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ABSTRACT

Classification is the allocation of an object to an existing category among several

based on uncertain measurements. Since information is used to quantify uncertainty,

it is natural to consider classification and information as complementary subjects.

This dissertation touches upon several topics that relate to the problem of classifi-

cation, such as information, classification, and team classification. Motivated by the

U.S. Air Force Intelligence, Surveillance, and Reconnaissance missions, we investi-

gate the aforementioned topics for classifiers that follow two models: classifiers with

workload-independent and workload-dependent performance. We adopt workload-

independence and dependence as “first-order” models to capture the features of ma-

chines and humans, respectively.

We first investigate the relationship between information in the sense of Shannon

and classification performance, which is defined as the probability of misclassification.

We show that while there is a predominant congruence between them, there are cases

when such congruence is violated. We show the phenomenon for both workload-

independent and workload-dependent classifiers and investigate the cause of such

phenomena analytically.

One way of making classification decisions is by setting a threshold on a measured

quantity. For instance, if a measurement falls on one side of the threshold, the object

that provided the measurement is classified as one type, otherwise, it is of another

type. Exploiting thresholding, we formalize a classifier with dichotomous decisions

(i.e., with two options, such as true or false) given a single variable measurement.

We further extend the formalization to classifiers with trichotomy (i.e., with three

xiv



options, such as true, false or unknown) and with multivariate measurements.

When a team of classifiers is considered, issues on how to exploit redundant num-

bers of classifiers arise. We analyze these classifiers under different architectures, such

as parallel or nested. First, we consider a team of homogeneous (identical) classifiers

and provide a fusion-rule, supervisor-based strategy using a parallel architecture.

Then, we consider a team of heterogeneous classifiers and provide a strategy using a

nested architecture. We show results that confirm that both strategies outperform a

single classifier.
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CHAPTER I

Introduction

Truth is generally the best

vindication against slander.

Abraham Lincoln

1.1 Background

Classification, also known as categorization, is the matching of an object to one

existing category among several on the basis of uncertain measurements. When there

are two categories, we speak of dichotomous classification, for instance true or false;

white or black. When there are three categories, we speak of trichotomous classifica-

tion, for example true, false, or unknown; white, black, or grey. Since the measure-

ments that enable classification contain uncertainty, the classification performance is

inherently a random phenomenon. Therefore, probabilistic modeling is the prefered

tool to formalize the problem of classification, and the classification performance is

quantified by a probabilistic measure. Classification need not be performed by a sin-

gle entity (a classifier). If a team of classifiers is involved in the act of classifying,

it is a team classification. The team may consist of classifiers with identical mech-

anisms and properties (homogeneous team of classifiers) or classifiers with different

mechanisms and properties (heterogeneous team of classifiers).
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Let us consider classification in military applications [1–3].1 Unmanned Aerial

Vehicles (UAVs) have proved to be an invaluable force multiplier for the Joint Force

Commander (JFC) [2]. It is predicted that the UAV market is to more than double

over the next decade [4]. UAVs can provide both a persistent and highly capable

intelligence, surveillance, and reconnaissance (ISR) platform to troops requiring in-

formation [2]; and ISR capability is the number one combatant commander priority

for UAVs in the U.S. Army [3].

Due to the technological advance in autonomy, some low-level tasks can be per-

formed by the UAVs themselves. For example, the angle by which the actuators have

to move the ailerons on a UAV is completely hidden from the human operator [5].

Despite their effective information-gathering capability and level of autonomy, UAVs

still require human operators. Apart from any maintenance or launch and recovery

personnel [6], two operators are typically required to operate a UAV: a payload op-

erator and a navigator [5]. However, UAVs in the military are used as sensors rather

than as intelligent decision makers.

As a result of rapid advances in electronics and in imaging technologies, UAVs have

become the “eyes-in-the-sky” through the use of Electro-Optical (EO) and infrared

(IR) sensors, hyperspectral imaging, and LIDAR imaging for instance. However, it

has been reported by the Air Force that the volume of sensor data that must be

processed from current-generation sensors has become overwhelming, as manpower

requirements to deal with these data are burdensome [1]. The analysis of sensor

data and the making of some classification decisions are still the role of intelligence

personnel. Figure 1.1 illustrates a high-level overview of the U.S. Air Force operation.

1This research was supported in part by the United States Air Force grant FA 8650-07-2-3744.
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UAVs in opera-on 

Team of Human Operators 

Classifica-on Visual Data 

Strategic Decisions 

Figure 1.1: An overview of U.S. Air Force ISR operation

1.2 Problem statement

The number of properties one can observe from an object is a determining factor

on the success of the observer’s classification. Considering the number of properties,

or features, an object can possess is a subset of all possible properties an object can

hold, it is natural to consider information theory, as we will discuss in more details

in later sections. Simply put, information theory is a study of choice and uncertainty

given a set of options.

Although information and classification have been both studied with breadth and

depth as individual topics, the relationship between them is still unclear. For instance,

does increasing or decreasing the amount of information always imply anything on

the classification performance? Recently, psychologists and neuroscientists have found

that there are cases when information is not as informative as we expect, but rather

distractive and harmful in terms of making classification decisions [7]. From the

standpoint of engineering, information is often used to classify under the assumption

that more information gives better classification performance. However, we have little

3



theoretical knowledge on when such phenomena occur and the reasons behind them.

Furthermore, as pointed out in the previous section, the current state-of-the-art

military mission relies on the collaboration between autonomous machines and hu-

mans. While the task of information collection is conveniently assigned to autonomous

machines, classification decisions are assigned to human operators. Noting that the

objective of such missions is making qualitative classification decisions, it is question-

able whether the current approach is the best way of utilizing both resources in order

to achieve the objective.

The main goal of this dissertation is two-fold: First, to clarify the relationship

between information and classification performance, that is, to formally show when

information and classification are dependent, or independent, and why. Second, to

investigate ways of using a team of multiple classifiers such that the aggregated per-

formance is better than that of a single classifier. For completeness of the dissertation,

we revisit the mechanism of a single classifier, provide both analytical and numerical

solutions, and further extend the problem to a more generalized setup.

The underlying assumptions of the technical work are as follows:

• The classification performance is solely assessed by the probability of making

wrong classification decisions (probability of misclassification). While we are

aware that other measures may be as important as the probability of misclas-

sification (time taken to make classification decisions for instance) we believe

that it is a proper measure of performance for an initial study. The results

presented in the dissertation may vary as the performance measure is modified.

• We define classifier performance as being characterized by the probability of

correct classification. Thus, improving the classification performance means

increasing the probability of correct classification. Throughout the thesis, how-

ever, we will often use the notion of probability of misclassification, so improving

the classification performance indicates decreasing the probability of misclassi-

4



fication since

Probability of correct classification = 1− Probability of misclassification.

• Our formulation of a classifier is parametric, that is, it requires the knowledge

of the distribution which the classifier draws measurements from and makes

decisions upon. We assume that the distribution of the measurable property is

perfectly known by a prior calibration. Note that the process of calibration is

customary in military operations [8–10].

• Prior information is defined as the proportion of a type of sub-population among

the entire population. We assume that there is a source that provides prior

information, such as military intelligence, and that the information is correct.

1.3 Original contributions & anticipated impacts

The original contributions of this dissertation are as follows:

• We show that increasing the amount of information, in the sense of Shannon’s,

generally implies improving classification performance, when classification de-

cisions are made by the maximum likelihood rule and the classification per-

formance is the probability of misclassification. We show the phenomenon for

classifiers under two different mechanisms: 1. workload-independent classifier

2. workload-dependent classifier. We demonstrate that, however, increasing the

amount of information does not always imply improving classification perfor-

mance, and that this is indeed so for both classifiers with different mechanisms.

• We pose and solve the problem of trichotomous thresholding with a single vari-

able measurement, where the classification decision is based on three options
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(true, false, or unknown) and determined by two thresholds. Then, we generalize

the problem to a multivariate measurement and provide solutions.

• We propose a novel single and team classification model that depends on the

individual classifier’s confusion matrix and a priori information in a static envi-

ronment. We show that the individual classifiers’ decisions in the team can be

fused by various logical operators and verify that the single classifier is a special

case of the fused model. We show that there are fusion rules that improve the

team performance compared to the individual performance.

• We propose a novel classifier architecture that uses a trichotomous classifier with

workload-independent performance that turns over the data classified as un-

known to a binary classifier with workload-dependent performance. We demon-

strate that the novel classifier architecture gives superior classification perfor-

mance (the probability of misclassification) compared to a single dichotomous

classifier. We relate the classifier’s performance to the inherent difficulty of the

classification task at hand (classifiability), and compare the performances of

different classifiers.

The possible implication of these contributions is that one can use the results

to design a classification system that does not rely on the quantitative amount of

information, but rather on the probability of misclassification. By doing so, a great

deal of resources, both machinery and manpower, may be saved since current missions

spend much resources on gathering information [1], thus cutting the mission cost.

Another implication is that by exploiting the optimal structure of multiple classifiers,

the overall classification performance can be significantly improved in comparison

with the current operation where it relies on a single classifier.
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1.4 Dissertation organization

We begin with a literature survey on several subjects related to the dissertation

topic provided in Chap. II. The subjects include information theory and its applica-

tion, the problem of classification and existing methodologies, and topics related to

human factors such as human modeling and human supervisory control.

In the following chapter, we study the relationship between the amount of infor-

mation and classification performance. We provide some background knowledge, then

discuss the relationship for a workload-independent classifier followed by that for a

workload-dependent classifier. The main purpose of Chap. III is to clarify when there

is dependency, or independence, between information and classification performance,

and elucidate why.

In Chap. IV, we study the case of a single classifier by a thresholding scheme. First,

we provide a recap on a dichotomous classifier (true or false) given a single variable

measurement. Then, we study the solution of a trichotomous classifier (true, false

or unknown) given a single variable measurement. Finally, we revisit the solutions

of dichotomous and trichotomous classifiers, but further generalize them to the case

when a multivariate measurement is given.

The following chapters consider a team of classifiers. In Chap. V, we consider a

case with multiple homogeneous (identical) classifiers and provide strategies that give

optimal classification decisions. The strategies rely on a notion of a supervisor that

uses logical fusion rules. The decision made by the supervisor is optimal in that it

minimizes the probability of misclassification of the team. In Chap. VI, we consider

a case with multiple heterogeneous classifiers and provide a novel architecture that

utilize them. We show that the net performance of the architecture is better than

the performance of a single classifier. We also relate the performance to the notion

of classifiability, which is a quantification of how inherently difficult a measurement

is to classify.
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In the last chapter, Chap. VII, we summarize the dissertation, highlight the con-

tributions, and propose future directions. Appendices include a brief review on the

Yerkes-Dodson law, proofs of some theorems, an analytical solution to some problems,

and a derivation for the classification performance measure.
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CHAPTER II

Literature survey

Science is organized knowledge.

Wisdom is organized life.

Immanuel Kant

This dissertation is at the intersection of several technical areas. Each area is a

broad topic by itself, so that an exhaustive review on each topic is beyond the scope

of this dissertation. However, we provide an overview on the key results in each area,

and the state-of-the-art developments as needed.

We begin with introducing the history of information theory and its applications in

Sec. 2.1. In Sec. 2.2, the state-of-the-art techniques in the problem of classification,

their applications, and developments in team classification are reviewed. Finally,

a literature survey on human operator modeling and human supervisory control is

provided in Sec. 2.3.

2.1 Information

2.1.1 Information theory

Information theory deals with the quantification of information and is at the in-

tersection of mathematics, statistics, computer science, physics, neurobiology and
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engineering. It was originally developed by Claude Shannon and other engineers at

Bell Telephone Laboratories [11] to study fundamental limits on operations such as

compressing, reliably storing and communicating data. Information theory now has

applications in many areas, including statistical inference, natural language process-

ing, cryptography, network science and other forms of data analysis. It has been a

key component in the development of compact discs, mobile phones, cryptography

and the Internet.

The history of information theory is generally considered to have started in 1948

with the publication of Claude Shannon’s seminal paper, “A Mathematical Theory

of Communication” [12]. However, limited information-theoretic ideas appear in the

literature prior to 1948.

Harry Nyquist [13] studied factors that affect the “transmission of intelligence”,

and quantified “intelligence” and the “line speed” at which it can be transmitted by

a communication system, giving the relation W = K logm, where W is the speed

of transmission of intelligence, m is the number of different voltage levels to choose

from at each time step, and K is a constant. In order to quantify continuous signals,

such as the spoken language of a person as transmitted over a telephone line, Nyquist

discovered a need for discretization of such signals. This observation led to the notion

of sampling that is now commonly used in the design and analysis of discrete signal

processing and discrete-time control systems [14].

A few years later, Ralph Hartley [15] attempted to define information mathemat-

ically, making an effort to exclude many personal interpretations of information as

it was a loosely defined but easily accessible term. The key ideas behind defining

information were the recognition that each word in a message is a selection among a

set of possible words and that the selection is sequential; that the more elements in a

set of possible words, the more uncertainty in the message; and that knowing the first

few words in the message is more informative than knowing the last few. In short, the
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more possible words or symbols, the more information each selection carries. Hartley

proposed the following formula for the amount of information:

H = n log s, (2.1)

where n is the number of symbols transmitted and s is the size of the set of symbols.

Another contribution of his was extending the work of Nyquist: Hartley clarified that

it is not only the bandwidth of the channel (“line speed”) that affects the amount of

information but also the time available for transmission.

Shannon [12] posed the central problem of classical information theory, which

is the engineering problem of the transmission of information over a noisy channel.

The definition of Shannon information, or entropy, usually expressed by the average

number of bits needed for storage or communication, plays a central role as a measure

of information, choice, and uncertainty. Entropy quantifies the uncertainty involved in

predicting the value of a random variable, or, in communications, the expected value

of the information contained in a message, usually in units of bits. Equivalently, the

Shannon entropy is a measure of the average information content one is missing when

one does not know the value of the random variable.

The most fundamental results of the theory are Shannon’s source coding theorem,

which establishes that, on average, the number of bits needed to represent the result

of an uncertain event is given by its entropy; and Shannon’s noisy-channel coding

theorem, which states that reliable communication is possible over noisy channels

provided that the rate of communication is below a certain threshold, called the

channel capacity.

The key concepts can be grasped by considering the basis of human communi-

cation: language. Intuitively, source coding reflects the notion that common words

(“the”, “a”, “is”, ...) should be shorter than less common words (“classification”,
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“heterogeneous”,...) for the sentences to be short. Channel coding reflects the fact

that if part of a sentence is not heard or is heard incorrectly due to noise, the lis-

tener should still be able to understand the meaning of the message. Building such

robustness in communications is done by channel coding. Note that these concepts

have nothing to do with the importance or content of the message - the theory is

only concerned with the quantity and readability of the message, and not its quality.

Shannon’s information will be revisited in the next chapter (Chap. III).

While Shannon’s information has been the pivotal concept in defining informa-

tion, it is not the only existing one. Fisher’s information describes the information

contained in probability distribution functions (pdfs) [16–18], and has been a popular

measure in estimation theory. Other notable measures include the Kullback-Leibler

entropy (also known as ‘cross entropy’ or ‘relative entropy’ [18–20]), and the Rényi

information divergence [21]; these are either variations or generalizations of Shannon’s

information.

2.1.2 Information acquisition

In practice, the acquisition of information by engineering systems is based on

data collected through sensors or communication devices. Note that in this thesis,

though we are agnostic to how the information is obtained, we focus on models that

are more reflective of sensors rather than communication devices, where issues such

as communication delays can become important. Commonly used sensor types in

aerospace applications include passive (sensors that collect data without emitting any

resources, e.g., cameras [22], accelerometers, rate gyros [23]) and active (sensors that

collect data by emitting resources, e.g., radars [24], ultrasonic) sensors. Sensors may

be isotropic (e.g., ideal antenna [25]), or anisotropic sensors (e.g., most of the sensors).

In [26] an acoustic sensor, which has range dependency on spatial and temporal

coordinates, is modeled by a Bayesian network. Sensor data generally contain noise,

12



and this is characterized by the signal-to-noise ratio (SNR) of the sensor.

2.1.3 Information-based trajectories

An information collection system is a mobile agent carrying a receiver that is able

to collect information about its environment and store this information for later use.

Information collection systems are typically used to accurately obtain, interpret, and

utilize knowledge about objects of interest.

Anisotropic sensors within the context of the information collection problem have

received much attention to date [27–29]. For instance, fixed camera systems with

limited fields of view, direction laser and radar systems are considered in [28, 29], and

the references therein. Reference [30] discusses the deployment of such sensors with

limited communication but does not address path planning for information collection,

nor optimal paths. In previous work of ours, we have posed an optimal control

problem for information collection systems where the goal is to maximize the gathered

information subject to the vehicle kinematic constraints [31–33]. While proposing

a novel information collection model that is based on Shannon’s channel capacity

equation for isotropic or anisotropic sensors, we provide algorithms that generate

optimally informative paths. However, the usefulness of the gathered information

was not fully addressed.

