129	1669	1.9	42.4574	131.9	0.0428	132.1	0.0132	6.5	0.05	84.4	5.5	42.6	55.1	-1975.2	0.0	84.4	5.5
TM-09-02A-29	235	2643	1.9	20.7456	23.1	0.0844	23.5	0.0127	4.2	0.18	81.3	3.4	82.2	18.5	109.2	551.6	81.3	3.4
TM-09-02A-30	81	4266	3.6	15.9215	29.0	0.3284	29.0	0.0379	1.1	0.04	240.0	2.6	288.4	72.9	701.8	629.3	240.0	2.6
TM-09-02A-31	161	3404	2.1	22.3529	13.7	0.2323	14.0	0.0377	2.7	0.20	238.3	6.4	212.1	26.8	-69.9	336.3	238.3	6.4
TM-09-02A-32	81	1878	1.2	21.4974	42.7	0.1528	42.9	0.0238	4.3	0.10	151.7	6.4	144.3	57.8	24.5	1067.4	151.7	6.4
TM-09-02A-33	66	1788	1.6	34.0463	79.2	0.0928	79.2	0.0229	2.4	0.03	146.1	3.5	90.1	68.4	-1224.4	1119.3	146.1	3.5
TM-09-02A-34	218	6639	2.0	19.5392	13.0	0.2709	13.1	0.0384	1.5	0.12	242.9	3.7	243.4	28.3	248.9	300.3	242.9	3.7
TM-09-02A-35	85	4602	4.0	20.5921	19.8	0.2430	20.7	0.0363	6.1	0.29	229.9	13.8	220.9	41.1	126.8	469.4	229.9	13.8
TM-09-02A-36	88	3245	3.5	22.2836	26.3	0.2263	26.3	0.0366	1.7	0.07	231.6	3.9	207.1	49.4	-62.4	650.7	231.6	3.9
TM-09-02A-37	79	4718	2.4	21.3663	24.2	0.2399	24.4	0.0372	2.8	0.12	235.3	6.5	218.4	48.0	39.2	587.0	235.3	6.5
TM-09-02A-38	58	1927	3.0	23.6722	47.3	0.2124	47.3	0.0365	1.8	0.04	230.8	4.1	195.5	84.3	-212.0	1249.3	230.8	4.1
TM-09-02A-39	115	3945	1.8	21.0441	21.0	0.2502	21.0	0.0382	0.6	0.03	241.6	1.5	226.7	42.8	75.4	504.4	241.6	1.5
TM-09-02A-40	108	1894	1.6	18.3543	42.3	0.1106	42.9	0.0147	6.8	0.16	94.2	6.4	106.5	43.4	391.1	991.8	94.2	6.4
TM-09-02A-41	252	2306	2.8	18.3833	12.2	0.2880	12.2	0.0384	1.1	0.09	242.9	2.7	257.0	27.8	387.5	274.4	242.9	2.7
TM-09-02A-42	204	4873	1.6	17.2937	29.4	0.1190	29.5	0.0149	3.0	0.10	95.5	2.9	114.2	31.9	523.1	657.2	95.5	2.9
TM-09-02A-43	65	2099	3.6	25.5000	56.9	0.1915	57.1	0.0354	3.8	0.07	224.4	8.3	177.9	93.4	-402.3	1604.4	224.4	8.3
TM-09-02A-44	476	18888	1.4	20.1652	6.2	0.1694	6.3	0.0248	1.2	0.19	157.7	1.9	158.9	9.3	175.8	144.8	157.7	1.9
TM-09-02A-45	463	13769	2.3	19.1136	4.0	0.2769	4.3	0.0384	1.5	0.36	242.8	3.7	248.2	9.5	299.3	92.0	242.8	3.7
TM-09-02A-46	20	1237	2.4	19.4983	92.4	0.0937	92.5	0.0133	2.9	0.03	84.9	2.5	91.0	80.6	253.7	769.4	84.9	2.5

Š
anal
dU
zircon
Detrital
<u> </u>
A4.1
Table

Table A4.1	П П С	trital zirco	I N-PI	b analyses														
			I			Isotopic Ratic				I			Apparen	t Age (Ma)			Best Age	: (Ma)
Analysis		²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb ^{/238} U	+	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	+	Age	+I
	(mdd)				(%)		(%)		(%)			(Ma)		(Ma)		(Ma)		
TM-09-02A-47	105	2992	2.8	22.3736	31.3	0.2216	31.4	0.0360	2.8	0.09	227.8	6.3	203.3	57.9	-72.2	780.5	227.8	6.3
TM-09-02A-48	263	11813	1.8	20.4986	7.5	0.2599	7.7	0.0386	1.5	0.20	244.4	3.6	234.6	16.1	137.5	177.1	244.4	3.6
TM-09-02A-49	95	2739	2.9	22.2454	25.6	0.2322	25.7	0.0375	2.1	0.08	237.0	4.8	212.0	49.2	-58.2	632.8	237.0	4.8
TM-09-02A-50	125	3067	2.8	21.4376	20.0	0.2467	20.1	0.0384	1.7	0.08	242.7	4.0	223.9	40.3	31.2	483.1	242.7	4.0
TM-09-02A-51	185	3839	1.2	23.4455	19.0	0.1567	19.1	0.0266	1.5	0.08	169.5	2.6	147.8	26.3	-187.9	479.7	169.5	2.6
TM-09-02A-52	243	2472	4.3	27.2637	24.7	0.0692	24.8	0.0137	2.3	0.09	87.6	2.0	68.0	16.3	-580.1	676.0	87.6	2.0
TM-09-02A-54	502	6966	4.1	18.7112	19.1	0.1099	19.1	0.0149	1.0	0.05	95.5	1.0	105.9	19.3	347.7	435.8	95.5	1.0
TM-09-02A-55	168	6663	3.3	21.4419	15.5	0.2399	15.6	0.0373	1.1	0.07	236.1	2.6	218.3	30.6	30.7	374.4	236.1	2.6
TM-09-02A-56	453	16175	4.7	19.6227	3.6	0.2661	4.1	0.0379	2.0	0.49	239.7	4.7	239.6	8.7	239.1	82.0	239.7	4.7
TM-09-02A-57	48	2120	2.9	20.3696	106.4	0.2546	106.5	0.0376	4.7	0.04	238.0	10.9	230.3	223.0	152.3	969.5	238.0	10.9
