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Abstract 

Effects of flexibility on the force generation and the propulsive efficiency of 

flapping flexible wings are elucidated. First, based on a control volume analysis around a 

moving body immersed in viscous fluid, different types of forces, as a function of the 

Reynolds number, reduced frequency, and Strouhal number, acting on the moving body 

are identified based on a scaling argument. i) At the Reynolds number regime of O(104) 

and reduced frequency of 0.25 the vortex force term is the most dominant: for a thin rigid 

flat-plate massive leading-edge separation is observed due to its sharp leading-edge under 

a combined pitch-plunge kinematics. This geometric effect is seen to dominate over the 

viscosity effects, such that the Reynolds number dependence on both the flow field and 

the lift is small. Compared to a SD7003 airfoil with blunter leading-edge, small radius of 

curvature in the leading-edge of the flat-plate leads to an earlier and stronger leading-

edge vortex, which enhances the resulting lift; ii) At the Reynolds number regime of 

O(103 – 104) and the reduced frequency of O(1), the added mass forces, which are 

proportional to the acceleration of the wing, are dominant. In this parameter space, 

chordwise, spanwise, and isotropic flexibilities are considered to identify the dominant 

mechanisms in the force generation and propulsive efficiency of flapping wings. By 

modeling the wing as a linear beam, a relationship between the propulsive force and the 

maximum relative wing tip deformation is established by considering the energy balance 

of the wing: The lift generation of insect flyers, approximated by its weight, largely 

follows the same scaling relationship. Furthermore, a scaling for the propulsive efficiency 

is found. The current study predicts that the maximum propulsive force is obtained when 

the motion is near the resonance, whereas the optimal propulsive efficiency is reached 

when the wing flaps at about half of the natural frequency, consistent with the results 

reported in the literature. The resulting scaling parameter, given as a combination of a 

priori known wing geometry, structural and fluid properties, and motion kinematics, 

helps to gain more insight in the combined fluid and structural dynamics. 



1 
 

Chapter 1. 

Introduction 

1.1 Background and Motivation 

The flapping mechanisms inherent to the biological flyers, such as insects and 

birds, have inspired the most exotic dreams, ever since the history of human beings, from 

Daedalus and Icarus in the Greek mythology, via Leonardo Da Vinci’s ornithopter, to a 

recent successfully sustained human powered flapping flight [1] at human scale of 

ܱሺ1 mሻ. At smaller scales of 15 cm or less, micro air vehicles (MAVs) are of great 

interest in remote sensing and information gathering capabilities both in military as well 

in civilian applications. Smaller sizes and lower flight speeds lead to lower Reynolds 

numbers and higher sensitivity to wind gust effects than for the conventional airplanes. 

Furthermore, wing structures of MAVs are often made flexible and deform during flight 

[2,3,4,5,6]. Because of the common characteristics shared by MAVs and biological 

flyers, the aerospace and biological science communities are now actively 

communicating and collaborating.  

Recently, a bio-inspired bird-like MAV has successfully demonstrated its ability 

to hover (Nano Hummingbird) [7]. At larger scales of wing span of two meters 

(SmartBird) [8] a bird-like flapping motion was integrated into fully automated robotic 

flyer, see Figure 1-1. Other examples of MAVs are the Delfly [9], Microrobotic Fly [10], 

among others. In order to operate under wind gust, to avoid objects, or to hover, highly 

deformed wing shapes and coordinated wing-tail movement in the biological flight are 

often observed. Understanding the aerodynamic, structural, and control implications of 

these modes is essential for the development of high performance and robust flapping 

wing MAVs for accomplishing desirable missions. Moreover, the large flexibility of the 

wings leads to complex fluid-structure interactions, while the kinematics of flapping and 

the spectacular maneuvers performed by natural flyers result in highly coupled 
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nonlinearities in fluid dynamics, structural dynamics, flight dynamics, and control 

systems. 

 

(a) nano hummingbird,  

AeroVironment [7] 

(b) SmartBird,  

Festo [8] 

(c) Delfly Micro,  

Delft University of Technology [11] 

(d) Microrobotic Fly,  

Harvard University [10] 

Figure 1-1 Examples of bio-inspired MAVs 

 

As reviewed and illustrated by numerous studies [3,6,12,13,14,15,16,17,18,19], 

biological flyers showcase desirable flight characteristics and performance objectives and 

the strategies exhibited in nature have the potential to be utilized in the design of flapping 

wing MAVs. In particular, wing flexibility is likely to have a significant influence on the 
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resulting aerodynamics. Based on a literature study, see Section 1.2, it was found that 

several questions in flexible wing aerodynamics have not been adequately addressed in 

the existing literature, among which, the key ones include: (i) What are the dominant 

non-dimensional parameters, e.g., the Reynolds number (ܴ݁) that indicates the ratio of 

the fluid dynamic inertial forces to the viscous forces, the Strouhal number (ܵݐ) giving 

the ratio between the wing velocity to the fluid convection velocity, the reduced 

frequency (݇) that measures the unsteadiness of the flow, and the effective stiffness 

defined as the wing rigidity normalized by the fluid dynamic pressure, etc., for the 

aerodynamic performance of flexible flapping wings? (ii) What are the underlying 

mechanisms of force generation or propulsive efficiency of flexible flapping wings? (iii) 

Do optima exist for the aerodynamic performances? If so, what are these and how do 

these optima relate to the non-dimensional parameters listed above? This dissertation 

explores these questions using high-fidelity computational models and analytic scaling 

methods.  

1.2 Literature Overview 

1.2.1 Unsteady Aerodynamic Force Enhancement Mechanisms 

The fluid dynamics of flapping wings is inherently related to the unsteadiness of 

the flow field due to the motion of the wing. The unsteady aerodynamic mechanisms that 

natural flyers utilize to generate lift and thrust have been discussed and reviewed 

extensively in the literature [3,6,18,17,20] and this section will only highlight the main 

results. 

Clap and fling 

Weis-fogh [16] studied the wing motion of a chalcid wasp, Encarsia Formosa and 

observed that a chalcid wasp claps two wings together and then flings them open about 

the horizontal line of contact to fill the gap with air. During the fling motion, the air 

around each wing acquires circulation in the correct direction to generate additional lift to 

stay aloft, that otherwise could not have been explained based on the steady-state 
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approximation. The clap-and-fling mechanism is beneficial in producing a time-averaged 

lift coefficient to keep a low weight flyer aloft: it has been observed by hawkmoths, 

butterflies, fruitflies, wasps, and thrips [16,21,22,23,24,25]. The Delfly flapping-wing 

MAV, which has the ability to hover, also uses this mechanism to enhance its unsteady 

lift generation [9]. 

Wake capture 

The wake capture mechanism is observed during a wing-wake interaction. When 

the wings reverse their translational direction, the wings meet the wake created during the 

previous stroke, by which the effective flow velocity increases and an additional 

aerodynamic force peak is generated. Lehmann, Sane and Dickinson [26], Dickinson et 

al. [27], and Birch and Dickinson [28] examined the effect of wake capturing of several 

simplified fruit fly-like wing kinematics using a dynamically-scaled robotic fruit fly wing 

model at ܴ݁= 1.0 to 2.0×102. They compared the force measurement data with the quasi-

steady approximation, and then isolated the aerodynamic influence of the wake. Results 

demonstrated that wake capture force represented a truly unsteady phenomenon 

dependent on temporal changes in the distribution and magnitude of vorticity during 

stroke reversal. Wang [20] and Shyy et al. [3,29] clarified the wake capture mechanism 

and lift augmentation of the instantaneous lift peak using two-dimensional numerical 

simulations. The effectiveness of the wake capture mechanism was a function of wing 

kinematics and flow structures around the flapping wings [3,26,27,28]. 

Leading Edge Vortex  

One of the main unsteady lift mechanisms is suggested by Ellington et al. 

[30,31,32] that the delayed stall of leading edge vortex (LEV) can significantly promote 

lift associated with a flapping wing. The LEV creates a region of lower pressure above 

the wing and hence it would enhance lift. Multiple follow-up investigations [33,34,35]  

were conducted for different insect models, resulting in a better understanding on the role 

played by the LEV and its implications on lift generation. When a flapping wing travels 

several chord lengths, the flow separates from the leading and trailing edges, as well as at 

the wing tip, and forms large organized vortices, a LEV, a trailing edge vortex (TEV), 
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and a tip vortex (TiV). In flapping wing flight, the presence of LEVs is essential to delay 

stall and to augment aerodynamic force production during the translation of the flapping 

wings. Employing three-dimensional NS computations, Liu and Aono [36] and Shyy and 

Liu [35] demonstrated that a LEV is a common flow feature in flapping wing 

aerodynamics at Reynolds numbers O(104) and lower, which correspond to the flight 

regime of insects and flapping wing MAVs. However, main characteristics and 

implications of the LEV on the lift generation varied with changes in the Reynolds 

number, the reduced frequency, the Strouhal number, the wing flexibility, and flapping 

wing kinematics [6]. 

Tip Vortex 

Tip vortices associated with fixed finite wings in steady flows are seen to 

decrease lift and induce drag [37]. However, in unsteady flows, TiVs can influence the 

total force exerted on the wing in three ways: i) creating a low pressure area near the 

wing tip [29,38,39], ii) interacting with the LEV and the TiV [29,38,39], and iii) 

constructing wake structure by downward and radial movement of the root vortex and 

TiV [71]. The first two mechanisms ((i) and (ii)) also were observed for impulsively 

started flat plates normal to the motion with low aspect ratios: Riguette et al. [40] 

presented experimentally that the TiVs contributed substantially to the overall plate force 

by interacting with the LEVs at Re = 3.0×103. Taira and Colonius [41] utilized the 

immersed boundary method (IBM) to highlight the 3-D separated flow and vortex 

dynamics for a number of low aspect ratio flat plates at different angles of attacks. At Re 

of 3.0×102 to 5.0×102, they showed that the TiVs could stabilize the flow and exhibited 

nonlinear interaction with the shed vortices. Stronger influence of downwash from the 

TiVs resulted in reduced lift for lower aspect ratio plates. 

For flapping motion in hover, however, depending on the specific kinematics, the 

TiVs could either enhance or degrade the aerodynamics of a low aspect ratio flapping 

wing. Shyy et al. [29] demonstrated that, for a flat plate with AR = 4 at Re = 64 with 

delayed rotation kinematics, the TiV anchored the vortex shed from the leading edge 

increasing the lift compared to a two-dimensional computation under the same 

kinematics. On the other hand, under different kinematics with small angle of attack and 
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synchronized rotation, the generation of TiVs was small and the aerodynamic loading 

was captured by the analogous 2-D computation. They concluded that the TiVs could 

either promote or have small impact on the aerodynamics of a low aspect ratio flapping 

wing by varying the kinematic motions. 

Passive pitch 

Wing torsional flexibility can allow for a passive pitching motion due to the 

inertial forces during wing rotation at stroke reversals [42]. There are three modes of 

passive pitching motions which were similar to those suggested by rigid robotic wing 

model experiments [27]; i) delayed pitching, ii) synchronized pitching, and iii) advanced 

pitching. It was found that the ratio of flapping frequency and the natural frequency of the 

wing were important to determine the modes of passive pitching motions of the wing 

[42,43]. When the flapping frequency was less than the natural frequency of the wing, the 

wing experienced an advanced pitching motion, which led to lift enhancement by 

intercepting the stronger wake generated during the previous stroke [43,44,45]. 

Moreover, it was shown for two-dimensional flows, the LEVs produced by the airfoil 

motion with passive pitching seemed to attach longer on the flexible airfoil than on a 

rigid airfoil [42]. 

1.2.2 Strouhal Number, Reduced Frequency, and Rigid Wing Aerodynamics 

The relation between the fluid physics and the non-dimensional parameters, such 

as the Strouhal number or the reduced frequency has been investigated extensively in the 

literature, mostly for rigid wings. The interplay between kinematics, wing shapes, and the 

resulting forces and flow structures were investigated. In forward flight, the reverse von 

Kármán vortex street was characteristic for a thrust generating flapping wing 

[46,47,48,49,50]. A von Kármán vortex street is a well-known unsteady viscous flow 

behavior at the Reynolds number regime of O(100) behind a blunt object, such as a 

circular cylinder. The two attached eddies behind the cylinder grow in size and start to 

alternate as the Reynolds number increases from O(10) to O(100) resulting in unsteady 

force generation on the cylinder. Depending on the prescribed kinematics of the 
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periodically oscillating wings, the wake behind the wing would show similar flow 

topology as the von Kármán vortex street, but with reversed direction of the vorticity 

distribution, hence the nomenclature. If the LEV and the TEV shed from oscillating wing 

would have the correct alignment [48], which is called the reverse von Karman vortex 

street, the resulting induced velocity would be such that characterizes propulsion [46,47].  

Furthermore, the thrust generation and the propulsive efficiency was observed to 

be dependent on the Strouhal number: [51,52,53,54,55,56], with the optimum efficiency 

obtained for Strouhal numbers in the range of 0.01 – 0.235 [51,52,53]. Anderson et al. 

[49] considered harmonically oscillating NACA0012 airfoils in a water tunnel to measure 

the thrust. After a parametric study as a function of the amplitude of the angle of attack 

 plunge amplitude, and the phase lag between pitch and plunge (߶) to find the ,(௔ߙ)

optimum flow condition for the thrust generation at ܴ݁= 4.0×104, ݇ = 0.5, ܵ0.15 = ݐ – 

 ௔ = 30 deg, ߶ = 75 deg)  they show that the presence of a reverse von Kármánߙ ,0.2

vortex street formed by the vortices shed from the leading and trailing edges for ܵݐ in the 

range of 0.15 and 0.2 at ܴ݁= 1.1×103. Triantafyllou and co-workers [51,52,53] also 

performed parametric investigations using experiments in a water tunnel on the 

performance of a pitching and plunging NACA0012 airfoil in forward flight at ܴ݁ 

between 2.0×104 and 4.0×104, and ܵݐ between 0.05 and 0.23. Systematic measurements 

of the fluid force showed a unique peak efficiency of more than 70% for the optimal 

combinations of the parameters (݇ = 0.5, ܵߙ ,0.13 = ݐ௔ = 15 deg, ߶ = 90 deg) and higher 

thrust could be expected when increasing the Strouhal number and/or the amplitude of 

the angle of attack. Lai and Platzer [54] used Laser Doppler Velocimetry and dye 

injection techniques to visualize the velocity field and the wake structures of an 

oscillating NACA0012 airfoil in water at ܴ݁ ranging from 5.0×102 to 2.1×104. The 

transition from drag to thrust was found for ܵݐ ൐ 0.13. 

Under the Research and Technology Organization (RTO) arrangement of the 

North Atlantic Treaty Organization (NATO), there was a community-wide effort 

organized, which offered a wide range of experimental and computational data for both 

SD7003 airfoil and flat plate, with kinematics causing different levels of flow separation. 

The detailed information can be found in [57]. For of ܴ݁ (104) and higher, turbulence 

influences the development of the flow structures and forces. Baik et al. [58] investigated 
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the fluid physics at ܴ݁ = ܱ(104) of a pitching and plunging SD7003 airfoil and flat plate, 

experimentally using PIV focusing on the second order turbulence statistics. They 

observed laminar boundary layer and laminar-to-turbulence transition. Baik et al. [59] 

conducted an experimental study of a pitching and plunging flat plate at ܴ݁ = 1.0×104 

where the motion kinematics and flow parameters were such that the resulting time 

history of effective angle of attack was purely sinusoidal. The effect of non-dimensional 

parameters governing pitching and plunging motion including Strouhal number, reduced 

frequency, and the plunge amplitude was investigated for the same effective angle of 

attack kinematics. The formation phase of the LEV was found to be dependent on ݇: the 

LEV formation is delayed for higher ݇ value. It was found that, for cases with the same 

݇, the velocity profiles normal to the airfoil surface closely follow each other in all cases 

independent of pitch rate and pivot point effect. Visbal et al. [60] computed the unsteady 

transitional flow over a plunging two-dimensional and three-dimensional SD7003 airfoil 

with high reduced frequency (݇= 3.93) and low plunge amplitude (݄ୟ/ܿ୫= 0.05) using 

implicit Large Eddy Simulations (iLES) at ܴ݁ = 1.0×104 and 4.0×104. The results showed 

that the generation of dynamic-stall-like vortices near the leading edge was caused by 

motion-induced high angles of attack and three-dimensional effects in vortex formation 

around the wing. 

1.2.3 Scaling in the Fluid Dynamics, Structural Dynamics, and Aeroelasticity 

Scaling parameters resulting from dimensional analysis help identify key 

characteristics of the model. The Buckingham's Π-theorem reduces the number of 

involved parameters to a sufficient number of combinations [61,62,63,64]. The Π-

theorem states that a physical relationship between a dimensional variable and other 

dimensional governing parameters can be rewritten as a relationship between a 

dimensionless parameter and a number of dimensionless combinations parameters where 

this number is equal to the difference between the total number of governing parameters 

and the number of fundamental dimensions in the system. Examples of the well-known 

dimensionless parameters appearing in fluid dynamics are Reynolds number, Mach 

number, Strouhal number, Froude number, etc. One of the first examples of such use of 
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scaling and its self-similarity is the G.I. Taylor’s analysis of a basic intermediate stage of 

a nuclear explosion [61,65]. By considering the conservation equations and under several 

simplifying assumptions, he was able to obtain a scaling law for the radius of the shock 

wave which propagates inside the atmosphere due to the explosion, see Figure 1-2. 

Another famous example in the field of fluid dynamics is Kolmogorov’s K41 theorem 

that states that the smallest scales in turbulence are universal and only depend on the the 

energy dissipation per unit mass and the kinematic viscosity of the fluid. Dimensional 

analysis is applicable to all physical relationships because it is based on the fundamental 

covariance principle that all physical relationships can be represented in a form that is 

equally valid for all observers [61]. Under certain circumstances, the result obtained from 

the dimensional analysis can be reduced to a simpler relation with a reduced number of 

arguments as a property of the special problem under consideration. An example hereof is 

the power law and the universal logarithmic law in the vicinity of the wall in a turbulent 

flow [61]. Furthermore, the non-dimensional parameters arising from a dimensional 

analysis can lead to physical similarity, often critical when an exact mathematical 

formulation is missing [61]. Physical phenomena are called similar if they only differ in 

the numerical value of the governing parameters and are equal in the corresponding non-

dimensional parameters. Such concepts are used to measure fluid flow characteristics 

around a scaled-down airplane model in wind tunnels to determine actual flow field 

conditions. 

 



10 
 

 
Figure 1-2 Logarithmic plot of the fire ball radius showing the Taylor’s 

scaling law [61,65].  

 

In the field of flexible flapping wing aerodynamics numerous efforts using scaling 

arguments have increased our knowledge of the complex interplay between flexibility 

and resulting aerodynamics. Depending on the type of the model and the governing 

equations the resulting set of scaling parameters may vary. For example, for flexible 

flapping wings, Shyy et al. [6] considered the Navier-Stokes equation for out-of-plane 

motion of an isotropic flat plate and Chimakurthi [66] non-dimensionalized the 

anisotropic flat plate equation. Ishihara et al. [43] investigated the Navier-Stokes 

equation along with the linear isotropic elasticity equations to study the effects of 

flexibility on wing pitch changes in dipteran flapping flight. Furthermore, Ishihara et al. 

[67] have measured the lift generated by a dynamically scaled flexible wing model. They 

introduced the Cauchy number that describes the ratio between the fluid dynamic 

pressure and elastic reaction force and presented correlation between time-averaged lift 

and the Cauchy number. More recently, Thiria and Godoy-Diana [68] and Ramananarivo, 

Godoy-Diana, and Thiria [69] have measured the thrust and the propulsive efficiency of a 
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self-propelled flapping flyer with flexible wings in air. Since the density ratio is high, the 

elastic deformation of the wing was mostly balanced by the wing inertia. They have 

introduced the elastoinertial number using scaling arguments to define the ratio between 

the inertial forces and the elastic restoring forces and showed that the measured thrust 

scales with the elastoinertial number. Furthermore, in Ref. [69] a nonlinear damping term 

was linked to the effects of flexibility on the aerodynamic performance. It should be 

mentioned that these two studies only consider a portion of the parameter-space and for 

example the effects of density ratios on the force generation of flexible flapping wings 

have not been considered. Hence, the parameter-space involving the scaling parameters 

for the fluid-structure interaction needs to be mapped out in a systematic fashion to 

understand the role of flexibility and density ratio on the fluid dynamic force generations 

and the propulsive efficiency of coupled systems.  

1.2.4 Flexible Wing Structures 

Small size flapping flyers such as insects have flexible wing structures. Their 

wing structures are complex to model since wings are made up of an extremely thin 

membrane with veins running throughout. Combes and Daniel [70] have shown that a 

variety of insects possess anisotropy in their wing structures. The spanwise flexibility 

was 1 or 2 orders of magnitudes larger than the chordwise flexural rigidity. Although 

research has been conducted to assess the effects of orthotropic wings (e.g. [71,72]), due 

to the complexity inherent to the nonlinear fluid flow coupled to the anisotropic wing 

structures with large deformations, most investigations were on simplified wing structural 

models to assess the benefit of structural flexibilities in force generation. For forward 

flight, Heathcote and Gursul [73], Zhao et al. [44], and Shyy et al. [6] established that the 

chordwise flexibility affects the redistribution of the resulting fluid forces in the lift and 

the thrust directions. The airfoil shape undergoes deformation leading to camber variation 

and modified effective angle of attack, resulting in enhanced thrust generation. In 

parallel, Gopalakrishnan and Tafti [74] showed that the force generation for an oscillating 

linear membrane in forward flight increases due to camber deformation resulting in 

delayed leading-edge vortex detachment. They analyzed the effects of chordwise 
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flexibility of a rectangular membrane flapping wing on aerodynamics using a linear 

elastic membrane solver coupled with an unsteady LES method. The membrane pre-

stresses were varied to assess the camber effects on the aerodynamic loading. On the 

other hand, for rigid wings, which were also considered, the leading edge vortex lifted off 

from the surface resulting in low force production. Similar LEV – deformed wing 

interaction leading to better performance was experimentally observed and reported by 

Zhao et al. [44]. Gulcat [75] reported that the viscous effects obtained by the unsteady 

boundary-layer solution show very little alteration to the oscillatory behavior of the net 

propulsive force. They only reduced the amplitude of the leading edge suction force 

obtained by the unsteady aerodynamic theory. It was found that the major contribution to 

the thrust is due to heaving plunging; therefore, it is possible to get high propulsion 

efficiency with limited camber flexibility.  

With spanwise flexibility, a thrust enhancement was seen when the wing motion 

was in phase with the variation of the wing deformation in spanwise direction [76,77,6]. 

For flapping flexible wings in hover, Eldredge, Toomey, and Medina [78] found that a 

hovering flexible airfoil allows for lift generation even when the leading edge remains 

nearly vertical, as the airfoil passively deflects to create an effectively smaller angle of 

attack, similar to the passive pitching mechanism recently identified for rigid wings [6]. 

Furthermore, Ishihara et al. [67] showed that the wing torsional flexibility leads to an 

advanced pitching motion in cranefly hovering that can increase the lift by intercepting 

the wake from the previous stroke [3]. Despite the identification of benefit of flexural 

wing structures to the fluid dynamic performance, there are many parameters involved 

and a clear description and quantification of the role of these parameters and associated 

physical mecanisms for force generation is still lacking. The fluid-structure density ratio 

also affects the thrust generation: Zhu [79] has shown numerically that the thrust and the 

propulsive efficiencies increased for a plunging chordwise flexible airfoil in water than 

immersed in air. Hence structural flexibility, including the density ratio, seems capable of 

substantially influencing forces generated from wing motion. Daniel and Combes [80] 

and Combes and Daniel [81] have suggested that aerodynamic loads are relatively 

unimportant in determining bending patterns in oscillating wings in air or helium 

compared to the inertial load when the density ratio between the structure and the fluid is 
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high. On the other hand, they have speculated that if the density ratio is low, for example 

in water, the fully coupled set of equations from both fluid and solid dynamics may be 

needed to understand the effects of flexibility on the resulting fluid loads. Following the 

same scaling arguments, Thiria and Godoy-Diana [68] concluded that when the density 

ratio is sufficiently high, the wing deformation is dominantly determined by the inertia 

force, rather than the fluid dynamic forces. Then computing the forces acting on a 

flexible wing would be a two step process, where first the deformed shapes can be 

obtained under inertia forces only, then the fluid dynamic forces can be found based on 

the determined time evolution of the wing shape. 

1.2.5 Aerodynamic Performance of Flexible Flapping Wings 

Recent review by Shyy et al. [6] and experimental study by Ramananarivo, 

Godoy-Diana, and Thiria [69] give a good overview of the current state of the 

investigation of the role of the flexibility on the fluid dynamic performance of flapping 

wings. The maximum propulsive force, such as thrust in forward flight or lift in hover 

motion, was generated at a frequency which was slightly lower than the natural frequency 

of the system [45,82,68,69,72,83]. Zhang, Liu, and Lu [45] studied numerically using the 

lattice Boltzmann method a flexible flat plate modeled as a rigid plate with a torsional 

spring at the pivot point on the leading edge of the wing. They conclude that the flat plate 

would move forward, hence generate thrust when the leading edge plunges at a motion 

frequency that is lower than the natural frequency of the system and backward if the 

frequency ratio, the ratio between the motion frequency and the natural frequency, is 

greater than one. Similarly, Masoud and Alexeev [82] used the lattice Boltzmann method 

to show that at the frequency ratio of 0.95 the maximal propulsive force was obtained. 

The magnitude of the maximal force would increase when the inertial effects became 

more important than the fluid inertia. Michelin and Llewellyn Smith [83] used potential 

flow theory to describe the flow over a plunging flexible wing. The trailing-edge flapping 

amplitude and the propulsive force are shown to be maximal at resonance conditions. In a 

series of experiments using self-propelled simplified insect model, Thiria and Godoy-

Diana [68] and Ramananarivo, Godoy-Diana, and Thiria [69] also show that the 
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maximum thrust force was around frequency ratio of 0.7. More recently, Gogulapati and 

Friedmann [72] coupled an approximate aerodynamic model, which was extended to 

forward flight including the effects of fluid viscosity, to a nonlinear structural dynamic 

model. For various setups of composite anisotropic Zimmerman wings [71], they 

investigated the propulsive force generation in forward flight. The maximum propulsive 

force was also obtained at the frequency ratio slight lower than one. These observations 

are consistent with the general perception of the resonance phenomena in which even 

small external force can induce large amplitude deformations and potentially be efficient 

as well. 