Trajectory planning based on information-theoretic measures has been discussed

in [34–36]. Missions using information theoretic approaches include area searches

with simultaneous localization and mapping (SLAM) [17], decentralized sensor con-

trol [37], and optimal sensor placement [38]. In [39], an active sensor management

problem for multiple target tracking is formulated using the Rényi information mea-

sure, and sensor scheduling algorithms that identify the number and state of moving

targets are provided. In [40], a mobile sensing network for the purpose of detecting

and capturing mobile targets is provided by posing an optimization problem with a
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reward function that represents the improvement in the overall probability of detec-

tion. In [8], the problem of path planning for UAVs in the presence of radar-guided

surface-to-air missiles is posed as a minimax optimal control problem. While the

objective of the dynamic optimization problem is to minimize the maximum of the

probability of tracking an aircraft by radar-guided surface-to-air missiles subject to

kinematic constraints, the authors present the necessary conditions for optimality

and provide extensive numerical solutions under various scenarios. Further work has

been completed by solving optimization problems with taking sensor and kinematic

constraints into account. For instance, [41] considers an agent seeking shortest paths

to a goal with limited field-of-view camera while [42] seeks to minimize the total

wheel rotation of a ground vehicle with accounting for the disc kinematics. However,

they do not consider implications of information theory within their studies. Refer-

ence [43] uses information-theoretic measures, e.g., Shannon’s information and Fisher

information matrix, to guide the information gathering process for mobile agents in

surveillance with strapped-down sensors. In the context of predicting information

collection, there have been approaches such as robotic adaptive sampling [44] where

expected information gain is used to govern the best sensor paths. There is a large

body of work that applies optimal control theory to information gathering problems

in terms of belief state formulation or the dual estimation-control problem; notable

examples are [28, 45, 46]. Reference [47] considers the development of a target as-

signment algorithm for information collection and uses heuristic methods.

Information theory is applicable to team-decision problems [48] and artificial in-

telligence such as in lunar robotic colonies [49].

In our present problem, gathering information has a purpose, which is to make

better classification. The widely accepted view on the relationship between infor-

mation and decision-making, or classification, is that they are congruent, i.e., more

information implies a better probability of correct classification. However, to the best
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of our knowledge, work that formally addresses whether this is true or not is not in

the literature.

2.2 Classification

Classification is a process of allocating items to different sets, and accordingly,

it can be equated with categorizing, i.e., the grouping and labeling of items with

similar properties together (by sorts). The problem of classification has been tackled

in many fields using different names, for example in mathematics (category theory),

in computer science (sorting algorithms), in machine learning and pattern recognition

(supervised learning, data mining), and in statistics (cluster analysis, inference).

The notion of classification can be traced back to Aristotle in ancient Greece [50].

Indeed, classification in essence is similar to the notion of predicate in classical logic:

a predicate is either true or false depending on a discourse variable taken from the

universe of discourse [51]. A formal definition of classification will be provided in

Chap. III.

2.2.1 Theory of classification

Since the notion of “thinking machine” was first presented by Alan Turing [52, 53]

in the 1930s, devising a machine classifier that does not depend on human guides has

been one of the holy grails in fields that deal with computation. Efforts building such

classifiers have stimulated many sub-fields, such as sensing, data mining, statistical

inference, decision making, and learning.

At this point, we introduce a more technical definition of classifier than the one

mentioned in the introduction. A classifier is a decider, i.e., a deterministic mapping

defined from a set of data into truth values, with the domain of the mapping being

a specific realization of a random variable. While both a decider and a classifier are

deterministic mappings, the difference between them is that the latter accounts for

15



the randomness of the data being classified.

A good classifier is able to recognize the properties of an entity (pattern recogni-

tion, novelty detection), knows how to extract the key information among the prop-

erties (data analysis), and is consistent in its performance given the same information

(consistency). In [54], the complementary abilities in data analysis of humans and

computers are discussed using, as an example, the game of chess. The author also

discusses the definition of intelligent data analysis, for example, pattern recognition,

and unintelligent data analysis, for example, by over-refinement. The quality of clas-

sification is determined by two aspects: how likely the classification is to be correct,

and how quickly the result is obtained.

Much attention has recently been paid to the learning aspect of classifiers (thus,

“machine learning”). There are largely two types of learning: supervised and unsu-

pervised. Supervised learning requires a set of “training” data such that the classifier

can learn the true categories in the dataset, similar to a calibration process, and then

the performance of the classifier is examined by a set of “test” data. Thus, supervised

learning inherently consists of two-step procedures which are training and testing. On

the other hand, unsupervised learning does not require training data, therefore the

classification is performed without the knowledge of the true categories and must be

learned as it goes. Clustering [55] is one of the common unsupervised learning tech-

niques, among which k-means clustering [56] and Fuzzy c-means clustering [57] are

popular ones.

Arguably, the first effort towards a learning classifier were using neural networks.

A neural network is a collection of learning agents, known as neurons, interconnected

to other agents by communication links. A network attempts to mimic the input-

output patterns of data and performs classification based on the learned patterns.

Since the discovery of neurons in biology inspired the modeling of such agents by

McCulloch and Pitts [58], on which the general neural network form is based, a large
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body of research has appeared in the literature in search of a better network for better

classification. The Perceptron by Frank Rosenblatt [59] is one of the earliest linear

classifiers that is essentially a feed-forward neural network. However, it was only

capable of classifying linearly separable data. Later on, “ADAptive LInear Neuron”,

or ADALIN, was devised by Berney Widrow, and it is more capable than the percep-

tron [60–62]. The cornerstone of ADALIN was provable results on the performance

that the error converges to the least square error asymptotically by the learning rule.

A multi-layer version of ADALIN (MADALIN) was later devised as a nonlinear clas-

sifier. There have been many more advances in the theory of neural networks; notable

ones include back propagation by Werbos [63] and the Cognitron by Fukushima [64].

For a good review on the history of neural networks, see [65].

In statistics, the problem of classification typically appears as a regression prob-

lem. For standard regression methodologies, see [66] and the references therein.

In [67], the problem of static classification is posed and the solution is investigated

analytically. In [68], the author presents a brief review of the available techniques

for assessing the accuracy of remotely sensed data and the necessary considerations

related to the data such as the classification system, the sampling scheme, the sample

size, and spatial autocorrelation.

Thresholding is a particular method of classification where the classification de-

cision is made based on the evaluation with respect to some threshold values. We

will revisit the mechanism of thresholding in Chap. IV. The method is ubiquitous in

many fields that range from statistics to coding theory, and image processing [69–72].

For a thorough review on the state-of-the-art image thresholding techniques, see [69]

and the references therein.
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2.2.2 Applications of classification

In robotics, the problem of classification appears as a machine learning problem,

such as pattern recognition or novelty detection. Pattern recognition is a study of

how machines can observe the environment, learn to distinguish patterns of interest

from their background, and make sound and reasonable decisions about the categories

of the patterns. In [73], an extensive review survey is presented. In [74], a method

for multi-class optical pattern recognition of different perspective views of an object

is described.

Novelty detection is the identification of a new or unknown data that a machine

learning system is not aware of during training. Novelty detection is similar to the

problem of static classification, but it focuses on the novelty of the new signal rather

than the similarity to the known signal. For state-of-the-art statistical techniques,

see [75] and the references therein.

Recently, much attention has been devoted to the problem of classification with

augmenting human operator inputs. In [76, 77], a problem of classifying large datasets

in bioinformatics without any a priori information is addressed. The authors propose

an adaptive active clustering scheme that initially clusters the data sets unsuper-

vised and then allows for adjustment of the classification by the user. Using this

approach, the authors show that the misclassification rate can be improved quickly.

In [78], a similar problem is addressed, but the focus is on the maximum reduction

of the number of learning data involving human interactions. The author proposes

a self-controlled exploration/exploitation strategy to select data points based on the

combination of representativeness and classifier uncertainty. In [79], a system that

collects and analyzes data of the multimodal communication between human-human

or human-robot interaction is presented. In [80], the psychology behind some heuris-

tics of human experts’ decision-making is discussed.

The problem of classification with human input also relates to aerospace appli-

18



cations. In the Air Force’s Intelligence, Surveillance and Reconnaissance missions, a

team of human operators and UAVs are paired to improve the finding of targets. In

[81], the authors investigate the use of human operator feedback for target recognition

in an ISR scenario where a team of Micro Aerial Vehicles (MAVs) is assigned to fly

over a number of objects of interest and the operator must decide whether the ob-

ject is a target or not. In [82], the authors present decision making strategies under

uncertainty and adversary action for the Cooperative Operations in UrbaN TER-

rain program (COUNTER), where stochastic dynamic programming is employed to

optimize the fuel reserves of a UAV.

All the aforementioned work is on the problem of static classification, where the

classifier is stationary; there is relatively less work on the problem of kinematic clas-

sification, where the classifier can choose where to move. Reference [19] addresses

a problem where the goal is to classify one or multiple fixed targets located in an

obstacle-populated workspace by planning the path; however, the authors assume

that maximizing information leads to the optimal classification performance. We will

show this is only a general trend in later chapters.

2.2.3 Team classification

Methods of combining several classifiers in order to enhance the overall classi-

fication performance (or shortly, team classification) first appeared in handwriting

recognition problems [83–86] and then extended to more general pattern recognition

problems such as speech recognition, remote sensing and medical applications [87, 88].

Some of the early methods of team classification are majority voting [85, 86], where

each individual classifier has a vote and the category with the majority vote wins,

and subset ranking [87], where each individual classifier creates a subset of categories

with assigned ranking and the category with the majority ranking wins. There are

methods that use fusion rules [89], multiple neural networks [90], expert opinions [91]
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and many more. However, since the range of applications that pattern recognition

techniques are applicable to is wide, it is difficult to compare the performance of

different team classification methods; a method that is applicable in one application

may not be applicable in other. Hence the scope of such studies is often limited to a

specific type of problem.

Another line of research similar to team classification is the team decision problem.

The classical team decision problem is to find the best communication system and

the best decision rules, given the expected outcome of decisions, the probabilities of

situations, and the cost of communication [92, 93]. In [94], the team decision problem

is posed as an optimal control problem. A tutorial on team decision theory and

information structures between the teammates is presented in [95], and the references

therein. In [96], a novel team model is formulated with a study investigating the

role of uncertainty between teammate interaction. It is shown that the optimal level

of interaction decreases as the level of uncertainty increases. Motivated by various

Air Force missions, in [97], a mathematical definition of collective and collaborative

systems is made based on classical team decision theory.

When there are multiple opinions, there are ways to reach a collective decision,

such as voting; these methods are termed as fusion rules. A study on the trade-

off between accuracy and decision time for decision-makers in decentralized settings

is presented in [98]. This work considers two fusion rules that combine multiple

decision-makers’ opinions to make a final collective decision. In [99], it is shown

that for a collective decision based on multiple decision makers, the optimal fusion

rule is the likelihood-ratio test under the assumption that each individual decision is

conditionally independent from any other.

Loosely speaking, one can argue that machine classifiers are good at keeping con-

sistent performance, but they lack in ability to recognize properties and process in-

formation when compared to humans. On the other hand, humans are superior to
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machine classifiers in recognizing properties and processing information, but they lack

consistency in performance. Assuming that these statements correctly characterize

the features of machine classifiers and humans to some extent, it is obvious that there

are complementary aspects between the two entities. Our work is motivated by rec-

ognizing such complementary aspects and seeks collaboration strategies in the task

of classification. However, there may be applications where such assumptions do not

agree with practice, and in that domain our work should be applied cautiously. In

order to clarify the domain, we find a need to understand the characteristics of hu-

mans as decision-makers, specifically, how they are modeled and are exploited. The

following is the literature review on human modeling and supervisory control.

2.3 Human operator modeling & Human supervisory control

Modeling humans is notoriously difficult, and when done, leads to models that

are valid only within a small domain of interest. We divide the section into two

subsections, each focusing on: 1. models that try to capture certain human behaviors,

2. supervisory controllers that guide (and restrict) human behaviors assuming that

they follow some model.

Research over the past few decades has suggested a number of statistical operator

models for certain types of tasks [100–104]. Reference [100] tests the stimuli response

of Air Force Cadets in different exhaustion states. In [101], a Bayesian model for

optional stopping is developed for the two-hypothesis tasks in which subjects may

purchase risk-reducing information before making a decision. Also, a nonparametric

model for choice-reaction time is derived. In [102], a speed-accuracy study is pre-

sented applying a sequential probability ratio decision procedure on the alternatives

for two-choice situations. In [103] the capacity of operators to adapt to changes in

a setup that focuses on speed vs. accuracy of the operator responses is examined.

Experimental results show that emphasis on speed decreases mean reaction time, but
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increases errors. In [104], a linear relationship between the odds of a correct response

and reaction time is presented based on the previous works of [101–103] and others.

Furthermore, the author suggests the definition of a speed-accuracy operating char-

acteristic analogous to the receiver operating characteristic (ROC) in signal detection

theory. In [105], an operator decision model is developed that is based on a binomial

distribution, and the validity of the model is shown experimentally in some specific

scenarios. In the work of [106], operator behavior is modeled by Hidden Markov

Models (HMMs) which allow the inference of higher operator cognitive states from

observable operator interactions with a computer interface. The results suggest that

the best matching models with experimental data are obtained through unsupervised

learning.

Recently, attempts have been made to model human operator behavior in the

framework of Discrete Event Systems (DES). In [5, 107], a DES model is used to

replicate human-unmanned vehicle behavior for a heterogenous unmanned vehicle

system. A validation experiment showed that the model captures the impact of

increasing heterogeneity on operator utilization. Reference [108, 109] show ways of

modeling human operators using DES.

The Yerkes-Dodson law [110] relates the arousal and performance of a human,

specifically that the human performance is poor when the arousal is either too low or

too high, but the performance reaches its peak when it is moderately aroused. We

will revisit the Yerkes-Dodson law later in Chap. III and Appendix A. In [111], the

effect of arousing words on the response time and the skin conductance is studied.

Pioneering work by Sheridan [112] suggests a model of the human decision-maker,

which is compared to experimental results for human subjects performing a task

at a computer-graphics terminal and where the notion of workload is the control

variable for supervision. This work suggests a definition of mental workload, which

can vary person-by-person, and a notion of expert and novice operators differing by
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their productivity.

Analytical and experimental studies on human supervisory control have been con-

ducted. One of the foci in human supervisory control is the modeling of human

operators via interaction with a computer interface. A number of human-machine

interaction strategies are proposed in [5, 113] for a single operator-multiple heteroge-

neous vehicles scenario. This single human operator-multiple autonomous vehicles is

a new paradigm that inverts the current operator-to-unmanned-vehicles ratio. Refer-

ences [114, 115] study this topic specifically and provide supervisory time strategies

(interact, wait, or neglect) for humans. Attention allocation is a study on guiding

human’s attention in highly-distractive environments. Using active interfaces that

provide situation and activity awareness [116], devices such as tactile feedback [117]

or auditory feedback [118] are studied as methods for human attention allocation.

Recently, much work has investigated simplified, but essence-capturing, super-

visory architectures based on operator models in light of new modeling techniques.

Reference [119] developed a supervisory controller that was designed to regulate the

operators’ cognitive state based on the discretized Yerkes-Dodson law. A team of

heterogeneous operators, differing by their task-servicing rate, was modeled using a

DES framework, and the validity is shown by an experiment. In [120, 121] a human

operator is considered as a state-dependent queueing process where the state is a

task arriving at a deterministic rate and optimal control policies are provided such

that the queue does not overflow. In [122], a decision support system for sequen-

tial visual search tasks is presented while the effectiveness of the system is validated

by human-subject experiments. It is shown that the human operator performance

improves under the decision support system with automated algorithmic aids.
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2.4 Conclusion

In this chapter, we have reviewed several technical areas, covering information

theory and its application; classification and team classification; human operator

modeling and human supervisory control. In the course of the review, we have dis-

covered several open issues in the literature:

• The relationship between information and classification performance is still un-

clear, i.e., whether there is an agreement or disagreement between the two

measures. Theoretical studies dealing with such issues for classifiers with differ-

ent mechanisms (workload-independent or workload dependent) have not been

found.

• While studies on dichotomous classification have been found in many fields,

theoretical studies on trichotomous classification, from mathematical formaliza-

tion of the problem to numerical and analytical solutions, have not been found.

Specifically, a comprehensive study starting from a dichotomous classifier with a

single variable measurement to a trichotomous classifier with multivariate mea-

surements, and showing how the former can be generalized to the latter has not

been found in the literature.

• Although many fusion-rule based approaches have been proposed, an extensive

parametric study in search of the optimal synergistic fusion rule, a term that we

will define in Chap V, and the sensitivity of such an optimal rule with respect

to the environment has not been found in the literature.

• Formalization of a nested architecture using heterogeneous classifiers and the

validation of its performance have not been found in the literature.

In the following chapter, we will begin with investigating the relationship between

information and classification performance. We will begin with introducing some
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background knowledge with mathematical definitions, such as Shannon’s informa-

tion and maximum likelihood classification, then provide results for classifiers with

workload-independent performance followed by classifiers with workload-dependent

performance.
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CHAPTER III

On the Independence of Information and

Classification Performance

The pure and simple truth is rarely

pure and never simple.

Oscar Wilde

It is believed that collection of sufficient information is the necessary condition for

making good classification decisions [81]. Thus, often the objective of a surveillance

mission is to gather as much information as possible such that a classification decision

can be made with high confidence. Although it is a widely accepted view that more

information implies better classification performance, there has been little work on

formally proving this. Moreover, to the best of our knowledge, there has been no work

on investigating the relationship between information and classification performance

for classifiers with different properties.