TM-09-02A-58	95	2817	1.0	38.4981	101.5	0.0821	101.9	0.0229	9.0	0.09	146.2	13.0	80.1	78.7	-1625.7	0.0	146.2	13.0
TM-09-02A-59	62	20905	1.5	5.3562	0.7	13.6013	1.8	0.5284	1.6	0.92	2734.6	36.0	2722.4	16.6	2713.3	11.4	2713.3	11.4
TM-09-02A-60	103	3303	2.0	29.4147	29.0	0.1683	29.2	0.0359	2.7	0.09	227.4	6.0	158.0	42.7	-790.3	836.2	227.4	6.0
TM-09-02A-61	314	3253	2.0	23.8837	23.6	0.0850	23.7	0.0147	2.8	0.12	94.2	2.6	82.8	18.9	-234.4	601.8	94.2	2.6
TM-09-02A-62	153	4573	2.6	22.9578	19.7	0.2354	19.7	0.0392	1.4	0.07	247.9	3.4	214.7	38.2	-135.6	491.0	247.9	3.4
TM-09-02A-63	40	1909	3.5	26.4393	78.7	0.1932	78.8	0.0370	3.2	0.04	234.5	7.5	179.3	130.2	-497.6	2512.8	234.5	7.5
TM-09-02A-64	219	5556	3.1	21.3880	15.7	0.0928	16.0	0.0144	2.9	0.18	92.1	2.6	90.1	13.8	36.7	378.4	92.1	2.6
TM-09-02A-65	160	8119	1.6	22.1099	15.5	0.2435	15.6	0.0390	1.5	0.10	246.9	3.8	221.3	31.0	-43.3	378.4	246.9	3.8
TM-09-02A-66	74	2381	3.6	24.0279	18.5	0.2101	19.0	0.0366	4.5	0.24	231.8	10.3	193.6	33.5	-249.6	470.2	231.8	10.3
TM-09-02A-67	123	18562	2.7	22.3032	24.6	0.2369	24.6	0.0383	1.1	0.04	242.4	2.6	215.9	47.9	-64.5	607.9	242.4	2.6
TM-09-02A-68	250	7549	2.6	22.2120	9.7	0.2394	9.7	0.0386	1.1	0.12	243.9	2.7	217.9	19.1	-54.5	236.0	243.9	2.7
TM-09-02A-69	198	8927	2.5	20.2588	9.5	0.2655	9.6	0.0390	1.2	0.13	246.7	3.0	239.1	20.5	165.0	223.4	246.7	3.0
TM-09-02A-70	48	1021	1.2	18.0508	128.3	0.1086	128.4	0.0142	4.5	0.04	91.0	4.1	104.7	128.4	428.3	932.9	91.0	4.1
TM-09-02A-71	153	2970	1.0	25.4061	25.4	0.1301	25.4	0.0240	1.0	0.04	152.8	1.5	124.2	29.8	-392.7	670.8	152.8	1.5
TM-09-02A-72	159	10330	2.5	19.4523	18.3	0.2767	18.6	0.0390	3.2	0.17	246.9	7.7	248.1	41.0	259.2	424.7	246.9	7.7
TM-09-02A-73	57	1977	2.7	21.7004	29.5	0.2172	29.8	0.0342	4.1	0.14	216.7	8.8	199.6	54.1	1.9	725.0	216.7	8.8
TM-09-02A-74	165	10088	3.1	19.7969	13.2	0.2650	13.3	0.0380	2.2	0.16	240.7	5.1	238.7	28.4	218.7	305.7	240.7	5.1
TM-09-02A-75	92	2519	3.5	24.7202	35.3	0.2117	35.5	0.0380	4.0	0.11	240.2	9.4	195.0	63.1	-322.0	930.0	240.2	9.4
TM-09-02A-76	928	25020	1.2	20.4770	4.4	0.1177	5.0	0.0175	2.4	0.48	111.7	2.7	113.0	5.4	139.9	103.6	111.7	2.7
TM-09-02A-77	88	1630	3.7	21.4748	23.5	0.2400	23.8	0.0374	3.9	0.17	236.6	9.2	218.4	46.8	27.0	569.6	236.6	9.2
TM-09-02A-78	242	17283	2.8	19.4510	9.7	0.2808	9.9	0.0396	2.0	0.21	250.4	5.0	251.3	22.0	259.3	222.6	250.4	5.0
TM-09-02A-79	60	2132	3.1	19.1976	21.4	0.2701	21.5	0.0376	1.8	0.08	238.0	4.2	242.8	46.4	289.4	493.9	238.0	4.2
TM-09-02A-80	109	8480	3.8	19.7528	24.1	0.2672	24.2	0.0383	1.0	0.04	242.1	2.5	240.4	51.7	223.8	565.1	242.1	2.5
TM-09-02A-81	248	6910	1.9	19.6984	8.2	0.2712	8.4	0.0387	1.4	0.17	245.1	3.4	243.7	18.1	230.2	190.3	245.1	3.4
TM-09-02A-82	165	2645	2.2	23.7067	13.4	0.1364	13.4	0.0235	1.0	0.08	149.4	1.5	129.8	16.4	-215.6	337.9	149.4	1.5
TM-09-02A-83	146	2144	1.1	30.0438	53.4	0.1063	53.5	0.0232	2.2	0.04	147.6	3.2	102.6	52.2	-850.6	1632.5	147.6	3.2
TM-09-02A-84	53	1547	2.5	18.4481	24.2	0.2741	24.3	0.0367	2.6	0.11	232.2	5.9	245.9	53.2	379.6	551.1	232.2	5.9
TM-09-02A-85	121	4854	3.2	26.4947	29.0	0.1932	29.1	0.0371	2.9	0.10	235.0	6.8	179.4	47.9	-503.2	785.4	235.0	6.8
TM-09-02A-86	78	1058	1.3	37.4264	66.4	0.0606	66.7	0.0164	7.0	0.10	105.1	7.3	59.7	38.7	-1530.1	591.2	105.1	7.3
TM-09-02A-87	155	4920	2.3	20.9027	21.1	0.2484	21.2	0.0377	2.6	0.12	238.3	6.1	225.2	42.9	91.4	503.7	238.3	6.1
TM-09-02A-88	175	6070	1.7	21.5782	9.4	0.2440	9.6	0.0382	2.1	0.21	241.5	4.9	221.7	19.1	15.5	226.0	241.5	4.9
TM-09-02A-89	34	863	1.1	15.4383	49.2	0.2213	49.4	0.0248	3.9	0.08	157.8	6.1	203.0	91.1	767.0	1104.4	157.8	6.1

