Overcoming Hard-Faults in High-Performance
Microprocessors

by

Amin Ansari

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Computer Science and Engineering)
in The University of Michigan
2011

Doctoral Committee:

Associate Professor Scott Mahlke, Chair
Professor Todd M. Austin

Assistant Professor Thomas F. Wenisch
Assistant Professor Zhengya Zhang

© AminAnsari 2011
All Rights Reserved

To my family

ACKNOWLEDGEMENTS

First of all, I would like to express my gratitude to my adviderofessor Scott Mahlke,
for his support and mentorship in these past years. An eiatsticsresearcher and a constant
source of ideas, Scott was a great advisor. | also owe thartke tremaining members of
my dissertation committee, Professor Austin, Professoni¥éd, and Professor Zhang.
They all donated their time to help shape this research i@t w has become today.

| am also indebted to my reliability colleagues, Shantanpt&and Shuguang Feng.
It has been a pleasure working with them, and | cannot imalgaveng this thesis in its
current form without their support. Shantanu spent a lotroétdiscussing research ideas
with me and helping me to gain a better grasp of research fuoadtals. Shuguang has
helped with me throughout this process, sitting throughloong meetings with Scott, giv-
ing excellent research insights, and always being therarfghelp with writing and proof
reading papers.

During my stay in Michigan, | was lucky to work with an amazisgt of people in
our research lab, Compilers Creating Custom Processor€REC would like to thank
Gaurav Chadha, Hyoun Kyu Cho, Kevin Fan, Shuguang Feng,t&maGupta, Jeff Hao,
Amir Hormati, Po-Chun Hsu, Anousheh Jamshidi, Manjunathllky Yuan Lin, Andrew

Lukefahr, Mojtaba Mehrara, Hyunchul Park, Yongjun Parklvéad Samadi, Ankit Sethia,

Mark Woh, and Griffin Wright. You folks made coming to the offimore fun, and | would
have not made it through without you. | have also learned atgteal about different
cultures, beliefs, and cuisines through our countlessud&ons in the lab. | also want
to thank my world-class ping pong buddy, Gaurav Chadha teréght, smash-intensive
games.

Most importantly, my family deserves major gratitude. Myegyas and my sister pro-
vided their unconditional love and support. | feel blessetdve a family who has given
me all the opportunities to succeed in life. My dad’s dedaratnd academic excellence
have been a constant source of inspiration to me throughgwhole life. His endless
knowledge and courageous grand visions still amaze me. Miesrand his wife have
made my occasional California vacations truly memorabiealfy, the greatest of thanks

go to my cousins, uncles, aunts, and grandparents who edritdloments of my life.

TABLE OF CONTENTS

DEDICATION ii
ACKNOWLEDGEMENTS ii
LISTOFFIGURES viii
LISTOFTABLES Xiv
ABSTRACT e XV
CHAPTER
[. Introduction 1
1.1 Reliability Threats in Deep Submicron Technologies 1

1.1.1 ProcessVariation
1.1.2 Manufacturingdefects
1.1.3 Wearout
1.1.4 Power Consumption
1.2 Overcoming Hard-Faults in High-Performance Microgssors . . 6
1.2.1 Challenges with High-Performance Microprocessors .7
1.2.2 Protecting On-ChipCaches.
1.2.3 Protecting Non-Cache PartsoftheCore

1.3 Contributions 13
1.4 Organization e e 15

Il. Related Work e 16
2.1 Fault-Tolerant Cache Techniques 6 1
2.1.1 CodingSolutions, 16

2.1.2 Circuit-Level and VLSI Solutions 17
2.1.3 Architectural Solutions 18

2.2 Low-Power Cache Techniques
2.2.1 Conventional Low-Power Cache Techniques

2.2.2 Lowering Power by Tolerating Failures in On-Chip Gachl9

2.2.3 Alternatve SRAMCells 20
2.3 Handling Hard-Faults in the Non-Cache Parts of the Core. . . 21
2.3.1 Coarse-Grained Redundancy and Disabling 21
2.3.2 Fine-Grained Redundancy and Disabling 21
2.3.3 Unconventional Approaches 22

lll. Armoring Cache Architectures in High Defect Density Technologies. . 24

3.1 Introduction 24
3.2 ZerehCache 28
3.2.1 ZC Architecture L. 28
3.2.2 Hard-FaultDetection 35
3.2.3 ZCConfiguration 36
3.3 Design Space Exploration 41
3.4 YieldAnalysis 49
3.5 WearoutTolerance 52
3.6 Comparisonand Discussion 55
3.6.1 Comparison with Conventional Techniques 55
3.6.2 Comparison with Recently Proposed Techniques 57
3.6.3 Significance o 59
3.7 SUMMArY e e e 60
IV. A Polymorphic Cache Design for Enabling Robust Near-Threshold
Operation e 62
4.1 Introduction 62
4.2 Archipelago 67
4.2.1 Baseline AP Architecture 67
4.2.2 AP with Relaxed Group Formation 71
4.2.3 APConfiguration 75
4.3 Evaluation 81
4.3.1 Methodology L. 81
4.3.2 Design Space Exploration 83
433 Results 86
4.4 Quantitative Comparison to Alternative Methods 90
45 SUMMANY o o o e e e e e e e 92
V. Enhancing System Throughput by Animating Dead Cores 93
5.1 Introduction 93
5.2 UtilityofanUndeadCore 95
5.2.1 Effect of Hard-Faults on Program Execution. 95
5.2.2 Relaxing Correctness Constraints 97
5.2.3 Opportunities for Acceleration 98

Vi

5.3 From Traditional Coupling to Animation 100
54 NMArchitecture 102
5.4.1 High-Level NM System Description 103
5.4.2 Hint Gathering and Distribution 106
5.4.3 Reducing Communication Overheads 109
5.4.4 Hint Disabling Mechanisms 110
5.4.5 Resynchronization 113
546 NMDesignforCMP Systems 114
55 Evaluation 116
5.5.1 Experimental Methodology 116
5.5.2 ExperimentalResults 119
5.6 Throughput Enhancement 126
5.7 Summary e 129
VI. Conclusions 130
BIBLIOGRAPHY 134

Vil

Figure

3.1

3.2

3.3

3.4

3.5

3.6

LIST OF FIGURES

Probability of having at least one faulty SRAM cell afeliént granular-
ities while varying the failure probability of each SRAM tePr

Fraction of non-functional SRAM bit-cells for a 2MB L2at& over time.
Here, the mean time to failure of each SRAM bit-cell is varfien 50

to200years.

Two simple scenarios in which the line swapping can pvedie correct
functionality of the cache by resolving the occurred callis A black
box shows a faulty chunk ofdata.

The high-level architecture of the ZC is shown in thisifeggand the extra
modules that are added to the baseline cache are highligNizte that
the slices of the base address are shown using numbers 1,2 (Aad
dress Format). The fault map array and spare cache havetreshared
decoder to avoid getting their word-line activation signfabm the main
cache’s decoder. For simplicity, the separate sense ampghddault
map and spare cache are not shown. Built-in-self-test (Bt&ddule is
commonly used for fault diagnosis in the embedded memougtsires.

A Benes network is shown which connects the second rowitsedfour
consecutive logical group of rows in the main cache. As ammgte, a
single route from the decoder to the word-lines is also shown.

Mapping between the graph coloring problem and the tefttern in
the main/spare caches. The solid edges stand for the iotdosflicts
between the word-lines. The dotted edges correspond to ding-hme
conflicts due to the defect pattern. An “X” indicates a cadlisusing a de-
fault grouping. Numbers written in the fault map indicate tdorrespond-
ing cache word-lines to which the spare units are assignéeG(een,
B=Blue, P=Purple,O=0Orange)

viii

25

30

3.7

3.8

3.9

3.10

3.11

3.12

3.13

4.1

Proper configuration of two BNs that transform the actaahe layout

(left) to the virtual one (right) for the given coloring agsment. The

upper (lower) BN connects the first (second) rows of the 4calgiroups.

The darker 2-input MUXes are configured to output their lowgaut

while the lighter MUXes output their upper input. (G=Gre®&sBlue,
P=Purple, O=0range) 40

The run-time of the IBSC graph coloring solvemnsfor different edge
densities and number of nodes in the graph. In this figuig,the edge
density which is defined as the probability of having an edgfevben an
arbitrary pair of nodes in arandom gra@n,p) 43

P,, of L2 ZC for different Pr while fixing two parameters and allowing
thethirdonetovary. 46

Area, power, and energy overhead of the potential LZL which are
statedinpercentage. 48

Distribution of generated chips by the number of faGBAM cells in

their L1/L2 caches. A population of 1000 chips is generatgddnsid-

ering the large-area clustering effect, intra-die, imtier- systematic, and
parametricvariations. 51

Results of Monte Carlo lifetime simulation which shdwve probability
of operation for L1/L2 caches protected by different medéras. In ad-
dition, the shaded region shows the expected number ofdailover the
life-time. 54

Area overhead of the different protection mechanisongdlerating a

given Pr. In this figure, Row-Redun stands for the row redundancy pro-
tection scheme. ECC and ECC-2 are the 1-bit and 2-bit ernoection
schemes, respectively. 56

Bit error rate for an SRAM cell with varyinig; values in 9@m. For this
technology, the write-margin is the dominant factor andtbnthe oper-

ational voltage of the SRAM structure. Here, the Y-axis igdothmic,
highlighting the extremely fast growth in failure rate witbcreasing/,,,.

The two horizontal dotted-lines mark the failure rates aichlthe men-

tioned SRAM structures (64KB and 2MB) can operate with att168%
manufacturingyield. 63

4.2

4.3

4.4

4.5

4.6

4.7

Percentage of faulty bits, bytes, words, blocks, colsirand word-lines
for a 2MB L2 cache while varying the supply voltage. Here, Yraxis is
logarithmic, highlighting the rapid growth in faulty unithen decreasing
Vaa- The top part of this figure depicts our conceptual divisidrihis
Vaq range into four different regions based on the protectidficdity.
For each region, corresponding bit error rates and alsoaemgplicable
protection techniques are also shown. In order to operatectty in
the failure-free region, no protection mechanism is reggirHowever,
as can be seen, our target is the high failure rate regionhnd@ases an
avalanche of failures for on-chipcaches.

Basic structure of a dual-bank 2-way set-associatiahifielago. Two
cache banks with eight lines each are shown. Each block stsnsi
3 equally sized data chunks. Black boxes in each cache lpresent
chunks of data that have at least one faulty bit. The memodyfamit
maps, which are essential components of the proposed sclheenalso

Two special read-access scenarios. A standard reasisasadustrated
in Figure 4.3. Notice the extra bit that has been added to thettmem-
ory map and every fault map entry to handle scenario (b). eSine 4h
data chunk of semi-sacrificial line is re-allocated, it isrkea@ asRA in

scenario (b).

A simplified example of the minimum clique covering preséor a given
distribution of faults in the cache banks. Here, each barkdmy 5
lines. The solver disables théhdine since it has many faulty chunks
and, is therefore very expensive to repair. Two cliques amaéd by the
solver and lines 9 and 3 are designated as sacrificial limegréups 1
and 2, respectively. Moreover, the conceptual partitigmifithe cache to
distinctislands is also demonstrated.

Distribution of the clique size for different versionistbe solver based
on Monte Carlo simulation. Note that for 64-cap, the sizellaflegques is
< 64. Here, the number of non-functional lines is the summaticine
number of sacrificial lines and the number of disabled lirlgse plot in
the insert depicts the average number of non-functiondie#ioes, the
maximum number of non-functional lines, and the number stblied

lines while achieving 99%vyield.

Process of determining the minimum achievahldgor L1 and L2 caches
while limiting the fraction of the non-functional cachedsmand also the
area overhead of the fault map structuret@0%. Moreover, in these 10
sub-plots, vertical dotted lines show the minimum achiéxv&h, while
data chunk size varies fromtit to 16bits.

65

74

87

4.8

4.9

4.10

411

5.1

5.2

5.3

5.4

5.5

Design points for different Maximum Clique Size (MCSy@arunk size

pairs are shown that can achieve a 99% yield. For each MC® vedu-
responding chunk sizes frog2" | n € {0,1,...,7}} for L1 and from

{2" | n € {0,1,...,5}} for L2 are chosen. The shaded boxes represents
the region of interest where both the fault-map overheadlaadraction

of non-functional lines is limited te< 10%. The black dotted line is the
Paretofrontier.. 85

Area, leakage, and dynamic power overheads of our scfarbeth L1
and L2 caches. Here, 10T cell is used for protecting fault,magmory
map, andtagarrays. e 86

Performance loss break-down for our scheme in low ponede us-
ing SPEC-2K benchmarks. As can be seen, since the fractioomof
functional lines is limited to be less than 10%, the accewnty over-
head is the dominant factor in performance penalty. 88

Low-power mode benefits and also overheads of an AlpB&4& ini-
croprocessor system (Table 4.1) augmented with Archijpeléaigre, we
account for the dynamic power overhead of accessing thenddzank in
low power mode for handling failures. 89

Distribution of injected hard-faults that manifest ash#ectural state
mismatches across different latencies — in terms of the eurmbcom-
mitted instructions@l). L 96

Number of instructions that are committé&ll Y before an injected hard-
fault results in a violation of a pre-specified similaritydex threshold.

For this purpose, 5K hard-faults were injected while coesity three
different similarity index thresholds (90%, 60%, and 30%). 97

IPC of different DEC Alpha microprocessors, normalize@&V4'’s IPC.
In most cases, by providing perfect hints for the simpleesdEV4, EV5,
and EV4 (000)), these cores can achieve a performance cabipdo
that achieved by a 6-issue OO EV6. 99

The high-level architecture of NM is shown in this figuredanodules
that are modified or added to the underlying cores are hilgtda) (not
drawntoscale). 104

Port activity breakdown for local caches of the animatoe. Here, we

show the percentage of cycles that each cache port is eitisgrds free.

For our animator core, the data cache has 2 ports while theiati®n

cache hasasingleport. 107

Xi

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

A code example in which the NM BP performs poorly and dwitg

to the original BP of the animator core is required. The cadeply
calculates the summation of a 2D-array elements which aredin a
row-based format. It should be noted that the branch piiedicelease
window size is normally set so that the branch predictiomesxy for the

entire execution gets maximized. As can be seen, hints aedvezl by

the animator core at improper times, resulting in low brapadiction
ACCUMACY. . .« v v v e e e e e e e e e e e e e 109

Two high-level examples of cache and branch predictiohdisabling
mechanisms. Here, values on the X-axes of the plots comelsjoceight
entries of the cache disablingtable. 112

The high-level NM design for a large CMP system with 16espmod-
eled after the Sun Rock processor, which has 4 cores peeclushe
details of NM core coupling can be found in Figure5.4. 115

Effect of the NM D-cache release window size on the datheaniss
rate of the animatorcore. 120

Effect of the branch history table size of the NM BP ondherall branch
prediction accuracy of the animatorcore. 120

Effect of CAM size that are used for reducing the numbed-cache
hints — generated in the undead core — on the data cache s the
animator core. Here, the lines show the number of data cantedhould
be sent to the animator core per cycle, normalized to thedbe without

Number of instructions committed in the animator ca®ie the branch
prediction hint is disabled for different pre-specified ol prediction
hint disabling thresholds (i.e., 50%, 70%, and 90% sintikes). 122

Effect of different resynchronization policies on thesrall speed-up of
the NM coupled cores normalized to the performance of thellmesan-
IMator Core. o e e 122

Effect of communication queue size on the overall spgedf the NM
coupled cores normalized to the performance of the basatimeator core.123

Xil

5.15

5.16

5.17

5.18

Variations in the speed-up of the animator core foedsht hard-fault lo-
cations across SPEC-CPU-2K benchmarks. To only highltghtrhpact
of hard-fault locations, in each row, results are normaliethe average
speed-up that can be achieved by the NM coupled cores fopainatular
benchmark.

Performance of the baseline animator core, NM coupegsg and a live
core normalized to the average performance of a baselimesaoi core.
Due to the higher heterogeneity across the benchmarks fvfRagystem
with more cores, NM can achieve a higher overall speed-up..

Break-down of NM area and power overheads for CMP systeth dif-

ferent numbers of cores. As can be seen, the overheads ¢hataosed
by the the baseline animator core is typically the major congnt, which
gets amortized as the number of coresgrows.

Throughput enhancement for a population of manufedtehips with
different number of cores. Here, we consider two baselGB system
without and with proper protection for on-chip caches, dmhsthe yield
improvement for these two cases (shaded regions) wheniaggiM.

Each line presents the achievable yields for different etquethroughput
values. L

Xiii

126

Table
3.1
3.2
4.1
4.2
5.1

5.2

LIST OF TABLES

The target system configuration 41
Comparison with recently proposed cache protectioarsels 59
The target system configuration 82
Comparison of different protectionschemes 90
The target NM system configuration 116

Fault injection locations and their corresponding [igestages along
with stage-level area break-downforEV6. 117

Xiv

ABSTRACT

Overcoming Hard-Faults in High-Performance Microprooess

by

Amin Ansari

Chair: Scott Mahlke

As device density grows, each transistor gets smaller and frengile leading to an overall
higher susceptibility to hard-faults. These hard-favdisutt in permanent silicon defects
and impact manufacturing yield, performance, and lifetmheemiconductor devices. In
this thesis, we propose comprehensive, low-cost solutioriackle reliability problems
in high-performance microprocessors. These micropracessainly consist of on-chip
caches and core pipeline. We first present two flexible caottatactures, ZerehCache
and Archipelago, to protect regular SRAM structures adduigh failure rates. ZerehCache
virtually reorganizes the cache data array using a periouataetwork to provide higher
degrees of freedom for spare allocation. In order to studyirtipact of fault patterns on
the redundancy requirements in a cache, we propose a méthggdo model the collision
patterns in caches as a graph problem. Given this modelph g@oring scheme is em-

ployed to minimize the amount of additional redundancy neglfor protecting the cache.

XV

Archipelago targets failures in near-threshold regionre#izes the cache to provide re-
dundancy for repairing faulty cells. Furthermore, a nedmaeg@ minimum clique covering
configuration algorithm is introduced to minimizes the @achpacity loss.

With proper solutions in place for caches, a robust and bgereous core coupling
execution scheme, Necromancer, is presented to protegetiezal core area against hard-
faults. Although a faulty core cannot be trusted, we obstratfor most defects, execution
traces on a defective core coarsely resemble those offfaeltexecutions. Necromancer
exploits a functionally dead core to improve system thrqugtvy supplying hints regard-
ing high-level program behavior. We partition the cores imultiple groups. Each group
shares a lightweight core that can be substantially actelér However, due to the pres-
ence of defects, a perfect data or instruction stream camptovided by the dead core.
This necessitates employing low-cost recovery mechanishganeric hints that are more

resilient to local abnormalities.

XVi

CHAPTER|

Introduction

The rapid growth of the silicon process over the last decadesbbstantially improved
semiconductor integration levels. However, as device itlegsows, each transistor gets
smaller and more fragile leading to an overall higher suisio#ipy of chips to failures. This
aggressive technology scaling has lead to a host of ratiablallenges such as manufac-
turing defects, wear-out, and parametric variations [83, These threats can affect correct

program execution, perhaps, the most significant aspectyot@mputer system [13].

1.1 Reliability Threats in Deep Submicron Technologies

Technological trends into the nanometer regime have leadhost of manufacturing
and process issues such as sub-wavelength lithographyderppsure tool optimization),
cleaning technology, resist process optimization, higlessitivity of materials, line edge
roughness, random particles attaching to the wafer syrtaog random dopant fluctua-
tion [45]. These factors result in a wide distribution ofriséstor characteristics which

translates into an increasing vulnerability of manufaetiuparts. As the device vulnera-

bility increases gradually, more fault incidences can b&eoled in modern chips. At the
same time, this growth in the fault incidences translates anlarger number of user visi-
ble failures in computer systems. Furthermore, propagatimon-masked faults through
the system and their manifestation as systematic failumesiany applications (e.g., au-
tomotive electronic systems, financial services, and sphaoétle management systems),
imposes a life-threatening and a significant economic impac

The sources of computer system failures are widespreagingifrom soft-faults (i.e.,
transient faults) to hard-faults (i.e., permanent faultSpft-faults or single event upsets
(SEU) are happening due to electrical noise and energdtiiclpastrikes such as neutrons
from cosmic rays and alpha particles from packaging matdi@8]. Such particle strikes
can flip a state bit and change the value being computed byadtament. In recent years,
industry designers and researchers have invested signiétfart in building architectures
resistant to soft-faults [88, 101]. In soft-faults the dg®#o a chip is never permanent, and
a replay of instructions is typically sufficient for recoyer

In contrast to soft-faults, dealing with hard-faults isrsfgcantly more involved, and
relatively little research has been conducted to efficjetdlerate the same. There are
numerous sources of hard-faults, ranging from manufagjudiefects, process variation
induced failures, to in-field wearout phenomenas such astigMigration (EM) [32],
time dependent dielectric breakdown (TDDB) [104], negatias temperature instability
(NBTI) [107], and hot carrier injection (HCI) [97]. Theserdafaults result in permanent
silicon defects, impact the manufacturing yield, perfoneg lifetime throughput, and de-

pendability of semiconductor parts (e.qg., reliabilityadability, and maintainability) [23].

1.1.1 Process Variation

Process variation [82], caused by the inability to pregiseintrol the fabrication pro-
cess at small-feature technologies, introduces signifidamiation of circuit parameters
(channel length, threshold voltage, wire spacing) fromdésign. This wide distribution
of transistor characteristics directly translates intwdo parametric yield [20]. Process
variation is encountered at manufacturing time, and infftesralmost every manufactured
chip. The variations can be systematic (e.qg., lithografghms aberrations) or random (e.g.,
dopant density fluctuations), and can manifest at diffel@rgls — wafer-to-wafer (W2W),
die-to-die (D2D) and within-die (WID). Traditionally, D2Bas been the most visible form
of variation, and was tackled by introducing the notion céeg-binning (chips are parti-
tioned based on their frequency and sold accordingly). Hewehe increasing levels of
WID variations [82, 64] have created newer challenges. Silgisificant divergence of pro-
cess parameters from their nominal specification limitsati@evable frequency and also
significantly hurts the leakage power of modern high pertoroe processors [95]. A con-
ventional approach to deal with process variation is toothiice large voltage/frequency

guard-bands which considerably impacts the power consampt

1.1.2 Manufacturing defects

Manufacturing defects is one of the main challenges for #reisonductor industry,
which have a direct impact on yield. From each process ggaerto the next, micro-
processors become more susceptible to manufacturingtdefee to higher sensitivity of

materials, random particles attaching to the wafer suyi@ce sub-wavelength lithography

issues such as exposure tool optimization, cleaning téogypoand resist process opti-
mization [45]. For instance, based on the latest ITRS rgg8it for current and near future
CMOS technology, one manufacturing defect per fiverk0F dies can be expected. Thus,
in order to maintain an acceptable level of manufacturimddyia substantial investment is
required [87]. Traditionally, modern high-performancegessors are declared as func-
tional if all parts of the design are fault-free, or if theynaaperate correctly by tolerating
failures. However, since manufacturing defects can cagsggnéficant yield loss, semicon-
ductor companies have recently started to manufacture theat have been over-designed
to hedge against defects. For instance, to improve yield, ¢l this with the Cell Broad-

band Engine that sometimes only had 7 out of the 8 proceskngeats activated [90].

1.1.3 Wearout

Apart from these fabrication challenges, as circuit dgngibws, each transistor gets
smaller, hotter, and more fragile. This leads to an overghér susceptibility of chips to in-
field wearout induced hard-faults [23, 91]. For many compsystems such as embedded
systems, data center processors, and space equipmerdsyite lifetime and throughput
is crucial. However, these wearout failures, can impacp#réormance guarantees offered
by a semiconductor chip, and limit their useful lifetime. &ut or aging can be tackled
by either proactive or reactive methods. In proactive mgshthe operation of the device
should be altered such that it avoids phenomenas that asengaaging (e.g., EM, TDDB,
and NBTI). On the other hand, in reactive methods, the weanaluced failures will be
addressed without slowing the aging process. In generarome avoidance techniques

(i.e., proactive approaches) have a very limited scope avgtlyntry to avoid one or two

of the aforementioned wearout mechanisms. Thereforedierdo develop a more general
solution for hard-faults, in this thesis, we focus on deghvith the hard-faults after they

occur (i.e., a reactive approach).

1.1.4 Power Consumption

With aggressive silicon integration and clock frequenayéase, power consumption
and heat dissipation have become key challenges in therdesigigh performance pro-
cessors. Growing power consumption reduces device litstiend expedites early stage
failures [91]. It also affects the cost of thermal packagiogoling, electricity, and data
center air conditioning [59]. Dynamic voltage scaling (DV$a widely used technique to
reduce the power consumption of microprocessors, exptpitie fact that dynamic power
guadratically scales with voltage and linearly with fremege However, the supply volt-
age of a microprocessor cannot be reduced below a certashibld without drastically
sacrificing clock frequency. Lowering this minimum achielavoltage can dramatically
improve the lifetime, energy consumption, and batterydifenedical devices, laptops, and
handheld products.

The minimum achievable voltage for DVS is set such that utfteworst-case process
variation, the processor operates correctly [35]. Largé&®Rstructures are limiting the
extent to which operational voltages can be reduced in nmqol@cessors. This is because
SRAM delay increases at a higher rate than CMOS logic delahe@supply voltage is
decreased [94]. Furthermore, with increasing systematicrandom process variation in
deep sub-micron technologies, the failure rate of SRAMcstmes rapidly increases in

the near-threshold regime. Ultimately, the minimum sussthieV,,; of the entire cache

structure — and consequently the core as a whole — is detednbiy the one SRAM bit-
cell within the entire system with the highest required agienal voltage. This forces
designers to appropriate a large voltage margin in ordevda@an-chip cache failures.
Efficiency of CMOS technology is questionable in the faceunfrschallenges. Current
projections indicate that future microprocessors will beposed of billions of transistors,
many of which will be unusable at manufacture time, and manyemwhich will degrade
in performance (or even fail) over the expected lifetimenaf processor [23]. These issues
are detrimental to the semiconductor industry’s econonadeh Loss of compelling per-
formance gains reduces the incentive to regularly upgraaighines, loss in yield directly
translates to loss in sales and in-field defects could ngatssonservative designs to avoid
substantial performance degradation. To address theaabilig} concerns, designers must

armor their designs to tolerate and operate properly in tesgmce of faults.

1.2 Overcoming Hard-Faults in High-Performance Microprocessors

Traditionally, hardware reliability was only a concern fagh-end systems (e.g., HP
Tandem Nonstop and IBM eServer zSeries) for which applyigh-cost redundancy so-
lutions such as triple modular redundan@MR) was acceptable. Nevertheless, hardware
reliability has already become a major issue for mainstreamputing, where the usage
of high-cost reliability solutions is not acceptable [6Bherefore, there is a need for low-
cost reliably solutions to maintain the correctness andieoé the efficiency of modern
MIiCroprocessors.

Traditionally, modern high-performance processors amaded as functional if all

parts of the design are fault-free, or if they can operateectly by tolerating failures.
However, since manufacturing defects can cause a sigrtificald loss, semiconductor
companies have recently started to manufacture partsdkatdeen over-designed to hedge
against defects. For instance, to improve yield, IBM did thith the Cell Broadband En-

gine that sometimes only had 7 out of the 8 processing elenaetivated [90].

1.2.1 Challenges with High-Performance Microprocessors

Protecting high-performance modern microprocessorsiaghard-faults is more chal-
lenging compared to other CMOS devices. Here, we explainesofrthese difficulties
which do not exist to the same degree in other circuit desidtisst, high-performance
microprocessors contain on the order of several hundrdmiftansistors to allow a more
aggressive extraction of instruction level parallelisraillre of any of these transistors can
potentially impact the correct operation of the micropgsm. Therefore, since each core
contains a large number of transistors, simple reliabddjutions like disabling the faulty
core (i.e., core disabling) is not cost effective. Furthere this growth in the number of
transistors per core, increases the chance of having maltg feansistors in a given core.

More importantly, the design complexity of the modern hggrformance micropro-
cessors increases everyday. Complexity in the conngcteitween different stages, and
also having a larger number of stages, do not allow us to wmigues like Core Can-
nibalization [79] and StageNet [41] which suggest brealdagh core into pipeline stages
and allowing one core to borrow stages from other cores tliranterconnection networks.
These techniques designed for simple in-order cores witigalar, straightforward con-

nectivity between stages. Furthermore, the operatiomakcirequency of these micro-

processors is relatively high. This tight delay budget dreihherent complexity in the
connectivity, makes it almost impossible to use fine-graisgares (with the same set of
connectivity) for every structures.

In addition, in order to achieve a better performance, tlegle-performance micro-
processors mostly operate at a higher clock frequencyagejtand temperature. Since
higher operational stress (e.g, temperature, currentyaitage) accelerates the aging pro-
cess, there is much higher chance that in-field wearoutréslaccur in these processors.
Therefore, in order to combat the impact of different weamechanisms (e.g., NBTI,
HCI, or EM), proper reliability solutions are even more resagy for high-performance
Microprocessors.

Inserting SCAN chains everywhere in a high-performanceropiocessor imposes a
high performance, area, and power cost. Therefore, theyonbnbe applied in a lim-
ited set of locations to enhance the observability and @dilitly of test process. This
simply translates to a state explosion during test proediiherefore, it is hard (if not
impossible) to pinpoint the fault location in most casepéewlly for in-field failures).
This introduces another challenge with protecting the ffgtformance microprocessors
against faults. This implies that the reliability solutowhich are not relying on exact
fault location would be more appealing in the future. Howetlas is contradictory with
the conventional method of designing fault-tolerant systevhich emphasizes the fault
diagnosis to allow a finer-grained replacement/reconfiguma

Above all, given a particular technology node, high-perfance microprocessors mostly
operate on the most aggressive voltage vs clock frequerneg clihis means operating at

the highest possible frequency at a given supply voltagerdts set of simple reliability

techniques that suggest using high voltage and frequerarglghands or slowing down the
processor to avoid wearout and process variation indudknlda. However, these simple
techniques eliminate most of the achievable performandkesfe microprocessors and/or
introduce high power overhead.

