
Overcoming Hard-Faults in High-Performance
Microprocessors

by

Amin Ansari

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2011

Doctoral Committee:

Associate Professor Scott Mahlke, Chair
Professor Todd M. Austin
Assistant Professor Thomas F. Wenisch
Assistant Professor Zhengya Zhang

© Amin Ansari 2011

All Rights Reserved

To my family

ii

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my advisor, Professor Scott Mahlke,

for his support and mentorship in these past years. An enthusiastic researcher and a constant

source of ideas, Scott was a great advisor. I also owe thanks to the remaining members of

my dissertation committee, Professor Austin, Professor Wenisch, and Professor Zhang.

They all donated their time to help shape this research into what it has become today.

I am also indebted to my reliability colleagues, Shantanu Gupta and Shuguang Feng.

It has been a pleasure working with them, and I cannot imaginehaving this thesis in its

current form without their support. Shantanu spent a lot of time discussing research ideas

with me and helping me to gain a better grasp of research fundamentals. Shuguang has

helped with me throughout this process, sitting through ourlong meetings with Scott, giv-

ing excellent research insights, and always being there forany help with writing and proof

reading papers.

During my stay in Michigan, I was lucky to work with an amazingset of people in

our research lab, Compilers Creating Custom Processors (CCCP). I would like to thank

Gaurav Chadha, Hyoun Kyu Cho, Kevin Fan, Shuguang Feng, Shantanu Gupta, Jeff Hao,

Amir Hormati, Po-Chun Hsu, Anousheh Jamshidi, Manjunath Kudlur, Yuan Lin, Andrew

Lukefahr, Mojtaba Mehrara, Hyunchul Park, Yongjun Park, Mehrzad Samadi, Ankit Sethia,

iii

Mark Woh, and Griffin Wright. You folks made coming to the office more fun, and I would

have not made it through without you. I have also learned a great deal about different

cultures, beliefs, and cuisines through our countless discussions in the lab. I also want

to thank my world-class ping pong buddy, Gaurav Chadha for late-night, smash-intensive

games.

Most importantly, my family deserves major gratitude. My parents and my sister pro-

vided their unconditional love and support. I feel blessed to have a family who has given

me all the opportunities to succeed in life. My dad’s dedication and academic excellence

have been a constant source of inspiration to me throughout my whole life. His endless

knowledge and courageous grand visions still amaze me. My uncles and his wife have

made my occasional California vacations truly memorable. Finally, the greatest of thanks

go to my cousins, uncles, aunts, and grandparents who enriched moments of my life.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . viii

LIST OF TABLES . xiv

ABSTRACT . xv

CHAPTER

I. Introduction . 1

1.1 Reliability Threats in Deep Submicron Technologies 1
1.1.1 Process Variation . 3
1.1.2 Manufacturing defects 3
1.1.3 Wearout . 4
1.1.4 Power Consumption 5

1.2 Overcoming Hard-Faults in High-Performance Microprocessors . . 6
1.2.1 Challenges with High-Performance Microprocessors .. 7
1.2.2 Protecting On-Chip Caches 9
1.2.3 Protecting Non-Cache Parts of the Core 11

1.3 Contributions . 13
1.4 Organization . 15

II. Related Work . 16

2.1 Fault-Tolerant Cache Techniques 16
2.1.1 Coding Solutions . 16
2.1.2 Circuit-Level and VLSI Solutions 17
2.1.3 Architectural Solutions 18

2.2 Low-Power Cache Techniques 19
2.2.1 Conventional Low-Power Cache Techniques 19

v

2.2.2 Lowering Power by Tolerating Failures in On-Chip Caches 19
2.2.3 Alternative SRAM Cells 20

2.3 Handling Hard-Faults in the Non-Cache Parts of the Core 21
2.3.1 Coarse-Grained Redundancy and Disabling 21
2.3.2 Fine-Grained Redundancy and Disabling 21
2.3.3 Unconventional Approaches 22

III. Armoring Cache Architectures in High Defect Density Technologies . . 24

3.1 Introduction . 24
3.2 ZerehCache . 28

3.2.1 ZC Architecture . 28
3.2.2 Hard-Fault Detection 35
3.2.3 ZC Configuration . 36

3.3 Design Space Exploration . 41
3.4 Yield Analysis . 49
3.5 Wearout Tolerance . 52
3.6 Comparison and Discussion . 55

3.6.1 Comparison with Conventional Techniques 55
3.6.2 Comparison with Recently Proposed Techniques 57
3.6.3 Significance . 59

3.7 Summary . 60

IV. A Polymorphic Cache Design for Enabling Robust Near-Threshold
Operation . 62

4.1 Introduction . 62
4.2 Archipelago . 67

4.2.1 Baseline AP Architecture 67
4.2.2 AP with Relaxed Group Formation 71
4.2.3 AP Configuration . 75

4.3 Evaluation . 81
4.3.1 Methodology . 81
4.3.2 Design Space Exploration 83
4.3.3 Results . 86

4.4 Quantitative Comparison to Alternative Methods 90
4.5 Summary . 92

V. Enhancing System Throughput by Animating Dead Cores 93

5.1 Introduction . 93
5.2 Utility of an Undead Core . 95

5.2.1 Effect of Hard-Faults on Program Execution 95
5.2.2 Relaxing Correctness Constraints 97
5.2.3 Opportunities for Acceleration 98

vi

5.3 From Traditional Coupling to Animation100
5.4 NM Architecture . 102

5.4.1 High-Level NM System Description 103
5.4.2 Hint Gathering and Distribution 106
5.4.3 Reducing Communication Overheads 109
5.4.4 Hint Disabling Mechanisms 110
5.4.5 Resynchronization . 113
5.4.6 NM Design for CMP Systems 114

5.5 Evaluation . 116
5.5.1 Experimental Methodology 116
5.5.2 Experimental Results 119

5.6 Throughput Enhancement . 126
5.7 Summary . 129

VI. Conclusions . 130

BIBLIOGRAPHY . 134

vii

LIST OF FIGURES

Figure

3.1 Probability of having at least one faulty SRAM cell at different granular-
ities while varying the failure probability of each SRAM cell, PF 25

3.2 Fraction of non-functional SRAM bit-cells for a 2MB L2 cache over time.
Here, the mean time to failure of each SRAM bit-cell is variedfrom 50
to 200 years. 27

3.3 Two simple scenarios in which the line swapping can preserve the correct
functionality of the cache by resolving the occurred collision. A black
box shows a faulty chunk of data. 29

3.4 The high-level architecture of the ZC is shown in this figure and the extra
modules that are added to the baseline cache are highlighted. Note that
the slices of the base address are shown using numbers 1, 2 and3 (Ad-
dress Format). The fault map array and spare cache have theirown shared
decoder to avoid getting their word-line activation signals from the main
cache’s decoder. For simplicity, the separate sense amps for the fault
map and spare cache are not shown. Built-in-self-test (BIST) module is
commonly used for fault diagnosis in the embedded memory structures. . 30

3.5 A Benes network is shown which connects the second rows ofthe four
consecutive logical group of rows in the main cache. As an example, a
single route from the decoder to the word-lines is also shown. 32

3.6 Mapping between the graph coloring problem and the defect pattern in
the main/spare caches. The solid edges stand for the intrinsic conflicts
between the word-lines. The dotted edges correspond to the word-line
conflicts due to the defect pattern. An “X” indicates a collision using a de-
fault grouping. Numbers written in the fault map indicate the correspond-
ing cache word-lines to which the spare units are assigned. (G=Green,
B=Blue, P=Purple, O=Orange) . 37

viii

3.7 Proper configuration of two BNs that transform the actualcache layout
(left) to the virtual one (right) for the given coloring assignment. The
upper (lower) BN connects the first (second) rows of the 4 logical groups.
The darker 2-input MUXes are configured to output their lowerinput
while the lighter MUXes output their upper input. (G=Green,B=Blue,
P=Purple, O=Orange) . 40

3.8 The run-time of the IBSC graph coloring solver inmsfor different edge
densities and number of nodes in the graph. In this figure,p is the edge
density which is defined as the probability of having an edge between an
arbitrary pair of nodes in a random graphG(n,p). 43

3.9 Pop of L2 ZC for differentPF while fixing two parameters and allowing
the third one to vary. 46

3.10 Area, power, and energy overhead of the potential L1/L2ZCs which are
stated in percentage. 48

3.11 Distribution of generated chips by the number of faultySRAM cells in
their L1/L2 caches. A population of 1000 chips is generated by consid-
ering the large-area clustering effect, intra-die, inter-die, systematic, and
parametric variations. 51

3.12 Results of Monte Carlo lifetime simulation which show the probability
of operation for L1/L2 caches protected by different mechanisms. In ad-
dition, the shaded region shows the expected number of failures over the
life-time. 54

3.13 Area overhead of the different protection mechanisms for tolerating a
givenPF . In this figure, Row-Redun stands for the row redundancy pro-
tection scheme. ECC and ECC-2 are the 1-bit and 2-bit error correction
schemes, respectively. 56

4.1 Bit error rate for an SRAM cell with varyingVdd values in 90nm. For this
technology, the write-margin is the dominant factor and limits the oper-
ational voltage of the SRAM structure. Here, the Y-axis is logarithmic,
highlighting the extremely fast growth in failure rate withdecreasingVdd.
The two horizontal dotted-lines mark the failure rates at which the men-
tioned SRAM structures (64KB and 2MB) can operate with at least99%
manufacturing yield. 63

ix

4.2 Percentage of faulty bits, bytes, words, blocks, columns, and word-lines
for a 2MB L2 cache while varying the supply voltage. Here, theY-axis is
logarithmic, highlighting the rapid growth in faulty unitswhen decreasing
Vdd. The top part of this figure depicts our conceptual division of this
Vdd range into four different regions based on the protection difficulty.
For each region, corresponding bit error rates and also several applicable
protection techniques are also shown. In order to operate correctly in
the failure-free region, no protection mechanism is required. However,
as can be seen, our target is the high failure rate region which causes an
avalanche of failures for on-chip caches. 65

4.3 Basic structure of a dual-bank 2-way set-associative Archipelago. Two
cache banks with eight lines each are shown. Each block consists of
3 equally sized data chunks. Black boxes in each cache line represent
chunks of data that have at least one faulty bit. The memory and fault
maps, which are essential components of the proposed scheme, are also
shown. 69

4.4 Two special read-access scenarios. A standard read access is illustrated
in Figure 4.3. Notice the extra bit that has been added to boththe mem-
ory map and every fault map entry to handle scenario (b). Since the 4th
data chunk of semi-sacrificial line is re-allocated, it is marked asRA in
scenario (b). 72

4.5 A simplified example of the minimum clique covering process for a given
distribution of faults in the cache banks. Here, each bank has only 5
lines. The solver disables the 6th line since it has many faulty chunks
and, is therefore very expensive to repair. Two cliques are formed by the
solver and lines 9 and 3 are designated as sacrificial lines for groups 1
and 2, respectively. Moreover, the conceptual partitioning of the cache to
distinct islands is also demonstrated. 74

4.6 Distribution of the clique size for different versions of the solver based
on Monte Carlo simulation. Note that for 64-cap, the size of all cliques is
≤ 64. Here, the number of non-functional lines is the summation of the
number of sacrificial lines and the number of disabled lines.The plot in
the insert depicts the average number of non-functional cache lines, the
maximum number of non-functional lines, and the number of disabled
lines while achieving 99% yield. 78

4.7 Process of determining the minimum achievableVdd for L1 and L2 caches
while limiting the fraction of the non-functional cache lines and also the
area overhead of the fault map structure to≤ 10%. Moreover, in these 10
sub-plots, vertical dotted lines show the minimum achievable Vdd while
data chunk size varies from 1bit to 16bits. 84

x

4.8 Design points for different Maximum Clique Size (MCS) and chunk size
pairs are shown that can achieve a 99% yield. For each MCS value, cor-
responding chunk sizes from{2n | n ∈ {0, 1, ..., 7}} for L1 and from
{2n | n ∈ {0, 1, ..., 5}} for L2 are chosen. The shaded boxes represents
the region of interest where both the fault-map overhead andthe fraction
of non-functional lines is limited to≤ 10%. The black dotted line is the
Pareto frontier. 85

4.9 Area, leakage, and dynamic power overheads of our schemefor both L1
and L2 caches. Here, 10T cell is used for protecting fault map, memory
map, and tag arrays. 86

4.10 Performance loss break-down for our scheme in low powermode us-
ing SPEC-2K benchmarks. As can be seen, since the fraction ofnon-
functional lines is limited to be less than 10%, the access latency over-
head is the dominant factor in performance penalty. 88

4.11 Low-power mode benefits and also overheads of an Alpha 21364 mi-
croprocessor system (Table 4.1) augmented with Archipelago. Here, we
account for the dynamic power overhead of accessing the second bank in
low power mode for handling failures.89

5.1 Distribution of injected hard-faults that manifest as architectural state
mismatches across different latencies – in terms of the number of com-
mitted instructions (CI). 96

5.2 Number of instructions that are committed (CI) before an injected hard-
fault results in a violation of a pre-specified similarity index threshold.
For this purpose, 5K hard-faults were injected while considering three
different similarity index thresholds (90%, 60%, and 30%).. 97

5.3 IPC of different DEC Alpha microprocessors, normalizedto EV4’s IPC.
In most cases, by providing perfect hints for the simpler cores (EV4, EV5,
and EV4 (OoO)), these cores can achieve a performance comparable to
that achieved by a 6-issue OoO EV6. 99

5.4 The high-level architecture of NM is shown in this figure and modules
that are modified or added to the underlying cores are highlighted (not
drawn to scale). 104

5.5 Port activity breakdown for local caches of the animatorcore. Here, we
show the percentage of cycles that each cache port is either busy or free.
For our animator core, the data cache has 2 ports while the instruction
cache has a single port. 107

xi

5.6 A code example in which the NM BP performs poorly and switching
to the original BP of the animator core is required. The code simply
calculates the summation of a 2D-array elements which are stored in a
row-based format. It should be noted that the branch prediction release
window size is normally set so that the branch prediction accuracy for the
entire execution gets maximized. As can be seen, hints are received by
the animator core at improper times, resulting in low branchprediction
accuracy. 109

5.7 Two high-level examples of cache and branch prediction hint disabling
mechanisms. Here, values on the X-axes of the plots correspond to eight
entries of the cache disabling table. 112

5.8 The high-level NM design for a large CMP system with 16 cores, mod-
eled after the Sun Rock processor, which has 4 cores per cluster. The
details of NM core coupling can be found in Figure 5.4. 115

5.9 Effect of the NM D-cache release window size on the data cache miss
rate of the animator core. 120

5.10 Effect of the branch history table size of the NM BP on theoverall branch
prediction accuracy of the animator core. 120

5.11 Effect of CAM size that are used for reducing the number of D-cache
hints – generated in the undead core – on the data cache miss rate of the
animator core. Here, the lines show the number of data cache hints should
be sent to the animator core per cycle, normalized to the the case without
any CAM. 121

5.12 Number of instructions committed in the animator core before the branch
prediction hint is disabled for different pre-specified branch prediction
hint disabling thresholds (i.e., 50%, 70%, and 90% similarities). 122

5.13 Effect of different resynchronization policies on theoverall speed-up of
the NM coupled cores normalized to the performance of the baseline an-
imator core. 122

5.14 Effect of communication queue size on the overall speed-up of the NM
coupled cores normalized to the performance of the baselineanimator core.123

xii

5.15 Variations in the speed-up of the animator core for different hard-fault lo-
cations across SPEC-CPU-2K benchmarks. To only highlight the impact
of hard-fault locations, in each row, results are normalized to the average
speed-up that can be achieved by the NM coupled cores for thatparticular
benchmark. 124

5.16 Performance of the baseline animator core, NM coupled cores, and a live
core normalized to the average performance of a baseline animator core.
Due to the higher heterogeneity across the benchmarks for a CMP system
with more cores, NM can achieve a higher overall speed-up. 125

5.17 Break-down of NM area and power overheads for CMP systems with dif-
ferent numbers of cores. As can be seen, the overheads that are imposed
by the the baseline animator core is typically the major component, which
gets amortized as the number of cores grows. 126

5.18 Throughput enhancement for a population of manufactured chips with
different number of cores. Here, we consider two baselines,CMP system
without and with proper protection for on-chip caches, and show the yield
improvement for these two cases (shaded regions) when applying NM.
Each line presents the achievable yields for different expected throughput
values. 128

xiii

LIST OF TABLES

Table

3.1 The target system configuration .. . 41

3.2 Comparison with recently proposed cache protection schemes 59

4.1 The target system configuration .. . 82

4.2 Comparison of different protection schemes 90

5.1 The target NM system configuration 116

5.2 Fault injection locations and their corresponding pipeline stages along
with stage-level area break-down for EV6. 117

xiv

ABSTRACT

Overcoming Hard-Faults in High-Performance Microprocessors

by

Amin Ansari

Chair: Scott Mahlke

As device density grows, each transistor gets smaller and more fragile leading to an overall

higher susceptibility to hard-faults. These hard-faults result in permanent silicon defects

and impact manufacturing yield, performance, and lifetimeof semiconductor devices. In

this thesis, we propose comprehensive, low-cost solutionsto tackle reliability problems

in high-performance microprocessors. These microprocessors mainly consist of on-chip

caches and core pipeline. We first present two flexible cache architectures, ZerehCache

and Archipelago, to protect regular SRAM structures against high failure rates. ZerehCache

virtually reorganizes the cache data array using a permutation network to provide higher

degrees of freedom for spare allocation. In order to study the impact of fault patterns on

the redundancy requirements in a cache, we propose a methodology to model the collision

patterns in caches as a graph problem. Given this model, a graph coloring scheme is em-

ployed to minimize the amount of additional redundancy required for protecting the cache.

xv

Archipelago targets failures in near-threshold region. Itresizes the cache to provide re-

dundancy for repairing faulty cells. Furthermore, a near optimal minimum clique covering

configuration algorithm is introduced to minimizes the cache capacity loss.

With proper solutions in place for caches, a robust and heterogeneous core coupling

execution scheme, Necromancer, is presented to protect thegeneral core area against hard-

faults. Although a faulty core cannot be trusted, we observethat for most defects, execution

traces on a defective core coarsely resemble those of fault-free executions. Necromancer

exploits a functionally dead core to improve system throughput by supplying hints regard-

ing high-level program behavior. We partition the cores into multiple groups. Each group

shares a lightweight core that can be substantially accelerated. However, due to the pres-

ence of defects, a perfect data or instruction stream cannotbe provided by the dead core.

This necessitates employing low-cost recovery mechanism and generic hints that are more

resilient to local abnormalities.

xvi

CHAPTER I

Introduction

The rapid growth of the silicon process over the last decade has substantially improved

semiconductor integration levels. However, as device density grows, each transistor gets

smaller and more fragile leading to an overall higher susceptibility of chips to failures. This

aggressive technology scaling has lead to a host of reliability challenges such as manufac-

turing defects, wear-out, and parametric variations [23, 19]. These threats can affect correct

program execution, perhaps, the most significant aspect of any computer system [13].

1.1 Reliability Threats in Deep Submicron Technologies

Technological trends into the nanometer regime have lead toa host of manufacturing

and process issues such as sub-wavelength lithography (e.g., exposure tool optimization),

cleaning technology, resist process optimization, highersensitivity of materials, line edge

roughness, random particles attaching to the wafer surface, and random dopant fluctua-

tion [45]. These factors result in a wide distribution of transistor characteristics which

translates into an increasing vulnerability of manufactured parts. As the device vulnera-

1

bility increases gradually, more fault incidences can be observed in modern chips. At the

same time, this growth in the fault incidences translates into a larger number of user visi-

ble failures in computer systems. Furthermore, propagation of non-masked faults through

the system and their manifestation as systematic failures,in many applications (e.g., au-

tomotive electronic systems, financial services, and spaceshuttle management systems),

imposes a life-threatening and a significant economic impact.

The sources of computer system failures are widespread, ranging from soft-faults (i.e.,

transient faults) to hard-faults (i.e., permanent faults). Soft-faults or single event upsets

(SEU) are happening due to electrical noise and energetic particle strikes such as neutrons

from cosmic rays and alpha particles from packaging material [108]. Such particle strikes

can flip a state bit and change the value being computed by a logic element. In recent years,

industry designers and researchers have invested significant effort in building architectures

resistant to soft-faults [88, 101]. In soft-faults the damage to a chip is never permanent, and

a replay of instructions is typically sufficient for recovery.

In contrast to soft-faults, dealing with hard-faults is significantly more involved, and

relatively little research has been conducted to efficiently tolerate the same. There are

numerous sources of hard-faults, ranging from manufacturing defects, process variation

induced failures, to in-field wearout phenomenas such as ElectroMigration (EM) [32],

time dependent dielectric breakdown (TDDB) [104], negative bias temperature instability

(NBTI) [107], and hot carrier injection (HCI) [97]. These hard faults result in permanent

silicon defects, impact the manufacturing yield, performance, lifetime throughput, and de-

pendability of semiconductor parts (e.g., reliability, availability, and maintainability) [23].

2

1.1.1 Process Variation

Process variation [82], caused by the inability to precisely control the fabrication pro-

cess at small-feature technologies, introduces significant deviation of circuit parameters

(channel length, threshold voltage, wire spacing) from thedesign. This wide distribution

of transistor characteristics directly translates into lower parametric yield [20]. Process

variation is encountered at manufacturing time, and influences almost every manufactured

chip. The variations can be systematic (e.g., lithographiclens aberrations) or random (e.g.,

dopant density fluctuations), and can manifest at differentlevels – wafer-to-wafer (W2W),

die-to-die (D2D) and within-die (WID). Traditionally, D2Dhas been the most visible form

of variation, and was tackled by introducing the notion of speed-binning (chips are parti-

tioned based on their frequency and sold accordingly). However, the increasing levels of

WID variations [82, 64] have created newer challenges. Thissignificant divergence of pro-

cess parameters from their nominal specification limits theachievable frequency and also

significantly hurts the leakage power of modern high performance processors [95]. A con-

ventional approach to deal with process variation is to introduce large voltage/frequency

guard-bands which considerably impacts the power consumption.

1.1.2 Manufacturing defects

Manufacturing defects is one of the main challenges for the semiconductor industry,

which have a direct impact on yield. From each process generation to the next, micro-

processors become more susceptible to manufacturing defects due to higher sensitivity of

materials, random particles attaching to the wafer surface, and sub-wavelength lithography

3

issues such as exposure tool optimization, cleaning technology, and resist process opti-

mization [45]. For instance, based on the latest ITRS report[48], for current and near future

CMOS technology, one manufacturing defect per five 100mm2 dies can be expected. Thus,

in order to maintain an acceptable level of manufacturing yield, a substantial investment is

required [87]. Traditionally, modern high-performance processors are declared as func-

tional if all parts of the design are fault-free, or if they can operate correctly by tolerating

failures. However, since manufacturing defects can cause asignificant yield loss, semicon-

ductor companies have recently started to manufacture parts that have been over-designed

to hedge against defects. For instance, to improve yield, IBM did this with the Cell Broad-

band Engine that sometimes only had 7 out of the 8 processing elements activated [90].

1.1.3 Wearout

Apart from these fabrication challenges, as circuit density grows, each transistor gets

smaller, hotter, and more fragile. This leads to an overall higher susceptibility of chips to in-

field wearout induced hard-faults [23, 91]. For many computer systems such as embedded

systems, data center processors, and space equipments, thedevice lifetime and throughput

is crucial. However, these wearout failures, can impact theperformance guarantees offered

by a semiconductor chip, and limit their useful lifetime. Wearout or aging can be tackled

by either proactive or reactive methods. In proactive methods, the operation of the device

should be altered such that it avoids phenomenas that are causing aging (e.g., EM, TDDB,

and NBTI). On the other hand, in reactive methods, the wearout induced failures will be

addressed without slowing the aging process. In general, wearout avoidance techniques

(i.e., proactive approaches) have a very limited scope and mostly try to avoid one or two

4

of the aforementioned wearout mechanisms. Therefore, in order to develop a more general

solution for hard-faults, in this thesis, we focus on dealing with the hard-faults after they

occur (i.e., a reactive approach).

1.1.4 Power Consumption

With aggressive silicon integration and clock frequency increase, power consumption

and heat dissipation have become key challenges in the design of high performance pro-

cessors. Growing power consumption reduces device lifetimes and expedites early stage

failures [91]. It also affects the cost of thermal packaging, cooling, electricity, and data

center air conditioning [59]. Dynamic voltage scaling (DVS) is a widely used technique to

reduce the power consumption of microprocessors, exploiting the fact that dynamic power

quadratically scales with voltage and linearly with frequency. However, the supply volt-

age of a microprocessor cannot be reduced below a certain threshold without drastically

sacrificing clock frequency. Lowering this minimum achievable voltage can dramatically

improve the lifetime, energy consumption, and battery lifeof medical devices, laptops, and

handheld products.

The minimum achievable voltage for DVS is set such that underthe worst-case process

variation, the processor operates correctly [35]. Large SRAM structures are limiting the

extent to which operational voltages can be reduced in modern processors. This is because

SRAM delay increases at a higher rate than CMOS logic delay asthe supply voltage is

decreased [94]. Furthermore, with increasing systematic and random process variation in

deep sub-micron technologies, the failure rate of SRAM structures rapidly increases in

the near-threshold regime. Ultimately, the minimum sustainableVdd of the entire cache

5

structure – and consequently the core as a whole – is determined by the one SRAM bit-

cell within the entire system with the highest required operational voltage. This forces

designers to appropriate a large voltage margin in order to avoid on-chip cache failures.

Efficiency of CMOS technology is questionable in the face of such challenges. Current

projections indicate that future microprocessors will be composed of billions of transistors,

many of which will be unusable at manufacture time, and many more which will degrade

in performance (or even fail) over the expected lifetime of the processor [23]. These issues

are detrimental to the semiconductor industry’s economic model. Loss of compelling per-

formance gains reduces the incentive to regularly upgrade machines, loss in yield directly

translates to loss in sales and in-field defects could necessitate conservative designs to avoid

substantial performance degradation. To address these reliability concerns, designers must

armor their designs to tolerate and operate properly in the presence of faults.

1.2 Overcoming Hard-Faults in High-Performance Microprocessors

Traditionally, hardware reliability was only a concern forhigh-end systems (e.g., HP

Tandem Nonstop and IBM eServer zSeries) for which applying high-cost redundancy so-

lutions such as triple modular redundancy (TMR) was acceptable. Nevertheless, hardware

reliability has already become a major issue for mainstreamcomputing, where the usage

of high-cost reliability solutions is not acceptable [63].Therefore, there is a need for low-

cost reliably solutions to maintain the correctness and enhance the efficiency of modern

microprocessors.

Traditionally, modern high-performance processors are declared as functional if all

6

parts of the design are fault-free, or if they can operate correctly by tolerating failures.

However, since manufacturing defects can cause a significant yield loss, semiconductor

companies have recently started to manufacture parts that have been over-designed to hedge

against defects. For instance, to improve yield, IBM did this with the Cell Broadband En-

gine that sometimes only had 7 out of the 8 processing elements activated [90].

1.2.1 Challenges with High-Performance Microprocessors

Protecting high-performance modern microprocessors against hard-faults is more chal-

lenging compared to other CMOS devices. Here, we explain some of these difficulties

which do not exist to the same degree in other circuit designs. First, high-performance

microprocessors contain on the order of several hundred million transistors to allow a more

aggressive extraction of instruction level parallelism. Failure of any of these transistors can

potentially impact the correct operation of the microprocessor. Therefore, since each core

contains a large number of transistors, simple reliabilitysolutions like disabling the faulty

core (i.e., core disabling) is not cost effective. Furthermore, this growth in the number of

transistors per core, increases the chance of having more faulty transistors in a given core.

More importantly, the design complexity of the modern high-performance micropro-

cessors increases everyday. Complexity in the connectivity between different stages, and

also having a larger number of stages, do not allow us to use techniques like Core Can-

nibalization [79] and StageNet [41] which suggest breakingeach core into pipeline stages

and allowing one core to borrow stages from other cores through interconnection networks.

These techniques designed for simple in-order cores with a regular, straightforward con-

nectivity between stages. Furthermore, the operational clock frequency of these micro-

7

processors is relatively high. This tight delay budget and the inherent complexity in the

connectivity, makes it almost impossible to use fine-grained spares (with the same set of

connectivity) for every structures.

In addition, in order to achieve a better performance, thesehigh-performance micro-

processors mostly operate at a higher clock frequency, voltage, and temperature. Since

higher operational stress (e.g, temperature, current, andvoltage) accelerates the aging pro-

cess, there is much higher chance that in-field wearout failures occur in these processors.

Therefore, in order to combat the impact of different wearout mechanisms (e.g., NBTI,

HCI, or EM), proper reliability solutions are even more necessary for high-performance

microprocessors.