However, it was reported for the insect flyers, that the flapping frequency of the 

insects is below the natural frequencies of the wing, only a fraction of the resonance 

frequency [84,85]. Sunada, Zeng, and Kawachi [84] measured the natural frequencies of 

vibration in air and the wing beat frequencies for four different dragonfly wings. The 

wing beat frequency ratio were in the range of 0.30 – 0.46. Chen, Chen, and Chou [85] 

have also measured the wing beat frequencies and natural frequencies of the dragonfly 

wings. In their measurements the average flapping frequency was 27 Hz while the natural 

frequency, calculated using a spectrum analyzer, was 170 Hz when it is clamped at the 

wing base, resulting in a frequency ratio of about 0.16. The propulsive efficiency was 

also investigated numerically [86,82] and experimentally using a self-propelled model 

[68,69]. Vanella et al. [86] conducted numerical investigations on a two link model and 

found that the optimal performance as realized when the wing was excited at the 

frequency ratio of 0.33. For all Reynolds numbers considered in the range of 75 to 1000 

the wake capture mechanism was enhanced due to a stronger flow around the wing at 

stroke reversal, resulting from a stronger vortex at the trailing edge. Thiria and Godoy-

Diana [68] and Ramananarivo, Godoy-Diana, and Thiria [69] also show using the 

experimental setup that is described above that the maximum efficiency is obtained at a 

frequency ratio lower than that of the maximum propulsion at 0.7. They conclude that the 

performance optimization is not by looking at the resonance, but adjusting the temporal 

evolution of the wing shape. On the other hand, Masoud and Alexeev [82] showed that 

the optimal efficiency for a hovering flat plate at ܴ݁ = 100 was when the motion was 

excited at the frequency ratio of 1.25. In their setup the flexible flat plate has a geometric 
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angle of attack of 40 deg in contrast to the previously mentioned studies where the 

plunging motion was symmetric. “Despite the convergence of many observations 

pointing out this feature, the underlyding mechanisms explaining how the elastic nature 

of the wing is related to propulsive efficiency remain unclear” [69]. 

1.3 Objectives 

The objective of the this dissertation is three-fold:  

(i) Provide framework to systematically analyze the effect of flexibility on oscillating 

wings;  

(ii) Elucidate the interplay between the fluid dynamic forces on the wing and the non-

dimensional parameters; and  

(iii) Understand the underlying physics of force generation and propulsive efficiency 

of flapping wings that uses wing flexibility. 

First, starting from the Navier-Stokes equations the forces acting on a moving body 

immersed in a fluid, such as a wing in air or water, will be scaled by properly 

normalizing the equations. The concepts such as added mass effects, that denotes the 

force on the wing that is proportional to the wing acceleration and the hydrodynamic 

impulse will be introduced. For a Reynolds number regime of ܱሺ10ସሻ and low reduced 

frequency and low Strouhal number flow, the interaction between the wing shape, motion 

kinematics, and the Reynolds numbers will be probed. The analysis of the fluid dynamic 

performance of flexible wings is similar to that of flutter in the aeroelasticity community: 

in flutter research the wing oscillations are results of the interaction between the wing 

deformations and the aerodynamic loading, here the kinematic motion at the root of the 

wing is given and we look for the response of the wing structures, the aerodynamics, and 

the interaction between these two. Our aim is: 

(i) to quantify the interplay of the imposed kinematics and the response of the 

flexible wing structure and  
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(ii) to identify the dominant parameter in the resulting fluid dynamics, with sufficient 

fidelity so that main physical mechanisms can be elucidated. 

Three canonical cases with sinusoidal kinematics will be considered to assess the role of 

the chordwise flexible, spanwise flexible, and isotropic wings on the resulting fluid 

dynamic forces. Based on these canonical cases, we will identify the underlying physical 

mechanism and propose a scaling parameter for the force generation and the propulsive 

efficiency of flexible oscillating wings that depends on known non-dimensional 

parameters. Identifying this scaling parameter leads to an order of magnitude estimation 

of the flexilibity enhanced fluid dynamic performance. Furthermore, we will extrapolate 

the scaling parameter to the insects by assuming that the weight of the insects are 

sustained by the lift and show that the generated lift also follows the same scaling. 

1.4 Outline 

The outline of this dissertation is as follows.  

In Chapter 2, first, a dimensional analysis will be performed in Section 2.2, 

followed by the non-dimensionalization of the governing equations. The numerical 

framework for flexible flapping wings is introduced in the subsequent sections: The fluid 

dynamics solver (Section 2.1), applied turbulence model (Section 2.4), remeshing 

algorithm (Section 2.5), structural dynamics solver (Section 2.6), and the fluid-structure 

interaction interface (Section 2.7) are described.  

Then in Chapter 3, the scaling of the forces will be discussed based on a control 

volume analysis (Section 3.1). Furthermore, for high Reynolds numbers the effects of the 

curvature of the airfoil shape, the kinematics of the motion, and the Reynolds number on 

the flow structure and the forces are assessed in Chapter 4.  

In Chapter 5 the scaling relationships for the force generation and the propulsive 

efficiency for flexible flapping wings will be established for high Reynolds number and 

high reduced frequency systems. Based on the numerical computations of i) the thrust 

generation of a plunging chordwise flexible airfoil in Secion 5.2.1, ii) spanwise flexible 

wing in Section 5.2.2 in forward flight in water for different wing stiffnesses and motion 
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frequencies, the physics of fluid-structure interaction between the plunging wing and the 

fluid flow will be explored. Furthermore, the lift generation of a flapping isotropic 

Zimmerman wing in hover in air (Section 5.2.3) will be shown to follow a similar 

mechanism. For this case a surrogate model will be constructed based on the variations of 

Young's modulus and wing density. Furthermore, based the identified mechanism, a 

scaling parameter for the force generation due to the flexibility of the wing will be 

proposed using a dynamic beam analysis in Section 5.2.4, with an extrapolation of the 

scaling to insects. Finally, a scaling parameter will be obtained for the propulsive 

efficiency in Section 5.3 with a discussion on the applicability of the scaling on the MAV 

design and interpretation of the observed physics.  
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Chapter 2.Governing Equations and Numerical Methods 

2.1 Introduction 

To understand flapping wing phenomena where the wings can undergo large 

deformations, numerous computational techniques have been applied. Two main 

categories are based moving meshes [87,88] or stationary meshes with cut cell or 

immersed boundary methods [87,89] have been developed. The physical models include 

NS as well as approximate treatments [90,91,72]. 

Different levels of fidelity and diverse numerical algorithms, depending on the 

objective of the study and accuracy and cost of the computations, can be incorporated 

into a numerical framework of flexible flapping wing simulations. High-fidelity 

framework can be used to conquer the rich and complex physics behind flexible flapping 

wing aerodynamics, while a low-fidelity model can be used for quick yet reliable design 

optimization of a complex and multi-dimensional design space. The aeroelastic coupling 

can be based on a time-domain partitioned process where the interaction between the 

fluid and the solid fields occurs at a shared boundary iteratively at a given time step. An 

advantage is that for the solutions of both fields, which are described by different 

nonlinear partial differential equations, well-established solvers can be used. Tang et al 

[92], Chimakurti et al. [77], and Aono et al. [93] have coupled an in-house finite-volume 

based Navier-Stokes solver to a beam model [92], a commercial nonlinear finite-element 

solver, MSC.Marc, a geometrically nonlinear active beam solver [77], and a co-rotational 

shell finite element model [94]. Furthermore, Gordnier et al. [95] coupled an in-house 

high-order Navier-Stokes solver to a geometrically nonlinear active beam solver, 

McClung et al. [96] developed the OVERFLOW Navier-Stokes solver to a modal 

representation of two-dimensional beam, and Stanford et al. [97] combined a two-

dimensional quasi-steady blade element model to a nonlinear co-rotational beam model. 
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Gogulapati and Friedmann [72] coupled an approximate aerodynamic model, which is 

capable of predicting vorticity field and forces acting on the wing in hover and forward 

motions including the effects of fluid viscosity, to a nonlinear structural dynamic model 

that can model anisotropic composite wings. 

Some of the numerical challenges associated with aeroelastic coupling of highly 

deformable three-dimensional flapping wings are that large number of cells are required 

to resolve the necessary flow field phenomena such as vorticity generation near the wing 

as well as convection and diffusion of large scale vortical structures away from the wing 

and that large flapping amplitudes and deformations lead to large mesh deformations that 

require numerically robust and efficient remeshing algorithms. To obtain the three-

dimensional flow solutions with the number of cells in the orders of O(106) a Navier-

Stokes equations solver is often parallelized, which introduces obvious implementation 

challenges for the problems involving moving meshes: how to efficiently communicate 

information between multiple processors about the displacements stored in other 

processors to remesh the grid; and how to provide interface for the communication for the 

fluid-structure interaction  involving two distinct solvers, where one or both solvers are 

parallelized. Two strategies have been studied for unstructured grids. In the first category 

the computational mesh is considered as an elastic solid, where the new nodal 

displacements are obtained by solving the structural dynamics equations. For example, 

Stein et al. [98] proposed to solve the linear elastostatics equations with a stiffening 

factor to reduce the volumetric distortion to maintain the mesh quality in finite element 

formulation. Smith and Wright [99] recast the linear elastostatics equations in finite-

volume discretization, which involves similar terms as the Navier-Stokes equations, so 

that the remeshing algorithm could be implemented based on the readily available 

momentum equation solver as a template. In the second category the nodal displacements 

are interpolated using Radial Basis Functions (RBF) based on the displacements given at 

the boundary conditions, either prescribed or from the structural dynamics solver. This 

method, as the cell connectivity information is not required, can be applied to structured 

and unstructured meshes and is seen to keep initial mesh qualities well and efficiently 

[100,101,102,103]. 

Chimakurthi et al. [77] have presented a computational framework capable of 
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computing flexible flapping wing aerodynamics and aeroelasticity. They have detailed 

fluid and structural solvers as well as the coupling strategies. Aono et al. [93] have 

further developed the techniques and investigated the dynamic characteristics associated 

with spanwise flexibility of a plunging wing. In this Chapter, the advanced computational 

capabilities presented in Ref [77] is revisited. Furthermore, new remeshing techniques, 

similar to that reported by De Boer et al. [100] and Rendall and Allen [101,102,103], 

have been developed and tested. The added capabilities can handle a variety of wing 

structures with large flapping translation and rotation that is able to efficiently deform 

large number of nodes under large wing movements, while keeping the initial mesh 

qualities. The relevance of this framework is three-fold. The computed fluid flow field 

and the structural response can be studied to understand the nonlinear coupled field 

problem for flapping wing flyers, also these results can function as a validation for lower 

order tools or experimental results. Moreover, this framework can serve as a tool to 

construct a quick and reliable design guideline for MAV applications. 

2.2 Dimensional Analysis and Non-Dimensional Governing Equations 

As discussed in Section 1.2.3, it is useful by the means of dimensional analysis to 

i) identify characteristic properties of the system under consideration, ii) to reduce the 

number of parameters, and iii) to indicate which combination of parameters becomes 

important under a given condition. From the view point of fluid-structure interaction, 

several dimensionless parameters arise during the non-dimensionalization process of the 

fluid and structural dynamics equations using a set of suitable reference scales. 

Depending upon the problem at hand and the type of equations used to model the 

physical phenomena involved, the resultant set of scaling parameters could vary. 
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Figure 2-1 Relevant physical variables shown for a case of hummingbird. 

The picture is reproduced, by permission, from Wei Shyy © [104].  

 

The relevant physical quantities related to the system of flexible flapping wing 

fluid dynamics are the density,  and the viscosity, , of the fluid; the reference velocity, 

, of the fluid flow field; the half span, , the mean chord, , and the thickness, , of 

the wing geometry; the density,  and the Young's modulus, , and the Poisson's ratio, 

, of the wing structure; the flapping (plunging) amplitude,  ( ), the flapping 

frequency, , and the geometric angle of attack, ; and finally the resulting 

aerodynamic force, . There are 13 variables and three fundamental dimensions, i.e. 

mass, time, and length, leading to 10 non-dimensional parameters. With , , and  

as the basis variables to independently span the three fundamental dimensions, the 

dimensional analysis leads to the non-dimensional parameters shown in Table 2-1 and 

Figure 2-1. The resulting set of non-dimensional parameters consists of most of the well-

known parameters in the flapping wing aerodynamics community, however it is not 

unique. 
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Table 2-1 Non-dimensional parameters for the flexible flapping wing systems 

Non-dimensional parameter Symbol Definition Note 

Reynolds number ܴ݁ ߩ௙ rܷefܿ௠ ⁄ߤ   

Aspect ratio ܴܣ ܴ ܿ௠⁄   

Thickness ratio ݄௦
௦݄ כ ܿ௠⁄   

Density ratio ߩ כߩ௦ ⁄௙ߩ   

Poisson’s ratio ߥ ߥ  

Effective stiffness Πଵ 
௦݄ܧ

ଷכ ൛12ሺ1 െ ௙ߩଶሻߥ rܷef
ଶ ൟൗ  plate 

௦݄ܧ
ଷכ ൛12 ௙ߩ rܷef

ଶ ൟൗ  beam 

Reduced frequency ݇ ߱ܿ௠ ሺ2 rܷefሻ⁄   

Strouhal number ܵݐ 
߶௔ ܴܣ ݇ ⁄ߨ  flapping 

݄௔ ݇ ሺܿ௠ߨሻ⁄  plunging 

Effective angle of attack ߙ௘ ߙ ൅ atanሺ2ߨ  ሻ plungingݐܵ

Force coefficient ܥி ܨ ൬
1
2 ௙ߩ rܷef

ଶ ܿ௠
ଶ ൰ൗܴܣ   

 

The governing equations are non-dimensionalized with the reference velocity, 

rܷef, as the velocity scale, inverse of the motion frequency, 2ߨ/߱ as the time scale, and 

the mean chord, ܿm, as the length scale. For forward flight cases the forward velocity of 

the wing, i.e. the incoming velocity in the frame of reference of the wing, is chosen as 

rܷef and for hovering the mean tip velocity during half stroke is taken as the reference 

velocity. The resulting governing equations for the incompressible fluid modeled by the 

unsteady three-dimensional Navier-Stokes equations with constant density and viscosity 

are 

 
߲

௜ݔ߲
כ ሺݑ௜

ሻכ ൌ 0 

(1)݇
ߨ

 
߲
ݐ߲

 ሺݑ௜
ሻכ ൅

߲
௜ݔ߲

כ ൫ݑ௝
כ ௜ݑ

൯כ ൌ െ
כ݌߲

௜ݔ߲
כ ൅

1
ܴ݁

߲
௝ݔ߲

כ ቊ
௜ݑ߲

כ

௝ݔ߲
כ ቋ 

 

where ሺڄሻכ indicates non-dimensional variables. The reduced frequency ݇ is a measure of 
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unsteadiness by comparing the spatial wavelength of the flow disturbance to the chord 

[105]. For hover, the reference velocity is based on the mean wing tip velocity, thus 

reduced frequency is inversely proportional to the flapping (plunging) amplitude and 

aspect ratio of the wing and is not related to the flapping frequency. On the other hand, 

the reduced frequency based on the forward speed is proportional to flapping frequency 

and the mean chord length, and inversely proportional to the flight speed. Another 

interpretation of the reduced frequency is that it gives the ratio between the fluid 

convection time scale, ܿm/ rܷef, and the motion time scale, 2ߨ/߱. The Reynolds number 

ܴ݁ is the ratio between the inertial and the viscous forces in the fluids. In hover the 

Reynolds number is proportional to the flapping (plunging) amplitude, the flapping 

frequency, square of the mean chord length, and the aspect ratio of the wing. 

The flexible wing structure is modeled locally by 

 

௦݄כߩ
כ ൬

݇
ߨ

൰
ଶ

൬
ܮ

ܿ௠
൰

߲ଶכݓ

ଶכݐ߲ ൅ Πଵ ቀ
ܿ௠

ܮ
ቁ

ଷ
Δכଶכݓ ൌ ௙݂

(2) ,כ

 

where ݓ is the displacement due to bending motion, Δכ ൌ ଶכ߲ ௜ݔ߲
⁄ଶכ  the Laplacian 

operator, and ௙݂
 the distributed transverse fluid force on the wing per unit span. A special כ

care is given in the direction of the wing bending, because the correct length-scale for the 

spanwise bending is the half span ܴ and not the chord ܿ௠. The correction factor that 

arises is expressed as ሺܮ ܿ௠⁄ ሻ, where ܮ ܿ௠⁄ ൌ 1 for the chordwise flexible airfoil case 

(Section 5.2.1), and ܮ ܿ௠⁄ ൌ  for the spanwise flexible wing (Section 5.2.2) and ܴܣ

isotropic Zimmerman (Section 5.2.3) wings, where ܴܣ is the aspect ratio of the wing: For 

the three-dimensional wings the bending motion is aligned with ܴ, so that a factor of ܴܣ 

is required to renormalize the transverse displacement. The density ratio כߩ is the ratio 

between the wing density and the fluid density and the effective stiffness Πଵ gives the 

ratio between the elastic bending forces and the fluid dynamic forces. The coefficient of 

the inertial term will be used frequently later in the discussion of the fluid dynamic 

performance of flexible wings in Chapter 5 and is abbreviated as the effective inertia 

Π଴ ൌ ௦݄כߩ
ሺ݇כ ⁄ߨ ሻଶ. In this dissertation the prescribed motion at the root of the wing is 

sinusoidal of the form  
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߶ሺכݐሻ ൌ
ݐܵ
ܴܣ

ߨ
݇

sinሺ2כݐߨሻ, (3)

 

for the flapping motion and  

 

݄ሺכݐሻ ൌ ݐܵ
ߨ
݇

sinሺ2כݐߨሻ, (4)

 

for the plunging motion, where the sine function can be replaced by the cosine function. 

The Strouhal number ܵݐ appears in combination with ݇ to give the plunge amplitude 

݄௔ ܿ௠⁄ . The Strouhal number indicates the ratio between the flapping speed and the 

reference velocity. It characterizes the vortex dynamics of the wake and shedding 

behavior of vortices of a flapping wing in forward flight [3,106]. Still unclear is the 

meaning and the role of the Strouhal number in hover, since for hover the Strouhal 

number will reduce to a constant. The pitching motion is given as 

 

ሻכݐሺߙ ൌ ଴ߙ ൅ ௔ߙ sinሺ2כݐߨ ൅ ߶ሻ, (5)
 

Finally, the force coefficient is then given by a to-be-determined relation  

 

ிܥ ൌ Ψ෩ ሺܴ݁, ,ܴܣ ݄௦
,כ ,כߩ ,ߥ Πଵ, ݇, ,ݐܵ ሻ. (6)ߙ

 

In this dissertation the aim is to simplify Eq. (6) by reducing the number of non-

dimensional parameters involved. The time-averaged force ܥۃிۄ of ܥி are calculated as  

 

ۄிܥۃ ൌ
߱
ߨ2

න ிܥ ݐ݀

ଶగሺ௠ାଵሻ/ఠ

ଶగ௠/ఠ

. (7)

 

where ݉ ൌ 2 unless otherwise specified. The reason for setting ݉ ൐ 1 is to avoid initial 

transient effects. 
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2.3 Fluid Dynamics Solver 

The governing equations for the fluids given by Eq. (1) are solved with Loci-

STREAM [107,108,109], which is a three-dimensional, unstructured, pressure-based 

finite volume solver written in the LOCI-framework. It employs implicit first or second 

order time stepping and treats the convection terms using the second order upwind-type 

scheme and the pressure and viscous terms using second order schemes. The system of 

equations resulting from the linearized momentum equations are handled with the 

symmetric Gauss-Seidel solver. The pressure correction equation is solved with either the 

GMRES linear solver with Jacobi preconditioner provided by PETSc [110,111,112], or 

the BoomerAMG [113] linear solver provided by hypre. The LOCI-framework is by 

design rule-based highly parallelizable framework for finite volume methods [114]. The 

geometric conservation law [115], a necessary consideration in domains with moving 

boundaries, is satisfied [116]. The mesh deformations are realized using radial basis 

function (RBF) interpolations [100]. 

2.4 Turbulence Closure for Flows at Re = O(૚૙૜ െ ૚૙૝) 

For the flow fields at ܴ݁ = ܱሺ10ଷ െ 10ସሻ the Reynolds-Averaged Navier-Stokes 

(RANS) equations are solved by coupling the turbulence closure with Menter’s Shear 

Stress Transport (SST) model [117], and the continuity equation for incompressible flow, 

written below in dimensional variables 

 

 ߲
௜ݔ߲
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1
௙ߩ

߲
௝ݔ߲

ቊሺߤ ൅ ௧ሻߤ௞ߪ
߲݇௧

௝ݔ߲
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 ߲߱௧

ݐ߲  ൅
߲

௝ݔ߲
൫ݑത௝߱௧൯

ൌ െ
ߛ
௧ߤ

߬௜௝
௜ݑ߲

௝ݔ߲
െ ௧߱ߚ

ଶ ൅
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௙ߩ

߲
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(8)

 

where ܽଵ, ߪ ,ߛ ,כߚ ,ߚ௞, ߪఠ, ߪఠଶ, ܨଵ, ܨଶ are defined as in Menter’s SST formulation [117], 

ܵ ,௧ is the eddy viscosityߤ ൌ ඥ2 ௜ܵ௝ ௜ܵ௝ is the invariant measure of the strain rate. The 

Reynolds averaged values are indicated by an over-bar and the fluctuations with a prime. 

Compared to Menter’s original SST turbulence model [118] a limiter has been built in to 

the production term, ෠ܲ௞, in the turbulence kinetic energy equation, as 

 

௞ܲ ൌ ௧ߤ
ത௜ݑ߲

௝ݔ߲
ቆ

ത௜ݑ߲

௝ݔ߲
൅

ത௝ݑ߲

௜ݔ߲
ቇ, (9)

෠ܲ௞ ൌ minሺ ௞ܲ, 10 ڄ  ,௧߱௧ሻ݇ߩכߚ

 

where ௞ܲ is the production term in the original SST formulation, to prevent the build-up 

of turbulence in stagnation regions. Another change is the use of invariant measure of the 

strain-rate tensor in the formulation for the eddy viscosity instead of the vorticity 

magnitude, ߗ ൌ ඥ2ߗ௜௝ߗ௜௝. The strain-rate invariant is considered to be a better measure 

for the fluid deformation, since the Boussinesq approximation is also based on the strain-

rate. The two differences between the original and the modified SST formulation are 

summarized in Table 2-2. 

 

Table 2-2 Original [118] and modified [117] SST turbulence model 

 Original SST Modified SST 

TKE Production term  ௞ܲ ൌ ௧ߤ
ത௜ݑ߲

௝ݔ߲
ቆ

ത௜ݑ߲

௝ݔ߲
൅

ത௝ݑ߲

௜ݔ߲
ቇ ෠ܲ௞ ൌ minሺ ௞ܲ, ڄ 10  ሻ߱݇ߩכߚ

Eddy viscosity ߥ௧ ൌ
ܽଵ݇

maxሺܽଵ߱, Ω ௧ߥ ଶሻܨ ൌ
ܽଵ݇

maxሺܽଵ߱, S  ଶሻܨ
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The effects of a limiter on the production term in the turbulence kinetic energy 

equation for pitching and plunging airfoils have been discussed by Kang, et al. [119] and 

later in Section 4.4. The differences between results the original and the modified SST 

turbulence model are small for a flat plate in freestream at ܴ݁ = 6×104. Although the 

accumulation of eddy viscosity is reduced by limiting the production of turbulence 

kinetic energy at the leading edge compared to the computation using the original version 

of SST turbulence closure, in the critical regions above the plate, the two models produce 

comparable eddy viscosity distributions due to the leading edge effect. Consequently, the 

resulting flow structures from the two models are similar as well. In this study all 

numerical results have been obtained using the original version of SST turbulence model 

unless otherwise noted. 

2.5 Remeshing 

2.5.1 Radial Basis Function Interpolation Remeshing 

De Boer et al. [100] and Rendall and Allen [101,102,103] have shown the 

effectiveness of using RBF interpolation method to remesh the unstructured grids. There 

are two distinctive advantages: i) Connectivity information is unnecessary for the RBF 

interpolation method, that means any arbitrary order of nodal information will result in 

the same mesh. However, ordering the nodes based on the distances between the nodes 

will make the linear system more diagonally dominant for the compact RBFs [100], 

which will reduce the computational time. ii) The resulting mesh keeps the original mesh 

quality, especially the orthogonality near the moving boundary surface [100,101], which 

is important in viscous fluid computation where the cells are usually stretched and 

clustered to capture small length scale flow phenomena. 

Given the boundary displacement vector Δݓb೔ೕ at the node ݆, with the position 

 b೔ೕ either on the fluid dynamic surface mesh of a flexible body, or any other prescribedݓ

boundary surface, for instance zero displacements at the tunnel wall, the displacement 

vector, Δݓ௜௞, of a node ݇, with the position ݓ௜௞, of the fluid dynamic volume mesh with 
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respect to the initial grid, is given as with summation of repeated indices as 

 

Δݓ௜௞ ൌ ௞௝ߪ௜௝ߙ
ab ൅ ௜௞, (10)ߚ

 

where index ݅ represents the three components in three-dimensional space, ߪ௜௝
ab is 

the coupling matrix from the fluid dynamic surface nodes to the aerodynamic volume 

nodes given as 

 

௞௝ߪ
ab ൌ ߪ ቀቛݓa೗ೖ െ b೗ೕቛݓ

௟
ቁ, (11)

 

with ԡڄԡ being the Euclidean distance measure acting on the index ݈ ൌ  is a radial ߪ ,1,2,3

basis function, and ߚ௜௞ is a polynomial. If the radial function is conditionally positive 

definite, and ߚ௜௞ is a linear polynomial, then a unique remeshing will result [100,120]. In 

this dissertation a linear polynomial will be used: 

 

௜௞ߚ ൌ ௜௞ߚ
଴ ൅ ௜ߚ

௝ aೕೖ, (12)ݓ
 

For remeshing the compact ܥଶ RBF constructed by Wendland [120] will be used 

motivated by the previous results [100,101,120] that showed it to be computationally 

efficient while being able to retain the mesh qualities, given as 

 

ሻݔሺߪ ൌ ቀ1 െ
ݔ
ݎ

ቁ
ସ

൬
ݔ4
ݎ

൅ 1൰, (13)

 

where ݎ is the support radius of this compact function. As the support radius increases a 

node acquires more information about the displacements of neighboring nodes, leading to 

better approximation. On the other hand if the support radius is small the resulting linear 

system will be sparse, hence the computational cost would decrease. However if ݎ is too 

small, negative jacobian or volume of a cell might occur. All RBFs, compact and global, 

listed in Ref. [100] are available in the current framework for interpolation purposes. 

The unknowns in Eq. (10) are the weight coefficients, ߙ௜௝ (݅ ൌ 1,2,3, ݆ ൌ 1, … , bܰ), 
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and the polynomial coefficients, ߚ௜
௝, that can be solved by the requirements that the 

prescribed nodal displacements must be recovered by the RBF interpolation at these 

nodes, i.e., 

 

Δݓb௜௞ ൌ ߪ௜௝ߙ ቀቛݓb೗ೖ െ b೗ೕቛݓ
௟
ቁ ൅ ௜௞ߚ

଴ ൅ ௜ߚ
௝ bೕೖ, (14)ݓ

 

and the additional requirement for unique solution [120],  

 

௜௝1௝ߙ ൌ 0௜, bೕೖݔ௜௝ߙ ൌ 0௜௞, (15)
 

where 1௝ is a summation vector that sums all elements along ݆, 0௜ the zero vector over the 

index ݅, and 0௜௞ the zero matrix over the index ݅݇. In vector notation the resulting linear 

system is shown below and is exactly the same as found in Refs [100,120]: 

 

ቈ
ୠ,ୠۻ bۿ

bۿ
் ૙

቉ ቂ
ࢻ
ቃࢼ ൌ ቂΔ࢝b

૙ ቃ, (16)

 

with for each ݅ index 

ߪ • ቀቛݓb೗ೖ െ b೗ೕቛݓ
௟
ቁ ՜  ,ୠ,ୠۻ

• ቂ1௝   ݓbೕೖቃ ՜  ,bۿ

௜௝ߙ • ՜ ௜ߚ   ,௜ࢻ
௝ ՜ b௜௞ݓ௜,   Δࢼ ՜ Δ࢝ୠ೔  

. 