÷.
anal
U-Pb
zircon
Detrital
<u> </u>
A4.1
Table

Table A4.1	- De	trital zirco	n U-P	b analyses														
			ļ			Isotopic Ratic							Apparent	Age (Ma)			Best Age	(Ma)
Analysis	D	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	нş	²⁰⁷ Pb/ ²³⁵ U	нş	²⁰⁶ Pb ^{/238} U	+ á	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	+	Age	+I
	(mdd)				(%)		(%)		(%)			(Ma)		(Ma)		(Ma)		
TM-09-02A-90	84	2432	2.4	24.7220	39.5	0.1977	39.6	0.0354	2.6	0.06	224.5	5.6	183.1	66.5	-322.1	1050.1	224.5	5.6
TM-09-02A-91	198	6260	2.4	19.4740	8.9	0.2817	9.0	0.0398	1.1	0.13	251.5	2.8	252.0	20.0	256.6	205.2	251.5	2.8
TM-09-02A-93	717	9735	3.2	20.9566	11.5	0.1081	12.0	0.0164	3.3	0.28	105.1	3.5	104.3	11.9	85.3	274.2	105.1	3.5
TM-09-02A-94	209	10569	3.1	18.3593	6.8	0.1359	6.8	0.0181	0.7	0.11	115.6	0.8	129.4	8.3	390.4	152.1	115.6	0.8
TM-09-02A-95	58	779	5.8	22.0596	46.4	0.2303	46.6	0.0369	3.1	0.07	233.3	7.0	210.5	88.7	-37.8	1185.6	233.3	7.0
TM-09-02A-96	680	6823	1.4	20.6071	8.3	0.1742	8.5	0.0260	1.8	0.21	165.7	2.9	163.1	12.8	125.0	195.8	165.7	2.9
TM-09-02A-97	66	3041	1.1	17.1708	22.7	0.2052	22.8	0.0256	2.2	0.10	162.7	3.6	189.5	39.4	538.7	501.9	162.7	3.6
TM-09-02A-98	160	4178	4.1	24.5261	21.7	0.1401	21.8	0.0249	2.3	0.11	158.7	3.6	133.2	27.2	-301.8	560.3	158.7	3.6
TM-09-02A-99	488	1854	2.4	20.7804	16.8	0.0945	16.9	0.0142	1.6	0.10	91.1	1.5	91.7	14.8	105.3	399.0	91.1	1.5
TM-09-02A-100	466	5284	1.6	22.0417	8.6	0.0914	8.8	0.0146	1.5	0.17	93.5	1. 4	88.8	7.4	-35.8	209.9	93.5	1.4
EP-09-01A-2	84	1583	1.1	30.1095	59.5	0.0680	59.5	0.0148	2.3	0.04	95.0	2.2	66.8	38.5	-856.8	1852.4	95.0	2.2
EP-09-01A-3	218	2613	1.6	23.1260	34.0	0.0851	34.0	0.0143	2.1	0.06	91.3	1.9	82.9	27.1	-153.7	864.4	91.3	1.9
EP-09-01A-4	103	3687	1.1	20.3728	24.8	0.2056	24.8	0.0304	1.5	0.06	192.9	2.8	189.9	43.0	151.9	588.8	192.9	2.8
EP-09-01A-5	43	833	0.9	48.8315	76.5	0.0605	76.7	0.0214	4.3	0.06	136.8	5.8	59.7	44.5	-2533.0	683.3	136.8	5.8
EP-09-01A-6	144	4130	1.0	20.5011	11.7	0.2077	11.7	0.0309	0.7	0.06	196.1	1.4	191.6	20.5	137.2	275.4	196.1	1.4
EP-09-01A-7	65	967	0.9	25.6088	35.4	0.1293	35.5	0.0240	2.2	0.06	153.0	3.3	123.5	41.3	-413.5	952.0	153.0	3.3
EP-09-01A-8	203	4311	0.8	19.5246	12.9	0.1693	13.2	0.0240	2.8	0.21	152.7	4.2	158.8	19.4	250.6	297.2	152.7	4.2
EP-09-01A-9	117	33264	2.4	9.4466	0.6	4.5543	1.5	0.3120	1.3	0.91	1750.7	20.2	1741.0	12.1	1729.2	11.2	1729.2	11.2
EP-09-01A-10	576	3663	0.9	18.9059	10.2	0.1668	10.6	0.0229	2.8	0.26	145.8	4.0	156.7	15.4	324.2	233.1	145.8	4.0
EP-09-01A-11	120	3042	0.9	25.2898	28.7	0.1280	28.8	0.0235	2.5	0.09	149.6	3.8	122.3	33.2	-380.8	758.0	149.6	3.8
EP-09-01A-12	190	3511	0.9	24.4375	22.3	0.1344	22.3	0.0238	1.8	0.08	151.7	2.7	128.0	26.9	-292.5	574.3	151.7	2.7
EP-09-01A-13	182	4278	4.6	19.6852	21.6	0.1770	21.6	0.0253	0.9	0.04	160.9	1.5	165.5	33.0	231.7	504.2	160.9	1.5
EP-09-01A-14	64	1123	1.3	10.5039	119.5	0.1965	119.6	0.0150	5.2	0.04	95.8	4.9	182.2	202.2	1532.1	73.3	95.8	4.9
EP-09-01A-15	318	7588	1.7	21.3329	5.7	0.1779	5.7	0.0275	0.6	0.11	175.1	1.1	166.3	8.8	42.9	136.3	175.1	1.1
EP-09-01A-16	84	1477	0.9	17.4639	56.1	0.1081	56.2	0.0137	4.1	0.07	87.6	3.6	104.2	55.8	501.6	1341.7	87.6	3.6
EP-09-01A-17	145	5212	0.9	22.7115	13.2	0.1850	13.5	0.0305	2.9	0.21	193.5	5.4	172.3	21.4	-109.0	325.2	193.5	5.4
EP-09-01A-18	189	5840	1.4	22.7044	11.0	0.1413	11.0	0.0233	1.2	0.11	148.3	1.8	134.2	13.9	-108.2	270.6	148.3	1.8
EP-09-01A-19	79	1460	0.6	25.6546	84.5	0.0747	84.5	0.0139	2.6	0.03	89.0	2.3	73.2	59.7	-418.1	2797.1	89.0	2.3
EP-09-01A-20	87	20615	0.9	9.2566	1.2	4.6512	2.9	0.3123	2.6	0.90	1751.8	39.9	1758.5	24.1	1766.5	22.7	1766.5	22.7
EP-09-01A-21	47	858	0.8	14.9366	40.9	0.2066	41.0	0.0224	3.3	0.08	142.7	4.7	190.7	71.5	836.2	889.0	142.7	4.7
EP-09-01A-22	18	540	1.2	20.3745	98.2	0.1421	98.4	0.0210	6.5	0.07	134.0	8.6	134.9	124.9	151.7	N/A	134.0	8.6
EP-09-01A-23	114	3117	0.9	21.4544	13.5	0.1606	13.5	0.0250	1.0	0.08	159.2	1.6	151.3	19.0	29.3	324.9	159.2	1.6
EP-09-01A-24	158	47427	1.5	9.4857	0.7	4.4477	1.6	0.3060	1.4	0.91	1720.9	21.8	1721.3	13.2	1721.7	12.2	1721.7	12.2
EP-09-01A-25	143	4056	1.8	25.4983	17.5	0.1584	17.7	0.0293	2.4	0.13	186.1	4.4	149.3	24.6	-402.2	460.8	186.1	4.4
EP-09-01A-26	367	10783	4.1	19.4826	5.3	0.1703	5.5	0.0241	1.4	0.25	153.3	2.1	159.7	8.1	255.6	122.2	153.3	2.1
EP-09-01A-27	56	1426	0.7	25.0443	47.2	0.1292	47.3	0.0235	2.7	0.06	149.5	4.0	123.3	55.0	-355.5	1282.4	149.5	4.0
EP-09-01A-28	375	3287	1.5	19.2931	8.8	0.2252	8.9	0.0315	1.1	0.12	200.0	2.1	206.3	16.6	278.0	202.1	200.0	2.1
EP-09-01A-29	415	124955	5.1	9.5865	0.3	4.2273	1.0	0.2939	1.0	0.97	1661.0	14.6	1679.3	8.4	1702.2	4.8	1702.2	4.8
EP-09-01A-30	258	5602	0.8	23.2666	10.1	0.1546	10.1	0.0261	0.6	0.06	166.0	1.1	145.9	13.7	-168.7	251.9	166.0	1.1
EP-09-01A-31	58	1303	0.8	26.8242	36.5	0.1257	36.6	0.0244	3.0	0.08	155.7	4.7	120.2	41.5	-536.3	1005.4	155.7	4.7
EP-09-01A-32	175	2661	1.2	20.9432	12.7	0.1518	12.9	0.0231	2.0	0.16	147.0	2.9	143.5	17.2	86.8	302.5	147.0	2.9
EP-09-01A-33	139	3702	1.1	24.4233	17.2	0.1737	17.4	0.0308	2.4	0.14	195.3	4.7	162.6	26.1	-291.0	441.9	195.3	4.7