Another challenge with high performance microprocesssithe introduction of large
on-chip caches. These multi-level caches allow the procdssachieve a better perfor-
mance by effectively hiding the main-memory latency. Hogreprotecting these large
and delay sensitive structures against reliability issuiés conventional approaches is not
practical. The main reason behind this is that the voltagkfeeguency of the SRAM ar-
ray should be set based on the bit-cell with worst timing abgristics. Process variation
causes different SRAM cells to show different timing chéesastics. Therefore, as the pop-
ulation of the cells grow (larger cache), the chance of taicell with a very poor timing
characteristics increases. This means as the SRAM arrayrgireases, in order to cope

with process variation, power and timing efficiency of theagirshould to be sacrificed.

1.2.2 Protecting On-Chip Caches

On-chip memory arrays in high-performance processorsréreat for chip reliability
as more than 70% of the transistors can be devoted to cacltwesoWer, as the technology
scaling continues, in order to deal with the power budgethaeuit power gating a large
fraction of the chip, even a larger fraction of the chip isested to be devoted to on-chip
caches. These SRAM structures, however, are particulathevable to the process vari-
ation due to their minimum-geometry transistors, serssitivferential circuit, and area ef-

ficient semi-custom layout. Therefore, these large on-caghes in the high-performance

microprocessors need to be protected against differemtaeswf hard-fault (e.g., process
variation, wearout, and manufacturing defects).

To efficiently scale to higher defect densities and handkrey hard-faults, a more
flexible and configurable cache design is necessary. As d#@alwe present and evaluate
ZerehCache that is a high-failure rate tolerant cache desigboth L1 and L2 on-chip
caches. ZerehCache is an adaptive, dynamically reconfigusalution for tackling the
high defect rates of future technologies. It also providesde range of cache design op-
tions based on the primary design concerns such as delagrpamd area overhead. The
cache data array is divided into equal sized groups. Lindsmeach of these groups share
a single spare line in the spare cache. In order to toleraty mefects, logical groups are
formed by carefully shuffling together cache lines usingragarconnection network. The
functionality of the interconnection network is to swap times in a manner that resolves
the existing collisions. We model collisions as a graph kngpproblem that can be solved
during the manufacturing test time to minimizes the amodrnedundancy required for
protecting the cache. In this thesis, we leverage Zereh€adhitecture to tolerate process
variation in 4:imtechnology. ZerehCache takes advantage of its interlagagleLof redun-
dancies in multiple ways to substantially cut the overhesHdwrotecting on-chip caches.
Current microprocessors have already been equipped with &l row-redundancy to
protect the caches [80]. ZerehCache can substitute thesemtonal protection mecha-
nisms, while providing the same level of robustness, forresimerably lower overhead.

Apart from wearout and manufacturing issues, power consoms a major concern
for semiconductor industry. As mentioned earlier, DVS isidealy used technique to re-

duce the power consumption of microprocessors. Howeverstipply voltage of a mi-

10

croprocessor cannot be reduced below a certain threshdhdwtidrastically sacrificing
clock frequency. Therefore, the minimum achievable vatiyy DVS is set such that un-
der the worst-case process variation, the processor egeratrectly. Since large SRAM
structures are limiting the extent to which operationatagés can be reduced in modern
processors, in order to enable DVS to push the core/procegsoating voltage down to
the near-threshold region, correct functionality of onpataches should be preserved. For
this purpose, we propose Archipelago, a cache capableaffigaring its internal organi-
zation to efficiently tolerate the large number of SRAM fads that arise when operating
in the near-threshold region. Since low-power operatiospisonal, in order to minimize
the overheads, Archipelago does not rely on an separate spahe, instead, it resizes
the original cache to provide spare elements. Archipeldigwa fault-free operation by
partitioning the cache into multiple autonomous islanddwarious sizes. Each island is
a group of physical cache word-lines that can operate dbyredthout using any word-
line outside of their group. Each group has a sacrificial worel which is divided up to
multiple redundancy units. These spare units are diréatlyectly employed to achieve
fault-free operation of the other word-lines in the sameugroFurthermore, an adapted
version of the minimum clique covering algorithm is usedactppon the cache to the least
number of islands to minimize the number of sacrificial wbnes required for guarantee-

ing the fault-free operation of the cache.

1.2.3 Protecting Non-Cache Parts of the Core

With appropriate protection mechanisms in place for cactimesprocessing cores be-

come the major source of defect vulnerability on the die. eguiently, in the second half

11

of this thesis, we try to address hard-faults in the non-eaurts of the processing core.
Due to the inherent irregularity of the general core are& well-known that handling
defects in the non-cache parts is challenging [75]. Thestrgius currently dominated by
Chip Multi-Processor systems with only a modest numbergifitperformance cores (e.g.,
Intel Core 2), systems which cannot afford to lose a core dumdnufacturing defects.
Therefore, these common solutions like core disablingaatgn are not a cost-effective.
The other extreme of the solution spectrum lies fine-graimécto-architectural redun-
dancy. Here, broken microarchitectural structures, sgcAldJs, are isolated or replaced
to maintain the functionality. Unfortunately, since thejandy of the core logic is non-
redundant, the fault coverage from these approaches idin@tgd [75].

To enhances overall system throughput and mitigates tHerpence loss caused by
defects in the non-cache parts of the core, we preset NeamenaNecromancer relaxes
the correct execution constraint on a faulty core since finoa be trusted to faithfully
execute programs. However, we observed for most defecrioss, the execution flow of
the program on the faulty core coarsely resembles the faadtprogram execution on the
animator core when starting from the same architecturéd.st@herefore, Necromancer
leverages high level execution information (hint) from flaelty core to accelerate the
execution of a lightweight core. This lightweight core is ahditional core, introduced
by Necromancer, that is an older generation of the basebnesdan the CMP with less
resources and the same instruction set architecture. Mergn the lightweight core, these
hints are only treated as performance enhancers and ddfluetice execution correctness.
We partition the cores in a conventional CMP system into iplgltgroups in which each

group shares one of these lightweight cores that can beasladly accelerated.

12

To prevent the faulty core from wandering too far from thereotr path of execution,
we dynamically resynchronize architectural state withlietweight core. However, due
to the presence of defects, a perfect data or instructi@astrcannot be provided by the
faulty core. This necessitates employing generic hintsaha more resilient to local ab-
normalities. Given the variation in the usefulness of theceion information, in order
to enhance the efficiency of the lightweight core, we intilgeveral fine-grained hint
disabling mechanisms. Besides, when the faulty core getplately off the correct ex-
ecution path, hints become useless, and it needs to be lirbagk to a valid execution
point. Therefore, the architectural state of the lightva¢igore can be copied over to the
faulty core. For this purpose, we leverage coarse-graimideomonitoring of the effec-
tiveness of the hints over a large time period to decide wérdtie faulty core should be

resynchronized with the lightweight core.

1.3 Contributions

Before enumerating the contributions, we go over some ofttilamon attributes of
proposed fault-tolerant architectures in this thesis. rifteoto achieve low-cost reliability
solutions for commaodity high-performance microprocessure realized the future com-
puter systems need to have several characteristics: remittaptability, high degree of re-
configurability, fine-grained flexibility in spare substitan, and ability to exploit approx-
imate execution. These characteristics allow a systemle¢oatie failures with minimum
costs by dynamically reorganizing itself. In this thesig make the following contribu-

tions:

13

* We demonstrate a comprehensive, low-cost approach feeginog high-performance
modern microprocessors against different sources of faauts in deep submicron

technology nodes.

A flexible cache architecture, ZerehCache, is presentgatdtect regular SRAM
structures against high degree of process variation, weanduced failures, and
manufacturing defects. Furthermore, we propose a metbggdb model the col-
lision pattern in the cache as a graph problem. Given thisaia@dgraph coloring

scheme is employed to minimize the amount of additionalmddncy.

* To efficiently tolerate the large number of SRAM failureattiarise, in the large on-
chip caches, when operating in the near-threshold regidmglay reconfigurable
cache design, Archipelago, is presented. Since low-poweradion is optional,
instead of relying on redundancy, Archipelago resizes tehe to provide spare
elements. Furthermore, a near optimal minimum clique éogaronfiguration algo-

rithm is introduced.

» A robust and heterogeneous core coupling execution sghideeomancer, is pre-
sented to tackle hard-faults in the non-cache parts of tihe. cAlthough a faulty
core cannot be trusted to correctly execute programs, weredshat for most de-
fects, when starting from a valid architectural state, akea traces on a defective
core actually coarsely resemble those of fault-free exessit In light of this in-
sight, Necromancer exploits a functionally dead core toroup system throughput

by providing high-level hints to accelerate the executiba fault-free core.

14

1.4 Organization

The rest of this thesis is organized as follows. First, Ciapit presents ZerehCache,
a high-defect tolerant on-chip cache architecture thathines redundant data array ele-
ments with a permutation network for providing a higher @éegof freedom on replace-
ment. In Chapter IV, we introduce Archipelago, a highly flé&ifault-tolerant cache de-
sign that by reconfiguring its internal organization carcedfitly tolerate the large number
of SRAM failures that arise when operating in the near-thoés region. Next, in order to
tackle hard-faults in the non-cache parts of the core, inp@a/, we propose a robust and
heterogeneous core coupling execution scheme, Necromamaeexploits a functionally
dead core to improve system throughput by supplying hirganding high-level program

behavior. Finally, Chapter VI presents our directions tdufe work.

15

CHAPTER I

Related Work

A significant amount of literature targets the microprooessliability concerns (e.g.,
transient faults, manufacturing defects, process vanatvearout avoidance/tolerance, and
stability in near/sub-threshold operation). In this smttibased on the aforementioned
scope of this thesis (Chapter I), we divide the prior workititree major categories: fault-
tolerant cache techniques, low-power cache techniquéegeghniques for handling hard-
faults in the non-cache parts of the core. Here, SRAM celiityaefforts are included in

the low-power category since they try to proactively avaitduires.

2.1 Fault-Tolerant Cache Techniques

The proposed solutions in this domain can be divided inteetfmajor categories:

2.1.1 Coding Solutions

Simple error detection codes (EDC) and parity can be appdiethe detection of the
faults in caches [80]. Single error correction double edetection (SECDED) is a widely

used technique for protecting the memory structures agaofserrors. However, in a

16

high-failure rate situation, these solutions are not pcatbecause of the strict bound on the
number of tolerable faults in each protected data chunki@e8.6). A 2D error correction
coding scheme is presented in [54] that uses two sets of EDG@8eorows and columns
of the data array. As the failure rate sensitivity analyssuits show in [54], this scheme
is not appropriate for tolerating large number of randomibtributed failures. Further,
the overhead of updating all the column codesdach cache writés high. Multiple bit
error correcting codes (ECCs) like Hamming codes are capaftiolerating high failure
rates, but are inefficient in terms of the coding delay, aaad,power overheads for on-chip
caches [54]. In summary, the coding solutions are besteghpd memory structures under

low failure-rate scenarios or where transient faults aeentlain concern.

2.1.2 Circuit-Level and VLSI Solutions

Many solutions have been proposed that employ dynamic g@fieequency scaling
to improve the cache reliability [74]. These methods tryderitify the most vulnerable
SRAM cell in each line and scale the access time/voltage ¢vel that guarantees proper
operation for all the cells in that word-line. There are twajon drawbacks of this scheme,
1) a mechanism is needed to dynamically determine the weakksn each row, and 2)
the working conditions of the cache must be adjusted to thekes cell, resulting in a
considerable performance penalty (access latency). A 3IRBM cell can be substituted
for the conventional 6T SRAM cell to improve the reliabil[§4]. However, the 3TD1 cell
cannot retain the value for a long period and each word-linstroe refreshed periodically.
Moreover, since on-chip DRAM is not normally used in curre@hnologies, it adds to the

process/manufacturing complexity and effort. Anothegralative is to size up the SRAM

17

cells or use a different structure for them (e.g. 8T, 10T, ©y [58]. Unfortunately, these
methods incur a large area overhead (Section 3.6) and theyastly employed for power

reduction by allowing the near/sub-threshold operation.

2.1.3 Architectural Solutions

Dual modular redundancy (DMR) schemes are used in many rie$ty providing
memory structure reliability, but they are highly ineffioten terms of the overhead [83].
A popular architectural solution is to use redundant rond/@ncolumns [62]. However,
as it will be discussed in Section 4.1 and 3.1, for our targstife rate, almost all word-
lines/columns can be expected to be faulty from the stagufiei4.2 and 3.1b). This results
in a poor utilization of the provisioned redundancy. Moreg\wsince the redundant row
replacement is based on a decoder modification and usingwised fuses, it is generally
not applicable for more than 10 extra rows [46]. A similarakinethods are based on the
cache block/row/way disabling that are also suitable fedthv-failure rate situations [74].
Wilkerson et. al. have suggested several layers of shiftensierging multiple defective
word-lines to form a single functional word-line [103]. Toraeve operation in the presence
of faults, their Word-Disable method sacrifices half of tleele area and their Bit-Fix
method adds three cycles of latency to the cache access @o# of which result in
considerable performance drop-off. There are other grotipsrk that use a re-mapping
table to map a faulty block onto one of neighboring functidslacks [47]. These methods
impose a high pressure on the L1-L2 communication bus byasing the L1 miss rate
substantially. Furthermore, these methods have two majolicability issues: they are

properly applicable only talirect-mappedcaches [4]; and, they cannot be applied to L2

18

caches since a read from a faulty block results in a miss tae igs value from main

memory with several hundred cycles latency.

2.2 Low-Power Cache Techniques

The proposed solutions in this domain can be divided inteettmajor categories:

2.2.1 Conventional Low-Power Cache Techniques

The usage ol/;; gating for leakage power reduction by turning off cachedirsede-
scribed in [51]. This approach reduces the leakage powdreo€ache by turning off the
cache lines that are not likely to be accessed in the nearefutMeng et. al. [68] pro-
posed a method for minimizing leakage overhead in the poesehmanufacturing varia-
tions. In this scheme, they artificially prioritize cacheysavith smaller leakage and resize
the cache by avoiding sub-arrays that have higher leakageréa Instead of turning off
blocks, drowsy cache [36] is a state preserving approadinéstwo different supply volt-
age modes. In order to save power, recently inactive cacekblperiodically fall into a

low power mode in which they cannot be read or written.

2.2.2 Lowering Power by Tolerating Failures in On-Chip Cacles

However, for lowV,,; values (e.g.< 651mV in 90nm), the amount of power saving
for these methods is restricted due to failures in SRAM s$tmes [78]. In contrast, as
we discussed earlier, our objective is to enable DVS to phstptocessor/core operating
voltage down to the near-threshold region while presergorgect functionality of on-chip

caches. Wilkerson et. al. [103] proposed two different eaptotection schemes for L1

19

and L2 caches that use several levels of decoding/shiftirigke the faulty data chunks
out and replace them using ECC protected patches. Due tdriticbinding between data
and redundancy, their schemes need to disable 50% of L1 &tdo2%.2 caches which
results into a considerable performance drop-off in low @owode. Recently, Abella
et. al. [1] proposed a cache protection scheme based onlgck-disabling which can
provide a better performance predictability than [103].widger, since this scheme relies
on disabling finer granularities than a cache block, it legse efficiency when applied
to caches other than L1-Data. Chishti et. al. recently psedaanother technique [31]
that employs multi-bit segmented ECC to also allow soft aadiferror resilience in lower
voltages by sacrificing 50% of cache capacity. Although darésting approach, it can

only achieve 30% reduction in the Mif,.

2.2.3 Alternative SRAM Cells

On the other hand, many variations of SRAM cells such as 8], [@X [27], 11T [69],
and ST [58] have also been proposed. These larger SRAM cellsare stable against
different sources of parameter variations compared to dimgentional 6T cell and allow
the SRAM structures to operate at lower voltages while puasg its correct functionality.
Most of these cells have a large area overhead which is afisemi shortcoming since
the extra area does not translate into any performance gé&ies operating in high power

mode.

20

2.3 Handling Hard-Faults in the Non-Cache Parts of the Core

The proposed solutions in this domain can be divided inteettmajor categories:

2.3.1 Coarse-Grained Redundancy and Disabling

Manufacturing defects can cause transistors in differamntspof a microprocessor to
get corrupted. Prior work on defect tolerance mostly foduse on-chip caches since
there is less homogeneity in the non-cache parts of a colkenmeefect tolerance a more
challenging issue. Typically, for high-end server systetasigned with reliability as a
first-order design constraint (e.g., HP Tandem NonStop, [I&jamac [34], and the IBM
eServer zSeries [16]), coarse-grained replication has &eployed [18, 89]. Configurable
Isolation [6] is a high availability chip multiprocessorchitecture for partitioning cores to
multiple fault domains which allows independent reduncaexeicutions. However, dual and
triple modular redundant systems incur significant ovelkea terms of area and power
which is not generally acceptable for mainstream computimgeasy solution is to disable
the faulty cores — to avoid yield loss — which clearly causegyaificant reduction in the
system throughput and sale price [6]. This simple core disglapproach has been taken
by microprocessor vendors, such as IBM, Intel, AMD, and Sucrdsystems, to maintain

an acceptable level of manufacturing yield.

2.3.2 Fine-Grained Redundancy and Disabling

Core Cannibalization [79] and StageNet [41, 42, 43] sughestking each core into

pipeline stages and allowing one core to borrow stages froraraores through inter-

21

connection networks. Introduction of these interconmectetworks in the processor
pipeline presents performance, power consumption, angrde®mplexity challenges.
Finer-grained redundancy maintenance has been used bstfobf [33] and sparing of
array structures [24]. In the same vein, Shivakumar et.83l} proposed a method to dis-
able non-functional microarchitectural components (@xgcution units) and faulty entries
in small array structures (e.g., register file). Rescue imiypa microarchitectural design-
for-test OFT) technique which can map out faulty pipeline units that hspares [84].

However, as shown in [75], these schemes have a limited ciyility due to the small

amount of microarchitectural redundancy that exists in @eno high-performance pro-

Cessor.

2.3.3 Unconventional Approaches

Architectural Core Salvaging [75] is a high-level low-casthitectural proposals which
uses thread migration between the cores to guarantee tteettexecution. To avoid incor-
rect execution, for each instruction, it assesses whdtledatlt location might be exercised
by the correspondingpcode Thus, without using extra redundancy, it is only applieabl
to defects in about 10% of core area. DIVA [13] was proposedijmamic verification of
complex high-performance microprocessors. It employsegkdr pipeline that re-runs the
same instruction stream for ensuring correct program e@tuGiven the fact that DIVA
is not a defect tolerant scheme, as shown in [13], a “cataisitbcore processor failure re-
sults in about 10X slow-down. Detour [67] is a completelytaaie-based approach which
leverages binary translation for handling defects in ekenwnits and register files. Apart

from limited defect types that can be handled, a binary tedios layer cannot typically be

22

applied to high-performance x86 cores [75].

23

CHAPTER Il

Armoring Cache Architectures in High Defect Density

Technologies

3.1 Introduction

On-chip memory arrays in high performance processors dreatfor chip reliability
as more than 70% of the transistors can be devoted to cachese BRAM structures, how-
ever, are particularly vulnerable to the process variatioa to their minimum-geometry
transistors, sensitive differential circuit, and areacedfit semi-custom layout. The yield
of anunprotectedcache in the 48mtechnology can be as low as 33%, implying the ne-
cessity of proper protection [4, 5]. Under process varigti single SRAM cell can fall
because of the following reasons that are sorted based dretheency of occurrence [4]:
1. Access Time Failure: It occurs when the differential reallage between bit-lines is
not enough for the sense amplifier to extract the correcedtoalue.2. Write Stability
Failure: This case arises when the cell contents cannotbeced with a new value. This
happens due to stronger pull-up of the storage node witht id@ompared to the access

transistor.3. Read Stability Failure: If the voltage of a storage node &igtored) value

24

Byte-Level —— Block-Level - - Bank-Level --=-- Byte-Level —— Block-Level - Bank-Level --m=--
Word-Level ---s-- WordLine-Level --&-- Whole Cache - o~ Word-Level -~ WordLine-Level & Whole Cache --e--

_ ! ‘ ‘ ” i BFTX _ ! o ! R
< osf ! 2 o0sf r o
2 / 2 i "
% 0.6 . ;f 0.6 ;"
§ / § .‘""
[;f 04 ,' ;‘j’ 0.4
k] [K 4 Ll ki
% 0.2t /,’ nl ¢ E; 02 . m Vs ' A
S A Rl P S SA N
& e g & & on’ A
0 L e P 0 Q:g-E e A L
1e-10 1e-09 16-08 1e-07 1e-06 1e-05 0.0001 0.001 001 0.1 1610 16-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 001 0.
Probability of Defect in Each Bit Probability of Defect in Each Bit
(a) A 1-bank 64KB L1 cache with 32B block size (b) A 2-bank 2MB L2 cache with 128B block size
and 64b word size and 256b word size

Figure 3.1: Probability of having at least one faulty SRAM cell at diffat granularities
while varying the failure probability of each SRAM celtx

during the read operation is higher than the trip-point oiherter that has an output value
of 1, the read value from the SRAM cell flip4. Hold Failure: If the supply voltage drops
below a minimum level while an SRAM cell is not being accessieel SRAM cell can lose
its stored value.

To illustrate the reliability implications on L1/L2 cachdsgure 3.1 presents the prob-
abilities of having at least one faulty SRAM cell considerdifferent granularities of stor-
age. This trend is shown for a wide range of single cell faijprobabilities Pr), assuming
a uniform failure distribution. As the failure probabilitycreases in these graphs, the gran-
ularity of fault manifestation decreases in size. For inséa the L2 cache configuration
demonstrates a modest number of block-level failureBzat- 10~°. Thus, a block-level
redundancy solution would be satisfactory for fault tohe® in this case. However, at
Pr ~ 1073, the L2 cache is certain to contain at least one faulty ce#lsioh cache word-
line with a very high chance of fault in each cache block. Thikes the use of word-
line/block level redundancy impractical. Hence, with thereasing failure probability, a

smaller granularity of redundancy will be necessary to gntae robustness. The same

25

trends can be seen for the L1 cache, but it is favorably shitiwards the right due to the
smaller block and word-line sizes of the L1 cache in compari® the L2 cache. The
primary challenge in this scenario is to design a cache tactoire that can maintain and
optimally utilize the smaller levels of redundancy for deftolerance. At a 48mtechnol-
ogy node, an SRAM cell is expected to have an30standard deviation in the threshold
voltage (/) resulting in aPr as high asl0~3 [5]. Thus, there is a real need to devise
solutions for this reliability challenge.

Apart from fabrication challenges, as circuit density gsp@ach transistor gets smaller,
hotter, and more fragile. This leads to an overall highecspsbility of chips topermanent
faults[23, 91]. These wearout failures, can impact the perforreauarantees offered by
a semiconductor chip, and limit their useful lifetime. Tawuwat such a scenario, on-chip
caches need to be equipped with cost-effective mechanshoderate in-field silicon de-
fects. In this chapter, in addition to process variatioettahce, we expand the functionality
of our proposed cache architecture to tackle wearout &slawver time. This will extend
the effective lifetime of the on-chip caches and prevenlyddetime failures. Assuming
no manufacturing defects, Figure 3.2 depicts the fractforoa-functional SRAM bit-cells
for a 2MB L2 cache over time. This plot was generated for aeasfgnean time to failure
(MTTF) values from 50 to 200 years. Here, it is notable that everafoMTTF of 200
years, a considerable number of failures need to be addrassarly lifetime. Moreover,
a comparison of our scheme with conventional wearout toeranethods and also the
experimental methodology, for generating this plot, wédldiscussed in section 3.5.

To efficiently scale to higher defect densities, a more flexand configurable solution

is necessary. To this end, we introduce the ZerehCache (@@h4n Farsi means body ar-

26

em—==50 years = = = 100 years =====150 years = = 200 years

0.01

0.001

0.0001 +

Fraction of failed SRAM bit-cells

0.00001

0 2 4 6 8 10 12 14 16 18 20
Time (Years)

Figure 3.2: Fraction of non-functional SRAM bit-cells for a 2MB L2 cacbeer time. Here,
the mean time to failure of each SRAM bit-cell is varied frottb 200 years.

mor) [11, 12], a high-failure rate tolerant solution for batl and L2 on-chip caches. ZC is
an adaptive, dynamically reconfigurable solution for tamgkthe high defect rates of future
technologies. It also provides a wide range of cache degitjorss based on the primary
design concerns such as delay, power, and area overheduils théapter, the ZC architec-
ture is leveraged to tolerate process variation inMd&echnology. ZC takes advantage of its
intelligent interlaced usage of redundancies in multipéysvto substantially cut the over-
heads of protecting on-chip caches. To our knowledge, ZGhesapability of achieving
the highest degree of the fault tolerance, among the preljiqaroposed approaches, for
a given area budget. Current microprocessors have alresaty dquipped with ECC and
row-redundancy to protect the caches [80]. ZC can substihdse conventional protec-
tion mechanisms, while providing the same level of robustnéor a considerably lower
overhead (Section 3.6). We believe our scheme providesé fsoindation for the cache
designers to take advantage of the higher clock frequendytramsistor density in the

deeper technology nodes while preserving the correct ifumegdity and timing constraints

27

of their design with less overhead.

The primary contributions of this chapter are: 1) A flexilwghamically reconfigurable
architecture that can be leveraged to protect regular SR#ltsires against high defect
density nanometer technology nodes; 2) Minimizing the amhotiredundancy required for
protecting the cache by modeling the collision pattern ertiain/spare cache with a well
studied graph coloring problem and taking advantage of xinsileg rich approximation
methods; 3) A design space exploration imA&o show the actual process of fixing the
architecture parameters; and 4) Derivation and modelindgp@imanufacturing yield and

evaluating the proposed method under process variatioditomms.

3.2 ZerehCache

In this section, the ZC architecture is first described tlolaipsively reconfigures itself
to absorb failing SRAM cells. Next, an effective graph-goig algorithm to configure the

underlying architecture is presented.

3.2.1 ZC Architecture

The key idea behind the ZC architecture is to use redundatg immultiple ways
to increase their potential utilization. ZC partitions ttm@mplete cache array into sets of
equally sized logical groups, where each logical grouplecated one spare cache word-
line. Here onwards, we use the telime when referring to avord-line The logical groups
are formed by carefully shuffling together physical caclmediin order to optimize the

utilization of a single spare cache line. Each cache/sjraead divided up to equally sized

28

collision 4

|
collision ,
—

| EAp—

}I I T I]

Cache Lines

collision , JEEETT)
i JEETTTTTTEE)
} ==

Cache Lines Spare Lines

(After swapping lines 1and 5)
collision 4

%}:ﬁ:ﬂ
} T
FI I N I]

Cache Lines Spare Lines

(After swapping lines 4 and 6)

Figure 3.3: Two simple scenarios in which the line swapping can prestireorrect func-
tionality of the cache by resolving the occurred collisidrblack box shows a faulty chunk
of data.

data chunks to allow smaller granularities of spare suligiit. For instance, the fourth
data chunk of the second spare line can be used to subshtuteurth data chunk of the
third/fourth cache line in the case of failure. Flexibilitr this line shuffling is provided by
adding a network into the cache that allows swapping of chiohs to eliminate conflicting
failures. Conflicting failures occur when two lines thatigha spare line have a failure in
the same chunk, or when a cache line and its corresponding kpee failures in the same
chunk. While there may be sufficient redundancy, conflictailyires arise and render the
cache non-operational.

To illustrate this issue, Figure 3.3 shows two simple sdesarhere ZC can preserve
the correct functionality of the underlying cache whilesitriot possible for conventional
redundancy methods to do so. In this figure, each line cantiane units of data and

every two consecutive lines in the main cache form a logicalig. Each logical group is

29

Network
Configuration Storage

Qiigek BIST block

- 1
/ =1 } Group 1
- < —
- 1 ;"_' } Group 2
g 3
2) 8 Tag = Data Array
—1 8 Array §
=z e
3 c
14 3
]
'E Interleaved Spare Cache
\:' 0
“ “ “ Q Fault Map

Hit/Miss

(1)

Column Decoder / |=|=|:|

i
[Sense Amp & Drivers]

& -G~
Address Format Mux Level
| Tag(1) | set(2) [word(3) | |
Data

Figure 3.4: The high-level architecture of the ZC is shown in this figurel dhe extra
modules that are added to the baseline cache are highlightet# that the slices of the
base address are shown using numbers 1, 2 and 3 (Addresstf-offmafault map array
and spare cache have their own shared decoder to avoidgy#téim word-line activation
signals from the main cache’s decoder. For simplicity, #ygasate sense amps for the fault
map and spare cache are not shown. Built-in-self-test (Bi8ddule is commonly used
for fault diagnosis in the embedded memory structures.

Comparator

assigned one line in the spare cache. The first line in the oaihe has a failure in the
same place as the first line of the spare cache. Swappingsharid fifth lines in the main
cache can resolve this collisiono(lision;). After swapping, the second and fifth rows
will form the first logical group which utilizes the first rowf the spare cache. The second
conflict situationgollisions, is between two lines in the same logical group. Swapping the
fourth and the sixth lines is one possible way to resolvedbidlict. Swapping eliminates
collisions and increases the chance of having a functiceaie for a given area overhead
budget.

A high-level architecture of a set-associative ZC is shawRigure 3.4. The cache data

30

array is divided into equal sized groups. Lines within eatthese groups share a single
spare line in the spare cache (static multiplexing of sparfeésr each access to the cache
array, in a high speed design, the spare cache and the faplameys are also accessed in
parallel. The result of the fault map access determineshendhe spare data chunk should
be routed to the output instead of the main cache contentdkr ¢o tolerate many defects,
logical groups are formed by carefully shuffling togethestwlines using an interconnec-
tion network. As Figure 3.3 demonstrates, the functiopalitthe interconnection network
is to swap the lines in a manner that resolves the existidgimis. The configuration for
this network is computed once and saved in the non-volagi@ork configuration storage.
By using static multiplexing and the interconnection netwimr overcoming the limita-
tions of static binding, ZC can maximize the utilization bétspare units. The remainder
of this section provides a detailed description for eaclnefdrchitectural modules.

Spare Cache:Each row in the spare cache corresponds to a logical groupesfin the
main cache. A single row of the spare cache is further broleimto smaller redundancy
units of fixed size. Each of these redundancy units in theespaohe keeps the valid content
of the corresponding corrupted element in the main caclanfifexists). In order to avoid
high fan-in ORs required when using the main cache row dectigespare cache and fault
map arrays use a separate shared decoder. This decodenaisgatmost significant bits
from the set segment of the memory address, whasebased on the number of rows in
the spare cache.