This linear system is solved using PETSc’s GMRES iterative solver with Jacobian 

preconditioner using multiple processors. 

To capture the three-dimensional flow phenomena the number of cells is typically in 

the order of millions. To enhance the computational speed the fluid-solver is parallelized 

using Message Passing Interface (MPI) where the computational domain is decomposed 

optimally for the computation of velocity and pressure fields. This implies that the 



30 
 

boundary nodes on the moving surfaces are randomly distributed among the processors. 

To implement the RBF interpolation remeshing method efficiently in parallel the 

following steps are taken by noting that the nodal coordinates on the boundary surfaces, 

 :௕೔ೕ, stay stationary in timeݓ

(i) Preprocessing step: 

a. ݓ௕೔ೕ ՜  b: identify the local nodes on the boundary surfaces. Usingۿ

ALLGATHER operation assemble and distribute the coordinates of all 

nodes on the boundary surfaces into a matrix ۿb. 

b. ቀݓ௕೔ೕ, bቁۿ ՜ ߪ ቀቛݓb೗ೖ െ b೗ೕቛݓ
௟
ቁ ൌ  ୠ,ୠ: iterate over the local nodes onۻ

the boundary surface and by computing the distances to all elements in ۿb 

construct the local partition of the system matrix having a sparse matrix 

structure provided by PETSc. 

(ii) Remeshing: 

a. Δ࢝b ՜ ሺࢻ௜,  ௜ሻ: solve the linear system to obtain the weight and theࢼ

polynomial coefficients locally. Using the ALLGATHER operation, 

distribute the coefficients globally. 

b. ቀࢻ௜, ,௜ࢼ ,bۿ ௕೔ೕቁݓ ՜ Δݓ௜௞: Compute the nodal displacements for all 

volume nodes by applying Eq. (10). 

Since the assembly of the system matrix is performed before the time integration 

begins, and the parallel communication during the computation is only needed for the 

linear solver and for the ALLGATHER operation of the coefficients, ࢻ௜ and ࢼ௜, this 

method is suitable for parallelization. Further improvements can be obtained by using the 

Schur-complement techniques which involve the inversion of ۻୠ,ୠ has the potential to 

accelerate the remeshing process since ۻୠ,ୠ is a positive-definite symmetric matrix so 

that well-known iterative solvers can be used such as PCG, and during the time 

integration only matrix multiplications are needed to obtain the new displacements for the 
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volume nodes [102]. 

2.5.2 Assessment of  Remeshing Performance 

To assess the performance in terms of the mesh qualities, and domain scalability 

of the RBF interpolation remeshing method, two test cases previously reported by Stein 

et al. [98] and Smith and Wright [99] are computed. The initial mesh consists of a 

computational domain in a square shape with length of two and a two percent thick flat 

plate of chord length one in the center of the domain, see Figure 2-2. This test case is in 

particular relevant for flapping wing simulations because this case reflects the large 

displacement wing motions including translations and rotations. Furthermore, to be able 

to compare to experiments done in water or wind tunnels the remeshing capabilities need 

to be robust under large deformations with non-moving outer computational domain. The 

latter is more challenging as the computational domain is smaller. In all solutions shown 

in this Section the new mesh is obtained after one time step. For the RBF the Wendland’s 

C2 polynomial Eq. (13) is used with a support radius of 2.0. The linear solver converged 

to the imposed absolute tolerance level of 1.0×10-30. In the first case the flat plate is 

rotated 60 deg around its mid-chord point of the plate. The order of this angle 

corresponds to typical flapping angle amplitudes [3]. In the second case the flat plate 

translates half chord length upwards. Note that the mesh is three-dimensional with unit 

span length with one cell in spanwise direction to simulate two-dimensional fluid flow in 

a three-dimensional fluid solver. This doubles the number of grid nodes from the two-

dimensional situation. 
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Figure 2-2 Initial mesh of a two percent thick flat plate in a square domain. 

Total number of cells, nodes, and boundary nodes are 1224, 1384, and 520, 
respectively. 

Two grid measures are computed to assess the mesh qualities: non-smoothness, 

which measures the cell volume change in space, defined as 

 

non-smoothness =  (17)

 

where  is the cell volume,  is the cell area. To measure the skewness of a cell the 

following quantities are determined 

 

skewness =  (18)

 

For both mesh quality metrics high values would result in worse accuracy of the 

fluid flow solutions and small values are desired. The domain scalability of the current 

remeshing method with respect to the mesh size is measured by refining the initial mesh 

by multiplying the number of nodes on the boundary faces by  = 2, 4, 8, and 16, see 

Table 2-3. 
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Table 2-3 Number of cells, number of nodes, and number of boundary nodes 
depending on the multiplication factor ࢍࡺ. 

௚ܰ Number of cells Number of nodes ( ௩ܰ) 
Number of boundary 

nodes ( ௕ܰ) 

1 1224 1384 520 

2 3272 3592 1040 

4 10142 10782 2080 

8 35896 34616 4160 

16 127496 130056 8320 

 

As the RBF interpolation remeshing method acts on the distances, the cells near 

the flat plate being more influenced by the motion of the flat plate than the cells away, the 

cells around the flat plate move almost rigidly, see Figure 2-3. Figure 2-4 shows the non-

smoothness and the skewness of the cells on the initial mesh and the resulting mesh under 

the rotation and translation for the baseline case ( ௚ܰ=1) and the maximally refined case 

( ௚ܰ=16). The focus is given to how well the initial mesh qualities are preserved under 

remeshing process. In small region between the edge of the flat plate and the outer 

boundary of the computational domain both non-smoothness and skewness suffer due to 

the shearing effect between the moving flat plate and the non-moving outer boundary. 

However, overall, both the non-smoothness and the skewness near the flat plate are well 

preserved. On the refined mesh the cells are so small that the smoothness remains intact, 

which was also observed for ௚ܰ = 2, 4, and 8. Regarding the skewness, again due to the 

shearing behavior, the skewness increases between the flat plate and the boundaries of the 

computational domain, still the mesh qualities remain well near the flat plate, which is 

important to capture smaller near-wall flow phenomena accurately. 
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(a) initial distribution (b) after rotation (c) after translation 

Figure 2-3 Mesh distribution near the trailing-edge of the flat plate on (a) the 
initial grid, (b) after rotation, and (c) after translation for the baseline grid ( =1). 

 

The domain scalabilities are shown in Figure 2-5, which is defined as 

 

 (19)

 

On a single processor the domain scalability is assessed for the rotation and 

translation cases. The complexity of the linear solver scales with  and the RBF 

evaluation process of Eq. (10) with  where . If the number of boundary 

nodes is doubled, i.e. =2, then the domain scalability would be , which is 

confirmed in Figure 2-5. 
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=1 =16 =1 =16 

   

initial 

   

rotation 

   

translation

(a) non-smoothness (b) skewness  

Figure 2-4 Non-smoothness and skewness of the cells on the initial mesh and 
the rotated mesh for the mesh scalability factors  = 1 and 16 of a flat plate in a 
non-moving square shaped outer boundary under the rotational and translational 
motions. Note that on the  = 16 grid the mesh distribution is not shown for 
visibility purposes. 

 

The influence of the support radius, , on the resulting computational time and mesh 

qualities are assessed by varying the radius from 2 to 1 and 3 on the  = 8 grid using 

single processor for the translational motion. For the compact radial basis functions, such 

as Wendland’s  function, Eq. (13), used here, the support radius sets the radius 

influence by setting the radial basis function value to zero if the distance between two 

points becomes larger than the radius. Table 2-4 shows the computational time taken for 

different support radius. By reducing the support radius from  = 2 to  = 1 the 

computational cost reduces because the coupling matrix  in Eq. (16) is sparser. On 



36 
 

the other hand, increasing  to 3 introduces more coupling between the boundary nodes 

and results in 23% increase in computational time. However, for smaller , the influence 

of the moving nodes is propagated only for smaller distances and the resulting mesh 

distortions remain close to the flat plate. This behavior is shown in Figure 2-6 where the 

skewness is shown for  = 1, 2, and 3. For  = 1 the deformation occurs close to the flat 

plate and the cells are more clustered, while for  = 3 the skewness is smoothened out 

over larger area. 

 

 
Figure 2-5 Domain scalabilities of a flat plate in a non-moving square domain 

under rotation and translation. 

 

Finally, as a test case, a three-dimensional mesh around the Zimmerman wing 

planform, which will be used later in Section 5.2.3 to study the effects of isotropic 

elasticity on a flapping motion in hover, is deformed using the RBF interpolation method 

described in this section. In the original mesh the Zimmerman wing is placed horizontally 

in the center of the computational mesh. The symmetry plane is constrained in space in 

all directions, representing for example a wing-body configuration. A 45 deg flapping 

motion is imposed at once during one computational time step to simulate a large 

deformation motion, which is not unusual for insect flyers. The resulting skewness 

distribution illustrated in Figure 2-7 shows that the orthogonality of the cells near the 

wing is well preserved. 
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Table 2-4 The computational time in components for the translating flat 
plate in a square domain on the  = 8 mesh using single processor. 

 Linear solve (s) Applying Eq. (10) [s] Total time [s] 

1 0.30 6.1 6.4 

2 0.76 12 13 

3 1.8 14 16 

 

(a)  = 1 (b)  = 2 (c) = 3 

Figure 2-6 Skewness of the cells on the  = 8 grid of a flat plate in a non-
moving square shaped outer boundary under the translational motion. Black lines 
represent the mesh distribution. White arrows indicate the translation motion. 

 

Figure 2-7 Skewness contours around a Zimmerman wing mesh after 45 deg 
flapping motion at once.  
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2.6 Structural Dynamics Solver 

Two structural dynamics solvers with different fidelity have been incorporated. 

For linear analysis of a beamlike flat plate, the Euler-Bernoulli beam model has been 

incorporated to solve Eq. (2) in one-dimension, i.e. ߂ ൌ ߲ଶ/߲ݔଶ. To simulate large 

displacement wing motions geometrically nonlinear structural dynamics equations are 

modeled with a flexible multi-body type finite element using triangular shell elements 

[94]. The rigid-body motions are prescribed in the global frame of reference in addition 

to a co-rotational framework to account for the geometric nonlinearities. By applying the 

co-rotational frame transformations the motion of an element is decomposed into the 

rigid-body motion part and the pure deformation part. By using linear elasticity theory for 

the latter, the co-rotational formulation can efficiently solve for the structural dynamics 

with small strains, yet large rotations. A linear combination of an optimal membrane 

element and a discrete Kirchhoff triangle plate bending element is employed for the 

elastic stiffness of a shell element [121]. 

2.7 Fluid-Structure Interaction Interface 

The fluid-structure interaction (FSI) is based on a time-domain partitioned 

solution process in which the nonlinear partial differential equation governing the fluid 

and the structure are solved independently and spatially coupled through the interface 

between the fluid and the structure. An interface module has been added to the fluid 

solver to communicate the parallelized flow solutions on the three-dimensional wetted 

surface to and from the serial structural solver. At each time step the fluid and the 

structural solvers are called one after the other until sufficient convergence on the 

displacements on the shared boundary surface are reached in an inner-iteration before 

advancing to the next time step. Full details of this algorithm are described in Ref. [77]. 

In this dissertation, in order to accelerate and ensure the convergence of the FSI the 

Aitken relaxation method [122]  has been incorporated. The Aitken relaxation method is 

a fixed-point FSI-coupling method with dynamic relaxation. The FSI-coupling for 

partitioned domain can be summarized for the FSI-interface ߁ as,  
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෥࢝ ୻
௡ାଵ ൌ ୻ࡿ

ିଵ ቀࡲ୻൫࢝୻
௡ାଵ൯ቁ. (20)

 

where ࡲ୻ denotes the fluid solver, ࡿ୻ is the structural solver, ࢝୻
௡ାଵ is the displacement of 

the interface ߁ at the next time level ݊ ൅ 1, and ࢝෥ ୻
௡ାଵ is the displacement output from the 

structural solver. 

For weakly coupled systems ࢝෥ ୻
௡ାଵ ൎ ୻࢝

௡ାଵ and the so-called explicit coupling 

can be used where the information between the fluid solver and the structural solver is 

communicated only once. If a structure is very light and flexible, the fluid forces will 

impact the structural deformations dominantly. Then the added mass effects become 

important and either monolithic solver or strongly coupled implicit scheme with sub-

iterations is necessary [122]. In such an iterative coupling Eq. (20) becomes  

 

෥࢝ ୻,௜ାଵ
௡ାଵ ൌ ୻ࡿ

ିଵ ቀࡲ୻൫࢝୻,௜
௡ାଵ൯ቁ. (21)

 

where now  is the iterator over the FSI-coupling. 

In order to ensure and accelerate convergence of the iteration, a relaxation step is 

needed after each FSI-subiteration in Eq. (21),  

 

୻,௜ାଵ࢝
௡ାଵ ൌ ߬௜࢝෥ ୻,௜ାଵ

௡ାଵ ൅ ሺ1 െ ߬௜ሻ࢝୻,௜
௡ାଵ (22)

 

A relaxation factor ߬௜ should be sufficiently small to prevent the divergence of the 

FSI coupling, but large enough to reduce unnecessary FSI-iterations. If a prefixed 

relaxation factor is used trial and error type of experimentation is needed to find an 

optimum value for each case. There are a number of methods to dynamically determine 

the relaxation factor. In the Aitken's relaxation method, by using secant like method for 

the unknown displacements, a recursive expression for the relaxation parameter can be 

estimated as  

 

i
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߬௜ାଵ ൌ െ߬௜
൫࢘୻,௜ାଵ൯்൫࢘୻,௜ାଶ െ ୻,௜ାଵ൯࢘

ห࢘୻,௜ାଶ െ ୻,௜ାଵหଶ࢘  (23)

 

where the residual is given as ࢘୻,௜ାଵ ൌ ෥࢝ ୻,௜ାଵ െ  ୻,௜. The idea is to use the residuals࢝

from the previous two iterations to predict the solution using the secant method. In a 

vector extrapolation method [123] the relaxation factor is predicted based on all the 

residuals. In Ref. [123] it has been shown that the Aitken method is simpler to implement 

and often provides faster convergence.  

 

 

Figure 2-8 Diagram for time marching loop of fluid-structure interaction. 

 

The fluid and the structural solutions are considered to be synchronized for given 

tolerance ߳, if ห࢘୻,௜ାଵหଶ ൏ ߳ for ݅ ൒ FܰSI. FܰSI gives the number of FSI-subiterations. In 

this dissertation the numerical computations utilize the Aitken's method with the 

convergence tolerance of ߳ = 1.0×10-6. See Figure 2-8 for a flow chart of the 

implemented FSI-coupling used in this dissertation. 
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Chapter 3. 

Scaling of the Forces Acting on a Moving Body Immersed in Fluid 

3.1 Introduction 

This Chapter starts with a quote from Prandtl: “The undoubted value of theorems 

[of control-volume analysis] lies in the fact that their application enables one to obtain 

results in physical problems from just a knowledge of the boundary conditions. There is 

no need to be told anything about the interior of the fluid or about the mechanism of the 

motion. These theorems are usually helpful where equations of motion cannot be written 

down, or at least cannot be integrated, and they give knowledge of the general flow 

without going into details.” [124]. The conservation equations given by Eq. (1) can be 

written in an integral form for a given control volume, which can provide a convenient 

framework in which the balance between the changes inside the volume, transport across 

the boundary, and the forces acting on a material in the volume can be expressed. 

For the case of flapping wings the control volume is time dependent because of 

the motion of the wing: the boundary surface attached to the wing moves with the motion 

of either rigid or deforming wing. This motion of the control volume leads to additional 

terms in the integral balance equations that can be related to the added mass, or apparent 

mass, terms. The term added mass, or also sometimes called virtual mass [125] originates 

from the potential theory: For a moving cylinder with radius ܽ in an inviscid fluid at rest 

at infinity, the integrated pressure on the surface of the cylinder can be found by 

computing the energy of the fluid motion as [126] 

 

2ܶ ൌ ᇱܷஶܯ
ଶ ൌ ௙ܽଶܷஶߩߨ

ଶ , (24)

 

where ܶ is the kinetic energy of the fluid and ܷஶ is the velocity of the cylinder. In case of 
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a rectilinear motion, the equation of energy yields 

 

ሺܯ ൅ ᇱሻܯ
ܷ݀ஶ

ݐ݀
ൌ (25) ,ܨ

 

where ܯ is the mass of the cylinder and ܨ is some external force on the cylinder. Thus 

the effect of the fluid pressure is equivalent to an addition of inertia of the cylinder, hence 

the notation ‘added mass’. Note that ܯԢ is equal to the fluid mass displaced by unit length 

of the cylinder. In case of sphere ܯԢ is equal to the half of the fluid mass displaced [126]. 

Following the work by Saffman [125] and Noca [127] a control volume analysis 

will be performed to obtain an expression for the force acting on a moving body 

immersed in a fluid. This expression will be then normalized as a function of Reynolds 

number, Strouhal number, and reduced frequency, introduced in Section 2.2. Finally, by 

considering limiting cases, different regimes of forces will be proposed that is applicable 

in flapping wing aerodynamics. 

3.2 Scaling of Forces 

Consider a control volume of fluid domain ஶܸ bounded by ܵஶ at infinity in which 

a body Ω moves in time ݐ and space ݔ א ܸ. Integration of Eq. (1) in ஶܸ yields, 

 

݀
ݐ݀

න ܸ݀ ࢛௙ߩ
௏ಮሺ௧ሻ

൅ න ࢔ ڄ ሺെ۷݌ ൅ ሻ܂ ݀ܵ
డΩሺ௧ሻ

ൌ න ࢔ ڄ ሺെ۷݌ ൅ ܵ݀ ሻ܂
ௌಮ

െ න ࢔ ڄ ሺ࢛ െ ܵ݀ ࢛௙ߩ ௦ሻ࢛
ௌಮ

െ න ࢔ ڄ ሺ࢛ െ ௦ሻ࢛ ࢛௙ߩ ݀ܵ
డΩሺ௧ሻ

 

(26)

 

where ߲Ωሺݐሻ is the boundary surface of Ω, ࢔ the unit normal pointing outward from the 

body, ࢛௦ is the velocity of the surface, ۷ the unit tensor, and ܂ the viscous stress tensor. 

The force ࡲ acting on a moving body Ω immersed in an incompressible viscous 

fluid is 
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ࡲ ൌ ௙ߩ න ࢔ ڄ ሺെ۷݌ ൅ ሻ܂ ݀ܵ
பΩሺ௧ሻ

. (27)

 

With no-flow through boundary condition, ሺ࢛ െ ௦ሻ࢛ ڄ ࢔ ൌ 0 on ߲Ω and under the 

assumption that the viscous terms and convective terms are negligible at ܵஶ, Eq. (26) 

simplifies to 

 

ࡲ ൌ െ
݀
ݐ݀

න ܸ݀ ࢛௙ߩ
௏ಮሺ௧ሻ

൅ න ࢔ ڄ ሺെ۷݌ሻ ݀ܵ
ௌಮ

െ න ࢔ ڄ ሺ࢛ െ ܵ݀ ࢛௙ߩ ௦ሻ࢛
డΩሺ௧ሻ

. (28)

 

Based on Eq. (28), Noca [127] derived an expression for ࡲ for a doubly connected 

infinite fluid domain ஶܸ as  

 
ࡲ
௙ߩ

ൌ െ
1

ࣨ െ 1
ሺࡲim ൅ aሻ (29)ࡲ

 

where 

 

imࡲ ൌ
݀
ݐ݀

න ࢞ ൈ ࣈ ܸ݀
Vಮ

 (30)

aࡲ ൌ
݀
ݐ݀

න ࢞ ൈ ሺ࢔ ൈ ሻ࢛ ݀ܵ
பΩሺ௧ሻ

 (31)

 

where ࣨ is the spatial dimension and ࣈ ൌ સ ൈ  ,imࡲ ,is the vorticity. The first integral ࢛

represents the time derivative of the hydrodynamic impulse, see e.g. [125], which is equal 

to the non-conservative external body forces for inviscid flows. Following the discussion 

given by Saffman [125], consider a three-dimensional flow field resulting from a motion 

of a moving body, such that the vortices are confined in a material volume, vܸ. Then we 

have for the impulse 
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imࡲ ൎ
݀
ݐ݀

 න ࢞ ൈ ࣈ ݀ vܸ
௏v

ൌ න ࢞ ൈ
ࣈܦ
ݐܦ

൅ ࢛ ൈ ࣈ ݀ vܸ
௏v

ൌ 2 න
ߤ

௙ߩ
࢞ ൈ ࣈଶ׏ ݀ vܸ

௏v

൅ 2 න e࢛ ൈ ݀ ࣈ vܸ
௏v

  
(32)

 

where the external velocity ࢛e is due to other vortices not confined in vܸ or the motion of 

the body. Because of the time evolution of the vorticity in the flow field, the force due to 

this term may have different phase than the motion of the body. Saffman [125] also 

proves that for inviscid, irrotational flow without net circulation around Ω the second 

integral in Eq. (29), ࡲa, represents the acceleration-reaction force, or the force due to 

added mass. Noca [127] further shows that for an impulsively starting flat plate in a 

viscous flow with no-slip boundary condition on Ω in quiescent fluid the force acting on 

the body has the same expression immediately after the start of the motion. 

Using the non-dimensionalization procedure introduced in Section 2.2 the 

magnitudes of the force components in Eq. (29) are estimated as follows. For the 

hydrodynamic impulse term, if we assume that the vorticity is confined in a rectangular 

fluid region in the order of ܱሺܿmሻ in the streamwise direction and ܱሺ݄௔ሻ in the normal 

direction and that ݔ ׽ ܿm, ߦ ׽ rܷef ܿm⁄ , and ݑe ׽ ݄߱௔ in the integrand Eq. (32),  

 

ி,imܥ ׽ ݐܵ ൜
1

ܴ݁ ݇
ܱሺ1ሻ ൅

ݐܵ
݇

ܱሺ1ሻൠ.  (33)

 

as a first order approximation. Hence the force due to the hydrodynamic impulse scales 

with ܵݐ, however if the viscous time scale, ܿm
ଶ  is much greater than the motion time ,ߥ/

scale, 1/߱, such that ܴ݁ ݇ ب 1, then the first term in Eq. (33) becomes negligible. 

Moreover, when the plunge amplitude ݄௔ ܿm⁄ ׽ ݐܵ ݇⁄  is small the second term in Eq. 

(33) will only have a small contribution to the total force felt on the wing. In general, 

however, complex fluid dynamics mechanisms, such as the wing-wake interaction, or the 

wake-wake interactions would additionally affect the vorticity distribution in the flow 

field. 

Similarly, the acceleration-reaction force can be non-dimensionalized as  
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ி,aܥ ׽ ݐܵ ݇,  (34)

 

with ݑ ׽ ݄߱௔ in the integrand of Eq. (31). This non-dimensionalization process reveals 

that for high ܵݐ the fluid dynamic force is expected to be great. On the other hand, if the 

motion is highly unsteady, i.e.  is high, the force due to the motion of the body 

appearing as the acceleration-reaction component, dominates over the forces due to 

vorticity in the flow field. It should be noted that this scaling is not unique. For example, 

if the normal direction of the material volume in Eq. (32) is to be estimated as to be 

proportional to ܱሺܿmሻ, then the scaling for the hydrodynamic impulse term would loose 

the factor ܵݐ/݇, however the added mass term would still be dominant for high ݇ and 

high ܴ݁ flows.  

A parametrization of special interest for flapping wing community is the 

dependence of the force on the flapping motion frequency, ߱. The current scaling shows 

that for forward flight with rܷef ൌ ܷஶ the added mass has the largest order of frequency 

as ~ ߱ଶ. The resulting dimensional force is then proportional to square of the motion 

frequency. Similarly, for hovering motions the current scaling shows that the non-

dimensional force is independent of the motion frequency since the Strouhal number is a 

constant and the reduced frequency only a function of flapping (plunging) amplitude. 

However, since rܷef ׽ ߱ଶ the resulting dimensional force is also proportional to square 

of the motion frequency. Similar observations were reported by Gogulapati and 

Friedmann [72] who conducted potential theory based aerodynamic analysis of hovering 

wings. 

At the reduced frequency of 3.93, Visbal, Gordnier, and Galbraith [60] considered 

a high frequency small amplitude plunging motion at ܴ݁ = ܱሺ4ሻ over a three-dimensional 

SD7003 wing (ߙ଴ = 4 deg; ݇ = 3.93; ܵ104×4 ,104×1 = ܴ݁ ;0.06 = ݐ). They used the iLES 

simulations to solve for the flow structures including the laminar-to-turbulence transition 

and the forces on the wing. The flow field exhibits formation of dynamic-stall like 

leading edge vortices, breakdown due to spanwise instabilities, and transitional features, 

however the forces on the wing could still be well predicted by the Theodorsen Eq. (38) 

formula for lift. The time history of lift was “independent of Reynolds number and of the 

3-D transitional aspects of the flow field” [60]. They explained that the lift is dominated 

k
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by the acceleration of the airfoil, which is proportional to the square of the motion 

frequency. This observation is also consistent with the scaling that the hydrodynamic 

impulse term Eq. (30) is small compared to the added mass term Eq. (31)  for the given 

non-dimensional parameters. 

On the other hand, at lower Reynolds numbers, Trizila et al. [128] have shown at 

ܴ݁ = 100 and ݇ in the range of 0.25 – 0.5 that the formation and interaction of leading 

edge and trailing edge vortices with the airfoil and previous shed wake substantially 

affect the lift and power generation for hover and forward flight. Furthermore, three-

dimensionality effects play a significant role, for instance for a delayed rotation 

kinematics (݇ = 0.5; low angle of attack; ܴ݁ = 100) the tip vortex generated at the tip of 

the 4 = ܴܣ flat plate would interact with the leading edge vortex enhancing lift compared 

to its two-dimensional counterpart, which contrasts the classical steady-state thin wing 

theory [128], [29] which predicts the formation of wing tip vortices as lift reducing flow 

feature. This complex interplay between the kinematics, the wing-wake, wake-wake 

interactions, and the fluid dynamic forces on the wing at the given range of non-

dimensional parameters is also consistent with the scaling analysis described in this 

Section. 