In this chapter, we study the relationship between the amount of information and

the classification performance. We use standard mathematical concepts to investigate

the relationship, such as Shannon’s information and the maximum likelihood rule,

and show that, while there is a predominant congruence between the amount of

information and the classification performance, there is also independence between

them.
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We begin with providing some background knowledge on some concepts, such as

the definition of classifiers, probabilistic modeling for our problem formulation, Shan-

non’s information and the maximum likelihood classification. Then, we study the

relationship between the amount of information and the probability of misclassifica-

tion of a classifier whose performance is unaffected by workload, followed by that of

a classifier with workload-dependent performance.

3.1 Background

3.1.1 Classifiers

A decider D is a deterministic mapping defined on a set of data into truth values,

i.e.,

D : {data} → {T, F}.

A classifier C is a decider with the domain of the mapping being a specific realization

of a random variable. While both decider and classifier are deterministic mappings,

the difference between them is that the latter accounts for the randomness of the data

being classified.

Processing of the data requires two abilities: recognizing truth out of truth (rate of

true positives) and falsehood out of falsehood (rate of true negatives). These abilities

are characterized by two independent parameters, σT and σF , respectively. Note that

these parameters are entries in the confusion matrix in signal detection theory [123].

3.1.2 Probabilistic modeling

Collecting information and making classification decisions are generally based on

some measurements, and these measurements are typically obtained through imper-

fect sensors. Since these imperfect sensors introduce uncertainties in the measure-

ment, e.g., sensor noise, the characteristics of the measurements are random. There-
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fore, we use probabilistic modeling, rather than deterministic, to investigate the re-

lationship between information and classification performance.

Let X be a discrete random variable that denotes the category of objects of interest

that can take two realizations: either T or F .1 There is a probability associated with

the event that X be one of the realizations, given as,

P (X = T ) = u, P (X = F ) = 1− u, (3.1)

where u ∈ [0, 1]. We denote u as the prior probability and it represents the proportion

of T objects among the objects of interest.

Let Y be a discrete random variable that denotes an object property that can

take two realizations Y ∈ {Y1, Y2}. Sample Y1 represents the sensor measuring a

property from an F object while Y2 represents the sensor measuring a property from

a T object. For instance, Y2 can be the profile of a gun from a picture taken from the

broadside view of a tank (threat) while Y1 can be the wheels or the windshield from

a picture taken from an automobile (friend).

Note that the number of realizations of Y can be more than two, but we restrict

our modeling for simplicity and clarity.

The likelihood of the object property given the object category is modeled by

conditional probabilities. For two-option object categories and two-option object

properties, the conditional probabilities are given as,

P (Y = Y1|X = F ) = σF ,

P (Y = Y2|X = T ) = σT ,

P (Y = Y2|X = F ) = 1− σF ,

P (Y = Y1|X = T ) = 1− σT , (3.2)

1Note that “T” and “F” can be interpreted as “True” and “False”, respectively, or as “Threat”
and “Friend”. The subsequent theory does not require choosing an interpretation.
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where σF , σT ∈ [0.5, 1] parameterize the conditional probabilities. When σ(·) = 0.5

the sensor is as bad as a pure guess, while when σ(·) = 1 the sensor is perfect. Note

that the range σ(·) ∈ [0, 0.5] describes the same phenomenon as σ(·) ∈ [0.5, 1], but in

a perverse manner.

3.1.3 Shannon’s information

Given two random variables (X and Y ), Shannon’s information [12] describes the

uncertainty reduction in one of the random variables (X) by observing another (Y ).

We begin the definition of information by introducing the notion of entropy.

Definition III.1. Entropy

Entropy is a measure of uncertainty associated with a random variable that can take

realizations with assigned probabilities. The entropy of a random variable X is

H(X) = −
∑
x

P (X = x) logP (X = x). (3.3)

Definition III.2. Conditional entropy

Conditional entropy is a measure of uncertainty associated with a random variable

conditioned upon knowledge of another random variable. The conditional entropy of

the random variable X conditioned upon the random variable Y is

H(X|Y ) =
∑
y

P (Y = y)H(X|Y = y)

=
∑
y

P (Y = y)
∑
x

P (X = x|Y = y) logP (X = x|Y = y). (3.4)

Definition III.3. Shannon’s information

Shannon’s information is the difference between the entropy and the conditional en-
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tropy, i.e.,

I(X;Y ) = H(X)−H(X|Y ). (3.5)

For instance, if I = 0 then there is no reduction of uncertainty in X by observing Y .

3.1.4 Maximum likelihood classification

The maximum likelihood classification, also known as likelihood-ratio rule [99], is

a decision rule based on posterior probabilities.

Definition III.4. Bayes’ rule

Bayes’ rule gives the posterior probability of X given Y . For instance, given Y = Y1

the posterior probability of X = T is

P (X = T |Y = Y1) =
P (Y = Y1|X = T )P (X = T )

P (Y = Y1)
. (3.6)

Note that P (Y = Y1) can be computed by following the theorem of total probabil-

ity [124].

Definition III.5. Likelihood-ratio rule

Let Os ∈ {T, F} be a decision variable that follows the likelihood-ratio rule, i.e.,

Os =

 T if P (X=T |Y=Y1)
P (X=F |Y=Y1)

> 1

F if P (X=T |Y=Y1)
P (X=F |Y=Y1)

≤ 1.
(3.7)

Let fY0 ∈ [0, ∞] denote the ratio of the posterior probabilities such that,

f1 = fY=Y1 =

(
1− σT
σF

)(
u

1− u

)
, (3.8a)

f2 = fY=Y2 =

(
σT

1− σF

)(
u

1− u

)
. (3.8b)
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Let δOs0 : R → {0, 1} be such that

δT (f) = δOs=T (f) =

 1 if f > 1

0 if f ≤ 1,
(3.9a)

δF (f) = δOs=F (f) =

 1 if f ≤ 1

0 if f > 1.
(3.9b)

Then, the conditional probabilities of Os given Y are,

P (Os = T |Y = Y2) = δT (f2), (3.10a)

P (Os = T |Y = Y1) = δT (f1), (3.10b)

P (Os = F |Y = Y2) = δF (f2), (3.10c)

P (Os = F |Y = Y1) = δF (f1). (3.10d)

3.1.5 Classification performance

The classification performance is defined by the probability of misclassification,

and is the sum of the probabilities of two faulty outcomes: false positives and false

negatives:

Pm = P (Os = T ∧X = F ) + P (Os = F ∧X = T ). (3.11)

Although we have considered the generic case of equal weights for the two outcomes,

there can be different weights associated with the outcomes depending on the strategic

objective of the classifier.
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Assessing the probability of misclassification yields

Pm = P (Os = T ∧X = F |Y = Y2)P (Y = Y2)

+ P (Os = T ∧X = F |Y = Y1)P (Y = Y1)

+ P (Os = F ∧X = T |Y = Y2)P (Y = Y2)

+ P (Os = F ∧X = T |Y = Y1)P (Y = Y1), (3.12)

by the theorem of total probability. Assuming that the classification is unbiased, we

can simplify the expression using conditional independence, i.e., P (Os = Os0 ∧X =

X0|Y = Y0) = P (Os = Os0|Y = Y0) · P (X = X0|Y = Y0). This means that given

a measurement Y , the classifier’s decision Os does not affect the object category X,

and vice versa. Substituting, Eq. (3.12) yields:

Pm = P (Os = T |Y = Y2)P (X = F ∧ Y = Y2)

+ P (Os = T |Y = Y1)P (X = F ∧ Y = Y1)

+ P (Os = F |Y = Y2)P (X = T ∧ Y = Y2)

+ P (Os = F |Y = Y1)P (X = T ∧ Y = Y1).

Finally,

Pm = δT (f2)(1− σF )(1− u) + δT (f1)σF (1− u)

+ δF (f2)σTu+ δF (f1)(1− σT )u. (3.13)
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3.2 Classifiers with workload-independent performance

3.2.1 Summary

Shannon’s information and the probability of misclassification can be expressed

in terms of σT and σF (defined in Eq. (3.2)), which are given as

I(X;Y ) = −u log u− (1− u) log(1− u)

+ (1− σT )u log

{
(1− σT )u

(1− σT )u+ σF (1− u)

}
+ σF (1− u) log

{
σF (1− u)

(1− σT )u+ σF (1− u)

}
+ σTu log

{
σTu

σTu+ (1− σF )(1− u)

}
+ (1− σF )(1− u) log

{
(1− σF )(1− u)

σTu+ (1− σF )(1− u)

}
,

(3.14)

and

Pm = δT (f2)(1− σF )(1− u) + δT (f1)σF (1− u)

+ δF (f2)σTu+ δF (f1)(1− σT )u. (3.15)

Note that these two measures are functions of σT , σF , and u.

3.2.2 Analytical properties

The following theorems are proved in the appendix.

Theorem III.6. If σT ≥ 0.5 and σF ≥ 0.5, then Shannon’s information I(X;Y ) in

Eq. (3.14) is a monotonically increasing function of both σT and σF .

Theorem III.7. If σT ≥ 0.5 and σF ≥ 0.5, then the probability of misclassification

Pm in Eq. (3.15) is a monotonically decreasing function of both σT and σF .
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Corollary III.8. If σT ≥ 0.5 and σF ≥ 0.5, and they both undergo increments ∆σT

and ∆σF , respectively, with ∆σT ·∆σF > 0, then the corresponding changes in I(X;Y )

and Pm, ∆I(X;Y ) and ∆Pm, respectively, satisfy ∆I(X;Y ) ·∆Pm < 0.

For instance, if σT and σF are increasing, then Shannon’s information I(X;Y ) is

monotonically increasing while the probability of misclassification Pm is monotonically

decreasing. Vice versa for decreasing σT and σF . Corollary III.8 states that there is

a predominant congruence between the amount of information and the classification

performance.

It is noted, however, that the congruence is because increasing Shannon’s infor-

mation and decreasing the probability of misclassification occur simultaneously, when

both are caused by increasing σT and σF , not because increasing information directly

implies decreasing probability of misclassification (this would be the logical fallacy of

the undistributed middle [51]).

Proposition III.9. Increasing the amount of information yields an increase of the

probability of misclassification only if there is a trade-off between the rates of true

positives and true negatives, i.e., ∆σT ·∆σF ≤ 0.

Proof. By contraposition of Corollary III.8.

Investigating whether the theorem holds for other mechanisms of classification

decisions is not within the scope of this study, and it is left as future work.

3.2.3 Numerical examples

Figure 3.1 illustrates the contour plot of information and probability of misclassi-

fication in the σT -σF plane for non-informative prior (u = 0.5). Note that the curved

lines with boxed levels indicate the information while the straight lines with levels

indicate the probability of misclassification.
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Figure 3.1: Comparison of information and probability of misclassification for u =
0.5. The red dashed line is where σT = σF .
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Observation 1. At σT = σF = 0.5, the information is zero, and at σT = σF = 1, it

reaches its maximum. From σT = σF = 0.5 to σT = σF = 1 following the diagonal

line (σT = σF ), the information is a monotonically increasing function. On the other

hand, at σT = σF = 0.5, the probability of misclassification is at its maximum (Pm =

0.5) and at σT = σF = 1 it is zero. From σT = σF = 0.5 to σT = σF = 1 following

the diagonal line, the probability of misclassification is a monotonically decreasing

function.

Observation 2. Following the diagonal line (σT = σF ) in Fig. 3.1 along which the

gradients of the two measures are collinear, one can observe that there is indeed a

general trend showing that increasing the amount of information does imply decreasing

the probability of misclassification.

This observation agrees with the general understanding of the relationship between

information and classification performance: One needs more information to improve

the classification decision.

Remark III.10. When the prior information is unhelpful (u = 0.5), improving σT and

σF equally increases the amount of information collected and decreases the probability

of misclassification.

Observation 3. The information collected by improving σT and σF is larger as both

σT and σF become perfect. For instance, beginning from σT and σF that are pure

guesses, if σF becomes perfect (σT = σF = 0.5→ σT = 0.5, σF = 1), the information

collected is 0.3 (∆I = 0.3). On the other hand, from a perfect σF and only pure

guess σT , if both σT and σF become perfect (σT = 0.5, σF = 1 → σT = 1, σF = 1),

the information collected is 0.7 (∆I = 0.7). Note that the gains in the classification

performance for both cases are the same (∆Pm = 0.25).

3.2.3.1 A counter example

Figure 3.2 shows a part of the contour region that was shown in Fig. 3.1. Note

36



0.2

0.2

0.5

0.2

0.2

0.25

0.25

σ
T

σ F

I(X;Y) (level) & P
m

 (boxed level)

  ←  P
m

=0.27, I=0.2

  ←  P
m

=0.25, I=0.2

  ←  P
m

=0.25, I=0.19

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
0.75

0.8

0.85

0.9

0.95

1

Figure 3.2: Comparison of information and probability of misclassification (zoomed
Fig. 3.1)
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that there are three markings on the contour (a triangle, a square, and a cross), each

indicating a different level of information and probability of misclassification.

Observation 4. Beginning at the cross and following the probability of misclassi-

fication level curve towards the square, one can notice that although the informa-

tion has increased, the probability of misclassification remains constant (Pm = 0.25,

I = 0.19→ Pm = 0.25, I = 0.2).

Observation 5. Beginning at the square and following the information level curve

towards the triangle, one can notice that although the information level is constant,

the probability of misclassification has increased (Pm = 0.25, I = 0.2 → Pm = 0.27,

I = 0.2).

These are observations that demonstrate that increasing the amount of informa-

tion collected does not always imply improving the classification performance of a

workload-independent classifier.

3.2.3.2 Does the prior information matter?

Figure 3.3 shows two contour plots of the information and the probability of

misclassification with respect to two different informative priors (u < 0.5).

Observation 6. As u deviates from 0.5, neither the information nor the probability

of misclassification are symmetric with respect to the line σT = σF .

Note that the prior information determines the contribution of σT and σF in

assessing the probability of misclassification. For instance, for small prior information

on the T sub-population (Fig. 3.3 (b)), increasing σF has greater contributions on

decreasing the probability of misclassification than increasing σT .

Also note that even with informative priors, the general trend that increasing

information implies improving classification performance is prevalent. However, one
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Figure 3.3: The effect of prior information on I and Pm

can also find a counter example that increasing information does not imply improving

classification performance.

Observation 7. As the prior information decreases, the amount of information

needed to decrease the probability of misclassification is increased.

3.2.3.3 Having incorrect prior information

In this section, we investigate the impact of having incorrect prior information on

Shannon’s information and the probability of misclassification.

Let u ∈ [0, 1] be the true prior information and û ∈ [0, 1] be the belief prior

information. The error in prior information is the difference between the true and

the belief, i.e.,

∆u = u− û, (3.16)

where ∆u ∈ [−1, 1]. ∆u = −1 indicates that the belief is extremely aggressive

(u = 0, û = 1) while ∆u = 1 indicates that the belief is extremely conservative (u =
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1, û = 0).

Let I denote Shannon’s information associated with the true prior information u

and Î denote Shannon’s information associated with the belief prior information û.

Let ∆I = I − Î be the error information, i.e., the difference between the true and the

belief information.

Similarly, let Pm denote the probability of misclassification associated with the

true prior information u and P̂m denote the probability of misclassification associated

with the belief prior information û. Depending on the range of the prior information,

the probability of misclassification in Eq. (3.15) can be expressed in the following

form:

Pm =


1− u if f1 > 1 ∧ f2 > 1,

(1− σT )u+ (1− σF )(1− u) if f1 ≤ 1 ∧ f2 > 1,

u if f1 ≤ 1 ∧ f2 ≤ 1.

(3.17)

Similarly, the probability of misclassification for the belief prior information can be

expressed as

P̂m =


1− û if f̂1 > 1 ∧ f̂2 > 1,

(1− σT )û+ (1− σF )(1− û) if f̂1 ≤ 1 ∧ f̂2 > 1,

û if f̂1 ≤ 1 ∧ f̂2 ≤ 1,

(3.18)

where

f̂1 =

(
1− σT
σF

)(
û

1− û

)
, (3.19a)

f̂2 =

(
σT

1− σF

)(
û

1− û

)
. (3.19b)

Note that u and û need not be correlated, i.e., the belief can be completely different

from the truth. Therefore, there are nine possible outcomes of the error probability
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(b) û = 0.1

0

0
0

0.01

0.01

0.01

0.
02

0.02

0.02

0.
03

0.03

0.
04

−0.04

−0
.0

2

−0.02

0

0

0

0

0.02

0.02

0.02

0.02

0.04

0.04

0.06
0.08

σ
T

σ F

∆ I(X;Y) (level) & ∆ P
m

 (boxed level), uhat = 0.4

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
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(d) û = 0.6

0.1

0.1

0.1

0.1
0.2

0.2

−0.05

0

0
0

00.05

0.05

0.05

0.05

0.1

0.1

0.1

0.1

0.15

0.15

0.15

0.2

0.2

0.25

σ
T

σ F
∆ I(X;Y) (level) & ∆ P

m
 (boxed level), uhat = 0.8

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(e) û = 0.8

0.1

0.1

0.1

0.1

0.2

0.2

0.2

0.2
0.3

0.3

0.4
0.5

0
0

0.05

0.05
0.05

0.1

0.1

0.1

0.15

0.15

0.15

0.150.2

0.2

0.2

0.25

0.25

0.25

0.3

0.3

0.35

σ
T

σ F

∆ I(X;Y) (level) & ∆ P
m

 (boxed level), uhat = 0.9

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(f) û = 0.9

Figure 3.4: Error information ∆I and error probability of misclassification ∆Pm with
respect to û on σT -σF plane (u = 0.5)

of misclassification that depend on the range of u and û.