Interconnection Network: In order to shuffle around the cache lines and form logical
groups, we use an interconnection network. This networkasqal between row decoder

of the main cache and the cache word-lines. A unidirecti@asles network (BN) [73] is

31

‘‘‘‘

7|

g Butterfly Butterfly SO
’ (___JA____\ A ~,

g LN S

/ N —,
/

Data Array

q

Row Degoder
]

D e

Y

mtercon#ction Network j

\ 4
N =

4l
1
AN

N I

Row Decoder

=
4

Group 4 ,,'/'

g Interconnection
~ Network

’/

\X Data Array

L~

2
\

~
~. e
~ -

Figure 3.5: A Benes network is shown which connects the second rows offotirecon-
secutive logical group of rows in the main cache. As an exangkingle route from the
decoder to the word-lines is also shown.

used to provide a non-blocking routing and full permutatioapping between the inputs
and outputs. As Figure 3.5 shows, a BN consists of two baddatdk connected butterfly
networks. The main reasons for selecting a BN for this woek &) Full permutation and
non-blocking properties allow routing any permutatiomirmputs to outputs in a conflict-
free fashion. 2) Logarithmic depth of the net can minimize itmposed delay overhead
of the interconnection network. For connecti2ignodes to each othen — 1 stages are
required. We call this a BN with swapping levels. 3) The BN delay/power/area scaling
characteristics are superior in comparison to most othieraannection networks like full-
crossbar or omega network.

The network consists of multiple local BNs. Each local BN sed to connect the
word-lines with the same relative positions in differembgps. For instance in Figure 3.5,
all of the four groups have thei*? lines connected by a local BN. There have to be as

many interleaved local BNs as there are lines in a singlemrdthe set of groups con-

32

nected by a single local BN is called the swapping set, andgitteeof this swapping set
(2num- of swapping levels. — 92 jn the example shown) is determined by the depth of the net-
work. Given the full permutation and non-blocking propestof the chosen interconnec-
tion network, lines in the same relative position can be fp&dpbetween the different
logical groups. Increasing the depth of the BN widens theesauf line swapping, how-
ever, it also imposes higher overheads on the underlyingecdn order to minimize these
overheads and reach to a network with higher depth, we engsiafficient circuit-level
implementation of a BN which is presented in [86]. A memorglinéable can also be used
as an alternative here. However, since this network is ircthieal path of the cache ac-
cess, we employ a BN which provides inherent flexibility, évdelay, and lower power
consumption.

Network Configuration Storage: The interconnection network configuration is kept
in the network configuration storage. According to our estins in the next section, a
small fraction of the manufacturing test time can be usedteesthe configuration and
mapping problems. For the network configuration storageyusesa low-voltag@n-chip
NOR-flash described in [93]. However, since this structsrextremely small (mostly
less than 400 bytes), employing other non-volatile mensqeey. fuse, or EEPROM) has
negligible impact on our results.

Fault Map Array: The fault map array has the same number of rows as the spare
cache. For each redundancy unit in a spare cache row, thenfapl array stores the row
number in the corresponding logical group which utilizest ttedundancy. For example, if
a broken data chunk in the 5th row of an eight-rows logicatigrehould be replaced by its

corresponding spare unit, the fault map saves 101 for tigangancy unit. This implies,

33

that for a very small granularity of redundancy, the lendtthe word-lines in the fault map

array can be significantly longer than the main cache. Thessdime of the fault map array
is comparable to the L1 cache. Hence, this structure shailacbessed in parallel with
the tag array access for the L1. Conversely, for the L2 catieeaccess to this structure
happens after the hit resolution from the tag side, resyitira significant reduction in the

dynamic access energy. In contrast to the network configuratorage, which should be
filled during the manufacturing test time, the fault map get€ontents directly from the

built-in self test (BIST) module during the first boot of thgstem. Further, its content
can be saved on the hard-disk and retrieved during the madloiot up. This mechanism
works properly for the fault map since the BN routes havesalyebeen fixed. And during

the testing operation by BIST, the effect of line swappin{ ke automatically accounted

for.

Comparison Stage:This stage compares the least several significant bits ctheeg-
ment of the addres$svith the returned content of the fault map array to determihether
that unit of redundancy replaces the data chunk from the oahe.

MUXing Level: At the end of the access critical path, based on the resultkeof
comparison stage, the MUXing level determines for eachnddat unit whether the main
cache or the spare cache data is valid and drives that ontcatifee output. Word-lines
in the main/spare cache are divided into equal units of rédncy. The size of these
redundancy units specifies the MUXing granularity. On theeotand, since the read and
write are symmetric operations, the only modification in ith@lementation would be to

replace the MUXes with pass transistors.

1The number of bits depends on the number of word-lines in eache logical group.

34

In order to guarantee the proper operation of the on-chipescwe assume all the
main SRAM structures in the ZC architecture (i.e. main caspare cache, tag array, and
fault map) would be affected by the process variation. Inamsign, the main and spare
caches are the major contributors to the ZC area and pdtkiliges in these structures are
directly handled by our scheme. In order to protect the faalp and tag array, we employ a
process variation tolerant 8T SRAM cell which is more ardé@ieht than simple transistor
sizing [30, 29, 98]. However, it should be noted that the 8T a@mes with around 36%

area overhead and is not cost effective for protecting ttieeerache (Section 3.6).

3.2.2 Hard-Fault Detection

In this work, we use ZC to tackle process variation as well earout induced failures.
Here, we separately discuss the mechanisms required totdbéese two type of hard-
faults. First, we focus on the detection process that is edé¢ol detect process variation
induced failures. Since these hard-faults are present atfaeturing time, the standard
manufacturing testing process can be employed. In orde&stamn-chip caches, normally,
a combination of automatic test pattern generat®nRG and the BIST-based testing is
used to generate the test vectors, apply them, and prode@®thpact signature from the
test results. Different versions of the MARCH test, introdd by the research community
and industry, are the most common type of test patterns $tingememory structures and
are widely used for testing SRAM structures against stucnad bridging faults.

However, wearout induced failures manifest during thditiie of the system and needs
special treatment. Two type of approaches have been proposthis purpose. The con-

ventional approach is periodic testing in which the systenmglically suspends its normal

35

operation and allows the BIST module to test the on-chip @schn order to guarantee the
correct operation of the system, the architectural or naicitectural state of the system
needs to be checkpointed right after each testing inteiMareover, to reduce the fault
detection latency and this checkpointing cost, mostly rmgof main memory or cache
usage, this type of testing needs to be done frequently. e alternative is the continu-
ous testing which is the subject of many current researclsvdn this type of testing, as

soon as a faulty cell gets used, the detection mechanismmsfthe system of the location
of the failure. Continuous testing can have many forms. Qreeosimplest is error detec-
tion codes which are widely used in memory structures. Agotell-known proposal is

the redundant execution that needs to continuously checkdhsistency among multiple
copies of the same data. Another means for continuous detdstthrough sensors that

can estimate the amount of device level wearout.

3.2.3 ZC Configuration

Proper configuration of the ZC is crucial for achieving highglization of the spare
elements. The first step toward this is to determine the ioptgut mapping for the BNs.
In other words, logically group together the cache lines$ share a single spare line. We
model this as a graph coloring problem that can be solvedguhie manufacturing test
time. The solution to the coloring problem provides the reggi BN configuration in-
formation which is saved in the network configuration steragn the first boot up of
the machine, the BIST module takes advantage of the alreaafjgared BNs to find the
faulty SRAM cells. The fault map array is then populated by BIST module based on

the location of the faulty cells in the main/spare cachesortier to achieve an effective

36

> Local BN,
/7, > Local BN,
/7
/7
¢
é

Main Cache

ONO G AWN =S

Spare Cache

——

Fault Map
2 1

2. Coloring
Assignment

@eC0 OOBeACO
OQOTWWUTO®

TWO e

1. Graph
Construction

co0ooTo

8 N

Figure 3.6: Mapping between the graph coloring problem and the defeiténpain the
main/spare caches. The solid edges stand for the intrinsiticts between the word-lines.
The dotted edges correspond to the word-line conflicts duleetalefect pattern. An “X”
indicates a collision using a default grouping. Numbergtemiin the fault map indicate the
corresponding cache word-lines to which the spare unitassgned. (G=Green, B=Blue,
P=Purple, O=0Orange)

line swapping capability in ZC architecture, two major algomic problems need to be

addressed here: 1) Effective group formation, 2) Benesar&taonfiguration.

3.2.3.1 Effective Group Formation

The problem of determining the logical groups that sharenglsispare line in the
ZC architecture is modeled as a graph coloring problem. rEi@u6 is an example that
illustrates the process of mapping the defects in the ny@anéscache to a graph. In the
cache arrays of Figure 3.6, each black box stands for a feglityAn 8-line cache is divided
into 4 logical groups and a spare line is assigned to eachdbgroup. For example, lines
1 and 2 in the main cache form a logical group that utilizes & in the spare cache. Two
local BNs are required to do the proper shuffling. The firstgsel) lines from different

logical groups can swap their positions using the corredimgnlocal BN (e.g., lines 1, 3,

37

5, and 7 can swap their positions).

The graph on the right hand side of the figure is constructsédan the defect pat-
tern in the main/spare caches. Each node in this graph esgigea line in the main/spare
cache. Whereas, the edges represent a conflict betweend paes, i.e., the two nodes
connected by an edge represent lines that cannot be in the Isgioal group. A graph
coloring algorithm can now be applied to this graph to find latsen such that neighbor-
ing nodes are not assigned the same color. Thus, after igJarodes with the same color
are guaranteed to have no edges between them implying thebtresponding cache lines
have no conflicts between them. Cache lines with the same tt@oeby form a logical
group. The graph edges that represent conflicts betweeimttgedan be broadly divided
into two categories:

1. Intrinsic Edges: Each of the lines in the spare cache is dedicated to a singjiealo
group in the main cache. This implies that spare lines cap@at the same logical group.
As aresult, 4 nodes (a, b, ¢, d) construct a complete sublidFagure 3.6). Moreover, the
structure of the BN forces the lines connected to a local BN different logical groups.
For example, lines 1, 3, 5, and 7 can not be in the same groupsegoently, these 4
word-lines also form a complete sub-graph.

2. Defect Edges:The defect pattern in the main/spare cache introduces etlgas
in this graph. These defect edges connect the pair of lirshtve at least one conflict
(for the same data chunk). For instance, there is a defeet leglgveen the nodésandc,
because both have their second data chunks faulty.

A graph coloring problem is solvable for a gra@and an integeK > 0, if the nodes

of G can be colored witlKK colors such that no edge exists between the same colored

38

nodes. For our problem instance, we want to show that if taexh logical groups in the
cache, and the nodes can be colored with at rhastiors, then there would be a feasible
configuration for the BNs such that the ZC works properly. Binte there is always a
complete sub-graph in the problem graph whitimodes (due to the intrinsic edges), the
chromatic number is at leabt On the other hand, our problem constraint dictates that
we can use at most colors for the graph coloring problem. Hence, the graph raogo
problem for the ZC configuration should have a solution witaatly h colors. A valid
coloring assignment indicates no collision between thesliwithin each logical group and
replacement of the defective data chunks can be properlyiéadn

Graph coloring is widely recognized as NP-complete. Thoissblving it, we use an
approximate algorithm called Incomplete Backtrackingsdgial Coloring (IBSC) [55].
IBSC is a heavily optimized version of the full backtrackswution. It restricts the branch-
ing factor on each level to expedite the process of findinggp@oximate chromatic num-
ber. On an average, IBSC only increases the chromatic nuofbiie graph by 5.2%,
which is considerably better than the theoretical uppenddbat we used for the analysis
in Section 3.3. The complexity of the IBSC algorithm@s|V'|*) and the actual runtime
is discussed in the next section. Furthermore, this alyoritan easily be converted to the
exact solution by eliminating the branching heuristic.slespecially useful in the case of
small graphs or when more computational power/time can betdd to the solver.

The graph coloring solution determines the assignmenneslito logical groups. All
the lines in the main/spare cache with the same color forrmglesilogical group. For
example, all the lines with the orange color are bound to th@ge spare row using the

corresponding local BNs. Figure 3.6 illustrates a valicdolg assignment. With this col-

39

Local BN,

> Local BN
/7 > Local BN Actual Cache
/7 Layout
/

¢ Main Cache

/
1
‘E

> Local BN n
/7> Local BN Virtual Cache
//, Layout

! ¢ Main Cache

.-
owhONN®-

ONONBWN =

Spare Cache Spare Cache

@00 - COedoec0
POTWWTOO

TWOH

@00 @e0O0C00
TIIWo006

TWOoo

===

Fault Map

P e Not
— T Functional

0T

——

Fault Map
1

Qoo

[Functional]

Figure 3.7: Proper configuration of two BNs that transform the actuahedayout (left) to
the virtual one (right) for the given coloring assignmenheTupper (lower) BN connects
the first (second) rows of the 4 logical groups. The darker®2H MUXes are configured
to output their lower input while the lighter MUXes outputthupper input. (G=Green,
B=Blue, P=Purple, O=0Orange)

oring assignment in place, the logical groups formatiomisplete for the main cache. The

next step is to solve the BN configuration problem in order &ketthe cache functional.

3.2.3.2 Benes Network Configuration

The BN is non-blocking and also allows any permutation ofitipaits to be mapped to
the outputs. In Figure 3.7, the left cache structure showgtysical cache layout with a
solution for the graph coloring problem. As described, tblicof each line determines
the logical group to which the line is assigned. As a reshé#,gosition of each particular
line after the line swapping is apparent. For instance, éRigure 3.7, the last cache row
has a green color which corresponds to the first row of theespache. This denotes that
the last cache row should be mapped to the second row of thdoigisal group. The

line ordering for the virtual cache layout on the right hamkesan be obtained from the

40

Table 3.1: The target system configuration

| Parameters | Value |
Frequency 4 GHz
L1 Caches 64KB data and 64KB instruction, 2-way set
associative, 2 cycles hit latency, 32B block sizéd
L2 Cache 2 banks 2MB Unified, 16-way set associative,
12 cycles hit latency, 128B block size
Registers 128 integer, 128 floating point

ROB (re-ordering buffer) | 128 entries
LSQ (load/store queue) | 64 entries

Instruction fetch buffer 32 instructions

Issue width 4

FU (functional unit) 4 int ALU, 1 int mult/div, 2 memory system ports
FPU (floating point unit) | 4 FP ALU, 1 FP mult/div

Main memory 250 cycle latency, 16 bytes with 10-cycle laten¢y
Branch predictor combined (bimodal and 2-level)

BHT (branch history table) 4096 entries
RAS (return address stack) 32 entries
BTB (branch target buffer) 512 entries, 8-way associative

physical layout by employing two 3-layer deep local BNs. Bi¢s have to be properly
configured, by determining the select signals for the MUXékiw the BN, to achieve
this re-ordering. Having the desirable permutation betwee inputs/outputs of the BNs,
we employ the recursive method described in [105] to condighe network. Since an
n-input BN is constructed from two identicgtinput sub-networks, the configuration can

be computed recursively i@ (n?).

3.3 Design Space Exploration

The process of finding suitable design points for L1/L2 ZG®iwves fixing the archi-
tectural parameters. The high level architectural pararsetsed for this exploration are
listed in Table 3.1. In addition, there are three main patarsespecific to the ZC design:
a) size of the spare cache, b) depth of the BN, and c) the MUXragularity for the re-

dundant data chunks. In this section, we sweep a wide rangdwds for these parameters

41

and study the overhead of each design point. The number of spahe lines was taken
from the set{2’ | i € {0,1,...,7}}. Note that the length of the word-lines is the same for
the main and spare caches. The depth of the BN is selectedtfrerset{1, 3,5, ..., 19}
and the MUXing granularity is selected from the $&t | i € {0,1,...,10}} bits. In total,
considering both the L1 and L2 caches, there are 1760 pairiteei design space. In or-
der to prune this design space, a number of practical desigst@ints were considered.
For instance, designs with more than 128 spare lines werstadied due to their signifi-
cantly high area/power/delay overhead. Detailed disonssof these practical constraints
and their impact on the design space follows. Finally, wé gigitable configurations for
L1/L2 ZCs.

1) Graph Coloring Solver Time: A deeper BN can provide a wider range of cache
line swapping, thereby improving ZC defect tolerance. Heovea deeper network also
increases the complexity of graph coloring and BN configanat Out of these two, the
runtime of the graph coloring problem is by far the domingtiactor. Figure 3.8 depicts
the relationship between the size of the graph-colorindplera and the time required to
solve it using the IBSC algorithm (Section 3.2.3). We ran sbé/er on a single core
Pentium-4 processor with@B of memory capacity and@Hz clock rate. The Y-axis in
this plot is logarithmic. It demonstrates the fast growthha runtime of the solver with
the increase in the problem size.

The total manufacturing test time for a high-end processangidering the functional,
structural, wafer, and packaging tests) is around a few @i[96, 61]. Using this as a
reference, we limit the graph solver time to use a maximunmOagdconds for all four on-

chip cache structures (L1-D, L1-1 and two banks of L2). Fer¢hse when the cache Has

42

100000

10000 s

;;3&::? ————— L+
Sl o

S
LS

1000

100 ¥ o e
;.;ji;" s /
10 &
.7{”
1 o

:/
01 [

0.01#
0.001]

0.0001 1
0

Graph coloring time (ms)

O OO0
©©~N ;W

*
IR
CooToTO

1le-05

100 200 300 400 500 600
Number of nodes in the graph

Figure 3.8: The run-time of the IBSC graph coloring solvemsfor different edge densities
and number of nodes in the graph. In this figyrés the edge density which is defined as
the probability of having an edge between an arbitrary paimaales in a random graph

G(n,p)

spare word-line for every word-lines and the depth of the BN1$ — 1, the total number
of nodes in the graph coloring problem would (3e+ 1)2°. According to Figure 3.8 and
based on our solver time budget, ZCs can use BNs that are upei®® deep and can
connect 32 logical groups together. For instance, if eagitéb group consists of eight
word-lines, there would b&2 x (8 + 1) = 288 nodes in the graph coloring problem. There
are numerous works [39] on the parallel graph coloring aligors that can be used for
decreasing the solver runtime and potentially increadiegallowable depth of the ZC.
However, scrutinizing them is beyond the scope of this thels a side note, in order to
get a feeling about size of the network, we look at the transtount here. A 9-level deep
BN has less than 37K transistors while a 64K L1 cache, whichush smaller than L2,
has more than 3M transistors.
There is a less than 4% chance that the solver does not findsébla&oloring as-

signment due to limitations on the time budget or the inhecemplexity of the collision

43

pattern (Section 3.4). Using a deeper BN, longer time bufigehe solver, finer granular-
ity of MUXing, or a larger spare cache can further reduce ¢hsll chance. Nevertheless,
if such a situation does arise, we can either resize the aacsienply reject it. Block/way
disabling techniques [74] can also be applied at the posdfahe faulty cell to preserve
correct functionality. Note that the scenarios where ZGgdrie resort to such methods are
very rare.

2) Probability of Operation : The probability of operation,,) is a definitive metric
for a reliable system. We calculate the probability thatectjc ZC architecture can prop-
erly operate for a give® and use the results to further prune our design space. Thh,gra
which was generated in Section 3.2.3, represents an irestdrecdefective cache. For the
sake of this study, defective caches are modeled as randgphg§s(n,p)since SRAM cell
defects occur as random events. These random defects at@ tti@emajor contribution of
the random dopant fluctuation to the process variation [g)eth is the number of nodes
andp is the probability of having an edge between an arbitrary glanodes.

The next step is to estimate the graph coloring solutionfese graphs. Calculating the
average upper bound of the chromatic number for a randonihgsapchallenging problem
in graph theory [17]. We use two different proposed uppemioisuo evaluate thé,, of
ZCs for a given number of failures. The same set of input darh are required for both
of these upper bounds, which were derived by Achlioptas][@n8 Bollobas [22]. The pro-
posed upper bound by Bollobas (B) works better for smallkresaofp and the Achlipotas
bound (A) is mostly applicable for the larger valuespof Thus, we used the weighted
average of these two bounds based onpthalue (e.g.pA + (1 — p)B). Approximation

algorithms used to derive these upper bounds, have a smtiffcpoorer approximation

44

factor compared to the IBSC algorithm used in Section 3.253 102]. The edge proba-
bility factor p is defined as the ratio of the expected number of edges in Hghgo the
number of edges ik, (a complete graph with nodes). The expected number of edges
in a randomly constructed graph can be calculated by acewufar the intrinsic and fault

edges. In other word€y.4es = Ernirinsic + Epqur Where:

u u

Elntrinsic = m + and
2 2
EFault = m X u2 X [1 — (1 — Oéloég)t}
uXxXm u
+ —m x [1—(1-a3)]
2 2

Here,mis the number of word-lines in each logical groups the number of logical
groups in a swapping sdi,js the MUXing granularityf is the number of redundancy units
in each word-linen is number of swapping sets, is Pr for the main cache, ang; is Pr
for the spare cache. Here; = 1 — (1 — p;)* shows the probability of having at least one
failure inb bits.

Figure 3.9 shows thé&,, of an L2 ZC with 128 spare word-lines, MUXing granular-
ity of 8 bits, and 5 levels of swapping. In each of the sub-ggutwo of the parameters
are fixed and the third one gets the values from the originakpmg set. Notice that in
Figure 3.9a, adding the first few levels of line swapping sigantly increases the robust-
ness of the cache, but beyond 3 levels, adding more levela dimsinishing return. Since
the weighted average of the two bounds is not an integer numigeemployed a semi-

sigmoid function, which is a sigmoid function fitted to theftdd step function llumber

45

12-pop-128-8-Variable-Levels 12-pop-128-5-Variable-Muxing

1 Sy gEeSeRETy 1 i ol fon
% d '. A g
\\ Loy ahe BAARL
08 % o 08
c i E c
S y } . S :
g \ % igne 8
g 06 R 2 06
o } R o
s 4 f s
= \ : = L T
2 04 ¢ : 5 04— !
5 -1 K 5
° ! ! ° e 4
a —+— Olevels 4 X p o oo 8
|| etees 1 levels X : . L 16
02 1l xee 3levels . 02 Soe 32 i
@ 5 levels 3 B & @ B4
1 one 3 2B
7 levels XX ° —oAs- 128 BN nX
o Lo 9 levels N . wBED. o L 128) 128 WX BP0
1e-06 1le-05 0.0001 0.001 0.01 1e-06 1le-05 0.0001 0.001 0.01
Probability of Defect in Each Bit Probability of Defect in Each Bit

(a) The effect of changing the number of swapping (b) The effect of changing the MUXing granularity
levels while using 128 spare word-lines and MUX- while using 128 spare word-lines and five levels of
ing granularity of 8 bits. swapping.

12-pop-8-5-Variable-RedunRows

1
ELL!
_\x W
0.8

0.6

0.4

Probability of Operation

X0

X% 8

Ny

CXY-1
1le-05 0.0001 0.001 0.01
Probability of Defect in Each Bit

(c) The effect of changing the number of redundant
rows while using MUXing granularity of 8 bits and
five levels of swapping.

Figure 3.9: P,, of L2 ZC for different P while fixing two parameters and allowing the
third one to vary.

of Logical Groups + 0.} for mapping the calculated chromatic numbef}g. Using this
semi-sigmoid function, if the calculated chromatic numisesmaller than the number of
available logical groups in the swapping set, the graphl@rable with a probability close
to one and if the derived chromatic number is one unit largan tthe number of logical
groups, the probability would be close to 0. As shown in J&},in 45nmcan be as high
as1073. Based on this fact, we pick the design points from our desjgace that have
P,, > 90% for Pr = 1073,

3) Area and Power Overheads:Based on the limiting factors that we have proposed,

46

the size of the design space shrinks from the 1760 startimggpdown to 103 points. The
next factor for eliminating the points is a one-by-one corgma. Given a design point
(L1, My, Dy) with L, spare word-lines, MUXing granularity dff;, and aD; deep BN and
another design pointL., M, D5), we can exclude the first point from the design space if

it is inferior in all dimensions:

Ly > Ly, My <My, Dy > Dy

This is equivalent to removing dominated points in the Rasgace with dimensions
Ly, My, Dy. This step reduces the design space to 11 points for L1 anth&gor L2.

To evaluate our designs, we used CACTI 6.0 [72] for evalggtie area, leakage power,
and the dynamic energy for the SRAM structures. The Synaa®yschain was employed
for evaluating area, timing, leakage power, and dynamicggnef the non-SRAM parts.
All designs are evaluated in Ak

Figure 3.10 shows the area, leakage power, and dynamicyeoeeghead of the se-
lected points in the design space. For instance, L1-324&43ds for an L1 design point
with 32 redundant rows, MUXing granularity of 8 bits, and Bbfsdepth 3. It is notable
that increasing the size of the spare cache does not alweys$den increase in the area of
the L2 ZC because the fault map size is reduced. Howeverodihe fonger L2 word-line,
a finer MUXing resolution is required which results in a rafelly larger fault map array
for L2 compared to L1. The dynamic energy overhead for the Clwas mostly higher
compared to the L2 ZC. There are two reason behind this: 1)LTheache accesses the

fault map/spare cache in parallel to the main cache and 2). Tlvache reads the entire set

a7

40

m FaultMap (8T)
[/ Tag (8T)

== ConfigStorage
mmmm Comparators
mmmm MuxLevel

=== BenesNetwork
mmmm SpareCache

35

30

25

20

15

10

Percentage of area overhead for L1

GGl G G G L G L
%o, oy o, Yo, Y, Y Y, Y, Y, Y, <\,€
G, R % &"e %v Q\’e &*?9
y s Re Ry 96y
8 v v Ry,

Configuration of the cache

(a) Percentage of area overhead (L1s)

30

m FaultMap (8T)
[/ Tag (8T)

25 == ConfigStorage
mmmm Comparators
mmmm MuxLevel
=== BenesNetwork
20 | s SpareCache |

15

10

Percentage of leakage power overhead for L1

“s e, %, o, %, %
e % %, % % %

V“e~z~,z o,
s SRR)e\e“seﬁ)"\%

Configuration of the cache

(c) Percentage of static power overhead (L1s)

50

— FauItMap (8T)
C—1 Tag (8T)
| ConflgSlorage

Comparators
mmmm MuxLevel
=== BenesNetwork
s SpareCache

40

30

20

10

Percentage of dynamic energy overhead for L1

AR
6, 0 Vs Yo %
‘5 "& & %

, Yo W % e, s
es)«?ez&ed,o

Configuration of the cache

40 ————
m FaultMap (8T)
~ C—2 Tag (87)
S 3 == ConfigStorage
S mmmm Comparators
= 30 mmmm MuxLevel
S === BenesNetwork
£ | s SpareCache
g
g 20
3
B
° 15
<)
g
S 10
<]
g s
0
G G e a4 G 4«
R4 R4 R4 R4
% g 2, w %, %
¥ R4 < b4 2 3 R 3
) ®) >R % SN

Configuration of the cache

(b) Percentage of area overhead (L2s)

30
m FaultMap (8T)
C— Tag (87)

25 == ConfigStorage

mmmm Comparators
mmmm MuxLevel
=== BenesNetwork
20 = SpareCache

15

10

(]

Percentage of leakage power overhead for L2

G o e b b < L <
Y G S S R % % @

Configuration of the cache

(d) Percentage of static power overhead (L2s)

50

m FaultMap (8T)
[C—/ Tag (8T)
=1 ConfigStorage
mmmm Comparators

40
mm MuxLevel
=== BenesNetwork
mmmm SpareCache

Percentage of dynamic energy overhead for L2

G o e b a < L <
Y G S S R % % @

Configuration of the cache

(e) Percentage of dynamic energy overhead (L1s) (f) Percentage of dynamic energy overhead (L2s)

Figure 3.10: Area, power, and energy overhead of the potential L1/L2 Z@ishvare stated
in percentage.

for every access whereas the L2 cache is able to read jusgtiteache block because the
tag and data are accessed sequentially.

4) Cache Access LatencyThe increase in the BN depth also has a direct impact on

48

the cache access time. Since on-chip caches are essentia¢ fjoerformance of modern
processors, we assume no slack is available on the accessttitne caches. Therefore,
any minor modification in the base caches results in at le@segtra cycle access penalty.
Nonetheless, in the case that considerable slack is algillesign with narrow BN can
be leveraged for avoiding any additional cycle latency. uin design, the MUXing level
and BN are on the critical path of cache accesses. Based dimtimg analysis of our
design, in Figure 3.10, design points with BN depth less tiraequal to 7 need one extra
cycle latency for the cache access while others (i.e. BNidef&) require 2 extra cycles.
In Section 3.6, we evaluate the performance drop-off dubecadditional access latency
of the L1/L2 ZCs.

Considering the design points in Figure 3.10, we select21-3-5 as the L1 ZC which
imposes 16% area, 9% static power, and 19% dynamic energkieact over the baseline
L1 cache. Forthe L2 ZC, L2-64-4-7 is selected which impo$ésa8ea, 9% static power,
and 16% dynamic energy overhead compared to the baselinedh2cThese two selected
configurations represent a good trade-off between all teigd®bjectives. However, based
on a particular optimization criteria, another design paiight work better. For instance,

if static power is the main concern, the optimal design pfmnt.1 switches to L1-32-8-3.

3.4 Yield Analysis

In this section, we go through the process of manufacturietdycalculation for a
population of ZC enabled chips. A population of 1000 chips wanerated from the se-

lected ZC configurations for this purpose. We account fohjiater-die (die to die (D2D))

49

and intra-die (within die (WID)), components of the proceasiation. VARIUS [82] is
leveraged to model systematic, D2D, and module level idieavariations. Each chip is
considered as a composition of 8 SRAM structures: L1-Datalnist, two L2 banks, and
the corresponding spare caches. ‘%? is set to 12.5% which is the projected Systematic
+ D2D variation for 4amtechnology [5].

Having all the high level variation models in place, a twepsapproach is used to derive
the number of faulty cells in each SRAM array for an arbitrelnyp in the population: 1)
We take the intra-module variation model from [5] witf, = 30mV. Using this model,
the nominal value of’» across each module is derived from the data provided in [@4¢t
on the average shift iix;;, for that module. 2) The clustering effect, which determities
degree of defect dispersal in the cache structures, is asielad. Due to the high density
of SRAM structures, the clustering effect has a significampact on the arrangement of
the defects in the corresponding SRAM arrays. We accourit kyr employing the large-
area clustering negative binomial model [56] which is basedhe well-known negative
binomial yield formula.