In Chapter 4 the interplay between the airfoil shape, kinematics, Reynolds 

number, and the resulting aerodynamics will be probed at ܴ݁ = ܱሺ10଺ሻ. The reduced 

frequency is ݇ = 0.25 and the Strouhal number is ܵ0.04 = ݐ. According to the scaling 

proposed in this section not only the acceleration-reaction term, but also the 

hydrodynamic impulse term, i.e. interaction with the vorticity distribution in the flow 

field, will contribute to the force on the wing. Furthermore, in Chapter 5 the effects of 

flexibility will be investigated by approximating the fluid force by the acceleration-

reaction term at Reynolds number ܱሺ10ଷ െ 10ସሻ and ݇ between ܱሺ1 െ 10ሻ. 

3.3 Linearized Aerodynamic Theories 

When a body accelerates in a fluid, the fluid kinetic energy changes. The rate of 

work done by pressure moving the body in an inviscid fluid yields a force that is 

proportional to the acceleration (see e.g. [129]). Then, the constant of proportionality has 



47 
 

the dimension of mass, hence the name added mass. The added mass term is usually 

some fraction of the fluid mass displaced by the body. Determination of the added mass, 

which is a tensor, because it relates the acceleration vector to the force vector, is not easy 

in general because the local acceleration of the fluid is not necessarily the same as the 

acceleration of the body and depending on the direction of the motion, cross-correlation 

terms appear [90]. However, for simple geometries in translating motions, the added 

mass can be obtained explicitly. For an accelerating thin flat plate with a chord length of 

ܿm normal to itself, the force acting normal to the flat plate, can be computed as follows. 

The velocity potential difference is (e.g. [90]),  

 

Δ߶ ൌ ܿ௠ݒ௜ඨ1 െ ൬
ݔ

ܿ௠ 2⁄ ൰
ଶ
 (35)

 

where ݒ௜ is the vertical velocity component. Hence the vertical component of the force 

acting on the flat plate due to added mass becomes,  
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whence the added mass of a vertically accelerating thin flat plate is equal to the displaced 

fluid cylinder with radius ܿ௠ 2⁄ . 

For a harmonically plunging thin rigid flat plate in a freestream the lift coefficient 

can be derived assuming inviscid incompressible flow as  

 

௅ܥ ൌ ݐଶܵߨ2 ݇ cosሺ߱ݐሻ ൅ ଶߨ4 ݐܵ sinሺ߱ݐሻ (37)
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assuming quasi steady-state flow where the influence of the wake vorticities are 

neglected. The first term in Eq. (37) is the non-circulatory term which is consistent with 

the added mass force derived in Eq. (31). The second term in Eq. (37) is the circulatory 

term, which can be expressed in a more familiar form, 2ߙߨe, by recognizing that 

ݐܵ ߨ2 sinሺ߱ݐሻ ൎ  e is the effective angle of attack for purely plungingߙ e  whereߙ

motions. Both terms are also consistent with the scaling found in Eq. (33) and Eq. (34). 

A more accurate representation of the lift coefficient beyond the quasi-steady 

approximation was Theodorsen [130], for sinusoidal pitch-plunge of a thin airfoil, by 

assuming a planar wake and a trailing-edge Kutta condition, in incompressible inviscid 

flow. The lift coefficient time history is then 

 

௅ܥ ൌ ሼ1ߨ2 െ ଴ߙሺ݇ሻሽܥ

൅ ௔݅݁ట௜ߙ൛݇ߨ െ ݐܵߨ2 െ ௣ݔ௔݇൫2ߙ െ 1൯݁ట௜ൟ݁ଶగ௧כ௜

൅ ሺ݇ሻܥߨ2 ൜2ݐܵߨ ݅ ൅ ௔݁ట௜ߙ ൅ ௔ߙ ൬
3
2

െ ௣൰ݔ2 ݇݅ ݁ట௜ൠ ݁ଶగ௧כ௜. 
(38)

 

The pitch and plunge motions are described by the complex exponentials, ߙሺכݐሻ ൌ ଴ߙ ൅

ሻכݐାటሻ௜ and ݄ሺכ௔݁ሺଶగ௧ߙ ൌ ߨ ݐܵ ݇⁄ ݁ଶగ௧כ௜. The phase lead of pitch compared to plunge is 

denoted by ߰. In the most common case, motivated by considerations of maximum 

propulsive efficiency, pitch leads plunge by 90º, which results in ߰ ൌ  The .[131] 2/ߨ

 ሺ݇ሻ is the complex-valued Theodorsen function with magnitude ≤ 1. It accounts forܥ

attenuation of lift amplitude and time-lag in lift response, from its real and imaginary 

parts, respectively. The first term is the steady-state lift and the second term is the 

noncirculatory lift due to acceleration effects. The third term models circulatory effects. 

Setting ܥሺ݇ሻ ൌ 1 recovers the quasi-steady thin airfoil solution. Note that ܥሺ݇ሻ ൌ 1 for 

pure plunge kinematics with ߙ଴ ൌ ௔ߙ ൌ 0 yields Eq. (37). 

3.4 Summary 

This Chapter proposes a scaling for the force acting on a moving body immersed 
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in a viscous fluid. Based on a control volume analysis of conservation of momentum, an 

integral equation was derived involving two terms: i) hydrodynamic impulse term and ii) 

added mass term. The scaling for these terms are summarized in Table 3-1. The scaling 

shows that for low reduced frequency motions or low Reynolds number flows the 

hydrodynamic impulse term, which indicate the interaction between the vortices and the 

wing become important. On the other hand, when the reduced frequency increases the 

added mass term will dominate over the hydrodynamic terms. Both components are 

proportional to the Strouhal number. 

 

Table 3-1 Summary of the force scaling 

Force Scaling Note 

Hydrodynamic Impulse 

ݐܵ
ܴ݁ ݇ . viscous term 

ଶݐܵ

݇  
vortex force due to motion of 

moving body 

Added mass ܵݐ ݇  

 

An interesting consequence that needs to be investigated more is that for hover 

motion where both Strouhal number and reduced frequencies are independent of motion 

frequency, the normalized force will be independent of frequency, for high Reynolds 

number flows.  
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Chapter 4. 

Fluid Dynamics of Rigid Flapping Wings at Re = O(104) and k = 0.25 

4.1 Introduction 

In this Chapter the numerical modeling aspects and the interplay between the 

imposed kinematics, the resulting flow structures, and the resulting force on the rigid 

wings of nominally two-dimensional wings undergoing combined pitching and plunging 

at Reynolds numbers 1×104, 3×104, and 6×104 are studied. The reduced frequency ݇ is 

kept fixed at 0.25, which is low, such that the hydrodynamic impulse term in Eq. (29) 

will play a non-negligible role. The focus of this chapter is to probe the implications of 

the kinematics, the airfoil shapes and the Reynolds number on the fluid dynamics at ܴ݁ = 

ܱሺ4ሻ for rigid wings. 

Experimental and computational flow field results are compared: two versions of 

Menter’s Shear Stress Transport (SST) turbulence closures for two-dimensional RANS 

computations, and phase-averaged Particle Image Velocimetry (PIV) measurements 

[119]. The experiments were obtained in two different facilities, one at the Air Vehicle 

Directory of the Air Force Research Laboratory (AFRL) [131] and the other at 

Department of Aerospace Engineering of the University of Michigan (UM) [119]. The 

consistency and inconsistency of the experimental as well as computational endeavors 

offer significant opportunities for us to probe the modeling and experimental 

implications, and the interplay between fluid physics and geometry and pitching and 

plunging motion under different Reynolds numbers. This work had been a collaborative 

effort under the Research and Technology Organization of the NATO and this chapter 

highlights the main findings from the computational perspective. Detailed experimental 

setup, comparisons to the experimental measurements, and more extensive description of 

the fluid physics can be found in Refs. [131,132,119,58,133]. In this dissertation the 
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transition from laminar to turbulence has not been modeled in the numerical 

computations. 

4.2 Case Setup 

Two different airfoils are considered: the SD7003 airfoil and a flat plate with 2.3 

% thickness ratio, see Figure 4-1, to discuss the airfoil shape effects by comparing the 

aerodynamic loading and flow field. The thickness of the airfoil and the airfoil leading 

edge shape characterizes the radius of curvature at the leading edge. Sane [18] used the 

Polhamus’ leading edge suction analogy [134] to explain the lift characteristics of thinner 

airfoils compared to blunter airfoils. The flow around blunt airfoils moves sharply around 

the airfoil nose creating a leading edge suction force parallel to the airfoil chord tilting 

the resulting aerodynamic force normal to the incoming flow. On the other hand, flow 

over an airfoil with sharp leading edge separates at the leading edge, forming a LEV. The 

suction force due to the LEV acts normal to the airfoil, enhancing the lift and the drag. 

 

  
(a) SD7003 (b) flat plate 

Figure 4-1 Airfoil shapes and the mesh used. 

 

The two different sets of kinematics are given by Eq. (4) and Eq. (5), which are 

repeated as 

 

݄ሺכݐሻ ൌ ݐܵ
ߨ
݇

cosሺ2כݐߨሻ, 

ሻכݐሺߙ ൌ ଴ߙ ൅ ௔ߙ cosሺ2כݐߨ ൅ ߶ሻ 
(39)
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that represent a weak dynamic stall (under combined pitching-plunging, ܵ0.04 = ݐ; ݇ = 

 a = 8.43 deg; ߶ = 90 deg) and a stronger dynamic stall (under pureߙ ;଴ = 8 degߙ ;0.25

plunging: ܵߙ ;0.25 = ݇ ;0.04 = ݐ଴ = 8 deg; ߙa = 0 deg; ߶ = 90 deg), respectively. The 

effective angle of attack, ߙe, is 

 

eߙ ൌ ߙ ൅ arctanሼ2ߨ ݐܵ sinሺ2כݐߨሻሽ (40)

 

and the time history of both kinematics are summarized in Figure 4-2, where ߙe, 

approaches the static stall value for the SD7003 airfoil of approximately 11º [135] for the 

pitching and plunging case, while the maximum effective angle of attack exceeds well 

beyond the static stall angle, which leads to large vertical structures in the flow field. The 

grid and time step sensitivity studies are shown in Appendix A.1 for the SD7003 airfoil 

and Appendix A.2 for the flat plate. 

 

 
Figure 4-2 Time history of effective angle of attack αe for the pitching and 

plunging kinematics (red line) and the pure plunging kinematics (blue line). 

4.3 Flow over 2D SD7003 Airfoil at Re = 6×104 

Figure 4-3 shows the normalized mean streamwise velocity, ݑଵ
 contours along ,כ

with planar streamlines from the numerical and the experimental results from the UM and 

AFRL at 0.50 ,0.25 ,0.00 = כݐ, and 0.75, respectively for a combined pitching and 
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plunging SD7003 airfoil at  = 6×104. The agreement with the two experimental 

measurements is excellent, both in streamwise velocity contours as well as in streamlines. 

The flow exhibits separation between the center of the downstroke and the bottom of the 

downstroke, corresponding to the maximum instantaneous effective angle of attack of 

13.6°. Note that this value for the effective angle of attack is well beyond the static stall 

angle of 11°. 

 

Current computation UM PIV AFRL PIV  

    

    

    

    
Figure 4-3  contours and the instantaneous streamlines over pitching and 

plunging SD7003 airfoil at  = 0.25,  =0.08, and at  = 6×104 from numerical, 
and experimental (UM, AFRL) results. 

 

For the deep stall kinematics, the time evolution of the flow field changes 

significantly. Figure 4-4 shows the  contour plots and the instantaneous streamlines 

from the numerical computation and the experimental measurements from the UM and 

AFRL water tunnels for the pure plunging SD7003 airfoil at  = 0.00, 0.25, 0.50, and 

0.75. Unlike the pitching and plunging case where the flow showed only a thin open 

separation, the pure plunging case generates large vortical structures at the leading edge 

between motion phases of 0.25 and 0.33. Subsequently, this leading edge vortex (LEV) 
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broadens, weakens, and convects downstream, eventually enveloping the entire airfoil 

suction side. At the bottom of the downstroke, reattachment is evinced at the leading 

edge, and sweeps downstream as the airfoil proceeds on the upstroke. The LEV and its 

subsequent development enhance suction, and thus also lift. The agreement between the 

computational and the experimental approaches is favorable when the flow is largely 

attached. When the flow exhibits massive separation, for example at  = 0.50, the 

experimental and computational results show noticeable differences in phase as well as 

the size of flow separation. The details of the vortical structures differ in all results; 

however, it is interesting to observe that the original SST model matched the PIV results 

from the UM better, while the modified SST model produced result more consistent with 

that from the AFRL facility. The consistent/inconsistent results appeared at  = 0.50 

where a smaller vortical structure is evinced on the suction side of the airfoil in the UM 

facility, while in AFRL data such a vortical structure is hardly present. 

 

UM PIV Original SST AFRL PIV Modified SST  

  

  

  

  

Figure 4-4  contours and the instantaneous streamlines over purely 
plunging SD7003 airfoil at  = 0.25,  =0.08, and at  = 6×104 from numerical 
(original SST, modified SST), and experimental (UM, AFRL) results.  
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The flow tends to separate more substantially under the modified SST model than 

under the original SST model due to different eddy viscosity levels predicted. The 

overprediction of separation when using the modified SST model could be explained by 

the use of a limiter for the production term in the TKE equation, Eq. (9). The build-up of 

turbulence near stagnation flow region is prevented, reducing the eddy viscosity in the 

RANS model. The limiter of the production in the TKE equation enforced in the 

modified SST model results in substantially lower eddy viscosity, and hence higher local 

Reynolds number defined as ߩ௙ܷஶܿm ሺߤ ൅ ⁄௧ሻߤ . Hence the flow tends to separate near 

the leading edge which is observed at 0.50 = כݐ in Figure 4-4. 

4.4 Shape Effect: Pitching and Plunging 2D Flat Plate at Re = 6×104 

Polhamus’ leading edge suction analogy [134] predicts that the curvature of the 

leading edge of the airfoil is important to the overall flow structure over the airfoil. 

Figure 4-5 shows the normalized mean streamwise velocity, ݑଵ
 contours along with ,כ

planar streamlines from the numerical and the experimental results from the UM and 

AFRL at 0.50 ,0.25 ,0.00 = כݐ, and 0.75, respectively for a combined pitching and 

plunging flat plate at Re = 6×104. The flow is characterized by separation from the 

leading edge over the majority of the motion cycle. The evolution of the qualitative flow 

features is observed as follows. At top of the downstroke, 0.00 = כݐ, the boundary layer 

undergoes separation at the leading edge but reattaches before the half chord. After the 

reattachment a thin shear layer forms that covers suction side of the flat plate. As the flat 

plate plunges downwards the effective angle of attack increases, reaching its maximum at 

 and the flow separates at the leading edge due to the small (see Figure 4-2) 0.25 = כݐ

curvature, which is directly related to the thickness of the flat plate, at the leading edge. 

Vorticity is fed from the leading edge into a coherent vortex structure. This large scale 

vortical flow feature is evinced during the most of the downstroke, convecting 

downstream, until it eventually detaches from the flat plate at the bottom of the 

downstroke, 0.50 = כݐ. A TEV rolls up in the second half of the downstroke due to the 

interaction with closed separated region and sharp trailing edge: The direction of the 

vorticity shed from the leading-edge is the opposite of that of TEV, as well as the change 
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of sign of the angular rotation of the flat plate at  = 0.25, promote the TEV generation: 

the geometric angle of attack starts to increase at  = 0.25 such that the roll-up of TEV is 

favorable. In the upstroke the boundary layer reattaches. 

 

SD7003, NS flat plate, NS UM PIV AFRL PIV  

  

  

  

  

Figure 4-5  contours and the instantaneous streamlines over pitching 
plunging flat plate airfoil at  = 0.25,  =0.08, and at  = 6×104 from numerical 
and experimental (UM, AFRL) results. As a reference the numerical computation of 
the flow field over the SD7003 airfoil is shown in the first column. 

 

Qualitatively all  contours agree well. In the experiment the leading edge 

separation and the vortical structure generated as the effective angle of attack increases, 

has phase delay compared to the numerical results as shown by the location of the 

maximal accelerated flow region at  = 0.25, and 0.50. Furthermore, the leading edge 

effect overwhelms the difference between turbulence models: The differences using the 

original and the modified SST turbulence model are small [119]. It is shown in Ref. [119] 

that similar eddy viscosity effects as the flow over SD7003 are observed that the eddy 



57 
 

viscosity level in the result using the modified SST model is lower at the leading edge 

compared to the computation using the original version of SST. However, in the critical 

regions above the plate, the two models produce comparable eddy viscosity distributions 

due to the leading edge effect. Consequently, the resulting flow structures from the two 

models are similar as well. 

In order to investigate the effects of airfoil shapes in the case of pure plunging, 

and pitching and plunging motion on the time histories of lift coefficient, the comparisons 

are shown in Figure 4-6 for ܴ݁ = 1×104, 6×104. Note that the lift coefficients are obtained 

using the original SST turbulence model shown in Figure 4-6 . 

It is clear that the results of the flat plate (blue lines in Figure 4-6) show larger lift 

peaks than those of the SD7003 airfoil (red lines in Figure 4-6) within the range of 

Reynolds number and airfoil kinematics considered in this dissertation. Moreover, it is 

found that there is phase delay of peak in the case of pure plunging at ܴ݁ = 6×104 [133]. 

This is because the flow separates earlier over the flat plate during downstroke due to the 

sharp leading edge of the flat plate, see Figure 4-3 and Figure 4-5. 

 

  

(a) pitching and plunging, ܴ݁ = 6×104 (b) pure plunging, ܴ݁ = 6×104 

Figure 4-6 Time histories of pitching and plunging, and pure plunging two-
dimensional flat plate (blue line), and SD7003 airfoil (red line) at 0.25 = ࢑, and ࢚ࡿ = 
0.04 at 104×6 = ࢋࡾ. 
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4.5 Reynolds Number Effect: Re = 6×104 to 1×104 for a Pitching and Plunging 2D 
Flat Plate 

To assess the effects of Reynolds number on the flow field and the resulting 

aerodynamic loading on a pitching and plunging flat plate both experimental and 

numerical results have been obtained for ܴ݁ = 1×104, 3×104, and 6×104. In the range of 

Reynolds number considered in the present study, the Reynolds number sensitivity to the 

qualitative flow structures is small. This is in contrast to the flows at lower Reynolds 

number regimes, e.g. ܱ(102) [3,6,136,35,39], where the viscosity plays a more important 

role than at the current Reynolds number, or for the airfoil geometries with larger radius 

of curvature at the leading edge as discussed in Section 4.3. At 0.00 = כݐ when the flow is 

attached the viscosity plays a role in shaping ݑଵ
 profile as shown in Figure 4-7, which כ

plots the streamwise velocity profiles at three Reynolds numbers, ܴ݁ = 1×104, 3×104, and 

6×104 from the numerical and experimental results. At ݔଵ
ଵݑ the 0.25 = כ

 profiles from the כ

experiments at ܴ݁ = 6×104 show attached flow, and at ܴ݁ = 1×104 separated flow. On the 

other hand, when the flow is largely separated as at 0.50 =כݐ, see Figure 4-8, the 

influence from the Reynolds number is negligible, and the numerical computation agrees 

well with the experiment. 

Figure 4-9 shows the vorticity distributions at the bottom of the downstroke, כݐ = 

0.50, at ܴ݁ = 3×104 and 1×104. Compared to the ܴ݁ = 6×104 case, the large scale flow 

features such as the vorticity concentration and the secondary vortex only observed in the 

numerical computation above the flat plate as well as the trailing edge vortices remain 

similar, but these are made up by smaller regions of concentrated vorticities. The 

experimental results show a focus type vortex without closed streamlines, while the 

numerical computation shows a center type vortex with closed streamlines, which can be 

ascribed to the mass conservation that the experimental result is inherently three-

dimensional, while the numerical computation is done in two-dimensional space. 
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Figure 4-7   profiles from the numerical and experimental results at 

constant  = 0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at  = 0.00 at 
 = 1×104, 3×104, and 6×104,  = 0.25,  = 0.04 for the pitching and plunging flat 

plate. Experimental measurements ×: Re = 6×104; ○: Re = 3×104; □: Re = 1×104; 
Numerical computations ―: Re = 6×104; ―: Re = 3×104; ―: Re = 1×104; The 
experimental data are from [133]. 

 

At these moderately high Reynolds numbers forces due to pressure, which arise 

from large scale inertial effects, such as LEVs, dominate over viscous forces. The small 

Reynolds number dependence on the  profiles shown in Figure 4-7 and Figure 4-8 and 

the qualitative similarity in the large scale flow features (  = 0.500 in Figure 4-5 and 

Figure 4-9) suggest that the resulting aerodynamic forces are only partially sensitive to 

the change of the Reynolds numbers. Figure 4-10 shows the time histories of lift 

coefficient and drag coefficient from the numerical computations. Both coefficients are 

on top of each other for  = 3×104, and 6×104 indicating that the Reynolds number 

effect is minimal for these kinematics. At  = 1×104 the maximum of lift coefficient 

around  = 0.25 occurs slightly earlier and is smaller in magnitude: = 2.50, 

than for  = 6×104 ( = 2.55), and 3×104 ( =2.55). Similarly the 

time histories of drag coefficient for  = 3×104, and 6×104 coincide whereas for  = 

1×104 the drag is slightly larger between  = 0.25 to 1.0. Figure 4-11 shows the lift 

coefficient as function of effective angle of attack compared to the classical steady-state 
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approximation,  [64], and the lift predicted by Theodorsen Eq. (38). The lift 

coefficient between the middle of the upstroke to the middle of the downstroke (  = 

0.750 to  = 0.250) is closest to the steady-state indicating that the unsteady effects such 

as LEV development leads to a departure from the steady-state. Note that the lift 

predicted by Theodorsen has smaller amplitude and a lag compared to the steady-state 

approximation due to the Theodorsen’s function with the reduced frequency being  = 

0.25. 

 

 
Figure 4-8  profiles from the numerical and experimental results at 

constant  = 0.125, 0.25, 0.50, 0.75, and 0.25 behind the trailing edge at  = 0.50 at 
 = 1×104, 3×104, and 6×104,  = 0.25,  = 0.04 for the pitching and plunging flat 

plate. Experimental measurements ×: Re = 6×104; ○: Re = 3×104; □: Re = 1×104; 
Numerical computations ―: Re = 6×104; ―: Re = 3×104; ―: Re = 1×104; The 
experimental data are from [133]. 

Mean and maximum force coefficients are summarized as function of Reynolds 

number in Table 4-1 and in Figure 4-12. The maximum lift is obtained by the flat plate 

for both kinematics. Furthermore, the force coefficients of the flat plate are insensitive to 

the Reynolds number. It is also interesting to note that the mean drag coefficient is lower 

for the SD7003 airfoil, and the mean lift coefficient is larger for the SD7003 airfoil for 

 = 3×104, and 6×104. In forward flight the direction of propulsion is in the drag or 

thrust and the work done by the fluid on the wing is given by the lift. Although the 
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current kinematics is not thrust generating, it may be worth to mention that the selection 

of the flat and thin insect wings may be related to the observation made regarding the 

lower generation of time-averaged lift for flat plates. 

 
(a)  = 6×104 

 
(b)  = 3×104 

 
                       Experiment           Computations 

(c)  = 1×104 

Figure 4-9 Vorticity contours from the numerical and experimental results at 
 = 0.500 for  = 6×104, 3×104 and 1×104,  = 0.25,  = 0.04 for the pitching and 

plunging flat plate. The experimental data are from [133]. 

  
(a) lift coefficient (b) drag coefficient 

Figure 4-10  Time histories of (a) lift coefficient and (b) drag coefficient for a 
pitching and plunging flat plate at  = 0.25,  = 0.04 for  = 1×104

, 3×104, and 
6×104. 
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Figure 4-11 Lift coefficient as function of effective angle of attack for a 

pitching and plunging flat plate at 0.04= ࢚ࡿ ,0.25 = ࢑ and 104×1 = ࢋࡾ
, 3×104, and 

6×104.  

 

Table 4-1 Mean and maximum lift and drag coefficients for the investigated 
Reynolds numbers for the SD7003 airfoil and the flat plate for the pitching and 
plunging, and the pure plunging at 0.25 = ࢑ using the original SST turbulence 
closure. 

Airfoil Kinematics ܴ݁ CL, mean CL, max CD, mean CD, max 

SD7003 Pitching and Plunging 1×104 0.70 1.23 0.032 0.11 

SD7003 Pitching and Plunging 3×104 0.84 1.30 0.011 0.14 

SD7003 Pitching and Plunging 6×104 0.89 1.34 0.0039 0.15 

SD7003 Pure Plunging 1×104 0.69 2.16 0.089 0.30 

SD7003 Pure Plunging 3×104 0.76 2.15 0.074 0.31 

SD7003 Pure Plunging 6×104 0.79 2.23 0.063 0.32 

Flat plate Pitching and Plunging 1×104 0.75 1.86 0.068 0.11 

Flat plate Pitching and Plunging 3×104 0.77 1.90 0.061 0.10 

Flat plate Pitching and Plunging 6×104 0.77 1.92 0.057 0.10 

Flat plate Pure Plunging 1×104 0.70 2.50 0.12 0.34 

Flat plate Pure Plunging 3×104 0.71 2.53 0.12 0.33 

Flat plate Pure Plunging 6×104 0.73 2.55 0.12 0.33 
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(a) pitching and plunging, mean (b) pitching and plunging, max 

  
(c) Pure plunging, mean (d) Pure plunging, max 

Figure 4-12 Mean and maximum lift and drag coefficients as function of 
Reynolds number for the SD7003 airfoil and the flat plate for the pitching and 
plunging, and the pure plunging at  = 0.25. 

 

4.6 Dimensionality Effect: Pitching and Plunging 2D and 3D Flat Plate 

Shyy et al. [29] and Trizila et al. [128] demonstrated that for a plunging flat plate 

with  = 4 at Re = 64, based on the mean tip velocity, the TiVs could either enhance or 

degrade the aerodynamics. For a delayed rotation kinematics, the TiV anchored the 

vortex shed from the leading edge increasing the lift compared to a two-dimensional 

computation under the same kinematics. On the other hand, under different kinematics 

with small angle of attack and synchronized rotation, the generation of TiVs was small 
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and the aerodynamic loading was captured by the analogous 2D computation. To 

investigate the role of 3D effects for the case investigate in the chapter, the pitching and 

plunging flat plate shown in Section 4.4 and Section 4.5 has been repeated for a flat plate 

with  of 2 at .= 4×104.  

 

NS, 2D NS, 3D  

   

   

   

   

Figure 4-13  contours and the instantaneous streamlines over pitching and 
plunging 2D and 3D (  = 2, 75% span) flat plates at  = 0.25,  =0.04, and at  = 
4×104 from the computations. 

 

Figure 4-13 illustrates the  contours from the 2D and the 3D computations for 

pitching and plunging kinematics. Whereas the flow field was dominated by large 

leading-edge separation due to the geometric effects in the downstroke as discussed in 

Section 4.4 in 2D, in 3D the separation is mitigated and the flow reattaches before the 

mid-chord. The velocity field at the center of the downstroke,  = 0.25 is further 

depicted in Figure 4-14 from the 3D computation and experimental measurements at 75% 

span location. The agreement from both methods is good. At the leading edge the 

boundary layer separates, but the flow reattaches around  = 0.25.  
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Figure 4-14  profiles from the numerical and experimental results at 

constant  = 0.125, 0.25, 0.50, and 0.75 at  = 0.20 at  = 4×104,  = 0.25,  = 
0.04 for the pitching and plunging 3D flat plate with  = 2 at 75% span. 