Inserting SCAN chains everywhere in a high-performance microprocessor imposes a

high performance, area, and power cost. Therefore, they canonly be applied in a lim-

ited set of locations to enhance the observability and countability of test process. This

simply translates to a state explosion during test procedure. Therefore, it is hard (if not

impossible) to pinpoint the fault location in most cases (especially for in-field failures).

This introduces another challenge with protecting the high-performance microprocessors

against faults. This implies that the reliability solutions which are not relying on exact

fault location would be more appealing in the future. However, this is contradictory with

the conventional method of designing fault-tolerant systems which emphasizes the fault

diagnosis to allow a finer-grained replacement/reconfiguration.

Above all, given a particular technology node, high-performance microprocessors mostly

operate on the most aggressive voltage vs clock frequency curve. This means operating at

the highest possible frequency at a given supply voltage. There is set of simple reliability

8

techniques that suggest using high voltage and frequency guard-bands or slowing down the

processor to avoid wearout and process variation induced failures. However, these simple

techniques eliminate most of the achievable performance ofthese microprocessors and/or

introduce high power overhead.

Another challenge with high performance microprocessors,is the introduction of large

on-chip caches. These multi-level caches allow the processor to achieve a better perfor-

mance by effectively hiding the main-memory latency. However, protecting these large

and delay sensitive structures against reliability issueswith conventional approaches is not

practical. The main reason behind this is that the voltage and frequency of the SRAM ar-

ray should be set based on the bit-cell with worst timing characteristics. Process variation

causes different SRAM cells to show different timing characteristics. Therefore, as the pop-

ulation of the cells grow (larger cache), the chance of having a cell with a very poor timing

characteristics increases. This means as the SRAM array size increases, in order to cope

with process variation, power and timing efficiency of the array should to be sacrificed.

1.2.2 Protecting On-Chip Caches

On-chip memory arrays in high-performance processors are critical for chip reliability

as more than 70% of the transistors can be devoted to caches. Moreover, as the technology

scaling continues, in order to deal with the power budget, without power gating a large

fraction of the chip, even a larger fraction of the chip is expected to be devoted to on-chip

caches. These SRAM structures, however, are particularly vulnerable to the process vari-

ation due to their minimum-geometry transistors, sensitive differential circuit, and area ef-

ficient semi-custom layout. Therefore, these large on-chipcaches in the high-performance

9

microprocessors need to be protected against different sources of hard-fault (e.g., process

variation, wearout, and manufacturing defects).

To efficiently scale to higher defect densities and handle arising hard-faults, a more

flexible and configurable cache design is necessary. As a solution, we present and evaluate

ZerehCache that is a high-failure rate tolerant cache design for both L1 and L2 on-chip

caches. ZerehCache is an adaptive, dynamically reconfigurable solution for tackling the

high defect rates of future technologies. It also provides awide range of cache design op-

tions based on the primary design concerns such as delay, power, and area overhead. The

cache data array is divided into equal sized groups. Lines within each of these groups share

a single spare line in the spare cache. In order to tolerate many defects, logical groups are

formed by carefully shuffling together cache lines using an interconnection network. The

functionality of the interconnection network is to swap thelines in a manner that resolves

the existing collisions. We model collisions as a graph coloring problem that can be solved

during the manufacturing test time to minimizes the amount of redundancy required for

protecting the cache. In this thesis, we leverage ZerehCache architecture to tolerate process

variation in 45nmtechnology. ZerehCache takes advantage of its interlaced usage of redun-

dancies in multiple ways to substantially cut the overheadsof protecting on-chip caches.

Current microprocessors have already been equipped with ECC and row-redundancy to

protect the caches [80]. ZerehCache can substitute these conventional protection mecha-

nisms, while providing the same level of robustness, for a considerably lower overhead.

Apart from wearout and manufacturing issues, power consumption is a major concern

for semiconductor industry. As mentioned earlier, DVS is a widely used technique to re-

duce the power consumption of microprocessors. However, the supply voltage of a mi-

10

croprocessor cannot be reduced below a certain threshold without drastically sacrificing

clock frequency. Therefore, the minimum achievable voltage for DVS is set such that un-

der the worst-case process variation, the processor operates correctly. Since large SRAM

structures are limiting the extent to which operational voltages can be reduced in modern

processors, in order to enable DVS to push the core/processor operating voltage down to

the near-threshold region, correct functionality of on-chip caches should be preserved. For

this purpose, we propose Archipelago, a cache capable of reconfiguring its internal organi-

zation to efficiently tolerate the large number of SRAM failures that arise when operating

in the near-threshold region. Since low-power operation isoptional, in order to minimize

the overheads, Archipelago does not rely on an separate spare cache, instead, it resizes

the original cache to provide spare elements. Archipelago allows fault-free operation by

partitioning the cache into multiple autonomous islands with various sizes. Each island is

a group of physical cache word-lines that can operate correctly without using any word-

line outside of their group. Each group has a sacrificial word-line which is divided up to

multiple redundancy units. These spare units are directly/indirectly employed to achieve

fault-free operation of the other word-lines in the same group. Furthermore, an adapted

version of the minimum clique covering algorithm is used to partition the cache to the least

number of islands to minimize the number of sacrificial word-lines required for guarantee-

ing the fault-free operation of the cache.

1.2.3 Protecting Non-Cache Parts of the Core

With appropriate protection mechanisms in place for caches, the processing cores be-

come the major source of defect vulnerability on the die. Consequently, in the second half

11

of this thesis, we try to address hard-faults in the non-cache parts of the processing core.

Due to the inherent irregularity of the general core area, itis well-known that handling

defects in the non-cache parts is challenging [75]. The industry is currently dominated by

Chip Multi-Processor systems with only a modest number of high-performance cores (e.g.,

Intel Core 2), systems which cannot afford to lose a core due to manufacturing defects.

Therefore, these common solutions like core disabling or isolation are not a cost-effective.

The other extreme of the solution spectrum lies fine-grainedmicro-architectural redun-

dancy. Here, broken microarchitectural structures, such as ALUs, are isolated or replaced

to maintain the functionality. Unfortunately, since the majority of the core logic is non-

redundant, the fault coverage from these approaches is verylimited [75].

To enhances overall system throughput and mitigates the performance loss caused by

defects in the non-cache parts of the core, we preset Necromancer. Necromancer relaxes

the correct execution constraint on a faulty core since it cannot be trusted to faithfully

execute programs. However, we observed for most defect instances, the execution flow of

the program on the faulty core coarsely resembles the fault-free program execution on the

animator core when starting from the same architectural state. Therefore, Necromancer

leverages high level execution information (hint) from thefaulty core to accelerate the

execution of a lightweight core. This lightweight core is anadditional core, introduced

by Necromancer, that is an older generation of the baseline cores in the CMP with less

resources and the same instruction set architecture. Moreover, in the lightweight core, these

hints are only treated as performance enhancers and do not influence execution correctness.

We partition the cores in a conventional CMP system into multiple groups in which each

group shares one of these lightweight cores that can be substantially accelerated.

12

To prevent the faulty core from wandering too far from the correct path of execution,

we dynamically resynchronize architectural state with thelightweight core. However, due

to the presence of defects, a perfect data or instruction stream cannot be provided by the

faulty core. This necessitates employing generic hints that are more resilient to local ab-

normalities. Given the variation in the usefulness of the execution information, in order

to enhance the efficiency of the lightweight core, we introduce several fine-grained hint

disabling mechanisms. Besides, when the faulty core gets completely off the correct ex-

ecution path, hints become useless, and it needs to be brought back to a valid execution

point. Therefore, the architectural state of the lightweight core can be copied over to the

faulty core. For this purpose, we leverage coarse-grained online monitoring of the effec-

tiveness of the hints over a large time period to decide whether the faulty core should be

resynchronized with the lightweight core.

1.3 Contributions

Before enumerating the contributions, we go over some of thecommon attributes of

proposed fault-tolerant architectures in this thesis. In order to achieve low-cost reliability

solutions for commodity high-performance microprocessors, we realized the future com-

puter systems need to have several characteristics: runtime adaptability, high degree of re-

configurability, fine-grained flexibility in spare substitution, and ability to exploit approx-

imate execution. These characteristics allow a system to tolerate failures with minimum

costs by dynamically reorganizing itself. In this thesis, we make the following contribu-

tions:

13

• We demonstrate a comprehensive, low-cost approach for protecting high-performance

modern microprocessors against different sources of hard-faults in deep submicron

technology nodes.

• A flexible cache architecture, ZerehCache, is presented toprotect regular SRAM

structures against high degree of process variation, wearout induced failures, and

manufacturing defects. Furthermore, we propose a methodology to model the col-

lision pattern in the cache as a graph problem. Given this model, a graph coloring

scheme is employed to minimize the amount of additional redundancy.

• To efficiently tolerate the large number of SRAM failures that arise, in the large on-

chip caches, when operating in the near-threshold region, ahighly reconfigurable

cache design, Archipelago, is presented. Since low-power operation is optional,

instead of relying on redundancy, Archipelago resizes the cache to provide spare

elements. Furthermore, a near optimal minimum clique covering configuration algo-

rithm is introduced.

• A robust and heterogeneous core coupling execution scheme, Necromancer, is pre-

sented to tackle hard-faults in the non-cache parts of the core. Although a faulty

core cannot be trusted to correctly execute programs, we observe that for most de-

fects, when starting from a valid architectural state, execution traces on a defective

core actually coarsely resemble those of fault-free executions. In light of this in-

sight, Necromancer exploits a functionally dead core to improve system throughput

by providing high-level hints to accelerate the execution of a fault-free core.

14

1.4 Organization

The rest of this thesis is organized as follows. First, Chapter III presents ZerehCache,

a high-defect tolerant on-chip cache architecture that combines redundant data array ele-

ments with a permutation network for providing a higher degree of freedom on replace-

ment. In Chapter IV, we introduce Archipelago, a highly flexible fault-tolerant cache de-

sign that by reconfiguring its internal organization can efficiently tolerate the large number

of SRAM failures that arise when operating in the near-threshold region. Next, in order to

tackle hard-faults in the non-cache parts of the core, in Chapter V, we propose a robust and

heterogeneous core coupling execution scheme, Necromancer, that exploits a functionally

dead core to improve system throughput by supplying hints regarding high-level program

behavior. Finally, Chapter VI presents our directions for future work.

15

CHAPTER II

Related Work

A significant amount of literature targets the microprocessor reliability concerns (e.g.,

transient faults, manufacturing defects, process variation, wearout avoidance/tolerance, and

stability in near/sub-threshold operation). In this section, based on the aforementioned

scope of this thesis (Chapter I), we divide the prior work into three major categories: fault-

tolerant cache techniques, low-power cache techniques, and techniques for handling hard-

faults in the non-cache parts of the core. Here, SRAM cell stability efforts are included in

the low-power category since they try to proactively avoid failures.

2.1 Fault-Tolerant Cache Techniques

The proposed solutions in this domain can be divided into three major categories:

2.1.1 Coding Solutions

Simple error detection codes (EDC) and parity can be appliedfor the detection of the

faults in caches [80]. Single error correction double errordetection (SECDED) is a widely

used technique for protecting the memory structures against soft-errors. However, in a

16

high-failure rate situation, these solutions are not practical because of the strict bound on the

number of tolerable faults in each protected data chunk (Section 3.6). A 2D error correction

coding scheme is presented in [54] that uses two sets of EDCs on the rows and columns

of the data array. As the failure rate sensitivity analysis results show in [54], this scheme

is not appropriate for tolerating large number of randomly distributed failures. Further,

the overhead of updating all the column codes foreach cache writeis high. Multiple bit

error correcting codes (ECCs) like Hamming codes are capable of tolerating high failure

rates, but are inefficient in terms of the coding delay, area,and power overheads for on-chip

caches [54]. In summary, the coding solutions are best applied to memory structures under

low failure-rate scenarios or where transient faults are the main concern.

2.1.2 Circuit-Level and VLSI Solutions

Many solutions have been proposed that employ dynamic voltage/frequency scaling

to improve the cache reliability [74]. These methods try to identify the most vulnerable

SRAM cell in each line and scale the access time/voltage to a level that guarantees proper

operation for all the cells in that word-line. There are two major drawbacks of this scheme,

1) a mechanism is needed to dynamically determine the weakest cell in each row, and 2)

the working conditions of the cache must be adjusted to the weakest cell, resulting in a

considerable performance penalty (access latency). A 3T1DDRAM cell can be substituted

for the conventional 6T SRAM cell to improve the reliability[64]. However, the 3TD1 cell

cannot retain the value for a long period and each word-line must be refreshed periodically.

Moreover, since on-chip DRAM is not normally used in currenttechnologies, it adds to the

process/manufacturing complexity and effort. Another alternative is to size up the SRAM

17

cells or use a different structure for them (e.g. 8T, 10T, or ST) [58]. Unfortunately, these

methods incur a large area overhead (Section 3.6) and they are mostly employed for power

reduction by allowing the near/sub-threshold operation.

2.1.3 Architectural Solutions

Dual modular redundancy (DMR) schemes are used in many designs for providing

memory structure reliability, but they are highly inefficient in terms of the overhead [83].

A popular architectural solution is to use redundant rows and/or columns [62]. However,

as it will be discussed in Section 4.1 and 3.1, for our target failure rate, almost all word-

lines/columns can be expected to be faulty from the start (Figure 4.2 and 3.1b). This results

in a poor utilization of the provisioned redundancy. Moreover, since the redundant row

replacement is based on a decoder modification and using hard-wired fuses, it is generally

not applicable for more than 10 extra rows [46]. A similar setof methods are based on the

cache block/row/way disabling that are also suitable for the low-failure rate situations [74].

Wilkerson et. al. have suggested several layers of shiftersfor merging multiple defective

word-lines to form a single functional word-line [103]. To achieve operation in the presence

of faults, their Word-Disable method sacrifices half of the cache area and their Bit-Fix

method adds three cycles of latency to the cache access time.Both of which result in

considerable performance drop-off. There are other groupsof work that use a re-mapping

table to map a faulty block onto one of neighboring functional blocks [47]. These methods

impose a high pressure on the L1-L2 communication bus by increasing the L1 miss rate

substantially. Furthermore, these methods have two major applicability issues: they are

properly applicable only todirect-mappedcaches [4]; and, they cannot be applied to L2

18

caches since a read from a faulty block results in a miss that gets its value from main

memory with several hundred cycles latency.

2.2 Low-Power Cache Techniques

The proposed solutions in this domain can be divided into three major categories:

2.2.1 Conventional Low-Power Cache Techniques

The usage ofVdd gating for leakage power reduction by turning off cache lines is de-

scribed in [51]. This approach reduces the leakage power of the cache by turning off the

cache lines that are not likely to be accessed in the near future. Meng et. al. [68] pro-

posed a method for minimizing leakage overhead in the presence of manufacturing varia-

tions. In this scheme, they artificially prioritize cache ways with smaller leakage and resize

the cache by avoiding sub-arrays that have higher leakage factors. Instead of turning off

blocks, drowsy cache [36] is a state preserving approach that has two different supply volt-

age modes. In order to save power, recently inactive cache blocks periodically fall into a

low power mode in which they cannot be read or written.

2.2.2 Lowering Power by Tolerating Failures in On-Chip Caches

However, for lowVdd values (e.g.,≤ 651mV in 90nm), the amount of power saving

for these methods is restricted due to failures in SRAM structures [78]. In contrast, as

we discussed earlier, our objective is to enable DVS to push the processor/core operating

voltage down to the near-threshold region while preservingcorrect functionality of on-chip

caches. Wilkerson et. al. [103] proposed two different cache protection schemes for L1

19

and L2 caches that use several levels of decoding/shifting to take the faulty data chunks

out and replace them using ECC protected patches. Due to the strict binding between data

and redundancy, their schemes need to disable 50% of L1 and 25% of L2 caches which

results into a considerable performance drop-off in low power mode. Recently, Abella

et. al. [1] proposed a cache protection scheme based on sub-block disabling which can

provide a better performance predictability than [103]. However, since this scheme relies

on disabling finer granularities than a cache block, it losses its efficiency when applied

to caches other than L1-Data. Chishti et. al. recently proposed another technique [31]

that employs multi-bit segmented ECC to also allow soft and hard-error resilience in lower

voltages by sacrificing 50% of cache capacity. Although an interesting approach, it can

only achieve 30% reduction in the MinVdd.

2.2.3 Alternative SRAM Cells

On the other hand, many variations of SRAM cells such as 8T [70], 10T [27], 11T [69],

and ST [58] have also been proposed. These larger SRAM cells are more stable against

different sources of parameter variations compared to the conventional 6T cell and allow

the SRAM structures to operate at lower voltages while preserving its correct functionality.

Most of these cells have a large area overhead which is a significant shortcoming since

the extra area does not translate into any performance gainswhen operating in high power

mode.

20

2.3 Handling Hard-Faults in the Non-Cache Parts of the Core

The proposed solutions in this domain can be divided into three major categories:

2.3.1 Coarse-Grained Redundancy and Disabling

Manufacturing defects can cause transistors in different parts of a microprocessor to

get corrupted. Prior work on defect tolerance mostly focused on on-chip caches since

there is less homogeneity in the non-cache parts of a core, making defect tolerance a more

challenging issue. Typically, for high-end server systemsdesigned with reliability as a

first-order design constraint (e.g., HP Tandem NonStop [16], Teramac [34], and the IBM

eServer zSeries [16]), coarse-grained replication has been employed [18, 89]. Configurable

Isolation [6] is a high availability chip multiprocessor architecture for partitioning cores to

multiple fault domains which allows independent redundantexecutions. However, dual and

triple modular redundant systems incur significant overheads in terms of area and power

which is not generally acceptable for mainstream computing. An easy solution is to disable

the faulty cores – to avoid yield loss – which clearly causes asignificant reduction in the

system throughput and sale price [6]. This simple core disabling approach has been taken

by microprocessor vendors, such as IBM, Intel, AMD, and Sun Microsystems, to maintain

an acceptable level of manufacturing yield.

2.3.2 Fine-Grained Redundancy and Disabling

Core Cannibalization [79] and StageNet [41, 42, 43] suggestbreaking each core into

pipeline stages and allowing one core to borrow stages from other cores through inter-

21

connection networks. Introduction of these interconnection networks in the processor

pipeline presents performance, power consumption, and design complexity challenges.

Finer-grained redundancy maintenance has been used by Bulletproof [33] and sparing of

array structures [24]. In the same vein, Shivakumar et. al. [87] proposed a method to dis-

able non-functional microarchitectural components (e.g., execution units) and faulty entries

in small array structures (e.g., register file). Rescue is mainly a microarchitectural design-

for-test (DFT) technique which can map out faulty pipeline units that havespares [84].

However, as shown in [75], these schemes have a limited applicability due to the small

amount of microarchitectural redundancy that exists in a modern high-performance pro-

cessor.

2.3.3 Unconventional Approaches

Architectural Core Salvaging [75] is a high-level low-costarchitectural proposals which

uses thread migration between the cores to guarantee the correct execution. To avoid incor-

rect execution, for each instruction, it assesses whether the fault location might be exercised

by the correspondingopcode. Thus, without using extra redundancy, it is only applicable

to defects in about 10% of core area. DIVA [13] was proposed for dynamic verification of

complex high-performance microprocessors. It employs a checker pipeline that re-runs the

same instruction stream for ensuring correct program execution. Given the fact that DIVA

is not a defect tolerant scheme, as shown in [13], a “catastrophic” core processor failure re-

sults in about 10X slow-down. Detour [67] is a completely software-based approach which

leverages binary translation for handling defects in execution units and register files. Apart

from limited defect types that can be handled, a binary translation layer cannot typically be

22

applied to high-performance x86 cores [75].

23

CHAPTER III

Armoring Cache Architectures in High Defect Density

Technologies

3.1 Introduction

On-chip memory arrays in high performance processors are critical for chip reliability

as more than 70% of the transistors can be devoted to caches. These SRAM structures, how-

ever, are particularly vulnerable to the process variationdue to their minimum-geometry

transistors, sensitive differential circuit, and area efficient semi-custom layout. The yield

of an unprotectedcache in the 45nm technology can be as low as 33%, implying the ne-

cessity of proper protection [4, 5]. Under process variation, a single SRAM cell can fail

because of the following reasons that are sorted based on thefrequency of occurrence [4]:

1. Access Time Failure: It occurs when the differential read voltage between bit-lines is

not enough for the sense amplifier to extract the correct stored value.2. Write Stability

Failure: This case arises when the cell contents cannot be replaced with a new value. This

happens due to stronger pull-up of the storage node with input 0 compared to the access

transistor.3. Read Stability Failure: If the voltage of a storage node witha stored0 value

24

(a) A 1-bank 64KB L1 cache with 32B block size
and 64b word size

(b) A 2-bank 2MB L2 cache with 128B block size
and 256b word size

Figure 3.1: Probability of having at least one faulty SRAM cell at different granularities
while varying the failure probability of each SRAM cell,PF

during the read operation is higher than the trip-point of aninverter that has an output value

of 1, the read value from the SRAM cell flips.4. Hold Failure: If the supply voltage drops

below a minimum level while an SRAM cell is not being accessed, the SRAM cell can lose

its stored value.

To illustrate the reliability implications on L1/L2 caches, Figure 3.1 presents the prob-

abilities of having at least one faulty SRAM cell considering different granularities of stor-

age. This trend is shown for a wide range of single cell failure probabilities (PF), assuming

a uniform failure distribution. As the failure probabilityincreases in these graphs, the gran-

ularity of fault manifestation decreases in size. For instance, the L2 cache configuration

demonstrates a modest number of block-level failures atPF ∼ 10−5. Thus, a block-level

redundancy solution would be satisfactory for fault tolerance in this case. However, at

PF ∼ 10−3, the L2 cache is certain to contain at least one faulty cell ineach cache word-

line with a very high chance of fault in each cache block. Thismakes the use of word-

line/block level redundancy impractical. Hence, with the increasing failure probability, a

smaller granularity of redundancy will be necessary to guarantee robustness. The same

25

trends can be seen for the L1 cache, but it is favorably shifted towards the right due to the

smaller block and word-line sizes of the L1 cache in comparison to the L2 cache. The

primary challenge in this scenario is to design a cache architecture that can maintain and

optimally utilize the smaller levels of redundancy for defect tolerance. At a 45nm technol-

ogy node, an SRAM cell is expected to have a 30mV standard deviation in the threshold

voltage (Vth) resulting in aPF as high as10−3 [5]. Thus, there is a real need to devise

solutions for this reliability challenge.

Apart from fabrication challenges, as circuit density grows, each transistor gets smaller,

hotter, and more fragile. This leads to an overall higher susceptibility of chips topermanent

faults [23, 91]. These wearout failures, can impact the performance guarantees offered by

a semiconductor chip, and limit their useful lifetime. To combat such a scenario, on-chip

caches need to be equipped with cost-effective mechanisms to tolerate in-field silicon de-

fects. In this chapter, in addition to process variation tolerance, we expand the functionality

of our proposed cache architecture to tackle wearout failures over time. This will extend

the effective lifetime of the on-chip caches and prevent early lifetime failures. Assuming

no manufacturing defects, Figure 3.2 depicts the fraction of non-functional SRAM bit-cells

for a 2MB L2 cache over time. This plot was generated for a range of mean time to failure

(MTTF) values from 50 to 200 years. Here, it is notable that even foran MTTF of 200

years, a considerable number of failures need to be addressed in early lifetime. Moreover,

a comparison of our scheme with conventional wearout tolerance methods and also the

experimental methodology, for generating this plot, will be discussed in section 3.5.

To efficiently scale to higher defect densities, a more flexible and configurable solution

is necessary. To this end, we introduce the ZerehCache (ZC, Zereh in Farsi means body ar-

26

7.088912 21.24202 35.40336 49.5647 63.72605 0.363016

7.589154 22.74989 37.91649 53.08308 68.24968 0.408697

8.089181 24.25816 40.43027 56.60237 72.77448 0.456858

8.589262 25.76144 42.93573 60.11003 77.28432 0.504398

9.0894 27.25992 45.43319 63.60647 81.77975 0.549316

9.589483 28.74973 47.91621 67.08269 86.24918 0.593138

10.09086 30.25738 50.42897 70.60056 90.77215 0.636196

10.59107 31.75528 52.92546 74.09565 95.26583 0.677061

11.09139 33.28684 55.47807 77.6693 99.86053 0.716639

11.59166 34.80762 58.0127 81.21778 104.4229 0.752306

12.09232 36.32642 60.54404 84.76166 108.9793 0.785112

12.5926 37.8162 63.027 88.2378 113.4486 0.814533

13.09323 39.30181 65.50301 91.70421 117.9054 0.843191

13.59349 40.89512 68.15854 95.42196 122.6854 0.868368

14.09478 42.33437 70.55728 98.78019 127.0031 0.88892

14.59485 43.89002 73.15004 102.4101 131.6701 0.90847

15.09495 45.33933 75.56556 105.7918 136.018 0.924587

15.59646 46.87315 78.12192 109.3707 140.6195 0.939178

16.09859 48.33778 80.56296 112.7881 145.0133 0.950718

16.59999 49.82857 83.04762 116.2667 149.4857 0.961685

17.10739 51.43035 85.71725 120.0041 154.291 0.970364

17.61484 52.91291 88.18818 123.4635 158.7387 0.976229

18.11572 54.48351 90.80585 127.1282 163.4505 0.982237

18.62234 55.94564 93.24273 130.5398 167.8369 0.986862

0.00001

0.0001

0.001

0.01

0 2 4 6 8 10 12 14 16 18 2

Time (Years)

F
ra

c
ti

o
n

 o
f

fa
il

e
d

 S
R

A
M

 b
it

-c
e

ll
s

0

50 years 100 years 150 years 200 years

Figure 3.2: Fraction of non-functional SRAM bit-cells for a 2MB L2 cacheover time. Here,
the mean time to failure of each SRAM bit-cell is varied from 50 to 200 years.

mor) [11, 12], a high-failure rate tolerant solution for both L1 and L2 on-chip caches. ZC is

an adaptive, dynamically reconfigurable solution for tackling the high defect rates of future

technologies. It also provides a wide range of cache design options based on the primary

design concerns such as delay, power, and area overhead. In this chapter, the ZC architec-

ture is leveraged to tolerate process variation in 45nmtechnology. ZC takes advantage of its

intelligent interlaced usage of redundancies in multiple ways to substantially cut the over-

heads of protecting on-chip caches. To our knowledge, ZC hasthe capability of achieving

the highest degree of the fault tolerance, among the previously proposed approaches, for

a given area budget. Current microprocessors have already been equipped with ECC and

row-redundancy to protect the caches [80]. ZC can substitute these conventional protec-

tion mechanisms, while providing the same level of robustness, for a considerably lower

overhead (Section 3.6). We believe our scheme provides a solid foundation for the cache

designers to take advantage of the higher clock frequency and transistor density in the

deeper technology nodes while preserving the correct functionality and timing constraints

27

of their design with less overhead.

The primary contributions of this chapter are: 1) A flexible,dynamically reconfigurable

architecture that can be leveraged to protect regular SRAM structures against high defect

density nanometer technology nodes; 2) Minimizing the amount of redundancy required for

protecting the cache by modeling the collision pattern in the main/spare cache with a well

studied graph coloring problem and taking advantage of the existing rich approximation

methods; 3) A design space exploration in 45nm to show the actual process of fixing the

architecture parameters; and 4) Derivation and modeling ofthe manufacturing yield and

evaluating the proposed method under process variation conditions.

3.2 ZerehCache

In this section, the ZC architecture is first described that adaptively reconfigures itself

to absorb failing SRAM cells. Next, an effective graph-coloring algorithm to configure the

underlying architecture is presented.

3.2.1 ZC Architecture

The key idea behind the ZC architecture is to use redundant units in multiple ways

to increase their potential utilization. ZC partitions thecomplete cache array into sets of

equally sized logical groups, where each logical group is allocated one spare cache word-

line. Here onwards, we use the termline when referring to aword-line. The logical groups

are formed by carefully shuffling together physical cache lines in order to optimize the

utilization of a single spare cache line. Each cache/spare line is divided up to equally sized

28

Figure 3.3: Two simple scenarios in which the line swapping can preservethe correct func-
tionality of the cache by resolving the occurred collision.A black box shows a faulty chunk
of data.

data chunks to allow smaller granularities of spare substitution. For instance, the fourth

data chunk of the second spare line can be used to substitute the fourth data chunk of the

third/fourth cache line in the case of failure. Flexibilityfor this line shuffling is provided by

adding a network into the cache that allows swapping of cachelines to eliminate conflicting

failures. Conflicting failures occur when two lines that share a spare line have a failure in

the same chunk, or when a cache line and its corresponding spare have failures in the same

chunk. While there may be sufficient redundancy, conflictingfailures arise and render the

cache non-operational.