Figure 3.11 illustrates the distributions of the 1000 gatest chips based on the number
of faulty SRAM cells in their L1/L2 caches. For instance, agufe 3.11a shows, around
100 of the chips have 100 to 150 faulty SRAM cells in their Ltlea These derived
distributions are consistent with the ones in [4]. It is ne&ing to note that, in the case
with no protection scheme for the cache, the yield fan#%echnology could be as low as
33%.

Manufacturing yield is defined as the fraction of fully fulactal chips to the total num-

ber of manufactured ones. This value can be interpretecas ¢ibability of operation for a

50

W7 T T T T T T

300

250

200

150

Number of dies
Number of dies

100

50

0
-3 @ & &5 S Gy Oy D5 Ay &y & 95 O T Y0 S0 05 O, % G5, 200 S %50 %2540, %0, o Y
PGB BB AN A N AN R AR AL A IR

Number of faulty SRAM cells Number of faulty SRAM cells

(a) Distribution of the generated chips based on thegb) Distribution of the generated chips based on the
number of faulty SRAM cells in their L1 cache number of faulty SRAM cells in their L2 cache

Figure 3.11: Distribution of generated chips by the number of faulty SRA&#Is in their
L1/L2 caches. A population of 1000 chips is generated by idensg the large-area clus-
tering effect, intra-die, inter-die, systematic, and pagtic variations.

particular chip after the manufacturing procegs,f,). We defineCW and(; as events that
express the proper functionality of a manufactured chipthedexistence off faulty cells
in a chip, respectively. In the following equation$,, is the total number of manufactured
chips, V; is the number of the chips withfaulty cells, andN,.;;, is the total number of

SRAM cells. Based on the rules of probability:

Ncells
Pr(CW) = Y Pr(CWnNC)
=0
Neeus
= Y Pr(CWI|Cy) x Pr(Cy)
1=0
1 Ncells

= PTCWCZXNZ
W 3 Prewic)

Since we consider an independence betweenPhef L1 and L2 caches, as shown

in [47], the yield of a chip can be written as:

Yieldgy, = [[Yield; (3.1)

i€chip modules

51

As a result,Pr(CW) can be written for each cache separately. Equation 3.1 use
to calculate the chip yield in each case. Here(CW |C;) is the probability of having a

functional cache given that it containfaulty cells and can be written as:

PT(T, FM, MC, SC|E1,FMi2,MCi3,SCi4> = PT’(T‘CFH)

x Pr(FM|FM,) x Pr(MC,SC|T, FM,MC;,, SC;,)

wherei; + iy + i3 + i, = i. In this equationT/FM/MC/SCare the events that the tag/fault
map/main cache/spare cache arrays work properly. Sinaltre previous equation$;,

is the event of having, faulty cells in the tag array. For the fault map and tag amnag,
assume 8T cells guarantee the fault-free operation of ttedatvely small structures (i.e.
Pr(FM|FM,;,) =1andPr(T|T;,) = 1). Finally, calculation of the last term is discussed
in Section 3.3.

Given the population of 1000\,;) generated chipsy; for each of the cache structures
is known using the mentioned modeling. Yields of the L1 caahd each L2 bank are
calculated through the described methodology. The degiadd for the L1 ZC and each
bank of L2 ZC are 98.8% and 98.2%, respectively. This im@ié<1% yield for the L2

ZC.

3.5 Wearout Tolerance

In this section, we expand the potential functionality of proposed cache architec-

ture which is mainly designed to tackle the process varatmncerns in deep sub-micron

52

technologies. Wearout, in contrast to process variat®m@, gradual process. Supposing
that the lifetime of a cache can be extended to 10 years and éxyserience twenty thou-
sand cell failures during this period, the mean time betwaiure (MTBF) would be 43.8
hours — worst case scenario. Given the fact that the reqtimezlfor solving the graph
coloring and BN configuration problems is only several séspour method can be easily
applied to reconfigure the cache after detection of eactir&ilAs another notable point,
on-chip flash could also be replaced with latches in this sas= the configuration prob-
lems would not need to be solved during the manufacturingtitee. Nonetheless, even
if on-chip flash was deployed, the write-cycle limitatiorfsaoflash cell (~100K) is still
higher than the maximum number of required reconfiguraticks a result, it allows us
to reconfigure the BN more than 16000 times — that is the aeeuager-bound for the
number of tolerable faults based on the L1/L2 ZCs selectegkition 3.3. We measured
the area/power overhead of replacing on-chip flash witth&gc Although negligible for
L2 cache, the area overhead of the BN configuration storagelfes still noticeable and
increases the overhead of our selected L1 ZC from 16% to 186ted¥er, in this scenario,
the configuration information could be stored in the haiskdifter it is obtained. When
a system is powered up this information is retrieved fromhhael-disk and moved to the
network configuration storage.

Upon the detection of a new fault, since that is the only amiding faulty cell, block
/ way [74] disabling techniques can be applied based on tk#igo of the faulty cell to
preserve correct functionality of the underlying cachem@eing this faulty cell from the
functional space of the cache enables ZC to use the rest @viilable cache space to

solve the configuration problems. A simple cache disabliegmanism is to only use the

53

ZC --emtee- ECC-2 256-Redun-Rows -~ ZC ---tee- ECC-2 256-Redun-Rows -~
8-bit ECC -+ 64-Redun-Rows - - 8-bit ECC - 64-Redun-Rows - -
64-bit ECC = 128-Redun-Rows - -e - 64-bit ECC = 128-Redun-Rows - -e -
1 ‘»ﬂ'ﬁ‘- i T 5 T 1000 1 ﬁ%& 3 T 16000
BRI Y L ¥
"‘%&,& : : R ! 14000
0.8 Bk 4 800 0.8 ek t
i i i o i 12000
0.6 10000

0.6 600

8000

0.4

0.4

Number of failures
Number of failures

6000

Probability of operation
Probability of operation

4000

0.2 200 0.2

Pt : ahiey ':
i A, 0 i Py x + 2000
" h® i oy ,&k y
@ H i) i
0 4&‘ = 0 0 S 0
0 2 10 12 0 2 4 6 8 10 12
Time (years) Time (years)

(a) Monte Carlo life-time simulation results for L1 (b) Monte Carlo life-time simulation results for L2
cache cache

Figure 3.12: Results of Monte Carlo lifetime simulation which show thelpability of
operation for L1/L2 caches protected by different mechasis In addition, the shaded
region shows the expected number of failures over theilife-t

half part of the cache which does not contain the faulty cedldisable the other half. After
ZC reconfiguration is performed, the whole cache space waifdinctional.

A Monte Carlo engine is employed to study thg, for ZCs over their life-time. In
each iteration of the Monte Carlo simulation, time to fa@lT TF) for each SRAM cell in
various array structures is calculated using a Weibulrithstion with a nominal mean of
100 years — as the expected lifetime of an individual cel].[#ilundreds of such iterations
are run during the entire simulation. The simulation ressaite shown in Figure 3.12 for the
L1/L2 ZCs selected in Section 3.3 and several other conwealiprotection mechanisms.

One advantage of ZC over the conventional protection meshmemnis its ability to
equalize the lifetimes of L1 and L2 caches. This implies theppr relative provision-
ing of the caches against hard faults. As a result, ZCs maxithie utilization of the entire
provisioned spare elements. The shaded region in thesedigepicts the cumulative dis-
tribution function (CDF) of the combined MTTF Weibull digiutions for the main/spare

caches. For instance, in Figure 3.12a, there would-#@0 faulty cells in the L1 related

54

SRAM structures after 6 years. As can be seen, the selectedc@ectures prolong the
functional lifetime of the caches up to 10 years. Furtheensy, has a graceful degrada-
tion for the ECC methods compared to the sharp drop-off forad@ row/column redun-
dancy. Consequently, there is a significant chance for thé g®tected cache to break
early in the life-time. This makes them an inappropriatéoheven when a long life is not
expected. Two bit correction ECC (DECTED), on the other hareetds 14 extra bits for
each 64-bit of data which is22% overhead only for keeping the error correction bits. In
terms of the energy overhead imposed by the encoder/depedaccess, as shown in [53],

around 50% should be expected.

3.6 Comparison and Discussion

To demonstrate the efficiency of our design, we compare Z@ wonventional and
recently proposed methods in this section. As represgatator the ZC architecture, we
pick the L1-32-16-5 configuration as the L1 ZC (16% area ozadhand 99% vyield) and

L2-64-4-7 configuration as the L2 ZC (8% area overhead and @6f).

3.6.1 Comparison with Conventional Techniques

Figure 3.13 demonstrates the amount of area overhead edauairprotect the L1/L2
caches using different protection schemes. For a givenapibty of failure, we started
with the least possible overhead for every mechanism andugtly increased the area
overhead until the?,, reaches 90%. An infinity symbobg) on the top of a bar indicates

that achieving®,, > 90% is not possible for the corresponding protection mechanidms

55

Row-Redun s ECC === ECC-2 /3 Z2C N
W

i) ©
§ 160 & &» _ & & PO
£ 140
[
3 120
§ 100
S 80
5 L
o 60
(=]
g 40 I
§ 0 U [B |
N S < S < < S < S %
s s Sy s ® s s s S S
L1 Cache L2 Cache

Probability of failure in a single bit (Pg)
Figure 3.13: Area overhead of the different protection mechanisms flarading a given

Pr. Inthis figure, Row-Redun stands for the row redundancygetain scheme. ECC and
ECC-2 are the 1-bit and 2-bit error correction schemes gcgely.

figure only accounts for the amountreidundancyequired by SECDED (ECC), DECTED
(ECC-2), and row-redundancy methods while considering:tmplete overheads for ZC
modifications. In other words, hardware overhead for en¢ddeoder is not considered
for ECC/ECC-2. Similarly, the decoder augmentation is notuded in the area overhead
of the row-redundancy protection method.

Row-redundancy can protect any cache with inefficient usdgbe redundant ele-
ments. Nevertheless, as it is shown in [46], row-redundavitty more than 10 extra rows
is not efficient due to the considerable increase in the rovoder latency. As shown in
this figure, the area overhead of ZC is significantly smalbenpared to even the 2 bit error
correction scheme (ECC-2) which has a significant power aed averhead for decod-
ing/encoding. Going beyond 2 bit correction using ECC cadetremely expensive in
terms of the code storage area, decoding/encoding powetedayl[54]. On the other hand,
single bit correction ECC cannot even protect the cachetsires withPr > 1074, For
L2, the difference between ZC and other protection mechasis even more noticeable

because of the longer word-line and larger cache size tladledge the other protection

56

mechanisms. In terms of the energy consumption, ECC and E@ipose around 25%
and 50% overheads, respectively [54]. Whereas, both ofdleeted L1/L2 ZCs have less
than 20% energy overhead (Section 3.3). Hence, it shoulddae that the conventional
soft-error cache protection schemes cannot deal with tjie degree of process-variation

in deep nanometer technologies.

3.6.2 Comparison with Recently Proposed Techniques

More recent proposals target high defect density scentlraisare challenging if not
impossible for conventional schemes. Here, we compare 4K tiwiee of these recently
proposed cache reliability schemes that target failuresralose to ours. For the purpose
of comparison, we measure the performance drop-off for gesy¢Table 3.1) equipped
with the selected L1/L2 ZCs in Section 3.3. A performances lizssexpected due to the
extra cycle of latency added to both L1 and L2 ZC designs. \id tise SimpleScalar [14]
out-of-order simulator along with the SPEC-FP-2000 (Iwirs 172.mgrid, 173.applu,
177.mesa, 179.art, 183.equake, 188.ammp) and the SPEQAOD (164.9zip, 175.vpr,
176.gcc, 181.mcf, 197.parser, 255.vortex, 256.bzip2xherarks. On average, a 3.2%
performance drop-off is observed, with maximum of 6.9% f@r parser and minimum of
0.1% for 176.gcc.

Agarwal [5] proposed a fault-tolerantirect-mapped Llache that uses cache block
remapping to preserve correct functionality under the @secvariation in 45m As Fig-
ure 3.1a depicts, around 23% of the cache blocks expecteslfanully in this technology.
This method maps faulty blocks to the neighboring functidstacks in the same word-

line, which forces the L1 to access L2 for getting the valUddb@se blocks. This method is

57

only applicable to direct-mapped caches and cannot beesfigiapplied to L2. As shown

in Figure 3.1, around 64% of the L2 cache blocks are faultytaedsalue of these blocks
must be retrieved from the main memory. For our system cordtgun (Table 3.1), this

results in an effective access time of 164 cycles for L2 wihigtts the performance drasti-
cally. Nevertheless, considering only L1, they achieveth34eld compared to 99% vyield
for our scheme.

Wilkersonet. al[103] proposed two cache protection schemes that use $éwpees
of shifting to merge multiple defective lines into a singlenétional line. Their method
was originally designed to reduce the operational voltdgh@on-chip caches for power
saving. Reducing operational voltage of a cache causeRA&ISells to start failing and
they tried to tolerate these unwanted failures. Alterredyivin order to improve the stability
of an SRAM cell, Changet. al [29] proposed an 8T SRAM cell, which has been studied
and compared with the other alternatives in a more detailadn@ar by Chen [30] and
Verma [98]. These works show that 8T is more effective thamp$e transistor up-sizing
for improving the stability of a bitcell. An 8T cell is morelvast against read upset failures
compared to a conventional 6T cell due to the isolation of#tael and write paths [30].

Table 3.2 summarizes the comparison with these two scheftsesan be seen, Wilk-
erson’s method has a notably higher performance drop-aff #C. This behavior is due
to two reasons: three additional cycles of latency for LZases (compared to 1 cycle for
ZC); and, the L1 and L2 capacities are reduced by 50% and 2&8pectively, to provide
spares for fixing failures. Wilkerson did not report any poweerheads, thus we do our
best to provide an estimate in Table 3.2. We ignore overhaad@ECC correction of re-

pair patterns and the shifting layers along with their cgpanding decoders. Wilkerson’s

58

Table 3.2: Comparison with recently proposed cache protection sckeme

L1 Cache L2 Cache
Protection Area Disabled| Power Area Disabled| Power | Norm. IPC
scheme over. (%) (%) over. (%) | over. (%) (%) over. (%) | (SPEC-2K)
Wilkerson [103] 15 50 61 7 25 27 0.89
8T [30, 29, 98] 36 0 16 36 0 22 1.0
ZerehCache 16 0 15 8 0 12 0.97

method has a significant power overhead because paraledatwboth banks is necessary
in the L1 and L2 caches (parallel access only occurs to the@)]l @hd there is a high leak-
age power for the ST cells used for the tag array. Lastly, tha averhead of Wilkerson’s
method is modest, with ZC slightly higher. It should be ndteat the area of L2 is around
41 times larger than L1. Consequentyeaoverhead of a protection scheme for the chip
is mostly determined by the area overhead for the L2 cache. 8lThcell provides supe-
rior performance to either scheme, but at a cost of signifiaeega overhead. The power
overhead of the 8T L2 cache is also notably higher than the &myd. Overall, ZCs can
tolerate high defect densities while resulting in a modestant of performance loss and

providing area/power overheads competitive with the biéstreatives.

3.6.3 Significance

As we mentioned earlier, large on-chip caches are the majtiehecks for enhancing
process variation tolerance. In our work, we showed thege®wariation characteristics
for a 45m technology. Since the end of the free ride from clock scaliag already ar-
rived, semiconductor companies need to use extremely n@ise guard-bands for supply
voltage and clock frequency to avoid significant manufaotuyield loss. This has a major
impact on the power consumption and operational frequehayoalern microprocessors.

In order to mitigate these effects, current microproceskave already been equipped with

59

ECC and row-redundancy to protect the caches to the first.orle article by Hamp-
son, reported that about 40% vyield loss was observed whédoraik of redundancy were
removed from an Intel die. This was primarily due to the absesf redundancy from on-
chip caches. A more detailed study has been conducted on Ba$SPARC T1 [106]. In
summary, ZC can be leveraged to allow full functionality l#himposing overheads com-
petitive with the best known alternatives. This simply siates into higher manufacturing

yield and better power/frequency characteristics for fpghformance microprocessors.

3.7 Summary

Nanoscale CMOS technologies bring demanding reliabihigllenges to designers due
to high degrees of process variation. In particular, SRAMctres are highly vulnerable
to parametric alteration, thus the design of large on-chighes that are both reliable and
efficient is an important problem. In this work, we presentefi¥ache, a flexible and
dynamically reconfigurable cache architecture that effityeprotects on-chip caches in
high failure rate situations. Our solution takes advantagsatic multiplexing of the rows
along with the added capability of dynamic word-line swaygitio maximize the utilization
of spare elements. Cache fault patterns are mapped to aglpimg problem to configure
the ZC architecture. We explored a large design space ané canwith two suitable
architecture configurations for L1/L2 ZCs such that theyimine the area and power
overheads while achieving a desired level of robustness.LAZC with 16% and an
L2 ZC with 8% area overhead achieve yields of 99% and 96% etsely. Finally, we

compared our scheme with several conventional and stateeedrt methods to illustrate

60

its efficiency and effectiveness.

61

CHAPTER IV

A Polymorphic Cache Design for Enabling Robust

Near-Threshold Operation

4.1 Introduction

As mentioned earlier, in Chapter I, Dynamic voltage sca(iDyS) is a widely used
technique to reduce the power consumption of microprocssstowever, the supply volt-
age of a microprocessor cannot be reduced below a certashibld without drastically
sacrificing clock frequency. The minimum achievable vadt&gy DVS is set such that un-
der the worst-case process variation, the processor egaratrectly [35]. The motivation
for this work comes from the observation that large SRAMtites are limiting the ex-
tent to which operational voltages can be reduced in modercegsors. This is because
SRAM delay increases at a higher rate than CMOS logic delayhesupply voltage is
decreased [94].

An SRAM cell can fail due to the following reasons: a read #itgtfailure, a write
stability failure, an access time failure, or a hold failjis¢. Figure 4.1 depicts the bit

error rate (BER) of an SRAM cell based on the operationakgdtin a 9@m technology

62

| =@=write-margin limit =@l read-current limit

1.E+00

1.E-02

1E-04 —

1.E-06 {—

=
1.E-08 —

64/ KB (99% yield =
2210 SN D wm"““wwm’h;w“ 651mv:]
E| 2MB (99% yield) \ S [l/_
L e LN i .
1.E-10 N
N)
1.E-12 ‘

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

SRAM Bit Error Rate

Nominal Threshold Votlage (90nm)
|
/
/
/
I’

Power Supply Voltage (Vdd)

Figure 4.1: Bit error rate for an SRAM cell with varyind/,; values in 9@m. For this
technology, the write-margin is the dominant factor andtbnthe operational voltage of
the SRAM structure. Here, the Y-axis is logarithmic, highling the extremely fast growth
in failure rate with decreasing;,. The two horizontal dotted-lines mark the failure rates
at which the mentioned SRAM structures (64KB and 2MB) carraigewith at leas99%
manufacturing yield.

node [70]. The minimum operational voltage of 64KB L1 and 2MBcaches is selected
to ensure a high expected yield, 99% in Figure 4.1. Due to thkeh sensitivity of a
bit-cell to parametric variations at lowéf,s, the failure rate of an SRAM cell increases
exponentially when;, gets decreased. This exponential increase in the numbaulby f
cells makes the protection of the on-chip caches much mdiieuli when operating in
the near-threshold region. As can be seen in this figure, tite margin mostly dictates
the minimumV,,; and it is expected to operate with, > 651mV due to the dominating
failure rate of the 2MB L2 cache. This minimum operationaltage is consistent with
predicted and measured values{.7V) reported in [27].

In the literature, several techniques have been proposédpmve dynamic and/or
leakage power of on-chip caches as well as the entire procE®4]. Section 2.2 sum-

marizes some of these low-power design techniques. Mogsteset methods exploit the

63

structure specific sleep modes and/or power-aware resallocation to avoid facing with
the failures. Consequently, for low,, values (e.g.< 651mV), the amount of power
saving for these methods is restricted due to the arisihgyés in the SRAM structures.

In contrast, the objective of our work is to enable DVS to ptiehcore/processor op-
erating voltage down to the near-threshold region (e.g. dower mode) while preserving
correct functionality of on-chip caches. An alternativehis approach is dudl;;s where
core and caches operate at different voltages. Howevel;lduamposes a high cost in
terms of area and design complexity. Voltage-level comvysnnust be added to allow sig-
nal sharing between different voltage islands. Furtheeploigh voltage memory elements
generate noise that victimizes the neighboring low voltagé circuits, necessitating ei-
ther shielding or extra noise margins [103].

In this chapter, we target ultra-low voltage operatidf),(< 400mV) in the near-
threshold region which causes an extreme bit-cell failate ¢~ 10-2) for the on-chip
caches — presented as the high failure rate region in Figzre Bhis figure shows the
percentage ofaulty (i.e., containing at least one faulty bit-cell) bits, bytesrds, blocks,
columns, and word-lines for a 2MB L2 cache for differéfj values. Figure 4.2 is gener-
ated assuming a uniform failure distribution based on thetiozn between bit-cell failure
rate andV, in Figure 4.1. In this figure, at;; = 350mV/, almost all blocks are faulty
while 30% of the words are faulty for the 2MB L2 cache. As can be seen ésuldis-
cussed earlier fol;; > 651mV/, almost no failure is expected (i.dailure-free region.
As can be seen, for thg,; < 400mV/, finer granularities of redundancy are required to
allow a high utilization of the spare elements since a largetion of word-lines, columns,

blocks, and even words would be faulty. This increases thepbexity of the design since

64

mbit Mbyte MEword(8B) [@block(128B) [column (256B) [word-line (1KB)

High failure rate region Medium failure rate region Low failure rate region Failure-free region

(103 <BER) (10°<BER<103) (10°<BER<10°) (BER<1079)
Our Target ECC-2, 2D ECC, Bit-Fix Row/column redundancy, ECC No protection is required
100 — —
10 + r

Percentage Faulty
N
n
|

0.1 + 1 B <‘7
0.01 - T T T T ﬂ

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Power Supply Voltage (Vdd)

Figure 4.2: Percentage of faulty bits, bytes, words, blocks, columnd,word-lines for a
2MB L2 cache while varying the supply voltage. Here, the ¥saxlogarithmic, highlight-
ing the rapid growth in faulty units when decreasirig. The top part of this figure depicts
our conceptual division of thig, range into four different regions based on the protection
difficulty. For each region, corresponding bit error rated also several applicable protec-
tion techniques are also shown. In order to operate coyregctthe failure-free region, no
protection mechanism is required. However, as can be seeta@et is the high failure
rate region which causes an avalanche of failures for op-cdches.

simple disabling (e.g., block or way disabling) or coarsaigredundancy (e.g., row or
column redundancy) techniques cannot be efficiently agplie

In this chapter, we propose ArchipelageR) [10, 8], a cache capable of reconfiguring
its internal organization to efficiently tolerate the largember of SRAM failures that arise
when operating in the near-threshold region. AP allowstfltak operation by partition-
ing the cache into multiple autonomoistandswith various sizes. Each island is a group
of physical cache word-lines that can operate correctlyiout using any word-line out-
side of their group. Each group has a sacrificial word-linéclis divided up to multiple
redundancy units. These spare unitsdirectly/indirectlyemployed to achieve fault-free
operation of the other word-lines in the same group. Sa@&ifieord-lines do not contribute

to the effective cache capacity since they do not store atgpendent data. The clustering

65

of the cache to these autonomous islands is done by a cortfaquadgorithm which is de-
scribed in Section 4.2.3. This adapted version of the mininglique covering algorithm
tries to partition the cache to the least number of islagrdsipsto minimize the number
of sacrificial word-lines required for guaranteeing thdtfitee operation of the cache. AP
enables greater power savings than prior approaches amideagqnly a single power sup-
ply. The overhead of the approach is a small performancdiygra %) when operating in
near-threshold mode and a negligible area overh#adlfor the microprocessor. We apply
AP to L1-D, L1-1, and L2 caches to evaluate the achievablegs@eduction for the overall
microprocessor system. A thorough comparison of AP witlesswvell-known proposals
is done in Section 4.4,

The primary contributions of this chapter are): A flexible and highly reconfigurable
architecture that can be leveraged to protect regular SRi#ttsires against high failure
rates;2) In order to minimize the amount of redundancy required fotgeting the cache,
we model the cache fault pattern with a proper graph stradtuguide a minimum clique
covering configuration algorithm for near optimal groupnf@tion;3) To our knowledge,
Archipelago is the first low overhead, fault-tolerant atebiural technique which allows
the cache to operate correctly whgp, < 400mV’; and4) A design space exploration in
90nm to show the actual process of selecting the architectur@npeters for both L1 and

L2 caches.

66

4.2 Archipelago

In this section, we first describe the AP architecture thapédely reconfigures itself to
absorb failing SRAMs. Next, we present a configuration atgor that exploits the intrin-
sic flexibility of the AP architecture to perform a near opgimedundancy assignment. The
coalescence of highly flexible hardware and intelligenffigumation enables our proposed
solution to minimize the impact of operating at near-thoddimegion on cache characteris-

tics (e.g., size and latency) with minimal overhead.

4.2.1 Baseline AP Architecture

Entering low-power mode causes many bit-cells within a edolfail. AP provides the
appearance of a fully functional cache by tolerating thedeares. In order to clarify the
operation of AP for set-associative caches, we briefly desdthe existing on-chip cache
design approaches. For high speed caches, e.g., L1, allatkshn a set are located in the
same physical word-line and read in parallel with the actte e tag array (i.efast-access
design). In case of a cache hit, based on the tag comparisalt,rne column decoder
selects the matched block from the corresponding word-koee the caches that are not so
sensitive to latency, e.g., L2, accesses to the data andreagdappen sequentially. Only
in the case of a hit, the matched block will be accessed indteeatray (i.e.energy-efficient
design). Although having higher latency for a cache acdbessecond method has several
notable advantages: 1) It allows blocks to be longer sineeetis no physical constraint
for placing multiple blocks in the same word-line. 2) It amles a better power saving in

the case of a miss. 3) Finally, it makes higher degrees otadsoty more affordable by

67

providing a higher efficiency of cache access.

As will be discussed, AP can be easily adapted to feshaccessndenergy-efficient
designs. To this end, we patrtition the cache into severalnaumous islands with various
sizes. Eachisland is a group of physical cache word-liretsclin operate correctly without
using any word-line outside of their group. Each group haacaificial word-line which
is divided up into multiple redundancy units. These spaiitswaredirectly/indirectlyem-
ployed to allow a fault-free operation of the other wordeknn the same group. Put simply,
considering one of these groups witk- 1 partially functional cache word-lines, AP allows
this group to behave as a setrofully functional cache word-lines.

In the remainder of this chapter, we refer to every physieeheword-line which
may contain multiple blocks aslme. In our approach, each line is divided into multiple
data chunks. Each chunk is labeled faulty if it has at leastfanlty bit. Two lines have
a collision if they have at least one faulty chunk in the sarositmon. For example, if
the second data chunk of thed3and @h lines is faulty, lines 3 and 6 have a collision.
Similarly, in Figure 4.3, lines 10 and 15 are collision-fi&@ace they do not have a faulty
block in the same position. The primary objective of AP isdati groups such that there
are no collisions between any two lines within a group. Byrdedin, it should be clear
that collisions are independent of workload running on tystesm and data stored in the
cache.

Figure 4.3 is a toy example that depicts a 2-way set-asseefast-accessache with
two banks. Each bank has 8 lines and each line consists of lbedof data which are
divided into 3 equally sized data chunks. In this figure, dide 10, and 15 form ther@

group G3) in the cache. As can be seen, there is no collision betwegipain of lines

68

Group address of data line
Fault map address s

Sacrificial line

Data line Memory Map
Input Address| 15 [4 [a3] 2
T
| |
___________________ 4
[-
| First Bank | Second Bank
I 1 Chunk1 = Chunk2 = Chunk 3 Chunk4 = Chunk5 = Chunk 6 I 9
| 2 I 10
l 3 | 11
> 4 [[~_ G3(S) | 12
5 ‘\ 13
6 \ | 14
7 —_—— > 15
8 | \ 16
L)L A)
Y LN
way, way, \
\
Fault May
P \
N e -
L MUXinglayer . 2" -~
Ga[1]27- 2] -T1 - -
Functional Block

Figure 4.3: Basic structure of a dual-bank 2-way set-associative Avalago. Two cache
banks with eight lines each are shown. Each block consifsqgtially sized data chunks.
Black boxes in each cache line represent chunks of data &vat &t least one faulty bit.
The memory and fault maps, which are essential componetite gfroposed scheme, are
also shown.

within this group — considering both ways simultaneouslgréy line 4 (labeled G3(S)) is
the sacrificial line that furnishes the redundancy needed¢ommodate the faulty chunks
in lines 10 and 15. In order to minimize the access latencytmaal, the sacrificial line (4)
and the data lines (10 or 15) should be in different basksthat the sacrificial line can be
accessed in parallel to the original data line.

In AP, a memory map is used to provide a level of indirectionache accesses. Each
cache access first indexes into this memory map, which sgfie location of the data
line and its corresponding sacrificial line. After these tm@s have been accessed from

their respective banks (different ones), a MUXing l&yisrused to compose a fault-free

LIn this work, our approach is described for protecting caahith only two banks. However, it should
be clear that our scheme can be naturally extended to cadtieany number of banks 2 without loss of
generality.

2As a side note, since read and write are symmetric operatibanly modification in the hardware
implementation would be to replace the MUXes in the MUXingglawith pass transistors [103].

69

block by selecting the appropriate chunks from each linendittering the basic design of a
fast-accessache, based on the tag comparison results, column decedsish are placed
before our MUXing layer — MUX the corresponding blocks outedd word-lines. On the
other hand, it should be clear that fmergy-efficientaches design each word-line might
only contain a single block and access to the tag and datga isrsquential. As a result,
indexing into the memory map will be done after resolvingttdgepart of the address.