4.1 - D(כנווומו צוו ככ		b anaiyses					ľ								r	
		I			Isotopic Ratio				I			Apparen	it Age (Ma)			Best Ag	e (Ma)
U ppm)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	± (%)	²⁰⁷ Pb/ ²³⁵ U	± (%)	²⁰⁶ Pb ^{/238} U	± (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+I
72	2025	6.0	32.3922	49.6	0.1078	49.6	0.0253	1.0	0.02	161.2	1.6	103.9	49.1	-1071.7	1574.9	161.2	1.6
137	4570	1.0	20.4452	7.3	0.2051	7.5	0.0304	1.5	0.21	193.1	2.9	189.4	12.9	143.6	171.9	193.1	2.9
170	2509	0.5	20.3824	10.9	0.1583	11.0	0.0234	1.9	0.17	149.1	2.8	149.2	15.3	150.8	254.9	149.1	2.8
287	81821	1.1	9.2122	0.4	4.7018	2.0	0.3141	2.0	0.98	1761.0	30.2	1767.6	16.8	1775.2	7.8	1775.2	7.8
123	1270	1.0	23.7385	41.7	0.0775	42.0	0.0133	4.8	0.12	85.4	4.1	75.8	30.7	-219.0	1090.8	85.4	4.1
47	1308	1.3	27.5050	50.2	0.1080	50.4	0.0216	3.9	0.08	137.4	5.4	104.2	49.9	-604.0	1445.2	137.4	5.4
67	1631	0.9	25.7500	60.1	0.1175	60.1	0.0219	1.6	0.03	139.9	2.3	112.8	64.3	-427.9	1720.3	139.9	2.3
279	9048	0.4	21.9193	6.0	0.1430	6.9	0.0227	3.4	0.49	144.9	4.9	135.7	8.8	-22.3	146.1	144.9	4.9
52	1515	1.1	11.7677	40.4	0.2914	40.4	0.0249	2.4	0.06	158.4	3.8	259.7	92.9	1315.0	817.7	158.4	3.8
122	3039	1.5	21.3696	16.6	0.1685	16.6	0.0261	1.1	0.07	166.2	1.9	158.1	24.4	38.8	399.7	166.2	1.9
82	1209	0.8	17.1847	29.3	0.1227	29.3	0.0153	1.3	0.04	97.9	1.3	117.5	32.6	537.0	653.9	97.9	1.3
496	10645	1.0	21.1018	4.6	0.1562	4.9	0.0239	1.5	0.31	152.3	2.2	147.4	6.7	68.9	110.2	152.3	2.2
159	4306	1.3	21.7720	16.3	0.1418	16.4	0.0224	1.3	0.08	142.7	1.9	134.6	20.6	-6.0	395.8	142.7	1.9
490	13133	1.1	19.7691	5.4	0.1861	6.3	0.0267	3.4	0.54	169.7	5.7	173.3	10.1	221.9	123.9	169.7	5.7
146	2162	0.9	20.2019	21.9	0.0993	22.1	0.0146	2.6	0.12	93.2	2.4	96.2	20.3	171.6	517.7	93.2	2.4
102	1546	1.2	23.3532	51.6	0.0880	51.8	0.0149	3.9	0.07	95.4	3.6	85.7	42.6	-178.0	1371.1	95.4	3.6
177	3821	0.9	20.5146	18.2	0.1527	18.2	0.0227	0.8	0.04	144.8	1.2	144.3	24.5	135.6	431.1	144.8	1.2
184	2153	0.9	21.6003	23.8	0.0933	23.9	0.0146	2.0	0.08	93.5	1.9	90.6	20.7	13.1	580.0	93.5	1.9
1065	28808	1.1	20.1120	2.2	0.1670	2.5	0.0244	1.1	0.45	155.2	1.7	156.8	3.6	182.0	51.9	155.2	1.7
168	2684	1.5	20.9985	21.7	0.1045	22.0	0.0159	3.6	0.16	101.8	3.6	101.0	21.1	80.5	519.5	101.8	3.6
348	9081	0.9	19.8799	5.0	0.1682	5.3	0.0243	1.6	0.31	154.5	2.5	157.9	7.7	209.0	116.6	154.5	2.5
124	1944	1.0	27.5229	28.7	0.0758	28.8	0.0151	2.0	0.07	96.8	1.9	74.2	20.6	-605.7	795.6	96.8	1.9
1673	152232	73.2	9.5212	0.6	4.2944	5.6	0.2965	5.6	1.00	1674.2	82.9	1692.3	46.6	1714.8	10.1	1714.8	10.1
182	2626	0.7	25.0173	17.2	0.0778	18.0	0.0141	5.4	0.30	90.3	4.9	76.0	13.2	-352.7	446.8	90.3	4.9
166	2971	1.2	21.3463	21.7	0.1016	21.8	0.0157	2.1	0.10	100.6	2.1	98.2	20.4	41.4	525.1	100.6	2.1
481	10922	1.7	20.6194	5.5	0.1560	5.6	0.0233	0.8	0.15	148.6	1.2	147.2	7.6	123.6	130.0	148.6	1.2
29	849	1.0	11.5762	68.1	0.2781	68.3	0.0233	4.5	0.07	148.8	6.6	249.1	152.0	1346.8	1527.2	148.8	6.6
45	950	0.6	8.6676	264.0	0.3663	264.1	0.0230	2.7	0.01	146.8	4.0	316.9	896.7	1885.7	496.7	1885.7	496.7
58	781	1.0	16.3286	34.4	0.2005	34.8	0.0237	5.5	0.16	151.3	8.2	185.6	59.1	647.8	760.0	151.3	8.2
111	2427	0.8	22.9452	19.8	0.1532	19.9	0.0255	1.2	0.06	162.3	2.0	144.7	26.8	-134.2	494.5	162.3	2.0
530	17359	0.7	19.9999	6.7	0.1829	7.0	0.0265	2.0	0.28	168.8	3.3	170.5	11.0	195.0	155.6	168.8	3.3
522	12587	1.4	20.7207	2.6	0.1838	3.4	0.0276	2.2	0.64	175.6	3.8	171.3	5.4	112.1	61.5	175.6	3.8
74	1930	1.1	23.3304	83.1	0.1312	83.1	0.0222	2.3	0.03	141.5	3.3	125.2	98.2	-175.6	2601.7	141.5	3.3
175	3428	1.3	19.2143	10.8	0.1092	10.8	0.0152	1.2	0.11	97.3	1.1	105.2	10.8	287.4	246.6	97.3	1.1
266	7987	1.0	20.6622	4.2	0.2006	4.3	0.0301	0.8	0.18	190.9	1.5	185.6	7.3	118.7	99.5	190.9	1.5
135	16940	2.0	13.2959	1.7	1.8784	1.8	0.1811	0.7	0.36	1073.2	6.6	1073.5	12.2	1074.2	34.3	1074.2	34.3
220	4607	2.0	20.3794	10.7	0.1569	10.8	0.0232	0.9	0.08	147.8	1.3	148.0	14.9	151.1	252.4	147.8	1.3
274	4501	0.7	20.9934	12.9	0.1611	13.1	0.0245	2.1	0.16	156.2	3.3	151.7	18.5	81.1	307.7	156.2	3.3
149	1910	1.0	19.4011	18.7	0.1073	18.7	0.0151	1.1	0.06	96.6	1.0	103.5	18.4	265.2	432.5	96.6	1.0
103	1974	0.8	20.1977	14.4	0.1586	14.4	0.0232	1.1	0.07	148.1	1.5	149.5	20.1	172.1	337.8	148.1	1.5
67	944	0.9	29.3321	28.1	0.0692	28.2	0.0147	2.7	0.09	94.3	2.5	68.0	18.5	-782.3	805.4	94.3	2.5
53	1216	0.9	34.1070	67.9	0.0884	67.9	0.0219	1.7	0.02	139.4	2.3	86.0	56.1	-1229.9	727.5	139.4	2.3