To illustrate this issue, Figure 3.3 shows two simple scenarios where ZC can preserve

the correct functionality of the underlying cache while it is not possible for conventional

redundancy methods to do so. In this figure, each line contains five units of data and

every two consecutive lines in the main cache form a logical group. Each logical group is

29

Figure 3.4: The high-level architecture of the ZC is shown in this figure and the extra
modules that are added to the baseline cache are highlighted. Note that the slices of the
base address are shown using numbers 1, 2 and 3 (Address Format). The fault map array
and spare cache have their own shared decoder to avoid getting their word-line activation
signals from the main cache’s decoder. For simplicity, the separate sense amps for the fault
map and spare cache are not shown. Built-in-self-test (BIST) module is commonly used
for fault diagnosis in the embedded memory structures.

assigned one line in the spare cache. The first line in the maincache has a failure in the

same place as the first line of the spare cache. Swapping the first and fifth lines in the main

cache can resolve this collision (collision1). After swapping, the second and fifth rows

will form the first logical group which utilizes the first row of the spare cache. The second

conflict situation,collision2, is between two lines in the same logical group. Swapping the

fourth and the sixth lines is one possible way to resolve thisconflict. Swapping eliminates

collisions and increases the chance of having a functional cache for a given area overhead

budget.

A high-level architecture of a set-associative ZC is shown in Figure 3.4. The cache data

30

array is divided into equal sized groups. Lines within each of these groups share a single

spare line in the spare cache (static multiplexing of spares). For each access to the cache

array, in a high speed design, the spare cache and the fault map arrays are also accessed in

parallel. The result of the fault map access determines whether the spare data chunk should

be routed to the output instead of the main cache content. In order to tolerate many defects,

logical groups are formed by carefully shuffling together cache lines using an interconnec-

tion network. As Figure 3.3 demonstrates, the functionality of the interconnection network

is to swap the lines in a manner that resolves the existing collisions. The configuration for

this network is computed once and saved in the non-volatile network configuration storage.

By using static multiplexing and the interconnection network for overcoming the limita-

tions of static binding, ZC can maximize the utilization of the spare units. The remainder

of this section provides a detailed description for each of the architectural modules.

Spare Cache:Each row in the spare cache corresponds to a logical group of lines in the

main cache. A single row of the spare cache is further broken up into smaller redundancy

units of fixed size. Each of these redundancy units in the spare cache keeps the valid content

of the corresponding corrupted element in the main cache (ifany exists). In order to avoid

high fan-in ORs required when using the main cache row decoder, the spare cache and fault

map arrays use a separate shared decoder. This decoder uses the topn most significant bits

from the set segment of the memory address, wheren is based on the number of rows in

the spare cache.

Interconnection Network: In order to shuffle around the cache lines and form logical

groups, we use an interconnection network. This network is placed between row decoder

of the main cache and the cache word-lines. A unidirectionalBenes network (BN) [73] is

31

Figure 3.5: A Benes network is shown which connects the second rows of thefour con-
secutive logical group of rows in the main cache. As an example, a single route from the
decoder to the word-lines is also shown.

used to provide a non-blocking routing and full permutationmapping between the inputs

and outputs. As Figure 3.5 shows, a BN consists of two back-to-back connected butterfly

networks. The main reasons for selecting a BN for this work are: 1) Full permutation and

non-blocking properties allow routing any permutation from inputs to outputs in a conflict-

free fashion. 2) Logarithmic depth of the net can minimize the imposed delay overhead

of the interconnection network. For connecting2n nodes to each other,2n − 1 stages are

required. We call this a BN withn swapping levels. 3) The BN delay/power/area scaling

characteristics are superior in comparison to most other interconnection networks like full-

crossbar or omega network.

The network consists of multiple local BNs. Each local BN is used to connect the

word-lines with the same relative positions in different groups. For instance in Figure 3.5,

all of the four groups have their2nd lines connected by a local BN. There have to be as

many interleaved local BNs as there are lines in a single group. The set of groups con-

32

nected by a single local BN is called the swapping set, and thesize of this swapping set

(2num. of swapping levels = 22 in the example shown) is determined by the depth of the net-

work. Given the full permutation and non-blocking properties of the chosen interconnec-

tion network, lines in the same relative position can be swapped between the different

logical groups. Increasing the depth of the BN widens the scope of line swapping, how-

ever, it also imposes higher overheads on the underlying cache. In order to minimize these

overheads and reach to a network with higher depth, we employan efficient circuit-level

implementation of a BN which is presented in [86]. A memory hash-table can also be used

as an alternative here. However, since this network is in thecritical path of the cache ac-

cess, we employ a BN which provides inherent flexibility, lower delay, and lower power

consumption.

Network Configuration Storage: The interconnection network configuration is kept

in the network configuration storage. According to our evaluations in the next section, a

small fraction of the manufacturing test time can be used to solve the configuration and

mapping problems. For the network configuration storage, weuse a low-voltageon-chip

NOR-flash described in [93]. However, since this structure is extremely small (mostly

less than 400 bytes), employing other non-volatile memories (e.g. fuse, or EEPROM) has

negligible impact on our results.

Fault Map Array: The fault map array has the same number of rows as the spare

cache. For each redundancy unit in a spare cache row, the fault map array stores the row

number in the corresponding logical group which utilizes that redundancy. For example, if

a broken data chunk in the 5th row of an eight-rows logical group should be replaced by its

corresponding spare unit, the fault map saves 101 for that redundancy unit. This implies,

33

that for a very small granularity of redundancy, the length of the word-lines in the fault map

array can be significantly longer than the main cache. The access time of the fault map array

is comparable to the L1 cache. Hence, this structure should be accessed in parallel with

the tag array access for the L1. Conversely, for the L2 cache,the access to this structure

happens after the hit resolution from the tag side, resulting in a significant reduction in the

dynamic access energy. In contrast to the network configuration storage, which should be

filled during the manufacturing test time, the fault map getsits contents directly from the

built-in self test (BIST) module during the first boot of the system. Further, its content

can be saved on the hard-disk and retrieved during the machine boot up. This mechanism

works properly for the fault map since the BN routes have already been fixed. And during

the testing operation by BIST, the effect of line swapping will be automatically accounted

for.

Comparison Stage:This stage compares the least several significant bits of theset seg-

ment of the address1 with the returned content of the fault map array to determinewhether

that unit of redundancy replaces the data chunk from the maincache.

MUXing Level: At the end of the access critical path, based on the results ofthe

comparison stage, the MUXing level determines for each redundant unit whether the main

cache or the spare cache data is valid and drives that onto thecache output. Word-lines

in the main/spare cache are divided into equal units of redundancy. The size of these

redundancy units specifies the MUXing granularity. On the other hand, since the read and

write are symmetric operations, the only modification in theimplementation would be to

replace the MUXes with pass transistors.

1The number of bits depends on the number of word-lines in eachcache logical group.

34

In order to guarantee the proper operation of the on-chip caches, we assume all the

main SRAM structures in the ZC architecture (i.e. main cache, spare cache, tag array, and

fault map) would be affected by the process variation. In ourdesign, the main and spare

caches are the major contributors to the ZC area and potential failures in these structures are

directly handled by our scheme. In order to protect the faultmap and tag array, we employ a

process variation tolerant 8T SRAM cell which is more area efficient than simple transistor

sizing [30, 29, 98]. However, it should be noted that the 8T cell comes with around 36%

area overhead and is not cost effective for protecting the entire cache (Section 3.6).

3.2.2 Hard-Fault Detection

In this work, we use ZC to tackle process variation as well as wearout induced failures.

Here, we separately discuss the mechanisms required to detect these two type of hard-

faults. First, we focus on the detection process that is needed to detect process variation

induced failures. Since these hard-faults are present at manufacturing time, the standard

manufacturing testing process can be employed. In order to test on-chip caches, normally,

a combination of automatic test pattern generation (ATPG) and the BIST-based testing is

used to generate the test vectors, apply them, and produce the compact signature from the

test results. Different versions of the MARCH test, introduced by the research community

and industry, are the most common type of test patterns for testing memory structures and

are widely used for testing SRAM structures against stuck-at and bridging faults.

However, wearout induced failures manifest during the lifetime of the system and needs

special treatment. Two type of approaches have been proposed for this purpose. The con-

ventional approach is periodic testing in which the system periodically suspends its normal

35

operation and allows the BIST module to test the on-chip caches. In order to guarantee the

correct operation of the system, the architectural or microarchitectural state of the system

needs to be checkpointed right after each testing interval.Moreover, to reduce the fault

detection latency and this checkpointing cost, mostly in terms of main memory or cache

usage, this type of testing needs to be done frequently. The other alternative is the continu-

ous testing which is the subject of many current research works. In this type of testing, as

soon as a faulty cell gets used, the detection mechanism informs the system of the location

of the failure. Continuous testing can have many forms. One of the simplest is error detec-

tion codes which are widely used in memory structures. Another well-known proposal is

the redundant execution that needs to continuously check the consistency among multiple

copies of the same data. Another means for continuous detection is through sensors that

can estimate the amount of device level wearout.

3.2.3 ZC Configuration

Proper configuration of the ZC is crucial for achieving higher utilization of the spare

elements. The first step toward this is to determine the input/output mapping for the BNs.

In other words, logically group together the cache lines that share a single spare line. We

model this as a graph coloring problem that can be solved during the manufacturing test

time. The solution to the coloring problem provides the required BN configuration in-

formation which is saved in the network configuration storage. On the first boot up of

the machine, the BIST module takes advantage of the already configured BNs to find the

faulty SRAM cells. The fault map array is then populated by the BIST module based on

the location of the faulty cells in the main/spare caches. Inorder to achieve an effective

36

1

3

1

5

7

2

4

6

8

a

b

c

d X

X

X

X

a b

d c

7

1

3

5

8

2

4

6

Spare Cache

Main Cache

P

G

G

G

B

B

B

O

O

O

P

P

O

O

O

G

G

G

P

P

P

B

B

B

Local BN2

Local BN1

2

Fault Map

1 - -

- - - 4

- - 5 6

8 - - -

1. Graph

Construction

2. Coloring

Assignment

Figure 3.6: Mapping between the graph coloring problem and the defect pattern in the
main/spare caches. The solid edges stand for the intrinsic conflicts between the word-lines.
The dotted edges correspond to the word-line conflicts due tothe defect pattern. An “X”
indicates a collision using a default grouping. Numbers written in the fault map indicate the
corresponding cache word-lines to which the spare units areassigned. (G=Green, B=Blue,
P=Purple, O=Orange)

line swapping capability in ZC architecture, two major algorithmic problems need to be

addressed here: 1) Effective group formation, 2) Benes network configuration.

3.2.3.1 Effective Group Formation

The problem of determining the logical groups that share a single spare line in the

ZC architecture is modeled as a graph coloring problem. Figure 3.6 is an example that

illustrates the process of mapping the defects in the main/spare cache to a graph. In the

cache arrays of Figure 3.6, each black box stands for a faultycell. An 8-line cache is divided

into 4 logical groups and a spare line is assigned to each logical group. For example, lines

1 and 2 in the main cache form a logical group that utilizes line ‘a’ in the spare cache. Two

local BNs are required to do the proper shuffling. The first (second) lines from different

logical groups can swap their positions using the corresponding local BN (e.g., lines 1, 3,

37

5, and 7 can swap their positions).

The graph on the right hand side of the figure is constructed based on the defect pat-

tern in the main/spare caches. Each node in this graph represents a line in the main/spare

cache. Whereas, the edges represent a conflict between a pairof lines, i.e., the two nodes

connected by an edge represent lines that cannot be in the same logical group. A graph

coloring algorithm can now be applied to this graph to find a solution such that neighbor-

ing nodes are not assigned the same color. Thus, after coloring, nodes with the same color

are guaranteed to have no edges between them implying that the corresponding cache lines

have no conflicts between them. Cache lines with the same color thereby form a logical

group. The graph edges that represent conflicts between the lines can be broadly divided

into two categories:

1. Intrinsic Edges: Each of the lines in the spare cache is dedicated to a single logical

group in the main cache. This implies that spare lines cannotbe in the same logical group.

As a result, 4 nodes (a, b, c, d) construct a complete sub-graph (Figure 3.6). Moreover, the

structure of the BN forces the lines connected to a local BN into different logical groups.

For example, lines 1, 3, 5, and 7 can not be in the same group. Consequently, these 4

word-lines also form a complete sub-graph.

2. Defect Edges:The defect pattern in the main/spare cache introduces otheredges

in this graph. These defect edges connect the pair of lines that have at least one conflict

(for the same data chunk). For instance, there is a defect edge between the nodes3 andc,

because both have their second data chunks faulty.

A graph coloring problem is solvable for a graphG and an integerK ≥ 0, if the nodes

of G can be colored withK colors such that no edge exists between the same colored

38

nodes. For our problem instance, we want to show that if thereareh logical groups in the

cache, and the nodes can be colored with at mosth colors, then there would be a feasible

configuration for the BNs such that the ZC works properly. Butsince there is always a

complete sub-graph in the problem graph withh nodes (due to the intrinsic edges), the

chromatic number is at leasth. On the other hand, our problem constraint dictates that

we can use at mosth colors for the graph coloring problem. Hence, the graph coloring

problem for the ZC configuration should have a solution with exactly h colors. A valid

coloring assignment indicates no collision between the lines within each logical group and

replacement of the defective data chunks can be properly handled.

Graph coloring is widely recognized as NP-complete. Thus, for solving it, we use an

approximate algorithm called Incomplete Backtracking Sequential Coloring (IBSC) [55].

IBSC is a heavily optimized version of the full backtrackingsolution. It restricts the branch-

ing factor on each level to expedite the process of finding theapproximate chromatic num-

ber. On an average, IBSC only increases the chromatic numberof the graph by 5.2%,

which is considerably better than the theoretical upper bound that we used for the analysis

in Section 3.3. The complexity of the IBSC algorithm isO(|V |4) and the actual runtime

is discussed in the next section. Furthermore, this algorithm can easily be converted to the

exact solution by eliminating the branching heuristic. It is especially useful in the case of

small graphs or when more computational power/time can be devoted to the solver.

The graph coloring solution determines the assignment of lines to logical groups. All

the lines in the main/spare cache with the same color form a single logical group. For

example, all the lines with the orange color are bound to the orange spare row using the

corresponding local BNs. Figure 3.6 illustrates a valid coloring assignment. With this col-

39

1

3

1

5

7

2

4

6

8

a
b
c
d X

X
X

X

Spare Cache

Main Cache

1

7

1

5

3

8

2

4

6

a
b
c
d

Spare Cache

Main Cache

G

P

B

O

O

B

P

G

G
O
B
P

G

O

B

P

G

O

B

P

G
O
B
P

G

O
P

P

B

G

O

B

P

G G G

O O

O

P

P

BBB

G

G

G

OO

O

P

P B

B

B

P

Local BN2

Local BN1

Local BN2

Local BN1

Local BN2

Local BN1
Actual Cache

Layout

Virtual Cache

Layout

2

Fault Map

1

Fault Map

1

Functional
Not

Functional

Figure 3.7: Proper configuration of two BNs that transform the actual cache layout (left) to
the virtual one (right) for the given coloring assignment. The upper (lower) BN connects
the first (second) rows of the 4 logical groups. The darker 2-input MUXes are configured
to output their lower input while the lighter MUXes output their upper input. (G=Green,
B=Blue, P=Purple, O=Orange)

oring assignment in place, the logical groups formation is complete for the main cache. The

next step is to solve the BN configuration problem in order to make the cache functional.

3.2.3.2 Benes Network Configuration

The BN is non-blocking and also allows any permutation of theinputs to be mapped to

the outputs. In Figure 3.7, the left cache structure shows the physical cache layout with a

solution for the graph coloring problem. As described, the color of each line determines

the logical group to which the line is assigned. As a result, the position of each particular

line after the line swapping is apparent. For instance, in the Figure 3.7, the last cache row

has a green color which corresponds to the first row of the spare cache. This denotes that

the last cache row should be mapped to the second row of the first logical group. The

line ordering for the virtual cache layout on the right hand side can be obtained from the

40

Table 3.1: The target system configuration
Parameters Value

Frequency 4 GHz
L1 Caches 64KB data and 64KB instruction, 2-way set

associative, 2 cycles hit latency, 32B block size
L2 Cache 2 banks 2MB Unified, 16-way set associative,

12 cycles hit latency, 128B block size
Registers 128 integer, 128 floating point
ROB (re-ordering buffer) 128 entries
LSQ (load/store queue) 64 entries
Instruction fetch buffer 32 instructions
Issue width 4
FU (functional unit) 4 int ALU, 1 int mult/div, 2 memory system ports
FPU (floating point unit) 4 FP ALU, 1 FP mult/div
Main memory 250 cycle latency, 16 bytes with 10-cycle latency
Branch predictor combined (bimodal and 2-level)
BHT (branch history table) 4096 entries
RAS (return address stack)32 entries
BTB (branch target buffer) 512 entries, 8-way associative

physical layout by employing two 3-layer deep local BNs. TheBNs have to be properly

configured, by determining the select signals for the MUXes within the BN, to achieve

this re-ordering. Having the desirable permutation between the inputs/outputs of the BNs,

we employ the recursive method described in [105] to configure the network. Since an

n-input BN is constructed from two identicaln
2
-input sub-networks, the configuration can

be computed recursively inO(n2).

3.3 Design Space Exploration

The process of finding suitable design points for L1/L2 ZCs involves fixing the archi-

tectural parameters. The high level architectural parameters used for this exploration are

listed in Table 3.1. In addition, there are three main parameters specific to the ZC design:

a) size of the spare cache, b) depth of the BN, and c) the MUXinggranularity for the re-

dundant data chunks. In this section, we sweep a wide range ofvalues for these parameters

41

and study the overhead of each design point. The number of spare cache lines was taken

from the set{2i | i ∈ {0, 1, ..., 7}}. Note that the length of the word-lines is the same for

the main and spare caches. The depth of the BN is selected fromthe set{1, 3, 5, ..., 19}

and the MUXing granularity is selected from the set{2i | i ∈ {0, 1, ..., 10}} bits. In total,

considering both the L1 and L2 caches, there are 1760 points in the design space. In or-

der to prune this design space, a number of practical design constraints were considered.

For instance, designs with more than 128 spare lines were notstudied due to their signifi-

cantly high area/power/delay overhead. Detailed discussions of these practical constraints

and their impact on the design space follows. Finally, we pick suitable configurations for

L1/L2 ZCs.

1) Graph Coloring Solver Time: A deeper BN can provide a wider range of cache

line swapping, thereby improving ZC defect tolerance. However, a deeper network also

increases the complexity of graph coloring and BN configuration. Out of these two, the

runtime of the graph coloring problem is by far the dominating factor. Figure 3.8 depicts

the relationship between the size of the graph-coloring problem and the time required to

solve it using the IBSC algorithm (Section 3.2.3). We ran thesolver on a single core

Pentium-4 processor with 1GB of memory capacity and 2GHz clock rate. The Y-axis in

this plot is logarithmic. It demonstrates the fast growth inthe runtime of the solver with

the increase in the problem size.

The total manufacturing test time for a high-end processor (considering the functional,

structural, wafer, and packaging tests) is around a few minutes [96, 61]. Using this as a

reference, we limit the graph solver time to use a maximum of 10 seconds for all four on-

chip cache structures (L1-D, L1-I and two banks of L2). For the case when the cache has1

42

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500 600

G
ra

ph
 c

ol
or

in
g

tim
e

(m
s)

Number of nodes in the graph

p = 0.1
p = 0.3
p = 0.5
p = 0.7
p = 0.9

Figure 3.8: The run-time of the IBSC graph coloring solver inmsfor different edge densities
and number of nodes in the graph. In this figure,p is the edge density which is defined as
the probability of having an edge between an arbitrary pair of nodes in a random graph
G(n,p).

spare word-line for everyk word-lines and the depth of the BN is2b − 1, the total number

of nodes in the graph coloring problem would be(k + 1)2b. According to Figure 3.8 and

based on our solver time budget, ZCs can use BNs that are up to 9levels deep and can

connect 32 logical groups together. For instance, if each logical group consists of eight

word-lines, there would be32× (8+1) = 288 nodes in the graph coloring problem. There

are numerous works [39] on the parallel graph coloring algorithms that can be used for

decreasing the solver runtime and potentially increasing the allowable depth of the ZC.

However, scrutinizing them is beyond the scope of this thesis. As a side note, in order to

get a feeling about size of the network, we look at the transistor count here. A 9-level deep

BN has less than 37K transistors while a 64K L1 cache, which ismuch smaller than L2,

has more than 3M transistors.

There is a less than 4% chance that the solver does not find a feasible coloring as-

signment due to limitations on the time budget or the inherent complexity of the collision

43

pattern (Section 3.4). Using a deeper BN, longer time budgetfor the solver, finer granular-

ity of MUXing, or a larger spare cache can further reduce thissmall chance. Nevertheless,

if such a situation does arise, we can either resize the cacheor simply reject it. Block/way

disabling techniques [74] can also be applied at the position of the faulty cell to preserve

correct functionality. Note that the scenarios where ZCs need to resort to such methods are

very rare.

2) Probability of Operation : The probability of operation (Pop) is a definitive metric

for a reliable system. We calculate the probability that a specific ZC architecture can prop-

erly operate for a givenPF and use the results to further prune our design space. The graph,

which was generated in Section 3.2.3, represents an instance of a defective cache. For the

sake of this study, defective caches are modeled as random graphsG(n,p)since SRAM cell

defects occur as random events. These random defects are dueto the major contribution of

the random dopant fluctuation to the process variation [5]. Here,n is the number of nodes

andp is the probability of having an edge between an arbitrary pair of nodes.

The next step is to estimate the graph coloring solution for these graphs. Calculating the

average upper bound of the chromatic number for a random graph is a challenging problem

in graph theory [17]. We use two different proposed upper bounds to evaluate thePop of

ZCs for a given number of failures. The same set of input conditions are required for both

of these upper bounds, which were derived by Achlioptas [2, 3] and Bollobas [22]. The pro-

posed upper bound by Bollobas (B) works better for smaller values ofp and the Achlipotas

bound (A) is mostly applicable for the larger values ofp. Thus, we used the weighted

average of these two bounds based on thep value (e.g.,pA + (1 − p)B). Approximation

algorithms used to derive these upper bounds, have a significantly poorer approximation

44

factor compared to the IBSC algorithm used in Section 3.2.3 [65, 102]. The edge proba-

bility factor p is defined as the ratio of the expected number of edges in the graph to the

number of edges inKn (a complete graph withn nodes). The expected number of edges

in a randomly constructed graph can be calculated by accounting for the intrinsic and fault

edges. In other words,Eedges = EIntrinsic + EFault where:

EIntrinsic = m

u

2

+

u

2

and

EFault = m × u2 ×
[

1 − (1 − α1α2)
t
]

+

u × m

2

− m

u

2

×
[

1 − (1 − α2

2
)t

]

Here,m is the number of word-lines in each logical group,u is the number of logical

groups in a swapping set,b is the MUXing granularity,t is the number of redundancy units

in each word-line,n is number of swapping sets,p1 is PF for the main cache, andp2 is PF

for the spare cache. Here,αi = 1 − (1 − pi)
b shows the probability of having at least one

failure inb bits.

Figure 3.9 shows thePop of an L2 ZC with 128 spare word-lines, MUXing granular-

ity of 8 bits, and 5 levels of swapping. In each of the sub-figures, two of the parameters

are fixed and the third one gets the values from the original sweeping set. Notice that in

Figure 3.9a, adding the first few levels of line swapping significantly increases the robust-

ness of the cache, but beyond 3 levels, adding more levels hasa diminishing return. Since

the weighted average of the two bounds is not an integer number, we employed a semi-

sigmoid function, which is a sigmoid function fitted to the shifted step function (Number

45

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-06 1e-05 0.0001 0.001 0.01

P
ro

ba
bi

lit
y

of
 O

pe
ra

tio
n

Probability of Defect in Each Bit

l2-pop-128-8-Variable-Levels

0 levels
1 levels
3 levels
5 levels
7 levels
9 levels

(a) The effect of changing the number of swapping
levels while using 128 spare word-lines and MUX-
ing granularity of 8 bits.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-06 1e-05 0.0001 0.001 0.01

P
ro

ba
bi

lit
y

of
 O

pe
ra

tio
n

Probability of Defect in Each Bit

l2-pop-128-5-Variable-Muxing

1
2
4
8
16
32
64
128
128

(b) The effect of changing the MUXing granularity
while using 128 spare word-lines and five levels of
swapping.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-06 1e-05 0.0001 0.001 0.01

P
ro

ba
bi

lit
y

of
 O

pe
ra

tio
n

Probability of Defect in Each Bit

l2-pop-8-5-Variable-RedunRows

32
64
128
256

(c)The effect of changing the number of redundant
rows while using MUXing granularity of 8 bits and
five levels of swapping.

Figure 3.9: Pop of L2 ZC for differentPF while fixing two parameters and allowing the
third one to vary.

of Logical Groups + 0.5), for mapping the calculated chromatic number toPop. Using this

semi-sigmoid function, if the calculated chromatic numberis smaller than the number of

available logical groups in the swapping set, the graph is colorable with a probability close

to one and if the derived chromatic number is one unit larger than the number of logical

groups, the probability would be close to 0. As shown in [4],PF in 45nmcan be as high

as10−3. Based on this fact, we pick the design points from our designspace that have

Pop > 90% for PF = 10−3.

3) Area and Power Overheads:Based on the limiting factors that we have proposed,

46

the size of the design space shrinks from the 1760 starting points down to 103 points. The

next factor for eliminating the points is a one-by-one comparison. Given a design point

(L1, M1, D1) with L1 spare word-lines, MUXing granularity ofM1, and aD1 deep BN and

another design point(L2, M2, D2), we can exclude the first point from the design space if

it is inferior in all dimensions:

L1 ≥ L2 , M1 ≤ M2 , D1 ≥ D2

This is equivalent to removing dominated points in the Pareto space with dimensions

L1, M1, D1. This step reduces the design space to 11 points for L1 and 8 points for L2.

To evaluate our designs, we used CACTI 6.0 [72] for evaluating the area, leakage power,

and the dynamic energy for the SRAM structures. The Synopsystool-chain was employed

for evaluating area, timing, leakage power, and dynamic energy of the non-SRAM parts.

All designs are evaluated in 45nm.

Figure 3.10 shows the area, leakage power, and dynamic energy overhead of the se-

lected points in the design space. For instance, L1-32-8-3 stands for an L1 design point

with 32 redundant rows, MUXing granularity of 8 bits, and BNsof depth 3. It is notable

that increasing the size of the spare cache does not always lead to an increase in the area of

the L2 ZC because the fault map size is reduced. However, due to the longer L2 word-line,

a finer MUXing resolution is required which results in a relatively larger fault map array

for L2 compared to L1. The dynamic energy overhead for the L1 ZC was mostly higher

compared to the L2 ZC. There are two reason behind this: 1) TheL1 cache accesses the

fault map/spare cache in parallel to the main cache and 2) TheL1 cache reads the entire set

47

 0

 5

 10

 15

 20

 25

 30

 35

 40

L1-32-1-1

L1-32-8-3

L1-32-16-5

L1-64-2-1

L1-64-16-3

L1-64-32-5

L1-64-64-7

L1-128-32-3

L1-128-64-5

L1-128-128-7

L1-128-256-9

P
er

ce
nt

ag
e

of
 a

re
a

ov
er

he
ad

 fo
r

L1

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(a) Percentage of area overhead (L1s)

 0

 5

 10

 15

 20

 25

 30

 35

 40

L2-32-1-5

L2-64-1-3

L2-64-2-5

L2-64-4-7

L2-128-2-3

L2-128-4-5

L2-128-8-7

L2-128-16-9

P
er

ce
nt

ag
e

of
 a

re
a

ov
er

he
ad

 fo
r

L2

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(b) Percentage of area overhead (L2s)

 0

 5

 10

 15

 20

 25

 30

L1-32-1-1

L1-32-8-3

L1-32-16-5

L1-64-2-1

L1-64-16-3

L1-64-32-5

L1-64-64-7

L1-128-32-3

L1-128-64-5

L1-128-128-7

L1-128-256-9

P
er

ce
nt

ag
e

of
 le

ak
ag

e
po

w
er

 o
ve

rh
ea

d
fo

r
L1

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(c) Percentage of static power overhead (L1s)

 0

 5

 10

 15

 20

 25

 30

L2-32-1-5

L2-64-1-3

L2-64-2-5

L2-64-4-7

L2-128-2-3

L2-128-4-5

L2-128-8-7

L2-128-16-9

P
er

ce
nt

ag
e

of
 le

ak
ag

e
po

w
er

 o
ve

rh
ea

d
fo

r
L2

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(d) Percentage of static power overhead (L2s)

 0

 10

 20

 30

 40

 50

L1-32-1-1

L1-32-8-3

L1-32-16-5

L1-64-2-1

L1-64-16-3

L1-64-32-5

L1-64-64-7

L1-128-32-3

L1-128-64-5

L1-128-128-7

L1-128-256-9

P
er

ce
nt

ag
e

of
 d

yn
am

ic
 e

ne
rg

y
ov

er
he

ad
 fo

r
L1

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(e)Percentage of dynamic energy overhead (L1s)

 0

 10

 20

 30

 40

 50

L2-32-1-5

L2-64-1-3

L2-64-2-5

L2-64-4-7

L2-128-2-3

L2-128-4-5

L2-128-8-7

L2-128-16-9

P
er

ce
nt

ag
e

of
 d

yn
am

ic
 e

ne
rg

y
ov

er
he

ad
 fo

r
L2

Configuration of the cache

FaultMap (8T)
Tag (8T)
ConfigStorage
Comparators
MuxLevel
BenesNetwork
SpareCache

(f) Percentage of dynamic energy overhead (L2s)

Figure 3.10: Area, power, and energy overhead of the potential L1/L2 ZCs which are stated
in percentage.

for every access whereas the L2 cache is able to read just the right cache block because the

tag and data are accessed sequentially.