Let ∆Pm = Pm−P̂m be the error probability of misclassification, i.e., the difference

between the true and the belief probability of misclassification. Note that the smaller

the error, the closer to the truth. Table 3.1 gives the list of the nine possible outcomes

of the error probability of misclassification.

Figure 3.4 illustrates the error information ∆I and the error probability of mis-

classification ∆Pm with respect to the belief prior information û. The results shown

in Fig. 3.4 can be counterintuitive. For instance, for û = 0.8 (Fig. 3.4 (e)) and

σF = 0.6, the error probability of misclassification ∆Pm is a decreasing function for

σT increasing from 0.5 to around 0.85, while ∆Pm becomes an increasing function for
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σT increasing from around 0.85 to 1. In other words, when the true and belief prior

information do not agree, improving a sensor performance σi, i ∈ {T, F} may improve

the error caused due to the misbelief ∆Pm only until a certain point, and once beyond

that point, improving the sensor performance can worsen the error. Similar counter

phenomenon can be found in other cases of ū as shown in Fig. 3.4. One can use such

results as a guide to design sensors when a disagreement between the true and belief

prior information is anticipated.

3.3 Classifiers with workload-dependent performance

In this section, we investigate the relationship between the amount of information

and the probability of misclassification of a workload-dependent classifier.

The relationship between workload and performance of a classifier is depicted by

the Yerkes-Dodson law. It states that, while low or high workload degrades the per-

formance of a classifier, there is a region of workload that yields optimal classification

performance. More details can be found in Appendix A.

Let W ∈ [0, 1] be a workload variable with 0 indicating idle and 1 indicating fully

loaded. Recognizing the concavity of the curve in Fig. A.1, we model the Yerkes-

Dodson law as a quadratic function of the workload as,

σi = −(4σ∗i − 2)W 2
i + (4σ∗i − 2)Wi + 0.5, i ∈ {T, F}, (3.20)

where σ∗i ∈ [0.5, 1] determines the maximum of σi. At Wi = 0.5, σi = σ∗i and at

Wi 6= 0.5, σi < σ∗i .

It is not known whether when the sensor performance parameters σT and σF

are affected by the workload variable W , they change independently or exhibit any

correlations. In this work, we consider the general case, i.e., parameters change

independently, so that cases with correlation can be considered as a specific example
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of the general results.

Let Wi denote the workload variable corresponding to σi with i ∈ {T, F}. Given

the workload-dependent σi with i ∈ {T, F}, we numerically investigate the infor-

mation and probability of misclassification as a function of the workload, where the

relevant relationships are summarized in Eq. (3.14)-(3.15).

3.3.1 Numerical examples

Figure 3.5 shows the performance, probability of misclassification, and information

as a function of the workload for a peak performance of σ∗ = 1. Similar to the
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Figure 3.5: Probability of misclassification (Pm) and information (I(X;Y )) of a
workload-dependent classifier vs. workload variable (W ). The prior in-
formation (u) is varied from 0.5 to 0.1 with a decrement of 0.1.

Yerkes-Dodson law, Shannon’s information for a workload-dependent classifier reaches

its maximum at the optimal workload, i.e., W = 0.5. Similarly, the probability

of misclassification for a workload-dependent classifier reaches its minimum at the
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optimal workload.

From Fig. 3.5, it can also be observed that the prior information (u) determines

the peak value of the information collected when the workload is optimal (W = 0.5)

and changes the information collection rate (∂I(X;Y )/∂W ) in W 6= 0.5. For the

probability of misclassification, the prior information determines the maximum of

Pm and the region where the maximum Pm remains constant, however, it does not

affect the minimum of Pm. Note that the workload variables where the information

reaches its maximum and the probability of misclassification reaches its minimum are

identical regardless of the prior information.

Figure 3.6 illustrates the contour plot of information and probability of misclassi-

fication in the WT -WF plane for non-informative prior (u = 0.5), where W(·) indicates

the workload variable that determines σ(·). Note that the lines with boxed levels

indicate the information while the lines with levels indicate the probability of mis-

classification. Figure 3.7 shows the probability of misclassification as a function of

information for different prior information and for WT = WF , i.e., the workload de-

termines σT and σF equally. Note that the general trend is that as the amount of

information collected increases, the probability of misclassification decreases.

3.3.1.1 A counter example

Figure 3.8 shows a part of the contour region that was shown in Fig. 3.6. Note that

there are four markings on the contour (a cross, a square, a circle, and a triangle),

each indicating a different level of information and probability of misclassification.

Observation 8. Beginning at the cross and following the probability of misclassi-

fication level curve towards the square, one can notice that although the informa-

tion has increased, the probability of misclassification remains constant (Pm = 0.2,

I = 0.28→ Pm = 0.2, I = 0.35).

Observation 9. Beginning at the circle and following the information level curve
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Figure 3.6: Comparison of information (level) and probability of misclassification
(boxed level) with respect to workload for u = 0.5 and σ∗ = 1

towards the triangle, one can notice that although the information level is constant,

the probability of misclassification has increased (Pm = 0.25, I = 0.2 → Pm = 0.26,

I = 0.2).

These are observations that demonstrate that increasing the amount of informa-

tion collected does not always imply improving the classification performance of a

workload-dependent classifier.

The mechanism behind the counterintuitive phenomena for a workload-dependent

classifier can be thought of similarly as the mechanism behind the counterintu-

itive phenomena for a workload-independent classifier; While the mechanism for the

workload-independent classifier is due to the trade-off between the sensor perfor-

mances, σT and σF , we conjecture that the mechanism for the workload-dependent
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classifier is due to some trade-off between the workload variables, WT and WF . Study-

ing the analytical properties and clarifying the mechanism behind the counterintuitive

phenomena for the workload-dependent classifier are left as future work.

3.4 Conclusion & future work

In this chapter, we studied the relationship between the amount of information,

in the sense of Shannon, and the classification performance, where the classification

decision is made by maximum likelihood rule and the performance is assessed by the

probability of misclassification. We investigated the relationship for classifiers under

two models, one with workload-independent performance and another with workload-

dependent performance. We found that increasing the amount of information gen-

erally implies improving classification performance for both classifiers. However, we
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have observed that there are cases when such a general trend is violated for both clas-

sifiers, i.e., increasing the amount of information does not always imply improving

classification performance.

While it is understandable that increasing the amount of information does not

always imply improving classification for classifiers with workload-dependent perfor-

mance, it is counterintuitive that workload-independent classifiers also exhibit such

a phenomenon. We found that the cause of a congruence between the amount of

information and the classification performance is simultaneous improvements in the

rates of true positives and true negatives of the classifier. On the other hand, we

found that the cause of the counterintuitive phenomena is a trade-off between the

rates of true positives and true negatives of the classifier.

It is unclear whether such counterintuitive phenomena exist for classifiers with
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different decision mechanisms (such as utility-theoretic decision making), or for a

multiple classifiers (with parallel or nested structure), or for classifiers using multiple

measurements. Moreover, it is obscure how significant such counterintuitive phenom-

ena can be without an engineering application; the significance of the phenomena

may vary depending on the application. Investigation of these avenues is left as

future work.
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CHAPTER IV

A Single Classifier

Men have an extraordinarily

erroneous opinion of their position

in nature; and the error is

ineradicable.

W. Somerset Maugham

In this chapter, we study the mechanism of a single classifier. As a benchmark, we

begin with a classifier with dichotomy (true or false) when a single-variable measurable

property is given. Based upon the benchmark example, we generalize to a classifier

with trichotomy (true, false or unknown) when a single-variable measurable property

is provided, and then revisit the two classifiers and generalize the formalization to

the multivariate measurement cases.

From Chap. III, we have learned that there are three key parameters in defining

a classifier, which are the rates of true positives and true negatives, σT and σF , and

the prior information u. We assume that these parameters are known to us by a

prior calibration process. Since the workload-dependency can be considered as a

specification of a workload-independent (constant performance with respect to the

workload) classifier, we consider only the latter (more general) case in this chapter.
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4.1 The problem of thresholding

Assume that a property w ∈ R can be measured from each member of a population

of objects of interest where the population comprises two disjoint sub-populations, T

and F . Each sub-population is characterized by its own distribution of w. Assume

that the two distributions are distinct such that if a proper threshold is applied, a

classifier can distinguish one sub-population from another based on a measurement of

w. Once a threshold is determined, measurement values on one side of the threshold

are labeled as originating from a T object while properties on the other side are

labeled as originating from an F object.

We consider two types of workload-independent classifiers: 1. one where the

classification decision is based on two options (dichotomous), 2. the other where the

decision is based on three options (trichotomous). Figure 4.1 illustrates the concept

of such classifiers.

4.1.1 Dichotomous thresholding

We assume that the distribution of the measurable property w in each sub-

population is a Gaussian probability density function (pdf),

pT ∼ N (mT , s
2
T ), (4.1a)

pF ∼ N (mF , s
2
F ), (4.1b)

where mi is the mean and si, i ∈ {T, F} is the standard deviation of the distribution.

For the distinctness of the two distributions, we further assume that mT < mF

without loss of generality. Let τ ∈ R be the threshold variable. For a classifier that
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Figure 4.1: Concepts of dichotomous and trichotomous thresholding

uses thresholding, the rates of true positives and negatives are evaluated as:

σT =

τ∫
−∞

aT e
−(w+bT )2/c2T dw, (4.2a)

σF =

∞∫
τ

aF e
−(w+bF )2/c2F dw, (4.2b)

where ai = 1/
√

2πs2
i , bi = −mi, and ci =

√
2s2

i , i ∈ {T, F}. The analytical solutions

to Eq. (4.2) can be found in Appendix C.
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The cost function is the probability of misclassification, i.e.,

Pm =δT (f1)σF (1− u) + δT (f2)(1− σF )(1− u)

+ δF (f1)(1− σT )u+ δF (f2)σTu, (4.3)

where the definitions of u, δT , δF , f1, and f2 can be found in Chap. III. The objective is

to determine the optimal threshold that minimizes the probability of misclassification,

i.e,

min
τ∈R

Pm.

4.1.1.1 Optimal dichotomous thresholding

There are numerical studies on dichotomous classification documented in the lit-

erature (see, e.g., [123]). Here, we provide both analytical and numerical results on

the subject for completeness of the dissertation.

The solution to the problem of dichotomous classification is stated in the following

theorem.

Theorem IV.1. Assume that a property w ∈ R can be measured from a population of

objects of interest where the population comprises two disjoint sub-populations, T and

F . Each sub-population is characterized by its own distribution of w. Assume that

there are prior probabilities that quantify the proportion of T and F objects among the

objects of interest. If the distribution of w for each sub-population is Gaussian, then

the optimal dichotomous threshold is always at the intersection of the two distributions

weighted by their prior probabilities.

Proof. The key step is to prove that the probability of misclassification in Eq. (4.3),

where σT and σF are defined in Eq. (4.2), is a differentiable function of τ . Then the

result is obtained by differentiation. The differentiability of Pm with respect to τ is

proven as follows.
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Figure 4.2: Thresholding with varying prior information on weighted distribution
functions. Blue solid line indicates a distribution with mT = −10, sT = 10
weighted by u, blue dashed line indicates a distribution with mF = 10,
sF = 15 weighted by 1− u, green thick line indicates the sum of the two
distributions weighted by their prior information, and red vertical line
indicates the optimal threshold.

Depending on f1 and f2, Pm is expressed as the following:

Pm =



σF (1− u) + (1− σF )(1− u) if f1 > 1 ∧ f2 > 1,

(1− σT )u+ (1− σF )(1− u) if f1 ≤ 1 ∧ f2 > 1,

σF (1− u) + σTu if f1 > 1 ∧ f2 ≤ 1,

(1− σT )u+ σTu if f1 ≤ 1 ∧ f2 ≤ 1.

(4.4)

Since f1 > 1 ∧ f2 ≤ 1 is false for all σT , σF , and u (see Corollary 2 in Appendix B),
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the third condition can be ignored. With some rearrangement, Pm is expressed as

Pm =


1− u if f1 > 1 ∧ f2 > 1,

(1− σT )u+ (1− σF )(1− u) if f1 ≤ 1 ∧ f2 > 1,

u if f1 ≤ 1 ∧ f2 ≤ 1.

(4.5)

For the first and third conditions in Eq. (4.5), u is a constant with respect to τ . For

the second condition, substituting Eq. (4.2) into Eq. (4.5) and noting that

1−
τ∫

−∞

pTdw =

∞∫
τ

pTdw, (4.6a)

1−
∞∫
τ

pFdw =

τ∫
−∞

pFdw, (4.6b)

the second condition yields,

Pm = u

∞∫
τ

pTdw + (1− u)

τ∫
−∞

pFdw, (4.7)

which is a differentiable function with respect to τ since it is the sum of two differ-

entiable functions with respect to τ . Therefore, Pm is differentiable with respect to

τ .

Figure 4.2 shows some numerical examples that illustrate the property highlighted

in Theorem IV.1.

Remark IV.2. For dichotomous thresholding, Pm is represented by the sum of the

“misclassification regions” of the weighted distributions, i.e., Eq. (4.7). By “misclas-

sification regions”, we mean the region under the blue dashed line on the left-side of

the threshold and the region under the blue solid line on the right-side of the threshold

in Fig. 4.2 (c), which appears as purple region.
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4.1.2 Trichotomous thresholding

Dichotomous classification corresponds to classical propositional logic where a

proposition can either be true or false. Now, allowing a third status, trichotomous

classification corresponds to ternary logic where a proposition can be unknown in

addition to true or false. The reason we allow the unknown status is that there are

cases when dichotomous classifiers are unsatisfactory. For example, the distributions

of the sub-populations may not be easily distinguishable. Trichotomous classification

can be formalized by extending the notion of dichotomous classification using two

thresholds.

Let τ1 ∈ R and τ2 ∈ R be the threshold variables such that the cumulative

probability distributions are,

σT =

τ1∫
−∞

aT e
−(w+bT )2/c2T dw, (4.8a)

σF =

∞∫
τ2

aF e
−(w+bF )2/c2F dw, (4.8b)

where ai = 1/
√

2πs2
i , bi = −mi, and ci =

√
2s2

i with i ∈ {T, F}. The analytical

solutions to Eq. 4.8 can be found in Appendix C.

Let us define the range on w between the two thresholds where the classifier is

unable to decide as the region of indecision, i.e., [τ1, τ2].

Let P be a pre-specified probability of misclassification that is determined by

the mission specification. The objective is to determine the optimal thresholds that

minimize the size of the region of indecision, i.e.,

min
τ1,τ2
|τ2 − τ1|,
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subject to constraints,

Pm = P, (4.9a)

τ1 ≤ τ2. (4.9b)

Similarly, the objective of the optimization problem can be formalized as

min
τ1,τ2

(τ2 − τ1)2,

subject to the constraints in Eq. (4.9).

4.1.2.1 Optimal trichotomous thresholding

At minimum τ ∗1 and τ ∗2 , the problem must satisfy the Karesh-Kuhn-Tucker (K-K-

T) conditions [125], i.e.,

∂

∂τ1
|τ2 − τ1|+ λ1

∂

∂τ1
(Pm − P ) + µ1

∂

∂τ1
(τ1 − τ2) = 0, (4.10)

∂

∂τ2
|τ2 − τ1|+ λ1

∂

∂τ2
(Pm − P ) + µ1

∂

∂τ2
(τ1 − τ2) = 0. (4.11)

For taking the partial derivative of an absolute value, as present in the first term,

generalized gradients, such as Fréchet [126] or Gâteaux [127, 128] derivatives, can

be used. However, we defer investigating the analytical properties of a trichotomous

classifier to future work.

An easier fix to the smoothing issue of the derivative of |τ2−τ1| is by reformulating

the cost function to (τ2 − τ1)2. Here we provide the necessary conditions for such a

cost function.
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At minimum τ ∗1 and τ ∗2 , the problem must satisfy the K-K-T conditions, i.e.,

∂

∂τ1
(τ2 − τ1)2 + λ1

∂

∂τ1
(Pm − P ) + µ1

∂

∂τ1
(τ1 − τ2) = 0, (4.12)

∂

∂τ2
(τ2 − τ1)2 + λ1

∂

∂τ2
(Pm − P ) + µ1

∂

∂τ2
(τ1 − τ2) = 0, (4.13)

where λ1 and µ1 ≥ 0 are Lagrange multipliers. Reformulating the K-K-T conditions

in Eq. (4.12), we get


2τ ∗1 − 2τ ∗2 + µ1 = 0 if f1 > 1 ∧ f2 > 1,

2τ ∗1 − 2τ ∗2 − λ1aTue
−(τ∗1 +bT )2/c2T + µ1 = 0 if f1 ≤ 1 ∧ f2 > 1,

2τ ∗1 − 2τ ∗2 + µ1 = 0 if f1 ≤ 1 ∧ f2 ≤ 1.