The MUXing layer receives its inputs indirectly from tfeult map For a given data
line, the fault map determines which chunks are faulty araukhbe replaced with cor-
responding chunks from the sacrificial line. To aid in theaghieg and decoding of this
information, a unique address is assigned to all lines withgroup ¢roup address For
instance, in Figure 4.3, lines 10 and 15 are the first and skltoes of G3, respectively.
For each data chunk in the sacrificial line, the fault mapest¢ine group address of the line
to which that data chunk is assigned. In general, for a givenp if the sacrificial line
consists of: data chunks, the fault map requires to st@rei,, ..., 7). In this notationj, is
the group address of the line to which tfta data chunk of the sacrificial line is assigned.
In our example, the entry which is assigned to the third gr@®) in the fault map, con-
tains (1,2,-,2,-,1) foway, andway,. Considering onlyway, this indicates that thetd
chunk of the corresponding sacrificial lIn€3(S) is devoted toG3(2), the &h chunk is
dedicated taG3(1) and the ¥ chunk is not assigned to any line. Finally, the MUXing
layer gets its input from a set of comparators that compagtbup address of a data line
with fault map entries for the same group. For example, gemigress of line 15is 2 —read

from memory map — which gets compared w&B's fault map entries.

70

4.2.2 AP with Relaxed Group Formation

Since every group requires a sacrificial line be dedicatdelyséor redundancy, AP
strives to minimize the total number of groups that must bméal. Given that the number
of lines is fixed within a cache, achieving this objective lirep that larger groups are
preferred over smaller ones. In order to improve the lilagith of forming large groups,
we remove the constraint that forces the sacrificial linemfra particular group, to be in
a different bank than all the other lines. This allows anyafdines from the two banks
to form a group. However, in order to minimize the accessniatewe do not allow a
group to derive all its lines from the same bank. In other wprehch group should have
at one line in each bank to allow a parallel access to ther@igind spare data. Relaxing
the mentioned constraint, gives rise to two new read acaessasos in addition to the
standard case described in Figure 4.3.

Handling Different Types of Accessesin Figure 4.4(a), lines 2, 4, 7, 10 and 15 are
in the same group, with line 4 serving as the sacrificial lidewever, when line 2 or 7 is
accessed as a data line, a parallel access to line 4 cannetfbenped since they are in the
same bank. To handle such a scenario, a small and transpaodiftcation to the AP ar-
chitecture is needed. We arbitrarily select a line from thekonot containing the sacrificial
line (but still from the same group) and label it asemi-sacrificialine (line 15 in Fig-
ure 4.4(a)). This semi-sacrificial line can be used to repfaalty chunks from cache lines
which are in the same bank as the sacrificial line. Howewnetpntrast to the sacrificial
line, the semi-sacrificial line still contributes to theezffive cache spacén other words, a

semi-sacrificial line only acts as a level of indirection fedundancy substitution by bor-

71

Memory Map

Input Address| 2 [15 [G3 | 3
T
[
___________________ I]
: First Bank I Second Bank
I 1 I 9
> 2 [= | =]G30 | 10 || G3(1)
3 Y Y | 11
4 N Y Gas) 12
5 N\ N\ | 13
6 \ \ | 14 |
7 [[\]G3 —— > 15 [[| G3(2)
8 q 16
\ Y Y I\ \ \ Y)\ Y
way, way, \ \ iy, way,
\ \ ~
\ \ PR
Fault Map \ \ e semi-sacrificial line

7~
N __ N\ 7
(- MUing.lafer __
G3 [-[T1T4 3] 21
J Functional Block

(a) Reading a line (G3(3)) from the same bank as the sacrificial(G3(S))

Data line is the

Memory Map semi-sacrificial line
Input Address | 15 [4 Ja3 [2 |1
1 \4
| |

R i Re-allocated to the 4t
| First Bank : Second Bank data chunk of G3(3)
| ! [9
| 2 | | | G3(3) 10

3 | 11
L> 4+ N [| x] G3s) | 12

5 13

6 \\ \\ I 14

7 [| NN AN G34) L————> 15

8 N > 16

N N
L J\ A N
T T N\ N\
way, way, \ \
\ \
\ \
Fault Map \ \ PR semi-sacrificial line
NN P
N M¥Xinglayer T~
<N HUIECIEG] EXO1EX0)ERO) NN -
[T T 27 Functonal Block

(b) Reading from the semi-sacrificial line (G3(2))

Figure 4.4: Two special read-access scenarios. A standard read ascéksstrated in
Figure 4.3. Notice the extra bit that has been added to betimiamory map and every
fault map entry to handle scenario (b). Since thedhata chunk of semi-sacrificial line is
re-allocated, it is marked a®A in scenario (b).

rowing redundancy from its corresponding sacrificial liMareover, semi-sacrificial lines
guarantee the parallel access to the original and sparerdaligpossible scenarios. Con-

sequently, the faulty chunks of the lines 2 and 7 are replasaty G3(2) instead of the

72

G3(S) With the addition of the semi-sacrificial line, accessethtcache can be divided
into three categories:

1) Accesses to data and sacrificial lines that reside in diffelanks This is the base
case which is demonstrated in Figure 4.3 and does not regnyrespecial consideration
beyond what is described earlier.

2) Accesses to data lines that are the in the same bank as thespamding sacrificial
line. This case is illustrated in Figure 4.4(a). LiG3(3)is the data line and lin&3(2)is
the semi-sacrificial line which supplies the replacemenh&is for the faulty ones iG3(3)
Instead of accessim@3(S) the memory map remaps the address of the sacrificial lirkeeto t
address 063(2) This case is particularly interesting, since no othergaithe procedure
must be adjusted to support this access scenario. The fapligwstill used, unmodified, to
indicate that the th data chunk fromnG3(3)is faulty and should be substituted. Therefore,
AP replaces this faulty chunk @3(3) by the semi-sacrificial line’sth chunk instead of
sacrificial line’s 4h chunk.

3) Accesses to a semi-sacrificial lin@his case is demonstrated in Figure 4.4(b) for
which two small modifications to the access procedure aressecy. An additional bit
is added to memory map entries indicating whether the aededata line is the semi-
sacrificial line. As can be seen, théhddata chunk ofG3(2) has been re-allocated to
G3(3). Consequently, we artificially mark thehdchunk of the semi-sacrificial line as “re-
allocated” RA in Figure 4.4(b)). Whei3(2)is accessed, its faulty and also re-allocated
data chunks (i.e., thetd and 5h chunks) are supplied as expected by the corresponding
chunks from the sacrificial line€33(S). However, this cannot be easily done using the un-

modified fault-map since thetidentry of the fault map points to the faulty chunks of data

73

First Bank T Second Bank
1 G1(1) 6 D
2 G1) | 7 G2(3)
3 G2(S) 8 G1(3)
4 a2 | o 4H G1(S)
5 G2(2) l 10 G2(4)

Figure 4.5: A simplified example of the minimum clique covering processd given dis-
tribution of faults in the cache banks. Here, each bank hsxlmes. The solver disables
the &h line since it has many faulty chunks and, is therefore vepeasive to repair. Two
cliques are formed by the solver and lines 9 and 3 are desidres sacrificial lines for
groups 1 and 2, respectively. Moreover, the conceptuaitijoaing of the cache to distinct
islands is also demonstrated.

from G3(3). As aresult, the system cannot identify that tkieehunk of the semi-sacrificial
line should be replaced during an access. In order to tabldeptoblem, we add an extra
bit to every fault map entry which indicates whether the esponding data chunk should
be replaced when accessing the semi-sacrificial line. Rpamce, in Figure 4.4(b), since
the 4h and 5h chunks should be replaced, their corresponding bits indbl map have

been set to “1”.

74

4.2.3 AP Configuration

To maximize the number of functional lines in the cache, wedn® minimize the
number of sacrificial lines required to enable fault-freemapion. As previously discussed,
there is a single sacrificial line devoted to every groupédi. This sacrificial line is not
addressable as a data line since it does not store any indiemtedata. In other words,
sacrificial lines do not contribute to the usable capacityhef cache. Depending on the
number of collision-free groups that are formed, the effeatapacity of the cache can vary
dramatically. This motivates the need to minimize the totahber of groups required.

Problem Modeling: Here, we model the problem as a graph in which every group
corresponds to a clique. To minimize the number of groupsgiven faulty cache — upper
part of Figure 4.5 with two banks, we model the problem as ammm clique coveriMCC)
problem [38]. Figure 4.5 shows the process of forming theigsagiven a fault pattern for
the cache. Each node in the constructed graph, ten in algaslze line. There is an edge
between two nodes if and only if there is no collision betwé®sn corresponding lines.
Therefore, it is possible to assign connected nodes to the ggoup. For example, there
is an edge between lines 2 and 3 but no edge between lines Dand 1

As mentioned earlier, a group is a set of lines for which thenmo collision between
any pair of lines. By constructing the graph this way, a sl free group forms a clique
(i.e., there is an edge between every pair of nodes). As & rdsitask of forming groups
can be represented as finding the cliques in the construcagthgHowever, since we are
interested to minimize the number of sacrificial lines, thieblem turns to finding the

minimum number of cliques that cover the entire graph. lrureg.5, lines 1, 4, 8, and 9

75

form the first group G1, clique with size 4) while lines 2, 3, 5, 7, and 10 form the seto

group G2, clique with size 5). Line 6 is disable®] since it contains 4 faulty chunks and
repairing it is not cost effective. In general, a line getsathied, if its corresponding node
in the graph does not belong to any clique with size€. Here, the fault map has 2 lines
which correspond to the sacrificial lines 9 and 3. As can bae geéhis figure, there are

16 faulty chunks out of 60, therefore, at mast— ([:2]) = 7 cache lines can be kept
functional after the grouping. Ultimately, our configuaatialgorithm can achieve this best
case, highlighting the effectiveness of our approach.

MCC Solver: We use the transformation described in [50] to convert theO\i@ob-
lem to a minimum chromatic number problem. After applyings tttansformation, the
final graph is passed to the DSATUR solver [55] which uses & kvelwn and efficient
approximation algorithm. As shown in [55], the approximatifactor for the DSATUR
solver is< 6.1% for various graph densities. For the problem size that wgetan this
work, the run time of the DSATUR algorithm is always less tlams In contrast, the full
backtrack-based solver (e.g., optimal solver) takes aédays to solvene instancef our
configuration problem which makes it infeasible to be usearattice.

Nevertheless, the original solver’s answer is not direafhplicable to our problem.
Since the solver is free to form a group in any possible wayrtiiaimizes the number of
cliques, it is possible to have a clique with nodes in only baek. This latter case is not
a feasible solution since it blocks the parallel accessdaspare elements. As a result, we
apply a set of modifications to the original solver for makitguitable to our application:

1) We force the solver to pick the second line of the group froniffarént bank from

the first line of the group. This small modification assurethasat least one line is selected

76

from each bank and allows us to take care of the parallel aguedlem discussed above.

2) An artifact in the DSATUR solver algorithm can sometimesssit to disable a
large fraction of cache lines. More specifically, it picke todes for coloring only based
on the degree of saturation which is proportional to theprecial of the node degree in our
constructed graph [55]. Because of this bias, all the lin@®fone bank might be selected
while there are many unassigned lines in the other bank.dn ascenario, the unassigned
lines have to be disabled which results in a large fracticisdbled lines. In order to solve
this problem, we modify the original DSATUR algorithm to kithe lines from both banks
more evenly. This was done by giving artificial priority teetlnes in a bank that has more
unassigned lineat the beginning of each assignment phase.

3) As will be discussed in Section 4.3, minimizing the area bead of the fault map
carries a major significance for our scheme. The size of eatly & the fault map is
proportional to théog, (maz{clique size}). Therefore, to reduce the size of the fault map,
an upper bound (e.g., 64) can be placed on the maximum cligeg\CS). By adding this
feature, all the cliques which are found by the DSATUR sobazer be forced to have a size
smaller than or equal theiCS

The main plot in Figure 4.6 depicts the distribution of ckgsizes for different ver-
sions of the solver: base (base DSATUR solver), 2nd nonffeise solver + modifica-
tion (1)), 2nd fair (base solver + modifications (1,2)), adddap (base solver + modifica-
tions(1,2,3)). This data is generated using 1000 iteratadra Monte Carlo simulation for
a 2MB L2 cache with 2048 lines. It should be clear that the sizine fault map is pro-
portional to theg Num. of Cliques) x log, (M C'S) which implies a small number of large

cliques is preferable. Furthermore, siniééum. of Cliques) x (Average Clique Size) is

77

®m base ®2nd non-fair m 2nd fair 64-cap 1
>

12

m average non-functional lines ® max non-functional disabled ‘

10 100

80

60
40
N = = =
o
base 2nd non-fair 2nd fair 64-cap
Different Versions of the Solver
0 |mmml e S P DL L LRSS S— == II. lII III III I I I

4 9 14 19 24 29 34

Number of Word-lines

Frequency of Occurrence
o

Clique Size

Figure 4.6: Distribution of the clique size for different versions oétkolver based on Monte
Carlo simulation. Note that for 64-cap, the size of all ckqus< 64. Here, the number of
non-functional lines is the summation of the number of $&ti lines and the number of
disabled lines. The plot in the insert depicts the averagel®un of non-functional cache
lines, the maximum number of non-functional lines, and tn@ber of disabled lines while
achieving 99% yield.

equal to the total number of word-lines, a constant vall@Sshould be as close as possi-
ble to theAverage Clique Size. As a result, the most desirable distribution of clique size
would be a tight distribution around large clique sizes. As be seen in Figure 4.6, a ma-
jority of cliques fall into the narrow region of 60 to 80 noddis tight distribution shows
the efficiency and proper balancing of the group sizes in thegss of group formation by
the different versions of the solver. The smaller plot irsthigure demonstrates different
characteristics of these 4 versions of the solver. In thos, phe number of non-functional
lines is the summation of the number of sacrificial lines dreriumber of disabled lines.
As can be seen, the second modification (i.e., fairness) féectieely reduce the average
number of disabled lines frob.5 t0 6.1.

Another observation is that the constraldtC'S = 64 increases the maximum number

of non-functional lines by 9% while it reduces size of eadlitfenap entry by 17% — from

78

7 bits to 6 bits. For each cache instance, the number of Im#gei fault map array is equal
to the number of sacrificial lines (e.g., 2 in Figure 4.5). Hwoer, due to the presence of
process variation in a large population of fabricated ghdfferent fault patterns should be
expected. As we described earlier, in our evaluation, wel@yrgMonte Carlo simulation
to generate a population of 1000 cache instances and thetmtdoer of fault map lines is
determined based on the maximum number of sacrificial lireéevachieving a 99% yield.
Hardware Configuration: In order to configure AP, the memory and fault maps need
to be filled. The initial step involves solving the MCC configtion problem for a given
cache fault-pattern. Given the MCC solution, each line —dena the graph — can be clas-
sified as:1) Data line: For each data line, a new memory map entry should be allocated
Each memory map entry has 5 fields (Figure 4.4(b)): The first ifsethe data line address.
If this line is in the same bank as its respective sacrificrad,| the second field will set
to the address of the respective semi-sacrificial line. @tise, it will get the address of
the sacrificial line. The third, fourth, and fifth fields shddde set to the data line’s group
number, group address, and “0”, respectively.Sacrificial line: Although no change in
the memory map is required, a fault map entry should be abodar each sacrificial line.
Each fault map entry has a field per data chunk — 6 fields in Eigug. For faulty data
chunks of a sacrificial line or the ones which are not assigaexhy faulty data chunks,
corresponding fields in the fault map should be set to “-". &ibrer data chunks, corre-
sponding fault map fields should be set to the group addredshe data/semi-sacrificial
lines to which those data chunks are assigi3¢&emi-sacrificial lineThis is similar to the
first case, except the last field of the memory map entry shioeilset to “1”.4) Disabled

line: Nothing needs to be done in this case.

79

Low Power Mode Operation: The first time a processor switches to low power mode,
the built-in self test (BIST) module scans the cache for thteiptial faulty cells. After de-
termining the faulty chunks of each cache line in low powedmdhe processor switches
back to high power mode and constructs the mentioned grapbaives the MCC problem
using the modified DSATUR solver. As mentioned before, tHeesdime for a 2MB L2
cache is less tham3son an Intel Core™2 Duo machine. This solution contains tfi@rin
mation that is required to be stored in the memory and the faaps. This configuration
information can be stored on the hard-drive and is writtehéanemory map and fault map
at the next system boot-up. In addition, the memory mapt faap and the tag arrays need
to be protected using, for example, the well studied 10T [@&1] which has about 66%
area overhead for these relatively small arrays. These &0 are able to meet the target
voltage in this work for the aforementioned memory struesuwithout failing. However,
as we will discuss in Section 4.4, 10T cells are not a cogtetiffe option for protecting the
entire L1 and L2 caches.

Cache Addressing Mechanism after Capacity Reductionin our design, the mem-
ory map can be used to remap théginal addressof the sacrificial lines to other functional
lines. As a result, a small fraction of the sets will have tinectionality of two sets. For
those dual-set word-lines, associativity is reduced by. hehese dual-set lines are dis-
tributed evenly across the cache to prevent biased missorade address sub-range. The
tag comparison and replacement logic needs straight-fdrwendifications to make this
work, details of which are omitted in the interest of space.

High Power Mode Operation: In the high power mode, our scheme is turned off in

order to minimize the unwanted overheatisAll the cache lines are functional and there is

80

no sacrifice of the cache capaciB).Assuming clock gating, there is a negligible overhead
for the dynamic power due to the switching in the bypass MUX&gh consists of the
MUXing layer and an additional MUX for bypassing the memorgpr3) Leakage power
overhead remains the same. However, power gating tectsicpre be used for general

leakage mitigation [49].

4.3 Evaluation

This section evaluates the potential of AP in reducing thegrof the processor while
keeping the overheads as low as possible. Comparisonselatted work are presented in

the next section.

4.3.1 Methodology

For performance evaluation, we use SimAlpha, a validatedovarchitectural simula-
tor based on the SimpleScalar out-of-order simulator [T4je processor is configured as
shown in Table 4.1 and is modeled after the DEC Alpha 21364 anabient temperature
of 40°C' [81, 57]. Dynamic processor power consumption is calcdlatng Wattch [26]
based on the activity factors of individual core structyessl leakage power is computed
with HotLeakage [109]. CACTI [72] is leveraged to evaludte telay, power, and area of
the baseachestructures. To take into account the overheads of the memapyand fault
map arrays, we use the SRAM generator module provided byGhe: Artisan Memory
Compiler. Lastly, the Synopsys standard industrial td@ia (with a TSMC 9@m tech-

nology library) is used to evaluate the overheads of the r@nmiscellaneous logic (i.e,

81

bypass MUXes, comparators, subset tag comparison digaklic). Moreover, to find the
matching frequency for a giver,;, we use the alpha-power model described in [66].
For a given set of cache parameters (€4, chunk size, MCS, etc.), a Monte Carlo
simulation with 1000 iterations is performed using the miediDSATUR solver described
in Section 4.2 to identify the portion of the cache that sddug disabled. As discussed
earlier, solutions generated by the MCC solver target a 98%6.y In other words, only
1% of manufactured and configured on-chip caches are alloaveghibit failures when
operating in low-power mode. On the other hand, the targetidirectly impacts the size
of the fault map. Its size is set based on the maximum numbdicafes formed across all
cache instances in the Monte Carlo process when ignoringaay morst-case situations

as the target yield allows.

Table 4.1: The target system configuration

| Parameters | Value

Technology 90nm

Clock frequency 1.9 GHz [57]

V4q nominal 1.2V

L1 Cache 2 banks 64KB data, 2 banks 64KB instruction,
split, 2-way set associative, 4 cycles hit latency, 1 port,
LRU, 64B block size, write-back

L2 Cache 2 banks 2MB Unified, 8-way set associative,
10 cycles hit latency, 1 port, LRU, 128B block size, writezkg

Registers 80 integer, 72 floating point

ROB (re-ordering buffer) | 128 entries
LSQ (load/store queue) | 64 entries

Instruction fetch buffer 32 instructions

Integer/FP issue queue 32/32 entries

FU (functional unit) 4 int ALU, 4 int mult/div, 2 memory system ports
FPU (floating point unit) | 4 FP ALU, 1 FP mult/div

Main memory 225 cycles (high power), 34 cycles (low power)
Branch predictor combined (bimodal and 2-level)

BHT (branch history table) 4096 entries
RAS (return address stack) 32 entries
BTB (branch target buffer) 2048 entries, 2-way associative

82

4.3.2 Design Space Exploration

Figure 4.7 shows the process of determining the minimuneaebiel/,, for our target
system. In this figure, chunk size varies fronbiL to 16 bits for both L1 and L2 caches.
In high-power mode, both fault and memory map arrays renthénand leak power. It is
crucial to minimize the size of these structures. The sizb®@imemory map is essentially
fixed by the number of lines in the cache. The fault map sizeselver, can vary signifi-
cantly depending on configuration parameters, motivatiopser look at the size of the
fault map as an important design factor. Consequently, mé the area overhead of the
fault map to 10% (of the cache area). Furthermore, sinceecsigk has a strong correlation
with system performance, we limit our scheme to setting atri0% of the cache lines to
non-functional

As evident in Figure 4.7, decreasing, increases the non-functional portion of the
cache and also the area of the fault map array. However, bdega@ertain point, the area
overhead of the fault map starts decreasing. This phenomeahse to the large fraction
of the cache lines that gelisabledas loweringV,,; leads to increasing error rates and a
precipitous increase in faulty chunks. As we mentionedeafbr these disabled lines, no
entry in the fault map array is required.

Here, the vertical dotted lines highlight the minimum avhlael/;; based on the afore-
mentioned 10% limits on non-functional lines and fault miap slt is notable that for small
chunk sizes, area overhead of the fault map is the limitiotpfawhile for larger chunks,
the number of non-functional lines becomes dominant. Asbeaeeen in this figure, the

minimum achievablé/;; for L1 is lower than L2. This was expected due to L2’s longer

83

—=—Percentage of non-functional cache lines Fault-map area-overhead

100
90

f
i
80 | i
i i
70 i t
| i
60 | | \
50 i i
| i
i
i

40

i

30 i

20 i

10 ¢ — —
o —

1b chunks | 2b chunks | 4b chunks H 8b chunks
i i I

16b chunks
i

Percentage

L S

. ! h
b —p—n—n | L o

OO D P> P OO Do o> P DO D DD D P OOD DD P OOD D DD P
VA o7 (P A o7 (N WA 07 A P A o7 g (N WA 07 AP A o7 g (N VA o7 P A o7 @V (¥ WA 07 AP A o7 gV (W
PSR RN AR U N RN AR VR RN R AR U N SR N A SR NS AR GRS R AR (N

Power Supply Voltage (Vdd)

(a) Percentage of non-functional lines and area overhead dathemap forL1 while varyingV,, and data
chunk size

[—=—Percentage of non-functional cache lines Fault-map area-overhead

100
%0 | 1b chunks | 2b chunks | 4b chunks | 8bchunks
80 | ! ! :
70 i ‘} :‘ 3
60 i i i i

N R S —— L ——

16b chunks

Percentage
@
3

0 s ey -
IR R R R R S) IR I RIS I 0O D> P P OO D> P I I RIS R
WA o7 AP A o7 g (N WA 07 AP A o7 g (N WA 07 AP A o7 g (N WA 07 AP A o7 gV (N WA 07 AP A o7 gV (W
NI AN RN VAN [N N IR AR VRN INFRAA AN IR AR URN NP AENICAIER VRN PN AN IR AL R VRN

Power Supply Voltage (Vdd)

(b) Percentage of non-functional lines and area overhead détitemap forL2 while varyingV,, and data
chunk size

Figure 4.7: Process of determining the minimum achievaijefor L1 and L2 caches while
limiting the fraction of the non-functional cache lines asb the area overhead of the fault

map structure ta< 10%. Moreover, in these 10 sub-plots, vertical dotted linesastice
minimum achievablé’;; while data chunk size varies frombilt to 16 bits.

lines and larger size which makes protection of L2 harden ttta[103]. Therefore, L2
protection cost dictates the minimum operating voltageuwfsystem. In addition, based
on the trend in Figure 4.7, it should be clear that a chunkaizside of the presented range
will only result in a higher minimuni/,;. As a result, we sele@75mV as the minimum
Vaa (i.e, low-power mode operating voltage) since all otherdowoltages violate our 10%
limits.

For V,, = 375mV, a design space exploration of L1-(D/l) and L2 caches is demo
strated in Figure 4.8. There are two important parametenste: 1) MCS, the maximum

allowable clique size (Section 4.2.3) aApchunk size, varying fromlito 128 for L1 and

84

© MCs=128 O MCs=64 O MCs=32 © Mcs=128 O MCs=64 O Mcs=32
A MCS=16 X MCS=8 +eeuses Pareto frontier A MCS=16 X MCS=8 +=+++ Pareto frontier

100 X 100 ‘
o . %

g A o g 2
g o o X 2§ g x -
T A] s A %2
H o= ey A %2 E X g5
$ ¢ 0 x fs o 28
2 Lo o \ R £ 0 A
O I > O X ° By X
H] A 3 B
&L A T 8. X £ [oNAY
8 1 L1 Tl 9 g n X
L o " S— - S B . SRR LTI
Cﬁ ~~~~~ B
< = chunksize=g | | | | e B

0.1 1 u

0 5 10 15 20] 5 10 15 20 25 30
Fraction of Non-Functional Cache Lines (%) Fraction of non-functional cache lines (%)
(a) L1 design space exploration (b) L2 design space exploration

Figure 4.8: Design points for different Maximum Clique Size (MCS) andick size pairs
are shown that can achieve a 99% yield. For each MCS valueesgonding chunk sizes
from {2" | n € {0,1,...,7}} for L1 and from{2" | n € {0,1,...,5}} for L2 are chosen.
The shaded boxes represents the region of interest whdrehmtault-map overhead and
the fraction of non-functional lines is limited t6 10%. The black dotted line is the Pareto
frontier.

from 1b to 32b for L2. From Figure 4.8, it should be clear that the chunk szetside of
the presented range always violate at least one of our ataréomed 10% limits. For every
pair of (MCS, chunk size), a Monte Carlo simulation, tanggt®9% vyield, is performed
with 1000 iterations. This simulation identifies the neeegsarea overhead of the fault
map and the fraction of non-functional lines in the cachereHwe still limit the fraction
of the non-functional lines to 10% while trying to minimiZgetarea overhead of the fault
map.

In Figure 4.8(a), within the shaded region, only points anlttack dotted line (Pareto
frontier) are considered since they dominate the othegdgsdints. Note that making the
chunk size larger decreases the area overhead of the fapilsimze the number of entries
in the fault map is reduced. However, this reduction is atsmepanied by an increase in
the fraction of non-functional cache lines, the result efde edges in the graph described

in Section 4.2.3. For L1, the design point witiC'S = 32 andchunk size = 16 bits is

85

u fault map (10T) W miscellaneous logic m memory map (10T) tag overhead (10T)

14

12

ai 1

High Power Mode }

L1 area L2 area L1 leakage L2 leakage L1 dynamic L2 dynamic
power power power power

Percentage of Overhead

o N A o o

Figure 4.9: Area, leakage, and dynamic power overheads of our scherbefiot-1 and L2
caches. Here, 10T cell is used for protecting fault map, mgmap, and tag arrays.

selected, highlighting an interesting trade-off betwdemndrea overhead of the fault map
and the fraction of non-functional lines. By repeating tams process for L2, as illustrated

in Figure 4.8(b), the design point with/ C'S = 16 andchunk size = 8 bits is selected.

4.3.3 Results

Figure 4.9 summarizes the overheads of our scheme for bo#nt1 2 caches. As
mentioned before, we also account for the overheads of USiNgSRAM cells [27] for
protecting the tag, fault map, and memory map arrays in lowgyr mode. In addition, the
fault map, memory map, and the second bank have their owmatepdecoders which are
accounted for in our evaluation. Leakage overhead in higieponode corresponds to the
fault map, memory map, miscellaneous logic, and extra lgakd 10T cells for tag array.
Note, the memory map is a far greater contributor to areaeaidge power overhead in the
L1 thaninthe L2. The reason behind this is that the L1 has ﬁ)ltﬂye lines of the L2, while
its overall size i%. For L2, the fault map is the major component of overhead. fOuEs
significantly larger size, the L2 cache dominates the psmdsakageandareaoverheads.

Nevertheless, as can be seen in this figure, our scheme hamodest overheads for the

86

L2 cache. Dynamic power overhead in high-power mode can @yvadtributed to bypass
MUXes since we assume clock gating for the fault map and mgmap arrays. In AP,
when in low-power mode, the memory map and MUXing layer ar¢hencritical path of
the cache access. Based on our timing analysis, the acdegsoserhead of L1 and L2
are 0.44s and 0.58s, respectively. Based on our system clock frequency (Taldlg this
translates to 1 additional cycle latency for L1 and 2 addaiaycles for L2 in low-power
mode.

As mentioned before, the fraction of non-functional linedased on a 99% yield in
a 1000-run for a Monte Carlo simulation. As a result, thetfoacof non-functional lines
would be smaller than what is presented in Figure 4.8 for n@mgs. This is because
across all the fabricated dies, process induced paranvaiii@tion causes different cache
fault patterns to appear. However, we consider the woist-capacity loss during our
evaluation. In order to evaluate thrst-caseerformance penalty of our scheme in low-
power mode, we ran the cross-compiled Alpha binaries of SBRO-2K benchmark suite
on SimAlpha after fast-forwarding to an early SimPoint [88Je assume one extra cycle
latency for L1 and 2 extra cycles for L2. Cache size is alsoced based on the fraction
of non-functional lines in Figure 4.8. On average, a 4.6%querance penalty is seen in
low-power mode from which 0.6% is contributed by the cachgac#y loss due to the
presence of non-functional lines (Figure 4.10). As can lenseur strict limit on the
fraction of non-functional lines results in minimal impact performance because of cache
capacity loss. However, one should note that low-power npasftormance is usually not
a major concern. In high power mode, there is no capacitydog=s no failures need to

be tolerated. Furthermore, based on our CACTI delay resmlisthe frequency of the

87

system (Table 4.1), there is enough slack on the access fim@ &1 and L2 caches to
fit the small bypass MUXes (additional 0¥ delay) without adding any extra cycles to
the access time of these caches. In other words, there isnfmrmpance loss in high-
power mode. However, one might have a cache design withgutlaok available. In that
scenario, we add an additional cycle in high-power mode fioahd L2, which translates
into a 3.6% performance loss for SPEC-2K.