4) Cache Access Latency:The increase in the BN depth also has a direct impact on

48

the cache access time. Since on-chip caches are essential for the performance of modern

processors, we assume no slack is available on the access time of the caches. Therefore,

any minor modification in the base caches results in at least one extra cycle access penalty.

Nonetheless, in the case that considerable slack is available, a design with narrow BN can

be leveraged for avoiding any additional cycle latency. In our design, the MUXing level

and BN are on the critical path of cache accesses. Based on thetiming analysis of our

design, in Figure 3.10, design points with BN depth less thanor equal to 7 need one extra

cycle latency for the cache access while others (i.e. BN depth = 9) require 2 extra cycles.

In Section 3.6, we evaluate the performance drop-off due to the additional access latency

of the L1/L2 ZCs.

Considering the design points in Figure 3.10, we select L1-32-16-5 as the L1 ZC which

imposes 16% area, 9% static power, and 19% dynamic energy overhead over the baseline

L1 cache. For the L2 ZC, L2-64-4-7 is selected which imposes 8% area, 9% static power,

and 16% dynamic energy overhead compared to the baseline L2 cache. These two selected

configurations represent a good trade-off between all the design objectives. However, based

on a particular optimization criteria, another design point might work better. For instance,

if static power is the main concern, the optimal design pointfor L1 switches to L1-32-8-3.

3.4 Yield Analysis

In this section, we go through the process of manufacturing yield calculation for a

population of ZC enabled chips. A population of 1000 chips was generated from the se-

lected ZC configurations for this purpose. We account for both, inter-die (die to die (D2D))

49

and intra-die (within die (WID)), components of the processvariation. VARIUS [82] is

leveraged to model systematic, D2D, and module level intra-die variations. Each chip is

considered as a composition of 8 SRAM structures: L1-Data, L1-Inst, two L2 banks, and

the corresponding spare caches. The
δV

th

Vth

is set to 12.5% which is the projected Systematic

+ D2D variation for 45nm technology [5].

Having all the high level variation models in place, a two-step approach is used to derive

the number of faulty cells in each SRAM array for an arbitrarychip in the population: 1)

We take the intra-module variation model from [5] withδVth
= 30mV . Using this model,

the nominal value ofPF across each module is derived from the data provided in [71] based

on the average shift inVth for that module. 2) The clustering effect, which determinesthe

degree of defect dispersal in the cache structures, is also modeled. Due to the high density

of SRAM structures, the clustering effect has a significant impact on the arrangement of

the defects in the corresponding SRAM arrays. We account forit by employing the large-

area clustering negative binomial model [56] which is basedon the well-known negative

binomial yield formula.

Figure 3.11 illustrates the distributions of the 1000 generated chips based on the number

of faulty SRAM cells in their L1/L2 caches. For instance, as Figure 3.11a shows, around

100 of the chips have 100 to 150 faulty SRAM cells in their L1 cache. These derived

distributions are consistent with the ones in [4]. It is interesting to note that, in the case

with no protection scheme for the cache, the yield for 45nm technology could be as low as

33%.

Manufacturing yield is defined as the fraction of fully functional chips to the total num-

ber of manufactured ones. This value can be interpreted as the probability of operation for a

50

 0

 50

 100

 150

 200

 250

 300

 350

 400

25 75 125
175

225
275

325
375

425
475

525
575

625
675

725
775

825
875

925
975

N
um

be
r

of
 d

ie
s

Number of faulty SRAM cells

(a) Distribution of the generated chips based on the
number of faulty SRAM cells in their L1 cache

 0

 50

 100

 150

 200

 250

 300

 350

418
1255

2092
2929

3766
4603

5440
6277

7114
7951

8788
9625

10462

11299

12136

12973

13810

14647

15484

16321

N
um

be
r

of
 d

ie
s

Number of faulty SRAM cells

(b) Distribution of the generated chips based on the
number of faulty SRAM cells in their L2 cache

Figure 3.11: Distribution of generated chips by the number of faulty SRAMcells in their
L1/L2 caches. A population of 1000 chips is generated by considering the large-area clus-
tering effect, intra-die, inter-die, systematic, and parametric variations.

particular chip after the manufacturing process (Ychip). We defineCWandCi as events that

express the proper functionality of a manufactured chip andthe existence ofi faulty cells

in a chip, respectively. In the following equations,Ntot is the total number of manufactured

chips,Ni is the number of the chips withi faulty cells, andNcells is the total number of

SRAM cells. Based on the rules of probability:

Pr(CW) =

Ncells
∑

i=0

Pr(CW ∩ Ci)

=

Ncells
∑

i=0

Pr(CW |Ci) × Pr(Ci)

=
1

Ntot

Ncells
∑

i=0

Pr(CW |Ci) × Ni

Since we consider an independence between thePF of L1 and L2 caches, as shown

in [47], the yield of a chip can be written as:

Y ieldchip =
∏

i∈chip modules

Y ieldi (3.1)

51

As a result,Pr(CW) can be written for each cache separately. Equation 3.1 is used

to calculate the chip yield in each case. Here,Pr(CW |Ci) is the probability of having a

functional cache given that it containsi faulty cells and can be written as:

Pr(T, FM, MC, SC|Ti1, FMi2, MCi3 , SCi4) = Pr(T |Ti1)

×Pr(FM |FMi2) × Pr(MC, SC|T, FM, MCi3, SCi4)

wherei1 + i2 + i3 + i4 = i. In this equation,T/FM/MC/SCare the events that the tag/fault

map/main cache/spare cache arrays work properly. Similar to the previous equations,Ti1

is the event of havingi1 faulty cells in the tag array. For the fault map and tag array,we

assume 8T cells guarantee the fault-free operation of theserelatively small structures (i.e.

Pr(FM |FMi2) = 1 andPr(T |Ti1) = 1). Finally, calculation of the last term is discussed

in Section 3.3.

Given the population of 1000 (Ntot) generated chips,Ni for each of the cache structures

is known using the mentioned modeling. Yields of the L1 cacheand each L2 bank are

calculated through the described methodology. The derivedyield for the L1 ZC and each

bank of L2 ZC are 98.8% and 98.2%, respectively. This implies96.4% yield for the L2

ZC.

3.5 Wearout Tolerance

In this section, we expand the potential functionality of our proposed cache architec-

ture which is mainly designed to tackle the process variation concerns in deep sub-micron

52

technologies. Wearout, in contrast to process variation, is a gradual process. Supposing

that the lifetime of a cache can be extended to 10 years and it will experience twenty thou-

sand cell failures during this period, the mean time betweenfailure (MTBF) would be 43.8

hours – worst case scenario. Given the fact that the requiredtime for solving the graph

coloring and BN configuration problems is only several seconds, our method can be easily

applied to reconfigure the cache after detection of each failure. As another notable point,

on-chip flash could also be replaced with latches in this casesince the configuration prob-

lems would not need to be solved during the manufacturing test time. Nonetheless, even

if on-chip flash was deployed, the write-cycle limitations of a flash cell (∼100K) is still

higher than the maximum number of required reconfigurations. As a result, it allows us

to reconfigure the BN more than 16000 times – that is the average upper-bound for the

number of tolerable faults based on the L1/L2 ZCs selected inSection 3.3. We measured

the area/power overhead of replacing on-chip flash with latches. Although negligible for

L2 cache, the area overhead of the BN configuration storage for L1 is still noticeable and

increases the overhead of our selected L1 ZC from 16% to 18%. Moreover, in this scenario,

the configuration information could be stored in the hard-disk after it is obtained. When

a system is powered up this information is retrieved from thehard-disk and moved to the

network configuration storage.

Upon the detection of a new fault, since that is the only outstanding faulty cell, block

/ way [74] disabling techniques can be applied based on the position of the faulty cell to

preserve correct functionality of the underlying cache. Removing this faulty cell from the

functional space of the cache enables ZC to use the rest of theavailable cache space to

solve the configuration problems. A simple cache disabling mechanism is to only use the

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12
 0

 200

 400

 600

 800

 1000

P
ro

ba
bi

lit
y

of
 o

pe
ra

tio
n

N
um

be
r

of
 fa

ilu
re

s

Time (years)

ZC
8-bit ECC

64-bit ECC

ECC-2
64-Redun-Rows

128-Redun-Rows

256-Redun-Rows

(a) Monte Carlo life-time simulation results for L1
cache

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12
 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

P
ro

ba
bi

lit
y

of
 o

pe
ra

tio
n

N
um

be
r

of
 fa

ilu
re

s

Time (years)

ZC
8-bit ECC

64-bit ECC

ECC-2
64-Redun-Rows

128-Redun-Rows

256-Redun-Rows

(b) Monte Carlo life-time simulation results for L2
cache

Figure 3.12: Results of Monte Carlo lifetime simulation which show the probability of
operation for L1/L2 caches protected by different mechanisms. In addition, the shaded
region shows the expected number of failures over the life-time.

half part of the cache which does not contain the faulty cell and disable the other half. After

ZC reconfiguration is performed, the whole cache space wouldbe functional.

A Monte Carlo engine is employed to study thePop for ZCs over their life-time. In

each iteration of the Monte Carlo simulation, time to failure (TTF) for each SRAM cell in

various array structures is calculated using a Weibull distribution with a nominal mean of

100 years – as the expected lifetime of an individual cell [91]. Hundreds of such iterations

are run during the entire simulation. The simulation results are shown in Figure 3.12 for the

L1/L2 ZCs selected in Section 3.3 and several other conventional protection mechanisms.

One advantage of ZC over the conventional protection mechanisms is its ability to

equalize the lifetimes of L1 and L2 caches. This implies the proper relative provision-

ing of the caches against hard faults. As a result, ZCs maximize the utilization of the entire

provisioned spare elements. The shaded region in these figures depicts the cumulative dis-

tribution function (CDF) of the combined MTTF Weibull distributions for the main/spare

caches. For instance, in Figure 3.12a, there would be∼400 faulty cells in the L1 related

54

SRAM structures after 6 years. As can be seen, the selected ZCarchitectures prolong the

functional lifetime of the caches up to 10 years. Furthermore,Pop has a graceful degrada-

tion for the ECC methods compared to the sharp drop-off for ZCand row/column redun-

dancy. Consequently, there is a significant chance for the ECC protected cache to break

early in the life-time. This makes them an inappropriate choice even when a long life is not

expected. Two bit correction ECC (DECTED), on the other hand, needs 14 extra bits for

each 64-bit of data which is∼22% overhead only for keeping the error correction bits. In

terms of the energy overhead imposed by the encoder/decoderper access, as shown in [53],

around 50% should be expected.

3.6 Comparison and Discussion

To demonstrate the efficiency of our design, we compare ZC with conventional and

recently proposed methods in this section. As representatives for the ZC architecture, we

pick the L1-32-16-5 configuration as the L1 ZC (16% area overhead and 99% yield) and

L2-64-4-7 configuration as the L2 ZC (8% area overhead and 96%yield).

3.6.1 Comparison with Conventional Techniques

Figure 3.13 demonstrates the amount of area overhead required to protect the L1/L2

caches using different protection schemes. For a given probability of failure, we started

with the least possible overhead for every mechanism and gradually increased the area

overhead until thePop reaches 90%. An infinity symbol (∞) on the top of a bar indicates

that achievingPop > 90% is not possible for the corresponding protection mechanism. This

55

 0
 20
 40
 60
 80

 100
 120
 140
 160

1e-5
5e-5

1e-4
5e-4

1e-3
1e-5

5e-5
1e-4

5e-4
1e-3

P
er

ce
nt

ag
e

of
 a

re
a

ov
er

he
ad

Probability of failure in a single bit (PF)

59
X

36
26

X

∞∞∞∞∞∞

Row-Redun ECC ECC-2 ZC

L2 CacheL1 Cache

Figure 3.13: Area overhead of the different protection mechanisms for tolerating a given
PF . In this figure, Row-Redun stands for the row redundancy protection scheme. ECC and
ECC-2 are the 1-bit and 2-bit error correction schemes, respectively.

figure only accounts for the amount ofredundancyrequired by SECDED (ECC), DECTED

(ECC-2), and row-redundancy methods while considering thecomplete overheads for ZC

modifications. In other words, hardware overhead for encoder/decoder is not considered

for ECC/ECC-2. Similarly, the decoder augmentation is not included in the area overhead

of the row-redundancy protection method.

Row-redundancy can protect any cache with inefficient usageof the redundant ele-

ments. Nevertheless, as it is shown in [46], row-redundancywith more than 10 extra rows

is not efficient due to the considerable increase in the row decoder latency. As shown in

this figure, the area overhead of ZC is significantly smaller compared to even the 2 bit error

correction scheme (ECC-2) which has a significant power and area overhead for decod-

ing/encoding. Going beyond 2 bit correction using ECC codesis extremely expensive in

terms of the code storage area, decoding/encoding power anddelay [54]. On the other hand,

single bit correction ECC cannot even protect the cache structures withPF > 10−4. For

L2, the difference between ZC and other protection mechanisms is even more noticeable

because of the longer word-line and larger cache size that challenge the other protection

56

mechanisms. In terms of the energy consumption, ECC and ECC-2 impose around 25%

and 50% overheads, respectively [54]. Whereas, both of the selected L1/L2 ZCs have less

than 20% energy overhead (Section 3.3). Hence, it should be clear that the conventional

soft-error cache protection schemes cannot deal with the high degree of process-variation

in deep nanometer technologies.

3.6.2 Comparison with Recently Proposed Techniques

More recent proposals target high defect density scenariosthat are challenging if not

impossible for conventional schemes. Here, we compare ZC with three of these recently

proposed cache reliability schemes that target failure rates close to ours. For the purpose

of comparison, we measure the performance drop-off for a system (Table 3.1) equipped

with the selected L1/L2 ZCs in Section 3.3. A performance loss is expected due to the

extra cycle of latency added to both L1 and L2 ZC designs. We used the SimpleScalar [14]

out-of-order simulator along with the SPEC-FP-2000 (171.swim, 172.mgrid, 173.applu,

177.mesa, 179.art, 183.equake, 188.ammp) and the SPEC-INT-2000 (164.gzip, 175.vpr,

176.gcc, 181.mcf, 197.parser, 255.vortex, 256.bzip2) benchmarks. On average, a 3.2%

performance drop-off is observed, with maximum of 6.9% for 197.parser and minimum of

0.1% for 176.gcc.

Agarwal [5] proposed a fault-tolerantdirect-mapped L1cache that uses cache block

remapping to preserve correct functionality under the process variation in 45nm. As Fig-

ure 3.1a depicts, around 23% of the cache blocks expected to be faulty in this technology.

This method maps faulty blocks to the neighboring functional blocks in the same word-

line, which forces the L1 to access L2 for getting the values of these blocks. This method is

57

only applicable to direct-mapped caches and cannot be efficiently applied to L2. As shown

in Figure 3.1, around 64% of the L2 cache blocks are faulty andthe value of these blocks

must be retrieved from the main memory. For our system configuration (Table 3.1), this

results in an effective access time of 164 cycles for L2 whichhurts the performance drasti-

cally. Nevertheless, considering only L1, they achieved 94% yield compared to 99% yield

for our scheme.

Wilkersonet. al [103] proposed two cache protection schemes that use several layers

of shifting to merge multiple defective lines into a single functional line. Their method

was originally designed to reduce the operational voltage of the on-chip caches for power

saving. Reducing operational voltage of a cache causes the SRAM cells to start failing and

they tried to tolerate these unwanted failures. Alternatively, in order to improve the stability

of an SRAM cell, Changet. al [29] proposed an 8T SRAM cell, which has been studied

and compared with the other alternatives in a more detailed manner by Chen [30] and

Verma [98]. These works show that 8T is more effective than simple transistor up-sizing

for improving the stability of a bitcell. An 8T cell is more robust against read upset failures

compared to a conventional 6T cell due to the isolation of theread and write paths [30].

Table 3.2 summarizes the comparison with these two schemes.As can be seen, Wilk-

erson’s method has a notably higher performance drop-off than ZC. This behavior is due

to two reasons: three additional cycles of latency for L2 accesses (compared to 1 cycle for

ZC); and, the L1 and L2 capacities are reduced by 50% and 25%, respectively, to provide

spares for fixing failures. Wilkerson did not report any power overheads, thus we do our

best to provide an estimate in Table 3.2. We ignore overhead due to ECC correction of re-

pair patterns and the shifting layers along with their corresponding decoders. Wilkerson’s

58

Table 3.2: Comparison with recently proposed cache protection schemes
L1 Cache L2 Cache

Protection Area Disabled Power Area Disabled Power Norm. IPC
scheme over. (%) (%) over. (%) over. (%) (%) over. (%) (SPEC-2K)
Wilkerson [103] 15 50 61 7 25 27 0.89
8T [30, 29, 98] 36 0 16 36 0 22 1.0
ZerehCache 16 0 15 8 0 12 0.97

method has a significant power overhead because parallel access to both banks is necessary

in the L1 and L2 caches (parallel access only occurs to the L1 ZC), and there is a high leak-

age power for the ST cells used for the tag array. Lastly, the area overhead of Wilkerson’s

method is modest, with ZC slightly higher. It should be notedthat the area of L2 is around

41 times larger than L1. Consequently,areaoverhead of a protection scheme for the chip

is mostly determined by the area overhead for the L2 cache. The 8T cell provides supe-

rior performance to either scheme, but at a cost of significant area overhead. The power

overhead of the 8T L2 cache is also notably higher than the ZC design. Overall, ZCs can

tolerate high defect densities while resulting in a modest amount of performance loss and

providing area/power overheads competitive with the best alternatives.

3.6.3 Significance

As we mentioned earlier, large on-chip caches are the major bottlenecks for enhancing

process variation tolerance. In our work, we showed the process variation characteristics

for a 45nm technology. Since the end of the free ride from clock scalinghas already ar-

rived, semiconductor companies need to use extremely conservative guard-bands for supply

voltage and clock frequency to avoid significant manufacturing yield loss. This has a major

impact on the power consumption and operational frequency of modern microprocessors.

In order to mitigate these effects, current microprocessors have already been equipped with

59

ECC and row-redundancy to protect the caches to the first order. An article by Hamp-

son, reported that about 40% yield loss was observed when allforms of redundancy were

removed from an Intel die. This was primarily due to the absence of redundancy from on-

chip caches. A more detailed study has been conducted on Sun UltraSPARC T1 [106]. In

summary, ZC can be leveraged to allow full functionality while imposing overheads com-

petitive with the best known alternatives. This simply translates into higher manufacturing

yield and better power/frequency characteristics for high-performance microprocessors.

3.7 Summary

Nanoscale CMOS technologies bring demanding reliability challenges to designers due

to high degrees of process variation. In particular, SRAM structures are highly vulnerable

to parametric alteration, thus the design of large on-chip caches that are both reliable and

efficient is an important problem. In this work, we present ZerehCache, a flexible and

dynamically reconfigurable cache architecture that efficiently protects on-chip caches in

high failure rate situations. Our solution takes advantageof static multiplexing of the rows

along with the added capability of dynamic word-line swapping to maximize the utilization

of spare elements. Cache fault patterns are mapped to a graphcoloring problem to configure

the ZC architecture. We explored a large design space and came up with two suitable

architecture configurations for L1/L2 ZCs such that they minimize the area and power

overheads while achieving a desired level of robustness. AnL1 ZC with 16% and an

L2 ZC with 8% area overhead achieve yields of 99% and 96%, respectively. Finally, we

compared our scheme with several conventional and state-of-the-art methods to illustrate

60

its efficiency and effectiveness.

61

CHAPTER IV

A Polymorphic Cache Design for Enabling Robust

Near-Threshold Operation

4.1 Introduction

As mentioned earlier, in Chapter I, Dynamic voltage scaling(DVS) is a widely used

technique to reduce the power consumption of microprocessors. However, the supply volt-

age of a microprocessor cannot be reduced below a certain threshold without drastically

sacrificing clock frequency. The minimum achievable voltage for DVS is set such that un-

der the worst-case process variation, the processor operates correctly [35]. The motivation

for this work comes from the observation that large SRAM structures are limiting the ex-

tent to which operational voltages can be reduced in modern processors. This is because

SRAM delay increases at a higher rate than CMOS logic delay asthe supply voltage is

decreased [94].

An SRAM cell can fail due to the following reasons: a read stability failure, a write

stability failure, an access time failure, or a hold failure[5]. Figure 4.1 depicts the bit

error rate (BER) of an SRAM cell based on the operational voltage in a 90nm technology

62

Figure 4.1: Bit error rate for an SRAM cell with varyingVdd values in 90nm. For this
technology, the write-margin is the dominant factor and limits the operational voltage of
the SRAM structure. Here, the Y-axis is logarithmic, highlighting the extremely fast growth
in failure rate with decreasingVdd. The two horizontal dotted-lines mark the failure rates
at which the mentioned SRAM structures (64KB and 2MB) can operate with at least99%
manufacturing yield.

node [70]. The minimum operational voltage of 64KB L1 and 2MBL2 caches is selected

to ensure a high expected yield, 99% in Figure 4.1. Due to the higher sensitivity of a

bit-cell to parametric variations at lowerVdds, the failure rate of an SRAM cell increases

exponentially whenVdd gets decreased. This exponential increase in the number of faulty

cells makes the protection of the on-chip caches much more difficult when operating in

the near-threshold region. As can be seen in this figure, the write margin mostly dictates

the minimumVdd and it is expected to operate withVdd ≥ 651mV due to the dominating

failure rate of the 2MB L2 cache. This minimum operational voltage is consistent with

predicted and measured values (∼ 0.7V) reported in [27].

In the literature, several techniques have been proposed toimprove dynamic and/or

leakage power of on-chip caches as well as the entire processor [94]. Section 2.2 sum-

marizes some of these low-power design techniques. Most of these methods exploit the

63

structure specific sleep modes and/or power-aware resourceallocation to avoid facing with

the failures. Consequently, for lowVdd values (e.g.,≤ 651mV), the amount of power

saving for these methods is restricted due to the arising failures in the SRAM structures.

In contrast, the objective of our work is to enable DVS to pushthe core/processor op-

erating voltage down to the near-threshold region (e.g., low power mode) while preserving

correct functionality of on-chip caches. An alternative tothis approach is dual-Vdds where

core and caches operate at different voltages. However, dual-Vdd imposes a high cost in

terms of area and design complexity. Voltage-level converters must be added to allow sig-

nal sharing between different voltage islands. Furthermore, high voltage memory elements

generate noise that victimizes the neighboring low voltagelogic circuits, necessitating ei-

ther shielding or extra noise margins [103].

In this chapter, we target ultra-low voltage operation (Vdd ≤ 400mV) in the near-

threshold region which causes an extreme bit-cell failure rate (> 10−3) for the on-chip

caches – presented as the high failure rate region in Figure 4.2. This figure shows the

percentage offaulty (i.e., containing at least one faulty bit-cell) bits, bytes, words, blocks,

columns, and word-lines for a 2MB L2 cache for differentVdd values. Figure 4.2 is gener-

ated assuming a uniform failure distribution based on the relation between bit-cell failure

rate andVdd in Figure 4.1. In this figure, atVdd = 350mV , almost all blocks are faulty

while 30% of the words are faulty for the 2MB L2 cache. As can be seen and also dis-

cussed earlier forVdd ≥ 651mV , almost no failure is expected (i.e.,failure-free region).

As can be seen, for theVdd ≤ 400mV , finer granularities of redundancy are required to

allow a high utilization of the spare elements since a large fraction of word-lines, columns,

blocks, and even words would be faulty. This increases the complexity of the design since

64

0.01

0.1

1

10

100

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

P
e

rc
e

n
ta

g
e

 F
a

u
lt

y

Power Supply Voltage (Vdd)

bit byte word (8B) block (128B) column (256B) word-line (1KB)

High failure rate region

(10-3

Our Target

Medium failure rate region

(10-5 -3)

ECC-2, 2D ECC, Bit-Fix

Low failure rate region

(10-9 -5)

Row/column redundancy, ECC

Failure-free region

(BER < 10-9)

No protection is required

Figure 4.2: Percentage of faulty bits, bytes, words, blocks, columns, and word-lines for a
2MB L2 cache while varying the supply voltage. Here, the Y-axis is logarithmic, highlight-
ing the rapid growth in faulty units when decreasingVdd. The top part of this figure depicts
our conceptual division of thisVdd range into four different regions based on the protection
difficulty. For each region, corresponding bit error rates and also several applicable protec-
tion techniques are also shown. In order to operate correctly in the failure-free region, no
protection mechanism is required. However, as can be seen, our target is the high failure
rate region which causes an avalanche of failures for on-chip caches.

simple disabling (e.g., block or way disabling) or coarse grain redundancy (e.g., row or

column redundancy) techniques cannot be efficiently applied.

In this chapter, we propose Archipelago (AP) [10, 8], a cache capable of reconfiguring

its internal organization to efficiently tolerate the largenumber of SRAM failures that arise

when operating in the near-threshold region. AP allows fault-free operation by partition-

ing the cache into multiple autonomousislandswith various sizes. Each island is a group

of physical cache word-lines that can operate correctly without using any word-line out-

side of their group. Each group has a sacrificial word-line which is divided up to multiple

redundancy units. These spare units aredirectly/indirectlyemployed to achieve fault-free

operation of the other word-lines in the same group. Sacrificial word-lines do not contribute

to the effective cache capacity since they do not store any independent data. The clustering

65

of the cache to these autonomous islands is done by a configuration algorithm which is de-

scribed in Section 4.2.3. This adapted version of the minimum clique covering algorithm

tries to partition the cache to the least number of islands/groupsto minimize the number

of sacrificial word-lines required for guaranteeing the fault-free operation of the cache. AP

enables greater power savings than prior approaches and requires only a single power sup-

ply. The overhead of the approach is a small performance penalty (4.6%) when operating in

near-threshold mode and a negligible area overhead (2%) for the microprocessor. We apply

AP to L1-D, L1-I, and L2 caches to evaluate the achievable power reduction for the overall

microprocessor system. A thorough comparison of AP with several well-known proposals

is done in Section 4.4.

The primary contributions of this chapter are:1) A flexible and highly reconfigurable

architecture that can be leveraged to protect regular SRAM structures against high failure

rates;2) In order to minimize the amount of redundancy required for protecting the cache,

we model the cache fault pattern with a proper graph structure to guide a minimum clique

covering configuration algorithm for near optimal group formation;3) To our knowledge,

Archipelago is the first low overhead, fault-tolerant architectural technique which allows

the cache to operate correctly whenVdd ≤ 400mV ; and4) A design space exploration in

90nm to show the actual process of selecting the architecture parameters for both L1 and

L2 caches.

66

4.2 Archipelago

In this section, we first describe the AP architecture that adaptively reconfigures itself to

absorb failing SRAMs. Next, we present a configuration algorithm that exploits the intrin-

sic flexibility of the AP architecture to perform a near optimal redundancy assignment. The

coalescence of highly flexible hardware and intelligent configuration enables our proposed

solution to minimize the impact of operating at near-threshold region on cache characteris-

tics (e.g., size and latency) with minimal overhead.

4.2.1 Baseline AP Architecture

Entering low-power mode causes many bit-cells within a cache to fail. AP provides the

appearance of a fully functional cache by tolerating these failures. In order to clarify the

operation of AP for set-associative caches, we briefly describe the existing on-chip cache

design approaches. For high speed caches, e.g., L1, all the blocks in a set are located in the

same physical word-line and read in parallel with the accessto the tag array (i.e.,fast-access

design). In case of a cache hit, based on the tag comparison result, the column decoder

selects the matched block from the corresponding word-line. For the caches that are not so

sensitive to latency, e.g., L2, accesses to the data and tag arrays happen sequentially. Only

in the case of a hit, the matched block will be accessed in the data array (i.e.,energy-efficient

design). Although having higher latency for a cache access,the second method has several

notable advantages: 1) It allows blocks to be longer since there is no physical constraint

for placing multiple blocks in the same word-line. 2) It achieves a better power saving in

the case of a miss. 3) Finally, it makes higher degrees of associativity more affordable by

67

providing a higher efficiency of cache access.