(4.14)

Reformulating the K-K-T conditions in Eq. (4.13), we get


−2τ ∗1 + 2τ ∗2 − µ1 = 0 if f1 > 1 ∧ f2 > 1,

−2τ ∗1 + 2τ ∗2 + λ1aF (1− u)e−(τ∗2 +bF )2/c2F − µ1 = 0 if f1 ≤ 1 ∧ f2 > 1,

−2τ ∗1 + 2τ ∗2 − µ1 = 0 if f1 ≤ 1 ∧ f2 ≤ 1.

(4.15)

Summing the equations for f1 ≤ 1 ∧ f2 > 1 in Eq. (4.14)-(4.15) yields,

−λ1aTue
−(τ∗1 +bT )2/c2T + λ1aF (1− u)e−(τ∗2 +bF )2/c2F = 0. (4.16)

With some rearrangement, we get

(τ ∗1 + bT )2

c2T
− (τ ∗2 + bF )2

c2F
= log

{
aT
aF

u

1− u

}
, (4.17)

where ai = 1/
√

2πs2
i , bi = −mi, ci =

√
2s2

i with i ∈ {T, F}.

The optimization problem of trichotomous classification is solved numerically by

using the MATLAB optimization command, fmincon. Figure 4.3 illustrates some
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numerical examples of the optimal threshold.
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Figure 4.3: An example of trichotomous classification for the mission specification
P = 0.5 ∼ 0.1 with decrements of ∆P = 0.1

One can notice that as the specification for the probability of misclassification

is constrained, the region of indecision is widened. If a sampled measurement falls

within the region of indecision, trichotomous classifiers are not able to make reliable

decisions. Thus, for highly constrained specifications, the sole usage of trichotomous

classifiers is not beneficial for the purpose of improving the classification performance.

This fact encourages the use of secondary dichotomous classifiers as collaborative

teammates. This will be revised in Chap. VI.

4.2 The problem of linear thresholding

In this section, we consider a case for a multivariate measurement and extend the

notion of thresholding accordingly. It is important to consider such case since, in

practice, it is rare to rely on a single variable measurement while making a classifi-
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cation decision. Often, there are multiple sensors that provide several measurements

with respect to an object of interest, and the classification decision is made upon

multiple sources of measurements.

The problem we face here is similar to what ADALIN [60–62], by B. Widrow,

had demonstrated its capability in. Indeed, there are similarities between ADALIN

and our approach. For example, in both approaches the decision is determined by

a linear combination of some variables, in ADALIN’s case a linear combination of

inputs and weighting variables. However, the key difference is that while ADALIN

requires a set of data that is correctly labeled with its class (by some oracle) a priori,

our approach does not require such information, but requires the statistical properties

of the measurements.

4.2.1 Problem formulation

Let w ∈ Rn be some properties that can be measured from a population of objects

of interest where the population comprises two disjoint sub-populations, T and F .

Each sub-population is characterized by its own distribution of w. If the distribution

of w for each sub-population is Gaussian, then

wi ∼ N (w̄i, Pwi
), i ∈ {T, F}, (4.18)

where w̄ is the mean and Pw is the covariance matrix of w.

Let c ∈ Rn be such that it satisfies the constraint:

cTc = 1. (4.19)

Since w is a Gaussian random variable, the inner product cTw is also a Gaussian
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random variable [129]. Specifically,

cTwi ∼ N (cT w̄i, c
TPwi

c), i ∈ {T, F}. (4.20)

The key idea is to recognize that cTw is a scalar Gaussian random variable so that

the thresholding approach for a single variable (in Sec. 4.1) is still applicable. The dif-

ference is that, while the classification decision is made by a single variable threshold

in the previous approach, the decision for multivariate measurements is determined

by a single variable threshold and a multivariate parameter c.

We use the term sieving parameter to denote c, recognizing the filtering role of

such a parameter in the problem.

4.2.2 Linear dichotomous thresholding

The distribution of the measurable properties w ∈ Rn of each sub-population is

assumed Gaussian and is given as,

pT ∼ N (w̄T , PwT
), (4.21a)

pF ∼ N (w̄F , PwF
). (4.21b)

Let w = cTw denote the sieved measurement. Consequently, the distributions of the

sieved measurement w ∈ R of each sub-population are characterized as,

cTpT ∼ N (cT w̄T , c
TPwT

c), (4.22a)

cTpF ∼ N (cT w̄F , c
TPwF

c). (4.22b)
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Let τ ∈ R denote the threshold variable. Then, the cumulative probability distribu-

tions are determined as,

σT =

τ∫
−∞

aT e
−(w+bT )2/c2T dw, (4.23a)

σF =

∞∫
τ

aF e
−(w+bF )2/c2F dw, (4.23b)

where ai = 1/
√

2π (cTPwi
c), bi = −cT w̄i, ci =

√
2 (cTPwi

c) with i ∈ {T, F}. The ob-

jective is to minimize the probability of misclassification Pm by choosing the threshold

variable τ and the sieving parameter c simultaneously, i.e.,

min
τ,c

Pm(τ, c),

subject to an equality constraint,

cTc = 1.

4.2.2.1 Optimal linear dichotomous thresholding

Let τ ∗ and c∗ be the optimal threshold variable and the optimal sieving parameter

obtained by solving the optimization problem. Then, the following condition holds

for the optimal linear dichotomous threshold, i.e.,

(c∗)T w = τ ∗. (4.24)

For the optimal sieving parameter c∗, the distribution of sieved measurement

w∗ = (c∗)T w of each sub-population is characterized by,

(c∗)T pT ∼ N ((c∗)T w̄T , (c
∗)T PwT

c∗), (4.25a)

(c∗)T pF ∼ N ((c∗)T w̄F , (c
∗)T PwF

c∗). (4.25b)
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At minimum τ ∗, the problem must satisfy the K-K-T conditions, i.e.,

∂

∂τ
Pm + λ1

∂

∂τ
(cTc− 1) = 0, (4.26)

∂

∂c
Pm + λ1

∂

∂c
(cTc− 1) = 0. (4.27)

By the K-K-T conditions in Eq. (4.26), we get

−aTue−(τ∗+bT )2/c2T + aF (1− u)e−(τ∗+bF )2/c2F = 0. (4.28)

Using the chain-rule, Eq. (4.27) yields,

∂Pm
∂w

∂w

∂c
+ λ1

∂

∂c
(cTc− 1) = 0. (4.29)

By the K-K-T conditions in Eq. (4.27), we get

2λ1c1

2λ1c2

 = 02×1. (4.30)

We use the MATLAB numerical solver, fmincon. Figures 4.4 and 4.5 show a

numerical example of optimal linear dichotomous thresholding for w ∈ R2. Figure 4.4

shows the distribution of w for each sub-population and the optimal threshold variable

and sieving parameter. Figure 4.5 shows the distribution of w∗ = c∗w for each

sub-population and the optimal threshold variable. Note that once the multivariate

property w is sieved by c∗, the optimal threshold τ ∗ is at the intersection between

the two distributions weighted by its prior probability. The result agrees with the

single variable property case shown in Sec. 4.2.2.
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4.2.3 Linear trichotomous thresholding

We extend the notion of linear thresholding to trichotomous classification. Let τ1

and τ2 be the threshold variables. Let the distribution of the measurable properties

w ∈ Rn of each sub-population be defined as in Eq. (4.21) and the distributions of the

sieved measurement w ∈ R of each sub-population be defined as in Eq. (4.22). Let

τ1 and τ2 be the threshold variables. Then, the cumulative probability distributions

are determined by,

σT =

τ1∫
−∞

aT e
−(w+bT )2/c2T dw, (4.31a)

σF =

∞∫
τ2

aF e
−(w+bF )2/c2F dw, (4.31b)

where ai = 1/
√

2π (cTPwi
c), bi = −cT w̄i, ci =

√
2 (cTPwi

c) with i ∈ {T, F}.

Let P be a pre-specified probability of misclassification. The objective is to min-

imize the region of indecision, i.e., [τ1, τ2], by choosing the threshold variables and

the sieving parameter,

min
τ1,τ2,c

|τ2 − τ1|,
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subject to constraints,

Pm = P, (4.32a)

cTc = 1, (4.32b)

τ1 ≤ τ2, (4.32c)

σT ≥ 0.5, (4.32d)

σF ≥ 0.5, (4.32e)

σT ≤ 1, (4.32f)

σF ≤ 1. (4.32g)

Similarly, the objective of the optimization problem can be formalized as

min
τ1,τ2,c

(τ2 − τ1)2,

subject to the constraints in Eq. (4.32).
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4.2.3.1 Optimal linear trichotomous thresholding

At minimum τ ∗1 , τ ∗2 and c∗, the problem must satisfy the K-K-T conditions, i.e.,

∂

∂τ1
|τ2 − τ1|+ λ1

∂

∂τ1
(Pm − P ) + λ2

∂

∂τ1
(cTc− 1)

+ µ1
∂

∂τ1
(τ1 − τ2) + µ2

∂

∂τ1
(0.5− σT ) + µ3

∂

∂τ1
(0.5− σF )

+ µ4
∂

∂τ1
(σT − 1) + µ5

∂

∂τ1
(σF − 1) = 0, (4.33)

∂

∂τ2
|τ2 − τ1|+ λ1

∂

∂τ2
(Pm − P ) + λ2

∂

∂τ2
(cTc− 1)

+ µ1
∂

∂τ2
(τ1 − τ2) + µ2

∂

∂τ2
(0.5− σT ) + µ3

∂

∂τ2
(0.5− σF )

+ µ4
∂

∂τ2
(σT − 1) + µ5

∂

∂τ2
(σF − 1) = 0, (4.34)

∂

∂c
|τ2 − τ1|+ λ1

∂

∂c
(Pm − P ) + λ2

∂

∂c
(cTc− 1)

+ µ1
∂

∂c
(τ1 − τ2) + µ2

∂

∂c
(0.5− σT ) + µ3

∂

∂c
(0.5− σF )

+ µ4
∂

∂c
(σT − 1) + µ5

∂

∂c
(σF − 1) = 0. (4.35)

As pointed out previously, the partial derivative of an absolute value can be performed

by generalized gradients, such as Fréchet [126] or Gâteaux [127, 128] derivatives.

However, we defer investigating the analytical properties of a linear trichotomous

classifier to future work.

We use the MATLAB numerical solver, fmincon. Figures 4.6 and 4.7 illustrate a

numerical example of optimal linear trichotomous thresholding for w ∈ R2. Figure 4.6

shows the distribution of w for each sub-population and the optimal threshold variable

and sieving parameter. Figure 4.7 shows the distribution of w∗ = c∗w for each sub-

population and the optimal threshold variable.

Note that with fmincon the solution is very sensitive to the initial conditions.

Either the solver finds a solution near the initial condition or an infeasible solution.
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4.3 Conclusion & future work

In this chapter, we have studied the operation of a single classifier when the clas-

sification decision is based on either dichotomy or trichotomy. We have investigated

cases when the measurement is either a single variable property or multivariate. We

have formalized a thresholding methodology that provides optimal classification de-

cisions by minimizing the probability of misclassification.

There are several directions that we think deserve further investigation. One is

in investigating the relationship between the specification variable P in trichotomic

thresholding and the minimal probability of misclassification Pm analytically. Al-

though we have found numerically that there may be a monotonic relationship (either

increasing or decreasing) between the two parameters, we have found counterexam-

ples and at this point we are unclear whether the examples are due to the problem

itself, or the lack of sophistication of the optimization technique.

Another is extending the work of linear thresholding in Sec. 4.2 to incorporate

learning. This aspect will be revisited in Chap. VII.
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CHAPTER V

A Team of Homogeneous Classifiers

It is not best that we should all

think alike; it is a difference of

opinion that makes horse races.

Mark Twain

The purpose of this chapter is to assess the performance of a team of classifiers

based on the performance of the individual classifiers in the team, prior information,

and fusion rules that combine the individual classifiers’ decisions. We define a fusion

rule to be synergistic if, under this rule, the performance of a homogeneous team of

classifiers (i.e., a team consisting of two classifiers with identical properties) is better

than the performance of each classifier operating alone. We show that, while some

fusion rules are synergistic, others are not. We also show that, depending on the

prior information about the objects to be classified, some fusion rules are preferable

to others because of synergistic effects.

The number of classifiers that we consider in this study is strictly even. For odd

numbers of classifiers, a common strategy to reach a collective decision is by voting. A

problem formulation and solutions for such case can be found in [98]. In this chapter,

we consider a two-classifier team scenario as a benchmark problem. Discussion on

extending our framework to even numbers of classifiers is provided in the conclusion.
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5.1 Problem formulation

A supervisor is an entity that makes a collective decision based on the opinions

of the team members. A consensus happens when all the team members have the

same opinion while a dissensus happens when two of the team members differ in

their opinions. When there are multiple opinions, a supervisor uses a fusion rule, e.g.,

voting, so that the team reaches a collective decision. Thus, a problem is to determine

the fusion rule (F.R.) that minimizes the probability of team misclassification, i.e.,

min
F.R.

Pm.

subject to the individual performance of each team member. The search space size

for F.R.s is dependent on the number of members in the team. For a two-member

team, there are 16 fusion rules, as shown in Table 5.1. For each entry in the truth

table, there can be two outcomes, T or F , which implies that there are 16 possible

ways of fusing the outcomes of the classifiers.

Table 5.1: Truth table for two-classifier team

Classifier A
T F

Classifier B
T {T, F} {T, F}
F {T, F} {T, F}

5.1.1 Performance of a single classifier

Let X be a discrete random variable which denotes the status of an unidentified

object such that X ∈ {T, F}. Let A be a discrete random variable which denotes the

classifier (or operator) decision such that A ∈ {T, F}. The conditional probabilities
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of a classifier making a decision given a certain object status are,

P (A = T |X = F ) = 1− σF , (5.1a)

P (A = F |X = F ) = σF , (5.1b)

P (A = F |X = T ) = 1− σT , (5.1c)

P (A = T |X = T ) = σT . (5.1d)

Equation (5.1) provides the confusion matrix of a classifier expressed in conditional

probabilities.

Let P (X = T ) = u and P (X = F ) = 1 − u where u ∈ [0, 1] denotes the prior

information of target population. The probability of misclassification is the sum of

probabilities of two faulty outcomes: false positive and false negative:

Pm = P (A = T ∧X = F ) + P (A = F ∧X = T ). (5.2)

Using the product rule yields

Pm = (1− σF )(1− u) + (1− σT )u

= (1− σF ) + u(σF − σT ). (5.3)

Figure 5.1 illustrates the probability of misclassification as a function of the prior

information.

As predicted by Eq. (5.3), the model tells us that for equal true positive and

negative rates (e.g., σT = σF = 0.7), the probability of misclassification is insensitive

with respect to the prior information. For larger true negative rates than false positive

rates (e.g., σT = 0.7, σF = 0.8), increasing the target population linearly increases

the probability of misclassification, and vice versa.
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5.1.1.1 Weighted performance

Each term in the performance measure can be weighted as,

Pm = ωF (1− σF )(1− u) + ωT (1− σT )u, (5.4)

where ωF , ωT ∈ R denote the weighting parameters.

These weighting parameters can be determined based on some external informa-

tion. For instance, in military operations, the weighting parameters are determined

by a policy maker who assesses the potential outcomes of certain instances. Also,

the weighting parameters can be exploited for a team of heterogenous classifiers. For

example, a misclassification by a novice classifier may be weighted less than that of

an expert. In this dissertation, we assume that ωF = ωT = 1.
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5.1.2 Supervisory decisions

Consider a supervisor which is an entity that makes the final decision on the

unidentified object property based on the classifiers’ suggestions. The supervisory

decision is formulated by comparing the posterior probabilities of two hypotheses.

By Bayes’ rule, the posterior probability of X = X0 conditioned on A = A0 is

P (X = X0|A = A0) =
P (A = A0|X = X0)P (X = X0)

P (A = A0)
. (5.5)

The posterior probabilities of the four possible outcomes are summarized in Table 5.2.

Table 5.2: Summary of the posterior probabilities for a single classifier

X0 A0 P (X = X0|A = A0)

T T σTu
σTu+(1−σF )(1−u)

F T (1−σF )(1−u)
σTu+(1−σF )(1−u)

T F (1−σT )u
(1−σT )u+σF (1−u)

F F σF (1−u)
(1−σT )u+σF (1−u)

For instance, if the classifier decides that A = T , then the supervisor compares

the posterior probability of P (X = T |A = T ) and P (X = F |A = T ) from the table,

then chooses the most likely hypothesis of X.