Table A4.1	- De	trital zirco	II-U u	b analyses					,							,		
			I			Isotopic Ratio			Í	ļ			Apparent	t Age (Ma)			Best Age	: (Ma)
Analysis	U (maa)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	±	²⁰⁷ Pb/ ²³⁵ U	±	²⁰⁶ Pb ^{/238} U	±	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	± (Ma)	Age	+
	(indd)				(0/)		(0/)		(0/)							(1914)		
EP-09-01A-79	80	1901	9.0	40.4844	28.7	0.0863	29.3	0.0253	6.0	0.21	161.3	9.6	84.1	23.7	-1801.6	1042.1	161.3	9.6
EP-09-01A-80	324	8199	1.0	20.1281	7.9	0.1796	8.0	0.0262	0.6	0.07	166.8	0.9	167.7	12.3	180.1	185.1	166.8	0.9
EP-09-01A-81	243	7641	4.6	20.1279	14.1	0.1670	14.3	0.0244	2.5	0.18	155.3	3.8	156.8	20.8	180.1	329.2	155.3	3.8
EP-09-01A-82	445	14682	0.9	20.5149	7.6	0.1819	7.9	0.0271	2.4	0.30	172.1	4.1	169.7	12.4	135.6	178.1	172.1	4.1
EP-09-01A-83	699	8019	1.0	21.5600	5.0	0.0993	5.5	0.0155	2.5	0.44	99.3	2.4	96.1	5.1	17.5	119.4	99.3	2.4
EP-09-01A-85	59	1767	1.1	22.7628	52.0	0.1470	52.0	0.0243	1.4	0.03	154.6	2.1	139.3	67.8	-114.5	1366.3	154.6	2.1
EP-09-01A-86	192	4926	1.0	19.3437	8.3	0.1668	8.7	0.0234	2.5	0.29	149.1	3.7	156.6	12.7	272.0	191.5	149.1	3.7
EP-09-01A-87	263	5689	1.1	22.9816	13.0	0.1430	13.8	0.0238	4.8	0.34	151.8	7.1	135.7	17.5	-138.1	321.9	151.8	7.1
EP-09-01A-88	248	5258	0.7	22.4005	13.3	0.1414	13.4	0.0230	1.8	0.13	146.4	2.6	134.3	16.9	-75.1	326.0	146.4	2.6
EP-09-01A-89	518	11245	1.4	20.6294	5.4	0.1754	5.7	0.0262	1.8	0.32	167.0	3.0	164.1	8.7	122.5	128.0	167.0	3.0
EP-09-01A-90	136	3185	1.7	24.3380	23.0	0.1419	23.1	0.0251	1.0	0.04	159.5	1.5	134.8	29.1	-282.1	593.3	159.5	1.5
EP-09-01A-91	70	1008	1.0	38.3421	88.0	0.0498	88.0	0.0139	2.0	0.02	88.7	1.8	49.4	42.4	-1611.8	1479.1	88.7	1.8
EP-09-01A-92	117	1849	0.7	27.4657	52.8	0.0721	52.8	0.0144	1.9	0.04	91.9	1.8	70.7	36.1	-600.1	1528.1	91.9	1.8
EP-09-01A-93	134	1694	0.6	38.0164	59.5	0.0494	59.6	0.0136	3.8	0.06	87.2	3.3	48.9	28.5	-1582.8	386.0	87.2	3.3
EP-09-01A-94	245	5539	0.9	21.6330	13.4	0.1585	14.1	0.0249	4.5	0.32	158.4	7.1	149.4	19.6	9.4	323.1	158.4	7.1
EP-09-01A-95	143	4515	1.1	20.8779	9.0	0.1953	9.4	0.0296	2.6	0.28	187.9	4.9	181.2	15.5	94.2	213.2	187.9	4.9
EP-09-01A-96	235	6133	0.8	22.3019	10.8	0.1559	11.1	0.0252	2.4	0.22	160.5	3.8	147.1	15.1	-64.4	263.8	160.5	3.8
EP-09-01A-97	432	5295	0.7	21.5285	8.7	0.1059	8.7	0.0165	0.9	0.10	105.7	1.0	102.2	8.5	21.0	208.2	105.7	1.0
EP-09-01A-98	219	88156	1.6	9.1577	0.5	4.8829	2.7	0.3243	2.6	0.98	1810.8	41.8	1799.3	22.7	1786.1	8.6	1786.1	8.6
EP-09-01A-99	199	3324	0.8	24.1380	25.1	0.0845	25.2	0.0148	1.2	0.05	94.7	1.2	82.4	19.9	-261.1	646.1	94.7	1.2
EP-09-04B-1	44	1030	1.5	11.6507	216.8	0.2477	216.8	0.0209	4.3	0.02	133.5	5.7	224.7	467.5	1334.4	741.8	133.5	5.7
EP-09-04B-2	53	1241	1.0	33.6540	79.5	0.0882	79.6	0.0215	2.9	0.04	137.3	4.0	85.8	65.6	-1188.4	1143.9	137.3	4.0
EP-09-04B-3	400	5494	9.0	21.2287	8.6	0.1391	9.3	0.0214	3.4	0.37	136.6	4.6	132.3	11.5	54.6	206.6	136.6	4.6
EP-09-04B-4	73	1445	0.7	30.3912	39.7	0.1084	40.4	0.0239	7.3	0.18	152.2	11.0	104.5	40.1	-883.7	1186.1	152.2	11.0
EP-09-04B-5	108	2975	1.2	18.3285	16.1	0.2212	16.4	0.0294	2.6	0.16	186.9	4.8	202.9	30.1	394.2	364.1	186.9	4.8
EP-09-04B-6	906	16810	2.1	20.5773	3.6	0.1528	3.7	0.0228	0.7	0.20	145.3	1.0	144.4	4.9	128.5	84.3	145.3	1.0
EP-09-04B-7	320	2532	1.0	19.2156	7.5	0.1636	8.0	0.0228	2.8	0.35	145.3	4.0	153.8	11.4	287.2	171.6	145.3	4.0
EP-09-04B-8	219	5104	1.5	21.5899	7.3	0.2001	7.4	0.0313	1.2	0.17	198.9	2.4	185.2	12.5	14.2	175.2	198.9	2.4
EP-09-04B-9	1129	28267	15.2	20.4447	2.0	0.1675	2.7	0.0248	1.8	0.68	158.1	2.9	157.2	3.9	143.6	46.8	158.1	2.9
EP-09-04B-10	269	3845	1.0	23.3032	18.0	0.0791	18.0	0.0134	0.7	0.04	85.6	0.6	77.3	13.4	-172.7	450.7	85.6	0.6
EP-09-04B-11	119	2924	1.2	19.3223	17.8	0.1988	17.9	0.0279	2.1	0.12	177.1	3.7	184.1	30.2	274.5	410.1	177.1	3.7
EP-09-04B-12	171	3073	0.6	22.2312	10.6	0.1534	13.1	0.0247	7.7	0.59	157.5	11.9	144.9	17.7	-56.6	258.8	157.5	11.9
EP-09-04B-13	238	5024	1.2	19.6049	7.7	0.1685	7.8	0.0240	1.4	0.18	152.6	2.1	158.1	11.4	241.2	177.1	152.6	2.1
EP-09-04B-14	869	11370	0.6	21.1853	3.5	0.0987	3.6	0.0152	0.6	0.16	97.1	0.5	95.6	3.2	59.5	83.8	97.1	0.5
EP-09-04B-15	389	6318	1.1	20.9932	7.2	0.1042	7.6	0.0159	2.3	0.31	101.5	2.3	100.6	7.3	81.1	171.6	101.5	2.3
EP-09-04B-16	601	21828	2.1	17.6447	1.9	0.5703	3.4	0.0730	2.8	0.83	454.1	12.4	458.2	12.5	478.9	41.5	454.1	12.4
EP-09-04B-17	224	5633	1.0	20.0508	9.2	0.1735	9.4	0.0252	1.8	0.19	160.7	2.8	162.5	14.1	189.1	214.3	160.7	2.8
EP-09-04B-18	142	3111	0.9	28.3155	23.5	0.1174	23.5	0.0241	1.5	0.07	153.6	2.3	112.8	25.1	-683.7	657.3	153.6	2.3
EP-09-04B-19	649	8500	0.8	18.5401	8.8	0.2185	9.0	0.0294	1.9	0.21	186.6	3.6	200.6	16.4	368.4	199.1	186.6	3.6
EP-09-04B-20	387	3353	0.9	20.7792	7.3	0.1505	7.7	0.0227	2.7	0.34	144.5	3.8	142.3	10.3	105.4	171.8	144.5	3.8
EP-09-04B-21	76	1768	1.3	25.3567	22.8	0.1357	23.0	0.0250	3.0	0.13	158.9	4.8	129.2	27.9	-387.7	599.7	158.9	4.8
EP-09-04B-22	108	2425	1.0	18.8960	17.1	0.1784	17.2	0.0244	2.3	0.13	155.7	3.5	166.6	26.5	325.4	390.1	155.7	3.5