 

 
Figure 4-15 Lift coefficient as function of non-dimensional time for pitching 

and plunging 2D and 3D (  = 2) flat plates at  = 0.25,  =0.04 and  = 4×104.  

 

The absence of the strong leading edge separation for the low aspect ratio flat 

plate with  = 2 manifests itself in the aerodynamic force felt on the wing. The time 

history of the lift coefficient for both 2D and 3D pitching and plunging flat plates are 

plotted in Figure 4-15. In the upstroke where both flat plates evince attached boundary 
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layer, the lift coefficient shows comparable magnitudes. However, during the downstroke 

the lift generated on the 2D flat plate is 2.3 times greater than its 3D counterpart. 

 

 = 0.25   = 0.75  

(a) iso-Q-surface at  = 4 (white) and Q contours from the 2D computations on the symmetry 

plane. 

(b) spanwise lift distribution due to pressure. Red: 2D; Blue: 3D. 

Figure 4-16  Q surfaces (a) and spanwise lift distribution (b) to illustrate the 
difference in the flow structures at the center of the downstroke (  = 0.25) and the 
center of upstroke (  = 0.25). 

 

At the center of the downstroke,  = 0.25, the effective angle of attack is at 
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maximum, see Figure 4-2, and the development of the TiV is also significant as 

illustrated in Figure 4-16(a). This TiV interacts with the LEV developed at the leading 

edge of that flat plate. Because of the downwash induced from the presence of TiV, the 

effective angle of attack at the leading edge is smaller than in 2D, which results in weaker 

LEV. This has the consequence that the spanwise lift distribution in 3D is smaller than in 

2D as shown in Figure 4-16(b). On the other hand, at the center of downstroke the 

effective angle of attack is at minimum and the flow field has negligible 3D effects. 

4.7 Summary 

For high Reynolds number and low reduced frequency flow the interplay between 

the imposed kinematics, the airfoil shape, the Reynolds number, and dimensionality is 

examined for two airfoils: a SD7003 airfoil, and a two-dimensional flat plate with 2.3% 

thickness undergoing two sets of wing kinematics (i.e., pitching and plunging, and pure 

plunging) at Re range from 1×104 to 6×104, k of 0.25 and St of 0.04. The airfoil shape 

plays an important role in determining the flow features generated by the pitching and 

plunging, and pure plunging kinematics. Due to the larger leading edge radius of the 

SD7003 airfoil, the effects of Reynolds number are obviously observed. For pitching and 

plunging case, more attached flow feature are present at higher ܴ݁, whereas flow 

separations from the leading edge were observed at lower ܴ݁. For pure plunging case a 

leading edge separation is seen at all Reynolds numbers. In 3D the presence of TiV 

mitigates the LEV generation resulting in smaller lift magnitude during the downstroke of 

a pitching and plunging flat plate at ܴ݁ = 6×104. During the upstroke where the TiV is 

small, the flow field and the force felt on the wing were comparable to its 2D counterpart. 

Furthermore, it is found that two-dimensional RANS computations with the Menter’s 

original and modified SST turbulence models provided qualitatively, and quantitatively - 

depending on the flow conditions - good predictions in terms of velocity fields compared 

to two-dimensional phase-averaged PIV data in the water channel from two different 

facilities.  
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Chapter 5. 

Effects of Flexibility on the Fluid Dynamic Performance of Wings 

5.1 Introduction 

In this chapter the effects of flexibility on the fluid dynamic performances, i.e. 

propulsive force generation and the propulsive efficiency, are considered. The findings 

reported in the literature can be summarized by the following two observations, see also 

Section 1.2.5: 

(i) Maximum propulsive force is generated when the wing motion frequency is near 

the natural frequency of the wing [45,82,68,69,72,83]. 

(ii) Optimal propulsive efficiency is obtained at a motion frequency that is only a 

fraction of the natural frequency [86,82,68,69]. 

To probe and to elucidate the mechanisms related to these observations, first three 

canonical cases with sinusoidal kinematics will be considered to assess the role of the 

chordwise flexibility, spanwise flexibility, and isotropic wings on the resulting fluid 

dynamic forces: i) thrust generation of a purely plunging chordwise flexible airfoils in 

water in forward flight at ܴ݁ = 9.0 × 103, studied experimentally by Heathcote and 

Gursul [73] and numerically for one particular motion frequency by Shyy et al. [6]. The 

airfoil consists of rigid teardrop leading edge with elastic flat plate as tail. In this study 

five flat plate thicknesses will be considered for various motion frequencies with 

resulting thrust; ii) thrust generation of a purely plunging spanwise flexible wing with 

NACA0012 airfoil in water in forward flight at ܴ݁ = 3.0 × 104 considered by Heathcote, 

Wang, and Gursul [76], Chimakurthi et al. [77], and Shyy et al. [6]. Two different wing 

materials will be used to evaluate the wing flexibility effects on the resulting thrust for a 

range of motion parameters; iii) lift generation of flapping isotropic Zimmerman wing 
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hovering in air at ܴ݁ = 1.5 × 103  and ݇ = 0.56 where the Young's modulus and the mass 

of the wing are varied to assess the effects of the structural properties on the resulting lift. 

Altough a wing with the same geometry is preferred to study the effects of the chordwise 

and the spanwise flexibilities independently, the first two cases studied in this dissertation 

are chosen, because of the experimental results [73] [76] are well documented for 

validation purposes. The design space of the third case is based on several choices of the 

wing material and fluids that are used in wind/water tunnel experiments as well as Micro 

Air Vehicle (MAV) applications. Based on these canonical cases, the underlying physical 

mechanism will be identified and a scaling parameter for the force generation and the 

propulsive efficiency of flexible oscillating wings will be proposed that depends on the a 

priori known non-dimensional parameters. Identifying this scaling parameter leads to an 

order of magnitude estimation of the flexilibity enhanced fluid dynamic performance. 

Furthermore, the scaling parameter will be extrapolated to the case of insects by 

assuming that the weight of the insects are sustained by the lift and it will be shown that 

the lift generated also follows the same scaling. Finally, scaling for the propulsive 

efficiency will be presented that sheds light on the two observations mentioned at the 

beginning of this section. 

5.2 Propulsive Force Generation of Oscillating Flexible Wings 

5.2.1 Purely Plunging Chordwise Flexible Airfoils in Forward Flight in Water 

To explore the thrust enhancement induced by chordwise flexibility, the thrust of 

a purely plunging chordwise flexible airfoil is computed for different thickness ratios (݄௦
 כ

= 4.23×10-3, 1.41×10-3, 1.13×10-3, 0.85×10-3, and 0.56×10-3) and motion frequencies that 

produce Strouhal numbers between ܵ0.085 = ݐ and 0.3 with 0.025 increment with the 

plunge amplitude kept fixed to ݄ୟ/ܿm = 0.194. The reduced frequency ݇ varies then 

between 1.4 and 4.86. As shown in Table 2-1 variation in the thickness changes Πଵ, 

whereas the motion frequency affects both the reduced frequency and the Strouhal 

number. The airfoil consists of a rigid teardrop leading edge and an elastic plate that 

plunges sinusoidally in freestream. Detailed experimental setup and discussion of fluid 



70 
 

physics is in Ref. [73], and Shyy et al. [6] obtained a numerical solution for ܵ0.17 = ݐ for 

different thickness ratios. An Euler-Bernoulli beam solver is used to solve Eq. (2) for the 

deformation of the elastic flat plate, while the rigid teardrop moves with the imposed 

kinematics. Furthermore, the Reynolds number ܴ݁ = 9.0×103 and the density ratio כߩ = 

7.8 are held constant in all cases. The grid and time step sensitivity studies are shown in 

Appendix A.3. 

To validate the current computation to the experimental measurements [73] the 

trailing edge motion is plotted as function of ݐ/ܶ for the moderate thick ݄௦
 10-3×1.41 = כ

and the thinnest ݄௦
 in Figure 5-1. For the thinnest airfoil 0.17 = ݐܵ cases at 10-3×0.56 = כ

the displacement peak in the downstroke near 0.25 = ܶ/ݐ is slightly overpredicted, 

however the overall trend matches well. At ܵ0.17 = ݐ the thinnest airfoil deformes 

considerably more than the airfoil with ݄௦
 .with larger phase lag 10-3×1.41 = כ

 

 
Figure 5-1 Trailing edge displacement as function of non-dimensional time 

for the purely plunging chordwise flexible airfoils in water in freestream at ࢋࡾ = 
9.0×103 with ࢙ࢎ

 The experimental .0.17 = ࢚ࡿ and 0.56×10-3 at 10-3×1.41 = כ
measurements are from [73]. 

 

For ܵ0.17 = ݐ the thrust coefficient as a function of normalized time (with respect 

to the period of plunge) for the Rigid (݄௦
Flexible (݄௦ (10-3×4.23 = כ

 and ,(10-3×1.41 = כ

Very Flexible (݄௦
 thickness ratios is shown in Figure 5-2. In order to (10-3×0.56 = כ

estimate the individual contribution of the teardrop and the flexible plate to force 
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generation, the time histories of thrust coefficient are shown in Figure 5-2 separately for 

each element. It is seen that the thrust response with variation in flexibility is different in 

each of the two cases: with increasing chordwise flexibility of the plate the instantaneous 

thrust contributed by the flexible plate increases. One of the mechanisms found in Ref. 

[6] is that the chordwise deformation of the rear flexible plate in both Flexible and Very 

Flexible cases result in an effective projected area for the thrust forces to develop. 

 

  

(a) ்ܥ generated by the rigid teardrop (b) ்ܥ generated by the flexible flat plate 

Figure 5-2 Time histories of thrust coefficient contribution due to the 
teardrop and the flexible plate separately at 0.17 = ࢚ࡿ: (a) response of the teardrop; 
(b) response of the flexible plate. Extracted from [6]. 

 

The interplay between the motion frequency indicated with Strouhal number and 

the resulting thrust and wing tip displacement is further illustrated in Figure 5-3. For the 

Flexible airfoil the resulting thrust generation increases with the increased motion 

frequency (Strouhal number and reduced frequency) and the maximum wing tip 

displacement also shows monotonic increase with the motion frequency. A striking 

observation is that the vorticity field looks similar for all Strouhal numbers shown, 

however the pressure contours and also the resulting thrust time histories differ in values. 

This could be related to the scaling proposed in Chapter 3 that the force acting on a 

moving body is largely dominated by the motion of the airfoil and less with the vorticity 

in the flow field at high reduced frequencies. Similar trend is shown for the Very Flexible 

airfoil with the thickness ratio about 2.5 times smaller than for the Flexible airfoil cases. 

The thrust increases with higher St and k, however the maximum tip amplitude saturates 

for ܵ0.25 ,0.15 = ݐ, and 0.4. Instead of resulting in a larger tip amplitude motion, higher 

motion frequency leads to larger phase lag of the wing tip relative to the wing root.  
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(a) Flexible (  = 1.41×10-3) 

(b) Very Flexible (  = 0.56×10-3) 

Figure 5-3 Time histories of thrust and wing tip displacement normalized by 
the plunge amplitude as function of non-dimensional time. Pressure coefficient and 
vorticity contours at  = 0.25 for each Strouhal number are shown as well. 
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Increasing motion frequency leads to higher acceleration of the wing, and hence greater 

force generation. However, eventually the fluid dynamics time scale and response 

become limiting factors, as it will be discussed in Sections 5.2.4 and 5.3. 

Figure 5-4 shows the time-averaged thrust coefficient for a range of motion 

frequencies from the current numerical computation and the experimental measurements 

[73]. For the thickest flat plate (݄௦
 the computed thrust compares well with (10-3×4.23 = כ

the experimental measurements. At the higher motion frequencies, ܵ0.28 = ݐ and 0.3, the 

computed thrust starts to deviate. Similar trend is observed for the other thicknesses: at ݄௦
 כ

= 0.85×10-3 the correlation between the numerical result and the experimental 

measurement is good until ܵ0.23 = ݐ and at ݄௦
 .only at the lowest frequencies 10-3×0.56 = כ

Modeling uncertainties, such as laminar-to-turbulent transitions, nonlinearities in the 

structural modeling at large or nonnegligible twist or spanwise bending in the 

experimental setup, which are not accounted for in the numerical computations may be 

attributed to the observed differences. 

 

 
Figure 5-4 Time-averaged thrust coefficient for a plunging chordwise flexible 

airfoil at 103×9.0 = ࢋࡾ and 7.8= כ࣋ for different flat plate thickness and motion 
frequencies. The experimental data are extracted from [73]. The symbols on the line 
indicate the discrete dataset from the experimental measurements. 

 

The thrust for the thickest airfoil (݄௦
 can be enhanced by increasing (10-3×4.23 = כ
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the motion frequency that results to higher ܵݐ and ݇. Increased ܵݐ leads to greater fluid 

dynamic force, but also greater acceleration-reaction force. Furthermore, as the 

acceleration-reaction force depends on the acceleration and the chord of the wing, see Eq. 

(36), higher ݇ will increase the acceleration-reaction force further. Figure 5-4 also shows 

that the thrust generation depends on the thickness of the wing: At ܵۄ்ܥۃ ,0.125 = ݐ for ݄௦
 כ

= 0.56×10-3 is the maximum; however, for higher Strouhal numbers the thrust generated 

by the thinnest airfoil is the lowest: at ܵ0.3 = ݐ, ݄௦
 generates the highest 10-3×0.85 = כ

thrust, while the thinnest wing, ݄௦
 .deteriorate in thrust ,10-3×0.56 = כ

 
(a) Tip displacement 

 
(b) Relative tip deformation 

Figure 5-5 Tip deformations of a plunging chordwise flexible airfoil at ࢋࡾ = 
9.0×103 and 7.8= כ࣋ for different flat plate thickness and motion frequencies. 

To characterize the structural response, the tip displacement normalized to the 
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plunge amplitude, ݓtip ݄௔⁄ , is plotted in Figure 5-5 as function of the phase lag relative to 

the leading edge for the thicknesses and frequencies considered. The phase lag Φ is 

calculated by determining the time instant at which the trailing edge displacement is a 

maximum. For the thickest airfoil, ݄௦
 both the deformations and the phase ,10-3×4.23 = כ

lag are small. As we decrease the the airfoil thickness, both ݓtip ݄௔⁄  and Φ increase with 

increasing frequency, see figure 2. Eventually, ݓtip ݄௔⁄  saturates when Φ approaches 90 

deg: when Φ > 90 deg the motion of the deformed trailing edge is out of phase with the 

imposed leading edge. Relative to the leading edge displacement, ൫ݓtip െ root൯ݓ ݄௔⁄  

shows that by decreasing the stiffness and increasing the motion frequency not only the 

tip deformation increases monotonically, but also the phase lag, so that the resulting wing 

tip displacement reduces in magnitude when the motion is out of phase (Figure 5-5). In 

Section 5.2.4 a relationship between the mean thrust and the structural response will be 

established. 

5.2.2 Purely Plunging Spanwise Flexible Wings in Forward Flight in Water 

The effects of spanwise flexibility on thrust generation of a three-dimensional 

rectangular wing oscillating in pure plunge in forward flight have been investigated with 

water tunnel experiments [76] and numerical simulations [77] [6] [95]. The wing models 

of ܴ = 0.3 m semi-span and ܿm = 0.1 m chord length with several spanwise flexibilities 

were considered. More detailed information of experimental case setup can be obtained 

in Ref. [76]. In this dissertation, two combinations of density ratio and effective 

stiffnesses and several motion frequencies at ܴ݁ = 3.0×104 are considered to compare the 

results with available experimental and computational results, to highlight the thrust 

enhancement mechanism associated with spanwise flexible plunging wings in forward 

flight. The grid and time step sensitivity studies are shown in Appendix A.4. 

The vertical displacements of the wing tip from the computations and the 

experiments for the Flexible and Very Flexible wings are shown in Figure 5-6. The 

displacement is normalized with respect to the amplitude of prescribed wing root 

movement. For the Flexible wing, in comparison to the tip response presented in previous 

studies (experiment: [76]; implicit Large Eddy Simulation (LES) computation [95]), the 
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tip response of current computation shows good correlation. For the Very Flexible wing, 

however, the tip response of the current computation exhibits slight larger amplitude and 

phase advance compared to the measurements [76]. 

 

 
Figure 5-6 Time history of tip displacements of a plunging spanwise flexible 

wing at 104×3.0 = ࢋࡾ for different wing stiffness, wing density, and motion 
frequencies. The experimental data are extracted from Ref. [76] and the implicit 
LES from [95]. 

 

Time histories of thrust coefficient for the Flexible and Very Flexible wings are 

shown in Figure 5-7. For the Flexible wing the thrust in the current computation is 

underpredicted and has some phase advance compared to the measurements [76]. 

However, the agreement in terms of the magnitude and the timing of thrust peaks 

compares well with the thrust prediction using the iLES [95] coupled with a 

geometrically nonlinear beam solver. Furthermore, the measured thrust is assymetric in 

the donwstroke and upstroke while in both computations the thrust has symmetric 

behaviour. For the Very Flexible wing, the computed thrust history is in a reasonable 

agreement with the experimental measurements in terms of the amplitude and the trend of 

thrust. It is worth to point out that the measurements include higher frequency 

components, while the waveforms of the computed thrust are smooth for all cases. As 

shown in Figure 5-6, there is no evidence of high frequency behaviour in the tip response. 

The experimental flow field measurements [76] also do not indicate flow features that 
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may be attributed to these high frequency contents. Therefore this difference may have 

risen from uncertainties in the experimental setup or in the computational modelling. To 

further quantify these uncertainties comparisons of instantaneous three-dimensional wing 

shapes and flowfields near the leading-edge are recommended between the experiments 

and computations. Furthermore, more detailed documentation of the torsion and the 

natural frequencies measurements of the wing would be helpful for computational 

modeling. 

 

 
Figure 5-7 Time history of thrust coefficient of a plunging spanwise flexible 

wing at 104×3.0 = ࢋࡾ for different wing stiffness, wing density, and motion 
frequencies. The experimental data are extracted from Ref. [76] and the implicit 
LES from [95]. 

 

Vorticity and pressure contours for the Flexible and the Very Flexible 

configurations at the mid-span section at time instant 0.25 = כݐ, when the wing is at the 

center of downstroke, are shown in Figure 5-8. The dominance of leading edge suction in 

the Flexible case and the reduction of it in the Very Flexible case are visible in that figure. 

The phase lag between the prescribed motion and the deformation of the wing is could be 

used to explain the thrust generation in flexible flapping wings [6]. For the Very Flexible 

case the cross sectional motion is in the opposite direction of the imposed kinematics at 

the wing root. The phase lag at the wing tip with respect to the prescribed motion for the 

Flexible and Very Flexible cases are, -26 deg, and -126 deg, respectively. As a result of 
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the substantial phase lag in the Very Flexible case, the wing tip and root move in opposite 

directions during most of the stroke resulting in lower effective angles of attack and 

consequently lesser aerodynamic force generation, see also the direction of the arrow in 

the contour plots that denotes the direction of the wing motion. 

 

 

  
(a) pressure coefficient contour levels: 2; range: -2.5 to 2.5 

݄௦
St ,0.01 = כ  2.25 = כݐ ,1.82 = ݇ ,0.1 =

(left) ߎଵ = 212, 7.8 = כߩ; (right) ߎଵ = 38, 2.7 = כߩ 

  
(b) vorticity contour levels: 20; range: -3 to 3 

݄௦
St ,0.01 = כ  2.25 = כݐ ,1.82 = ݇ ,0.1 =

(left) ߎଵ = 212, 7.8 = כߩ; (right) ߎଵ = 38, 2.7 = כߩ 

Figure 5-8 Pressure coefficient ሺ࢖ െ ሻ∞࢖ ሺ૚
૛

⁄ refࢁࢌ࣋
૛ ) and vorticity contours at 

75% span location for Flexible and Very Flexible configurations. The arrow 
indicates the direction of the airfoil motion. 
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Figure 5-9 Time-averaged thrust coefficient of a plunging spanwise flexible 

wing at 104×3.0 = ࢋࡾ for different wing stiffness, wing density, and motion 
frequencies. The experimental data are extracted from Ref. [76]. The symbols on the 
line indicate the discrete dataset from the experimental measurements. 

 

The structural response is depicted in Figure 5-10. For the Flexible wing, the 

phase lag between the prescribed motion and the tip response for ݇ > 1.4 is from 17.6 deg 

to 23.8 deg, whereas for the Very Flexible wing, Φ varies from 108.8 deg to 125.9 deg, 

see Figure 5-9. The wing tip of the Very Flexible wing moves in opposite direction as the 

root for the most of the stroke for higher motion frequencies, while for the Flexible wing, 

the wing root and the tip are in phase. This is confirmed in Figure 5-10 where all Flexible 

wing cases show a phase lag of the wing tip relative to the wing root, Φ, less than 90 deg, 

while for ݇ = 1.6 and ݇ = 1.82 Φ > 90 deg for the Very Flexible wing. Again, the 

correlations of the dynamics from the root to tip play a key role for the tip displacement 

as shown in Figure 5-10, where the relative tip displacement is shown to be monotonic 

to Φ. Moreover, the relationship between the time-averaged thrust and the relative tip 

displacement is discussed in Section 5.2.4. 
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(a) Tip displacement 

 
(b) Relative tip deformation 

Figure 5-10 Tip deformations of a plunging spanwise flexible wing at ࢋࡾ = 
9.0×103 for different wing stiffness, wing density, and motion frequencies. 

 

5.2.3 Lift Generation of a Hovering Isotropic Flapping Zimmerman Wing in Air 

The previous two cases were proposed by Heathcote and Gursul [73] and 

Heathcote et al. [76] to assess the effects of chordwise and spanwise flexibilities, 
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respectively, on the thrust generation of plunging wing in forward flight at low density 

ratio. Motivated by the experimental studies on the three-dimensional Zimmerman wing 

planform [71], a three-dimensional hovering flapping isotropic wing in air is considered. 

The wing is a flat plate wing of ܿm = 0.0196 m and ܴ = 3.825 with a thickness ratio of ݄௦
 כ

= 2.0×10-2 having a Zimmerman planform, see Figure 5-11, hovering in air at ܴ݁ = 

1.5×103. A sinusoidal flapping motion is introduced at the rigid triangle at the leading 

edge at the wing root following, Eq. (3) with ܵ0.25 = ݐ and ݇ = 0.56. The flapping axis is 

parallel to the wing root. Note that in the axes definition by Wu et al. [6] the wing flaps 

up-and-down to generate thrust due to wing flexibility, however in the current study the 

flapping wing axis has been rotated so that the flapping axis is parallel to the lift 

direction, such that the any flexibility in the wing leads to lift generation. The triangular 

rigid region near the root at the leading edge undergoes prescribed motion and is 

constrained in all degrees of freedom in the structural solver, since the flapping 

mechanism in the experiment [137] is actuated at this region on the wing. The grid and 

time step sensitivity studies are shown in Appendix A.5. 

 

 
Figure 5-11 Geometry of the Zimmerman planform. 
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Figure 5-12 Time histories of horizontal displacement at the wing tip of an 

isotropic flapping Zimmerman wing hovering at 0.56 = ࢑ ,103×1.5 = ࢋࡾ, and ࢚ࡿ = 
0.25, made of aluminum. 

 

To validate the numerical computation the Zimmerman wing made of aluminum 

is compared to the available experimental data [137] in terms of the wing tip 

displacement in horizontal direction in Figure 5-12. The predicted tip response shows 

reasonable agreement with the measured displacement and captures the main qualitative 

trends of the response of wing tip. The current computation exhibits a more symmetric 

response between the downstroke and the upstroke in comparison to the experimental 

measurements. The reason for the asymmetry in the measurements might be due to 

uncertainties in the experimental setup related to the driving system of the flapping 

device, or cycle-to-cycle variations in the measurements.  

To assess the effects of different wing properties: the effective stiffness Πଵ and 

the density ratio כߩ, on the resulting lift and wing deformations, surrogate models are 

constructed to qualitatively explore their implications. Surrogate models offer methods to 

efficiently organize the data measured as objective functions and give global and reliable 

qualitative trend as function of design variables [128]. The range for these variables in 

the design space is chosen to cover wide range of applications as shown in Table 5-1. To 

effectively assess the order of magnitude of the design variables a logarithmic scaled 

design space will be populated. 
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Table 5-1. Range of the design variables મ૚ and כ࣋ with representative 
examples. 

Parameter Minimum Maximum 

 ଵ 1.0×102 (HDPE, polyethylene in air)  1.0×105 (steel, aluminum in air)ߎ

  1.0×104 (air to steel, aluminum)  (water to steel, aluminum) 101×1.0 כߩ

 

The objective functions are (a) the lift coefficient averaged over one motion cycle 

between the second and the third cycle, i.e. ݉ = 2.5 in Eq. (7), (b) the twist angle ߠ given 

as 

 

ߠ ൌ maxሼacosሺࢉଷ ڄ ଵሻሽ. (41)ࢋ

 

where ࢉଷ is the unit vector in the direction from the leading edge to the trailing edge at 

the section 3 of the wing (see Section A.5) and ࢋଵ is the unit vector in the lift direction. 

So ߠ gives the degree of the lift favorable projectional area of the wing due to 

deformation, and (c) the bending angle ߰ that is defined as  

 

߰ ൌ max ቄatan ቀ
ݓ
ܴ

ቁ െ ߶ቅ. (42)

 

to measure the wing deformation in spanwise direction ݔ as the maximum tip 

displacement angle relative to the imposed flap angle ߶. For simplicity lift will be 

referred as the time-averaged lift coefficient from now on.  
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Figure 5-13 Design of experiment in logarithmic scale for the design 

variables મ૚ and כ࣋. The training points are indicated by cicles and the training 
points by crosses. 

 

The design of experiments use a face centered cubic design (FCCD) and then the 

remainder of the design space is filled evenly in the design space with the cases 8 and 10 

together with the testing points are generated by the Latin Hypercube Algorithm. In total 

14 training points are selected. A tabulation of the training points are found in Table B-1. 

The design space with logarithmic bias towards the softer Πଵ and lighter כߩ structures are 

shown in Figure 5-13. The region where logଵ଴ כߩ ൐ logଵ଴ Πଵ ൅ 2 is out of the scope of 

the current study as this region showed largely unstable behaviour of the wing motion 

because the imposed frequency of 10 Hz is close to the natural frequencies, see Appendix 

C. 

The resulting surrogate models are shown in Figure 5-14 for the lift, twist, and 

bending angle. Notice that the time-averaged lift for the rigid wing would be zero due to 

the symmetry in the hovering kinematics without pitching motion. The lift, twist, and 

bending are at the maximum at the case 4 and these three objective functions have 

qualitatively similar trend in the design space suggesting that there exists a correlation 

between the resulting time-averaged lift force and the maximum deformations. 