The supervisory decision rule by maximum likelihood classification is

Os =

 T if P (X=T |A=A0)
P (X=F |A=A0)

> 1,

F if P (X=T |A=A0)
P (X=F |A=A0)

≤ 1.
(5.6)
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Let fA0 ∈ [0, ∞) denote the ratio of the posterior probabilities such that,

fT = fA=T =
σTu

(1− σF )(1− u)
, (5.7a)

fF = fA=F =
(1− σT )u

σF (1− u)
. (5.7b)

Let δOs0 : R → {0, 1} such that

δT (f) = δOs=T (f) =

 1 if f > 1,

0 if f ≤ 1,
(5.8a)

δF (f) = δOs=F (f) =

 1 if f ≤ 1,

0 if f > 1.
(5.8b)

Then, the conditional probabilities of the supervisor decision given an operator deci-

sion are,

P (Os = T |A = T ) = δT (fT ), (5.9a)

P (Os = T |A = F ) = δT (fF ), (5.9b)

P (Os = F |A = T ) = δF (fT ), (5.9c)

P (Os = F |A = F ) = δF (fF ). (5.9d)

Based on these probabilities, we assess the performance of the supervisory decision

(a supervisor) Os .
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5.1.2.1 Performance of supervisory decisions

Assessing the probability of misclassification yields

Pms = P (Os = T ∧X = F ) + P (Os = F ∧X = T )

= P (Os = T ∧X = F |A = T )P (A = T )

+ P (Os = T ∧X = F |A = F )P (A = F )

+ P (Os = F ∧X = T |A = T )P (A = T )

+ P (Os = F ∧X = T |A = F )P (A = F ), (5.10)

by the theorem of total probability. Assuming that the supervisory decision is unbi-

ased, we can relax the expression by conditional independence, i.e., P (Os = Os0∧X =

X0|A = A0) = P (Os = Os0|A = A0) · P (X = X0|A = A0). This means that given

a classifier A’s decision, the supervisory decision Os and the object status X do not

influence each other. Substituting Eq. (5.9) yields,

Pms = δT (fT )(1− σF )(1− u) + δT (fF )σF (1− u)

+ δF (fT )σTu+ δF (fF )(1− σT )u. (5.11)

Figure 5.2 shows the performance measures comparison for a classifier with σT =

σF = 0.7. It is noted that there is a region in u where the supervisor performs better

than the unsupervised classifier. Also the overall performance of the supervisor is no

worse than that of the unsupervised classifier regardless of u.
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5.2 Synergistic fusion rules

5.2.1 Performance of a two-classifier team

In a similar way to the single classifier case, here we define the performance of a

two-classifier team.

Let O identify a member of a team of two classifiers, where O ∈ {A,B} with A

and B each representing an individual classifier decision such that A, B ∈ {T, F}.

The confusion matrix in conditional probability form for each individual classifier is
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defined as,

P (O = T |X = F ) = 1− σFO , (5.12a)

P (O = F |X = F ) = σFO , (5.12b)

P (O = F |X = T ) = 1− σTO , (5.12c)

P (O = T |X = T ) = σTO , (5.12d)

O = {T, F}. (5.12e)

The false positive and false negative rates for each individual classifier are defined as

in Eq. (5.1).

5.2.2 Fusion rules

Unlike the case of a single classifier, there can be many ways of assessing the prob-

ability of misclassification for a team. By assessing, we mean fusing the classification

outcomes of the individual classifiers according to some logical rules.

Table 5.3: A list of fusion rules (F.R.) for a team of two classifiers (A,B). T and F
denote the truth values.

A B Fusion rule No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T T T F T T T F T T F F T F T F F F
T F T T F T T F F T T T F F F T F F
F T T T T F T T F F F T T F F F T F
F F T T T T F T T F T F F T F F F F
Note (T ) (⇒) (⇐) (∨) (⇔) (∧) (F )

Table 5.8 shows the truth table of 16 possible logical fusion rules for a two-classifier

team. We consider the four basic logical operators (conjunction, disjunction, impli-

cation, and biconditional) out of the 16 possible fusion rules as the candidate fusion

rules as an initial investigation of the approach.

78



The following shows the formulation of the performance measure for each fusion

rule. We assume that the decisions of A and B are conditionally independent given

X.

5.2.2.1 Conjunction (A ∧B)

Table 5.4 shows the truth table for the conjunction rule. Given the truth table,

Table 5.4: Truth table for conjunction rule

A B A ∧B
T T T
T F F
F T F
F F F

the probability of misclassification is given as,

Pm = P (A = B = T ∧X = F )

+ P (A = B = F ∧X = T )

+ P (A = T ∧B = F ∧X = T )

+ P (A = F ∧B = T ∧X = T ).

(5.13)

Using the conditional independence assumption, i.e., P (A = T ∧ B = T |X = F ) =

P (A = T |X = F ) · P (B = T |X = F ) yields,

Pm = P (A = T |X = F )P (B = T |X = F )P (X = F )

+ P (A = F |X = T )P (B = F |X = T )P (X = T )

+ P (A = T |X = T )P (B = F |X = T )P (X = T )

+ P (A = F |X = T )P (B = T |X = T )P (X = T ).

(5.14)
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Substituting Eq. (5.12) yields,

Pm = (1− σFA
)(1− σFB

)(1− u) + ((1− σTA
) + (1− σTB

)− (1− σTA
)(1− σTB

))u

= (1− σFA
)(1− σFB

) + u((1− σTA
) + (1− σTB

)− (1− σTA
)(1− σTB

)− (1− σFA
)(1− σFB

)).

(5.15)

5.2.2.2 Disjunction (A ∨B)

Table 5.5 shows the truth table for the disjunction rule. Given the truth table,

Table 5.5: Truth table for disjunction rule

A B A ∧B
T T T
T F T
F T T
F F F

the probability of misclassification is given as,

Pm = P (A = B = T ∧X = F ) + P (A = B = F ∧X = T )

+ P (A = T ∧B = F ∧X = F )

+ P (A = F ∧B = T ∧X = F )

= P (A = T |X = F )P (B = T |X = F )P (X = F )

+ P (A = F |X = T )P (B = F |X = T )P (X = T )

+ P (A = T |X = F )P (B = F |X = F )P (X = F )

+ P (A = F |X = F )P (B = T |X = F )P (X = F )

= ((1− σFA
) + (1− σFB

)− (1− σFA
)(1− σFB

))(1− u) + (1− σTA
)(1− σTB

)u

= (1− σFA
) + (1− σFB

)− (1− σFA
)(1− σFB

)

+ u((1− σTA
)(1− σTB

)− (1− σFA
)− (1− σFB

) + (1− σFA
)(1− σFB

)).

(5.16)
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5.2.2.3 Implication

Table 5.6 shows the truth table for the implication rule (A⇒ B).

Table 5.6: Truth table for implicational rule

A B A ∧B
T T T
T F F
F T T
F F T

Given the truth table, the probability of misclassification is given as,

Pm = P (A = B = T ∧X = F ) + P (A = B = F ∧X = F )

+ P (A = T ∧B = F ∧X = T )

+ P (A = F ∧B = T ∧X = F )

= (1− (1− σFA
) + (1− σFA

)(1− σFB
))(1− u) + ((1− σTB

)− (1− σTA
)(1− σTB

))u

= 1− (1− σFA
) + (1− σFA

)(1− σFB
)

+ u((1− σTB
)− (1− σTA

)(1− σTB
)− 1 + (1− σFA

)− (1− σFA
)(1− σFB

)).

(5.17)

The probability of misclassification for B ⇒ A is obtained by switching A and B

in Eq. (5.17), given as

Pm = 1− (1− σFB
) + (1− σFA

)(1− σFB
)

+ u((1− σTA
)− (1− σTA

)(1− σTB
)− 1 + (1− σFB

)− (1− σFA
)(1− σFB

)).

(5.18)

5.2.2.4 Biconditional (A⇔ B)

Table 5.7 shows the truth table for the biconditional rule. Given the truth table,
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Table 5.7: Truth table for biconditional rule

A B A ∧B
T T T
T F F
F T F
F F T

the probability of misclassification is given as,

Pm = P (A = B = T ∧X = F ) + P (A = B = F ∧X = F )

+ P (A = T ∧B = F ∧X = T )

+ P (A = F ∧B = T ∧X = T )

= (1− (1− σFA
)− (1− σFB

) + 2(1− σFA
)(1− σFB

))(1− u)

+ ((1− σTA
) + (1− σTB

)− 2(1− σTA
)(1− σTB

))u

= 1− (1− σFA
)− (1− σFB

) + 2(1− σFA
)(1− σFB

)

+ u((1− σTA
) + (1− σTB

)− 2(1− σTA
)(1− σTB

)− 1

+ (1− σFA
) + (1− σFB

)− 2(1− σFA
)(1− σFB

)).

(5.19)

5.2.3 Aggregated team performance

The team performance under such fusion rules can be expressed in the following

aggregated form (let subscript T denote “Team”):

Pm = (1− σF )T (1− u) + (1− σT )T u. (5.20)

Table 5.8 - 5.9 summarize the aggregated false positive and false negative rates.

Definition V.1. Homogeneous Team

A homogeneous team is a team such that all of the team members have the same true
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Table 5.8: Aggregated false positive rates

Fusion Rule (1− σF )T
A ∧B (1− σFA

)(1− σFB
)

A ∨B (1− σFA
) + (1− σFB

)− (1− σFA
)(1− σFB

)
A⇒ B 1− (1− σFA

) + (1− σFA
)(1− σFB

)
B ⇒ A 1− (1− σFB

) + (1− σFA
)(1− σFB

)
A⇔ B 1− (1− σFA

)− (1− σFB
) + 2(1− σFA

)(1− σFB
)

Table 5.9: Aggregated false negative rates

Fusion Rule (1− σT )T
A ∧B (1− σTA

) + (1− σTB
)− (1− σTA

)(1− σTB
)

A ∨B (1− σTA
)(1− σTB

)
A⇒ B (1− σTB

)− (1− σTA
)(1− σTB

)
B ⇒ A (1− σTA

)− (1− σTA
)(1− σTB

)
A⇔ B (1− σTA

) + (1− σTB
)− 2(1− σTA

)(1− σTB
)

positive and true negative rates, i.e.,

σTO
= σ̄T , σFO

= σ̄F , O ∈ {A,B},

where σ̄i ∈ [0.5, 1], i ∈ {T, F}. If a team is not homogeneous, then it is heterogeneous.

Figure 5.3 illustrates the probability of misclassification Pm of different fusion

rules with respect to the prior information u for a homogeneous team. Figure 5.4

shows the probability of misclassification of different fusion rules with respect to the

prior information for a heterogeneous team.

Compared to a single classifier case, two-homogeneous-classifier teams with con-

junction, disjunction, and implication fusion rules are synergistic depending on u. On

the other hand, the biconditional fusion rule is non-synergistic for all u. Similarly

for a heterogenous team, conjunction, disjunction, and implication fusion rules are

synergistic for some u, but the biconditional rule is non-synergistic for all u.
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Figure 5.3: A homogeneous team performance σF = 0.7, σT = 0.7
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(a) σFA
= σTA

= 0.7, σFB
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= 0.9
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(b) More frequent false alarms σFA
= 0.6, σTA

=
0.7, σFB

= 0.8, σTB
= 0.9

Figure 5.4: Heterogeneous team performance

5.2.4 Supervisory decision for classifier team

We formulate the supervisor decisions based on the individual classifier decisions.
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By Bayes rule,

P (X = X0|A = A0 ∧B = B0) =
P (A = A0 ∧B = B0|X = X0)P (X = X0)

P (A = A0 ∧B = B0)
.

The posterior probabilities of the eight possible outcomes are summarized in Ta-

ble 5.10.

Table 5.10: Summary of the posterior probabilities for a classifier team

X0 A0 B0 P (X = X0|A = A0 ∧B = B0)

T T T
(1−(1−σTA

))(1−(1−σTB
))u

(1−(1−σTA
))(1−(1−σTB

))u+(1−σFA
)(1−σFB

)(1−u)

F T T
(1−σFA

)(1−σFB
)(1−u)

(1−(1−σTA
))(1−(1−σTB

))u+(1−σFA
)(1−σFB

)(1−u)

T T F
(1−(1−σTA

))(1−σTB
)u

(1−(1−σTA
))(1−σTB

)u+(1−σFA
)(1−(1−σFB

))(1−u)

F T F
(1−σFA

)(1−(1−σFB
))(1−u)

(1−(1−σTA
))(1−σTB

)u+(1−σFA
)(1−(1−σFB

))(1−u)

T F T
(1−σTA

)(1−(1−σTB
))u

(1−σTA
)(1−(1−σTB

))u+(1−(1−σFA
))(1−σFB

)(1−u)

F F T
(1−(1−σFA

))(1−σFB
)(1−u)

(1−σTA
)(1−(1−σTB

))u+(1−(1−σFA
))(1−σFB

)(1−u)

T F F
(1−σTA

)(1−σTB
)u

(1−σTA
)(1−σTB

)u+(1−(1−σFA
))(1−(1−σFB

))(1−u)

F F F
(1−(1−σFA

))(1−(1−σFB
))(1−u)

(1−σTA
)(1−σTB

)u+(1−(1−σFA
))(1−(1−σFB

))(1−u)

The supervisory decision rule by maximum likelihood classification is

Os =

 T if P (X=T |A=A0∧B=B0)
P (X=F |A=A0∧B=B0)

> 1,

F if P (X=T |A=A0∧B=B0)
P (X=F |A=A0∧B=B0)

≤ 1.
(5.21)

Let fA0,B0 ∈ [0 ∞) denote the ratio of the posterior probabilities such that,

fT,T = fA=T,B=T =
(1− (1− σTA

))(1− (1− σTB
))u

(1− σFA
)(1− σFB

)(1− u)
, (5.22a)

fT,F = fA=T,B=F =
(1− (1− σTA

))(1− σTB
)u

(1− σFA
)(1− (1− σFB

))(1− u)
, (5.22b)

fF,T = fA=F,B=T =
(1− (1− σTB

))(1− σTA
)u

(1− σFB
)(1− (1− σFA

))(1− u)
, (5.22c)

fF,F = fA=F,B=F =
(1− σTA

)(1− σTB
)u

(1− (1− σFA
))(1− (1− σFB

))(1− u)
. (5.22d)
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Using Eq. (D.8), we can define the conditional probabilities of a supervisor decision

given the team decisions. Table 5.11 summarizes the probabilities.

Table 5.11: Summary of the conditional probabilities for a supervisor decision given
the team decisions

Os A0 B0 P (Os = Os0|A = A0 ∧B = B0)

T T T δT (fT,T )
F T T δF (fT,T )
T T F δT (fT,F )
F T F δF (fT,F )
T F T δT (fF,T )
F F T δF (fF,T )
T F F δT (fF,F )
F F F δF (fF,F )

5.2.4.1 Performance of supervisory decisions

We assess the performance measure of a supervised team with respect to the fusion

rules. Note that there are sequences of decisions involved until the final supervisory

decision is made: Classifiers A and B each make an independent classification deci-

sion, then the two decisions are fused by some fusion rule, and the final supervisory

decision is made based on the fused decision. In other words, this architecture uses

fusion by logical operator and Bayes inference to reach the final supervisory decision.

Let Of ∈ {T, F} denote the fusion rule decision. By the product rule, the proba-
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bility of misclassification for a two-classifier team with a supervisor is

Pms = P (Os = T ∧X = F ) + P (Os = F ∧X = T ) (5.23)

= P (Os = T ∧X = F |Of = T )P (Of = T )

+ P (Os = T ∧X = F |Of = F )P (Of = F )

+ P (Os = F ∧X = T |Of = T )P (Of = T )

+ P (Os = F ∧X = T |Of = F )P (Of = F ). (5.24)

Assuming that Os and X are conditionally independent given Of , we get

Pms = P (Os = T |Of = T )P (X = F ∧Of = T )

+ P (Os = T |Of = F )P (X = F ∧Of = F )

+ P (Os = F |Of = T )P (X = T ∧Of = T )

+ P (Os = F |Of = F )P (X = T ∧Of = F ). (5.25)

Here, we provide an outline for assessing Eq. (5.25) for the biconditional fusion rule

as an example. For biconditional rule, the outcome of the fusion rule Of is equivalent

to the followings:

Of = T ⇔ (A = T ∧B = T ) ∨ (A = F ∧B = F ), (5.26)

Of = F ⇔ (A = T ∧B = F ) ∨ (A = F ∧B = T ). (5.27)

For mutually exclusive events a and b, it can be shown that

P (Os|a ∨ b) =
P (Os|a)P (a) + P (Os|b)P (b)

P (a) + P (b)
, (5.28)
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and

P (X ∧ (a ∨ b)) = P (X ∧ a) + P (X ∧ b). (5.29)

Using Eq. (5.26)-(5.29), together with Tables 5.10 and 5.11, we can evaluate the

probability of misclassification in Eq. (5.25).

Figure 5.5 compares the performance of fusion rules for a homogeneous team with

σFO = σTO = 0.5, O ∈ {A,B}.
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Figure 5.5: A comparison of a homogeneous team performance with and without
supervisor. Blue solid line and red dashed line indicate unsupervised and
supervised, respectively. (σF = 0.5, σT = 0.5)

The probability of misclassification for the supervised team decision is always less

than or equal to the probability of misclassification for the unsupervised team decision

regardless of the fusion rules and the prior information u. Also, the probability of

misclassification for the supervised team decision is always less than or equal to the

probability of misclassification for the single classifier decision. Therefore, the fusion
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rules with supervisory control are always synergistic compared to the case for a single

classifier without the supervisory control.
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Figure 5.6: A comparison of a homogeneous team performance with and without
supervisor (σF = 0.7, σT = 0.7)

However, there are supervised fusion rules that perform worse than unsupervised

fusion rules in some region of u. Figure 5.6 shows supervised team performance for

σFO = σTO = 0.7, O ∈ {A,B}. For instance, the supervised team with conjunction

rule does worse than the unsupervised team with disjunction rule for u ∈ [0.55, 0.8].