Table A4.1	- Dei	trital zirco	n U-Pt	o analyses														
			I			Isotopic Ratio				ļ			Apparen	t Age (Ma)			Best Age	(Ma)
Analysis	U (maa)	²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	+ (%)	²⁰⁷ Pb/ ²³⁵ U	+ (%)	²⁰⁶ Pb ^{/238} U	+ (%)	Error	²⁰⁶ Pb/ ²³⁸ U	± (Ma)	²⁰⁷ Pb/ ²³⁵ U	± (Ma)	²⁰⁶ Pb/ ²⁰⁷ Pb	+ (Ma)	Age	+I
					6.		(2.1		12.1					()		()		
EP-09-04B-23	272	59307	2.2	9.5801	0.4	4.1628	2.0	0.2892	1.9	0.98	1637.7	28.1	1666.7	16.3	1703.4	8.0	1703.4	8.0
EP-09-04B-24	278	7264	1.0	20.8024	9.8	0.1632	6.6	0.0246	1.4	0.14	156.8	2.1	153.5	14.1	102.8	231.6	156.8	2.1
EP-09-04B-25	20	906	1.2	37.0761	59.4	0.0907	59.4	0.0244	1.5	0.03	155.3	2.4	88.1	50.2	-1498.7	410.7	155.3	2.4
EP-09-04B-26	564	12613	1.1	20.8880	5.4	0.1576	5.5	0.0239	0.6	0.10	152.1	0.9	148.6	7.6	93.0	128.8	152.1	0.9
EP-09-04B-27	209	7163	1.0	22.7330	15.3	0.1827	16.0	0.0301	4.8	0.30	191.4	9.0	170.4	25.2	-111.3	378.8	191.4	9.0
EP-09-04B-28	171	3820	1.3	25.5396	27.2	0.1596	28.0	0.0296	6.4	0.23	187.8	11.9	150.4	39.1	-406.4	721.5	187.8	11.9
EP-09-04B-29	61	1305	0.7	22.0884	36.5	0.1419	36.6	0.0227	2.2	0.06	144.9	3.2	134.7	46.2	-40.9	914.6	144.9	3.2
EP-09-04B-30	524	12001	0.9	20.8404	7.3	0.1667	8.1	0.0252	3.5	0.43	160.5	5.5	156.6	11.8	98.5	173.5	160.5	5.5
EP-09-04B-31	467	13441	1.3	20.4518	3.7	0.2068	4.0	0.0307	1.5	0.38	194.7	3.0	190.8	7.0	142.8	86.8	194.7	3.0
EP-09-04B-32	571	11940	1.2	20.3571	3.1	0.1746	3.9	0.0258	2.4	0.61	164.1	3.9	163.4	5.9	153.7	72.8	164.1	3.9
EP-09-04B-33	146	3704	0.8	21.0490	20.4	0.1732	20.4	0.0264	1.5	0.07	168.2	2.4	162.2	30.6	74.9	488.9	168.2	2.4
EP-09-04B-34	271	6346	0.8	20.6042	4.3	0.1760	4.4	0.0263	0.8	0.19	167.4	1.4	164.6	6.7	125.4	101.4	167.4	1.4
EP-09-04B-35	126	3471	0.7	22.8784	16.0	0.1477	16.0	0.0245	0.6	0.04	156.1	0.9	139.9	20.9	-127.0	397.1	156.1	0.9
EP-09-04B-36	830	20714	1.0	20.1255	2.3	0.1780	3.1	0.0260	2.1	0.68	165.3	3.4	166.3	4.7	180.4	52.6	165.3	3.4
EP-09-04B-37	309	6963	0.6	20.6749	7.3	0.1602	7.4	0.0240	1.6	0.21	153.0	2.4	150.9	10.4	117.3	171.8	153.0	2.4
EP-09-04B-38	180	4427	4.0	20.0303	16.3	0.1574	16.4	0.0229	1.8	0.11	145.7	2.6	148.4	22.7	191.5	381.6	145.7	2.6
EP-09-04B-39	1275	24090	0.6	20.6314	2.1	0.1813	2.5	0.0271	1.5	0.58	172.5	2.5	169.2	3.9	122.3	48.8	172.5	2.5
EP-09-04B-40	428	13720	1.2	19.7380	5.9	0.1768	6.2	0.0253	2.0	0.33	161.2	3.2	165.3	9.5	225.6	135.8	161.2	3.2
EP-09-04B-41	336	91932	1.7	8.9057	0.4	5.0248	1.6	0.3246	1.5	0.96	1811.9	23.5	1823.5	13.1	1836.8	7.9	1836.8	7.9
EP-09-04B-43	495	7783	0.8	20.0400	5.8	0.1795	6.0	0.0261	1.3	0.22	166.1	2.1	167.7	9.2	190.4	135.4	166.1	2.1
EP-09-04B-44	612	10550	1.0	20.4249	4.0	0.1801	4.2	0.0267	1.2	0.29	169.7	2.0	168.1	6.5	145.9	94.5	169.7	2.0
EP-09-04B-45	628	21949	0.8	20.7543	3.2	0.1828	3.3	0.0275	0.7	0.22	175.0	1.2	170.5	5.1	108.2	75.6	175.0	1.2
EP-09-04B-46	181	4879	0.8	21.5846	13.7	0.1627	13.8	0.0255	1.4	0.10	162.1	2.3	153.1	19.6	14.8	330.8	162.1	2.3
EP-09-04B-47	344	8428	0.8	20.8144	5.2	0.1953	5.8	0.0295	2.6	0.45	187.3	4.9	181.2	9.7	101.4	123.1	187.3	4.9
EP-09-04B-48	879	15498	0.4	21.0702	2.8	0.1646	3.3	0.0251	1.8	0.54	160.1	2.8	154.7	4.7	72.4	66.0	160.1	2.8
EP-09-04B-49	299	8026	0.9	19.8650	7.4	0.1662	7.4	0.0239	1.0	0.14	152.5	1.6	156.1	10.7	210.7	170.7	152.5	1.6
EP-09-04B-50	228	6396	1.1	21.0663	10.3	0.1956	10.4	0.0299	1.6	0.16	189.8	3.0	181.4	17.3	72.9	245.5	189.8	3.0
EP-09-04B-51	187	4734	0.7	22.3457	14.1	0.1759	15.3	0.0285	5.9	0.39	181.2	10.5	164.5	23.2	-69.1	345.2	181.2	10.5
EP-09-04B-52	85	1908	0.9	31.1485	39.6	0.1028	39.8	0.0232	4.0	0.10	148.0	5.9	99.3	37.7	-955.3	1200.6	148.0	5.9
EP-09-04B-53	66	876	0.8	21.3654	24.4	0.1578	24.5	0.0245	1.8	0.07	155.7	2.7	148.8	33.9	39.3	591.9	155.7	2.7
EP-09-04B-54	697	17344	1.1	20.7949	4.8	0.1781	5.1	0.0269	1.8	0.35	170.8	3.0	166.4	7.8	103.6	112.7	170.8	3.0
EP-09-04B-55	82	2024	0.7	27.2660	27.8	0.1228	27.8	0.0243	1.5	0.05	154.7	2.3	117.6	30.9	-580.3	763.7	154.7	2.3
EP-09-04B-56	131	4572	0.7	22.9701	14.7	0.1739	14.8	0.0290	1.8	0.12	184.2	3.4	162.8	22.3	-136.9	365.6	184.2	3.4
EP-09-04B-57	137	4339	0.9	22.6952	15.9	0.1680	16.1	0.0277	1.9	0.12	175.9	3.4	157.7	23.5	-107.2	394.3	175.9	3.4
EP-09-04B-58	417	9328	0.6	20.4586	3.5	0.1762	3.6	0.0261	1.1	0.30	166.4	1.8	164.8	5.5	142.1	81.6	166.4	1.8
EP-09-04B-59	360	10559	1.3	20.3136	6.2	0.1719	6.3	0.0253	1.0	0.16	161.2	1.6	161.1	9.3	158.7	144.9	161.2	1.6
EP-09-04B-60	220	65033	2.2	9.1438	0.6	4.9369	3.1	0.3274	3.0	0.98	1825.8	47.8	1808.6	25.9	1788.8	10.5	1788.8	10.5
EP-09-04B-61	111	21494	1.9	11.1547	1.7	3.0283	2.0	0.2450	1.1	0.54	1412.6	13.5	1414.8	15.1	1418.0	31.9	1418.0	31.9
EP-09-04B-62	362	4875	1.2	18.7281	10.3	0.2066	10.4	0.0281	1.6	0.16	178.4	2.8	190.7	18.1	345.6	233.7	178.4	2.8
EP-09-04B-63	344	8877	6.0	21.3838	2.7	0.1919	2.9	0.0298	1.0	0.34	189.1	1.8	178.3	4.7	37.2	64.9	189.1	1.8
EP-09-04B-64	198	6052	0.8	20.0373	10.1	0.2064	10.4	0.0300	2.3	0.22	190.6	4.4	190.6	18.1	190.7	236.1	190.6	4.4
EP-09-04B-65	374	8942	0.6	20.3194	10.3	0.1566	10.4	0.0231	1.4	0.13	147.1	2.0	147.7	14.3	158.0	241.7	147.1	2.0