Furthermore, it is not only the effective stiffness Πଵ, or the density ratio כߩ, but the 

balance between these two parameters that determine the resulting deformation and the 
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lift generation. The region of increased objective functions between logଵ଴ Πଵ = 4 and 5 

and logଵ଴  to 2 is caused by the error in surrogate model due to high gradient near 1 = כߩ

the resonance region, yet wide region of almost zero values at more stiffer and lighter 

portion of the design space.  

 

   
(a) ܥۃ௅ۄ (a) ߠ (a) ߰ 

Figure 5-14 Surrogate model responses for (a) lift, (b) twist, and (c) bending 
angles for a flapping isotropic Zimmerman wing at 103×1.5 = ࢋࡾ and 0.56 = ࢑. 

 

As the sinusoidal rigid-body motion is imposed at the triangular rigid part near the 

wing root (see Figure 5-11), the wing inertia and the resulting aerodynamic load are 

balanced out by the elastic force. Since the wing is made of isotropic material the 

structure will respond in both spanwise bending as well as twisting. 

For the chordwise flexible airfoil in Section 5.2.1 and spanwise flexible wing in 

Section 5.2.2 the thrust generation in forward flight was shown to be dominantly 

dependent on the resulting tip motion relative to the imposed kinematics at the wing root. 

For the flapping Zimmerman wing in hover in air, maximum horizontal tip displacement 

normalized by the prescribed amplitude ݄௔ ݓ ൌ ܴ sin ߶௔ is plotted against the phase lag 

with respect to the top of the stroke of the rigid body motion in Figure 5-15. The higher 

tip amplitude corresponds with larger phase lag compared to the imposed kinematics, 

while the tip motion is in phase. The cases with the highest Πଵ ⁄כߩ  ratio have larger 

deformation consistent with the surrogate model responses shown in Figure 5-14. 
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Figure 5-15 Tip deformations of a hovering isotropic Zimmerman wing in air 

at 103×1.5 = ࢋࡾ and 0.56 = ࢑ for different כ࣋ and મ૚. The numbers shown next to 
the markers indicate their case numbers. 

 

5.2.4 Scaling Parameterfor the Force Generation  

From the results presented in Section 5.1 for the three different cases we have 

observed the followings: i) time-averaged force increased with increasing motion 

frequency; ii) the effects of change in structural properties, such as the thickness ratio, 

Young's modulus, or wing density, led to non-monotonic response in the force 

generation; iii) for the hovering isotropic Zimmerman wing the ratio between the density 

ratio and the effective stiffness was monotonic with the time-averaged lift generation. To 

explain the observed trends we will mainly analyze the physics based on Eq. (2) with 

simplifying approximations for the fluid dynamic force, ௙݂
 based ,(see also Section 3.1) כ

on scaling arguments. The flow field and the structural displacement field should 

simultaneously satisfy Eq. (1) and Eq. (2) and among these two Eq. (2) will be 

considered, which has the advantage that this equation is linear except for the fluid 

dynamic force term as opposed to the Navier-Stokes equation which is nonlinear in the 

convection term. Subsequently, we will establish a relation between the time-averaged 

force and the maximum relative tip displacement by considering the energy balance. 
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Figure 5-16 Schematic of the wing approximated as beam and the definitions 

of the wing deformation , prescribed motion at the root , and the spatial 
coordinate . 

 

To capture the essence of the mechanism involved in the force enhancement due 

to flexibility, the interplay between the imposed kinematics, the structural response of the 

wing, and the fluid force acting on the wing are analyzed. The derivation leading to the 

relation between the time-averaged force acting perpendicular to the wing motion,  

and the maximum relative tip deformation , where  is 

the displacement of the wing is relative to the imposed kinematics motion, see Figure 

5-16, is lengthy and many of the steps are similar to those discussed in classical textbooks 

(e.g. [138]), however to account for the approximations involved full derivation is 

presented. Such treatment involving simplifying approximation is helpful, enabling the 

analysis, but mainly serves to elucidate the scaling analysis, not meant to offer complete 

solutions. Consider Eq. (2) in one-dimension in space with  and time  

for the vertical displacement  with the wing approximated as a linear beam, i.e.  

 

 (43)

 

where  is the fluid force on the wing. A plunge motion Eq. (4) is imposed at the leading 

edge at  = 0. At the trailing edge at  = 1 is considered as a free end, i.e. with the 

boundary conditions  

 

 (44)
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,ሺ0כݓ߲ ሻכݐ

כݔ߲ ൌ
߲ଶכݓሺ1, ሻכݐ

כݔ߲ ൌ
߲ଷכݓሺ1, ሻכݐ

כݔ߲ ൌ 0 

 

and the initial conditions  

 

,כݔሺכݓ 0ሻ ൌ ݐܵ
ߨ
݇

,
,כݔሺכݓ߲ 0ሻ

כݐ߲ ൌ 0, (45)

 

where the factors involving ܮ ܿm⁄  become unity for the chordwise flexible case. For the 

spanwise flexible wing and the isotropic Zimmerman wing cases which are discussed in 

Section 5.2.2 and Section 5.2.3, respectively, Π଴ and Πଵ need to be corrected as ܮ ܿm⁄  = 

 Following the procedure described in Mindlin and Goodman [139], a PDE with .ܴܣ

homogeneous boundary conditions can be found by superimposing the plunge motion on 

the displacement ݒሺכݔ, ሻכݐ ൌ ,כݔሺݓ ሻכݐ െ ݄ሺכݐሻ, which gives  

 

Π଴
߲ଶכݒ

ଶכݐ߲ ൅ Πଵ
߲ସכݒ

ସכݔ߲ ൌ ௙݂
כ െ Π଴

݀ଶ݄ሺכݐሻ
ଶݐ݀  (46)

 

for the PDE and  

 

,ሺ0כݒ ሻכݐ ൌ   
,ሺ0כݒ߲ ሻכݐ

כݔ߲ ൌ
߲ଶכݒሺ1, ሻכݐ

ଶכݔ߲ ൌ
߲ଷכݒሺ1, ሻכݐ

ଷכݔ߲ ൌ 0, (47)

 

and the initial conditions  

 

,כݔሺכݒ 0ሻ ൌ
,כݔሺכݒ߲ 0ሻ

כݐ߲ ൌ 0. (48)

 

The consequence of having a sinusoidal displacement at the root is that the vibrational 

response of the wing is equivalent to a sinusoidal excitation force, which is the inertial 

force. The dynamic motion given by Eq. (46) is coupled to the fluid motion via the fluid 

force term ௙݂
 which cannot be solved in a closed form due to its nonlinearities. For high כ

density ratio FSI systems, Daniel and Combes [80] and Combes and Daniel [81] have 



89 
 

shown that the inertial force arising from the wing motion is larger than the fluid dynamic 

forces. In this dissertation to cover wider range of density ratios the fluid dynamic forces 

are included by considering the acceleration-reaction effects. The motivation stems from 

the scaling discussed in Section 3.1 that for high ݇ the acceleration-reaction terms due to 

an accelerating body (see also [140]) contribute more on the wing than the fluid dynamic 

forces from the hydrodynamic impulse, see Table 5-2 for a summary of the non-

dimensional numbers considered in this study. Hence, the wing dynamics is modeled 

with added mass for a flat plate, depending on the imposed wing acceleration as  

 

௙݂
ሻכݐሺכ ൌ ݐଶܵߨ2 ݇ cosሺ2כݐߨሻ, (49)

 

hence the external force on the structural dynamics does not have spatial distribution 

explicitly accounted for and the external force is being simplified in temporal form. 

Combined with the inertial force the total external force ݃כሺכݐሻ becomes  

 

ሻכݐሺכ݃ ൌ ௙݂
ሻכݐሺכ െ Π଴

݀ଶ݄ሺכݐሻ
ଶכݐ݀ ൌ ଶߨ2 ൬1 ൅

4
ߨ

௦݄כߩ
൰כ ݐܵ ݇ cosሺ2כݐߨሻ. (50)

 

Table 5-2  Range of the non-dimensional parameters considered in this 
study. The aspect ratio of the two-dimensional chordwise flexible airfoil is set to 1 
for the reasons discussed in Section 2.2. The representative Section numbers are 
shown in the parentheses. 

Case Chordwise (5.2.1) Spanwise (5.2.2) Isotropic (5.2.3) 

ܴ݁ [103] 9.0 30 1.5 

 3.8 3.0 1 ܴܣ

݄௦
 20 10 4.23 ~ 0.56 [10-3] כ

104 ~ 101 2.7 ~ 7.8 7.8 כߩ

Πଵ/ܴܣଷ 0.3 ~ 129 7.9, 1.4 1.794 ~ 1794

݇ 1.2 ~ 6.5 0.4 ~ 1.82 0.56

25 10 ~ 2.0 40 ~ 7.5 [2-10] ݐܵ

 

Equation (46) can be solved using the method of separation, i.e. ݒሺݔ, ሻݐ ൌ
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ܺሺݔሻܶሺݐሻ, resulting in 

 

݀ସܺ
ସכݔ݀ െ ݇௡

ସܺ ൌ 0, (51)

 

݀ଶܶ
ଶכݐ݀ ൅ ߱௡

ଶܶ ൌ ܳ௡݃כሺכݐሻ, (52)

 

where ܳ௡ሺכݐሻ is a Fourier coefficient of a unit function in the spatial modes ܺ௡ satisfying, 

 

෍ ܳ௡ܺ௡

ஶ

௡ୀଵ

ൌ 1, 

ܳ௡ ൌ
׬ ܺ௡݀כݔଵ

଴

׬ ܺ௡
ଶ݀כݔଵ

଴

, 
(53)

 

where we have normalized ܺ௡, i.e. 

 

න ܺ௡
ଶ݀כݔ

ଵ

଴
ൌ 1. (54)

 

The equation and the boundary conditions for ܺሺכݔሻ is the same as for a free 

vibrating cantilever beam, of which the solution is given numerous textbooks, e.g. [138]. 

The natural frequency is given by 

 

߱௡
ଶ ൌ ൬

݇௡ 1
1

൰
ସ Πଵ

Π଴
ൌ ൬

ߨ2 ௡݂

݂
൰

ଶ

, (55)

 

where ௡݂ is the natural frequency of the beam, i.e., 
 

ሺ2ߨ ௡݂ሻଶ ൌ ൬
݇௡ 1

1
൰

ସ ܧ ܫ
ܣ௦ߩ

, (56)

 
where ܫ is the moment of inertia, ܣ is the cross sectional area of the wing represented as a 
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beam, and ݇௡ is the eigenvalue belonging to the spatial mode ܺ௡ that satisfies the 

transcendental equation 

 

cosሺ݇௡ܮሻ coshሺ݇௡ܮሻ ൌ െ1, (57)

 

and can be approximated by the formula [138] 

 

݇௡ܮ ൎ ൬݊ െ
1
2

൰ (58) .ߨ

 

where ݇ଵܮ ൎ 1.875 and finally the spatial modes are given by 

 

ܺሺכݔሻ ൌ െ
1
2

ቈሼcosሺ݇௡כݔሻ െ coshሺ݇௡כݔሻሽ

െ
cosሺ݇௡ሻ ൅coshሺ݇௡ሻ
sinሺ݇௡ሻ ൅ sinhሺ݇௡ሻ

ሼsinሺ݇௡כݔሻ െ sinhሺ݇௡כݔሻሽ൨. 
(59)

 

The initial position of the beam is consistent with the imposed boundary 

condition. The solution for the temporal equation in ܶሺכݐሻ is 

 

௡ܶሺכݐሻ ൌ
ߨ2 ቀ1 ൅ ସ

గ
௦݄כߩ

ቁכ ڄ ݐܵ ڄ ݇ ڄ ܳ௡

Π଴ሺ ௡݂
ଶ ݂ଶ⁄ െ 1ሻ

ሼcosሺ2כݐߨሻ െ cosሺ߱௡כݐሻሽ, (60)

 

which means that there is an amplification factor of  1 ሺ ௡݂
ଶ ݂ଶ⁄ െ 1ሻ⁄  depending on the 

ratio between the natural frequency ௡݂ of the beam and the excitation frequency ݂. The 

full solution is כݓሺכݔ, ሻכݐ ൌ ݄ሺכݐሻ ൅ ∑ ܺ௡ሺכݔሻ ௡ܶሺכݐሻஶ
௡ୀଵ . The amplitude of the tip 

deformation, ߛ, for the first mode (݊ ൌ 1) is given as 

 

ߛ ൌ
ቀ1 ൅ ସ

గ
௦݄כߩ

ቁכ ڄ ݐܵ ڄ ݇

Π଴ሺ ଵ݂
ଶ ݂ଶ⁄ െ 1ሻ , (61)

 

relative to the imposed rigid body motion normalized by the chord. The parameter ߛ can 
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be rewritten as 

 
ߛ

݄௔ ܿ௠⁄ ൌ ൬
௙ܿ௠ߩ

௦݄௦ߩ

ߨ
4

൅ 1൰
4

ቀ௙భ
௙

ቁ
ଶ

െ 1
~

ܣ ൅ 1

ቀ௙భ
௙

ቁ
ଶ

െ 1
, 

(62)

 

where ଵ݂ ݂⁄ ൌ ߱ଵ ሺ2ߨሻ⁄  is the frequency ratio and ܣ ൌ ௙ܿ௠ߩߨ ሺ4ߩ௦݄௦ሻ⁄  is the ratio 

between the acceleration-reaction force (added mass) and the wing inertia. Depending on 

the order of this ratio either the acceleration-reaction force term or the wing inertia force 

can be neglected. Equation (62) gives the relative wing tip deformation normalized by the 

plunge amplitude, which can be related to the Strouhal number based on the deformed tip 

displacement. Note that when ܣ is sufficiently large, the inertia force term can be 

neglected and ߛ is then proportional to ݄ܣ௔
כ ൌ ௙݄௔ߩ ሺߩ௦݄௦ሻ⁄  which is also used in Thiria 

and Godoy-Diana [68]. 

The proposed scaling parameter to estimate the resulting force on the flapping 

wing follows the observation that there exists a correlation between the dynamic 

deformation of the wing at the tip, ߛ, given by Eq. (61), and the static tip deflection 

which is ܥۃிۄ/Πଵ. To consider the non-dimensional energy equation, first multiply Eq. 

(46) with the relative wing velocity ߲כݒ ⁄כݐ߲  yielding,  

 

כݒ߲

כݐ߲  Π଴
߲ଶכݒ

ଶכݐ߲ ൅
כݒ߲

כݐ߲ Πଵ
߲ସכݒ

ସכݔ߲ ൌ
כݒ߲

כݐ߲ ሻ (63)כݐሺܨ

 

where for simplicity the external force acting on the wing is abbreviated with ܨሺכݐሻ. 

Substituting the separation variables, ݒሺכݔ, ሻכݐ ൌ ܺሺכݔሻܶሺכݐሻ, considering only the first 

mode, in Eq. (63) gives  

 

 Π଴ ሶܶ ሷܶ ܺଶ ൅ Πଵ ሶܶ ܶܺܺԢԢԢԢ ൌ ሻݐሺܨ ሶܶ ܺ, (64)

 

where ሺ ሻሶ  denotes the time derivative and ሺ ሻԢ the spatial derivative. Integrating Eq. 

(64) in ݔ from the wing root to the tip results in 
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Π଴ ሶܶ ሷܶ න ܺଶ ݀כݔ

ଵ

଴

൅ Πଵ ሶܶ ܶ න ܺܺԢԢԢԢ כݔ݀

ଵ

଴

ൌ ሻכݐሺܨ ሶܶ න ܺ כݔ݀

ଵ

଴

. (65)

 

The second integral can be partially integrated using the boundary conditions to  

 

න ܺܺԢԢԢԢ כݔ݀

ଵ

଴

ൌ ݇ଵ
ସ න ܺଶ כݔ݀

ଵ

଴

ൌ ݇ଵ
ସ ൌ

Π଴

Πଵ
߱ଵ

ଶ (66)

 

where the normalization proporty of ܺ, Eq. (54), is used. Inserting Eq. (66) into Eq. (65) 

yields,  

 

Π଴ ሶܶ ሷܶ ൅ Πଵ ሶܶ ܶ݇ଵ
ସ ൌ ሻݐሺܨ ሶܶ ܳଵ, (67)

 

where ܳଵ ൌ ׬ ଵכݔ݀ ܺ
଴  as before, see Eq. (53). Now, Eq. (67) can be integrated as  

 

Π଴ ሶܶ d ሶܶ ൅ Πଵ݇ଵ
ସ ܶ dܶ ൌ ଵܺܨ dܶ, (68)

 

or, 

 

d ൬
1
2

Π଴ ሶܶ ଶ ൅
1
2

݇ଵ
ସΠଵܶଶ൰ ൌ dሺܳଵ ۄிܥۃ ܽ ܶ ሻ, (69)

 

where we have assumed that there exists a time-averaged value ܥۃிۄ with corresponding 

proportinality value ܽ, such that  

 

ܨ dܶ ൎ ܽ ۄிܥۃ dܶ ൌ dሺܽ ۄிܥۃ ܶሻ. (70)

 

The value ܽ is approximated as a constant in this study, however in general ܽ depends on 

time. Integration of Eq. (69) gives the energy balance  
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1
2

Π଴ ሶܶ ଶ ൅
1
2

݇ଵ
ସΠଵܶଶ െ ܳଵܽ ۄிܥۃ ܶ ൌ (71) ,ܥ

 

where ܥ is an integration constant that will be determined. The first term in Eq. (71) is 

the kinetic energy, the second the strain energy, and the third term the work done by the 

external force on the wing. From kinematic relations when ሶܶ ൌ 0, the relative tip 

displacement is at maximum position, i.e. ܶ ൌ mܶax, corresponding to ݒtip,max. On the 

other hand, if the displacement is at the neutral position, we have the maximum velocity 

in free-vibration ሶܶmax with  

 
1
2

Π଴ ሶܶmax
ଶ ൌ (72) .ܥ

 

Hence the energy balance Eq. (71) can be rewritten as  

 
1
2

Πଵ݇ଵ
ସ

mܶax
ଶ െ ܳଵܽ ۄிܥۃ mܶax ൌ

1
2

Π଴ ሶܶmax
ଶ . (73)

 

Using the previously determined solution Eq. (60) the maximum relative tip displacement 

and the velocity can be approximated as  

 

mܶax ൎ ܾଵߛ ܳଵ (74)

 

with ܾଵ again approximated as being some constant and  

 

ሶܶmax ൌ ൜ߛ ڄ ଵܳߨ2 if ߨ2 ب ߱ଵ, i.e. ଵ݂ ا ݂
ߛ ڄ ߱௡ܳଵ if ߨ2 ا ߱ଵ, i.e. ଵ݂ ب ݂.  (75)

 

In the most situations the motion frequency ߱ is lower than the natural frequency of the 

wing ߱ଵ, hence with some other constant ܾଶ not necessarily equal to ܾଵ, we can 

approximate the maximum velocity as 
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ሶܶmax ൎ ܾଶ߱ଵܳߛଵ (76)

 

Inserting the approximations Eq. (74) and Eq. (76) into the energy balance Eq. (71) gives  

 
1
2

Πଵ݇ଵ
ସܾଵ

ଶߛଶ െ ܽ ۄிܥۃ ܾଵߛ ൌ
1
2

Π଴ܾଶ
ଶ߱ଵ

ଶߛଶ, (77)

 

which can be rewritten as  

 

ܽ ۄ்ܥۃ ܾଵ ൌ
Πଵ݇ଵ

ସ

2
ሺܾଵ

ଶ െ ܾଶ
ଶሻ(78) .ߛ

 

Finally, by factoring all constants in Eq. (78) into some constant ܿ, the resulting 

relation between the time-averaged force ܥۃிۄ and the maximum relative tip displacement 

represented with the scaling factor ߛ is  

 
൏ ிܥ ൐

Πଵ
ൌ ܿ (79) .ߛ

 

The resulting scaling, Eq. (79) for the three canonical cases are shown in Figure 

5-17. The nonlinearity exhibited in Figure 5-17(a) is due to the approximations made for 

the constant ܿ which may be a function of ߛ or time. For the chordwise flexible airfoils 

both  ߛ and the normalized force are significantly greater than other cases. When plotted 

in the log-scale, see Figure 5-17(b), the scaling for all cases considered becomes more 

evident. A linear fit on the data set with the coefficient of determination of ܴଶ = 0.98 

indicates that the relation between the normalized force and ߛ is a power law with the 

exponent of 1.19. The relation originating from the dimensional analysis, Eq. (6), then 

simplifies to  

 
ۄிܥۃ ൌ ΠଵΨሺߛሻ (80)

 

with Ψሺߛሻ ൌ 10଴.ଽ଼ ߛଵ.ଵଽ. The elastoninertial number, eࣨi that Thiria and Godoy-Diana 
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[68] proposed as the thrust scaling parameter in air is a special case of ߛ, i.e.  

 

ߛ
ఘ௛ೞبଵ and ௙ ௙భ⁄ ଵب
ሱۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ۛۛ ሮ eࣨi . (81)

 

For the spanwise flexible wing, although the Reynolds number and the thrust 

direction relative to the wing flexibility is different compared to the chordwise flexible 

airfoil, similar analysis could be made by approximating the three-dimensional wing as a 

beam with the correction factors ܮ ܿ௠⁄ ൌ  .for Π଴ and Πଵ as discussed in Section 2.2 ܴܣ

The force coefficient is scaled with the same parameters as for the chordwise flexible 

airfoils for the same reasons, i.e. ܥۃிۄ ൌ ۄ்ܥۃ ሺܵݐ ݇⁄ ሻ⁄ . The time-averaged thrust 

coefficient from the numerical computation of the two flexibilities for different motion 

frequencies fall on top of the previous scaling obtained for the chordwise flexible airfoils. 
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Because the wing is hovering in air for the case of flapping Zimmerman wing, the 

density ratio is higher than in water. Hence, the inertial force dominates over the 

acceleration-reaction force as previously found [80,81]. The horizontal force ܥۃிۄ is 

found by normalizing ܥۃ௅ۄ by ݄௦
 because the vertical force and the horizontal force are כ

proportional to the thickness ratio, if we assume that the pressure differentials are of the 

order of ܱሺ1ሻ. Although this is a simplification, for the sixteen training points the 

thickness ratio scaling is confirmed by taking the ratio between the maximum ܥ௅ and the 

maximum ்ܥ within different motion cycles for all cases as shown in Figure 5-18, which 

indeed show that the pressure differentials are of the order of ܱሺ1ሻ. Furthermore, the 

computed lift from the numerical framework represents only the fluid dynamic force 

without the inertial force of the wing. The inertial force that acts on the wing is estimated 

by multiplying the factor  ݄כߩ௦
כ ሺܵݐ ݇⁄ ሻ⁄ , which is the ratio between the inertial force 

(a) linear scale 

 
(b) log-scale 

Figure 5-17 Normalized time-averaged force coefficients as function of ࢽ. For 
the insect flyers the letter c and s correspond to chordwise and spanwise flexibility 
directions, respectively 
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׽) ௦݄כߩ
׽) ଶ) and the fluid force݇כ  The resulting normalization for the .ۄ௅ܥۃ to (݇ ݐܵ

vertical axis is then ܥۃிۄ ൌ כߩ ۄ௅ܥۃ ሺܵݐ ݇⁄ ሻ⁄ . 

 

 
Figure 5-18  Ratio between ܠ܉ܕሺࡸ࡯ሻ and ܠ܉ܕሺࢀ࡯ሻ multiplied by ࢙ࢎ

 showing כ
the order of magnitudes of the pressure differentials acting on the flapping 
Zimmerman wing hovering in air. 

 

Even though the current case has different kinematics (plunging vs. flapping; 

forward flight vs. hover), different density ratio (low vs. high), and structural flexibilities 

(unidirectional vs. isotropic), the previous trend reemerges, suggesting the generality of 

this scaling parameter ߛ. The trends for the isotropic Zimmerman wing is slightly offset 

in the vertical direction suggesting that the resulting lift is lower. An important aspect is 

that the presence of the rigid triangle (see Figure 5-11) constraints the tip deformation, 

such that the resulting tip deformation is less than the setup where the imposed 

kinematics is actuated at the root of the wing without the rigid triangle. 
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Table 5-3  Kinematic, geometric, fluid, and structural parameters for the 
hawkmoth, bumble bee, and fruit fly obtained from the literature 
[141,142,143,144,145,70]. 

Insect Hawkmoth Bumble bee Fruit fly 

ܿ௠ [mm] 18.2 3.22 0.96 

ܴ [mm] 47.3 10.9 3.0 
ఠ
ଶగ

 [Hz] 26.1 181 240 

߶௔ [deg] 57.2 72 75 

ܴ݁ [103] 6.2 2.2 0.25 

݇ 0.30 0.18 0.19 

 0.25 0.25 0.25 ݐܵ

݄௦
 0.6 1.0 2.0 [10-3] כ

 1.1 2.1 2.0 [103] כߩ

Πଵ,s [102] 0.43 1.4 26 

Πଵ,c 0.53 2.8 211 

 

For the isotropic Zimmerman wing case in hover, we could correlate the lift 

generation to ߛ. This result suggests extrapolation of the current scaling analysis for the 

lift generation of hovering insect flyers. The lift, in hover, for several insects is 

approximated as the experimentally measured weights of hawkmoth [141,142], bumble 

bee [143], and fruit fly [144,145]. To calculate the parameters listed in Table 5-3 flapping 

rectangular planform with constant thickness has been assumed with constant thickness 

and density. To compute the effective stiffnesses in the spanwise and the chordwise 

directions, i.e. Πଵ,s and Πଵ,c, respectively, the flexural stiffness data presented by [70] 

along with their wing lengths have been used. The result is included in Figure 5-17 with 

the scaling  

 
ܹ

భ
మߩ௙ rܷef

ଶ ܿ௠
ଶ ൌ Πଵ

ݐܵ ݇⁄
௦݄כߩ

כ Ψሺߛሻ~Πଵ
௙݄௔ߩ

௦݄௦ߩ
Ψሺߛሻ . (82)

 

Again, the lift approximated with the weights of the insects scales with ߛ. 
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(a) Chordwise flexible: 

Δ ݄௦
כ ൌ 0.56 ൈ 10ିଷ 

ൈ  ݄௦
כ ൌ 0.85 ൈ 10ିଷ 

♢ ݄௦
כ ൌ 1.13 ൈ 10ିଷ 

௦݄ ׏
כ ൌ 1.41 ൈ 10ିଷ 

ᇝ ݄௦
כ ൌ 4.23 ൈ 10ିଷ 

(b) Spanwise flexible: 

ൈ Πଵ ൌ 121, כߩ ൌ 7.8 

♢ Πଵ ൌ 38, כߩ ൌ 2.7 

(c) Isotropic Zimmerman 

Figure 5-19  Time-averaged force (thrust or lift) coefficient normalized by 
the effective stiffness plotted against the maximum relative tip deformations for 
the current computations. The numbers shown in (c) next to the markers indicate 
their case numbers 

 

The current analysis shows that the time-averaged force, such as the thrust or lift, 

can be related to the maximum relative tip displacement by normalizing the force by the 

effective stiffness, Πଵ, resulting in a measure equivalent to the static tip displacement. 