The implication of these results is that there exists a performance-optimal fusion rule

for a classifier team that varies with the prior information u.

We further investigate the rest of the fusion rules. Figure 5.7 illustrates the

optimal fusion rule among the 16 rules and the corresponding minimal probability of

misclassification Pm for σFO = σTO = 0.5, O ∈ {A,B}. Note that the ordinate of the

plot above denotes the fusion rule number as labeled in Table 5.8. The result indicates

that when both classifiers are as good as pure guesses, the optimal fusion rule is to
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Figure 5.7: The optimal fusion rule for a two-classifier team and the corresponding
minimal probability of misclassification (σF = 0.5, σT = 0.5)

completely ignore their opinions and classify either as F (F.R. No. 16) when the prior

information u is smaller than 0.5 or as T (F.R. No. 1) when the prior information u is

greater than or equal to 0.5. The minimal probability of misclassification Pm reaches

its maximum when the prior information is uninformative (u = 0.5).

Figure 5.8 illustrates the optimal fusion rule among the 16 rules and the cor-

responding minimal probability of misclassification Pm for σFO = σTO = 0.7, O ∈

{A,B}. As the classifiers become more reliable than pure guesses, the optimal fusion

rule exploits the classifiers appropriately according to the level of prior information

at present. For instance, when the prior information is either small (u < 0.2) or large

(u > 0.8), the optimal fusion rule is to ignore the classifiers’ opinions and classify ei-

ther as F or T . However, when the prior information is in mid-range (0.2 ≤ u ≤ 0.8),

the optimal rule is either the conjunction (No. 13) or the disjunction rule (No. 5).
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Figure 5.8: The optimal fusion rule for a two-classifier team and the corresponding
minimal probability of misclassification (σF = 0.7, σT = 0.7)

5.3 Conclusion & future work

In this chapter, we studied the performance of a classifier team under several fusion

rules. It was shown numerically that the supervised decisions for a single classifier

are no worse than the unsupervised decisions regardless of the prior information.

Moreover, we showed that there are synergistic fusion rules for unsupervised and

supervised team decisions compared to a single classifier. The study showed that

depending on the level of prior information, there is a performance-optimal fusion

rule for the team.

Our framework provides a mechanism for using numbers of classifiers in a team:

Divide the classifiers into two subgroups, and divide the classifiers within the sub-

groups into two, and so on, until the number of the smallest group members becomes

two. Then, we can apply our framework for two-classifier teams sequentially starting

from the smallest subgroups.
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One of the implications of this work is the use of multiple fusion rules in uncertain

situations when prior information is not completely known. For instance, we are

provided by the intelligence with a set of possible prior information values, as opposed

to a single number, with probabilities associated to each plausible prior information.

One way to overcome the situation and make the best classification decision based

on our results is as follows: Since there is an optimal fusion rule for a specific prior

information, a fusion of a set of optimal fusion rules corresponding to the set of

possible prior information, where each of the optimal fusion rule is weighted by the

associated probability, can be considered. As future work, we propose to investigate

this “super-fusion” approach and examine whether the approach is reliable when the

prior information is uncertain.
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CHAPTER VI

A Team of Heterogeneous Classifiers

However beautiful the strategy, you

should occasionally look at the

results.

Winston Churchill

We consider a team composed of a workload-independent, trichotomous classifier

and a workload-dependent, dichotomous classifier (mixed-initiative team). The team

is structured in a nested architecture, that is: first the primary, workload-independent,

trichotomous, classifier examines the classification task, and if the task is classified as

unknown, the secondary, workload-dependent, dichotomous, classifier is called upon.

We demonstrate that having two classifiers, a trichotomous classifier (true, false,

or unknown) with workload-independent performance that turns over the data classi-

fied as unknown to a dichotomous classifier (true or false) with workload-dependent

performance, gives superior classification performance (lower probability of misclas-

sification) compared to a single dichotomous classifier.

6.1 Mixed-initiative nested thresholding

We consider a mixed-initiative nested classification where two heterogeneous clas-

sifiers are composed in a nested architecture. Figure 6.1 shows the concept. We
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assume the following:

i. The workload-independent classifier and the workload-dependent classifier ex-

amine the task independently.

ii. The workload of the secondary classifier is determined by the probability of

being called upon by the primary classifier.

Trichotomous classifier 
(Workload‐independent)  

Dichotomous classifier 
(Workload‐dependent) 

O
k
? 

done 

Start 
Prior data 

done 

T or F, Pm 

Unknown 
(Workload) 

yes 

no 

T or F, Pm 

T or F data 

Figure 6.1: Concept of mixed-initiative nested classification
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6.1.1 Problem formulation

6.1.1.1 Workload-independent trichotomous classifier

Let τ1 and τ2 be the threshold variables. Then, the cumulative probability distri-

butions for Gaussian distributions are

σT1 =

τ1∫
−∞

aT e
−(w+bT )2/c2T dw (6.1a)

σF1 =

∞∫
τ2

aF e
−(w+bF )2/c2F dw (6.1b)

where ai = 1/
√

2πs2
i , bi = −mi, and ci =

√
2s2

i with i ∈ {T, F}.

The region of indecision, i.e., [τ1, τ2], of the primary trichotomous classifier de-

termines the workload applied to the secondary classifier. We define a workload

variable, W ∈ [0, 1], with 0 indicating idle and 1 indicating fully loaded. Let

fi(w) = aie
−(w+bi)

2/c2i with i ∈ {T, F}, then the workload variable is defined as

W =

τ2∫
τ1

ufT (w) + (1− u)fF (w)dw. (6.2)

Note that the range of W is [0, 1] for any τ1 and τ2. We assume that the workload

variable is normalized such that the maximum value is unity when the workload-

dependent classifier is fully loaded.

6.1.1.2 Workload-dependent dichotomous classifier

The classification performance of a human operator is modeled as follows. Recog-

nizing the concavity of the curve, we model the Yerkes-Dodson law (Fig. A.1 in the
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appendix) as a quadratic function of the workload as,

σT2 = −(4σ∗T − 2)W 2 + (4σ∗T − 2)W + 0.5, (6.3)

σF2 = −(4σ∗F − 2)W 2 + (4σ∗F − 2)W + 0.5, (6.4)

where σ∗(·) ∈ [0.5, 1] determines the maximum of σ(·).

6.1.1.3 Probability of misclassification for two classifiers

The probability of misclassification is a sum of contributions of two faulty out-

comes: false positives and false negatives. By the theorem of total probability, the

probability of misclassification includes all possible cases of misclassification by the

two classifiers. To maintain the flow, the derivation can be found in Appendix D.

The probability of misclassification for two classifiers is

P 2
m = σ̄T1 R2σ̄2, (6.5)

where

σ̄i =

[
σFi

1− σFi
1− σTi

σTi

]T
, i = 1, 2

R2 =



δT (f1,1)(1− u) δT (f1,2)(1− u) 0 0

δT (f2,1)(1− u) δT (f2,2)(1− u) 0 0

0 0 δF (f1,1)u δF (f1,2)u

0 0 δF (f2,1)u δF (f2,2)u


,
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with

f1,1 =

(
1− σT1

σF1

)(
1− σT2

σF2

)(
u

1− u

)
,

f1,2 =

(
1− σT1

σF1

)(
σT2

1− σF2

)(
u

1− u

)
,

f2,1 =

(
σT1

1− σF1

)(
1− σT2

σF2

)(
u

1− u

)
,

f2,2 =

(
σT1

1− σF1

)(
σT2

1− σF2

)(
u

1− u

)
.

The global objective of the nested team architecture is to minimize the probability

of misclassification by choosing the threshold variables for the primary trichotomous

classifier, i.e.,

min
τ1,τ2

P 2
m,

subject to inequality constraints,

τ1 ≤ τ2 (6.6a)

σT1 ≥ 0.5, (6.6b)

σF1 ≥ 0.5, (6.6c)

σT1 ≤ 1, (6.6d)

σF1 ≤ 1. (6.6e)

This formalism allows the two classifiers to have the same goal, although the mech-

anism behind how each classifier functions is different. Also, due to the inequality

constraints, the formulation does not allow the trichotomous classifier to experience

perverse behavior, i.e., σ(·) ∈ [0, 0.5].
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6.1.2 Classifiability

The fundamental difficulty of a classification task is determined by the nature of

the distributions that are to be classified. Given two undistinguishable distributions,

e.g., two Gaussian distributions with identical mean and variance, it is impossible

to make the classifier’s performance better than a pure guess because the task itself

is unclassifiable. Recognizing this, we use the term classifiability to quantify the

fundamental difficulty of the classification task at hand.

Definition VI.1. Classifiability

Classifiability is quantified as the reciprocal of the minimal probability of misclassifi-

cation performed by a dichotomous classifier on a logarithmic scale, i.e.,

Classifiability = log
1

P 1∗
m

, (6.7)

where P 1∗
m denotes the minimal probability of misclassification of a dichotomous clas-

sifier. Note that the measure is the information content defined by Shannon [12].

Figure 6.2 illustrates an example of two Gaussian distributions, each representing

the distribution of either the T or F sub-population. Figure 6.3 illustrates the classi-

fiability as a function of the distance between the means of the distributions. Note

that as the distance between the means increases, the classifiability of the task in-

creases. On the other hand, if the distance between the means is zero (|mT−mF | = 0),

the classifiability reaches its minimum, log
(

1
0.5

)
.
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6.1.3 Optimal mixed-initiative nested thresholding

At minimum τ ∗1 and τ ∗2 , the problem must satisfy the K-K-T conditions, i.e.,

∂

∂τ1
P 2
m + µ1

∂

∂τ1
(τ1 − τ2) + µ2

∂

∂τ1
(0.5− σT1) + µ3

∂

∂τ1
(0.5− σF1)

+ µ4
∂

∂τ1
(σT1 − 1) + µ5

∂

∂τ1
(σF1 − 1) = 0, (6.8)

∂

∂τ2
P 2
m + µ1

∂

∂τ2
(τ1 − τ2) + µ2

∂

∂τ2
(0.5− σT1) + µ3

∂

∂τ2
(0.5− σF1)

+ µ4
∂

∂τ2
(σT1 − 1) + µ5

∂

∂τ2
(σF1 − 1) = 0. (6.9)

Investigating the analytical properties of the solution for mixed-initiative nested clas-

sifiers is left as future work.

We solve the optimization problem by using the MATLAB fmincon command.

Figure 6.4 illustrates the performance comparison between the dichotomous classifier

and the mixed-initiative nested classifiers with different initializations of the threshold

variables shown on a logarithmic scale. Note that the search space has multiple

local minima, so that depending on the initial conditions the performance of the

mixed-initiative nested classifiers can be different. It is clear, however, that while the

performance of the nested classifiers is sensitive to the initialization of the threshold

variables, it is no worse than the dichotomous classifier regardless of the initialization

as shown in Fig 6.4. Note that the performances of both dichotomous and mixed-

initiative classifiers are linearly decreasing functions (on a logarithmic scale) with

respect to the classifiability.
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Figure 6.4: Comparison of dichotomous and mixed-initiative thresholding perfor-
mance

6.2 Linear mixed-initiative nested thresholding

So far, we have studied a case when a scalar measurable quantity w is provided.

In this section, we generalize the work by introducing multi-dimensional measurable

quantities, such that the decision variable for thresholding is no longer a choice of a

scalar value, but a choice of multi-dimensional variables.

6.2.1 Problem formulation

Consider a multivariate property w ∈ Rn that can be measured from a population

of objects of interest where the population comprises two disjoint sub-populations, T

and F , and each sub-population is characterized by its own distribution of w. Let c

denote a sieving parameter that satisfies the constraint:

cTc = 1. (6.10)
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Let w = cTw denote the sieved measurement and τ1 and τ2 be the threshold variables.

If the distribution of the measurable property for each sub-population is Gaussian,

the cumulative probability distributions are determined as,

σT1 =

τ1∫
−∞

aT e
−(w+bT )2/c2T dw (6.11a)

σF1 =

∞∫
τ2

aF e
−(w+bF )2/c2F dw (6.11b)

where ai = 1/
√

2π (cTPwi
c), bi = −cT w̄i, ci =

√
2 (cTPwi

c) with i ∈ {T, F}. For

more background on this formulation, see Sec. 4.2

The region of indecision, i.e., [τ1, τ2], determines the workload applied to the

human operator. We define a workload variable, W ∈ [0, 1], with 0 indicating idle

and 1 indicating fully loaded. Let fi(w) = aie
−(w+bi)

2/c2i with i ∈ {T, F}, then the

workload variable is defined as

W =

τ2∫
τ1

ufT (w) + (1− u)fF (w)dw. (6.12)

The classification performance of a human operator is modeled as follows. Rec-

ognizing the convexity of the curve, we model the Yerkes-Dodson law as a quadratic

function of the workload as,

σT2 = −(4σ∗T − 2)W 2 + (4σ∗T − 2)W + 0.5, (6.13)

σF2 = −(4σ∗F − 2)W 2 + (4σ∗F − 2)W + 0.5 (6.14)

where σ∗(·) ∈ [0.5, 1] determines the maximum of σ(·).

The global objective of the nested team architecture is to minimize the probability
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of misclassification by choosing the threshold variables for the machine classifier, i.e.,

min
τ1,τ2,c

P 2
m,

subject to constraints,

cTc = 1, (6.15a)

τ1 ≤ τ2, (6.15b)

σT1 ≥ 0.5, (6.15c)

σF1 ≥ 0.5, (6.15d)

σT1 ≤ 1, (6.15e)

σF1 ≤ 1. (6.15f)

Note that P 2
m is defined in Eq. (D.10).

6.2.2 Optimal linear mixed-initiative nested thresholding

At minimum τ ∗1 , τ ∗2 and c∗, the problem must satisfy the K-K-T conditions, i.e.,

∂

∂τ1
P 2
m + µ1

∂

∂τ1
(τ1 − τ2) + µ2

∂

∂τ1
(0.5− σT1) + µ3

∂

∂τ1
(0.5− σF1)

+ µ4
∂

∂τ1
(σT1 − 1) + µ5

∂

∂τ1
(σF1 − 1) = 0, (6.16)

∂

∂τ2
P 2
m + µ1

∂

∂τ2
(τ1 − τ2) + µ2

∂

∂τ2
(0.5− σT1) + µ3

∂

∂τ2
(0.5− σF1)

+ µ4
∂

∂τ2
(σT1 − 1) + µ5

∂

∂τ2
(σF1 − 1) = 0, (6.17)

∂

∂c
P 2
m + λ1

∂

∂c
(cTc− 1) + µ1

∂

∂c
(τ1 − τ2) + µ2

∂

∂c
(0.5− σT1)

+ µ3
∂

∂c
(0.5− σF1) + µ4

∂

∂c
(σT1 − 1) + µ5

∂

∂c
(σF1 − 1) = 0. (6.18)

Figure 6.5 and 6.6 illustrate a numerical example of optimal linear mixed-initiative
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nested thresholding.

While the MATLAB optimization routine ‘fmincon’ is suitable to solve the prob-

lem since it can handle nonlinear constraints, often the solution either converges to

one of the many local minima or to infeasible solutions. Optimization routines that

exploit randomness, such as Simulated Annealing [130] or Genetic Algorithms [131],

can be used to find the global minimum.
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Optimal mixed−initiative linear trichotomous thresholding

Figure 6.5: Optimal mixed-initiative linear trichotomous thresholding for w̄T =
[5, 20], w̄F = [20, 5], PwT

= diag(10, 5), PwF
= diag(5, 10), c0 = [0.5, 0.5],

τ0 = [−20, 20]. The optimum is at c∗ = [0.991, 0.0412], τ ∗ = [5.82, 20.19],
P ∗m = 7.17 · 10−10.
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6.3 Mixed-initiative nested thresholding for n team members

Previously, we considered mixed-initiative nested thresholding with two classifiers:

a primary trichotomous classifier and a secondary dichotomous classifier. In this

section, we consider the same regime, but extend the number of classifiers involved

and study the properties of such an architecture.

6.3.1 Problem formulation

Consider a nested classification architecture where the ratio of the number of

workload-dependent classifiers to the number of workload-independent classifiers is

a design variable. Figure 6.7 illustrates the concept. In one case, a workload-
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independent classifier serves as a primary classifier and distributes any unclassifiable

tasks to secondary workload-dependent classifiers (left-hand side figure), while in an-

other case, multiple primary classifiers process the incoming tasks and, when there

are any unclassifiable tasks, deliver them to a secondary workload-dependent classifier

(right-hand side figure).

M 

H1  H2  H10 ……. 

M1  M2  M10 ……. 

H 

Figure 6.7: Mixed-initiative nested thresholding with more than two team members.
(M denotes a workload-independent classifier and H denotes a workload-
dependent classifier)

Note that the left-hand side theme in Fig. 6.7 is somewhat analogous to the current

state-of-the-art mission operation in the U.S Air Force with unmanned vehicles: an

unmanned aerial vehicle with several human operators involved in the operation and

management of the vehicle. On the other hand, the right-hand side theme is similar

to what the current operation is going towards: a number of unmanned aerial vehicles

with a single human operator supervising.