Summary of benefits and overheadsFigure 4.11 shows the savings and overheads
for the Alpha 21364 microprocessor using AP for protecthmgan-chip caches. As can be
seen in Figure 4.11(b), the overheads of the proposed matiecalmost negligible. These
overheads are evaluated in/80 using the methodology described in Section 4.3.1. On
the other hand, Figure 4.11(a) depicts the percentagetiedui leakage power, dynamic
power, and minimum achievable supply voltage by using APpfatecting the on-chip
caches. These results are reported in thend565nm, 90nm, and 13@m technology

nodes. The relation between the supply voltage and the tsgp&RAM bit-cell failure

12

| M extra access latency [cache capacity loss |

10

Percentage of Performance Loss

Q < & Q & o AN & > N 2 & N Q & e
S S O O & & FE e ¢ & &
N I S S S S O G G & o & o
N N g ~ N N » G2 N ,‘90
SPEC-INT-2K SPEC-FP-2K

Figure 4.10: Performance loss break-down for our scheme in low power meitgy SPEC-
2K benchmarks. As can be seen, since the fraction of nortiat lines is limited to be
less than 10%, the access latency overhead is the domimamtt ila performance penalty.

88

Leakage
Power

Dynamic
Power

Percentage
»~

Minimum
vdd

' ' ' ' | | | 130nm 2 4
i i i @9o0onm
; ; ; m65nm 1
: : : | | | | = 45nm 0

0 10 20 30 40 50 60 70 80 90 100

area performance dynamic power leakage power
(low power) (high power) (high power)

Percentage Reduction Overheads

(a) Percentage of reduction in leakage power, dynamic powe(h) Overheads of using AP for protecting
and minimum achievabl&,; using 4 different technology on-chip caches of the mentioned micro-
nodes (i.e., 4bm, 65nm, 90nm, 130nm). processor in 99m

Figure 4.11: Low-power mode benefits and also overheads of an Alpha 213&é#pno-
cessor system (Table 4.1) augmented with Archipelago. ,ke¥@account for the dynamic
power overhead of accessing the second bank in low power foot@ndling failures.

rate for these four technology nodes are extracted from,[88378, 37, 77, 28, 21]. Con-
sidering the 99m technology node, AP enables DVS to save 79% dynamic power and
51% static power in the near-threshold region. With the eggjve technology scaling,
the systematic and random variations are expected to sef@&]. This results in higher
sensitivity/vulnerability of SRAM cells to power supplynations. Hence, the percentage
of reduction in dynamic power/minimum achievalig gradually reduces when heading
toward deeper sub-micron technologies. Nevertheless%a @8amic power reduction
can be achieved in 46n. In contrast, for leakage power, the percentage reductiad-g
ually increases as the technology scales down. This is yndun¢ to the drastic differ-
ences in correlations between the leakage powelgpdcross technology generations. In
deeper technology nodes, a reductiorVj manifests as a much larger saving in leakage
power [44]. Therefore, for deeper technologies, even thaugachieve lesg;,; reduction,

the net leakage power saving is larger. Due to the excegsivedse in the sub-threshold

89

Table 4.2: Comparison of different protection schemes

Protection MinVy, | Cachearea | Freg. | Norm. | Power norm.
scheme (mV) | overhead (%) | (MHZz) IPC | to Archipelago
6T cell 651 0.0 920 1.0 4.35
Row redun. 550 5.1 710 1.0 2.62
SECDED 530 6.3 670 1.0 2.35
ECC-2 490 7.4 580 0.96 1.87
ZerehCache [11] 430 10.7 450 0.96 1.31
Wilkerson [103] 420 3.4 430 0.89 1.35

10T cell [27] 380 66 340 1.0 1.17
Archipelago 375 5.2 320 0.95 1.0

transistor leakage, it is expected that leakage power datesrihe total power consumption

of a chip in the future technologies [44].

4.4 Quantitative Comparison to Alternative Methods

In order to illustrate the benefits of our design, we quatiniely compare AP with the
baseline 6T SRAM cell, three well-known conventional caphhetection methods (row
redundancy, 1-bit error correction code (SECDED), andtZ®GiC), and three state of the
art works (ZerehCache [11], Wilkerson et. al. [103], and BRAM cell [27]). Table 4.2
summarizes this comparison — in/8@ — based on the minimum achievallg;, area
overhead for the caches, processor clock frequency, neddPC, and normalized power.
In order to have a fair comparison, the number of redundam$ Bnd coding granularities
are set so that the area overheads of the row redundancy, SECBCC-2, and AP are
equal/comparable. In this table, different techniquessaréed based on their minimum
achievablé/,, — targeting 99% manufacturing yield for on-chip caches.

Overheads for AP are calculated by considering all extra [R#uctures, decoders,

MUXing layer, comparators, bypass MUXes, and other misoelbus small logics. How-

90

ever, some of the comparisons shown in Table 4.2 are corisenat best because we
overlook: 1) Area and delay overhead of the programmable decoder foredwndancy.
2) Area and power overhead of the encoder and decoder for ECE@GQHE2. 3) Power
overhead of the extra logic which is added to the caches i8][) A 380mV minimum
achievabld/,, for the 10T cell was derived in @bn [27] and it is clear that in 90m this
value would be higher.

Overall, even by overlooking all the mentioned overheadother schemes, AP can
still achieve the lowest,;; and highest power saving among the other methods. The three
closest competitors to our work are the 10T cell, Wilkersb®d3], and ZerehCache [11].
However, the 10T cell incurs 66% area overhead which actdbasden in the high power
mode. In contrast, our scheme only has 5.2% area overheada@sdnot considerably
influence the normal operation of the system. Comparing@8][lour scheme can achieve
a significantly lower/;; and higher power saving. In addition, Wilkerson’s work susf
an 11% performance drop-off — for SPEC-2K — in low power mauaig 8% in high power
mode. Comparing to ZerehCache, our scheme achieves a ewatsiglowerl,,;, power
consumption, and area overhead. However, ZerehCache ig@suiable solution for
single-bank caches and it does not need an address remdpgpimgque to deal with ca-
pacity reduction. Overall, the inherent efficiency, higlyae of freedom in redundancy
replacement, and intelligent assignment of the spare eienage the main advantages of

AP that allow it to tolerate a higher failure rate compareth®other techniques.

91

4.5 Summary

With aggressive CMOS scaling, dealing with power dissgratias become a challeng-
ing design issue. Consequently, a large amount of efforbkas devoted to the develop-
ment of DVS methods to tackle this problem. When decreasiagperational voltage of
a modern microprocessor, large on-chip cache structuestharfirst components to fail.
Tolerating these SRAM failures allows DVS to target lowgy values while preserving
the core frequency scaling trend. In this work, we proposéexéble fault-tolerant cache
design, Archipelago, which benefits from a high degree aédoen in redundancy sub-
stitution and an intelligent configuration algorithm fodtadancy allocation and group
assignment. AP allows fault-free operation in the neagghold region by partitioning the
cache to multiple autonomous islands with various numbevatl-lines to minimize the
cache capacity loss. Our scheme enables DVS to reach BB 90nm. This translates
to 79% dynamic and 51% leakage power savings for our targgeisywhich is modeled
after the Alpha 21364. This significant amount of saving cenvéh 2% area and 4.6%
performance overhead for the microprocessor when opgritiow-power mode. Finally,
we compared our scheme with several conventional and dttite art methods to illustrate

its efficiency and effectiveness.

92

CHAPTER YV

Enhancing System Throughput by Animating Dead Cores

5.1 Introduction

Manufacturing defects is one of the main challenges for #raisonductor industry,
which have a direct impact on yield. Based on the latest IT&®nt [48], for current
and near future CMOS technology, one manufacturing defecfipe 100nm? dies can
be expected. Fortunately, a large fraction of die area istéeMto memory structures, in
particular caches, which can be protected using existiclgnigues such as row/column
redundancy, 2D-ECC [54], ZerehCache [11], Bit-Fix [103)dasub-block disabling [1].
With appropriate protection mechanisms in place for cadiesprocessing cores become
the major source of defect vulnerability on the die. Consedly, we try to tackle hard-
faults in the non-cache parts of the processing core. Dusetinherent irregularity of the
general core area, it is well-known that handling defectth@a non-cache parts is chal-
lenging [75]. A common solution is core disabling [6]. Hoveevthe industry is currently
dominated by Chip Multi-Processo€MP) systems with only a modest number of high-

performance cores (e.g., Intel Core 2), systems which daaffard to lose a core due to

93

manufacturing defects. The other extreme of the solutiectspm lies fine-grained micro-
architectural redundancy [87, 25, 92]. Here, broken manahitectural structures, such
as ALUs, are isolated or replaced to maintain core functignaJnfortunately, since the
majority of the core logic is non-redundant, the fault cage from these approaches is
very limited — less than 10% for an Intel processor [75].

In this chapter, we propose NecromandeM) [9, 7] to tackle manufacturing defects
in current and near future technology nodes. NM enhanceslbggstem throughput and
mitigates the performance loss caused by defects in thecadme parts of the core. To
accomplish this, we first relax the correct execution c@mnstron a faulty core — than-
dead core- since it cannot be trusted to faithfully execute programisext, we leverage
high level execution informatiorh{nts) from the undead core to accelerate the execution
of ananimator core The animator core is an additional core, introduced by Nt s
an older generation of the baseline cores in the CMP withriessurces and the same in-
struction set architecturdSA). The main rationale behind our approach is the fact that,
for most defect instances, the execution flow of the prograrthe undead coreoarsely
resembleghe fault-free program execution on the animator core — vdtarting from the
same architectural state (i.e., program courf€)(architectural registers, and memory).
Moreover, in the animator core, these hints are only treasgoerformance enhancers and
do not influence execution correctness. In NM, we rely onnstcally robust hints and
effective hint disabling to ensure the animator core is nilead by unprofitable hints.
Dynamic inter-core state resynchronization is also engaloyp update the undead core
with valid architectural state whenever it strays too fanirthe correct execution path. To

increase our design efficiency, we share each small animateramong multiple cores.

94

Our scheme is unique in the sense that it keeps the undeadrtarsemi-correct execution
path, ultimately enabling the animator core to achieve fopmance close to the perfor-
mance of a live (fully-functional) core. In addition, NM doeot noticeably increase the
design complexity of the baseline cores and can be easilieddp current and near future

CMP systems to enhance overall system throughput.

5.2 Utility of an Undead Core

We motivate the NM design by demonstrating the high-levebrale behind it. To
this end, we provide evidence that supports the following statements(1) Although
an aggressive out-of-orde®0O) core with a hard-fault in the non-cache area cannot be
trusted to perform its normal operation, it can still pravigseful execution hints in most
cases(2) By exploiting hints from the undead core, the animator caretgpically achieve

a significantly higher performance.

5.2.1 Effect of Hard-Faults on Program Execution

Prior work has studied the effect of a single-event upsed,taansient fault, on program
execution for high-performance microprocessors. Using-ajection, it has been shown
that transient faults are often masked, easier to categaizd have a temporal effect on
program behavior [100]. On the other hand, the effect of fianits on program execution
is hard to study since each hard-fault can result in a com@dcintertwined behavior. For
example, a hard-fault can cause multiple data corruptibas finally mask each others

effect. Moreover, hard-faults are persistent and thegatftioes not go away. As a result,

95

m<100(Cl) m<1K(Cl) m<10K(Cl) M<100K(Cl) > 100K (Cl) or Masked

SPEC-FP-2K SPEC-INT-2K
100%

80% -

60% -

40% -

20% -

Percentage of Injected Hard-Faults

0% -

O S 2> & e Q Q < Q < X <

S S I P N K ¢ & L RO o
%“Q" n,?’QQ R & & é\o’% 'Q‘ooo o & & o Ol
TS T > T S ¥

Figure 5.1: Distribution of injected hard-faults that manifest as @ettural state mis-
matches across different latencies — in terms of the nunflemmitted instructionsl).

hard-faults can dramatically corrupt program executionorder to illustrate the negative
impact of hard-faults on program execution, we study theame number of instructions
that can be committed before observing an architecturéé stésmatch. This result, for
5000 area-weighted hard-fault injection experiments sci®PEC-CPU-2K benchmarks,
is depicted in Figure 5.1.

Details of the Monte Carlo engine, statistical area-weidHtult injection infrastruc-
ture, target system, and benchmark suite can be found imo8ex6.1. For these experi-
ments, we have a golden execution which compares its actinige state with the faulty
execution every cycle and as soon as a mismatch is detetwdps the simulation and
reports the number of committed instructions up to that {poFor instance, looking at
188.amp, 26% of the injected hard-faults cause an architdcstate mismatch to happen
in less than 100 committed instructions. Since 176.gcc mar®rmly stresses different
core resources, it shows a higher vulnerability to hardtdalAs this figure shows, more

than 40% of the injected hard-faults can cause an immediatd 8K — architectural state

96

WM<1K(Cl) @<10K(Cl) m<100K (Cl) [I>100K (Cl)or Masked

100% —
[PEC-INT-.

k]
m
[a]
n
v
N
=
N
=

S

ﬁ\\\\\\\\

Percentage of Injected Hard-Faults
w
S
R

*HHHH

ilg-

049‘046 0.3 0.9‘046‘043 0.9

0.9‘046 0.3 ‘0.9‘0.6‘043 0.9/0.6 0.3

H
g 8
| I

.. 0.9 0.6 0.:

e
w
@

0.6‘043 0.9‘0.5‘043 0.9/0.60.3 0.9 0.6‘0.3 0.9/0.6 0.3

% |
J:‘l
I
I

0.9 0.6‘0.3 0.9 ‘0.6 049‘045 03

-

S

o
@

172.mgrid 173.applu 177.mesa 179.art 183.equak 188 164.gzip 175.vpr 186.crafty 197.parser 256.bzip2 300.twolf Average

Figure 5.2: Number of instructions that are committeclj before an injected hard-fault re-
sults in a violation of a pre-specified similarity index thineld. For this purpose, 5K hard-
faults were injected while considering three different iganity index thresholds (90%,
60%, and 30%).

mismatch. Thus, a faulty core cannot be trusted to provideecbfunctionality even for

short periods of program execution.

5.2.2 Relaxing Correctness Constraints

As just discussed, program execution on a dead core canrtaidied. Here, we try
to determine the quality of program execution on a dead ctérenwelaxing the absolute
correctness constraints. In other words, we are interest&dowing for what expected
level of correctness, a dead core can practically exectge ghunks of a program. Based
on 5K injected hard-faults, Figure 5.2 depicts how manyrutdions can be committed
in a dead core before it gets considerably off the correctx@n path. In order to have
a practical system, the dead core should be able to exeaif@digram over reasonable
time periods before its execution becomes ineffectual.eHee define a similarity index
(SI) that measures the similarity between the PC of committsiuntions in the dead core

and a golden execution of the same program. This Sl is caémikvery 1K instructions

97

and whenever it becomes less than a pre-specified thresheldtop the simulation and
record the number of committed instructions. For instaacgmilarity index of 30% for
PC values means, that during each 1K instruction window, 8%®Cs hit exactly the
same instruction cache line in both the golden executionpandram execution on the
dead core. Figure 5.2 shows the number of committed ingbngfor three different Sl
thresholds. For instance, considering Sl threshold of 90fb6average only 12% of the
hard-faults renders the program execution on a dead coffechieal before at least 10K
instructions get committed. Hence, even for an Sl thresbb®D%, in more than 85% of
cases, the dead core can successfully commit at least 18@kidtions before its execution

differs by more than 10%.

5.2.3 Opportunities for Acceleration

Since the execution behavior of a dead core coarsely mathbhestact program exe-
cution for long time periods, we can take advantage of thgnam execution on the dead
core to accelerate the execution of the same program onenathe. This can be done
by extracting useful information from the execution of thegram on the dead core and
sending this information (hints) to the other core (the atoncore), running the same pro-
gram. We allow theindead cordo run without requiring absolutely correct functionality
The undead core is only responsible to provide helpful Himtshe animator core. This
symbiotic relation between the two cores enables the anintatre to achieve a signifi-
cantly higher performance. When the hints lose their effeness, we resynchronize the
architectural state of the two cores. Since an architelcstaige resynchronization, between

two cores in a CMP system, takes about 100 cycles [75] andicbsgynization in more than

98

M Original Performance [Performance + PHs

IPC Normalized to EV4

> > > 282 zz38z > >9 > zz8z zz382 2 z%8z >|>(9]> > >9 > 2238z >>9 > 2 z8lz zzl%z zlzl8 2

172.mgrid 173.applu 177.mesa 179.art 183.equake | | 188.ammp 164.gzip 175.

Figure 5.3: IPC of different DEC Alpha microprocessors, normalized&!s IPC. In most
cases, by providing perfect hints for the simpler cores (E8M5, and EV4 (000)), these
cores can achieve a performance comparable to that acthgveé-issue OoO EV6.

85% of cases happens after at least 100K committed instns;tthe overhead associated
with resynchronization is small.

For the purpose of evaluation and since we want to have aesiSgl system, based on
the availability of the data on the power, area, and otheracheristics of microprocessors,
we use an EV6 (DEC Alpha 21264 [52]) for the baseline coresth@rother hand, for the
animator core, we select a simpler core like the EV4 (DEC Algh064) or EV5 (DEC
Alpha 21164) to save on the overheads of adding this extra tcothe CMP system. In
order to evaluate the efficacy of the hints, in Figure 5.3, in@sthe performance boost for
the aforementioned DEC Alpha cores using perfect hinkdy — perfect branch prediction
and no L1 cache miss. Here, we have also considered the EM2)(@a OoO version of
the 2-issue EV4, as a potential option for our animator cAsecan be seen, by employing
perfect hints, the EV4 (O00) can outperform the 6-issue OMB B most cases; thus,
demonstrating the possibility of achieving a performanicse to the performance of a
live core through the NM system. Nevertheless, achieviigdbal is quite challenging

due to the presence of defects, different sources of imggsfein hints, and inter-core

99

communication issues.

5.3 From Traditional Coupling to Animation

In a CMP system, prior work has shown two cores can be couplgether to achieve
higher single-thread performance. Since the overall perdmce of a coupled core system
is bounded by the slower core, these two cores were traditiordentical to sustain an
acceptable level of single-thread performance. Howeweorder to accelerate program
execution, one of these coupled cores must progress thritgphrogram stream faster
than the other. In order to do so, three methods have beeongedp

* In Paceline [40], the core that runs ahebgh@ern and the core that receives execu-
tion hints checkeJ from the leader core operate at different frequencies elitex
cuts the frequency safety margin of the leader core and mamtisly compares the
architectural state (excluding memories) of the two coMhen a mismatch hap-
pens, the frequency of the leader is adjusted, L1 state nmtatforced, and finally
the checkpoint interval is rolled back for re-execution.

» Slipstream processors [76] and Master/Slave speculpavallelization [111] need
two different versions of the same program. In these schetine$eader core runs a
shorter version of the program based on the removal of icefé instructions while
the checker core runs the unmodified program.

 Finally, Flea-Flicker two pass pipelining [15] and Duati€ Execution [110] allow

the leader core to return an invalid value on long-latenagrations and proceed.

100

Although these schemes have widely varying implementatetails, they share some
common traits. In these schemes, the leader core tries tahgetd and sends hints that
can accelerate checker core execution. These two coresmamected through one/several
first-in first-out F1IFO) hardware queues to transfer hints and retired instrusadomg with
their PCs. The checker core takes advantage of programtexecun the leader core in 3
ways. First, the checker core receives pre-processedatistin and data streams. Second,
during the program execution in the leader core, most bramspredictions get resolved.
Third, the program execution in the leader core automdyiaatiates L2 cache prefetches
for the checker core.

A straight-forward extension of these ideas to animate a deae seems plausible.
However, NM encounters major difficulties when trying tofietdead core into this execu-
tion model. Here, we briefly describe the two main challentgsssing discussions of the
proposed microarchitectural solutions for subsequernicsec

Fine-Grained Variations: One of the main sources of problems is the presence of
defects in the dead core. Due to the presence of defectyrithead coremight exe-
cute/commit more or less number of instructions, causirrgatrans in the similarity of
program executions between the two cores. For instanceanymases, the undead core
can take the wrong direction on an IF statement and get battletaght execution path
afterwards, thereby preventing a perfect data or inswactream for the animator core.
This necessitates employing generic hints that are moierégo these local abnormali-
ties. Moreover, the number of times that each PC is visitethabbe used to synchronize
the two cores. A mechanism is required to help the animate ickentify the proper time

for pulling the hints off the communication queue. Given #agiation in the usefulness

101

of the hints, in order to enhance the efficiency of the animedoe, fine-grained hint dis-
abling can be leveraged. For instance, if the légdbranch prediction hints for a particular
PC were not useful, branch prediction for this particularda@ be handled by the animator
core’s branch predictor.

Global Divergences:When the undead core gets completely off the correct exatuti
path, hints become useless, and it needs to be brought backala@ execution point. For
this purpose, the architectural state of the animator canebe copied over to the undead
core. Although exact state matching, by checkpointing dugster file, has been used in
prior work [40], it is not applicable for animating a dead €since architectural state mis-
matches occur so frequently. Therefore, we need coarseegranline monitoring of the
effectiveness of the hints over a large time period to dewidether the undead core should
be resynchronized with the animator core. Moreover, rdsyargzations should be cheap
and relatively infrequent to avoid a noticeable impact om dherall performance of the
animator core. One possible approach for maintaining comemory state, suggested by
Paceline, is to re-fetch the cache-lines that are accessewdhe last checkpointed inter-
val into the L1 cache of the leader core [40]. However, sitigmight happen often for a
dead core, we need a low-cost resynchronization approatkddes not require substantial

book keeping.

5.4 NM Architecture

The main objective of NM is to mitigate system throughpusldse to manufacturing

defects. For this purpose, it leverages a robust and flekiglerogeneous core coupling

102

execution technique which will be discussed in the rest of $kection. Given a group of
cores, we introduce an animator core, an older generatitimtiaé same ISA, that is shared
among these cores for defect tolerance purposes. In thisisgwe describe the architec-
tural details for a coupled pair of dead and animator corée High-level NM design for
a CMP system with more cores will be discussed in the nextaectn Section 5.2, we
showed that the faulty core — the undead core — cannot bedrtstun even a short part of
the program. However, as we relaxed the exact architecitatd match and looked at the
global execution pattern, the undead core can execute aratedertion of the program
before a resynchronization is required. By executing tloggam on the undead core, NM
provides hints to accelerate the animator core withoutirgmumultiple versions of the
same program. In other words, the undead core is used aseanaxiuun-ahead engine for
the animator core that has been added to the CMP system. VggdoBIM is a valuable
solution for improving the system throughput of the currantl near future mainstream

CMP systems without notably influencing design complexity.

5.4.1 High-Level NM System Description

Figure 5.4 illustrates the high-level NM heterogeneouspted core design. As dis-
cussed in Section 5.2, for the purpose of evaluation, we tissu@ OoO EV6 for the
baseline cores and a 2-issue O0O EV4 as our animator corear tfesign, most communi-
cations are unidirectional from the undead core to the atginwre with the exception of
the resynchronization and hint disabling signals. Thusngle queue is used for sending
the hints and cache fingerprints to the animator core. Thiedathering unit attaches a

3-bit tag to each queue entry to indicate its type. When thesig@ gets full and the undead

103

core wants to insert a new entry, it stalls. To preserve comemory state, we do not
allow the dirty lines of the undead core’s data cache to bé&ewiback to the shared L2
cache. As a result, a dirty data cache-line of the undeadis@ienply dropped whenever
it requires replacement. Exception handling is also deshllt the undead core since the
animator core maintains the precise state.

As discussed in Section 5.2, the animator core with perfetts nas the potential of
surpassing the average performance of a live core. Nomsthelthe performance of the
undead core can be a bottleneck for the NM system siacé many cases (Figure 5.3),
performance of a baseline core is worse than the performaintdes animator core with
perfect hints. b. After each resynchronization, the undead core needs to warthe
branch predictor and local caches. Therefore, we allow titead core to proceed on the
data cache L2 misses, without waiting for the several huhdyeles needed to receive data
back from main memory. We simply return zero since L2 missesiat common and also

value prediction would not be beneficial. This has a largeachn the performance of

) 1
S
() 1
o | 1
3 i)l Cache Fingerprint | 1
1
T L Queue
2 : : EE———— 1 =
Q - 3
_'E 1)l Hint Gathering ||)| E’ E :| Hint Distribution ||! ®
: i !) ! : F——
i, N oo oY 1 r P | =,
| 1 1 Hint Di 1 3
1 1 Resynchronization signal and | — A A 7‘ 18
: | FET | DEC | REN | DIS | EXE |MEM|COM| 1 hint disabling information : I : e
] —i' o
! 1 1)¢| ¢ |oE[re| Difex| ME| co | |1 ©
! 1 ! H I
:,_ S S - | S — !
1 : 1 LEN
[y et 1.Data ; Memory Hierarchy i A
| 1 1 '[L1-Inst ” L1-Data]'
| S===== A———------= A=——-- ! == —=== ==l
| Read-Only Y :
II Shared L2 cache I
\ —/

Figure 5.4: The high-level architecture of NM is shown in this figure anddules that are
modified or added to the underlying cores are highlighted drewn to scale).

104

the undead core, potentially shortening the resynchranizgeriod. Given the ability to
eliminate stalls on L2 misses and also semi-perfect himts fthe undead core, NM can
potentiallyachieve even a higher performance than that of a live corgentteeless, pro-
viding even semi-perfect hints is challenging due to defectthe undead core, queue size,
limited performance of the undead core, queue delay, andaldtuctuations in program
behavior.

NM uses a heterogeneous core coupling program executibrevgtuned core that has
a significantly smaller area compared to a baseline core.MnWe do not rely on over-
clocking the undead core or having multiple versions of @m@e program. Furthermore,
it is a hardware-based approach that is transparent to thido@o and operating system
(O9. It also does not require register file checkpointing farfgening exact state match-
ing between two cores. Instead, we employ a fuzzy hint disgl@dpproach based on the
continuous monitoring of the hints effectiveness, andatiitg resynchronizations when
appropriate. Hint disabling also helps to enhance perfoo@and save on communication
power for program phases in which the undead core cannohgatiaof the animator core.
Apart from that, the undead core might occasionally gettadfdorrect execution path (e.qg.,
taking the wrong direction on an IF statement) and returinéocbrrect path afterwards —
Y-branches [99]. In order to make the hints more robust agaimicroarchitectural differ-
ences between two cores and also variations in the number/of executed instructions,
we leverage the number of committed instructions for himickyonization and attach this
number to every queue entry as age tag Moreover, we introduce theelease window
concept to make the hints more robust in the presence ofraéorgoned variations. For a

particular hint type, the release window helps the animatoe to determine the right time

105

to utilize a hint. For instance, assuming the data caBheachg release window is 100,
and 1000 instructions have already been committed in th@ator core, D-cache hints

with age tags< 1100 can be pulled off the queue and applied.

5.4.2 Hint Gathering and Distribution

Program execution on the undead core automatically waprtéwel shared L2 cache
without requiring communication between two cores. Howgeother hints —i.e., L1 data
cache, L1 instruction cache, and branch prediction hintgedrto be sent through the
gueue to the animator core. The hint gathering unit in theesaddcore is responsible for
gathering hints and cache fingerprints, attaching the age3dnit type tags, and finally
inserting them into the queue. On the other side, the hintilligion unit receives these
packets and compares their age tag with the local numberrofmstied instructions plus
the corresponding release window sizes.

Every cycle, the hint gathering unit looks over the commndiftestructions for data and
instruction cachel{cachg hints. In fact, the PC of committed instructions and adskes
of committed loads and stores are considered as I-cache arat® hints, respectively.
On the animator core side, the hint distribution unit trehts incoming I-cache and D-
cache hints as prefetching information to warm-up its leeahes. For the animator core,
Figure 5.5 depicts the utilization of two D-cache ports asthgle I-cache port. Given the
pipelined cache access for all high-performance processsrcan be seen for D-cache,
both ports are busy for less than 5% of cycles. Therefore ewerage the original cache
ports for applying our D-cache hints. However, since hirts only potentiallyhelp the

program execution, priority of the access should alwaysvengo the normal operation of

106

M 2 Ports Busy @1 PortBusy [IFree Ports

g) SPEC-FP-2K SPEC-INT-2K
S 100%
e 9% +H H H H H H — H H H R
£ 8% — H H [— H H H R
g o O E — H H H H
g 60% H 1 1 1 F — H H H R
g 500 H — H H H — H H H 8
g oa% H H H O — H H H R
£ z0% H | H O — H H H
(=] ——
S 20% H FHmt1 H H I e o e O O B R
g 10% -t S - L —
§ OOO T - T T - T T -_'_- T
@ > o> » 3 . N 9 Q < AN 2
& PO ,\&é’ o & Q,@@Q bu??Q P o Qé"z G ° &
AN A TN @ : N g : o7 O
R & & N I R ¥

(a) Port activity for the animator core’s L1-data cache

| M Busy Port [JFree Port

SPEC-FP-2K SPEC-INT-2K

100%
90%
80% |
70%
60% |
50%
40% -
30%
20%
10% -

0% -

Percentage of Program Execution Cycles

(b) Port activity for the animator core’s L1-instruction cache

Figure 5.5: Port activity breakdown for local caches of the animatoecdtiere, we show
the percentage of cycles that each cache port is either ldsgeo For our animator core,
the data cache has 2 ports while the instruction cache hagle giort.

the animator core. On the other hand, the I-cache port isfausyore than 50% of cycles
for 3 benchmarks and is free only if the instruction fetchup@FQ) is full. Moreover,
since the I-cache operation is critical for having a sustiai@ performance, we add an extra
port to this cache in the animator core.

In order to provide branch prediction hints, the hint gatingunit looks at the branch

predictor BP) updates and every time the BP of the undead core gets updaléat will

107

be sent through the queue. In the animator core side, theld&® — for EV4 — is a
simple bimodal predictor. We firstly add an extra bimodabtr (NM BP) to keep track
of incoming branch prediction hints. Furthermore, we emdierarchical tournament
predictor to decide for a given PC, whether the original or RRIshould take over. During
our design space exploration, the size of these structutldsendetermined — Section 5.5.2.
As mentioned earlier, we introduced release window sizeetdlge hints just before they
are needed. However, due to the variations in the numberesfuted instructions on the
undead core, even the release window cannot guaranteerfeetgaming of the hints. In
such a scenario, for a subset of instructions, the tourngpnedictor can give an advantage
to the original BP of the animator core to avoid any perforagapenalty. Having this in
mind, Figure 5.6 shows a simple example in which the NM BP caly achieve 33%
branch prediction accuracy. This is mainly due to the eristeof a tight inner loop —
number of instructions in the loop body is less than BP relegsdow size — with a low
trip count. Switching to the original BP can enhance the abranch prediction accuracy
for this code region.