As will be discussed, AP can be easily adapted to bothfast-accessandenergy-efficient

designs. To this end, we partition the cache into several autonomous islands with various

sizes. Each island is a group of physical cache word-lines that can operate correctly without

using any word-line outside of their group. Each group has a sacrificial word-line which

is divided up into multiple redundancy units. These spare units aredirectly/indirectlyem-

ployed to allow a fault-free operation of the other word-lines in the same group. Put simply,

considering one of these groups withn + 1 partially functional cache word-lines, AP allows

this group to behave as a set ofn fully functional cache word-lines.

In the remainder of this chapter, we refer to every physical cacheword-line, which

may contain multiple blocks as aline. In our approach, each line is divided into multiple

data chunks. Each chunk is labeled faulty if it has at least one faulty bit. Two lines have

a collision if they have at least one faulty chunk in the same position. For example, if

the second data chunk of the 3rd and 6th lines is faulty, lines 3 and 6 have a collision.

Similarly, in Figure 4.3, lines 10 and 15 are collision-freesince they do not have a faulty

block in the same position. The primary objective of AP is to form groups such that there

are no collisions between any two lines within a group. By definition, it should be clear

that collisions are independent of workload running on the system and data stored in the

cache.

Figure 4.3 is a toy example that depicts a 2-way set-associative fast-accesscache with

two banks. Each bank has 8 lines and each line consists of two blocks of data which are

divided into 3 equally sized data chunks. In this figure, lines 4, 10, and 15 form the 3rd

group (G3) in the cache. As can be seen, there is no collision between any pair of lines

68

Figure 4.3: Basic structure of a dual-bank 2-way set-associative Archipelago. Two cache
banks with eight lines each are shown. Each block consists of3 equally sized data chunks.
Black boxes in each cache line represent chunks of data that have at least one faulty bit.
The memory and fault maps, which are essential components ofthe proposed scheme, are
also shown.

within this group – considering both ways simultaneously. Here, line 4 (labeled G3(S)) is

the sacrificial line that furnishes the redundancy needed toaccommodate the faulty chunks

in lines 10 and 15. In order to minimize the access latency overhead, the sacrificial line (4)

and the data lines (10 or 15) should be in different banks1 so that the sacrificial line can be

accessed in parallel to the original data line.

In AP, a memory map is used to provide a level of indirection incache accesses. Each

cache access first indexes into this memory map, which supplies the location of the data

line and its corresponding sacrificial line. After these twolines have been accessed from

their respective banks (different ones), a MUXing layer2 is used to compose a fault-free

1In this work, our approach is described for protecting caches with only two banks. However, it should
be clear that our scheme can be naturally extended to caches with any number of banks≥ 2 without loss of
generality.

2As a side note, since read and write are symmetric operations, the only modification in the hardware
implementation would be to replace the MUXes in the MUXing layer with pass transistors [103].

69

block by selecting the appropriate chunks from each line. Considering the basic design of a

fast-accesscache, based on the tag comparison results, column decoders– which are placed

before our MUXing layer – MUX the corresponding blocks out ofread word-lines. On the

other hand, it should be clear that forenergy-efficientcaches design each word-line might

only contain a single block and access to the tag and data array is sequential. As a result,

indexing into the memory map will be done after resolving thetag part of the address.

The MUXing layer receives its inputs indirectly from thefault map. For a given data

line, the fault map determines which chunks are faulty and should be replaced with cor-

responding chunks from the sacrificial line. To aid in the encoding and decoding of this

information, a unique address is assigned to all lines within a group (group address). For

instance, in Figure 4.3, lines 10 and 15 are the first and second lines ofG3, respectively.

For each data chunk in the sacrificial line, the fault map stores the group address of the line

to which that data chunk is assigned. In general, for a given group, if the sacrificial line

consists ofk data chunks, the fault map requires to store(i1, i2, ..., ik). In this notation,ij is

the group address of the line to which thejth data chunk of the sacrificial line is assigned.

In our example, the entry which is assigned to the third group(G3) in the fault map, con-

tains (1,2,-,2,-,1) forway0 andway1. Considering onlyway1, this indicates that the 4th

chunk of the corresponding sacrificial line (G3(S)) is devoted toG3(2), the 6th chunk is

dedicated toG3(1), and the 5th chunk is not assigned to any line. Finally, the MUXing

layer gets its input from a set of comparators that compare the group address of a data line

with fault map entries for the same group. For example, groupaddress of line 15 is 2 – read

from memory map – which gets compared withG3’s fault map entries.

70

4.2.2 AP with Relaxed Group Formation

Since every group requires a sacrificial line be dedicated solely for redundancy, AP

strives to minimize the total number of groups that must be formed. Given that the number

of lines is fixed within a cache, achieving this objective implies that larger groups are

preferred over smaller ones. In order to improve the likelihood of forming large groups,

we remove the constraint that forces the sacrificial line, from a particular group, to be in

a different bank than all the other lines. This allows any setof lines from the two banks

to form a group. However, in order to minimize the access latency, we do not allow a

group to derive all its lines from the same bank. In other words, each group should have

at one line in each bank to allow a parallel access to the original and spare data. Relaxing

the mentioned constraint, gives rise to two new read access scenarios in addition to the

standard case described in Figure 4.3.

Handling Different Types of Accesses:In Figure 4.4(a), lines 2, 4, 7, 10 and 15 are

in the same group, with line 4 serving as the sacrificial line.However, when line 2 or 7 is

accessed as a data line, a parallel access to line 4 cannot be performed since they are in the

same bank. To handle such a scenario, a small and transparentmodification to the AP ar-

chitecture is needed. We arbitrarily select a line from the bank not containing the sacrificial

line (but still from the same group) and label it as asemi-sacrificialline (line 15 in Fig-

ure 4.4(a)). This semi-sacrificial line can be used to replace faulty chunks from cache lines

which are in the same bank as the sacrificial line. However,in contrast to the sacrificial

line, the semi-sacrificial line still contributes to the effective cache space. In other words, a

semi-sacrificial line only acts as a level of indirection forredundancy substitution by bor-

71

(a) Reading a line (G3(3)) from the same bank as the sacrificial line (G3(S))

(b) Reading from the semi-sacrificial line (G3(2))

Figure 4.4: Two special read-access scenarios. A standard read access is illustrated in
Figure 4.3. Notice the extra bit that has been added to both the memory map and every
fault map entry to handle scenario (b). Since the 4th data chunk of semi-sacrificial line is
re-allocated, it is marked asRA in scenario (b).

rowing redundancy from its corresponding sacrificial line.Moreover, semi-sacrificial lines

guarantee the parallel access to the original and spare datain all possible scenarios. Con-

sequently, the faulty chunks of the lines 2 and 7 are replacedusingG3(2) instead of the

72

G3(S). With the addition of the semi-sacrificial line, accesses tothe cache can be divided

into three categories:

1) Accesses to data and sacrificial lines that reside in different banks. This is the base

case which is demonstrated in Figure 4.3 and does not requireany special consideration

beyond what is described earlier.

2) Accesses to data lines that are the in the same bank as the corresponding sacrificial

line. This case is illustrated in Figure 4.4(a). LineG3(3) is the data line and lineG3(2) is

the semi-sacrificial line which supplies the replacement chunks for the faulty ones inG3(3).

Instead of accessingG3(S), the memory map remaps the address of the sacrificial line to the

address ofG3(2). This case is particularly interesting, since no other parts of the procedure

must be adjusted to support this access scenario. The fault map is still used, unmodified, to

indicate that the 4th data chunk fromG3(3) is faulty and should be substituted. Therefore,

AP replaces this faulty chunk ofG3(3) by the semi-sacrificial line’s 4th chunk instead of

sacrificial line’s 4th chunk.

3) Accesses to a semi-sacrificial line. This case is demonstrated in Figure 4.4(b) for

which two small modifications to the access procedure are necessary. An additional bit

is added to memory map entries indicating whether the accessed data line is the semi-

sacrificial line. As can be seen, the 4th data chunk ofG3(2) has been re-allocated to

G3(3). Consequently, we artificially mark the 4th chunk of the semi-sacrificial line as “re-

allocated” (RA in Figure 4.4(b)). WhenG3(2) is accessed, its faulty and also re-allocated

data chunks (i.e., the 4th and 5th chunks) are supplied as expected by the corresponding

chunks from the sacrificial line (G3(S)). However, this cannot be easily done using the un-

modified fault-map since the 4th entry of the fault map points to the faulty chunks of data

73

1

3
72

4

6

8
G2(1)

G2(2)
G1(2)
G2(S)

5
9

10

1

2

3

4

5
8

7

6

9

10

G1(1)
G2(3)

G2(4)
G1(S)
G1(3)

D

First Bank Second Bank

Group 1

Group 2

Disabled

Figure 4.5: A simplified example of the minimum clique covering process for a given dis-
tribution of faults in the cache banks. Here, each bank has only 5 lines. The solver disables
the 6th line since it has many faulty chunks and, is therefore very expensive to repair. Two
cliques are formed by the solver and lines 9 and 3 are designated as sacrificial lines for
groups 1 and 2, respectively. Moreover, the conceptual partitioning of the cache to distinct
islands is also demonstrated.

from G3(3). As a result, the system cannot identify that the 4th chunk of the semi-sacrificial

line should be replaced during an access. In order to tackle this problem, we add an extra

bit to every fault map entry which indicates whether the corresponding data chunk should

be replaced when accessing the semi-sacrificial line. For instance, in Figure 4.4(b), since

the 4th and 5th chunks should be replaced, their corresponding bits in the fault map have

been set to “1”.

74

4.2.3 AP Configuration

To maximize the number of functional lines in the cache, we need to minimize the

number of sacrificial lines required to enable fault-free operation. As previously discussed,

there is a single sacrificial line devoted to every group of lines. This sacrificial line is not

addressable as a data line since it does not store any independent data. In other words,

sacrificial lines do not contribute to the usable capacity ofthe cache. Depending on the

number of collision-free groups that are formed, the effective capacity of the cache can vary

dramatically. This motivates the need to minimize the totalnumber of groups required.

Problem Modeling: Here, we model the problem as a graph in which every group

corresponds to a clique. To minimize the number of groups in agiven faulty cache – upper

part of Figure 4.5 with two banks, we model the problem as a minimum clique cover (MCC)

problem [38]. Figure 4.5 shows the process of forming the groups given a fault pattern for

the cache. Each node in the constructed graph, ten in all, is acache line. There is an edge

between two nodes if and only if there is no collision betweenthe corresponding lines.

Therefore, it is possible to assign connected nodes to the same group. For example, there

is an edge between lines 2 and 3 but no edge between lines 1 and 10.

As mentioned earlier, a group is a set of lines for which thereis no collision between

any pair of lines. By constructing the graph this way, a collision free group forms a clique

(i.e., there is an edge between every pair of nodes). As a result, the task of forming groups

can be represented as finding the cliques in the constructed graph. However, since we are

interested to minimize the number of sacrificial lines, thisproblem turns to finding the

minimum number of cliques that cover the entire graph. In Figure 4.5, lines 1, 4, 8, and 9

75

form the first group (G1, clique with size 4) while lines 2, 3, 5, 7, and 10 form the second

group (G2, clique with size 5). Line 6 is disabled (D) since it contains 4 faulty chunks and

repairing it is not cost effective. In general, a line gets disabled, if its corresponding node

in the graph does not belong to any clique with size≥ 2. Here, the fault map has 2 lines

which correspond to the sacrificial lines 9 and 3. As can be seen in this figure, there are

16 faulty chunks out of 60, therefore, at most10 − (⌈16

6
⌉) = 7 cache lines can be kept

functional after the grouping. Ultimately, our configuration algorithm can achieve this best

case, highlighting the effectiveness of our approach.

MCC Solver: We use the transformation described in [50] to convert the MCC prob-

lem to a minimum chromatic number problem. After applying this transformation, the

final graph is passed to the DSATUR solver [55] which uses a well-known and efficient

approximation algorithm. As shown in [55], the approximation factor for the DSATUR

solver is≤ 6.1% for various graph densities. For the problem size that we target in this

work, the run time of the DSATUR algorithm is always less than5ms. In contrast, the full

backtrack-based solver (e.g., optimal solver) takes several days to solveone instanceof our

configuration problem which makes it infeasible to be used inpractice.

Nevertheless, the original solver’s answer is not directlyapplicable to our problem.

Since the solver is free to form a group in any possible way that minimizes the number of

cliques, it is possible to have a clique with nodes in only onebank. This latter case is not

a feasible solution since it blocks the parallel access to the spare elements. As a result, we

apply a set of modifications to the original solver for makingit suitable to our application:

1) We force the solver to pick the second line of the group from a different bank from

the first line of the group. This small modification assures usthat at least one line is selected

76

from each bank and allows us to take care of the parallel access problem discussed above.

2) An artifact in the DSATUR solver algorithm can sometimes cause it to disable a

large fraction of cache lines. More specifically, it picks the nodes for coloring only based

on the degree of saturation which is proportional to the reciprocal of the node degree in our

constructed graph [55]. Because of this bias, all the lines from one bank might be selected

while there are many unassigned lines in the other bank. In such a scenario, the unassigned

lines have to be disabled which results in a large fraction ofdisabled lines. In order to solve

this problem, we modify the original DSATUR algorithm to pick the lines from both banks

more evenly. This was done by giving artificial priority to the lines in a bank that has more

unassigned linesat the beginning of each assignment phase.

3) As will be discussed in Section 4.3, minimizing the area overhead of the fault map

carries a major significance for our scheme. The size of each entry in the fault map is

proportional to thelog2 (max{clique size}). Therefore, to reduce the size of the fault map,

an upper bound (e.g., 64) can be placed on the maximum clique size (MCS). By adding this

feature, all the cliques which are found by the DSATUR solvercan be forced to have a size

smaller than or equal toMCS.

The main plot in Figure 4.6 depicts the distribution of clique sizes for different ver-

sions of the solver: base (base DSATUR solver), 2nd non-fair(base solver + modifica-

tion (1)), 2nd fair (base solver + modifications (1,2)), and 64-cap (base solver + modifica-

tions(1,2,3)). This data is generated using 1000 iterations of a Monte Carlo simulation for

a 2MB L2 cache with 2048 lines. It should be clear that the sizeof the fault map is pro-

portional to the(Num. of Cliques)× log2 (MCS) which implies a small number of large

cliques is preferable. Furthermore, since(Num. of Cliques)× (Average Clique Size) is

77

0

2

4

6

8

10

12

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

F
re

q
u

e
n

cy
 o

f
O

cc
u

rr
e

n
ce

Clique Size

base 2nd non-fair 2nd fair 64-cap

0

20

40

60

80

100

base 2nd non-fair 2nd fair 64-cap

N
u

m
b

e
r

o
f

W
o

rd
-l

in
e

s

Different Versions of the Solver

average non-functional lines max non-functional disabled

Figure 4.6: Distribution of the clique size for different versions of the solver based on Monte
Carlo simulation. Note that for 64-cap, the size of all cliques is≤ 64. Here, the number of
non-functional lines is the summation of the number of sacrificial lines and the number of
disabled lines. The plot in the insert depicts the average number of non-functional cache
lines, the maximum number of non-functional lines, and the number of disabled lines while
achieving 99% yield.

equal to the total number of word-lines, a constant value,MCSshould be as close as possi-

ble to theAverage Clique Size. As a result, the most desirable distribution of clique sizes

would be a tight distribution around large clique sizes. As can be seen in Figure 4.6, a ma-

jority of cliques fall into the narrow region of 60 to 80 nodes. This tight distribution shows

the efficiency and proper balancing of the group sizes in the process of group formation by

the different versions of the solver. The smaller plot in this figure demonstrates different

characteristics of these 4 versions of the solver. In this plot, the number of non-functional

lines is the summation of the number of sacrificial lines and the number of disabled lines.

As can be seen, the second modification (i.e., fairness) can effectively reduce the average

number of disabled lines from25.5 to 6.1.

Another observation is that the constraintMCS = 64 increases the maximum number

of non-functional lines by 9% while it reduces size of each fault map entry by 17% – from

78

7 bits to 6 bits. For each cache instance, the number of lines in the fault map array is equal

to the number of sacrificial lines (e.g., 2 in Figure 4.5). However, due to the presence of

process variation in a large population of fabricated chips, different fault patterns should be

expected. As we described earlier, in our evaluation, we employ a Monte Carlo simulation

to generate a population of 1000 cache instances and the total number of fault map lines is

determined based on the maximum number of sacrificial lines while achieving a 99% yield.

Hardware Configuration: In order to configure AP, the memory and fault maps need

to be filled. The initial step involves solving the MCC configuration problem for a given

cache fault-pattern. Given the MCC solution, each line – a node in the graph – can be clas-

sified as:1) Data line: For each data line, a new memory map entry should be allocated.

Each memory map entry has 5 fields (Figure 4.4(b)): The first field is the data line address.

If this line is in the same bank as its respective sacrificial line, the second field will set

to the address of the respective semi-sacrificial line. Otherwise, it will get the address of

the sacrificial line. The third, fourth, and fifth fields should be set to the data line’s group

number, group address, and “0”, respectively.2) Sacrificial line: Although no change in

the memory map is required, a fault map entry should be allocated for each sacrificial line.

Each fault map entry has a field per data chunk – 6 fields in Figure 4.4. For faulty data

chunks of a sacrificial line or the ones which are not assignedto any faulty data chunks,

corresponding fields in the fault map should be set to “-”. Forother data chunks, corre-

sponding fault map fields should be set to the group addressesof the data/semi-sacrificial

lines to which those data chunks are assigned.3) Semi-sacrificial line:This is similar to the

first case, except the last field of the memory map entry shouldbe set to “1”.4) Disabled

line: Nothing needs to be done in this case.

79

Low Power Mode Operation: The first time a processor switches to low power mode,

the built-in self test (BIST) module scans the cache for the potential faulty cells. After de-

termining the faulty chunks of each cache line in low power mode, the processor switches

back to high power mode and constructs the mentioned graph and solves the MCC problem

using the modified DSATUR solver. As mentioned before, the solver time for a 2MB L2

cache is less than 5mson an Intel Core™2 Duo machine. This solution contains the infor-

mation that is required to be stored in the memory and the fault maps. This configuration

information can be stored on the hard-drive and is written tothe memory map and fault map

at the next system boot-up. In addition, the memory map, fault map and the tag arrays need

to be protected using, for example, the well studied 10T cell[27] which has about 66%

area overhead for these relatively small arrays. These 10T cells are able to meet the target

voltage in this work for the aforementioned memory structures without failing. However,

as we will discuss in Section 4.4, 10T cells are not a cost-effective option for protecting the

entire L1 and L2 caches.

Cache Addressing Mechanism after Capacity Reduction:In our design, the mem-

ory map can be used to remap theoriginal addressof the sacrificial lines to other functional

lines. As a result, a small fraction of the sets will have the functionality of two sets. For

those dual-set word-lines, associativity is reduced by half. These dual-set lines are dis-

tributed evenly across the cache to prevent biased miss ratefor an address sub-range. The

tag comparison and replacement logic needs straight-forward modifications to make this

work, details of which are omitted in the interest of space.

High Power Mode Operation: In the high power mode, our scheme is turned off in

order to minimize the unwanted overheads:1) All the cache lines are functional and there is

80

no sacrifice of the cache capacity.2) Assuming clock gating, there is a negligible overhead

for the dynamic power due to the switching in the bypass MUXeswhich consists of the

MUXing layer and an additional MUX for bypassing the memory map.3) Leakage power

overhead remains the same. However, power gating techniques can be used for general

leakage mitigation [49].

4.3 Evaluation

This section evaluates the potential of AP in reducing the power of the processor while

keeping the overheads as low as possible. Comparisons with related work are presented in

the next section.

4.3.1 Methodology

For performance evaluation, we use SimAlpha, a validated micro-architectural simula-

tor based on the SimpleScalar out-of-order simulator [14].The processor is configured as

shown in Table 4.1 and is modeled after the DEC Alpha 21364 at an ambient temperature

of 40◦C [81, 57]. Dynamic processor power consumption is calculated using Wattch [26]

based on the activity factors of individual core structures, and leakage power is computed

with HotLeakage [109]. CACTI [72] is leveraged to evaluate the delay, power, and area of

the basecachestructures. To take into account the overheads of the memorymap and fault

map arrays, we use the SRAM generator module provided by the 90nm Artisan Memory

Compiler. Lastly, the Synopsys standard industrial tool-chain (with a TSMC 90nm tech-

nology library) is used to evaluate the overheads of the remaining miscellaneous logic (i.e,

81

bypass MUXes, comparators, subset tag comparison disabling, etc.). Moreover, to find the

matching frequency for a givenVdd, we use the alpha-power model described in [66].

For a given set of cache parameters (e.g.,Vdd, chunk size, MCS, etc.), a Monte Carlo

simulation with 1000 iterations is performed using the modified DSATUR solver described

in Section 4.2 to identify the portion of the cache that should be disabled. As discussed

earlier, solutions generated by the MCC solver target a 99% yield. In other words, only

1% of manufactured and configured on-chip caches are allowedto exhibit failures when

operating in low-power mode. On the other hand, the target yield directly impacts the size

of the fault map. Its size is set based on the maximum number ofcliques formed across all

cache instances in the Monte Carlo process when ignoring as many worst-case situations

as the target yield allows.

Table 4.1: The target system configuration
Parameters Value

Technology 90nm

Clock frequency 1.9 GHz [57]
Vdd nominal 1.2 V
L1 Cache 2 banks 64KB data, 2 banks 64KB instruction,

split, 2-way set associative, 4 cycles hit latency, 1 port,
LRU, 64B block size, write-back

L2 Cache 2 banks 2MB Unified, 8-way set associative,
10 cycles hit latency, 1 port, LRU, 128B block size, write-back

Registers 80 integer, 72 floating point
ROB (re-ordering buffer) 128 entries
LSQ (load/store queue) 64 entries
Instruction fetch buffer 32 instructions
Integer/FP issue queue 32/32 entries
FU (functional unit) 4 int ALU, 4 int mult/div, 2 memory system ports
FPU (floating point unit) 4 FP ALU, 1 FP mult/div
Main memory 225 cycles (high power), 34 cycles (low power)
Branch predictor combined (bimodal and 2-level)
BHT (branch history table) 4096 entries
RAS (return address stack)32 entries
BTB (branch target buffer) 2048 entries, 2-way associative

82

4.3.2 Design Space Exploration

Figure 4.7 shows the process of determining the minimum achievableVdd for our target

system. In this figure, chunk size varies from 1bit to 16bits for both L1 and L2 caches.

In high-power mode, both fault and memory map arrays remain idle and leak power. It is

crucial to minimize the size of these structures. The size ofthe memory map is essentially

fixed by the number of lines in the cache. The fault map size, however, can vary signifi-

cantly depending on configuration parameters, motivating acloser look at the size of the

fault map as an important design factor. Consequently, we limit the area overhead of the

fault map to 10% (of the cache area). Furthermore, since cache size has a strong correlation

with system performance, we limit our scheme to setting at most 10% of the cache lines to

non-functional.

As evident in Figure 4.7, decreasingVdd increases the non-functional portion of the

cache and also the area of the fault map array. However, beyond a certain point, the area

overhead of the fault map starts decreasing. This phenomenais due to the large fraction

of the cache lines that getdisabledas loweringVdd leads to increasing error rates and a

precipitous increase in faulty chunks. As we mentioned earlier, for these disabled lines, no

entry in the fault map array is required.

Here, the vertical dotted lines highlight the minimum achievableVdd based on the afore-

mentioned 10% limits on non-functional lines and fault map size. It is notable that for small

chunk sizes, area overhead of the fault map is the limiting factor, while for larger chunks,

the number of non-functional lines becomes dominant. As canbe seen in this figure, the

minimum achievableVdd for L1 is lower than L2. This was expected due to L2’s longer

83

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

Power Supply Voltage (Vdd)

Percentage of non-functional cache lines Fault-map area-overhead

2b chunks 4b chunks 8b chunks 16b chunks1b chunks

(a) Percentage of non-functional lines and area overhead of thefault-map forL1 while varyingVdd and data
chunk size

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

Power Supply Voltage (Vdd)

Percentage of non-functional cache lines Fault-map area-overhead

2b chunks 4b chunks 8b chunks 16b chunks1b chunks

(b) Percentage of non-functional lines and area overhead of thefault-map forL2 while varyingVdd and data
chunk size

Figure 4.7: Process of determining the minimum achievableVdd for L1 and L2 caches while
limiting the fraction of the non-functional cache lines andalso the area overhead of the fault
map structure to≤ 10%. Moreover, in these 10 sub-plots, vertical dotted lines show the
minimum achievableVdd while data chunk size varies from 1bit to 16bits.

lines and larger size which makes protection of L2 harder than L1 [103]. Therefore, L2

protection cost dictates the minimum operating voltage of our system. In addition, based

on the trend in Figure 4.7, it should be clear that a chunk sizeoutside of the presented range

will only result in a higher minimumVdd. As a result, we select375mV as the minimum

Vdd (i.e, low-power mode operating voltage) since all other lower voltages violate our 10%

limits.

For Vdd = 375mV , a design space exploration of L1-(D/I) and L2 caches is demon-

strated in Figure 4.8. There are two important parameters tonote:1) MCS, the maximum

allowable clique size (Section 4.2.3) and2) chunk size, varying from 1b to 128b for L1 and

84

(a) L1 design space exploration (b) L2 design space exploration

Figure 4.8: Design points for different Maximum Clique Size (MCS) and chunk size pairs
are shown that can achieve a 99% yield. For each MCS value, corresponding chunk sizes
from {2n | n ∈ {0, 1, ..., 7}} for L1 and from{2n | n ∈ {0, 1, ..., 5}} for L2 are chosen.
The shaded boxes represents the region of interest where both the fault-map overhead and
the fraction of non-functional lines is limited to≤ 10%. The black dotted line is the Pareto
frontier.

from 1b to 32b for L2. From Figure 4.8, it should be clear that the chunk sizes outside of

the presented range always violate at least one of our aforementioned 10% limits. For every

pair of (MCS, chunk size), a Monte Carlo simulation, targeting 99% yield, is performed

with 1000 iterations. This simulation identifies the necessary area overhead of the fault

map and the fraction of non-functional lines in the cache. Here, we still limit the fraction

of the non-functional lines to 10% while trying to minimize the area overhead of the fault

map.

In Figure 4.8(a), within the shaded region, only points on the black dotted line (Pareto

frontier) are considered since they dominate the other design points. Note that making the

chunk size larger decreases the area overhead of the fault map since the number of entries

in the fault map is reduced. However, this reduction is also accompanied by an increase in

the fraction of non-functional cache lines, the result of fewer edges in the graph described

in Section 4.2.3. For L1, the design point withMCS = 32 andchunk size = 16 bits is

85

Figure 4.9: Area, leakage, and dynamic power overheads of our scheme forboth L1 and L2
caches. Here, 10T cell is used for protecting fault map, memory map, and tag arrays.

selected, highlighting an interesting trade-off between the area overhead of the fault map

and the fraction of non-functional lines. By repeating the same process for L2, as illustrated

in Figure 4.8(b), the design point withMCS = 16 andchunk size = 8 bits is selected.

4.3.3 Results

Figure 4.9 summarizes the overheads of our scheme for both L1and L2 caches. As

mentioned before, we also account for the overheads of using10T SRAM cells [27] for

protecting the tag, fault map, and memory map arrays in low-power mode. In addition, the

fault map, memory map, and the second bank have their own separate decoders which are

accounted for in our evaluation. Leakage overhead in high power mode corresponds to the

fault map, memory map, miscellaneous logic, and extra leakage of 10T cells for tag array.

Note, the memory map is a far greater contributor to area and leakage power overhead in the

L1 than in the L2. The reason behind this is that the L1 has only1

4
the lines of the L2, while

its overall size is1

32
. For L2, the fault map is the major component of overhead. Dueto its

significantly larger size, the L2 cache dominates the processorleakageandareaoverheads.

Nevertheless, as can be seen in this figure, our scheme has only modest overheads for the

86

L2 cache. Dynamic power overhead in high-power mode can be mainly attributed to bypass

MUXes since we assume clock gating for the fault map and memory map arrays. In AP,

when in low-power mode, the memory map and MUXing layer are onthe critical path of

the cache access. Based on our timing analysis, the access delay overhead of L1 and L2

are 0.41ns and 0.58ns, respectively. Based on our system clock frequency (Table 4.1), this

translates to 1 additional cycle latency for L1 and 2 additional cycles for L2 in low-power

mode.