Ś
ਗੇ
an
م
Ъ,
\supset
Ы
ğ
Ч.
a
÷
ē
I
\sum
A A
Ð
ā
ā
· · ·

Table A4.1	- Detr	rital zirco	n U-PI	b analyses														
			. 1			Isotopic Ratio				.			Apparent	Age (Ma)			Best Age	(Ma)
Analysis	U (²⁰⁶ Pb/ ²⁰⁴ Pb	U/Th	²⁰⁶ Pb/ ²⁰⁷ Pb	+ į	²⁰⁷ Pb/ ²³⁵ U	+ į	²⁰⁶ Pb ^{/238} U	+ į	Error	²⁰⁶ Pb/ ²³⁸ U	+	²⁰⁷ Pb/ ²³⁵ U	+	²⁰⁶ Pb/ ²⁰⁷ Pb	+	Age	+
	(mqq)				(%)		(%)		(%)			(Ma)		(Ma)		(Ma)		
EP-09-04B-66	232	2181	0.8	16.0079	15.9	0.2283	16.6	0.0265	4.7	0.28	168.6	7.8	208.8	31.3	690.2	340.8	168.6	7.8
EP-09-04B-67	173	4795	1.2	21.6898	10.4	0.1599	10.6	0.0252	1.9	0.18	160.1	3.0	150.6	14.8	3.1	252.1	160.1	3.0
EP-09-04B-68	627	13419	0.8	20.2536	4.3	0.1758	4.3	0.0258	0.5	0.12	164.4	0.8	164.5	6.5	165.6	100.0	164.4	0.8
EP-09-04B-69	39	1460	0.8	29.8010	62.5	0.1135	62.8	0.0245	6.6	0.10	156.3	10.2	109.2	65.1	-827.3	1955.6	156.3	10.2
EP-09-04B-70	572	17086	0.9	20.8766	5.1	0.1789	5.2	0.0271	1.0	0.19	172.2	1.6	167.1	8.1	94.4	121.8	172.2	1.6
EP-09-04B-71	930	21228	1.0	20.6399	2.3	0.1708	2.4	0.0256	0.8	0.34	162.7	1.3	160.1	3.6	121.3	53.0	162.7	1.3
EP-09-04B-72	56	1483	1.1	20.3920	40.1	0.1511	40.3	0.0223	3.5	0.09	142.5	5.0	142.9	53.7	149.7	975.8	142.5	5.0
EP-09-04B-73	451	11114	2.6	20.5289	4.0	0.1953	5.4	0.0291	3.6	0.67	184.8	6.6	181.1	0.6	134.0	94.0	184.8	6.6
EP-09-04B-74	712	19441	1.2	20.5485	4.5	0.1704	4.7	0.0254	1.3	0.29	161.6	2.1	159.7	6.9	131.7	105.9	161.6	2.1
EP-09-04B-75	252	8029	0.7	19.0933	5.0	0.2191	5.5	0.0303	2.4	0.43	192.7	4.6	201.2	10.1	301.8	113.9	192.7	4.6
EP-09-04B-76	453	7973	0.7	19.7429	4.5	0.1715	4.8	0.0246	1.7	0.35	156.4	2.6	160.7	7.1	225.0	103.5	156.4	2.6
EP-09-04B-77	392	8887	1.0	20.8321	6.3	0.1777	6.5	0.0268	1.7	0.26	170.8	2.8	166.1	10.0	99.4	149.4	170.8	2.8
EP-09-04B-78	544	15048	0.9	20.1428	4.1	0.2124	4.4	0.0310	1.5	0.34	197.0	2.9	195.6	7.8	178.4	95.7	197.0	2.9
EP-09-04B-79	173	3408	1.1	19.2275	12.2	0.1887	12.3	0.0263	1.6	0.13	167.4	2.7	175.5	19.9	285.8	280.4	167.4	2.7
EP-09-04B-80	17	526	0.5	7.9039	178.0	0.3976	178.2	0.0228	9.1	0.05	145.3	13.0	339.9	567.2	2050.1	13.9	2050.1	13.9
EP-09-04B-81	462	10627	0.5	19.6326	4.4	0.1749	4.5	0.0249	1.0	0.23	158.6	1.6	163.7	6.9	237.9	102.0	158.6	1.6
EP-09-04B-82	18	404	0.6	13.9779	395.3	0.2107	395.3	0.0214	2.5	0.01	136.3	3.3	194.2	857.2	972.9	0.0	136.3	3.3
EP-09-04B-83	138	2867	0.9	21.2255	27.0	0.1499	27.1	0.0231	1.3	0.05	147.1	1.9	141.8	35.8	55.0	655.2	147.1	1.9
EP-09-04B-84	76	2650	0.9	21.8346	22.0	0.1729	22.0	0.0274	1.6	0.07	174.2	2.8	162.0	33.0	-12.9	535.9	174.2	2.8
EP-09-04B-85	581	120657	6.8	9.2852	0.4	4.3480	0.9	0.2928	0.8	0.89	1655.5	12.2	1702.5	7.7	1760.8	7.7	1760.8	7.7
EP-09-04B-87	75	1577	1.3	22.0736	29.4	0.1542	29.5	0.0247	2.2	0.08	157.3	3.5	145.7	40.1	-39.3	728.1	157.3	3.5
EP-09-04B-89	1012	28158	1.5	20.1005	3.3	0.1939	3.7	0.0283	1.7	0.47	179.7	3.1	179.9	6.1	183.3	76.4	179.7	3.1
EP-09-04B-90	260	4641	1.3	21.4723	10.8	0.1457	11.0	0.0227	1.9	0.17	144.6	2.7	138.1	14.2	27.3	259.6	144.6	2.7
EP-09-04B-91	140	3994	1.0	19.8341	15.1	0.1776	15.2	0.0255	2.0	0.13	162.6	3.2	166.0	23.3	214.3	351.7	162.6	3.2
EP-09-04B-92	358	88273	1.3	9.6494	0.3	4.2564	3.4	0.2979	3.4	1.00	1680.8	49.7	1685.0	27.7	1690.2	5.8	1690.2	5.8
EP-09-04B-93	219	3552	1.1	23.0129	11.1	0.1459	11.4	0.0243	2.5	0.22	155.0	3.8	138.2	14.7	-141.5	275.8	155.0	3.8
EP-09-04B-94	48	1091	1.2	110.1042	88.4	0.0281	88.6	0.0225	5.0	0.06	143.3	7.1	28.2	24.6	0.0	579.4	143.3	7.1
EP-09-04B-95	285	6544	0.7	23.3285	9.6	0.1493	9.8	0.0253	2.0	0.21	160.8	3.2	141.3	12.9	-175.4	239.7	160.8	3.2
EP-09-04B-96	195	3040	1.2	24.4848	21.0	0.0999	22.1	0.0177	6.8	0.31	113.3	7.7	96.6	20.4	-297.5	542.5	113.3	7.7
EP-09-04B-97	243	5127	1.1	23.3005	6.5	0.1564	6.7	0.0264	1.5	0.22	168.1	2.5	147.5	9.2	-172.4	162.1	168.1	2.5
EP-09-04B-98	232	5685	0.8	22.9439	10.1	0.1533	10.1	0.0255	0.4	0.04	162.4	0.6	144.8	13.6	-134.1	249.9	162.4	0.6
EP-09-04B-99	132	3519	0.9	24.3781	19.3	0.1703	19.3	0.0301	0.9	0.05	191.2	1.8	159.7	28.5	-286.3	495.0	191.2	1.8
EP-09-04B-100	345	12934	1.3	19.8810	3.8	0.2436	4.2	0.0351	1.7	0.41	222.6	3.8	221.4	8.4	208.8	88.6	222.6	3.8
Table A4.1	notes	s - Detriti	al zirco	n isotopic ar	nd age d	lata. All s	amples v	were ana	lyzed	at the	Univers	ity of	Arizona I	aserChro	on Center	following	the analy	tical
procedures 1	for laser	ablation	-multic	ollector-indu	ctively	coupled p	lasma-n	nass spec	trome	try (L/	A-ICP-N	1S) ou	tlined in (Jehrels e	t al. (2008	i). All data	were redu	lced
using the 1	NUAget	Calc anal	lysis to	ool (http://si	ites.goo	gle.com/a	laserch	ron.org/h	aserci	iron/ha	<u>)</u> ()	nly s	amples th	nat met	concordar	nce and re	eproducib	ility
requirement	s and h	ad standa	rd erro	rs < 10% we	ere inclu	ided. 'Bes	tt Age' (determine	ed usi	ng a 1(000 Ma	cutoff	. with Ap	parent ²⁰	⁶ Pb/ ²³⁸ U /	Age taken j	for sampl	es
1000 Ma an	d Appai	rent ²⁰⁶ Ph	/ ²⁰⁷ Ph /	Ape accented	for san	n les > 10	00 Ma.)			•	-		0	•	
TIM NELT OOOT	~		-	150 uvvp		~ < ~ ~ ~ n ~ n d r												

vses
anal
U-Pb
zircon
Detrital
I
A4.1
ble

Figure A4.1 - Simplified geologic maps of (A) San Emigdio Mountains (Nilsen, 1987), (B) Tehachapi Mountains (Dibblee and Louke, 1970), and (C) El Paso Mountains (Cox, 1982) with corresponding location and extent on southern Sierra Nevada color DEM (D).

Figure A4.2

Figure A4.2 - Full U-Pb age spectra for all detrital samples. Note the minimal contribution of ages older than 250 Ma. The small population of ~ 1700 Ma zircons observed in Goler Fm. samples (EPM-1 and EPM-2) are likely derived from Paleozoic miogeoclinal siliciclastic rocks currently exposed in the White-Inyo Mountains and Slate Range regions, as Proterozoic zircon populations are abundant in these Paleozoic sequences (Gehrels et al., 1995).

	$\delta^{13}C_{PDB}$		$\delta^{18}O_{PDB}$	
ID	(‰)	±	(‰)	±
EPM-4	-3.15	0.03	-12.32	0.11
EPM-4	-3.22	0.02	-12.13	0.03
EPM-4	-3.38	0.01	-12.35	0.04
EPM-4	-3.02	0.01	-12.43	0.02
Average	-3.19	0.15	-12.31	0.13

Table A 4.2 – Goler Fm. isotopic data

Table A4.2 Notes - δ^{18} O and δ^{13} C data for Goler Fm. lacustrine carbonate. Carbonate was drilled following standard micromilling procedures (Dettman and Lohmann, 1995) and analyzed at the University of Michigan Stable Isotope Lab. ~ 10 mg of carbonate powder for each sample was placed under vacuum at 200° C for one hour to remove volatile contaminants and water. Samples were then placed in individual borosilicate reaction vessels and reacted at 77° ± 1°C with 4 drops of anhydrous phosphoric acid for 8 minutes in a Finnigan MAT Kiel IV preparation device coupled directly to the inlet of a Finnigan MAT 253 triple collector isotope ratio mass spectrometer. Measured precision is < 0.1 ‰ for both δ^{18} O and δ^{13} C.

Figure A4.3

Figure A4.3 - Sources of geologic mapping of plutonic, volcanic and siliciclastic rocks shown in Figure 4.2B. (1) Ludington et al. (2005); (2) Crafford and Harris (2007); (3) Workman et al. (2002); (4) Walker et al. (2002) and (5) Saleeby et al. (2008).