Another aspect of the NM dual core execution is the potenfiaints on the specula-
tive execution paths. If a speculative path turns to be aecoath, instructions on this
path will eventually be committed and the correspondingshwill be sent to the animator
core. On the other hand, for a wrong path, although sendimi lsein potentially accel-
erate the execution of speculative paths on the animatey, tis acceleration can only
decrease the efficiency of our hints for the correct pathsirfsbance, if the animator core
executes a wrong path faster, it will bring more useless taits local D-cache which

causes prefetched data for non-speculative paths to beebiapt of D-cache. Therefore,

108

Branch Prediction Release Window Size = 10 Committed Instructions

C/C++ Code 1 1
sum=0; | NM BP Entry for PC = 0X19000020 at Different
for (i=0;i<100;i++){ | Chronologically Sorted Branch Prediction Hints for | Times [In the animator core]
for(j=0;j<2; j+[+])u§ I 0X19000020 [Sent from the undead core] |
sum = sum + arr[il[j};
’ Number of Taken OR Not Perfect
} | Age Tag PC Taken OR Not | Committed Taken Branch
| Taken | Instructions Prediction
: 9 0X19000020 Taken : 9 0X19000020 Taken Taken
DEC Alpha Assembly Code I 15 0X19000020 Taken | 0X19000020 H
0X19000000: xor $1, $1, $1 #sum=0 | 21 0X19000020 Not Taken | 21 0X19000020
0X19000004: xor $2, $2, $2 #i=0 | |
0X19000008: xor $3, $3, $3 #j=0 | 31 0X19000020 Taken | 31 0X19000020
0X1900000C: Idgq ~ $4, 0($5) # load from arr
0X19000010: addq $1, 0($5) # sum = sum + arrlil[] | 37 0X19000020 Taken | 37 0X19000020
0X19000014: addq $3, 1, $3 #j++
0X19000018: addq $5, 1, $5 # arr pointer proceeds | 4 QST Not Taken | a3 0X19000020
0X1900001C: cmplt $3, 2, $6 #j<2
CRERTT s (5 GREETIE | 53 0X19000020 Taken | 53 0X19000020
0X19000024: addq $2, 1, $2 #i++ | |
0X19000028: cmplt $2, 100, $7 #i<100 I |
0X1900002C: bne ~ $7, 0X19000008 i i

Figure 5.6: A code example in which the NM BP performs poorly and switghio the
original BP of the animator core is required. The code singallculates the summation
of a 2D-array elements which are stored in a row-based formathould be noted that
the branch prediction release window size is normally sethab the branch prediction
accuracy for the entire execution gets maximized. As carebe,dints are received by the
animator core at improper times, resulting in low branchdmtgon accuracy.

it is clear that sending hints for speculative paths can nénart the performance of the

NM system.

5.4.3 Reducing Communication Overheads

In order to reduce the queue size, communication traffic si¢edbe limited to more
beneficial hints. Consequently, in the hint gathering umé,use two content addressable
memories CAMs) with several entries to discard I-cache and D-cache thatswere re-
cently sent. Eliminating redundant hints also minimizes tesource contention on the
animator core side. For this purpose, these two CAMs keeg tithe lastV — number of
CAM entries — committed load/store addresses in the undexad tn addition to sending
less number of hints, queue size can be reduced by sendggiteper hint. Saving on the
number of bits can be done in several ways: sending only theklvklated bits of address

for I-cache and D-cache hints, ignoring hints on the spéelpaths, and for branch pre-

109

diction hints, only sending lower bits of the PC that are usedipdating branch history
table of the NM BP.

Given a design with multiple communication queues, the addmre stalls when at
least one queue is full and it wants to insert a new entry todbaue. The other queues
that are not full during these stalls remain underutilizédis, using a single aggregated
gueue guarantees a higher utilization, which reduces e @rerhead, number of stalls,
and overheads of interconnection wires. On the other hanck & single queue is used,
multiple entries might need to be sent to or received frongtieue at the same cycle. This
can be solved by grouping together several hints with theesage tag and sending them
as a single packet over the queue. This requires a smallrbaffee hint distribution unit

to handle the case that hints have non-identical releasdowis sizes.

5.4.4 Hint Disabling Mechanisms

Hints can be disabled when they are no longer beneficial ®atlimator core. This
might happen because of several reasons. First, the prag@cntion on the undead core
gets off the correct execution path due to the destructiygachof defects. Second, in
certain phases of the program, performance of the animatermight be close to its ideal
case, attenuating the value of hints. Lastly, at certaispaifr the program, due to the
intertwined behavior of the NM system, the animator corehnigpt be able to get ahead
of the undead core. In all these scenarios, hint disablitygshe four ways:

* It avoids occupying resources of the animator core wittiféagive hints that does

not buy any performance benefit.

» The queue fills up less often which means less number o§$talthe undead core.

110

» Disabling hint gathering and distribution saves power anergy in both sides.

* |t serves as an indicator of when the undead core has stfaydm the correct
path of execution (i.e., when hints are frequently disapéedl resynchronization is
required.

The hint disabling unit is responsible for realizing whenlegype of hint should get dis-
abled. In order to disable cache hints, the cache fingerpnihigenerates high-level cache
access information based on the committed instructionanast disabling time interval
—e.g., last 1K committed instructions. These fingerprinéssent through the queue and
compared with the animator core’s cache access patterredRasa pre-specified thresh-
old value for the similarity between access patterns, tiator core decides whether the
cache hint disabling should happen. In addition, when adpt$ disabled, that hint re-
mains disabled during a time period called the back-offqueriviore precisely, the cache
fingerprint unit retains two tables for keeping track of repeculative I-cache and D-cache
accesses in the last disabling time interval. Figure 5.if(estrates an example of cache
disabling. Considering D-cache hints, the correspondatdethas only several entries —
8 entries in our example — and each entry will be incremerded tommitted load/store,
whenever the LSBs of the address match the rank order of vyt & herefore, the cache
disabling table maintains a high-level distribution of eektes that are accessed during the
last interval. Atthe end of each interval, the table corgevill be sent over the queue to the
animator core and entries will be cleared for the next irgter@iven a similar cache access
distribution at the animator core’s side, for evaluatingitarity between two distributions,
(Vi, Va, ..., Vig) for the undead core and, Ss, ..., Si¢) for the animator core, we calculate

K =31° |S;—Vi|. Then, if K (140 in our example) is less than a pre-specified threshold,

111

The Animator Core Absolute Difference

w0 " e K Y KA KA KA KNI
60 . Absolute 60 NM Branch Predictor T T T N N N N N
I
40 _>€Bv'i> 40 - Original Branch Predictor T T N N T T T N
20 of the Animator Core
20
0" B 0
S > S > S > S > Instantaneous Score [OF IO N I I 10 TR 1A O
L N4 S “Z N N4 S " N S N S N N N N
P W W S & 9 8 & S 38 N
0T 0T SO OT ST T Y LIPS Cumulative Score 0011 0 1 2§73}
Cache Disabling Table Entries U)
Y \{ o
Disabling
The Undead Core 1, Time Interval
80 =
1 \ -
ig z [All Bars] = 140'| ,'Threshold Value T
— Cumulative Score = 2 ! } Threshold Valu
20 e Score ,\</, e
“ |
$ S o S IS
S FT DT W W l

Disable Cache Hints

Cache Disabling Table Entries Disable Branch Prediction Hints

(a) Disabling cache hints (b) Disabling branch prediction
hints

Figure 5.7: Two high-level examples of cache and branch prediction digdbling mech-
anisms. Here, values on the X-axes of the plots correspoedyta entries of the cache
disabling table.

a signal will be sent to the undead core to stop gatheringotndicular hint for the back-off
period.

Disabling branch prediction hints can solely be done by thimator core. Apart from
prioritizing the original BP of the animator core for a subeePCs, the NM BP can be
also employed for global disabling of the branch predictiomts. For this purpose, we
continuously monitor the performance of the NM BP and if jesformance — compared to
the original BP — is worse than a pre-specified thresholdietdst disabling time interval,
we disable branch prediction hints. As Figure 5.7(b) depifdr branch prediction hint
disabling, we use a score-based scheme with a single colrderevery branch that the
original and NM BPs either both correctly predict or both pnelict no action should be
taken. Nonetheless, for the branches that the NM BP coyrpetidicts and the original
BP does not, the score counter is incremented by one. Siyifar the ones that NM
BP mispredicts but the original BP correctly predicts, there counter is decremented.

Finally, at the end of each disabling time interval, if themsccounter (2 in our example)

112

is less than a certain threshold, the branch predictiors it be disabled for the back-off
period. For performing infrequent disabling-related comagions, we add a 4-bit ALU to

the hint disabling unit.

5.4.5 Resynchronization

Since the undead core might get off the correct executidm panhechanism is required
to take it back to a valid architectural state. In order to dpvge use resynchronization
between the two cores during which the animator core’s PQGestdtectural register values
get copied to the undead core. According to [75], for a mogeatcessor, the process of
copying PC and register values between cores takes on teeafrdO0 cycles. Moreover,
all instructions in the undead core’s pipelines are squidihe rename table is reset, and
the D-cache content is also invalidated for “resynchramgzthe memory state.

Resynchronization should happen when the undead core ffj¢h® @orrect execution
path and it can no longer provide useful hints for the animetwe. The simplest policy
is to resynchronize everyy committed instructions wher&’ is a constant number like
100K. However, as we will show in Section 5.5.2, a more dymamsynchronization policy
can achieve a higher overall speed-up for the NM system. Wéeddvantage of the hint
disabling information to identify when resynchronizatisimould happen. An aggressive
policy is to resynchronize every time a hint gets disabledweler, such a policy results
in too many resynchronizations in a short time which cleegyuces the efficiency of our
scheme. Another potential policy is to resynchronize ohéit some point in time all or at
least two of the hints get disabled. Later in Section 5.5&2 will compare some of these

potential resynchronization policies.

113

5.4.6 NM Design for CMP Systems

So far, we described the NM heterogeneous coupled core @xe@pproach and its
architectural details. Here, NM for CMP systems will be dssed. Figure 5.8 illustrates
the NM design for a 16-core CMP system with 4 clusters modaféet the Sun Rock
processor. Each cluster contains 4 cores which share a&singhator core, shown in the
call-out. In order to maintain scalability of the NM desigve employ the aforementioned
4-core cluster design as the building block. Although a lgirapimator core might be
shared among more cores, it introduces long interconneutiees that should travel from
one corner of the die to another. Therefore, given the loa averhead of NM for a 4-core
CMP (5.3% as will be discussed in Section 5.5.2), the propp&séding block preserves
design scalability. On the other hand, since many dies aré-fi@e, in order to avoid
disabling the animator cores, these cores can be leveragaddelerating the operation of
live cores. One possibility is to use the animator cores pdaSpeculative Method-Level
Parallelism by spawning an extra thread and moving it to thienator core to execute
the method call. The original thread executes the code tllaifs the method’s return
by leveraging a return value predictor. This is based on bsevation that inter-method
dependency violations are infrequent. However, evalaaifdhe latter is beyond the scope
of this work.

For a heterogeneous CMP system, the problem is slightly whiffreult due to the in-
herent diversity of the cores. Therefore, sharing an amin@ire between multiple cores
might not be possible since those cores have different ctatipnal capabilities. A poten-

tial solution is to partition the CMP system to groups of aarewhich each group contains

114

I 1
I 1
I 1
|
1 1
+'|¥| Core, || Core, B |Core1 Core, 1 :
()]
7] Cache | |
3 Banks \ |)
O || Core, | Core, Core, || CorZ, | 1 2 ! I
: |
1
L2 Cache Banks . 12 : !
Core I
T == = | 3 1
1 | I
[}] 1 I
H 4 r4
Q L2 e W Aeeeeeeaaieaeaaaaas |
L4] I
2 1| Cache ‘
O Banks
o
I

Figure 5.8: The high-level NM design for a large CMP system with 16 comesdeled after
the Sun Rock processor, which has 4 cores per cluster. Thdsdet NM core coupling
can be found in Figure 5.4.

cores with similar characteristics and performance. Toeeeeach group can share an an-
imator core with different specifications. An alternatiged partition the cores to groups
such that in each group, we have several large cores and bcemeat- all from the original
set of heterogeneous cores. In each group, the smaller botddshave the capability of
operating as a conventional core or as an animator core Wieza is a defect in one of
the larger cores in its own group. These dual purpose coees switable fit for many het-
erogeneous CMP systems that come with a bunch of simples smieh as the IBM Cell
processor.

In our design, since the animator core is shared among rfeuttipes, it is reasonable to
shift the overheads to the animator core side to avoid raftig of the same module in the
baseline cores. For instance, most of the similarity matgistructures for hint disabling
are located on the animator core side. Furthermore, sirogrttiead core runs significantly
ahead of the animator core in the program stream, the conuatiom queue should also

be closer to the animator core to reduce the timing overhéadaessing the queue and

115

checking the age tags. Finally, disabling hints, when threyn@ longer beneficial, allows
the undead core to avoid gathering and sending the hintdwglaines power/energy on both

sides.

5.5 Evaluation

In this section, we describe experiments performed to dfyahe potential of NM in

enhancing the system throughput.

5.5.1 Experimental Methodology

In order to model NM’s heterogeneous coupled core executi@heavily modified
SimAlpha, a validated cycle accurate microarchitecturautator based on SimpleScalar
[14]. We run two different versions of the simulator, implenting the undead and an-

imator cores, and use inter process communicatiB€) to model the information flow

Table 5.1: The target NM system configuration

Parameter The animator core A baseline core
Fetch/issue/commit width | 2 per cycle 6 per cycle

Reorder buffer entries 32 128

Load/store queue entries | 8/8 32/32

Issue queue entries 16 64

Instruction fetch queue 8 entries 32 entries

Branch predictor tournament (bimodal + NM BP) tournament (bimodal + 2-level
Branch target buffer size | 256 entries, direct-map 1024 entries, 2-way associatiye
Branch history table entries 1024 4096

Return address stack entries 32

L1 data cache 8KB DM, 3 cycles, 2 ports 64KB 4-way, 5 cycles, 4 ports
L1 instr. cache 4KB DM, 2 cycles, 2 ports 64KB 4-way, 5 cycles, 1 port
L2 cache 2MB Unified, 8-way, 15 cycles hit latency, 1 port

Main memory 250 cycles access latency

116

between two cores (e.g., L2 warm-up, hints, and cache finigésp As mentioned earlier,
a 6-issue O00 EV6 and a 2-issue 000 EV4 are chosen as oumesaetl animator cores,
respectively. The configuration of these two coupled conesthe memory system is sum-
marized in Table 5.1. We simulate the SPEC-CPU-2K benchsustk cross-compiled for
DEC Alpha and fast-forwarded to an early SimPoint [85].

To study the effect of manufacturing defects on the NM systeendeveloped an area-
weighted, Monte Carlo fault injection engine. During edelnation of Monte Carlo simula-
tion, a microarchitectural structure is selected and aoansingle stuck-at fault is injected

into the timing simulator. Table 5.2 summarizes the fautialons used in our experi-

Table 5.2: Fault injection locations and their corresponding pipebtages along with stage-
level area break-down for EV6.

‘ Pipeline Stage‘ Area Break-down ‘ Fault Location ‘

Program counter
Fetch 14.3% Branch target buffer
Instruction fetch queue (instruction bits)

Instruction fetch queue (PC bits)

Input latch of decoder (instr. opcode bits)

Decode 15.6% Input latch of decoder (instr. source register bits)
Input latch of decoder (instr. destination register bits)

Rename 5.1% Rename alias table ‘

Integer register file
Dispatch 24.1% Floating point register file

Reorder buffer

Integer ALU
Integer multiplier

Integer divider
Backend 40.8% Floating point ALU
Floating point multiplier
Floating point divider

Load/store queue

117

ments. Since every transistor has the same probabilityinflmefective, hard-fault injec-
tions should be distributed across microarchitecturaicstires in proportion to their area.
Therefore, for each fault injection experiment, we inje@06 hard-faults while artificially
prioritizing structures that have larger area. These saidhults are injected one by one in
the course of each individual experiment. As a result, at@oigt in time, there is a sin-
gle stuck-at fault in the undead core. Given an operatiaegluency of 600MHz [59] for
EV6 in 0.35um, scaling to a 99mtechnology node would result in a frequency ofQrsz
at 1.2V. This frequency is a pessimistic value for the animabre and NM can clearly
achieve even better overall performance if the animatos eare allowed to operate at a
higher frequency. Nevertheless, since the amount of warlpipeline stage remains rela-
tively consistent across Alpha microprocessor generstip8], for a given supply voltage
level and a technology node, the peak operational frequehtiyese different cores are
essentially the same.

Dynamic power consumption for both cores is evaluated udlatjch [26] and leakage
power is evaluated with HotLeakage [109]. Area for our EXk&-Icore — excluding the
I/O pads, interconnection wires, the bus-interface un#t,cache, and control logic — is
derived from [59]. In order to derive the area for the animatore, we start from the
publicly available area break-down for the EV6 and resizergwstructure based on the
size and number of ports. Furthermore, CACTI [72] is usedvaduate the delay, area,
and power of the on-chip caches. Overheads for the SRAM mestanctures that we
have added to the design, such as the NM branch predictite tate evaluated with the
SRAM generator module provided by therBfArtisan Memory Compiler. Moreover, the

Synopsys standard industrial tool-chain, with a TSM@r@@echnology library, is used to

118

evaluate the overheads of the remaining miscellaneous (edi., MUXes, shift registers,
and comparators). Finally, the area for interconnectioesvbetween the coupled cores
is estimated using the same methodology as in [60], withriméeliate wiring pitch taken

from the ITRS road map [48].

5.5.2 Experimental Results

In this section, we evaluate different aspects of the NMglesuch as design space,
achievable speed-up in the presence of defects, perfoemarmpact of different hard-fault
locations, area and power overheads, and finally throughidwincement.

Design Space Exploration:Here, we fix the architectural parameters that are involved
in the NM design. Since there is a variety of parameters (hatdware and policy), due
to space considerations, we only present a subset of theratiph for parameters with
the most interesting behaviors. During the explorationjniteally assign a nominal value
to each of the parameters and as we select a proper valuecloipasameter, we use the
updated value for the reminder of the experiments. Figur@sdb5.14 depict this design
space exploration for a pruned set of NM parameters.

In Figure 5.9, the release window size is varied between 66ac@mmitted instructions
while monitoring the data cache miss rate of the animatoe.cdks can be seen, there
is an optimal window size (i.e., 16 committed instructiotigdt maximizes prefetching
efficiency, given the variations in the number of committestiuctions on the undead core.
The D-cache miss rate, even before optimizing other parensias reduced from 10.7% to
5.3%. Figure 5.10 illustrates the effect of reducing thenbhahistory table BHT) size of

the NM BP on the branch prediction accuracy of the animatog.cto save area, we limit

119

Eno-hint M0 W4 W16 @64 1256

40%

35%

30%

25%

20% -

15%

10%

Data Cache Miss Rate

5%

0% -

Figure 5.9: Effect of the NM D-cache release window size on the data caubke rate of
the animator core.

| m64 W256 W1024 m4096 16384 |:|65536|

100%

95%

90%

85%

80%

Branch Prediction Accuracy

75% =

<
&
(N
A & %
D <) G

Figure 5.10: Effect of the branch history table size of the NM BP on the alldsranch
prediction accuracy of the animator core.

the BHT size to 1024 entries, causing less than 0.5% reduatithe achievable branch
prediction accuracy.

The size of the D-cache hint CAM is a double-edged sword anampact on the D-
cache miss rate and communication traffic is shown in Figut&.SIncreasing the CAM
size, reduces the communication traffic and queue size. tEwthis aggravates the ef-
ficiency of D-cache hints. The reason is that sending mortowgate hints increases the

likelihood that data is present in the local D-cache of thenator core when it is needed.

120

50%
45%
40%

‘ mmno-cam N2 mm4 8

E16 ={C=hints(2) =<0=hints(4) =a—hints(8)

35% -
30%
25% -

X

A2

0.9
0.8
0.7

r 0.6

0.5
0.4

A
20%
[J

15% -~ \% 03
A ® ®
10% | ° N o 0.2
0% - il | 0

172.mgrid 173.applu 177.mesa 179.art 183.equake 188.ammp 164.gzip 175.wpr 176.gcc 186.crafty 197.parser 256.bzip2 300.twolf Average

Data Cache Miss Rate

Num of D-Cache Hints Norm to No-CAM Case

Figure 5.11: Effect of CAM size that are used for reducing the number ofddke hints —
generated in the undead core — on the data cache miss ratearfithator core. Here, the
lines show the number of data cache hints should be sent tanih&ator core per cycle,
normalized to the the case without any CAM.

Nevertheless, using a CAM with 2 entries can reduce the nuwifiteansmitted D-cache
hints by more than 30% while affecting the D-cache miss rgtéebs than 0.5%. Next,
Figure 5.12 illustrates the effect of varying the threshioliddisabling branch prediction
hints. For each injected hard-fault and benchmark, we cettee number of instructions
committed before the branch prediction hint is disabledsuRs of this process are depicted
for 3 different threshold values (i.e., 50%, 70%, and 90%lanities). For high similarity
requirements, such as 90%, the branch prediction hints astlyndisabled even before
5K instruction are committed in the animator core. Consatjyewe select 70% similar-
ity so that the hint disabling does not occur too frequenthylevstill receiving occasional
feedback about the effectiveness of the hints during progneecution.

Finally, Figures 5.13 and 5.14 show the impact of differe&stynchronization policies
and communication queue sizes on the achievable speedNMbyespectively. In these
two plots, speed-ups are normalized to the performance akalime animator core. We
consider 4 candidates for the resynchronization policgsisiing of one static and 3 dy-

namic polices. For the static policy, resynchronizatiocurs periodically after committing

121

W <5K E<15K m<45K 0<100K [>100K

100%

90% 1
80% 1
70% —
60% —
50% 1
40% 1

20% — —
0% +——
X ®I® 8 ER-S- =
3/5|8 |8 |8 35|85 S
RIR|& AR AR & R

172.mgrid 173.applu

30% 1

Percentage of Injected Hard-Faults

®|®
3|8
R R

®
S
S

90%
50%

‘ 197.parser 300.twolf

-

177.mesa 179.art 183.equake| | 188.ammp ‘ 164.g2ip 175.vpr 176.gcc 86.crafty 256.bzip2 average

Figure 5.12: Number of instructions committed in the animator core betbe branch pre-
diction hint is disabled for different pre-specified bramrkdiction hint disabling thresh-
olds (i.e., 50%, 70%, and 90% similarities).

| W 100K ®1-hint m2-hints m3-hints |

2.5

Performance Norm to the Animator Core

§ & @ 8
g o §
A

Figure 5.13: Effect of different resynchronization policies on the alespeed-up of the
NM coupled cores normalized to the performance of the haselhimator core.

100K instructions while for the dynamic policies, the numbkdisabled hints determines
whether resynchronization is required. Since we aggrelysdxploit the hints by rarely dis-
abling them, the resynchronization policy that is invokedlte first disabled hint achieves
a better speed-up. Finally, the sensitivity to the commation queue size is presented
in Figure 5.14. Although it seems that a larger queue is advimtter, an extremely large
gueue enables the undead core to get too far ahead of thetanoee, polluting the L2

cache with unprofitable prefetches.

122

H128 W512 W2048 @8192 32768

2.5

Performance Norm to the Animator Core

e

& o5
S %) X
% > \ ~ <
\:\ ’</\ '\,/\ '3',” ,\/‘bq’

Figure 5.14: Effect of communication queue size on the overall speedftired\NM coupled
cores normalized to the performance of the baseline aniroate.

The values for the remaining parameters were identified iméas fashion: I-cache
release window size (4 committed instructions), branchlipt®n release window size (4
committed instructions), I-cache hint CAM size (2 entrjésanch prediction hint disabling
threshold (70% similarity), D-cache hint disabling threlsh(70% similarity), I-cache hint
disabling threshold (80% similarity), D-cache hint disagltable size (32 entries), and I-
cache hint disabling table size (32 entries). Given thesapeter values, on average, NM
can achieve 39.5% speed-up over the baseline animatorloarar simulation, we set the
gueue delay to 15 cycles — same as L2 cache; however, sinsidioceupled core design is
highly pipelined, it has a minimal sensitivity to the queway. For instance, even setting
this delay to 45 cycles, only affects the final speed-up by tlean 1%.

Performance Impact of Different Hard-Fault Locations: In order to highlight the
impact of a fault location on the achievable speed-up by thed\istem, Figure 5.15 de-
picts the performance breakdown results for the fault iooatdescribed in Table 5.2. Re-
sults in each row of this plot is normalized to the averageedpg that can be achieved

by the NM coupled core for that particular benchmark. Thiswane to eliminate the

123

Average ’
300.twolf 1.2

256.bzip2
56.bzip! ¥4

197 parser
186.crafty
176.gce

=)
0

175.vpr

164.gzip

Benchmark

188.ammp

183. ke
equake 06

179.art

177.mesa

173.applu 04
172.mgrid

& o = g\bﬂ' O YN ¥
G‘ \’; \'J- ¥ 'Q‘ - *Q‘) -, o > < <)))
T oY ST ¥ o\%Q EMP N = o

Fault Location

SN SN T N A SN
F FFF Y

¥ F g

Figure 5.15: Variations in the speed-up of the animator core for differemd-fault locations
across SPEC-CPU-2K benchmarks. To only highlight the impittard-fault locations, in
each row, results are normalized to the average speed-upathde achieved by the NM
coupled cores for that particular benchmark.

advantage/disadvantage that comes from the inherent mamklsuitability for core cou-
pling. As can be seen, hard-faults in some locations are mamaful than others. These
locations consist of the PC, integer ALU, and instructiaichiequeue. Another interesting
observation is that, for a benchmark like 197.parser, r@adb defects can significantly
differ from other benchmarks. We conclude two main poindsrfithis plot. First, on aver-
age, there are only a few fault locations that can drasyigapact the NM speed-up gain.
Second, for a given fault location, different benchmarksvsiarious degrees of suscep-
tibility; thus, heterogeneity across the benchmarks mgmn a CMP system helps NM
to achieve a higher speed-up by having a more suitable wanldgsigned to the coupled
cores.
Summary of Benefits and OverheadsFigure 5.16 demonstrates the amount of speed-

up that can be achieved by the NM coupled cores for CMP systethslifferent numbers

124

B Animator Core B Necromancer Coupled Cores [A Live Core

-

N
«n

N

[
[

[N

Performance Norm to the Animator Core
o
wv

1-Core 2-Cores 4-Cores 8-Cores 16-Cores

Figure 5.16: Performance of the baseline animator core, NM coupled careba live core
normalized to the average performance of a baseline anincate. Due to the higher
heterogeneity across the benchmarks for a CMP system wita aooes, NM can achieve
a higher overall speed-up.

of cores. As can be seen, NM achieves a higher overall speed-the number of cores in-
creases. For a 16-core system, on average, the coupledcaoreshieve the performance
of a live core, essentially providing the appearance of ly-uinctional 6-issue baseline
core with a 2-issue animator core. This is because NM achigierent speed-ups based
on the defect type, location, and the workload running orsyls¢em. Here, we assume full
utilization, which means there is always one job per corenddefor larger CMPs, with
more heterogeneity across the benchmarks running on thensythere is more opportu-
nity for NM to exploit. The speed-up evaluation was done bgdiecting a Monte Carlo
simulation with 1000 iterations. In each iteration, we settne benchmark for each core,
while allowing replication in the selected benchmarks.

Figure 5.17 shows the breakdown of area and power overheadsif scheme. Here,
we assume a single core system has 2MB L2 while assuming 1Midh.2 per core for
CMP systems. As can be seen, the area overhead graduatiigshsa the number of cores

grows since the cost of the animator core is amortized amaorg iwores. Nevertheless,

125

18%

ONecromancer Specific Structures in the Undead Core

16% |:| @ Interconnection Wires and Queue

14% B Necromancer Specific Structures in the Animator Core ||

W Animator Core (net overhead)

12%

10% -

8% -

6% -

Percentage of Overhead

4%

2% A

0% -

area |power area | power area |power area |power area |power

1 Core ‘ ‘ 2 Cores ‘ ‘ 4 Cores ‘ ‘ 8 Cores ‘ ‘ 16 Cores

Figure 5.17: Break-down of NM area and power overheads for CMP systentsdifferent
numbers of cores. As can be seen, the overheads that areadhpgghe the baseline
animator core is typically the major component, which get®dized as the number of
cores grows.

since we simply replicate the 4-core building block to camstt CMPs with more than 4
cores, the area overhead remains the same. In terms of puertread, two points should
be noted. First, based on our target defect rate, for CMPAs mwire than 4 cores, other
animator cores remain disabled and do not contribute to dkeepconsumption. Next, as
the speed-up results show, for CMPs with less than 8 coresirttiead core remains ahead
of the animator core and it needs to stall when the queue gktluring stall times, the
undead core does not consume dynamic power which is acabforten the net overhead

of the animator core — Figure 5.17.

5.6 Throughput Enhancement

Given a population of manufactured chips, the main objeaiVNM is to improve the
average system throughput of the population. For this mepae model 1000 manufac-

tured chips with randomly distributed defects based on angjet defect rate. If the anima-

126

tor core, communication queue, or any of the NM specific mesliike the hint gathering
unit are faulty, we simply disable the animator core. Figuds depicts the throughput en-
hancement results (shaded regions) basethmughput binningor 2, 4, and 8-core CMP
systems. Note that NM significantly enhances the overatesyshroughput for a popu-
lation of manufactured chips. In each sub-plot, we condigerbaselines (a CMP system
without any cache protection and a CMP system with propdeption for on-chip caches).
The horizontal axes show the system throughput, normatizéae throughput of a single
baseline core. For a CMP system withbaseline cores, we illustrate the throughput bin-
ning results for throughput values betwe&n— 1 and N. Since we assume, on average,
one defect per each 5 chips, yield is always above 80%. Hawtheze is a small chance
that multiple defects hit the same chip which precludes &lyoé 100% at a throughput
of N — 1, even when protecting the on-chip caches. As can be sedm gaotection is
a necessity and fortunately, can be provided easily (eow/column redundancies). As
discussed earlier, based on the expected defect rate fentand near future CMOS tech-
nologies, on average one defect per five manufactured 100dmsZXhould be expected.
In the case of a defect in one of the original cores, we apptyscheme. On the other
hand, if any of the animator cores, communication queueblMrspecific modules like
the hint gathering unit are faulty, we simply disable thenaatior core and the rest of the
system can continue their normal operation. Although exélg rare, there are cases that
both the animator and an original core can have defectsha#ie possible scenarios were
considered in our evaluation.