Figure 5-19 illustrates the static displacement, ۄ்ܥۃ/Πଵ, as function of the relative tip 

displacement for all thicknesses and motion frequencies considered. The results for the 

five different thickness ratios collapse to a single curve with higher motion frequency 

leading to greater thrust. Note that the relation is not linear, indicating that ܿ in Eq. (79) is 

actually not a constant. For the spanwise flexible wing case, although the Very Flexible 

wing has larger relative deformation, the effective stiffness is 5.6 times smaller than that 

of the Flexible wing. Hence even if the static tip displacement is larger for the Very 

Flexible wing at the highest motion frequency, the force corresponding to this 

deformation is smaller (see Figure 5-9 due to smaller effective stiffness, see Figure 5-19. 
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Furthermore, again, plotting the ۄ்ܥۃ/Πଵ against the maximum relative tip deformation 

collapses both curves on top of each other. It is shown in Eq. (50) that for ݄כߩ௦
כ ب 1 the 

inertial force will have greater influence on the wing deformation than the force due to 

acceleration-reaction force. In air, כߩ is high, so that in addition to the normalization by 

the effective stiffness, the time-averaged force needs to be multiplied with ݄כߩ௦
 to כ

account for the inertial force. Figure 5-19 again shows that the time-averaged force, in 

this case the lift of the hovering isotropic Zimmerman wing, can be scaled with the 

maximum relative tip displacement by properly normalizing the force. 

5.3 Propulsive Efficiency of Oscillating Flexible Wings 

The propulsive efficiency defined as 

 

ߟ ൌ
ۄ்ܥۃ
ۄ௉ܥۃ  (83)

 

where ܥۃ௉ۄ is the time-averaged power input for a purely plunging wing computed as 

 

ۄ௉ܥۃ ൌ ௅ܥۃ ሶ݄ ۄ . (84)

 

Note that the time-averaged power due to inertia vanishes for sinusoidal motions [73] 

since 

 

ۃ ~ ۄ௉,inertiaܥۃ ሷ݄  ሶ݄ ۄ ൌ න ሷ݄ ሶ݄ כݐ݀

ଵ

଴

~ න cosሺ2כݐߨሻ sinሺ2כݐߨሻ כݐ݀

ଵ

଴

ൌ 0.  (85)

 

The propulsive efficiency for the chordwise flexible airfoils described in Section 5.2.1 

and the spanwise flexible wings in Section 5.2.2 are plotted against the ܵݐ in Figure 5-20. 

For comparison purposes the experimental measurements [73,76] for both cases are 

included. For the chordwise flexible airfoils the efficiency increases with decreasing ݄௦
 .כ

Furthermore, the efficiency first increases with increasing motion frequency, i.e. ܵݐ since 
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the plunge amplitude is kept constant, however then plateaus reaching some optimal 

efficiency. The thinnest airfoil generates the highest ߟ. The experimental measurements 

illustrated in Figure 5-20(b) show a similar trend, however there is an offset compared to 

the computed values. Again, uncertainties involved in the computational modeling or 

experimental setup may play a role. Moreover, as it will be shown below, the magnitude 

of ܥۃ௉ۄ is an order of magnitude smaller than ۄ்ܥۃ, hence even a small uncertainty in the 

power input measurement will lead to large difference in the resulting ߟ. For the 

spanwise flexible wings (Figure 5-20(c,d)), similar trends are found. 

Before discussing the scaling of the power input and the propulsive efficiency, the 

scaling for the thrust generation for the chordwise flexible airfoils and the spanwise 

flexible wings are summarized in Figure 5-21 and is ߚ/ۄ்ܥۃଵ~ߛଵ.ଵ଼ with ߚଵ ൌ

Πଵ ሺ݇ ⁄ݐܵ ሻ⁄ . The power of ߛ has changed slightly compared to the previously determined 

value of 1.19 (Figure 5-17) because the data points from the isotropic Zimmerman wing 

cases and the insects are excluded. Although the value is different, the qualitative trend of 

the propulsive efficiency that will be discussed later will remain the same. 

An interesting discussion on the power input arises from the fact that the fluid 

dynamic force has been modeled as added mass term, which is proportional to the 

acceleration of the wing motion. If the wing were rigid, then, similar to the power input 

due to the inertial force, 

 

,௉ܥۃ added mass, rigidۄ ~ ۃ ሷ݄ ሶ݄ ۄ ൌ 0,  

 



103 
 

ઢ ࢙ࢎ
כ ൌ ૙. ૞૟ ൈ ૚૙ି૜; ♢ ࢙ࢎ

כ ൌ ૙. ૡ૞ ൈ ૚૙ି૜; ࢙ࢎ
כ ൌ ૚. ૚૜ ൈ ૚૙ି૜; ൅ ࢙ࢎ

כ ൌ ૚. ૝૚ ൈ
૚૙ି૜; ᇝ ࢙ࢎ

כ ൌ ૝. ૛૜ ൈ ૚૙ି૜ 

(a) chordwise flexible airfoil, computation (b) chordwise flexible airfoil, experimental 

measurement extracted from [73] 

  Πଵ ൌ 121, כߩ ൌ 7.8; ♢ Πଵ ൌ 38, כߩ ൌ 2.7 

(c) spanwise flexible wing, computation (d) spanwise flexible wing, experimental 

measurement extracted from [76] 

Figure 5-20  Propulsive efficiency plotted against the Strouhal number for 
the chordwise flexible airfoil cases (a) – (b) and the spanwise flexible wing cases (c) – 
(d). 
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(a) linear scale (b) log-scale 

Figure 5-21  Time-average thrust scaling plotted against ࢽ.  : chordwise 
flexible airfoils;  ♢: spanwise flexible wings. 

 

(a) chordwise flexible airfoil: 

Δ ݄௦
כ ൌ 0.56 ൈ 10ିଷ; 

♢ ݄௦
כ ൌ 0.85 ൈ 10ିଷ; 

  ݄௦
כ ൌ 1.13 ൈ 10ିଷ 

 ൅ ݄௦
כ ൌ 1.41 ൈ 10ିଷ 

ᇝ ݄௦
כ ൌ 4.23 ൈ 10ିଷ 

(b) spanwise flexible wing 

Πଵ ൌ 121, כߩ ൌ 7.8 

  ♢ Πଵ ൌ 38, כߩ  ൌ 2.7 

Figure 5-22  Time-average power input plotted against the Strouhal number  
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which is clearly not the case, see Figure 5-22. For small ܵݐ the power input scales as ܵݐଶ, 

however as the ܵݐ increases either the thickness ratio for the chordwise flexible airfoils, 

or the different structural properties for the spanwise flexible wings affect the resulting 

power. That the power required is non-zero, means that the resulting instantaneous lift on 

the wing should have a phase lag relative to the imposed motion. A major source for the 

phase lag is due to the wing deformation. By acknowledging for the wing deformation 

given in Eq. (60), the time-averaged power input coefficient due to added mass can be 

approximated as in the first mode 

 

ۄ௉, added massܥۃ ൌ න Π଴൫ ሷܶ ൅ ሷ݄ ൯ ሶ݄ כݐ݀

ଵ

଴

ൌ න Π଴ ሷܶ ሶ݄ כݐ݀

ଵ

଴

ൌ Π଴ න
݀ଶሺ2ܳߛߨଵሼcosሺ2כݐߨሻ െ cosሺ߱ଵכݐሻሽሻ

ଶכݐ݀  ሶ݄  כݐ݀ 
ଵ

଴

ൌ െ4ߨଶܳߛଵΠ଴
ߨ ݐܵ

݇
߱ଵ

ଶ න cosሺ߱ଵכݐሻ sinሺ2כݐߨሻ  כݐ݀ 
ଵ

଴

ൌ ଶߨ ܳଵ ߛଶ݇ଵ
଼ Πଵ

ଶ

݇ଶ ቀ1 ൅ ସ
గ

௦݄כߩ
ቁכ

~
Πଵ

ଶ

݇ଶ ቀ1 ൅ ସ
గ

௦݄כߩ
ቁכ

ଶߛ ൌ  ଶߛଶߚ

(86)

 

where the integral is approximated as 

 

න cosሺ߱ଵכݐሻ sinሺ2כݐߨሻ כݐ݀ 

ଵ

଴

ൌ
ሺ1ߨ2 ൅ cos ߱ଵሻ

߱ଵ
ଶ െ ଶߨ4 ൎ െ

ଵ߱ߨ
ଶ

߱ଵ
ଶ െ ଶߨ4 ൌ െ

1
ߨ4

߱ଵ
ଶ

ቀఠభ
ଶగ

ቁ
ଶ

െ 1

ൌ െ
Πଵ

ߨ4
ߛ

݇ ݐܵ ቀ1 ൅ ସ
గ

௦݄כߩ
ቁכ

.  
(87)

 

For Πଵ ب Π଴ the scaling for ܥۃ௉ۄ reduces to ܵݐଶሺ1 ൅ ௦݄כߩ4
 ሻ, hence in water, such asߨ/כ

in the experimental setup considered in this case [73,76] or for fixed density ratios and 

thickness ratios of the wing the ܥۃ௉ݐܵ~ۄଶ, consistent with the previous literature [76,69] 

and Figure 5-22. 
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Figure 5-23(a) shows the time-averaged power input normalized by ߚଶ given in Eq. (86) 

against ߛଶ for both chordwise flexible airfoil and spanwise flexible wing cases. As the 

scales of ܥۃ௉ۄ vary enormously, ܥۃ௉ߚ/ۄଶ is plotted against ߛ in log-scale. A linear fit with 

ܴଶ = 0.98 indicates that the power input scales with ߛଶ.ଵଷ.  

 

(a) linear scale: ߛଶ (b) log-scale: ߛ 

Figure 5-23  Time-average power input normalized by ࢼ૚plotted against ࢽ૛. 
 : chordwise flexible airfoils; ♢: spanwise flexible wings. 

 

The scaling for the propulsive efficiency now follows from the scaling for the thrust, i.e. 

ۄ்ܥۃ ⁄ଵߚ ଵߚ ଵ.ଵ଻ withߛ~ ൌ Πଵ ሺ݇ ⁄ݐܵ ሻ⁄  and ܥۃ௉ۄ ⁄ଶߚ ଶߚ ଶ  withߛ~ ൌ ஈభ
మ

௞మቀଵାర
ഏఘכ௛ೞ

ቁכ
 as 

 

ߟ ൌ
ۄ்ܥۃ
ۄ௉ܥۃ ~

ଵߚ ଵ.ଵ଻ߛ

ଶߚ ଶߛ ՜
ߟ

ଷߚ
,ଵ.ଵ଻ߛ~  (88)

 

where ߚଷ ൌ ௌ௧ ௞
ஈభ

 ቀଵାర
ഏఘೞ

௛ೞכ
ቁכ

ఊమ  . The resulting scaling is shown in Figure 5-24. 
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(a) linear scale: ߛଵ.ଵ଻ (b) log-scale: ߛ 

Figure 5-24  Propulsive efficiency normalized by ࢼ૚plotted against ࢽ. 
 : chordwise flexible airfoils; ♢: spanwise flexible wings. 

 

5.4 Implications of the Scaling Parameters on the Fluid Dynamic Performance of 
Oscillating Flexible Wings 

The time-averaged force ܥۃிۄ and the propulsive efficiency ߟ could be related to 

the resultant force on the wing depending on the situation, such as fluid/inertial force, 

with/without freestream, or thrust/lift/weight. The current result enables us to estimate the 

order of magnitude of the time-averaged force generation and and its efficiency for a 

flexible flapping wing using a priori known parameters. 

Furthermore, the scaling can guide design of flapping wing micro air vehilces. For 

example, to support a given weight bܹody of a vehicle body in air, the scaling Eq. (82) 

reduces to 

 

bܹody ׽
௦ߩ

ଵܴଷ.ଵଽ݂ଶ.ଷ଼߶௔
ଶ.ଵଽܿm

ଵ.ହ଻

݄௦
଴.ଷ଼ܧ଴.ଵଽ ՜ ݂~

݉଴.ସଶ݃଴.ସଶ݄௦
଴.ଵ଺ܧ଴.଴଼଴

௦ߩ
଴.ସଶܴଵ.ଷସ߶௔

଴.ଽଶܿ௠
଴.଺଺  (89)

 

where ݉ is the mass of the body, ݃ is the acceleration of gravity, assuming Πଵ ب Π଴. 

The condition Πଵ ب Π଴ is satisfied when ଵ݂ ب ݂ and simplifies the algebra, however it 
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poses constraints on the range of the structural properties, such that the natural frequency 

of the wing is higher than the motion frequency. Relation Eq. (89) shows that either 

increasing the wing area, motion frequency, or the flapping amplitude helps to generate 

sufficient lift to sustain hover flight. On the other hand, by making the wing softer, i.e. 

reducing the Young's modulus or wing thickness, wing deformations will increase 

leading to higher lift generation. However, softening the wing further will violate the 

frequency ratio assumption: ଵ݂/݂ ب 1. The relation given for the flapping frequency has 

similar correlation as the one identified by Pennycuick [146]. Note that the wing weight 

is assumed to be negligible compared to the body weight in this discussion.  

An another implication of the scaling is the interesting behaviour of the role of ݄௦
 כ

for the chordwise flexible airfoil cases shown in Section 5.2.1. It was observed that the 

increased first and then decreased with decreasing ݄௦ ۄ்ܥۃ
 see Figure 5-4. Using the ,כ

current scaling, which is repeated as  

 

ۄ்ܥۃ ׽ Πଵ
ݐܵ
݇

ଵ.ଵ଻ߛ ൌ Πଵ
݄௔

ܿ௠
ቐ

ݐܵ ݇

Π଴ ቀ ௞భ
ర

ସగమ
ஈభ
ஈబ

െ 1ቁ
ቑ

ଵ.ଵ଻

 (90)

 

consider first the situation that ݄௦
is large, i.e. Πଵ כ ب Π଴. Then the denominator in ߛ can 

be approximates as Π଴ ቄ ௞భ
ర

ସగమ
ஈభ
ஈబ

െ 1ቅ ൎ Πଵ yielding  

 

ۄ்ܥۃ ׽ ଶݐܵ ൬
ݐܵ ݇
Πଵ

൰
଴.ଵ଻

 (91)

 

hence by reducing the thickness ratio, Πଵ ׽ ݄௦
 ଷ will decrease, leading to the observedכ

enhanced ۄ்ܥۃ. However, decreasing ݄௦
 further, the frequency ratio ଵ݂/݂ will be כ

eventually of the same order of magnitude, resulting in a different physical behaviour. If, 

say ଵ݂ ݂⁄ ൌ ܱሺ1ሻ, but not in resonance region, then the denominator in ߛ will scale as 

Π଴ ቄ ௞భ
ర

ସగమ
ஈభ
ஈబ

െ 1ቅ ൎ Π଴. Then, the resulting scaling will be  
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ۄ்ܥۃ ׽ ଶݐܵ ൬
ݐܵ ݇
Π଴

൰
଴.ଵ଻ Πଵ

Π଴
 (92)

 

Since Πଵ ׽ ݄௦
ଷ and Π଴כ ׽ ݄௦

ۄ்ܥۃ we have ,כ ׽ ݄௦
 ଵ.଼ଶ. This is consistent with the trendכ

shown in Figure 5-4 that reducing the thickness ratio further, the thrust deterioates. 

The thrust scaling for oscillating flexible wings in water in forward motion, Eq. 

(90) can be rewritten as 

 

ۄ்ܥۃ ׽ ଶݐܵ ቆ
௙݄௔ߩ

௦݄௦ߩ
ቇ

଴.ଵ଻

൬ ଵ݂

݂
൰

ଶ

൞
1

ቀ௙భ
௙

ቁ
ଶ

െ 1
ൢ

ଵ.ଵ଻

, (93)

 

and since ܵݐ ׽ ߱, ݇ ׽ ߱, and ߎ଴ ׽ ݇ଶ ׽ ߱ଶ the thrust has a maximum at the resonance 

frequency. In reality, there is damping in the system, either structural or aerodynamic 

[69]. Although the effects of damping is not considered in this dissertation, applying the 

effects of damping for linear oscillators (e.g. [138]) yields the resonance frequency 

slightly below the natural frequency of the wing with finite value for the maximum 

relative wing tip deformation, hence the thrust, see Figure 5-25(a,b). In Figure 5-25(b) 

the effects of damping has been incorporated by approximating the denominator term as  

 

ඨቊ1 െ ൬
݂
ଵ݂

൰
ଶ

ቋ
ଶ

൅ ൬݀
݂
ଵ݂

൰
ଶ

 (94)

 

where ݀ is some small damping coefficient. This finding is consistent with the previous 

findings that the optimal propulsive performance is found near the natural frequency of 

the wing, but slightly below [45,82,68,69]. 
The propulsive efficiency scaling Eq. (88) can be rewritten in terms of frequency 

ratio ݂/ ଵ݂ as 

 

ߟ ׽ ቊ1 െ ൬
݂
ଵ݂

൰
ଶ

ቋ
଴.଼ଷ

൬
݂
ଵ݂

൰
଴.ଷସ

 (95)
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which has a local maximum at ݂ ൌ 0.41 ଵ݂. Depending on the scaling of the force, the 

optimal frequency can be found as  

 
ߟ߲
߲݂

ൌ 0 ՜
݂
ଵ݂

ฬ
opt

ൌ ඥߚ െ 1, (96)

 

where ߚ is the exponent of ߛ in the force scaling, i.e. 1.18 in Eq. (88), or 1.19 in Eq. (79) 

which yields the optimal frequency of 0.5 of the natural frequency. This indicates that the 

optimal efficiency is not achieved at the resonance, however the optimal frequency is 

some fraction of the natural frequency of the wing, which is also consistent with the 

previous findings in the literature [85,86,147,68,69], see Table 5-4. Figure 5-25(c) which 

plots Eq. (95) as function of the frequency ratio shows that the efficiency increases with 

the increasing frequency ratio until the optimal efficiency and then drops to zero at the 

resonance frequency. Since the undamped linear oscillator is unable to represent the 

resonance behavior correctly, an arbitrary damping has to be included in the system as 

before. Figure 5-25(b) shows the effects of including damping, where ݀ is taken as 0.0, 

0.2, and 0.4: the optimal frequency ratio increases with increasing ݀ as well as the 

efficiency at the resonance frequency. Note also the similarity between Figure 5-25(b) 

with the computed propulsive efficiency curves shown in Figure 5-20. Finally, a 

qualitative comparison is shown in Figure 5-26 where the propulsive force and efficiency 

as function of the frequency ratio is plotted based on the current scaling and the 

measurements reported in Ramananarivo et al. [69]. Although the precise detail is 

different, the overall qualitative trend is similar. 
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(a) undamped force (b) force with damping 

  
(c) undamped efficiency (d) efficiency with damping 

Figure 5-25 Force and propulsive efficiency plotted against the frequency 
ratio ࣓ ࣓૚⁄ . 

 

Table 5-4 Comparison of the optimal frequency ratios from the values 
reported in the literature and the current study. 

Literature ωࢌ ⁄૚ࢌ
opt

Description 

Vallena et al. [86] 0.3 Hover, 2D airfoil, torsion spring model

Yin & Luo [147] 0.4-0.5 Hover, 2D airfoil, membrane model

Ramananarivo et al. [69] 0.5-0.6 Self-propelled flapper experiment

Current study 0.41 Scaling analysis 
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(a) propulsive force, current study (b) propulsive force, data extracted from 

Ramananarivo et al. [69] for the thrust 

power ்݌ 

  

(c) propulsive efficiency, current study (d) efficiency interpolated from the thrust 

power ்݌ and input power ݌௜ extracted 

from Ramananarivo et al. [69] 

Figure 5-26 Comparison of the propulsive force and efficiency from  the 
current study and from the measurements obtained by Ramananarivo et al. [69]. 

 

Finally, the scaling parameters for diverse flow and kinematics conditions are 

summarized in Table 5-5. For the forward flight in water the effective stiffness Πଵ, the 

normalized plunge amplitude ݄௔
כ , the mass ratio ߤ௦ ൌ ௙݄௔ߩ ሺߩ௦݄௦ሻ⁄ , and the frequency 

ratio ଵ݂ ݂⁄  dictate the propulsive force and the efficiency. For hover in air, for the studied 

kinematics, the role of the mass ratio is taken over by the factor ݄כߩ௔
כ ൌ ௦ߤ ݄௦

⁄כ . The 

efficiency for the hover motion in air is left as future work in this dissertation and the 

resulting scaling is only predicted by following the same argument as for the propulsive 
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efficiency in forward flight in air. 

For an example of a 2% thickness wing with rectangular platform made of 

aluminum hovering in air, the optimal frequency of the flapping motion is 5.4 Hz when 

the wing has a chord length of 20 cm and span of 50 cm with a flapping amplitude of 30 

deg. Scaling down the geometry of the wing ten times to the chord length of 2 cm and 

span of 5 cm, keeping the aspect ratio the same, the optimal flapping frequency increases 

to 54 Hz. The resulting propulsive force coefficient and the propulsive efficiency remain 

the same for both cases. However, the dimensional propulsive force and the power 

required will be 100 times smaller for the smaller sized wing, proportional to the square 

of the chord. On the other hand, for the same aspect ratio and the thickness ratio, the 

volume of the wing is proportional to cubic power of the chord. Consequently, for the 

same material, the mass of the smaller wing is 1000 times smaller. The current scaling 

shows, consistent with Shyy et al. [3] that smaller flyers need to flap faster from the 

efficiency point of view, but the relative payload capacity increases because its weight 

reduces at a much faster rate compared to a larger flyers. 

 

Table 5-5  Summary of the scaling proposed. Note ࢼ૚ is મ૚࢚ࡿ
࢑

 for forward 

flight in water and મ૚࢚ࡿ
࢑כ࣋

 for hovering flight in air, and ࢼ૜ is ࢑ ࢚ࡿ
મ૚

 ቀ૚ା૝
࢙ࢎכ࣋࣊

ቁכ

૛ࢽ . 

  Forward flight, water Hover, air 

Force  ߚଵߛଵ.ଵଽ Πଵ݄௔
כ ቆ

௙݄௔ߩ

௦݄௦ߩ
ቇ

ଵ.ଵଽ

൞
1

ቀ௙భ
௙

ቁ
ଶ

െ 1
ൢ

ଵ.ଵଽ

 Πଵ݄௔
כ ଵ.ଵଽ ቆ

௙݄௔ߩ

௦ܿ௠ߩ
ቇ ൞

1

ቀ௙భ
௙

ቁ
ଶ

െ 1
ൢ

ଵ.ଵଽ

 

Efficiency ߚଷߛଵ.ଵ଻ ቆ
௙݄௔ߩ

௦݄௦ߩ
ቇ

଴.ଵ଻

൬
݂
ଵ݂

൰
଴.ଷସ

ቊ1 െ ൬
݂
ଵ݂

൰
ଶ

ቋ
଴.଼ଷ

 
 

 

Notice that the factor ݄כߩ௔
כ ൌ ௙݄௔ߩ ሺߩ௦ܿ௠ሻ⁄  is much smaller than ߤ௦ ൌ ௙݄௔ߩ ሺߩ௦݄௦ሻ⁄  

hence resulting in a much lower propulsion for the hovering symmetric flap/plunge 

motion in air, since the thickness ratio is usually only of the order of 0.01. This order 

estimation is consistent with the values shown in Ref. [69]. For the hovering Zimmerman 

wing the ratio between the propulsive force ܥ௅ and the force required for input power, ்ܥ, 

was of the order of ݄௦
  .see Figure 5-18 ,כ
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This scaling suggests that the insects may require different mechanisms, such as 

active or passive pitching motion with reinforced leading edge, which is commonly 

observed in many insect wings. Furthermore, non-symmetric motions, such as figure-8 

motion where the wing experiences forward motion may yield higher efficiency. Finally, 

anisotropic wing structures with different orders of flexibility may be essential to evince 

the propulsive efficiency mechanism of insects. 

5.5 Summary 

For flexible wings oscillating in water or air, the force generation and the 

propulsive efficiency of the wings were considered. Although the previous studies (e.g.  

[80,81,68,69]) showed that the fluid dynamic force on the wings is negligible compared 

to the inertial force, to account for the low density ratio effects, the fluid force due to 

acceleration-reaction force is additionally considered. Scaling analysis for the force 

showed that if ݄כߩ௦
כ ب 1 the inertial force is dominant, otherwise the fluid dynamic force 

when ݄כߩ௦
כ ا 1. Moreover, for high Reynolds number and reduced frequency flows the 

acceleration-reaction force would be the dominant component of the fluid dynamic force 

acting on the wing. 

By modeling the wing as a beam scaling for the propulsive generation, the work 

done, and the propulsive efficiency were estabilished. The propulsive generation was 

related to the maximum relative tip displacement, the work done the phase lag between 

the wing tip and the root, and the propulsive efficiency the ratio between the former and 

the latter. 

Although the scaling analysis considers only the time-averaged propulsion and 

simplifies still yet to be understood detailed mechanisms, such as the relation between the 

thrust and lift, or the parameteric dependence of the instantaneous force generation, 

current method enables the analytic expressions, so that the underlying mechanisms can 

be highlighted. 

The scaling for the propulsive efficiency shows that the maximum force is 

generated when the motion frequency is near the natural frequency of the wing. 

Moreover, the optimal efficiency is obtained when the frequency is about 0.41 of the 
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natural frequency. This finding suggests that a MAV could adjust its flapping frequency 

to produce maximum propulsion or sustain energy efficiency motion depending on the 

mission. It should be noted that the current scaling is strictly only applicable for high 

Reynolds number and high reduced frequency systems, where the acceleration-reaction 

force would dominate the fluid dynamic force acting on the wing. Applicability of the 

current scaling for different parameter regime, such as low Reynolds number, e.g. ܴ݁ = 

100, hovering or low reduced frequency motion systems, will be assess in the future. 
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Chapter 6. 

Concluding Remarks 

6.1 Summary and Conclusions 

This dissertation addresses modeling aspects of the fluid physics and fluid 

dynamic performances associated with flapping wings. Consistent dimensional analysis 

and non-dimensionalization of the governing equations for the fluid and the wing 

structure led to a system of non-dimensional parameters: Reynolds number (Re), reduced 

frequency (k), Strouhal number (St), aspect ratio (AR), effective stiffness (Π1), effective 

angle of attack (αe), thickness ratio (hs*), and the density ratio (ρ*). Based on a control 

volume analysis scaling arguments were used to identify different regimes in the 

parameter space. For the two sources of forces, i.e. hydrodynamic impulse term and 

acceleration-reaction force term, the following scaling was found 

(i) Strouhal number is proportional to total fluid dynamic force felt on the wing: 

Increasing Strouhal number will increase both the hydrodynamic impulse and the 

acceleration-reaction force terms. 

(ii) As the Reynolds number and the reduced frequency increase, the fluid dynamic 

force felt on a moving body, such as a rigid or deforming wing in air or water, 

will be dominated by the acceleration-reaction force term, which is proportional 

to the acceleration of the body motion. 