	Latitude (°N)	Longitude (°W)	Elevation (m)	Description
Detrital sand				
	25.06425	110 44000	061	Medium grained, well sorted lithic
NEKK	35.86435	118.44802	961	sand Medium grained, well sorted lithic
SFKR	35.69105	118.23517	827	sand
Detrital sandstone				
				Medium grained, well sorted lithic
SEM	34.94347	119.25154	873	sandstone
TM	35.15366	118.28666	1357	Coarse grained, arkose sandstone
5014.4	25 54522	447 70242	1120	Medium grained, moderately sorted
EPIM-1	35.51522	117.79312	1120	lithic sandstone
EPM-2	35.50144	117.79162	1103	lithic sandstone
Carbonate				
EPM-4	35.46403	117.85388	1270	Light gray micritic carbonate
Table A43 Notes	- Geographic	coordinates and	lithologic desc	riptions for all geologic samples

 Table A4.3 – Sandstone and carbonate sample locations

Table A4.3 Notes - Geographic coordinates and lithologic descriptions for all geologic samples analyzed as part of this study. Sample abbreviations same as in Figs. 4.1 and 4.2. See Fig. 4.1 for map locations.

				Tab	ole A5.1 –	- All isotof	oologue a	und stable	isotopic	: data				
Sample	δ ¹³ C (‰)	δ ¹⁸ O (‰)	δ ₄₅ (%o)	δ ₄₆ (‰)	δ47 (%o)	δ ₄₈ (%o)	δ ₄₉ (%o)	∆48 (%o)	∆49 (%oo)	∆47 (‰)	St. Dev.	S.E.	∆ ₄₇ normalized	St. Dev.
						Paleocer	ne Goler Fo	rmation						
EP0803-1	-2.9 0.0	27.8	0.5096	-6.9369	-6.8449	-17.073	361.9	-3.292	379.9	-0.5454	0.040	0.015	0.5226	0.039
EP0803-2	0.0 0.0	20.3 27.3	-0.2223	-0.3370	-9.0404	-21.001	327.2	-4.097	260.9 346.1	-0.5414	0.047	0.016	0.5442	0.050
					Late C	retaceous-E	ocene Shee	p Pass For	mation					
10SP06-1 10SP06-2	9.5 9.5	28.3 27.9	7.1043 6.8182	-6.4632 -6.8552	0.6896 -0.0376	-16.074 -17.832	96.7 124.8	-3.231 -4.227	102.4 131.9	-0.2308 -0.2765	0.033	0.012 0.007	0.6052 0.5819	0.032
10SP06-4	4.1	28.1	7.0781	-6.5811	0.5261	-16.852	159.6	-3.783	165.9	-0.2505	0.031	0.011	0.5905	0.031
10SP06-	Ċ		0100 11											
51 10SP06-	α.4	32.9	01.22.11	-2.0242	9.5884	-4.589	730.7	-0.547	C.U82	0.0300	0.030	0.013	1260.0	0.035
S3 406006	8.8	33.0	11.5935	-1.8873	10.1599	-0.811	910.6	2.971	894.3	0.0820	0.028	0.011	0.6265	0.027
105F00- S4	8.4	32.5	11.1875	-2.3653	9.2066	-2.685	474.6	2.050	464.0	0.0230	0.019	0.007	0.5968	0.018
10SP02-1	0.6	35.0	4.0204	0.0061	3.9504	0.315	128.6	0.303	123.8	-0.2011	0.024	0.009	0.5345	0.023
10SP02-3	0.5	35.1 24.4	3.9022 3.8070	0.1487 -0.5276	3.9904 3.3479	0.662	-4.0 248 5	0.364	-8.4 244 6	-0.1801	0.033	0.012	0.5543 0.6048	0.032
10SP02-4	0.0	35.4	4.3106	0.4195	4.7460	5.056	754.9	4.214	745.5	-0.1136	0.015	0.005	0.5975	0.015
10SP03-1	-0.1	32.1	3.2763	-2.7957	0.3541	-7.328	1.5	-1.754	3.5	-0.2648	0.038	0.014	0.5815	0.037
10SP03-3	-0.7	31.8	2.7183	-3.0311	-0.4561	-7.015	-6.2	-0.967	-3.1	-0.2690	0.021	0.008	0.6023	0.021
10SP03-4	-0- 4.	31.3	2.9319	-3.4830	-0.6848	-7.596	327.2	-0.647	332.2	-0.2722	0.014	0.005	0.6061	0.014
	(Carrara ma	rble interlal	b standard						
Carrara-1 Carrara-2	7 7 7 7	37.6 37.6	5.2694 5.4982	2.6858 2.5398	8.1091 7 8548	6 901	70.9 109.2	2.058 1.806	0.90 97.3	-0.2899	0.033	0.009	0.3178 0.2896	0.032
Carrara-3	2.1	37.8	5.5198	2.7171	8.1759	8.090	231.8	2.634	218.1	-0.2033	0.026	0.009	0.4023	0.025
			;		,			į	·					
Table A5.1	l Notes -	- This tat	ble lists all	l isotopolog	gue data mé	easured on t	he dual inl	et Thermo	-Finnigan	MAT 253	mass spe	ectrometer	at the Univers	sity of
Michigan S	table Iso	tope Lab	. Normaliz	ted Δ_{47} valu	ies underwe	ent subseque	ent correcti	on for acid	I fractiona	tion factors	at 75°C	(see capti	on for Table 5	.1 and
text for disc	cussion) en convei	prior to t(rted to Pl	emperature DR referen	e determina	tion. d ²² C a	ind o ²⁰ U vali	ues are me	asured rela	utive to CC	2 reference	gas of k	nown isotc	pric composition	on but
IIAVE IIUL UE	COLLAGE	I I OI DAII	nd releas	ce.										

References Cited

- Cox, B.F., 1982, Stratigraphy, Sedimentology, and Structure of the Goler Formation (Paleocene), El Paso Mountains, California: Implications for Paleogene Tectonism on the Garlock Fault Zone [Ph.D. Thesis]: Riverside, University of California, 248 p.
- Crafford, A.E.J., and Harris, A.G., 2007, Geologic map of Nevada; with a section on a digital conodont database of Nevada, U. S. Geological Survey Data Series, DS-0249, 46 p.
- Dettman, D. L., and Lohmann, K. C., 1995, Microsampling carbonates for stable isotope and minor element analysis - physical separation of samples on a 20 micrometer scale: Journal of Sedimentary Research Section A-Sedimentary Petrology and Processes, v. 65, no. 3, p. 566-569.
- Dibblee, T.W., Jr., and Louke, G.P., 1970, Geologic map of the Tehachapi quadrangle, Kern County, California: U.S. Geological Survey Miscellaneous Geological Investigations, Map I-607, scale 1:62,500.
- Gehrels, G. E., and Dickinson, W. R., 1995, Detrital zircon provenance of Cambrian to Triassic miogeoclinal and eugeoclinal strata in Nevada: American Journal of Science, v. 295, no. 1, p. 18-48.
- Gehrels, G. E., Valencia, V. A., and Ruiz, J., 2008, Enhanced precision, accuracy, efficiency, and spatial resolution of U-Pb ages by laser ablation-multicollectorinductively coupled plasma-mass spectrometry: Geochemistry Geophysics Geosystems, v. 9, p. -.
- Ludington, S., Moring, B.C., Miller, R.J., Flynn, K., Hopkins, M.J., Stone, P., Bedford, D.R., and Haxel, G.A., 2005, Preliminary integrated geologic map databases for the United States western states; California, Nevada, Arizona, and Washington, version 1.0.
- Nilsen, T.H., 1987, Stratigraphy and sedimentology of the Eocene Tejon Formation, western Tehachapi and San Emigdio Mountains, California: U.S. Geological Survey Professional Paper 1268, 110 p.
- Saleeby J., Ducea M. N., Busby C., Nadin E., and Wetmore P. H., 2008, Chronology of pluton emplacement and regional deformation in the southern Sierra Nevada batholith California: Geological Society of America Special Paper, v. 438, p. 397-428.
- Walker J.D., Black R.A., Berry, A.K., Davis P.J., Andrew A.J., and Mitsdarfer J.M., 2002, Geologic maps of the northern Mojave Desert and southwestern Basin and

Range province California: Explanation of maps on CD-ROM: Geological Society of America Memoir, v. 195, p. 297-299.

Workman, J.B., Menges, C.M., Page, W.R., Taylor, E., Ekren, E.B., Rowley, P.D., Dixon, G.L., Thompson, R.A., and Wright, L.A., 2002, Geologic map of the Death Valley ground-water model area, Nevada and California, p. 26.