As mentioned before, the fraction of non-functional lines is based on a 99% yield in

a 1000-run for a Monte Carlo simulation. As a result, the fraction of non-functional lines

would be smaller than what is presented in Figure 4.8 for manychips. This is because

across all the fabricated dies, process induced parametricvariation causes different cache

fault patterns to appear. However, we consider the worst-case capacity loss during our

evaluation. In order to evaluate theworst-caseperformance penalty of our scheme in low-

power mode, we ran the cross-compiled Alpha binaries of SPEC-CPU-2K benchmark suite

on SimAlpha after fast-forwarding to an early SimPoint [85]. We assume one extra cycle

latency for L1 and 2 extra cycles for L2. Cache size is also reduced based on the fraction

of non-functional lines in Figure 4.8. On average, a 4.6% performance penalty is seen in

low-power mode from which 0.6% is contributed by the cache capacity loss due to the

presence of non-functional lines (Figure 4.10). As can be seen, our strict limit on the

fraction of non-functional lines results in minimal impacton performance because of cache

capacity loss. However, one should note that low-power modeperformance is usually not

a major concern. In high power mode, there is no capacity losssince no failures need to

be tolerated. Furthermore, based on our CACTI delay resultsand the frequency of the

87

system (Table 4.1), there is enough slack on the access time of our L1 and L2 caches to

fit the small bypass MUXes (additional 0.07ns delay) without adding any extra cycles to

the access time of these caches. In other words, there is no performance loss in high-

power mode. However, one might have a cache design without any slack available. In that

scenario, we add an additional cycle in high-power mode for L1 and L2, which translates

into a 3.6% performance loss for SPEC-2K.

Summary of benefits and overheads:Figure 4.11 shows the savings and overheads

for the Alpha 21364 microprocessor using AP for protecting the on-chip caches. As can be

seen in Figure 4.11(b), the overheads of the proposed methodare almost negligible. These

overheads are evaluated in 90nm using the methodology described in Section 4.3.1. On

the other hand, Figure 4.11(a) depicts the percentage reduction in leakage power, dynamic

power, and minimum achievable supply voltage by using AP forprotecting the on-chip

caches. These results are reported in the 45nm, 65nm, 90nm, and 130nm technology

nodes. The relation between the supply voltage and the expected SRAM bit-cell failure

0

2

4

6

8

10

12

P
e

rc
e

n
ta

g
e

 o
f

P
e

rf
o

rm
a

n
ce

 L
o

ss extra access latency cache capacity loss

SPEC-INT-2K SPEC-FP-2K

Figure 4.10: Performance loss break-down for our scheme in low power modeusing SPEC-
2K benchmarks. As can be seen, since the fraction of non-functional lines is limited to be
less than 10%, the access latency overhead is the dominant factor in performance penalty.

88

0 10 20 30 40 50 60 70 80 90 100

Minimum

Vdd

Dynamic

Power

Leakage

Power

Percentage Reduction

130nm

90nm

65nm

45nm

(a) Percentage of reduction in leakage power, dynamic power,
and minimum achievableVdd using 4 different technology
nodes (i.e., 45nm, 65nm, 90nm, 130nm).

(b) Overheads of using AP for protecting
on-chip caches of the mentioned micro-
processor in 90nm

Figure 4.11: Low-power mode benefits and also overheads of an Alpha 21364 micropro-
cessor system (Table 4.1) augmented with Archipelago. Here, we account for the dynamic
power overhead of accessing the second bank in low power modefor handling failures.

rate for these four technology nodes are extracted from [103, 58, 78, 37, 77, 28, 21]. Con-

sidering the 90nm technology node, AP enables DVS to save 79% dynamic power and

51% static power in the near-threshold region. With the aggressive technology scaling,

the systematic and random variations are expected to increase [77]. This results in higher

sensitivity/vulnerability of SRAM cells to power supply variations. Hence, the percentage

of reduction in dynamic power/minimum achievableVdd gradually reduces when heading

toward deeper sub-micron technologies. Nevertheless, a 68% dynamic power reduction

can be achieved in 45nm. In contrast, for leakage power, the percentage reduction grad-

ually increases as the technology scales down. This is mainly due to the drastic differ-

ences in correlations between the leakage power andVdd across technology generations. In

deeper technology nodes, a reduction inVdd manifests as a much larger saving in leakage

power [44]. Therefore, for deeper technologies, even though we achieve lessVdd reduction,

the net leakage power saving is larger. Due to the excessive increase in the sub-threshold

89

Table 4.2: Comparison of different protection schemes
Protection Min Vdd Cache area Freq. Norm. Power norm.
scheme (mV) overhead (%) (MHz) IPC to Archipelago

6T cell 651 0.0 920 1.0 4.35
Row redun. 550 5.1 710 1.0 2.62
SECDED 530 6.3 670 1.0 2.35
ECC-2 490 7.4 580 0.96 1.87
ZerehCache [11] 430 10.7 450 0.96 1.31
Wilkerson [103] 420 3.4 430 0.89 1.35
10T cell [27] 380 66 340 1.0 1.17
Archipelago 375 5.2 320 0.95 1.0

transistor leakage, it is expected that leakage power dominates the total power consumption

of a chip in the future technologies [44].

4.4 Quantitative Comparison to Alternative Methods

In order to illustrate the benefits of our design, we quantitatively compare AP with the

baseline 6T SRAM cell, three well-known conventional cacheprotection methods (row

redundancy, 1-bit error correction code (SECDED), and 2-bit ECC), and three state of the

art works (ZerehCache [11], Wilkerson et. al. [103], and 10TSRAM cell [27]). Table 4.2

summarizes this comparison – in 90nm – based on the minimum achievableVdd, area

overhead for the caches, processor clock frequency, normalized IPC, and normalized power.

In order to have a fair comparison, the number of redundant rows and coding granularities

are set so that the area overheads of the row redundancy, SECDED, ECC-2, and AP are

equal/comparable. In this table, different techniques aresorted based on their minimum

achievableVdd – targeting 99% manufacturing yield for on-chip caches.

Overheads for AP are calculated by considering all extra SRAM structures, decoders,

MUXing layer, comparators, bypass MUXes, and other miscellaneous small logics. How-

90

ever, some of the comparisons shown in Table 4.2 are conservative at best because we

overlook: 1) Area and delay overhead of the programmable decoder for row redundancy.

2) Area and power overhead of the encoder and decoder for ECC andECC-2. 3) Power

overhead of the extra logic which is added to the caches in [103]. 4) A 380mV minimum

achievableVdd for the 10T cell was derived in 65nm [27] and it is clear that in 90nm this

value would be higher.

Overall, even by overlooking all the mentioned overheads for other schemes, AP can

still achieve the lowestVdd and highest power saving among the other methods. The three

closest competitors to our work are the 10T cell, Wilkerson [103], and ZerehCache [11].

However, the 10T cell incurs 66% area overhead which acts as aburden in the high power

mode. In contrast, our scheme only has 5.2% area overhead anddoes not considerably

influence the normal operation of the system. Comparing to [103], our scheme can achieve

a significantly lowerVdd and higher power saving. In addition, Wilkerson’s work suffers

an 11% performance drop-off – for SPEC-2K – in low power mode and 6% in high power

mode. Comparing to ZerehCache, our scheme achieves a considerably lowerVdd, power

consumption, and area overhead. However, ZerehCache is a more suitable solution for

single-bank caches and it does not need an address remappingtechnique to deal with ca-

pacity reduction. Overall, the inherent efficiency, high degree of freedom in redundancy

replacement, and intelligent assignment of the spare elements are the main advantages of

AP that allow it to tolerate a higher failure rate compared tothe other techniques.

91

4.5 Summary

With aggressive CMOS scaling, dealing with power dissipation has become a challeng-

ing design issue. Consequently, a large amount of effort hasbeen devoted to the develop-

ment of DVS methods to tackle this problem. When decreasing the operational voltage of

a modern microprocessor, large on-chip cache structures are the first components to fail.

Tolerating these SRAM failures allows DVS to target lowerVdd values while preserving

the core frequency scaling trend. In this work, we proposed aflexible fault-tolerant cache

design, Archipelago, which benefits from a high degree of freedom in redundancy sub-

stitution and an intelligent configuration algorithm for redundancy allocation and group

assignment. AP allows fault-free operation in the near-threshold region by partitioning the

cache to multiple autonomous islands with various number ofword-lines to minimize the

cache capacity loss. Our scheme enables DVS to reach 375mV in 90nm. This translates

to 79% dynamic and 51% leakage power savings for our target system which is modeled

after the Alpha 21364. This significant amount of saving comes with 2% area and 4.6%

performance overhead for the microprocessor when operating in low-power mode. Finally,

we compared our scheme with several conventional and state of the art methods to illustrate

its efficiency and effectiveness.

92

CHAPTER V

Enhancing System Throughput by Animating Dead Cores

5.1 Introduction

Manufacturing defects is one of the main challenges for the semiconductor industry,

which have a direct impact on yield. Based on the latest ITRS report [48], for current

and near future CMOS technology, one manufacturing defect per five 100mm2 dies can

be expected. Fortunately, a large fraction of die area is devoted to memory structures, in

particular caches, which can be protected using existing techniques such as row/column

redundancy, 2D-ECC [54], ZerehCache [11], Bit-Fix [103], and sub-block disabling [1].

With appropriate protection mechanisms in place for caches, the processing cores become

the major source of defect vulnerability on the die. Consequently, we try to tackle hard-

faults in the non-cache parts of the processing core. Due to the inherent irregularity of the

general core area, it is well-known that handling defects inthe non-cache parts is chal-

lenging [75]. A common solution is core disabling [6]. However, the industry is currently

dominated by Chip Multi-Processor (CMP) systems with only a modest number of high-

performance cores (e.g., Intel Core 2), systems which cannot afford to lose a core due to

93

manufacturing defects. The other extreme of the solution spectrum lies fine-grained micro-

architectural redundancy [87, 25, 92]. Here, broken micro-architectural structures, such

as ALUs, are isolated or replaced to maintain core functionality. Unfortunately, since the

majority of the core logic is non-redundant, the fault coverage from these approaches is

very limited – less than 10% for an Intel processor [75].

In this chapter, we propose Necromancer (NM) [9, 7] to tackle manufacturing defects

in current and near future technology nodes. NM enhances overall system throughput and

mitigates the performance loss caused by defects in the non-cache parts of the core. To

accomplish this, we first relax the correct execution constraint on a faulty core – theun-

dead core– since it cannot be trusted to faithfully execute programs.Next, we leverage

high level execution information (hints) from the undead core to accelerate the execution

of an animator core. The animator core is an additional core, introduced by NM, that is

an older generation of the baseline cores in the CMP with lessresources and the same in-

struction set architecture (ISA). The main rationale behind our approach is the fact that,

for most defect instances, the execution flow of the program on the undead corecoarsely

resemblesthe fault-free program execution on the animator core – whenstarting from the

same architectural state (i.e., program counter (PC), architectural registers, and memory).

Moreover, in the animator core, these hints are only treatedas performance enhancers and

do not influence execution correctness. In NM, we rely on intrinsically robust hints and

effective hint disabling to ensure the animator core is not mislead by unprofitable hints.

Dynamic inter-core state resynchronization is also employed to update the undead core

with valid architectural state whenever it strays too far from the correct execution path. To

increase our design efficiency, we share each small animatorcore among multiple cores.

94

Our scheme is unique in the sense that it keeps the undead coreon a semi-correct execution

path, ultimately enabling the animator core to achieve a performance close to the perfor-

mance of a live (fully-functional) core. In addition, NM does not noticeably increase the

design complexity of the baseline cores and can be easily applied to current and near future

CMP systems to enhance overall system throughput.

5.2 Utility of an Undead Core

We motivate the NM design by demonstrating the high-level rationale behind it. To

this end, we provide evidence that supports the following two statements:(1) Although

an aggressive out-of-order (OoO) core with a hard-fault in the non-cache area cannot be

trusted to perform its normal operation, it can still provide useful execution hints in most

cases.(2) By exploiting hints from the undead core, the animator core can typically achieve

a significantly higher performance.

5.2.1 Effect of Hard-Faults on Program Execution

Prior work has studied the effect of a single-event upset, ora transient fault, on program

execution for high-performance microprocessors. Using fault-injection, it has been shown

that transient faults are often masked, easier to categorize, and have a temporal effect on

program behavior [100]. On the other hand, the effect of hard-faults on program execution

is hard to study since each hard-fault can result in a complicated intertwined behavior. For

example, a hard-fault can cause multiple data corruptions that finally mask each others

effect. Moreover, hard-faults are persistent and their effect does not go away. As a result,

95

0%

20%

40%

60%

80%

100%

P
e

rc
e

n
ta

g
e

 o
f

In
je

ct
e

d
 H

a
rd

-F
a

u
lt

s

< 100 (CI) < 1K (CI) < 10K (CI) < 100K (CI) > 100K (CI) or Masked

SPEC-INT-2KSPEC-FP-2K

Figure 5.1: Distribution of injected hard-faults that manifest as architectural state mis-
matches across different latencies – in terms of the number of committed instructions (CI).

hard-faults can dramatically corrupt program execution. In order to illustrate the negative

impact of hard-faults on program execution, we study the average number of instructions

that can be committed before observing an architectural state mismatch. This result, for

5000 area-weighted hard-fault injection experiments across SPEC-CPU-2K benchmarks,

is depicted in Figure 5.1.

Details of the Monte Carlo engine, statistical area-weighted fault injection infrastruc-

ture, target system, and benchmark suite can be found in Section 5.5.1. For these experi-

ments, we have a golden execution which compares its architectural state with the faulty

execution every cycle and as soon as a mismatch is detected, it stops the simulation and

reports the number of committed instructions up to that point. For instance, looking at

188.amp, 26% of the injected hard-faults cause an architectural state mismatch to happen

in less than 100 committed instructions. Since 176.gcc moreuniformly stresses different

core resources, it shows a higher vulnerability to hard-faults. As this figure shows, more

than 40% of the injected hard-faults can cause an immediate –< 10K – architectural state

96

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3 0.9 0.6 0.3

172.mgrid 173.applu 177.mesa 179.art 183.equake 188.ammp 164.gzip 175.vpr 176.gcc 186.crafty 197.parser 256.bzip2 300.twolf Average

P
e

rc
e

n
ta

g
e

 o
f

In
je

ct
e

d
 H

a
rd

-F
a

u
lt

s

< 1K (CI) < 10K (CI) < 100K (CI) > 100K (CI) or Masked

SPEC-FP-2K SPEC-INT-2K

Figure 5.2: Number of instructions that are committed (CI) before an injected hard-fault re-
sults in a violation of a pre-specified similarity index threshold. For this purpose, 5K hard-
faults were injected while considering three different similarity index thresholds (90%,
60%, and 30%).

mismatch. Thus, a faulty core cannot be trusted to provide correct functionality even for

short periods of program execution.

5.2.2 Relaxing Correctness Constraints

As just discussed, program execution on a dead core cannot betrusted. Here, we try

to determine the quality of program execution on a dead core when relaxing the absolute

correctness constraints. In other words, we are interestedin knowing for what expected

level of correctness, a dead core can practically execute large chunks of a program. Based

on 5K injected hard-faults, Figure 5.2 depicts how many instructions can be committed

in a dead core before it gets considerably off the correct execution path. In order to have

a practical system, the dead core should be able to execute the program over reasonable

time periods before its execution becomes ineffectual. Here, we define a similarity index

(SI) that measures the similarity between the PC of committed instructions in the dead core

and a golden execution of the same program. This SI is calculated every 1K instructions

97

and whenever it becomes less than a pre-specified threshold,we stop the simulation and

record the number of committed instructions. For instance,a similarity index of 30% for

PC values means, that during each 1K instruction window, 30%of PCs hit exactly the

same instruction cache line in both the golden execution andprogram execution on the

dead core. Figure 5.2 shows the number of committed instructions for three different SI

thresholds. For instance, considering SI threshold of 90%,on average only 12% of the

hard-faults renders the program execution on a dead core ineffectual before at least 10K

instructions get committed. Hence, even for an SI thresholdof 90%, in more than 85% of

cases, the dead core can successfully commit at least 100K instructions before its execution

differs by more than 10%.

5.2.3 Opportunities for Acceleration

Since the execution behavior of a dead core coarsely matchesthe intact program exe-

cution for long time periods, we can take advantage of the program execution on the dead

core to accelerate the execution of the same program on another core. This can be done

by extracting useful information from the execution of the program on the dead core and

sending this information (hints) to the other core (the animator core), running the same pro-

gram. We allow theundead coreto run without requiring absolutely correct functionality.

The undead core is only responsible to provide helpful hintsfor the animator core. This

symbiotic relation between the two cores enables the animator core to achieve a signifi-

cantly higher performance. When the hints lose their effectiveness, we resynchronize the

architectural state of the two cores. Since an architectural state resynchronization, between

two cores in a CMP system, takes about 100 cycles [75] and resynchronization in more than

98

0

1

2

3

4

5

6

7

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

E
V

4

E
V

5

E
V

4
 (

O
o

O
)

E
V

6

172.mgrid 173.applu 177.mesa 179.art 183.equake 188.ammp 164.gzip 175.vpr 176.gcc 186.crafty 197.parser 256.bzip2 300.twolf Average

IP
C

 N
o

r
m

a
li

z
e

d
 t

o
 E

V
4

Original Performance Performance + PHs

Figure 5.3: IPC of different DEC Alpha microprocessors, normalized to EV4’s IPC. In most
cases, by providing perfect hints for the simpler cores (EV4, EV5, and EV4 (OoO)), these
cores can achieve a performance comparable to that achievedby a 6-issue OoO EV6.

85% of cases happens after at least 100K committed instructions, the overhead associated

with resynchronization is small.

For the purpose of evaluation and since we want to have a single ISA system, based on

the availability of the data on the power, area, and other characteristics of microprocessors,

we use an EV6 (DEC Alpha 21264 [52]) for the baseline cores. Onthe other hand, for the

animator core, we select a simpler core like the EV4 (DEC Alpha 21064) or EV5 (DEC

Alpha 21164) to save on the overheads of adding this extra core to the CMP system. In

order to evaluate the efficacy of the hints, in Figure 5.3, we show the performance boost for

the aforementioned DEC Alpha cores using perfect hints (PHs) – perfect branch prediction

and no L1 cache miss. Here, we have also considered the EV4 (OoO), an OoO version of

the 2-issue EV4, as a potential option for our animator core.As can be seen, by employing

perfect hints, the EV4 (OoO) can outperform the 6-issue OoO EV6 in most cases; thus,

demonstrating the possibility of achieving a performance close to the performance of a

live core through the NM system. Nevertheless, achieving this goal is quite challenging

due to the presence of defects, different sources of imperfection in hints, and inter-core

99

communication issues.

5.3 From Traditional Coupling to Animation

In a CMP system, prior work has shown two cores can be coupled together to achieve

higher single-thread performance. Since the overall performance of a coupled core system

is bounded by the slower core, these two cores were traditionally identical to sustain an

acceptable level of single-thread performance. However, in order to accelerate program

execution, one of these coupled cores must progress throughthe program stream faster

than the other. In order to do so, three methods have been proposed:

• In Paceline [40], the core that runs ahead (leader) and the core that receives execu-

tion hints (checker) from the leader core operate at different frequencies. Paceline

cuts the frequency safety margin of the leader core and continuously compares the

architectural state (excluding memories) of the two cores.When a mismatch hap-

pens, the frequency of the leader is adjusted, L1 state matchis enforced, and finally

the checkpoint interval is rolled back for re-execution.

• Slipstream processors [76] and Master/Slave speculativeparallelization [111] need

two different versions of the same program. In these schemes, the leader core runs a

shorter version of the program based on the removal of ineffectual instructions while

the checker core runs the unmodified program.

• Finally, Flea-Flicker two pass pipelining [15] and Dual-Core Execution [110] allow

the leader core to return an invalid value on long-latency operations and proceed.

100

Although these schemes have widely varying implementationdetails, they share some

common traits. In these schemes, the leader core tries to getahead and sends hints that

can accelerate checker core execution. These two cores are connected through one/several

first-in first-out (FIFO) hardware queues to transfer hints and retired instructions along with

their PCs. The checker core takes advantage of program execution on the leader core in 3

ways. First, the checker core receives pre-processed instruction and data streams. Second,

during the program execution in the leader core, most branchmispredictions get resolved.

Third, the program execution in the leader core automatically initiates L2 cache prefetches

for the checker core.

A straight-forward extension of these ideas to animate a dead core seems plausible.

However, NM encounters major difficulties when trying to fit the dead core into this execu-

tion model. Here, we briefly describe the two main challenges, leaving discussions of the

proposed microarchitectural solutions for subsequent sections.

Fine-Grained Variations: One of the main sources of problems is the presence of

defects in the dead core. Due to the presence of defects, theundead coremight exe-

cute/commit more or less number of instructions, causing variations in the similarity of

program executions between the two cores. For instance, in many cases, the undead core

can take the wrong direction on an IF statement and get back tothe right execution path

afterwards, thereby preventing a perfect data or instruction stream for the animator core.

This necessitates employing generic hints that are more resilient to these local abnormali-

ties. Moreover, the number of times that each PC is visited cannot be used to synchronize

the two cores. A mechanism is required to help the animator core identify the proper time

for pulling the hints off the communication queue. Given thevariation in the usefulness

101

of the hints, in order to enhance the efficiency of the animator core, fine-grained hint dis-

abling can be leveraged. For instance, if the lastK branch prediction hints for a particular

PC were not useful, branch prediction for this particular PCcan be handled by the animator

core’s branch predictor.

Global Divergences:When the undead core gets completely off the correct execution

path, hints become useless, and it needs to be brought back toa valid execution point. For

this purpose, the architectural state of the animator core can be copied over to the undead

core. Although exact state matching, by checkpointing the register file, has been used in

prior work [40], it is not applicable for animating a dead core since architectural state mis-

matches occur so frequently. Therefore, we need coarse-grained online monitoring of the

effectiveness of the hints over a large time period to decidewhether the undead core should

be resynchronized with the animator core. Moreover, resynchronizations should be cheap

and relatively infrequent to avoid a noticeable impact on the overall performance of the

animator core. One possible approach for maintaining correct memory state, suggested by

Paceline, is to re-fetch the cache-lines that are accessed during the last checkpointed inter-

val into the L1 cache of the leader core [40]. However, since this might happen often for a

dead core, we need a low-cost resynchronization approach that does not require substantial

book keeping.

5.4 NM Architecture

The main objective of NM is to mitigate system throughput loss due to manufacturing

defects. For this purpose, it leverages a robust and flexibleheterogeneous core coupling

102

execution technique which will be discussed in the rest of this section. Given a group of

cores, we introduce an animator core, an older generation with the same ISA, that is shared

among these cores for defect tolerance purposes. In this section, we describe the architec-

tural details for a coupled pair of dead and animator cores. The high-level NM design for

a CMP system with more cores will be discussed in the next section. In Section 5.2, we

showed that the faulty core – the undead core – cannot be trusted to run even a short part of

the program. However, as we relaxed the exact architecturalstate match and looked at the

global execution pattern, the undead core can execute a moderate portion of the program

before a resynchronization is required. By executing the program on the undead core, NM

provides hints to accelerate the animator core without requiring multiple versions of the

same program. In other words, the undead core is used as an external run-ahead engine for

the animator core that has been added to the CMP system. We believe NM is a valuable

solution for improving the system throughput of the currentand near future mainstream

CMP systems without notably influencing design complexity.

5.4.1 High-Level NM System Description

Figure 5.4 illustrates the high-level NM heterogeneous coupled core design. As dis-

cussed in Section 5.2, for the purpose of evaluation, we use 6-issue OoO EV6 for the

baseline cores and a 2-issue OoO EV4 as our animator core. In our design, most communi-

cations are unidirectional from the undead core to the animator core with the exception of

the resynchronization and hint disabling signals. Thus, a single queue is used for sending

the hints and cache fingerprints to the animator core. The hint gathering unit attaches a

3-bit tag to each queue entry to indicate its type. When this queue gets full and the undead

103

core wants to insert a new entry, it stalls. To preserve correct memory state, we do not

allow the dirty lines of the undead core’s data cache to be written back to the shared L2

cache. As a result, a dirty data cache-line of the undead coreis simply dropped whenever

it requires replacement. Exception handling is also disabled at the undead core since the

animator core maintains the precise state.

As discussed in Section 5.2, the animator core with perfect hints has the potential of

surpassing the average performance of a live core. Nonetheless, the performance of the

undead core can be a bottleneck for the NM system since:a. In many cases (Figure 5.3),

performance of a baseline core is worse than the performanceof the animator core with

perfect hints. b. After each resynchronization, the undead core needs to warm-up the

branch predictor and local caches. Therefore, we allow the undead core to proceed on the

data cache L2 misses, without waiting for the several hundred cycles needed to receive data

back from main memory. We simply return zero since L2 misses are not common and also

value prediction would not be beneficial. This has a large impact on the performance of

T
h

e
 U

n
d

e
a

d
 C

o
re

L1-Data

Shared L2 cache

Read-Only

T
h

e
 A

n
im

a
to

r C
o

re

L1-Data

Hint Gathering

FET

Memory Hierarchy

Queue

ta
il

h
e

a
d

DEC REN DIS EXE MEM COM

FE DE RE DI EX ME CO

Hint Distribution

L1-Inst
L1-Inst

Cache Fingerprint

Hint Disabling

Resynchronization signal and

hint disabling information

Figure 5.4: The high-level architecture of NM is shown in this figure and modules that are
modified or added to the underlying cores are highlighted (not drawn to scale).

104

the undead core, potentially shortening the resynchronization period. Given the ability to

eliminate stalls on L2 misses and also semi-perfect hints from the undead core, NM can

potentiallyachieve even a higher performance than that of a live core. Nevertheless, pro-

viding even semi-perfect hints is challenging due to defects in the undead core, queue size,

limited performance of the undead core, queue delay, and natural fluctuations in program

behavior.

NM uses a heterogeneous core coupling program execution with a pruned core that has

a significantly smaller area compared to a baseline core. In NM, we do not rely on over-

clocking the undead core or having multiple versions of the same program. Furthermore,

it is a hardware-based approach that is transparent to the workload and operating system

(OS). It also does not require register file checkpointing for performing exact state match-

ing between two cores. Instead, we employ a fuzzy hint disabling approach based on the

continuous monitoring of the hints effectiveness, and initiating resynchronizations when

appropriate. Hint disabling also helps to enhance performance and save on communication

power for program phases in which the undead core cannot get ahead of the animator core.

Apart from that, the undead core might occasionally get off the correct execution path (e.g.,

taking the wrong direction on an IF statement) and return to the correct path afterwards –

Y-branches [99]. In order to make the hints more robust against microarchitectural differ-

ences between two cores and also variations in the number/order of executed instructions,

we leverage the number of committed instructions for hint synchronization and attach this

number to every queue entry as anage tag. Moreover, we introduce therelease window

concept to make the hints more robust in the presence of aforementioned variations. For a

particular hint type, the release window helps the animatorcore to determine the right time

105

to utilize a hint. For instance, assuming the data cache (D-cache) release window is 100,

and 1000 instructions have already been committed in the animator core, D-cache hints

with age tags≤ 1100 can be pulled off the queue and applied.

5.4.2 Hint Gathering and Distribution

Program execution on the undead core automatically warms-up the shared L2 cache

without requiring communication between two cores. However, other hints – i.e., L1 data

cache, L1 instruction cache, and branch prediction hints – need to be sent through the

queue to the animator core. The hint gathering unit in the undead core is responsible for

gathering hints and cache fingerprints, attaching the age and 3-bit type tags, and finally

inserting them into the queue. On the other side, the hint distribution unit receives these

packets and compares their age tag with the local number of committed instructions plus

the corresponding release window sizes.

Every cycle, the hint gathering unit looks over the committed instructions for data and

instruction cache (I-cache) hints. In fact, the PC of committed instructions and addresses

of committed loads and stores are considered as I-cache and D-cache hints, respectively.

On the animator core side, the hint distribution unit treatsthe incoming I-cache and D-

cache hints as prefetching information to warm-up its localcaches. For the animator core,

Figure 5.5 depicts the utilization of two D-cache ports and asingle I-cache port. Given the

pipelined cache access for all high-performance processors, as can be seen for D-cache,

both ports are busy for less than 5% of cycles. Therefore, we leverage the original cache

ports for applying our D-cache hints. However, since hints can onlypotentiallyhelp the

program execution, priority of the access should always be given to the normal operation of

106

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

P
ro

g
ra

m
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

2 Ports Busy 1 Port Busy Free Ports

SPEC-INT-2KSPEC-FP-2K

(a) Port activity for the animator core’s L1-data cache

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

P
e

rc
e

n
ta

g
e

 o
f

P
ro

g
ra

m
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

Busy Port Free Port

SPEC-INT-2KSPEC-FP-2K

(b) Port activity for the animator core’s L1-instruction cache

Figure 5.5: Port activity breakdown for local caches of the animator core. Here, we show
the percentage of cycles that each cache port is either busy or free. For our animator core,
the data cache has 2 ports while the instruction cache has a single port.

the animator core. On the other hand, the I-cache port is busyfor more than 50% of cycles

for 3 benchmarks and is free only if the instruction fetch queue (IFQ) is full. Moreover,

since the I-cache operation is critical for having a sustainable performance, we add an extra

port to this cache in the animator core.

In order to provide branch prediction hints, the hint gathering unit looks at the branch

predictor (BP) updates and every time the BP of the undead core gets updated, a hint will

107

be sent through the queue. In the animator core side, the default BP – for EV4 – is a

simple bimodal predictor. We firstly add an extra bimodal predictor (NM BP) to keep track

of incoming branch prediction hints. Furthermore, we employ a hierarchical tournament

predictor to decide for a given PC, whether the original or NMBP should take over. During

our design space exploration, the size of these structures will be determined – Section 5.5.2.