At the Reynolds number regime of O(104) and reduced frequency of 0.25 flow the 

interplay between the imposed kinematics, the airfoil shape, and the Reynolds number is 

probed for two airfoils using RANS computations without laminar-to-turbulence 

transition model: a SD7003 airfoil, and a two-dimensional flat plate with 2.3% thickness 
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undergoing two sets of wing kinematics (i.e., pitching and plunging, and pure plunging) 

at Re range from 1×104 to 6×104, k of 0.25 and St of 0.04. The airfoil shape plays an 

important role to determine the flow features generated by the pitching and plunging, and 

pure plunging kinematics. Due to the larger leading edge radius of the SD7003 airfoil, the 

effects of Reynolds number are obviously observed. For pitching and plunging case, 

more attached flow feature are present at higher ܴ݁, whereas flow separations from the 

leading edge were observed at lower ܴ݁. For pure plunging case a leading edge 

separation is seen at all Reynolds numbers. Furthermore, it is found that two-dimensional 

RANS computations with the Menter’s original and modified SST turbulence models 

provided qualitatively, and quantitatively - depending on the flow conditions - good 

predictions in terms of velocity fields compared to two-dimensional phase-averaged PIV 

data in the water channel from two different facilities. The conclusions for the fluid 

dynamics probed in the parameter space of ܴ݁ = ܱሺ10଺ሻ, ݇ = 0.25, ܵ0.04 = ݐ are as 

follows: 

(iii) Regarding the impacts of turbulence models on flow field around the SD7003, 

when the flow is attached, such as under pitching and plunging motion, the 

original formulation of SST turbulence closure offers consistently favorable 

agreement with the experimental results, while the modified SST turbulence 

model overpredicts flow separation. This can be due to a limiter in the production 

term of the turbulence kinetic energy equation reducing the build-up of turbulence 

near stagnation point regions, reducing the eddy viscosity. On the other hand, if 

the flow exhibits massive separation, the modified SST turbulence model shows 

better prediction of the experimental results, such as capturing flow reattachment. 

Finally for the flat plate cases, the leading edge effect that the radius of curvature 

is small, overwhelms the difference between turbulence models. 

(iv) For pitching and plunging case the flow over the SD7003 airfoil is attached in 

both experimental data, and the numerical data using the original SST turbulence 

model at ܴ݁ = 3×104, and 6×104. At ܴ݁ = 1×104 separation has been evinced from 

the leading edge both experimental as well as computational approaches.  
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(v) For pure plunging SD7003 airfoil case, depending on the turbulence 

characteristics including those caused the motion of the wing, and the implied 

eddy viscosity level, qualitatively different flow structures are observed 

experimentally and computationally. 

(vi) In case of the flow over the flat plate in all approaches the geometrical effect at 

the sharp leading edge of the flat plate is dominant, and triggers substantial 

separation from the leading edge for both kinematics. 

(vii) Regarding the comparison between SD7003 airfoil and flat plate, it was found 

that the mean/max lift coefficient of the flat plate is less sensitive to the variation 

of Reynolds number than the SD7003 airfoil. Although the maximum lift 

coefficient of flat plate is larger for all Reynolds numbers considered than that of 

SD7003 airfoil cases, the mean lift coefficient varies more strongly with the 

Reynolds number. There is significant difference in instantaneous lift coefficient, 

and flow structures between both airfoils under the same kinematics and flow 

conditions. 

(viii) In 3D the presence of TiV mitigates the LEV generation resulting in smaller lift 

magnitude during the downstroke of a pitching and plunging flat plate at ܴ݁ = 

6×104. During the upstroke where the TiV is small, the flow field and the force 

felt on the wing were comparable to its 2D counterpart. 

For flexible wings oscillating in water or air, the force generation and the 

propulsive efficiency of the wings were considered. Although the previous studies (e.g.  

[80,81,68,69]) showed that the fluid dynamic force on the wings is negligible compared 

to the inertial force, to account for the low density ratio effects, the fluid force due to 

acceleration-reaction force, approximated by the force due to added mass of a rigid flat 

plate, is additionally considered. For the cases considered, where the Reynolds number is 

in the order of ܱሺ10ଷ െ 10ସሻ and reduced frequency ܱሺ1ሻ, the followings were shown. 

(ix) The tip deformation is an outcome of the interplay between the imposed 

kinematics and the response of the wing structure dictated by the wing tip 
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amplitude and the phase lag. The amplitude of the maximum relative wing tip 

deformation, ߛ, was obtained from the beam analysis and is only function of the a 

priori known non-dimensional paramters. By considering the energy balance of 

the wing the time-averaged force normalized by the effective stiffness was related 

to , and a scaling was established as ܥۃிۄ ൌ  is the force that ۄிܥۃ ሻ whereߛሺߖଵߎ

is responsible for the wing deformation.  

(x) The time-averaged force ܥۃிۄ can be related to the resultant force on the wing 

depending on the situation, such as fluid/inertial force, with/without freestream, or 

thrust/lift/weight. The current result enables us to estimate the order of magnitude 

of the time-averaged force generation for a flexible flapping wing using a priori 

known parameters. 

Furthermore, for the propulsive efficiency, defined as the ratio between the time-

averaged propulsive force and the power input, similar scaling analysis was performed: 

(xi) The power input, which is equivalent to the work done during one motion cycle, 

could be scaled by accounting for the wing deformations which introduces a 

phase lag in the resulting fluid dynamic force with respect to the motion. 

(xii) The power input scales with ܵݐଶ for low frequency ratio (݂/ ଵ݂ሻ motions. For 

higher frequency ratio motions the effects of the inertia and the stiffness of the 

wing will influence the power input. 

(xiii) The propulsive efficiency scales with ܵݐଶۄ்ܥۃ at low frequency ratios for forward 

flight. In this regime increasing propulsion results in higher propulsive efficiency. 

For higher frequency ratio motions the increase of the power input will 

overshadow the propulsion, deterioating the efficiency. 

(xiv) Optimal frequency ratio for the propulsive efficiency was found to be 0.41 of the 

natural frequency of the wing. 

It should be stressed again that the current analysis on the scaling is strictly valid 

only in the flow regimes where the force on the wing is proportional to the acceleration of 

γ
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the wing, such as the acceleration-reaction force term or the inertia force. Further study, 

see also Section 6.3, should reveal the applicability of the current scaling or extension of 

the current analysis in the parameter space at lower Reynolds numbers, such as at ܴ݁ = 

100 or at lower reduced frequencies, e.g. ݇ ൑ 0.5. By modeling the wing as a linear 

beam, a relationship between the time-averaged force normalized by the effective 

stiffness and the maximum wing tip deformation relative to the imposed kinematics is 

established by considering the energy balance of the wing. Furthermore, the lift 

generation of insect flyers, approximated by its weight, largely follows the same scaling 

relationship. Similar scaling analysis are performed for the power input and propulsive 

efficiency. The chosen scaling parameters, given as a combination of a priori known 

wing geometry, structural properties, and motion amplitude and frequency, helps to gain 

more insight in the combined fluid and structural dynamics and is applicable to a wide 

range of scenarios involving different motion types, Reynolds numbers, and the fluid 

media regarding the magnitude of the time-averaged force, which has the potential to 

guide the design of flapping wing micro air vehicles.  

6.2 Main Contributions 

The main contributions of this dissertation are: 

(i) The development of fluid-structure interaction framework that couples 

parallelized unstructured pressured-based finite volume Navier-Stokes equation 

solver to structural dynamics solver. This framework is based on a time-domain 

partitioned solution process in which the nonlinear partial differential equations 

governing the fluid and the structure are solved independently and spatially 

coupled through an interface using an implicit algorithm, such that both equations 

are synchronized. 

(ii) Implementation of Radial Basis Function Interpolation methods to remesh the 

computational fluid dynamics mesh to account for large displacement motion of a 

wing. 
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(iii) Systematic dimensional analysis and non-dimensionalization of the governing 

equations and the kinematics to provide systematic framework to analyze fluid-

structure interaction of a flexible flapping wing. 

(iv) Scaling of forces acting on a moving body immersed in a fluid by considering 

control volume analysis of the fluid momentum conservation [125,127] 

(v) Investigation of fluid dynamics of pitching and plunging airfoil motion at high 

Reynolds number of ܱሺ10ସሻ, low reduced frequency (0.25), and low Strouhal 

number (0.04) regime. 

(vi) Numerical computations of flexible wing configurations at relative high Reynolds 

number ܱሺ10ଷ െ 10ସሻ, high reduced frequency ܱሺ1ሻ, and high Strouhal number 

ܱሺ1ሻ that show good correlation to the experimental results reported in the 

literature. 

(vii) Scaling of the propulsive force generation and the propulsive efficiency at relative 

high Reynolds number ܱሺ10ଷ െ 10ସሻ, high reduced frequency ܱሺ1ሻ, and high 

Strouhal number ܱሺ1ሻ. 

(viii) Determined optimal frequencies for the propulsive force generation and the 

propulsive efficiency that is consistent with the values report in the literature. 

6.3 Future Work 

The current scaling considers only the bending motion for purely plunging wings. 

Further analysis is planned to include twist and active or passive pitching motion, that 

may enhance the force generation and the efficiency more as observed from the 

biological flyers. Another aspect of the biological flyers that is not included in this 

dissertation is the anisotropic wing nature: as discussed by Combes and Daniels [70] the 

chordwise flexibility is order of magnitude smaller than the spanwise flexibility. Also, the 

leading edge of the wing is often stiffened. Combination of these two anisotropic aspects 

requires more advanced description of the system, such as being in two-dimensions in 
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space and coupling between chordwise and spanwise flexibilities to name a few. This is 

in particular interesting for the hovering motions in air, such as insect flights, for which 

the efficiency scaling predicts a very low propulsive efficiency, compared to the forward 

motion in water. 

Furthermore, the flight performance under more realistic flight conditions, such as 

wind gust and insect wing kinematics will be investigated. Another important aspect of 

the aerodynamic performance for MAV development is the role of the body, which is 

neglected in many studies including the current dissertation. Including the body-wing 

interaction is the first step towards the fully coupled dynamics of a flapping MAV flyer 

and its effect will be modeled and assessed in the future. It will also be interesting to see 

if the current scaling for force generation of flexible wings can be extrapolated to the FSI 

systems in lower Reynolds number regimes of , where the interaction between the 

resulting force and the vortices in the flow field might play a more dominant role. 

This dissertation mainly discusses the role of flexibility on the time-averaged 

measures and simplifications were made to enable analysis regarding detailed time 

evolution of the force generation, such as the relation between the lift and the thrust. The 

results obtained for the scaling of power input, that was estimated by considering the 

deformed motion of the wing, strongly attracts to look at the lift generation by 

considering the acceleration of the wing under deformation following the proposed 

scaling of forces in Section 3.2 that the acceleration-reaction force would dominate at 

high reduced frequency, high Reynolds number regimes. Furthermore, by considering 

passive pitch motion arising due to the wing tip deformation relative to the wing root, 

could be incorporated into a quasi-steady model for lift such as Theodorsen’s shown in 

Eq. (38), together with the effects from the effective angle of attack, that may result in a 

more accurate representation of the combined fluid and structural dynamics. Then, based 

on this result, instantaneous thrust may be predicted, leading to instantaneous propulsive 

efficiency model. 

Still open question is the relation between the aerodynamics shown by a flexible 

wing and its rigid counterpart. A wing is assumed to be rigid if the deformation of the 

wing due to the aerodynamic force or its own inertia force is negligible. Equivalence of 

this statement for the scaling analysis shown in this dissertation is that the ratio between 

(2)O
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the effective stiffness and the effective inertia, Πଵ Π଴⁄ ׽ ଵ݂ ݂ ՜ 0⁄ , which is also the 

same as ߛ ՜ 0. Will the limit of ߛ ՜ 0 in the analysis result in the aerodynamics that is 

evinced by the rigid wings? By answering this question the scaling analysis presented in 

this dissertation will be more rigorous and our insight in the flexibility wing and rigid 

wing aerodynamics will be enhanced. 

Moreover, from the numerical analysis point of view, a study is planned to 

investigate the role of flexibility on the FSI-stability and convergence. In the current 

framework where a NS-solver is coupled to a structural dynamics solver through an 

interface with the implicit coupling scheme, it is still unclear when a FSI-convergence 

scheme, such as Aitken’s relaxation is needed, or how to accelerate the convergence. This 

numerial aspect will be more critical for the works planned for future that includes three-

dimensional viscous flow computation over a largely deforming composite wing that 

inheritantly will introduce multi-scale displacements of each point in the wing depending 

on the local stiffness and inertia, one or couple of extra FSI-subiteration can be very 

expensive in terms of the computational cost. 

Finally, this study also illustrates the need for collaborative work among the 

experimentalists and computational modelists. By investigating the physics for the 

equally defined cases the applied methods can be validated independently and the 

uncertainties related to the experimental setup and measurement techniques as well as 

computational modeling can be quantified. 
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Appendix A. 

Spatial and Temporal Sensitivity Studies 

A.1 Pitching and Plunging SD7003 at Re = 6×104, k = 0.25, St = 0.04. 

The numerical solutions are computed in open bounded domain on a unstructured 

grid with 46281 cells, see Figure A-1. The outer boundaries of the computational domain 

are 50 chord lengths apart. The boundary conditions are as follows: on the airfoil no-slip 

conditions are imposed; the outer boundaries are incompressible inlets; and the inlet 

turbulence intensity is 0.5%. The computations are run assuming fully-turbulent, with no 

attempt to model transition. 

 

  
(a) SD7003 airfoil in open 
bounded domain 

(b) Mixed elements near the 
SD7003 airfoil 

Figure A-1. Unstructured grid in open bounded domain (a) and its grid 
distribution near the airfoil (b) for oscillating SD7003 airfoil 

Spatial and temporal sensitivity tests were performed for the pitching and 

plunging case at ܴ݁ = 6×104, ݇ = 0.25, and ܵ0.04 = ݐ. To assess the grid sensitivity time 

histories of lift coefficient on the baseline (46281 cells), finer (119951 cells) and the 

finest (368099 cells) grids are compared in Figure A-1(a) using a time step of ܶ/݀ݐ = 
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400. Note that all non-dimensional variables will be written explicitly for clarity in this 

Chapter. All three solutions coincide and thus all subsequent computations are performed 

on the baseline grid. To investigate temporal sensitivity, three time steps were used: ܶ/݀ݐ 

= 400, 800, and 1600. Figure A-1(b)  shows that the computations using ܶ/݀400 = ݐ on 

the grid with 46281 cells is sufficient to obtain grid and time step independent solution. 

  
(a) Spatial sensitivity (b) Time step sensitivity 

Figure A-2 (a) Time histories of the lift coefficients using the baseline (46281 
cells), finer (119951 cells), and the finest (368099 cells) grid using 400 = ࢚ࢊ/ࢀ over 
pitching and plunging SD7003 airfoil at 0.25 = ࢑ ,104×6 = ࢋࡾ, and 0.04 = ࢚ࡿ. (b)Time 
history of the lift coefficients using 800 ,400 = ࢚ࢊ/ࢀ, and 1600 of a pitching and 
plunging SD7003 airfoil at 0.25 = ࢑ ,104×6 = ࢋࡾ, and 0.04 = ࢚ࡿ on the baseline grid. 

 

A.2 Pitching and Plunging Flat Plate at Re = 6×104, k = 0.25, St = 0.04. 

Spatial and temporal sensitivity tests for the SD7003 airfoil are shown in Section 

A.1. The solution for the pitching and plunging SD7003 airfoil with 46281 cells using 

 is shown to be grid and time independent. In all computations the time step 480 = ݐ݀/ܶ

of ܶ/݀480 = ݐ have been used. For the pitching and plunging flat plate the spatial 

sensitivity test is investigated at ܴ݁ = 6×104, ݇ = 0.25, and ܵ0.04 = ݐ. To assess the grid 

sensitivity for the flat plate time histories of lift coefficient on the baseline (9624 cells), 

finer (32204 cells) and the finest (65904 cells) grids are compared using a time step of 

 see Figure A-4. All three solutions stay within maximum relative error of ,480 = ݐ݀/ܶ
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2%, with the relative error between the finer and the finest grid smaller than between the 

baseline and the finer grid. Based on this observation, the finer grid has been chosen for 

all subsequent computations for the flat plate. 

 

 
  

(a) Flat plate in open bounded domain (b) Mixed elements near the flat plate 

Figure A-3 Computational mesh for the flat plate.  

 

 
Figure A-4 Time histories of the lift coefficients using the baseline (9624 

cells), finer (32204 cells), and the finest (65904 cells) grid using  = 480 over 
pitching and plunging two-dimensional flat plate at  = 6×104,  = 0.25, and  = 
0.04. 
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A.3 Plunging Chordwise Flexible Airfoil in Water at Re = 9×103 

Unstructured grids around an airfoil with a rigid teardrop and a flexible flatplate 

are utilized to solve for the flow field. In order to identify the suitable number of grid 

points and the time step, grid and time step sensitivity analyses are performed for the 

rigid airfoil at ܵ0.17 = ݐ. From the results shown in Figure A-5, the Intermediate grid 

(25×103) and ܶ/݀480 = ݐ are chosen. As to the prescribed wing motion, the rigid teardrop 

is actuated by a sinusoidal plunge displacement with the normalized amplitude of 0.194. 

The fluid dynamics computation is assumed to be fully turbulent and the Menter's SST 

turbulence model is used. The ݕା of the first grid spacing is set to be of the order of 

ܱሺ1ሻ. For the outer boundary conditions, located at 25 chords away from the airfoil, the 

freestream velocity, density, and turbulence quantities are assigned. On the airfoil surface 

the noslip condition is imposed. In order to compute the wing deformations, a finite 

element Euler-Bernoulli beam model with 51 nodes is utilized.  

 

  
(a) lift coefficient (b) thrust coefficient 

  
(c) lift coefficient (d) thrust coefficient 

Figure A-5 Temporal and spatial sensitivity analyses for a rigid plunging 
airfoil at 0.17 = ࢚ࡿ. Grid sizes are Coarse: 6×103,  Intermediate: 25×103, and Fine: 
100×103 cells. 
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A.4 Plunging Spanwise Flexible Wing in Water at Re = 3×104, 

Unstructured grids around a rectangular wing of a NACA0012 airfoil with 3 = ܴܣ 

are utilized to solve for the flow field. In order to identify the suitable number of grid 

points and the time step, grid and time step sensitivity analyses are performed for the 

rigid wing. From the results shown in Figure A-6, the Intermediate grid (0.31×106 cells) 

and ܶ/݀500 = ݐ are chosen. As to the prescribed wing motion, the wing root is actuated 

by a sinusoidal plunge displacement with the normalized amplitude of 0.175. The fluid 

dynamics computation is assumed to be fully turbulent and is solved using the Menter 

SST turbulence model. The ݕା of the first cell away from the wing is set to be of the 

order of ܱሺ1ሻ. For the outer boundary conditions, located around 20 chords away in 

radial direction from the wing and 9 chords from the wing tip, the freestream velocity, 

density, and turbulence quantities are assigned. On the wing surface the noslip condition 

is imposed. In order to compute the wing deformations, a triangle facet shell finite-

element discretization with 768 elements is utilized. The degrees of freedom of the node 

relevant to the chordwise displacement are constrained since Heathcote, Wang, and 

Gursul [76] observed that the degree of chordwise flexion of the wing for all wings and 

all motion frequencies was negligible. In addition, the contribution of the 

poludimethysiloxane (PDMS) rubber material which was used in the experimental wing 

configuration to the overall mass and stiffness properties is assumed to be negligible; 

therefore only the stainless steel for the Flexible wing with 7.8 = כߩ and Πଵ = 212 and the 

Very Flexible wing with 2.7 = כߩ and Πଵ = 38 is considered. Note that the material 

properties of the Very Flexible wing are based on a static bending test (private 

communications with Drs. Wang and Gursul at University of Bath).  
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(a) lift coefficient (b) thrust coefficient 

(c) lift coefficient (d) thrust coefficient 

Figure A-6 Temporal and spatial sensitivity analyses for a rigid plunging 
NACA0012 wing at 1.82 = ࢑. Grid sizes are Coarse: 0.16×106,  Intermediate: 
0.31×106, and Fine: 0.59×106 cells. 
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A.5 Flapping Zimmerman Wing in Air at Re = 1.5×103, 

To assess the grid size sensitivity three grids with different spatial resolutions 

around a Zimmerman wing are utilized for the fluid dynamic computation. The mesh to 

solve for the fluid equations consists of mixed brick near the wing and tetrahedral cells 

away from the wing. For the time step sensitivity analysis 250, 500, and 1000 time steps 

per motion cycle were chosen. The computational fluid dynamics (CFD) and the 

computational structural dynamics' (CSD) grid configurations are shown in Figure A-7. 

From the results shown in Figure A-8, the intermediate grid with 0.51×106 nodes and 500 

time steps per motion cycle show grid and time step independent solution. The fluid flow 

is assumed to be laminar. The first grid spacing from the wing surface is set to 2.5×10-3 

and the outer boundary of the computational grid is located at 30 chords away from the 

wing. At the outer computational boundary zero velocity and reference density are 

assigned. On the wing surface the noslip condition is applied. In order to compute the 

wing deformations, a triangle facet shell finite-element discretization with 767 elements 

is used.  

 

 

 

 
(a) CFD mesh (b) CSD mesh 

Figure A-7 Computational grids for the isotropic Zimmerman wing in flap 
motion. 
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(a) lift coefficient (b) thrust coefficient 

 
(c) lift coefficient (d) thrust coefficient 

Figure A-8 Temporal and spatial sensitivity analyses for a rigid flapping 
Zimmerman wing at 0.56 = ࢑ ,103×1.5 = ࢋࡾ, and 0.25 = ࢚ࡿ. 
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Appendix B. 

Training and Testing Points in the Design of Experiment of the Hovering 

Zimmerman Wing Case 

Tabel B-1 shows the lift of training and testing pointes in the design space for the 

flapping isotropic Zimmerman wing in hover in air (Section 5.2.3). The Πଵ and כߩ are the 

design variables. In the computations the Young's moduli and the density of the wing are 

varied.  

Different weighting strategies are employed to minimize the risk of generating 

surrogates that fit the training data well but perform less in other regions. The weighted 

average surrogates (WAS) use constant weights, meaning that a certain surrogate will 

have the same importance throughout the design space. The Polynomial Response 

Surface, Kriging, and Support Vector Regression are used for the individual surrogates, 

after which each surrogate is weighted in correlation to the RMS PRESS values, defined 

as  

 

RMS PRESS ൌ ඩ 1
௦ܰ

෍ ቀݕ௜ െ ො௜ݕ
ሺି௜ሻቁ

ேೞ

௜ୀଵ

, (97)

 

where ݕො௜
ሺି௜ሻ is the prediction at ݔሺ௜ሻ using a surrogate model constructed with all training 

point except ݔሺ௜ሻ, and ௦ܰ is the number of training points. Table B-2 shows the 

RMS PRESS values as predicted by the individual surrogate models  ۄܮܥۃ, ߰, and ߠ. The 

cells with underlines indicate the lowest RMS PRESS values and the surrogates that are 

weighted in the WAS.  
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Table B-1  List of training points (1 െ 14) and testing points (15, 16) in the 
design space for the flapping isotropic Zimmerman wing at 103×1.5 = ࢋࡾ and ࢑ = 
0.56 hovering in air. મ૚ and כ࣋ are the design variables. 

Case Nr. Πଵ ߩ ܧ כߩ௦ 

1 1.0×102 1.00×101 2.00×108 1.23×101 

2 1.04×105 1.00×101 2.00×1011 1.23×101 

3 1.04×105 1.00×104 2.00×1011 1.23×104 

4 1.00×103 1.00×103 1.92×109 1.23×103 

5 3.29×103 3.16×102 6.32×109 3.89×102 

6 1.04×105 3.16×102 2.00×1011 3.89×102 

7 3.29×103 1.00×101 6.32×109 1.23×101 

8 4.38×104 2.19×103 8.41×1010 2.69×103 

9 1.00×104 1.00×102 1.92×1010 1.23×102 

10 3.16×102 3.16×101 6.07×108 3.89×101 

11 1.00×102 1.00×102 2.00×108 1.23×102 

12 1.00×103 1.00×102 1.92×109 1.23×102 

13 1.00×104 1.00×103 1.92×1010 1.23×103 

14 1.00×104 1.00×104 1.92×1010 1.23×104 

15 5.86×102 3.06×102 1.13×109 3.77×102 

16 3.78×103 5.72×101 7.26×109 7.04×101 

 

 

Table B-2  RMS PRESS values as predicted by the individual surrogate 
models for the lift, twist, and bending angle. Surrogate models indicated by the 
underlines are used for the WAS construction. 

[10-1] KRG PRS SVR1 SVR2 SVR3 SVR4 SVR5 SVR6 

 2.38 2.44 5.57 2.54 2.23 2.93 3.57 3.56 ۄ்ܥۃ

߰ 3.65 6.65 2.77 2.47 2.64 2.67 1.98 2.35 

 2.47 1.32 2.53 2.51 2.05 2.63 3.62 3.63 ߠ

 

Finally, the error measured at the independent testing points defined as the 
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relative difference between the constructed WAS and the actual values from the 

simulations with respect to the range of the objective functions show, see Table B-3, that 

for the case 15 where the high gradients in the surrogates are located has larger error than 

for the more stiffer case 16.  

 

Table B-3  Relative error at the independent testing points 15 and 16. The 
difference in the value predicted by the surrogate model and the numerical 
computations are normalized by the range of the surrogate response 

Objective 

function 

Relative error at testing point 15 

(%) 

Relative error at testing point 16 

(%) 

 8 23 ۄ்ܥۃ

 5 15 ߠ

߰ 7 5 
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Appendix C. 

Modal analysis of isotropic Zimmerman wing 

Natural frequencies are computed using MSC.Marc and shown in Table C-1. 

Moreover, the mode shapes of the wing for each natural frequency are illustrated in 

Figure C-1. The first mode is related to the spanwise bending of the wing and the second 

mode the twist of the wing. Note that all the natural frequencies listed in Table C-1 are 

higher than the motion frequency of 10 Hz.  

 

Table C-1 First two natural frequencies in Hz based on a modal analysis for 
the training and testing points in the design space for flapping isotropic 
Zimmerman wings at 103×1.5=ࢋࡾ and 0.56 = ࢑ in still air. 

Case Mode 1 Mode 2 

1 7.46×101 3.04×102 

2 2.36×103 9.61×103 

3 7.46×101 3.04×102 

4 2.31×101 9.41×101 

5 7.46×101 3.04×102 

6 4.19×102 1.71×103 

7 4.19×102 1.71×103 

8 1.03×102 4.21×102 

9 2.31×102 9.41×102 

10 7.31×101 2.98×102 

11 2.36×101 9.61×101 

12 7.31×102 2.98×102 

13 7.31×101 2.98×102 

14 2.31×102 9.41×102 
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15 3.20×101 1.31×102 

16 1.88×102 7.65×102 

 

  
Mode 1 Mode 2 

Figure C-1. Snapshots of the wing shapes for the first four modes based on a 
modal analysis for the training and testing points in the design space for the 
flapping isotropic Zimmerman wing at =1.5×103 and  = 0.56 in still air. 
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