Finally, as discussed earlier, based on the expected dafedor current and near future

CMOS technologies, on average one defect per five manuéati@donm? dies should be

127

—#—2-Core CMP —©—2-Core CMP + NM

~#=—4-Core CMP ~©—4-Core CMP + NM
- 2-Core CMP + Cache Prot. =—6=2-Core CMP + NM + Cache Prot. £—4-Core CMP + Cache Prot. —6—4-Core CMP + NM + Cache Prot.
100% 9
00% I 100% &

95% f— 95% | \
= o O O [m] m] o a 4 5 O O O O

90%

Yield

90%

Yield

85% 85%

80% - - -

e ya 80%
1 11 1.2 13 14 1.5 1.6 17 1.8 1.9

3 3.1 3.2 3.3 3.4 35 3.6 3.7 3.8 3.9 4

(a) Achievable yield for a 2-core CMP, given an (b) Achievable yield for a 4-core CMP, given an
expected level of system throughput. expected level of system throughput.

«=fr=8-Core CMP ~©-—8-Core CMP + NM
£3-8-Core CMP + Cache Prot. —6=38-Core CMP + NM + Cache Prot.
100% @

95% +——

Yield

90% N\
85%

80%

7 7.1 7.2 7.3 74 7.5 7.6 7.7 7.8 7.9 8

(c) Achievable yield for an 8-core CMP, given an
expected level of system throughput.

Figure 5.18: Throughput enhancement for a population of manufacturgzetith different
number of cores. Here, we consider two baselines, CMP sysidrout and with proper
protection for on-chip caches, and show the yield improvarfae these two cases (shaded

regions) when applying NM. Each line presents the achiewalklds for different expected
throughput values.

expected. In the case of a defect in one of the original cevegpply our scheme. On the
other hand, if any of the animator cores, communication gegar NM specific modules

like the hint gathering unit are faulty, we simply disable #gmimator core and the rest of

the system can continue their normal operation.

128

5.7 Summary

Since manufacturing defects directly impact yield in naabs CMOS technologies, to
maintain an acceptable level of manufacturing yield, thiéesfects need to be addressed
properly. Non-cache parts of a core are less structured amsb@geneous; thus, tolerating
defects in the general core area has remained a challengabiem. In this work, we
presented Necromancer, an architectural scheme to enttasgstem throughput by ex-
ploiting dead cores. Although a dead core cannot be trustpdrform program execution,
for most defect incidences, its execution flow — when stgrfrom a valid architectural
state — coarsely matches the intact program behavior forgtlme period. Hence, Necro-
mancer does not rely on correct program execution on a deadiostead, it only expects
this undead core to generate effective execution hints ¢elaate the animator core. In
order to increase Necromancer efficacy, we use microacothitd techniques to provide
intrinsically robust hints, effective hint disabling, adgnamic inter-core state resynchro-
nization. For a 4-core CMP system, on average, our appraa@bles the coupled core
to achieve 87.6% of the performance of a live core. This ddfderance and throughput
enhancement comes at modest area and power overheads cduad384b%, respectively.
We believe NM is a valuable and low-cost solution for tolergtmanufacturing defects

and improving the throughput of the current and near futuaenstream CMP systems.

129

CHAPTER VI

Conclusions

The rapid growth of the silicon process over the last decaate dubstantially im-
proved semiconductor integration levels. However, asagedensity grows, each tran-
sistor gets smaller and more fragile leading to an overgléi susceptibility of chips to
hard-faults. Manufacturing defects, process variatiod,\@earout induced failures are the
main sources of hard-faults in deep submicron technologgsoThese hard-faults result
in permanent silicon defects and impact manufacturingdyiperformance, and lifetime
throughput of semiconductor devices. In addition, pow&sconption and heat dissipation
have become key challenges in the design of microprocesSoosving power consump-
tion affects device lifetime, the cost of thermal packagiogoling, electricity, and data
center air conditioning. Dynamic voltage scaling is comigarsed to reduce the power
consumption. However, the supply voltage of a micropromesannot be reduced below a
certain threshold without addressing SRAM failures. Thaes to allow a robust operation
in the presence of faults, these reliability concerns nedzktaddressed in the current and
future CMOS designs.

Compared to simpler semiconductor devices, protecting-pgrformance micropro-

130

cessors against hard-faults is a challenging and relgtivelv problem. These micropro-
cessors contain hundreds of millions of transistors ardriabf any transistor can impact
the correct operation. Considering a multicore systemhasatimber of transistors per
core increases, it becomes more likely to have a faulty isgorsin a given core. In such
a scenario, simple reliability solutions like disabling tfaulty core is apparently not cost
effective. Furthermore, the design complexity of theserapmcessors increases every-
day. Complexity in the connectivity between stages alont wuper-pipelining prevent
designers from employing reliability techniques whichdkeores into pipeline stages and
allow stage borrowing between cores. Moreover, the opmraticlock frequency of these
microprocessors is relatively high. Solutions based ondiraned spares are not practical
in this domain, due to the tight delay budget and the inheremtplexity in the connectiv-
ity. In addition, these processors conventionally opeaatdie highest possible frequency
at a given supply voltage. Therefore, simple reliabilitgtieiques that suggest using high
voltage and frequency guard-bands or slowing down the gemreeliminate most of the
achievable performance of these microprocessors.

To tackle hard-faults in modern high-performance micropssors, we proposed a
comprehensive, low-cost solution for protecting the entiore area including on-chip
caches and also the non-cache parts of the core. First, weriesl a flexible cache ar-
chitecture, ZerehCache, to protect regular SRAM strustagainst high degree of process
variation, wearout induced failures, and manufacturinfgcts. ZerehCache virtually re-
organizes the cache data array using a permutation netwgrtovide higher degrees of
freedom for spare allocation. In order to study the impadeaft patterns on the redun-

dancy requirements in a cache, we proposed a methodologgdelrthe collision patterns

131

in caches as a graph problem. Given this model, a graph nglsgheme is employed to
minimize the amount of additional redundancy required fatgcting the cache. Next, to
efficiently tolerate the large number of SRAM failures thase, in the large multi-banked
caches, when operating in the near-threshold region, dyhigbonfigurable cache design,
Archipelago, was presented. Since low-power operatiormptnal, instead of relying
on redundancy, Archipelago resizes the cache to provide gdements. Furthermore, to
maximize the effective cache capacity in low-power modega ptimal minimum clique
covering configuration algorithm was introduced.

Finally, to protect the general core area against hardsaalrobust and heterogeneous
core coupling execution scheme, Necromancer, was preseiitbough a faulty core can-
not be trusted to correctly execute programs, we obsenaddhmost defects, when start-
ing from a valid architectural state, execution traces orfaative core actually coarsely
resemble those of fault-free executions. In light of thisigit, Necromancer exploits a
functionally dead core to improve system throughput by &upg hints regarding high-
level program behavior. We partition the cores in a coneerati CMP system into multiple
groups in which each group shares a lightweight core thabeagubstantially accelerated
using these execution hints from a potentially dead corevdver, due to the presence of
defects, a perfect data or instruction stream cannot beged\by the dead core. This ne-
cessitates employing generic hints that are more restielocal abnormalities. Given the
variation in the usefulness of the execution informationgiider to enhance the efficiency
of the lightweight core, we introduced several fine-graihed disabling mechanisms. Be-
sides, when the faulty core gets completely off the corr@&etation path, hints become

useless, and it needs to be brought back to a valid execution. g=or this purpose, we

132

leverage coarse-grained online monitoring of the effect@éss of the hints over a large time
period to decide whether the faulty core should be resymshed with the lightweight

core.

133

BIBLIOGRAPHY

134

BIBLIOGRAPHY

[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. Gégz Low vcemin fault-
tolerant cache with highly predictable performance.Phoc. of the 42nd Annual

International Symposium on Microarchitecty&009.

[2] D. Achlioptas and C. Moore. The chromatic number of ramdegular graphs. In
8th International Workshop on Randomization and Compoiatpages 219-228,

2004.

[3] D. Achlioptas and A. Naor. The two possible values of theocnatic number of a
random graph. IiProc. of the 36th ACM Symposium on Theory of Compupiages

587-593, New York, NY, USA, 2004. ACM.

[4] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy. Prooceassation in embedded
memories: failure analysis and variation aware architectdournal of Solid State

Circuits, 49(9):1804-1814, 2005.

[5] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. pkocess-tolerant
cache architecture for improved yield in nanoscale teagiek.|[EEE Transactions

on Very Large Scale Integration (VLSI) Syste®(1):27-38, Jan. 2005.

135

[6]

N. Aggarwal, P. Ranganathan, N. P. Jouppi, and J. E. Sr@itimfigurable isolation:
building high availability systems with commodity multpie processors. IRroc.
of the 34th Annual International Symposium on Computer ifgcture pages 470—

481, 2007.

[7] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Putting faatires to work.|[EEE

Micro, 31(2), 2011.

[8] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Enablirtgaubw voltage system

operation by tolerating on-chip cache failures. Aroc. of the 2009 International

Symposium on Low Power Electronics and Despages 307—310, 20009.

[9] A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. Necromanesahancing sys-

[10]

[11]

[12]

tem throughput by animating dead cores.Phoc. of the 37th Annual International

Symposium on Computer Architectupages 473-484, 2010.

A. Ansari, S. Feng, S. Gupta, and S. A. Mahlke. ArchigetaA polymorphic cache
design for enabling robust near-threshold operationProc. of the 17th Interna-

tional Symposium on High-Performance Computer Architec2011.

A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehca8hmoring cache architec-
tures in high defect density technologies.Froc. of the 42nd Annual International

Symposium on Microarchitectyrmpages 100-110, 2009.

A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Maximizipgre utilization by virtu-

ally reorganizing faulty cache line#£EE Transactions on Compute®0(1), 2011.

136

[13] T. Austin. Diva: a reliable substrate for deep subnmcroicroarchitecture design.
In Proc. of the 32nd Annual International Symposium on Mictbéecture pages

196-207, 1999.

[14] T. Austin, E. Larson, and D. Ernst. Simplescalar: Arrastructure for computer

system modelinglEEE Transactions on Computei®5(2):59—-67, Feb. 2002.

[15] R. D. Barnes, E. N. Nystrom, J. W. Sias, S. J. Patel, N.aday and W. W. Hwu.
Beating in-order stalls with "flea-flicker” two-pass pipghg. InProc. of the 36th

Annual International Symposium on Microarchitectyvage 387, 2003.

[16] W. Bartlett and L. Spainhower. Commercial fault toleca: A tale of two systems.

IEEE Transactions on Dependable and Secure Compyitifig:87-96, 2004.

[17] B. Berger and J. Rompel. A better performance guarafttieapproximate graph

coloring. Algorithmicg 5(3):459-466, 1990.

[18] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jarej J. Klecka, and
J. Smullen. Nonstop advanced architecture.International Conference on De-

pendable Systems and Netwgniages 12—-21, June 2005.

[19] K. Bernstein. Nano-meter scale cmos devices (tut@riesentation), 2004.

[20] S. Bhunia, S. Mukhopadhyay, and K. Roy. Process varatand process-tolerant
design. InProc. of the 2007 International Conference on VLSI Despgages 699—

704, Washington, DC, USA, 2007. IEEE Computer Society.

[21] D. Bol, R. Ambroise, D. Flandre, and J. D. Legat. Anatyand minimization of

137

practical energy in 45nm subthreshold logic circuits.Phoc. of the 2008 Interna-

tional Conference on Computer Desjgrages 294—300, Oct. 2008.

[22] B. Bollobas. The chromatic number of random grapgBembinatorica8(1):49-55,

1988.

[23] S. Borkar. Designing reliable systems from unreliatdenponents: The challenges

of transistor variability and degradatiofeEE Micro, 25(6):10-16, 2005.

[24] F. A. Bower, P. G. Shealy, S. Ozev, and D. J. Sorin. Toilegahard faults in mi-
croprocessor array structures. MBmoc. of the 2004 International Conference on

Dependable Systems and Netwopage 51, 2004.

[25] F. A. Bower, D. J. Sorin, and S. Ozev. A mechanism for maldiagnosis of hard
faults in microprocessors. Iaroc. of the 38th Annual International Symposium on

Microarchitecture pages 197-208, 2005.

[26] D. Brooks, V. Tiwari, and M. Martonosi. A framework forehitectural-level power
analysis and optimizations. Proc. of the 27th Annual International Symposium on

Computer Architecturgpages 83-94, June 2000.

[27] B. Calhoun and A. Chandrakasan. A 256kb sub-threshalt én 65nm cmos2008

IEEE International Solid-State Circuits Conferenpages 2592-2601, Feb. 2006.

[28] B. H. Calhoun and A. P. Chandrakasan. A 256-kb 65-nmthuéshold sram design
for ultra-low-voltage operationJournal of Solid State Circuit2l2(3):680-688, Mar.

2007.

138

[29]

[30]

[31]

[32]

[33]

[34]

[35]

L. Chang, D. Fried, J. Hergenrother, J. Sleight, R. DdnR. Montoye, L. Sekaric,
S. McNab, A. Topol, C. Adams, K. Guarini, and W. Haensch. [gtapam cell
design for the 32 nm node and beyon8ymposium on VLSI Technologages

128-129, June 2005.

G. Chen, D. Blaauw, T. Mudge, D. Sylvester, and N. Kim. eldidriven near-
threshold sram design. Proc. of the 2007 International Conference on Computer

Aided Designpages 660-666, Nov. 2007.

Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, andLS Lu. Improving cache
lifetime reliability at ultra-low voltages.Proc. of the 42nd Annual International

Symposium on Microarchitectyrg, 2009.

A. Christou. Electromigration and Electronic Device Degradatiodohn Wiley and

Sons, Inc., 1994.

K. Constantinides, S. Plaza, J. A. Blome, B. Zhang, Vrt&eo, S. Mahlke,
T. Austin, and M. Orshansky. Bulletproof: A defect-toler&@MP switch architec-
ture. InProc. of the 12th International Symposium on High-PerfonceComputer

Architecture pages 3-14, Feb. 2006.

W. Culbertson, R. Amerson, R. Carter, P. Kuekes, andzleé3. Defect tolerance on
the teramac custom computer.Proc. of the 5th IEEE Symposium on FPGA-Based

Custom Computing Machingsages 116-123, 1997.

D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, Csl&ie D. Blaauw,

T. Austin, and T. Mudge. Razor: A low-power pipeline basecaiocuit-level timing

139

speculation. IrProc. of the 36th Annual International Symposium on Micob&r

tecture pages 7-18, 2003.

[36] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge.rdwsy caches: sim-
ple techniques for reducing leakage poweroc. of the 29th Annual International

Symposium on Computer Architectupages 148-157, 2002.

[37] H. Fujiwara, S. Okumura, Y. Iguchi, H. Noguchi, H. Kawalpi, and M. Yoshimoto.
A 7t/14t dependable sram and its array structure to avoidsie&ction. InProc. of

the 2009 International Conference on VLSI Desigages 295-300, Jan. 20009.

[38] M. Garey and D. JohnsorComputers and Intractability; A Guide to the Theory of

NP-CompletenesdV. H. Freeman & Co., New York, NY, USA, 1990.

[39] A. H. Gebremedhin and F. M. I. Parallel graph coloringalthms using openmp.

In First European Workshop on OpenMpages 10-18, 1999.

[40] B. Greskamp and J. Torrellas. Paceline: Improving Igiftgread performance
in nanoscale cmps through core overclocking. Phoc. of the 16th International
Conference on Parallel Architectures and Compilation Teghes pages 213224,

2007.

[41] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlkbe $tagenet fabric for
constructing resilient multicore systems. Rnoc. of the 41st Annual International

Symposium on Microarchitecturpages 141-151, 2008.

[42] S. Gupta, S. Feng, A. Ansari, J. A. Blome, and S. Mahlkéag8&netslice: A re-

configurable microarchitecture building block for regiliemp systems. IfProc.

140

of the 2008 International Conference on Compilers, Arddtitee, and Synthesis for

Embedded Systemsages 1-10, 2008.

[43] S. Gupta, S. Feng, A. Ansari, and S. Mahlke. Stagenetdamfigurable fabric for

constructing dependable cmpEEE Transactions on Compute®0(1), 2011.

[44] M. Hempstead, G. Y. Wei, and D. Brooks. Architecture amituit techniques
for low-throughput, energy-constrained systems acradstdogy generations. In
Proc. of the 2006 International Conference on Compilergj#ecture, and Synthe-

sis for Embedded Systenpsges 368—-378, 2006.

[45] T. Higashiki. Status and future lithography for sub Bpf device. 112009 Lithog-

raphy Workshop2009.

[46] M. Horiguchi. Redundancy techniques for high-dendiigms. In2nd Annual IEEE

International Conference on Innovative Systems Silipaiges 22—-29, 1997.

[47] L. D. Hung, M. Goshima, and S. Sakai. Seva: A soft-ereord variation-aware
cache architecture. IRroceedings of the 12th Pacific Rim International Sympo-
sium on Dependable Computingages 47-54, Washington, DC, USA, 2006. IEEE

Computer Society.

[48] ITRS. International technology roadmap for semicartdts 2008, 2008.

http://www.itrs.net/.

[49] D. Kannan, A. Shrivastava, V. Mohan, S. Bhardwaj, an¥®dhula. Temperature
and process variations aware power gating of functiondsumn Proc. of the 2008

International Conference on VLSI Desigrages 515-520, 2008.

141

[50] R. Karp. Reducibility among combinatorial problem&omplexity of Computer

Computationspages 85-103, 1972.

[51] S. Kaxiras, H. Zhigang, and M. Martonosi. Cache decagplating generational
behavior to reduce cache leakage powBroc. of the 28th Annual International

Symposium on Computer Architectupages 240-251, 2001.

[52] R. E. Kessler. The alpha 21264 microprocesHoEE Micro, 19(2):24-36, 1999.

[53] C. Kim, S. Sethumadhavan, M. Govindan, N. RanganatBarGulati, D. Burger,
and S. W. Keckler. Composable lightweight processor®rat. of the 40th Annual

International Symposium on Microarchitectypages 381-393, Dec. 2007.

[54] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoeulbit Error Tolerant
Caches Using Two-Dimensional Error Coding.Rroc. of the 40th Annual Interna-

tional Symposium on Microarchitectyr2007.

[55] W. Klotz. Graph coloring algorithms, 2002. MathemaBkricht 5, Clausthal Uni-

versity of Technology, Clausthal, Germany.

[56] I. Koren and Z. Koren. Incorporating yield enhancemata the floorplanning pro-

cess.IEEE Transactions on Compute#9:532-541, 2000.

[57] J. Kowaleski, T. Truex, D. Dever, D. Ament, W. Andersan Bair, , et al. Imple-
mentation of an alpha microprocessor in sB003 IEEE International Solid-State

Circuits Conferencgl:248-491, 2003.

[58] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully differgial, robust schmitt

142

trigger based sub-threshold sram.Aroc. of the 2007 International Symposium on
Low Power Electronics and Desigpages 171-176, New York, NY, USA, 2007.

ACM.

[59] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan,nill. Tullsen. Single-
ISA Heterogeneous Multi-Core Architectures: The Potérita Processor Power
Reduction. InProc. of the 36th Annual International Symposium on Micobéec-

ture, pages 81-92, Dec. 2003.

[60] R. Kumar, N. Jouppi, and D. Tullsen. Conjoined-corgahultiprocessing. I#Proc.
of the 37th Annual International Symposium on Microarattites, pages 195-206,

2004.

[61] S. Kundu, T. M. Mak, and R. Galivanche. Trends in mantufang test methods
and their implications. IrProc. of the 2004 International Test Conferenpages

679—-687, Washington, DC, USA, 2004. IEEE Computer Society.

[62] J. H. Lee, Y. J. Lee, and Y. B. Kim. SRAM Word-oriented Redancy Methodol-
ogy using Built In Self-Repair. IMEEE International ASIC Conference '0fgages

219-222, 2004.

[63] M.-L. Li, P. Ramachandran, U. R. Karpuzcu, S. K. S. Hanid S. V. Adve. Accurate
microarchitecture-level fault modeling for studying haete faults. InProc. of the
15th International Symposium on High-Performance CompAitehitecture pages

105-116, 2009.

143

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

X. Liang, R. Canal, G.-Y. Wei, and D. Brooks. Replacirgfams with 3t1d drams

in the |1 data cache to combat process variabilBEE Micro, 28(1):60—-68, 2008.

T. Luczak. Chromatic number of random graphS€ombinatorica 11(1):45-54,

1991.

S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Comldndynamic voltage
scaling and adaptive body biasing for lower power micropssors under dynamic
workloads. InProc. of the 2002 International Conference on Computer diDe-

sign, pages 721-725, 2002.

A. Meixner, M. Bauer, and D. Sorin. Argus: Low-cost, cprahensive error detec-

tion in simple coreslEEE Micro, 28(1):52-59, 2008.

K. Meng and R. Joseph. Process variation aware cackadeananagemenkroc.
of the 2006 International Symposium on Low Power Electmaind Designpages

262-267, Oct. 2006.

F. Moradi, D. Wisland, S. Aunet, H. Mahmoodi, and T. Ca&bnm sub-threshold
11t-sram for ultra low voltage applicationgitl. Symposium on System-on-a-Ghip

pages 113-118, Sept. 2008.

Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, HKawaguchi, and M. Yoshi-
moto. An area-conscious low-voltage-oriented 8t-sramgaesnder dvs environ-

ment. IEEE Symposium on VLSI Circuifsages 256—257, June 2007.

S. Mukhopadhyay, H. Mahmoodi, and K. Roy. Modeling dfdee probability and

statistical design of sram array for yield enhancement imoseale cmos.|IEEE

144

[72]

[73]

[74]

[75]

[76]

[77]

Transactions on Computer-Aided Design of Integrated Qiscand Systemgages

1859-1880, 2005.

N. Muralimanohar, R. Balasubramonian, and N. P. Jou@pittimizing nuca organi-
zations and wiring alternatives for large caches with da€ti InlIEEE Micro, pages

3-14, 2007.

D. Nassimi and S. Sahni. A self routing benes networkPioc. of the 7th Annual
International Symposium on Computer Architecip@ges 190-195, New York, NY,

USA, 1980. ACM.

S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou ltewvare cache archi-
tectures.Proc. of the 39th Annual International Symposium on Micobgtecture

0:15-25, 2006.

M. D. Powell, A. Biswas, S. Gupta, and S. S. Mukherjee ctitectural core sal-
vaging in a multi-core processor for hard-error tolerarind?roc. of the 36th Annual

International Symposium on Computer Architecfuiiene 2009.

Z. Purser, K. Sundaramoorthy, and E. Rotenberg. A stidjipstream processors.
In Proc. of the 33rd Annual International Symposium on Micobetecture pages

269-280, 2000.

A. Raychowdhury, S. Mukhopadhyay, and K. Roy. A fedg#ipstudy of subthresh-
old sram across technology generationsPtac. of the 2005 International Confer-

ence on VLSI Desigmages 417-422, Oct. 2005.

145

[78]

[79]

[80]

[81]

[82]

[83]

[84]

D. Roberts, N. S. Kim, and T. Mudge. On-chip cache dewcaling limits and
effective fault repair techniques in future nanoscale netbgy. 10th Euromicro
Conference on Digital System Design Architectures, Metfaodi Toolspages 570—

578, Aug. 2007.

B. F. Romanescu and D. J. Sorin. Core cannibalizatiohitacture: Improving life-
time chip performance for multicore processor in the presesf hard faults. In
Proc. of the 17th International Conference on Parallel Atebtures and Compila-

tion Techniques2008.

N. Sadler and D. Sorin. Choosing an error protectioresahfor a microprocessor’s
|1 data cache. IfProc. of the 2006 International Conference on Computer §esi

IEEE, 2006.

K. Sankaranarayanana, S. Velusamy, M. Stan, and K.r8kad\ case for thermal-
aware floorplanning at the microarchitectural levehe Journal of Instruction-Level

Parallelism 2005.

S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, warf,i and J. Torrellas.
Varius: A model of process variation and resulting timingpes for microarchitects.

In IEEE Transactions on Semiconductor Manufacturipages 3—13, Feb. 2008.

K. Sasaki. A 9-ns 1-mbit cmos rardournal of Solid State Circuif24:1219-1225,

1989.

E. Schuchman and T. N. Vijaykumar. Rescue: A microdezture for testabil-

146

[85]

[86]

[87]

[88]

[89]

[90]

[91]

ity and defect tolerance. IRroc. of the 32nd Annual International Symposium on

Computer Architecturgrages 160-171, 2005.

T. Sherwood, E. Perelman, G. Hamerly, and B. Caldero#adtically characterizing
large scale program behavior. Tenth International Conference on Architectural
Support for Programming Languages and Operating Syst@ages 45-57, New

York, NY, USA, 2002. ACM.

Z. Shi and R. Lee. Implementation complexity of bit pemation instructions. In

Signals, Systems and Computgrages 879-886, Nov. 2003.

P. Shivakumar, S. Keckler, C. Moore, and D. Burger. Bxpig microarchitectural
redundancy for defect tolerance. Bmoc. of the 2003 International Conference on

Computer Desigfpage 481, Oct. 2003.

D. Siewiorek and R. SwarzReliable Computer Systems: Design and Evaluation,

3rd Edition AK Peters, Ltd., 1998.

L. Spainhower and T. Gregg. IBM S/390 Parallel Entesprserver G5 Fault Tol-
erance: A Historical PerspectivelBM Journal of Research and Development

43(6):863—-873, 1999.

E. Sperling. Turn down the heat...please, 2006.

http://www.edn.com/article/CA6350202.html.

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. Tgsaict of technology scaling
on lifetime reliability. InProc. of the 2004 International Conference on Dependable

Systems and Networksages 177-186, June 2004.

147

[92]

[93]

[94]

[95]

[96]

[97]

[98]

J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. &itiplg structural duplica-
tion for lifetime reliability enhancement. IRroc. of the 32nd Annual International

Symposium on Computer Architectupages 520-531, June 2005.

K. Takahashi, H. Doi, N. Tamura, K. Mimuro, T. Hashizumé& Moriyama, and
Y. Okuda. A 0.9 v operation 2-transistor flash memory for edasel logic Isis.

Symposium on VLSI Technologpages 21-22, 1999.

K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazaw . Ishii, and H. Ko-
batake. A read-static-noise-margin-free sram cell forl@ldl and high-speed appli-
cations. 2006 IEEE International Solid-State Circuits Conferend#(1):113-121,

Jan. 2006.

R. Teodorescu and J. Torrellas. Variation-aware appbbn scheduling and power
management for chip multiprocessors. Rroc. of the 35th Annual International

Symposium on Computer Architectupages 363-374, June 2008.

K. M. Thompson. Intel and the myths of tedEEE Journal of Design & Test of

Computers13(1):79-81, 1996.

A. Tiwari and J. Torrellas. Facelift: Hiding and slowgmlown aging in multicores.
In Proc. of the 41st Annual International Symposium on Micch#ecture pages

129-140, Dec. 2008.

N. Verma and A. Chandrakasan. A 256 kb 65 nm 8t subthtdsdram employing
sense-amplifier redundanclEEE Journal of Solid-State Circuit2t3(1):141-149,

Jan. 2008.

148

[99] N. J. Wang, M. Fertig, and S. J. Patel. Y-branches: Whangome to a fork in the
road, take it. IrProc. of the 12th International Conference on Parallel Atebtures

and Compilation Techniquepages 56—-65, 2003.

[100] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Cheniaing the Effects of
Transient Faults on a High-Performance Processor Pipelminternational Con-

ference on Dependable Systems and Netw@ége 61, June 2004.

[101] C. Weaver and T. M. Austin. A fault tolerant approacimtiwroprocessor design. In
Proc. of the 2001 International Conference on Dependabtae®ys and Networks

pages 411-420, Washington, DC, USA, 2001. IEEE Computee§oc

[102] A. Wigderson. Improving the performance guaranteeafgproximate graph color-

ing. Journal of the ACM30(4):729-735, 1983.

[103] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, Mh&lah, and S.-L. Lu.
Trading off cache capacity for reliability to enable low tage operationProc. of
the 35th Annual International Symposium on Computer Aechitre 0:203-214,

2008.

[104] E. Wu, J. M. McKenna, W. Lali, E. Nowak, and A. VayshenKeterplay of voltage
and temperature acceleration of oxide breakdown for titim-gate oxides.Solid-

State Electronics46:1787-1798, 2002.

[105] X. Yang, M. Vachharajani, and R. B. Lee. Fast subwordmsation instructions

based on butterfly networks. BPIE, Media Processor 200pages 80-86, 2000.

149

[106] L. Youngs and S. Paramanandam. Mapping and repairmgedded-memory de-

fects. IEEE Journal of Design and Test4(1):18-24, 1997.

[107] S. Zafar et al. A model for negative bias temperatustahbility (nbti) in oxide and

high k pfets. InSymposium on VLSI Technologyages 45-50, 2004.

[108] J. Zeigler. Terrestrial cosmic ray intensitié8M Journal of Research and Develop-

ment 42(1):117-139, 1998.

[109] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadrod,M. Stan. Hotleakage: A
temperature-aware model of subthreshold and gate leakagechitects. Technical

report, Univ. of Virginia Dept. of Computer Science, Jan020

[110] H. Zhou. Dual-Core Execution: Building a Highly Sdala Single-Thread Instruc-
tion Window. InProc. of the 14th International Conference on Parallel Ateb-

tures and Compilation Techniqugsages 231-242, Sept. 2005.

[111] C. Zilles and G. Sohi. Master/slave speculative peliabtion. InProc. of the 35th

Annual International Symposium on Microarchitectysages 85-96, Nov. 2002.

150