As mentioned earlier, we introduced release window size to get the hints just before they

are needed. However, due to the variations in the number of executed instructions on the

undead core, even the release window cannot guarantee the perfect timing of the hints. In

such a scenario, for a subset of instructions, the tournament predictor can give an advantage

to the original BP of the animator core to avoid any performance penalty. Having this in

mind, Figure 5.6 shows a simple example in which the NM BP can only achieve 33%

branch prediction accuracy. This is mainly due to the existence of a tight inner loop –

number of instructions in the loop body is less than BP release window size – with a low

trip count. Switching to the original BP can enhance the overall branch prediction accuracy

for this code region.

Another aspect of the NM dual core execution is the potentialof hints on the specula-

tive execution paths. If a speculative path turns to be a correct path, instructions on this

path will eventually be committed and the corresponding hints will be sent to the animator

core. On the other hand, for a wrong path, although sending hints can potentially accel-

erate the execution of speculative paths on the animator core, this acceleration can only

decrease the efficiency of our hints for the correct paths. For instance, if the animator core

executes a wrong path faster, it will bring more useless datato its local D-cache which

causes prefetched data for non-speculative paths to be dropped out of D-cache. Therefore,

108

sum = 0;

for (i = 0 ; i < 100 ; i++) {

for (j = 0 ; j < 2 ; j++) {

sum = sum + arr[i][j];

}

}

C/C++ Code

0X19000000: xor $1, $1, $1 # sum = 0

0X19000004: xor $2, $2, $2 # i = 0

0X19000008: xor $3, $3, $3 # j = 0

0X1900000C: ldq $4, 0($5) # load from arr

0X19000010: addq $1, 0($5) # sum = sum + arr[i][j]

0X19000014: addq $3, 1, $3 # j++

0X19000018: addq $5, 1, $5 # arr pointer proceeds

0X1900001C: cmplt $3, 2, $6 # j < 2

0X19000020: bne $6, 0X1900000C

0X19000024: addq $2, 1, $2 # i++

0X19000028: cmplt $2, 100, $7 # i < 100

0X1900002C: bne $7, 0X19000008

DEC Alpha Assembly Code

Chronologically Sorted Branch Prediction Hints for

0X19000020 [Sent from the undead core]

Age Tag PC Taken OR Not

Taken

9 0X19000020 Taken

15 0X19000020 Taken

21 0X19000020 Not Taken

31 0X19000020 Taken

37 0X19000020 Taken

43 0X19000020 Not Taken

53 0X19000020 Taken

NM BP Entry for PC = 0X19000020 at Different

Times [In the animator core]

Number of

Committed

Instructions

PC Taken OR Not

Taken

9 0X19000020 Taken

15 0X19000020 Not Taken

21 0X19000020 Taken

31 0X19000020 Taken

37 0X19000020 Not Taken

43 0X19000020 Taken

53 0X19000020 Taken

Branch Prediction Release Window Size = 10 Committed Instructions

Perfect

Branch

Prediction

Taken

Taken

Non Taken

Taken

Taken

Not Taken

Taken

Figure 5.6: A code example in which the NM BP performs poorly and switching to the
original BP of the animator core is required. The code simplycalculates the summation
of a 2D-array elements which are stored in a row-based format. It should be noted that
the branch prediction release window size is normally set sothat the branch prediction
accuracy for the entire execution gets maximized. As can be seen, hints are received by the
animator core at improper times, resulting in low branch prediction accuracy.

it is clear that sending hints for speculative paths can merely hurt the performance of the

NM system.

5.4.3 Reducing Communication Overheads

In order to reduce the queue size, communication traffic needs to be limited to more

beneficial hints. Consequently, in the hint gathering unit,we use two content addressable

memories (CAMs) with several entries to discard I-cache and D-cache hintsthat were re-

cently sent. Eliminating redundant hints also minimizes the resource contention on the

animator core side. For this purpose, these two CAMs keep track of the lastN – number of

CAM entries – committed load/store addresses in the undead core. In addition to sending

less number of hints, queue size can be reduced by sending less bits per hint. Saving on the

number of bits can be done in several ways: sending only the block related bits of address

for I-cache and D-cache hints, ignoring hints on the speculative paths, and for branch pre-

109

diction hints, only sending lower bits of the PC that are usedfor updating branch history

table of the NM BP.

Given a design with multiple communication queues, the undead core stalls when at

least one queue is full and it wants to insert a new entry to that queue. The other queues

that are not full during these stalls remain underutilized;thus, using a single aggregated

queue guarantees a higher utilization, which reduces the area overhead, number of stalls,

and overheads of interconnection wires. On the other hand, since a single queue is used,

multiple entries might need to be sent to or received from thequeue at the same cycle. This

can be solved by grouping together several hints with the same age tag and sending them

as a single packet over the queue. This requires a small buffer in the hint distribution unit

to handle the case that hints have non-identical release windows sizes.

5.4.4 Hint Disabling Mechanisms

Hints can be disabled when they are no longer beneficial for the animator core. This

might happen because of several reasons. First, the programexecution on the undead core

gets off the correct execution path due to the destructive impact of defects. Second, in

certain phases of the program, performance of the animator core might be close to its ideal

case, attenuating the value of hints. Lastly, at certain parts of the program, due to the

intertwined behavior of the NM system, the animator core might not be able to get ahead

of the undead core. In all these scenarios, hint disabling helps in four ways:

• It avoids occupying resources of the animator core with ineffective hints that does

not buy any performance benefit.

• The queue fills up less often which means less number of stalls for the undead core.

110

• Disabling hint gathering and distribution saves power andenergy in both sides.

• It serves as an indicator of when the undead core has strayedfar from the correct

path of execution (i.e., when hints are frequently disabled) and resynchronization is

required.

The hint disabling unit is responsible for realizing when each type of hint should get dis-

abled. In order to disable cache hints, the cache fingerprintunit generates high-level cache

access information based on the committed instructions in the last disabling time interval

– e.g., last 1K committed instructions. These fingerprints are sent through the queue and

compared with the animator core’s cache access pattern. Based on a pre-specified thresh-

old value for the similarity between access patterns, the animator core decides whether the

cache hint disabling should happen. In addition, when a hintgets disabled, that hint re-

mains disabled during a time period called the back-off period. More precisely, the cache

fingerprint unit retains two tables for keeping track of non-speculative I-cache and D-cache

accesses in the last disabling time interval. Figure 5.7(a)illustrates an example of cache

disabling. Considering D-cache hints, the corresponding table has only several entries –

8 entries in our example – and each entry will be incremented for a committed load/store,

whenever the LSBs of the address match the rank order of that entry. Therefore, the cache

disabling table maintains a high-level distribution of addresses that are accessed during the

last interval. At the end of each interval, the table contents will be sent over the queue to the

animator core and entries will be cleared for the next interval. Given a similar cache access

distribution at the animator core’s side, for evaluating similarity between two distributions,

(V1, V2, ..., V16) for the undead core and(S1, S2, ..., S16) for the animator core, we calculate

K =
∑

16

i=1
|Si−Vi|. Then, ifK (140 in our example) is less than a pre-specified threshold,

111

0

20

40

60

80

Cache Disabling Table Entries

The Animator Core

0

20

40

60

80

Cache Disabling Table Entries

The Undead Core

+

-

Absolute

Value

0

20

40

60

80

Absolute Difference

[All Bars] = 140 Threshold Value>

Disable Cache Hints

(a) Disabling cache hints

Resolved Branch Result T N T T T N N N

NM Branch Predictor T T T N N N N N

Original Branch Predictor

of the Animator Core

T T N N T T T N

Instantaneous Score 0 0 1 0 -1 1 1 0

Cumulative Score 0 0 1 1 0 1 2 2

Cumulative Score = 2 Threshold Value<

Disable Branch Prediction Hints

Disabling

Time Interval

(b) Disabling branch prediction
hints

Figure 5.7: Two high-level examples of cache and branch prediction hintdisabling mech-
anisms. Here, values on the X-axes of the plots correspond toeight entries of the cache
disabling table.

a signal will be sent to the undead core to stop gathering thatparticular hint for the back-off

period.

Disabling branch prediction hints can solely be done by the animator core. Apart from

prioritizing the original BP of the animator core for a subset of PCs, the NM BP can be

also employed for global disabling of the branch predictionhints. For this purpose, we

continuously monitor the performance of the NM BP and if thisperformance – compared to

the original BP – is worse than a pre-specified threshold for the last disabling time interval,

we disable branch prediction hints. As Figure 5.7(b) depicts, for branch prediction hint

disabling, we use a score-based scheme with a single counter. For every branch that the

original and NM BPs either both correctly predict or both mispredict no action should be

taken. Nonetheless, for the branches that the NM BP correctly predicts and the original

BP does not, the score counter is incremented by one. Similarly, for the ones that NM

BP mispredicts but the original BP correctly predicts, the score counter is decremented.

Finally, at the end of each disabling time interval, if the score counter (2 in our example)

112

is less than a certain threshold, the branch prediction hints will be disabled for the back-off

period. For performing infrequent disabling-related computations, we add a 4-bit ALU to

the hint disabling unit.

5.4.5 Resynchronization

Since the undead core might get off the correct execution path, a mechanism is required

to take it back to a valid architectural state. In order to do so, we use resynchronization

between the two cores during which the animator core’s PC andarchitectural register values

get copied to the undead core. According to [75], for a modernprocessor, the process of

copying PC and register values between cores takes on the order of 100 cycles. Moreover,

all instructions in the undead core’s pipelines are squashed, the rename table is reset, and

the D-cache content is also invalidated for “resynchronizing” the memory state.

Resynchronization should happen when the undead core gets off the correct execution

path and it can no longer provide useful hints for the animator core. The simplest policy

is to resynchronize everyN committed instructions whereN is a constant number like

100K. However, as we will show in Section 5.5.2, a more dynamic resynchronization policy

can achieve a higher overall speed-up for the NM system. We take advantage of the hint

disabling information to identify when resynchronizationshould happen. An aggressive

policy is to resynchronize every time a hint gets disabled. However, such a policy results

in too many resynchronizations in a short time which clearlyreduces the efficiency of our

scheme. Another potential policy is to resynchronize only if at some point in time all or at

least two of the hints get disabled. Later in Section 5.5.2, we will compare some of these

potential resynchronization policies.

113

5.4.6 NM Design for CMP Systems

So far, we described the NM heterogeneous coupled core execution approach and its

architectural details. Here, NM for CMP systems will be discussed. Figure 5.8 illustrates

the NM design for a 16-core CMP system with 4 clusters modeledafter the Sun Rock

processor. Each cluster contains 4 cores which share a single animator core, shown in the

call-out. In order to maintain scalability of the NM design,we employ the aforementioned

4-core cluster design as the building block. Although a single animator core might be

shared among more cores, it introduces long interconnection wires that should travel from

one corner of the die to another. Therefore, given the low area overhead of NM for a 4-core

CMP (5.3% as will be discussed in Section 5.5.2), the proposed building block preserves

design scalability. On the other hand, since many dies are fault-free, in order to avoid

disabling the animator cores, these cores can be leveraged for accelerating the operation of

live cores. One possibility is to use the animator cores to exploit Speculative Method-Level

Parallelism by spawning an extra thread and moving it to the animator core to execute

the method call. The original thread executes the code that follows the method’s return

by leveraging a return value predictor. This is based on the observation that inter-method

dependency violations are infrequent. However, evaluation of the latter is beyond the scope

of this work.

For a heterogeneous CMP system, the problem is slightly moredifficult due to the in-

herent diversity of the cores. Therefore, sharing an animator core between multiple cores

might not be possible since those cores have different computational capabilities. A poten-

tial solution is to partition the CMP system to groups of cores in which each group contains

114

C
lu

st
e

r 1 Core1 L2

Cache

Banks

L2 Cache Banks L2 Cache Banks
Data

Switch

L2

Cache

Banks

Core3 Core4

Core2 Core1

Core3 Core4

Core2

Core1

Core3 Core4

Core2Core1

Core3 Core4

Core2

C
lu

ste
r

2
C

lu
ste

r
4C

lu
st

e
r 3

L2 Cache Banks

Core4

Core1

Core3 Core

Core2

C
lu

ste
r

2
C

lu
ste

r

Core4

C
lu

ste
r

4

The

Animator

Core

Core1 Core2

Core3 Core4

Hint GatheringHint Gathering

Hint GatheringHint Gathering

Figure 5.8: The high-level NM design for a large CMP system with 16 cores,modeled after
the Sun Rock processor, which has 4 cores per cluster. The details of NM core coupling
can be found in Figure 5.4.

cores with similar characteristics and performance. Therefore, each group can share an an-

imator core with different specifications. An alternative is to partition the cores to groups

such that in each group, we have several large cores and a small core – all from the original

set of heterogeneous cores. In each group, the smaller core should have the capability of

operating as a conventional core or as an animator core when there is a defect in one of

the larger cores in its own group. These dual purpose cores are a suitable fit for many het-

erogeneous CMP systems that come with a bunch of simpler cores such as the IBM Cell

processor.

In our design, since the animator core is shared among multiple cores, it is reasonable to

shift the overheads to the animator core side to avoid replicating of the same module in the

baseline cores. For instance, most of the similarity matching structures for hint disabling

are located on the animator core side. Furthermore, since the undead core runs significantly

ahead of the animator core in the program stream, the communication queue should also

be closer to the animator core to reduce the timing overhead of accessing the queue and

115

checking the age tags. Finally, disabling hints, when they are no longer beneficial, allows

the undead core to avoid gathering and sending the hints which saves power/energy on both

sides.

5.5 Evaluation

In this section, we describe experiments performed to quantify the potential of NM in

enhancing the system throughput.

5.5.1 Experimental Methodology

In order to model NM’s heterogeneous coupled core execution, we heavily modified

SimAlpha, a validated cycle accurate microarchitectural simulator based on SimpleScalar

[14]. We run two different versions of the simulator, implementing the undead and an-

imator cores, and use inter process communication (IPC) to model the information flow

Table 5.1: The target NM system configuration

Parameter The animator core A baseline core

Fetch/issue/commit width 2 per cycle 6 per cycle

Reorder buffer entries 32 128

Load/store queue entries 8/8 32/32

Issue queue entries 16 64

Instruction fetch queue 8 entries 32 entries

Branch predictor tournament (bimodal + NM BP) tournament (bimodal + 2-level)

Branch target buffer size 256 entries, direct-map 1024 entries, 2-way associative

Branch history table entries 1024 4096

Return address stack entries- 32

L1 data cache 8KB DM, 3 cycles, 2 ports 64KB 4-way, 5 cycles, 4 ports

L1 instr. cache 4KB DM, 2 cycles, 2 ports 64KB 4-way, 5 cycles, 1 port

L2 cache 2MB Unified, 8-way, 15 cycles hit latency, 1 port

Main memory 250 cycles access latency

116

between two cores (e.g., L2 warm-up, hints, and cache fingerprints). As mentioned earlier,

a 6-issue OoO EV6 and a 2-issue OoO EV4 are chosen as our baseline and animator cores,

respectively. The configuration of these two coupled cores and the memory system is sum-

marized in Table 5.1. We simulate the SPEC-CPU-2K benchmarksuite cross-compiled for

DEC Alpha and fast-forwarded to an early SimPoint [85].

To study the effect of manufacturing defects on the NM system, we developed an area-

weighted, Monte Carlo fault injection engine. During each iteration of Monte Carlo simula-

tion, a microarchitectural structure is selected and a random single stuck-at fault is injected

into the timing simulator. Table 5.2 summarizes the fault locations used in our experi-

Table 5.2: Fault injection locations and their corresponding pipeline stages along with stage-
level area break-down for EV6.

Pipeline Stage Area Break-down Fault Location

Program counter

Fetch 14.3% Branch target buffer

Instruction fetch queue (instruction bits)

Instruction fetch queue (PC bits)

Input latch of decoder (instr. opcode bits)

Decode 15.6% Input latch of decoder (instr. source register bits)

Input latch of decoder (instr. destination register bits)

Rename 5.1% Rename alias table

Integer register file

Dispatch 24.1% Floating point register file

Reorder buffer

Integer ALU

Integer multiplier

Integer divider

Backend 40.8% Floating point ALU

Floating point multiplier

Floating point divider

Load/store queue

117

ments. Since every transistor has the same probability of being defective, hard-fault injec-

tions should be distributed across microarchitectural structures in proportion to their area.

Therefore, for each fault injection experiment, we inject 5000 hard-faults while artificially

prioritizing structures that have larger area. These stuck-at faults are injected one by one in

the course of each individual experiment. As a result, at anypoint in time, there is a sin-

gle stuck-at fault in the undead core. Given an operational frequency of 600MHz [59] for

EV6 in 0.35µm, scaling to a 90nmtechnology node would result in a frequency of 2.3GHz

at 1.2V. This frequency is a pessimistic value for the animator core and NM can clearly

achieve even better overall performance if the animator core were allowed to operate at a

higher frequency. Nevertheless, since the amount of work per pipeline stage remains rela-

tively consistent across Alpha microprocessor generations [59], for a given supply voltage

level and a technology node, the peak operational frequencyof these different cores are

essentially the same.

Dynamic power consumption for both cores is evaluated usingWattch [26] and leakage

power is evaluated with HotLeakage [109]. Area for our EV6-like core – excluding the

I/O pads, interconnection wires, the bus-interface unit, L2 cache, and control logic – is

derived from [59]. In order to derive the area for the animator core, we start from the

publicly available area break-down for the EV6 and resize every structure based on the

size and number of ports. Furthermore, CACTI [72] is used to evaluate the delay, area,

and power of the on-chip caches. Overheads for the SRAM memory structures that we

have added to the design, such as the NM branch prediction table, are evaluated with the

SRAM generator module provided by the 90nmArtisan Memory Compiler. Moreover, the

Synopsys standard industrial tool-chain, with a TSMC 90nm technology library, is used to

118

evaluate the overheads of the remaining miscellaneous logic (e.g., MUXes, shift registers,

and comparators). Finally, the area for interconnection wires between the coupled cores

is estimated using the same methodology as in [60], with intermediate wiring pitch taken

from the ITRS road map [48].

5.5.2 Experimental Results

In this section, we evaluate different aspects of the NM design such as design space,

achievable speed-up in the presence of defects, performance impact of different hard-fault

locations, area and power overheads, and finally throughputenhancement.

Design Space Exploration:Here, we fix the architectural parameters that are involved

in the NM design. Since there is a variety of parameters (bothhardware and policy), due

to space considerations, we only present a subset of the exploration for parameters with

the most interesting behaviors. During the exploration, weinitially assign a nominal value

to each of the parameters and as we select a proper value for each parameter, we use the

updated value for the reminder of the experiments. Figures 5.9 to 5.14 depict this design

space exploration for a pruned set of NM parameters.

In Figure 5.9, the release window size is varied between 0 to 256 committed instructions

while monitoring the data cache miss rate of the animator core. As can be seen, there

is an optimal window size (i.e., 16 committed instructions)that maximizes prefetching

efficiency, given the variations in the number of committed instructions on the undead core.

The D-cache miss rate, even before optimizing other parameters, is reduced from 10.7% to

5.3%. Figure 5.10 illustrates the effect of reducing the branch history table (BHT) size of

the NM BP on the branch prediction accuracy of the animator core. To save area, we limit

119

0%

5%

10%

15%

20%

25%

30%

35%

40%

D
a

t
a

 C
a

c
h

e
 M

is
s
 R

a
t
e

no-hint 0 4 16 64 256

Figure 5.9: Effect of the NM D-cache release window size on the data cachemiss rate of
the animator core.

75%

80%

85%

90%

95%

100%

B
ra

n
ch

 P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

64 256 1024 4096 16384 65536

Figure 5.10: Effect of the branch history table size of the NM BP on the overall branch
prediction accuracy of the animator core.

the BHT size to 1024 entries, causing less than 0.5% reduction in the achievable branch

prediction accuracy.

The size of the D-cache hint CAM is a double-edged sword and its impact on the D-

cache miss rate and communication traffic is shown in Figure 5.11. Increasing the CAM

size, reduces the communication traffic and queue size. However, this aggravates the ef-

ficiency of D-cache hints. The reason is that sending more up-to-date hints increases the

likelihood that data is present in the local D-cache of the animator core when it is needed.

120

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

172.mgrid 173.applu 177.mesa 179.art 183.equake 188.ammp 164.gzip 175.vpr 176.gcc 186.crafty 197.parser 256.bzip2 300.twolf Average N
u

m
 o

f
D

-C
a

c
h

e
 H

in
t
s
 N

o
r
m

 t
o

 N
o

-C
A

M
 C

a
s
e

D
a

t
a

 C
a

c
h

e
 M

is
s
 R

a
t
e

no-cam 2 4 8 16 hints(2) hints(4) hints(8) hints(16)

Figure 5.11: Effect of CAM size that are used for reducing the number of D-cache hints –
generated in the undead core – on the data cache miss rate of the animator core. Here, the
lines show the number of data cache hints should be sent to theanimator core per cycle,
normalized to the the case without any CAM.

Nevertheless, using a CAM with 2 entries can reduce the number of transmitted D-cache

hints by more than 30% while affecting the D-cache miss rate by less than 0.5%. Next,

Figure 5.12 illustrates the effect of varying the thresholdfor disabling branch prediction

hints. For each injected hard-fault and benchmark, we record the number of instructions

committed before the branch prediction hint is disabled. Results of this process are depicted

for 3 different threshold values (i.e., 50%, 70%, and 90% similarities). For high similarity

requirements, such as 90%, the branch prediction hints are mostly disabled even before

5K instruction are committed in the animator core. Consequently, we select 70% similar-

ity so that the hint disabling does not occur too frequently while still receiving occasional

feedback about the effectiveness of the hints during program execution.

Finally, Figures 5.13 and 5.14 show the impact of different resynchronization policies

and communication queue sizes on the achievable speed-up byNM, respectively. In these

two plots, speed-ups are normalized to the performance of a baseline animator core. We

consider 4 candidates for the resynchronization policy, consisting of one static and 3 dy-

namic polices. For the static policy, resynchronization occurs periodically after committing

121

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

5
0

%

7
0

%

9
0

%

172.mgrid 173.applu 177.mesa 179.art 183.equake 188.ammp 164.gzip 175.vpr 176.gcc 186.crafty 197.parser 256.bzip2 300.twolf average

P
e

rc
e

n
ta

g
e

 o
f

In
je

ct
e

d
 H

a
rd

-F
a

u
lt

s

<5K <15K <45K <100K >100K

Figure 5.12: Number of instructions committed in the animator core before the branch pre-
diction hint is disabled for different pre-specified branchprediction hint disabling thresh-
olds (i.e., 50%, 70%, and 90% similarities).

0

0.5

1

1.5

2

2.5

3

P
e

rf
o

rm
a

n
ce

 N
o

rm
 t

o
 t

h
e

 A
n

im
a

to
r

C
o

re

100K 1-hint 2-hints 3-hints

Figure 5.13: Effect of different resynchronization policies on the overall speed-up of the
NM coupled cores normalized to the performance of the baseline animator core.

100K instructions while for the dynamic policies, the number of disabled hints determines

whether resynchronization is required. Since we aggressively exploit the hints by rarely dis-

abling them, the resynchronization policy that is invoked on the first disabled hint achieves

a better speed-up. Finally, the sensitivity to the communication queue size is presented

in Figure 5.14. Although it seems that a larger queue is always better, an extremely large

queue enables the undead core to get too far ahead of the animator core, polluting the L2

cache with unprofitable prefetches.

122

0

0.5

1

1.5

2

2.5

P
e

rf
o

rm
a

n
ce

 N
o

rm
 t

o
 t

h
e

 A
n

im
a

to
r

C
o

re

128 512 2048 8192 32768

Figure 5.14: Effect of communication queue size on the overall speed-up of the NM coupled
cores normalized to the performance of the baseline animator core.

The values for the remaining parameters were identified in a similar fashion: I-cache

release window size (4 committed instructions), branch prediction release window size (4

committed instructions), I-cache hint CAM size (2 entries), branch prediction hint disabling

threshold (70% similarity), D-cache hint disabling threshold (70% similarity), I-cache hint

disabling threshold (80% similarity), D-cache hint disabling table size (32 entries), and I-

cache hint disabling table size (32 entries). Given these parameter values, on average, NM

can achieve 39.5% speed-up over the baseline animator core.In our simulation, we set the

queue delay to 15 cycles – same as L2 cache; however, since theNM coupled core design is

highly pipelined, it has a minimal sensitivity to the queue delay. For instance, even setting

this delay to 45 cycles, only affects the final speed-up by less than 1%.

Performance Impact of Different Hard-Fault Locations: In order to highlight the

impact of a fault location on the achievable speed-up by the NM system, Figure 5.15 de-

picts the performance breakdown results for the fault locations described in Table 5.2. Re-

sults in each row of this plot is normalized to the average speed-up that can be achieved

by the NM coupled core for that particular benchmark. This was done to eliminate the

123

Figure 5.15: Variations in the speed-up of the animator core for different hard-fault locations
across SPEC-CPU-2K benchmarks. To only highlight the impact of hard-fault locations, in
each row, results are normalized to the average speed-up that can be achieved by the NM
coupled cores for that particular benchmark.

advantage/disadvantage that comes from the inherent benchmark suitability for core cou-

pling. As can be seen, hard-faults in some locations are moreharmful than others. These

locations consist of the PC, integer ALU, and instruction fetch queue. Another interesting

observation is that, for a benchmark like 197.parser, reaction to defects can significantly

differ from other benchmarks. We conclude two main points from this plot. First, on aver-

age, there are only a few fault locations that can drastically impact the NM speed-up gain.

Second, for a given fault location, different benchmarks show various degrees of suscep-

tibility; thus, heterogeneity across the benchmarks running on a CMP system helps NM

to achieve a higher speed-up by having a more suitable workload assigned to the coupled

cores.

Summary of Benefits and Overheads:Figure 5.16 demonstrates the amount of speed-

up that can be achieved by the NM coupled cores for CMP systemswith different numbers

124

0

0.5

1

1.5

2

2.5

1-Core 2-Cores 4-Cores 8-Cores 16-Cores

P
e

r
fo

r
m

a
n

c
e

 N
o

r
m

 t
o

 t
h

e
 A

n
im

a
t
o

r
 C

o
r
e

Animator Core Necromancer Coupled Cores A Live Core

Figure 5.16: Performance of the baseline animator core, NM coupled cores, and a live core
normalized to the average performance of a baseline animator core. Due to the higher
heterogeneity across the benchmarks for a CMP system with more cores, NM can achieve
a higher overall speed-up.

of cores. As can be seen, NM achieves a higher overall speed-up as the number of cores in-

creases. For a 16-core system, on average, the coupled corescan achieve the performance

of a live core, essentially providing the appearance of a fully-functional 6-issue baseline

core with a 2-issue animator core. This is because NM achieves different speed-ups based

on the defect type, location, and the workload running on thesystem. Here, we assume full

utilization, which means there is always one job per core. Hence, for larger CMPs, with

more heterogeneity across the benchmarks running on the system, there is more opportu-

nity for NM to exploit. The speed-up evaluation was done by conducting a Monte Carlo

simulation with 1000 iterations. In each iteration, we select one benchmark for each core,

while allowing replication in the selected benchmarks.

Figure 5.17 shows the breakdown of area and power overheads for our scheme. Here,

we assume a single core system has 2MB L2 while assuming 1MB shared L2 per core for

CMP systems. As can be seen, the area overhead gradually shrinks as the number of cores

grows since the cost of the animator core is amortized among more cores. Nevertheless,

125

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

area power area power area power area power area power

1 Core 2 Cores 4 Cores 8 Cores 16 Cores

P
e

rc
e

n
ta

g
e

 o
f

O
v

e
rh

e
a

d

Necromancer Specific Structures in the Undead Core

Interconnection Wires and Queue

Necromancer Specific Structures in the Animator Core

Animator Core (net overhead)

Figure 5.17: Break-down of NM area and power overheads for CMP systems with different
numbers of cores. As can be seen, the overheads that are imposed by the the baseline
animator core is typically the major component, which gets amortized as the number of
cores grows.

since we simply replicate the 4-core building block to construct CMPs with more than 4

cores, the area overhead remains the same. In terms of power overhead, two points should

be noted. First, based on our target defect rate, for CMPs with more than 4 cores, other

animator cores remain disabled and do not contribute to the power consumption. Next, as

the speed-up results show, for CMPs with less than 8 cores, the undead core remains ahead

of the animator core and it needs to stall when the queue gets full. During stall times, the

undead core does not consume dynamic power which is accounted for in the net overhead

of the animator core – Figure 5.17.

5.6 Throughput Enhancement

Given a population of manufactured chips, the main objective of NM is to improve the

average system throughput of the population. For this purpose, we model 1000 manufac-

tured chips with randomly distributed defects based on our target defect rate. If the anima-

126

tor core, communication queue, or any of the NM specific modules like the hint gathering

unit are faulty, we simply disable the animator core. Figure5.18 depicts the throughput en-

hancement results (shaded regions) based onthroughput binningfor 2, 4, and 8-core CMP

systems. Note that NM significantly enhances the overall system throughput for a popu-

lation of manufactured chips. In each sub-plot, we considertwo baselines (a CMP system

without any cache protection and a CMP system with proper protection for on-chip caches).

The horizontal axes show the system throughput, normalizedto the throughput of a single

baseline core. For a CMP system withN baseline cores, we illustrate the throughput bin-

ning results for throughput values betweenN − 1 andN . Since we assume, on average,

one defect per each 5 chips, yield is always above 80%. However, there is a small chance

that multiple defects hit the same chip which precludes a yield of 100% at a throughput

of N − 1, even when protecting the on-chip caches. As can be seen, cache protection is

a necessity and fortunately, can be provided easily (e.g., row/column redundancies). As

discussed earlier, based on the expected defect rate for current and near future CMOS tech-

nologies, on average one defect per five manufactured 100mm2dies should be expected.

In the case of a defect in one of the original cores, we apply our scheme. On the other

hand, if any of the animator cores, communication queues, orNM specific modules like

the hint gathering unit are faulty, we simply disable the animator core and the rest of the

system can continue their normal operation. Although extremely rare, there are cases that

both the animator and an original core can have defects. All these possible scenarios were

considered in our evaluation.

Finally, as discussed earlier, based on the expected defectrate for current and near future

CMOS technologies, on average one defect per five manufactured 100mm2 dies should be

127

80%

85%

90%

95%

100%

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Y
ie

ld

2-Core CMP 2-Core CMP + NM

2-Core CMP + Cache Prot. 2-Core CMP + NM + Cache Prot.

(a) Achievable yield for a 2-core CMP, given an
expected level of system throughput.

80%

85%

90%

95%

100%

3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

Y
ie

ld

4-Core CMP 4-Core CMP + NM

4-Core CMP + Cache Prot. 4-Core CMP + NM + Cache Prot.

(b) Achievable yield for a 4-core CMP, given an
expected level of system throughput.

80%

85%

90%

95%

100%

7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8

Y
ie

ld

8-Core CMP 8-Core CMP + NM

8-Core CMP + Cache Prot. 8-Core CMP + NM + Cache Prot.

(c) Achievable yield for an 8-core CMP, given an
expected level of system throughput.

Figure 5.18: Throughput enhancement for a population of manufactured chips with different
number of cores. Here, we consider two baselines, CMP systemwithout and with proper
protection for on-chip caches, and show the yield improvement for these two cases (shaded
regions) when applying NM. Each line presents the achievable yields for different expected
throughput values.

expected. In the case of a defect in one of the original cores,we apply our scheme. On the

other hand, if any of the animator cores, communication queues, or NM specific modules

like the hint gathering unit are faulty, we simply disable the animator core and the rest of

the system can continue their normal operation.

128

5.7 Summary

Since manufacturing defects directly impact yield in nanoscale CMOS technologies, to

maintain an acceptable level of manufacturing yield, thesedefects need to be addressed

properly. Non-cache parts of a core are less structured and homogeneous; thus, tolerating

defects in the general core area has remained a challenging problem. In this work, we

presented Necromancer, an architectural scheme to enhancethe system throughput by ex-

ploiting dead cores. Although a dead core cannot be trusted to perform program execution,

for most defect incidences, its execution flow – when starting from a valid architectural

state – coarsely matches the intact program behavior for a long time period. Hence, Necro-

mancer does not rely on correct program execution on a dead core; instead, it only expects

this undead core to generate effective execution hints to accelerate the animator core. In

order to increase Necromancer efficacy, we use microarchitectural techniques to provide

intrinsically robust hints, effective hint disabling, anddynamic inter-core state resynchro-

nization. For a 4-core CMP system, on average, our approach enables the coupled core

to achieve 87.6% of the performance of a live core. This defect tolerance and throughput

enhancement comes at modest area and power overheads of 5.3%and 8.5%, respectively.

We believe NM is a valuable and low-cost solution for tolerating manufacturing defects

and improving the throughput of the current and near future mainstream CMP systems.

129

CHAPTER VI

Conclusions

The rapid growth of the silicon process over the last decade has substantially im-

proved semiconductor integration levels. However, as device density grows, each tran-

sistor gets smaller and more fragile leading to an overall higher susceptibility of chips to

hard-faults. Manufacturing defects, process variation, and wearout induced failures are the

main sources of hard-faults in deep submicron technology nodes. These hard-faults result

in permanent silicon defects and impact manufacturing yield, performance, and lifetime

throughput of semiconductor devices. In addition, power consumption and heat dissipation

have become key challenges in the design of microprocessors. Growing power consump-

tion affects device lifetime, the cost of thermal packaging, cooling, electricity, and data

center air conditioning. Dynamic voltage scaling is commonly used to reduce the power

consumption. However, the supply voltage of a microprocessor cannot be reduced below a

certain threshold without addressing SRAM failures. Therefore, to allow a robust operation

in the presence of faults, these reliability concerns need to be addressed in the current and

future CMOS designs.

Compared to simpler semiconductor devices, protecting high-performance micropro-

130

cessors against hard-faults is a challenging and relatively new problem. These micropro-

cessors contain hundreds of millions of transistors and failure of any transistor can impact

the correct operation. Considering a multicore system, as the number of transistors per

core increases, it becomes more likely to have a faulty transistor in a given core. In such

a scenario, simple reliability solutions like disabling the faulty core is apparently not cost

effective. Furthermore, the design complexity of these microprocessors increases every-

day. Complexity in the connectivity between stages along with super-pipelining prevent

designers from employing reliability techniques which break cores into pipeline stages and

allow stage borrowing between cores. Moreover, the operational clock frequency of these

microprocessors is relatively high. Solutions based on fine-grained spares are not practical

in this domain, due to the tight delay budget and the inherentcomplexity in the connectiv-

ity. In addition, these processors conventionally operateat the highest possible frequency

at a given supply voltage. Therefore, simple reliability techniques that suggest using high

voltage and frequency guard-bands or slowing down the processor, eliminate most of the

achievable performance of these microprocessors.

To tackle hard-faults in modern high-performance microprocessors, we proposed a

comprehensive, low-cost solution for protecting the entire core area including on-chip

caches and also the non-cache parts of the core. First, we presented a flexible cache ar-

chitecture, ZerehCache, to protect regular SRAM structures against high degree of process

variation, wearout induced failures, and manufacturing defects. ZerehCache virtually re-

organizes the cache data array using a permutation network to provide higher degrees of

freedom for spare allocation. In order to study the impact offault patterns on the redun-

dancy requirements in a cache, we proposed a methodology to model the collision patterns

131

in caches as a graph problem. Given this model, a graph coloring scheme is employed to

minimize the amount of additional redundancy required for protecting the cache. Next, to

efficiently tolerate the large number of SRAM failures that arise, in the large multi-banked

caches, when operating in the near-threshold region, a highly reconfigurable cache design,

Archipelago, was presented. Since low-power operation is optional, instead of relying

on redundancy, Archipelago resizes the cache to provide spare elements. Furthermore, to

maximize the effective cache capacity in low-power mode, a near optimal minimum clique

covering configuration algorithm was introduced.

Finally, to protect the general core area against hard-faults, a robust and heterogeneous

core coupling execution scheme, Necromancer, was presented. Although a faulty core can-

not be trusted to correctly execute programs, we observed that for most defects, when start-

ing from a valid architectural state, execution traces on a defective core actually coarsely

resemble those of fault-free executions. In light of this insight, Necromancer exploits a

functionally dead core to improve system throughput by supplying hints regarding high-

level program behavior. We partition the cores in a conventional CMP system into multiple

groups in which each group shares a lightweight core that canbe substantially accelerated

using these execution hints from a potentially dead core. However, due to the presence of

defects, a perfect data or instruction stream cannot be provided by the dead core. This ne-

cessitates employing generic hints that are more resilientto local abnormalities. Given the

variation in the usefulness of the execution information, in order to enhance the efficiency

of the lightweight core, we introduced several fine-grainedhint disabling mechanisms. Be-

sides, when the faulty core gets completely off the correct execution path, hints become

useless, and it needs to be brought back to a valid execution point. For this purpose, we

132

leverage coarse-grained online monitoring of the effectiveness of the hints over a large time

period to decide whether the faulty core should be resynchronized with the lightweight

core.

133

BIBLIOGRAPHY

134

BIBLIOGRAPHY

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gonzalez. Low vccmin fault-

tolerant cache with highly predictable performance. InProc. of the 42nd Annual

International Symposium on Microarchitecture, 2009.

[2] D. Achlioptas and C. Moore. The chromatic number of random regular graphs. In

8th International Workshop on Randomization and Computation, pages 219–228,

2004.

[3] D. Achlioptas and A. Naor. The two possible values of the chromatic number of a

random graph. InProc. of the 36th ACM Symposium on Theory of Computing, pages

587–593, New York, NY, USA, 2004. ACM.

[4] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy. Processvariation in embedded

memories: failure analysis and variation aware architecture. Journal of Solid State

Circuits, 49(9):1804–1814, 2005.

[5] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. Aprocess-tolerant

cache architecture for improved yield in nanoscale technologies.IEEE Transactions

on Very Large Scale Integration (VLSI) Systems, 13(1):27–38, Jan. 2005.

135

[6] N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Smith. Configurable isolation:

building high availability systems with commodity multi-core processors. InProc.

of the 34th Annual International Symposium on Computer Architecture, pages 470–

481, 2007.

[7] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Putting faulty cores to work.IEEE

Micro, 31(2), 2011.

[8] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Enabling ultra low voltage system

operation by tolerating on-chip cache failures. InProc. of the 2009 International

Symposium on Low Power Electronics and Design, pages 307–310, 2009.

[9] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Necromancer: enhancing sys-

tem throughput by animating dead cores. InProc. of the 37th Annual International

Symposium on Computer Architecture, pages 473–484, 2010.

[10] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Archipelago: A polymorphic cache

design for enabling robust near-threshold operation. InProc. of the 17th Interna-

tional Symposium on High-Performance Computer Architecture, 2011.

[11] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcache:Armoring cache architec-

tures in high defect density technologies. InProc. of the 42nd Annual International

Symposium on Microarchitecture, pages 100–110, 2009.

[12] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Maximizing spare utilization by virtu-

ally reorganizing faulty cache lines.IEEE Transactions on Computers, 60(1), 2011.

136

[13] T. Austin. Diva: a reliable substrate for deep submicron microarchitecture design.

In Proc. of the 32nd Annual International Symposium on Microarchitecture, pages

196–207, 1999.

[14] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer

system modeling.IEEE Transactions on Computers, 35(2):59–67, Feb. 2002.

[15] R. D. Barnes, E. N. Nystrom, J. W. Sias, S. J. Patel, N. Navarro, and W. W. Hwu.

Beating in-order stalls with ”flea-flicker” two-pass pipelining. In Proc. of the 36th

Annual International Symposium on Microarchitecture, page 387, 2003.

[16] W. Bartlett and L. Spainhower. Commercial fault tolerance: A tale of two systems.

IEEE Transactions on Dependable and Secure Computing, 1(1):87–96, 2004.

[17] B. Berger and J. Rompel. A better performance guaranteefor approximate graph

coloring. Algorithmica, 5(3):459–466, 1990.

[18] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine, J. Klecka, and

J. Smullen. Nonstop advanced architecture. InInternational Conference on De-

pendable Systems and Networks, pages 12–21, June 2005.

[19] K. Bernstein. Nano-meter scale cmos devices (tutorialpresentation), 2004.

[20] S. Bhunia, S. Mukhopadhyay, and K. Roy. Process variations and process-tolerant

design. InProc. of the 2007 International Conference on VLSI Design, pages 699–

704, Washington, DC, USA, 2007. IEEE Computer Society.

[21] D. Bol, R. Ambroise, D. Flandre, and J. D. Legat. Analysis and minimization of

137

practical energy in 45nm subthreshold logic circuits. InProc. of the 2008 Interna-

tional Conference on Computer Design, pages 294–300, Oct. 2008.

[22] B. Bollobas. The chromatic number of random graphs.Combinatorica, 8(1):49–55,

1988.

[23] S. Borkar. Designing reliable systems from unreliablecomponents: The challenges

of transistor variability and degradation.IEEE Micro, 25(6):10–16, 2005.

[24] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Tolerating hard faults in mi-

croprocessor array structures. InProc. of the 2004 International Conference on

Dependable Systems and Networks, page 51, 2004.

[25] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for online diagnosis of hard

faults in microprocessors. InProc. of the 38th Annual International Symposium on

Microarchitecture, pages 197–208, 2005.

[26] D. Brooks, V. Tiwari, and M. Martonosi. A framework for architectural-level power

analysis and optimizations. InProc. of the 27th Annual International Symposium on

Computer Architecture, pages 83–94, June 2000.

[27] B. Calhoun and A. Chandrakasan. A 256kb sub-threshold sram in 65nm cmos.2008

IEEE International Solid-State Circuits Conference, pages 2592–2601, Feb. 2006.

[28] B. H. Calhoun and A. P. Chandrakasan. A 256-kb 65-nm sub-threshold sram design

for ultra-low-voltage operation.Journal of Solid State Circuits, 42(3):680–688, Mar.

2007.

138

[29] L. Chang, D. Fried, J. Hergenrother, J. Sleight, R. Dennard, R. Montoye, L. Sekaric,

S. McNab, A. Topol, C. Adams, K. Guarini, and W. Haensch. Stable sram cell

design for the 32 nm node and beyond.Symposium on VLSI Technology, pages

128–129, June 2005.

[30] G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. Kim. Yield-driven near-

threshold sram design. InProc. of the 2007 International Conference on Computer

Aided Design, pages 660–666, Nov. 2007.

[31] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu. Improving cache

lifetime reliability at ultra-low voltages.Proc. of the 42nd Annual International

Symposium on Microarchitecture, 0, 2009.

[32] A. Christou.Electromigration and Electronic Device Degradation. John Wiley and

Sons, Inc., 1994.

[33] K. Constantinides, S. Plaza, J. A. Blome, B. Zhang, V. Bertacco, S. Mahlke,

T. Austin, and M. Orshansky. Bulletproof: A defect-tolerant CMP switch architec-

ture. InProc. of the 12th International Symposium on High-Performance Computer

Architecture, pages 3–14, Feb. 2006.

[34] W. Culbertson, R. Amerson, R. Carter, P. Kuekes, and G. Snider. Defect tolerance on

the teramac custom computer. InProc. of the 5th IEEE Symposium on FPGA-Based

Custom Computing Machines, pages 116–123, 1997.

[35] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw,

T. Austin, and T. Mudge. Razor: A low-power pipeline based oncircuit-level timing

139

speculation. InProc. of the 36th Annual International Symposium on Microarchi-

tecture, pages 7–18, 2003.

[36] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches: sim-

ple techniques for reducing leakage power.Proc. of the 29th Annual International

Symposium on Computer Architecture, pages 148–157, 2002.

[37] H. Fujiwara, S. Okumura, Y. Iguchi, H. Noguchi, H. Kawaguchi, and M. Yoshimoto.

A 7t/14t dependable sram and its array structure to avoid half selection. InProc. of

the 2009 International Conference on VLSI Design, pages 295–300, Jan. 2009.

[38] M. Garey and D. Johnson.Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[39] A. H. Gebremedhin and F. M. I. Parallel graph coloring algorithms using openmp.

In First European Workshop on OpenMP, pages 10–18, 1999.

[40] B. Greskamp and J. Torrellas. Paceline: Improving single-thread performance

in nanoscale cmps through core overclocking. InProc. of the 16th International

Conference on Parallel Architectures and Compilation Techniques, pages 213–224,

2007.

[41] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlke. The stagenet fabric for

constructing resilient multicore systems. InProc. of the 41st Annual International

Symposium on Microarchitecture, pages 141–151, 2008.

[42] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlke. Stagenetslice: A re-

configurable microarchitecture building block for resilient cmp systems. InProc.

140

of the 2008 International Conference on Compilers, Architecture, and Synthesis for

Embedded Systems, pages 1–10, 2008.

[43] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Stagenet: A reconfigurable fabric for

constructing dependable cmps.IEEE Transactions on Computers, 60(1), 2011.

[44] M. Hempstead, G. Y. Wei, and D. Brooks. Architecture andcircuit techniques

for low-throughput, energy-constrained systems across technology generations. In

Proc. of the 2006 International Conference on Compilers, Architecture, and Synthe-

sis for Embedded Systems, pages 368–378, 2006.

[45] T. Higashiki. Status and future lithography for sub hp32nm device. In2009 Lithog-

raphy Workshop, 2009.

[46] M. Horiguchi. Redundancy techniques for high-densitydrams. In2nd Annual IEEE

International Conference on Innovative Systems Silicon, pages 22–29, 1997.

[47] L. D. Hung, M. Goshima, and S. Sakai. Seva: A soft-error-and variation-aware

cache architecture. InProceedings of the 12th Pacific Rim International Sympo-

sium on Dependable Computing, pages 47–54, Washington, DC, USA, 2006. IEEE

Computer Society.

[48] ITRS. International technology roadmap for semiconductors 2008, 2008.

http://www.itrs.net/.

[49] D. Kannan, A. Shrivastava, V. Mohan, S. Bhardwaj, and S.Vrudhula. Temperature

and process variations aware power gating of functional units. In Proc. of the 2008

International Conference on VLSI Design, pages 515–520, 2008.

141

[50] R. Karp. Reducibility among combinatorial problems.Complexity of Computer

Computations, pages 85–103, 1972.

[51] S. Kaxiras, H. Zhigang, and M. Martonosi. Cache decay: exploiting generational

behavior to reduce cache leakage power.Proc. of the 28th Annual International

Symposium on Computer Architecture, pages 240–251, 2001.

[52] R. E. Kessler. The alpha 21264 microprocessor.IEEE Micro, 19(2):24–36, 1999.

[53] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan,D. Gulati, D. Burger,

and S. W. Keckler. Composable lightweight processors. InProc. of the 40th Annual

International Symposium on Microarchitecture, pages 381–393, Dec. 2007.

[54] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. Multi-bit Error Tolerant

Caches Using Two-Dimensional Error Coding. InProc. of the 40th Annual Interna-

tional Symposium on Microarchitecture, 2007.

[55] W. Klotz. Graph coloring algorithms, 2002. Mathematik-Bericht 5, Clausthal Uni-

versity of Technology, Clausthal, Germany.

[56] I. Koren and Z. Koren. Incorporating yield enhancementinto the floorplanning pro-

cess.IEEE Transactions on Computers, 49:532–541, 2000.

[57] J. Kowaleski, T. Truex, D. Dever, D. Ament, W. Anderson,L. Bair, , et al. Imple-

mentation of an alpha microprocessor in soi.2003 IEEE International Solid-State

Circuits Conference, 1:248–491, 2003.

[58] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully differential, robust schmitt

142

trigger based sub-threshold sram. InProc. of the 2007 International Symposium on

Low Power Electronics and Design, pages 171–176, New York, NY, USA, 2007.

ACM.

[59] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, andD. M. Tullsen. Single-

ISA Heterogeneous Multi-Core Architectures: The Potential for Processor Power

Reduction. InProc. of the 36th Annual International Symposium on Microarchitec-

ture, pages 81–92, Dec. 2003.

[60] R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-core chip multiprocessing. InProc.

of the 37th Annual International Symposium on Microarchitecture, pages 195–206,

2004.

[61] S. Kundu, T. M. Mak, and R. Galivanche. Trends in manufacturing test methods

and their implications. InProc. of the 2004 International Test Conference, pages

679–687, Washington, DC, USA, 2004. IEEE Computer Society.

[62] J. H. Lee, Y. J. Lee, and Y. B. Kim. SRAM Word-oriented Redundancy Methodol-

ogy using Built In Self-Repair. InIEEE International ASIC Conference ’04, pages

219–222, 2004.

[63] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hari,and S. V. Adve. Accurate

microarchitecture-level fault modeling for studying hardware faults. InProc. of the

15th International Symposium on High-Performance Computer Architecture, pages

105–116, 2009.

143

[64] X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacing 6t srams with 3t1d drams

in the l1 data cache to combat process variability.IEEE Micro, 28(1):60–68, 2008.

[65] T. Luczak. Chromatic number of random graphs.Combinatorica, 11(1):45–54,

1991.

[66] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage

scaling and adaptive body biasing for lower power microprocessors under dynamic

workloads. InProc. of the 2002 International Conference on Computer Aided De-

sign, pages 721–725, 2002.

[67] A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, comprehensive error detec-

tion in simple cores.IEEE Micro, 28(1):52–59, 2008.

[68] K. Meng and R. Joseph. Process variation aware cache leakage management.Proc.

of the 2006 International Symposium on Low Power Electronics and Design, pages

262–267, Oct. 2006.

[69] F. Moradi, D. Wisland, S. Aunet, H. Mahmoodi, and T. Cao.65nm sub-threshold

11t-sram for ultra low voltage applications.Intl. Symposium on System-on-a-Chip,

pages 113–118, Sept. 2008.

[70] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, H.Kawaguchi, and M. Yoshi-

moto. An area-conscious low-voltage-oriented 8t-sram design under dvs environ-

ment. IEEE Symposium on VLSI Circuits, pages 256–257, June 2007.

[71] S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling of failure probability and

statistical design of sram array for yield enhancement in nanoscale cmos.IEEE

144

Transactions on Computer-Aided Design of Integrated Circuits and Systems, pages

1859–1880, 2005.

[72] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Optimizing nuca organi-

zations and wiring alternatives for large caches with cacti6.0. InIEEE Micro, pages

3–14, 2007.

[73] D. Nassimi and S. Sahni. A self routing benes network. InProc. of the 7th Annual

International Symposium on Computer Architecture, pages 190–195, New York, NY,

USA, 1980. ACM.

[74] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-aware cache archi-

tectures.Proc. of the 39th Annual International Symposium on Microarchitecture,

0:15–25, 2006.

[75] M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee. Architectural core sal-

vaging in a multi-core processor for hard-error tolerance.In Proc. of the 36th Annual

International Symposium on Computer Architecture, June 2009.

[76] Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A studyof slipstream processors.

In Proc. of the 33rd Annual International Symposium on Microarchitecture, pages

269–280, 2000.

[77] A. Raychowdhury, S. Mukhopadhyay, and K. Roy. A feasibility study of subthresh-

old sram across technology generations. InProc. of the 2005 International Confer-

ence on VLSI Design, pages 417–422, Oct. 2005.

145

[78] D. Roberts, N. S. Kim, and T. Mudge. On-chip cache devicescaling limits and

effective fault repair techniques in future nanoscale technology. 10th Euromicro

Conference on Digital System Design Architectures, Methods and Tools, pages 570–

578, Aug. 2007.

[79] B. F. Romanescu and D. J. Sorin. Core cannibalization architecture: Improving life-

time chip performance for multicore processor in the presence of hard faults. In

Proc. of the 17th International Conference on Parallel Architectures and Compila-

tion Techniques, 2008.

[80] N. Sadler and D. Sorin. Choosing an error protection scheme for a microprocessor’s

l1 data cache. InProc. of the 2006 International Conference on Computer Design.

IEEE, 2006.

[81] K. Sankaranarayanana, S. Velusamy, M. Stan, and K. Skadron. A case for thermal-

aware floorplanning at the microarchitectural level.The Journal of Instruction-Level

Parallelism, 2005.

[82] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas.

Varius: A model of process variation and resulting timing errors for microarchitects.

In IEEE Transactions on Semiconductor Manufacturing, pages 3–13, Feb. 2008.

[83] K. Sasaki. A 9-ns 1-mbit cmos ram.Journal of Solid State Circuits, 24:1219–1225,

1989.

[84] E. Schuchman and T. N. Vijaykumar. Rescue: A microarchitecture for testabil-

146

ity and defect tolerance. InProc. of the 32nd Annual International Symposium on

Computer Architecture, pages 160–171, 2005.

[85] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing

large scale program behavior. InTenth International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 45–57, New

York, NY, USA, 2002. ACM.

[86] Z. Shi and R. Lee. Implementation complexity of bit permutation instructions. In

Signals, Systems and Computers, pages 879–886, Nov. 2003.

[87] P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Exploiting microarchitectural

redundancy for defect tolerance. InProc. of the 2003 International Conference on

Computer Design, page 481, Oct. 2003.

[88] D. Siewiorek and R. Swarz.Reliable Computer Systems: Design and Evaluation,

3rd Edition. AK Peters, Ltd., 1998.

[89] L. Spainhower and T. Gregg. IBM S/390 Parallel Enterprise Server G5 Fault Tol-

erance: A Historical Perspective.IBM Journal of Research and Development,

43(6):863–873, 1999.

[90] E. Sperling. Turn down the heat...please, 2006.

http://www.edn.com/article/CA6350202.html.

[91] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of technology scaling

on lifetime reliability. InProc. of the 2004 International Conference on Dependable

Systems and Networks, pages 177–186, June 2004.

147

[92] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Exploiting structural duplica-

tion for lifetime reliability enhancement. InProc. of the 32nd Annual International

Symposium on Computer Architecture, pages 520–531, June 2005.

[93] K. Takahashi, H. Doi, N. Tamura, K. Mimuro, T. Hashizume, Y. Moriyama, and

Y. Okuda. A 0.9 v operation 2-transistor flash memory for embedded logic lsis.

Symposium on VLSI Technology, pages 21–22, 1999.

[94] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, and H. Ko-

batake. A read-static-noise-margin-free sram cell for low-vdd and high-speed appli-

cations. 2006 IEEE International Solid-State Circuits Conference, 41(1):113–121,

Jan. 2006.

[95] R. Teodorescu and J. Torrellas. Variation-aware application scheduling and power

management for chip multiprocessors. InProc. of the 35th Annual International

Symposium on Computer Architecture, pages 363–374, June 2008.

[96] K. M. Thompson. Intel and the myths of test.IEEE Journal of Design & Test of

Computers, 13(1):79–81, 1996.

[97] A. Tiwari and J. Torrellas. Facelift: Hiding and slowing down aging in multicores.

In Proc. of the 41st Annual International Symposium on Microarchitecture, pages

129–140, Dec. 2008.

[98] N. Verma and A. Chandrakasan. A 256 kb 65 nm 8t subthreshold sram employing

sense-amplifier redundancy.IEEE Journal of Solid-State Circuits, 43(1):141–149,

Jan. 2008.

148

[99] N. J. Wang, M. Fertig, and S. J. Patel. Y-branches: When you come to a fork in the

road, take it. InProc. of the 12th International Conference on Parallel Architectures

and Compilation Techniques, pages 56–65, 2003.

[100] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characterizing the Effects of

Transient Faults on a High-Performance Processor Pipeline. In International Con-

ference on Dependable Systems and Networks, page 61, June 2004.

[101] C. Weaver and T. M. Austin. A fault tolerant approach tomicroprocessor design. In

Proc. of the 2001 International Conference on Dependable Systems and Networks,

pages 411–420, Washington, DC, USA, 2001. IEEE Computer Society.

[102] A. Wigderson. Improving the performance guarantee for approximate graph color-

ing. Journal of the ACM, 30(4):729–735, 1983.

[103] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu.

Trading off cache capacity for reliability to enable low voltage operation.Proc. of

the 35th Annual International Symposium on Computer Architecture, 0:203–214,

2008.

[104] E. Wu, J. M. McKenna, W. Lai, E. Nowak, and A. Vayshenker. Interplay of voltage

and temperature acceleration of oxide breakdown for ultra-thin gate oxides.Solid-

State Electronics, 46:1787–1798, 2002.

[105] X. Yang, M. Vachharajani, and R. B. Lee. Fast subword permutation instructions

based on butterfly networks. InSPIE, Media Processor 2000, pages 80–86, 2000.

149

[106] L. Youngs and S. Paramanandam. Mapping and repairing embedded-memory de-

fects. IEEE Journal of Design and Test, 14(1):18–24, 1997.

[107] S. Zafar et al. A model for negative bias temperature instability (nbti) in oxide and

high k pfets. InSymposium on VLSI Technology, pages 45–50, 2004.

[108] J. Zeigler. Terrestrial cosmic ray intensities.IBM Journal of Research and Develop-

ment, 42(1):117–139, 1998.

[109] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron,and M. Stan. Hotleakage: A

temperature-aware model of subthreshold and gate leakage for architects. Technical

report, Univ. of Virginia Dept. of Computer Science, Jan. 2003.

[110] H. Zhou. Dual-Core Execution: Building a Highly Scalable Single-Thread Instruc-

tion Window. InProc. of the 14th International Conference on Parallel Architec-

tures and Compilation Techniques, pages 231–242, Sept. 2005.

[111] C. Zilles and G. Sohi. Master/slave speculative parallelization. InProc. of the 35th

Annual International Symposium on Microarchitecture, pages 85–96, Nov. 2002.

150