There are several assumptions made for this study. First, when there are multiple

classifiers, either primary or secondary, we assume that they are identical. Second,

each classifier in the team works independently, that is, when a classification task

is given to two classifiers, they examine the task solely according to their abilities

without affecting each other.

Note that in this study we consider either the ratio of a single primary classifier

to multiple secondary classifiers (1 : n), or the ratio of multiple primary classifiers

to a secondary classifier (n : 1). Doing so, the analysis is simpler than considering
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the general case of m : n where allocating tasks becomes an issue. For our case,

we assume that if a task is passed from a primary classifier to multiple secondary

classifiers, it is uniformly distributed to each secondary classifier.

Let n ∈ { 1
m
, 1
m−1

, · · · , 1
2
, 1, 2, · · · ,m} denote the ratio of the number of workload-

dependent classifiers to the number of workload-independent classifiers in the system

with m ∈ N . For example, n = 0.1 means that there is a single workload-dependent

classifier and 10 workload-independent classifiers.

Once the primary layer of workload-independent classifiers receives measurements,

the unclassifiable measurements are sent to the secondary layer of workload-dependent

classifiers. We quantify all the unclassifiable measurements from a classifier in the

primary layer as the total workload. Let W ∈ [0, ∞) denote the total workload

applied to the secondary layer of workload-dependent classifiers due to a workload-

independent classifier in the primary layer. The total workload W is then uniformly

distributed to the secondary layer classifiers such that each classifier has its own

individual workload. Let

Wn =
W

n
(6.19)

denote the individual workload applied to each workload-dependent classifier given

the ratio n.

We consider the total workload W as a design variable. Note that although

there can be more than two classifiers in the architecture, using the probability of

misclassification for two classifiers as the cost function is still valid. This is because of

the particular one-to-one setup between the classifiers in the primary and secondary

layers, and the assumptions that the classifiers are identical and work independently.

The objective of the problem is to minimize the probability of misclassification by
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choosing the ratio number n, i.e.,

min
n
P 2
m(W,n),

subject to inequality constraints,

τ1 ≤ τ2 (6.20a)

σT1 ≥ 0.5, (6.20b)

σF1 ≥ 0.5, (6.20c)

σT1 ≤ 1, (6.20d)

σF1 ≤ 1. (6.20e)

In words, the goal is to find the optimal ratio of the number of workload-dependent

classifiers to the number of workload-independent classifiers to use in the architecture

such that the probability of misclassification is minimized.

6.3.2 Optimal mixed-initiative nested thresholding for n members

Let us choose the following parameters as the independent variables: the mean and

variance of the distribution of each sub-population (m(·), s2
(·)), the prior probability

(u), and the total workload (W ). Once the independent variables are determined,

we solve a double minimization problem with two sets of minimizers: the threshold

variables (τ1, τ2) and the ratio number (n). Figure 6.8 shows the formal procedure of

solving the problem.

Note that here the minimal probability of misclassification P ∗m(W = W̄ , n∗), or

simply P ∗m, is the best performance that can be achieved given the ratio number n.

The ratio number n∗ is optimal if the achievable probability of misclassification by

n∗ is minimal compared to that of other possible configurations in n.
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Start;
Determine mT , mF , s2

T , s2
F ;

for W = [0, Wmax] do
for n = [ 1

10 , 1
9 , · · · , 1, 2, · · · , 10] do

Solve P ∗
m(W = W̄ , n = n̄) = minτ1,τ2 Pm(W = W̄ , n = n̄)

end
Solve P ∗

m(W = W̄ , n∗) = minn P ∗
m(W = W̄ , n)

end
Stop;

1

Figure 6.8: Algorithm for determining the optimal ratio n∗ and the corresponding
minimal probability of misclassification P ∗m

Figure 6.9, 6.10, and 6.11 show the optimal ratio n∗, the minimal probability of

misclassification P ∗m, and the individual workload Wn, respectively, as a function of

the total workload W .
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Figure 6.9: Optimal ratio as a function of the total workload (u = 0.5, σ∗ = 1)

The optimal ratio with respect to the total workload in Fig. 6.9 shows that as

the total workload increases, the optimal configuration is to increase the number of
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Figure 6.10: Minimal probability of misclassification as a function of the total work-
load (u = 0.5, σ∗ = 1)
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Figure 6.11: Individual workload as a function of the total workload (u = 0.5, σ∗ = 1)
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workload-dependent classifiers so that the individual workload is not overwhelming.

This can be confirmed by the result of Fig. 6.11 in which the individual workload

asymptotically reaches to 0.5, the workload that gives the optimal performance. The

minimal probability of misclassification is asymptotically reaching to zero as the total

workload increases, as shown in Fig. 6.10. Figure 6.12 is the subplot version of the

previous three figures for comparison purpose.
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Figure 6.12: Optimal ratio, minimal probability of misclassification, individual work-
load as a function of the total workload (u = 0.5,mT = −20,mF =
20, s(·) = 5, σ∗ = 1)

6.3.2.1 Sensitivity with respect to σ∗

In this section, we conduct a numerical sensitivity analysis of the results shown

previously with respect to the maximum performance parameter σ∗. Recall that

σ∗ ∈ [0.5, 1] determines the maximum of σi, i ∈ {T, F}. Since the individual classifier

performance can hardly be perfect (σ∗ = 1) in practice, it is reasonable to consider

sensitivity analysis and examine how the optimal solutions change.
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Figure 6.13, 6.14, and 6.15 show the optimal ratio n∗, the minimal probability

of misclassification P ∗m, and the individual workload Wn, respectively, as a function

of the total workload W . Note that the results show different cases of σ∗ and the

performance of the primary workload-independent classifier is arbitrarily fixed to 0.7,

i.e., σT1 = σF1 = 0.7.
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Figure 6.13: Optimal ratio as a function of the total workload (u = 0.5, σT1 = σF1 =
0.7)

A notable observation in Fig. 6.13 is that when the workload-dependent classifier

is as bad as a pure guess (σ∗ = 0.5), the optimal configuration is to maximize the

number of the primary workload-independent classifiers while minimizing the num-

ber of workload-dependent classifiers (n∗ = 1
10

). As a consequence, the individual

workload for pure guessing is a linearly increasing function with respect to the total

workload, as shown in Fig. 6.15. For the minimal probability of misclassification, as

shown in in Fig. 6.14, we observe that the measure asymptotically reaches a value

determined by the workload-dependent classifier performance, specifically 1− σ∗.
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Figure 6.14: Minimal probability of misclassification as a function of the total work-
load (u = 0.5, σT1 = σF1 = 0.7)
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6.4 Conclusion & future work

In this chapter, we have proposed a novel classifier architecture that uses a tri-

chotomous classifier with workload-independent performance that turns over the data

classified as unknown to a binary classifier with workload-dependent performance. We

demonstrate that the novel classifier architecture gives superior classification perfor-

mance (the probability of misclassification) compared to a single dichotomous classi-

fier, relate the classifier’s performance to the inherent difficulty of the classification

task at hand (classifiability), and compare the performance of different classifiers.

As future work, identifying the important parameters in the problem of (linear)

mixed-initiative nested thresholding will be addressed. This includes assessing the

impact of the correctness of the prior information u on the optimal solution and

recasting the problem with a dimensionless number so that solutions under various

parameters can be described qualitatively by such number. Moreover, we will consider

nested thresholding architecture with tertiary layers; the secondary classifier is tri-

chotomous such that any unclassifiable tasks by the secondary classifier activates the

tertiary mobile sensor that collects more data. Finally, as one of the assumptions that

we made is that the knowledge of the distributions of w is provided by calibration,

future work will address the case when the distributions are partially given.
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CHAPTER VII

Epilogue

I run in a void. Or maybe I should

put it the other way: I run in order

to acquire a void.

Haruki Murakami

7.1 Summary

In this dissertation, we have studied classification along with information and

team classification. In Chap. I, we provided the background that motivated the prob-

lem, the problem statement, and a list of original contributions of the dissertation.

In Chap. II, we reviewed the background literature related to this work, specifically

on the mathematical formulation of information, the problem of classification, and

human factors. Prior to studying the mechanism of a classifier, we investigated the

relationship between information and classification performance in Chap. III. We

found that while there is a predominant congruence between information and clas-

sification performance, there is also independence between them, which was shown

for both workload-independent and workload-dependent classifiers. In Chap. IV, we

posed the problem of classification by thresholding and gave both analytical and nu-

merical analyses of the solutions. Also, we have studied the change in the solution
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when the property of the classifier changes: dichotomy vs. trichotomy, and single-

variable vs. multivariate measurement. In Chap. V, we considered the case when

there are multiple homogeneous classifiers and provided a supervisory strategy by

using logical fusion rules. It was found that there is an optimal fusion rule that

yields minimal probability of misclassification, and the optimal fusion rule changes

as the available prior information changes. In Chap. VI, we considered multiple het-

erogeneous classifiers and proposed a novel classification architecture. It was shown

that the nested architecture with a primary trichotomous classifier and a secondary

dichotomous classifier outperforms a single dichotomous classifier.

7.2 Concluding remarks

7.2.1 Lessons learned

There are several messages that this dissertation delivers:

1. Gathering more information does not always decrease the probability of mis-

classification. The mechanism behind this phenomenon is the trade-off between

the ability to sense truth out of truth (the rate of true positives, i.e., σT ) and

to sense falsehood out of falsehood (the rate of true negatives, i.e., σF ).

2. For a dichotomous classifier with a single-variable measurement, if the distri-

bution of a measurable property of each sub-population is Gaussian, then the

optimal threshold is always at the intersection of the two distributions weighted

by their prior information.

3. For a classifier with multivariate measurements, the solution can be found es-

sentially in the same way as for a classifier with a single-variable measurement

by adding an additional unknown, the sieving parameter.

4. For two homogeneous classifiers, there exists an optimal fusion rule that mini-
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mizes the probability of misclassification and the optimal rule changes depend-

ing on the level of prior information at hand.

5. A nested architecture with two heterogeneous classifiers always outperforms a

single dichotomous classifier.

7.2.2 Key contributions

• We show that increasing the amount of information, in the sense of Shannon’s,

generally implies improving classification performance, when classification de-

cisions are made by the maximum likelihood rule and the classification perfor-

mance is the probability of misclassification. We show the phenomenon for clas-

sifiers under two mechanisms: 1. workload-independent classifiers 2. workload-

dependent classifiers. We demonstrate that, however, increasing the amount of

information does not always imply improving classification performance, and

that is indeed so for both classifiers with different mechanisms.

• We pose and solve the problem of trichotomous thresholding with a single vari-

able measurement, where the classification decision is based on three options

(true, false, or unknown) and determined by two thresholds. Then, we generalize

the problem to a multivariate measurement and provide solutions.

• We propose a novel single and team classification model that depends on the

individual classifier’s confusion matrix and a priori information in a static en-

vironment. We show that the individual classifier’s decision in the team can be

fused by various logical operators and verify that the single classifier is a special

case of the fused model. We show that there are fusion rules that improve the

team performance compared to the individual performance.

• We propose a novel classifier architecture that uses a trichotomous classifier with

workload-independent performance that turns over the data classified as un-
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known to a binary classifier with workload-dependent performance. We demon-

strate that the novel classifier architecture gives superior classification perfor-

mance (the probability of misclassification) compared to a single dichotomous

classifier. We relate the classifier’s performance to the inherent difficulty of

the classification task at hand (classifiability), and compare the performance of

different classifiers.

7.3 Future directions

• Performance measure

Our analysis throughout this work is based on the probability of misclassification

as the single performance measure. As we have stated in Chap. I, there are other

measures that may be considered in assessing the performance of classification,

such as time-criticality and decision confidence.

The time-criticality in classification becomes important in a mission where the

situation changes rapidly. For instance, a threat may be able to move and hide

away once it was spotted. One way to address the time-criticality is to consider

each object of interest that is subject to classification as a task, and a classifier

as a server that services tasks. A service time for a classifier is the time counted

from when it receives to when it finishes the task. Queueing theory [132] can

be a good candidate to formalize the problem.

A simpler way of considering time-criticality is by using workload. Since work-

load can be an indirect indication of how much time the classifier needs to spend

on an object of interest, a new cost function can be formalized as a convex com-

bination of the probability of misclassification and the workload of the classifier.

118



An optimization problem with an objective function as

min
τ
λ · Pm + (1− λ) ·W,

can be posed, where λ ∈ [0, 1].

Another important performance measure is the decision confidence. Often in

practice, it is very difficult to assess whether the classification is right or wrong

because in order to do so, we need to know the ground truth. On the other

hand, decision confidence is a measure that can be assessed based on the number

of measurements, situation awareness, and etc. Thus, decision confidence can

be more practical than the probability of misclassification as the performance

measure.

• Kinematic classification

The problem of kinematic classification arises when a classifier is able to move

(thus, kinematic classification). Suppose that a mobile agent is located in the

same area where the objects of interest are located. One of the subsystems of

the agent provides information with respect to the objects where the informa-

tion quality is dependent on the relative position between the agent and the

objects, such as the range and/or the relative azimuth. Based on the collected

information, the classification subsystem of the agent decides on the object

property. Since the classification performance is determined by the information

quality and the quality of information is dictated by the relative position be-

tween the agent and the object, the agent plans a path such that the probability

of misclassification is minimized.

To incorporate the fact that the information quality is dependent on the rela-

tive position between the agent and the object, let the sensor performance be
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quantified by,

P (Y i = Y1|X = T ) = 1− σTi
,

P (Y i = Y2|X = T ) = σTi
,

P (Y i = Y1|X = F ) = σFi
,

P (Y i = Y2|X = F ) = 1− σFi
. (7.1)

The index i ∈ N represents the i-th sampling instance of the sensing device.

Note that each σ(·) is now a function of the relative position and azimuth between

the mobile agent and the object.

Let φ denote a steering variable that determines the agent’s motion. The goal

of the problem is to solve an optimization problem with an objective function,

min
φ
Pm.

As future work, we address two aspects of the problem of kinematic classification

that are,

1. Kinematic classification (free measurements),

2. Costly kinematic classification (costly measurements).

• Classification with learning

When situation changes rapidly, classifiers with learning can accommodate such

changes. Many developers of classifiers put emphasis on the learning aspect as

the classification task becomes more complex and time-varying. Our approach

can be formalized with learning as follows:

Let w ∈ R and X ∈ {T, F}. Calibration provides a pair of data {wk, X} where

the subscript k denotes the sampling instants. Given the sequence of pairs of
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data up to the instant k, the mean and the variance are learned as

m̂Tk
=

1

k

k∑
i=1

wi, (7.2)

ŝ2
Tk

=
1

k − 1

k∑
i=1

[wi − m̂Tk
]2. (7.3)

The mean and the variance for X = F can be learned similarly. Further inves-

tigation of the learning aspect is left as future work.

• Deceptive strategies

Deception is an effort to cause wrong-doings in the opponent. Deceptive strate-

gies have been studied, in missile guidance for instance [129], and sometimes

they are effective. Knowing the mechanism of a classifier and the role of in-

formation in classification, a deception problem can be posed. Assessing the

impact of wrong calibration and wrong measurement in classification will help

us understand how one should devise and counter a deceptive strategy.
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APPENDIX A

YERKES-DODSON LAW

Unlike machine classifiers, human operator performance is subject to various hu-

man factors, such as workload, fatigue, boredom, stress, etc. Here, we model the

human as a workload-dependent classifier. The workload-dependence is depicted by

the Yerkes-Dodson law [110] that states that there is an optimal region of workload

that allows humans to exhibit a maximum performance. Figure A.1 illustrates the

concept.

Note that the Yerkes-Dodson law is not a definitive rule, meaning that depending

on human subjects and situations, the performance-workload relationship may exhibit

a different trend.

We model the Yerkes-Dodson law as a quadratic function of the workload through-

out the thesis. The model is derived based on several assumptions. Let f : [0, 1] →

[0.5, 1] be a quadratic function such that

σ = f(W )

= aW 2 + bW + c, (A.1)
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where σ ∈ [0.5, 1] is the performance variable, W ∈ [0, 1] is the workload variable

and a, b, c ∈ R are some coefficients. The three unknown coefficients are determined

by the following assumptions:

• When the workload is either at its minimum or maximum, the performance is

at minimum, i.e.,

f(W = 0) = 0.5, (A.2a)

f(W = 1) = 0.5. (A.2b)

• The optimal performance σ∗ ∈ [0.5, 1] is obtained at the median of the workload

range, i.e.,

f(W = 0.5) = σ∗. (A.3)

Given three unknowns and three equations, the coefficients a, b, c can be uniquely

determined. The Yerkes-Dodson law is modeled as follows:

σ = −(4σ∗ − 2)W 2 + (4σ∗ − 2)W + 0.5. (A.4)
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Figure A.1: Illustration of the Yerkes-Dodson law
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APPENDIX B

PROOFS FOR CHAPTER III

First, we show that the following is true.

Lemma B.1. If 0.5 ≤ σi ≤ 1 for i ∈ {T, F} and 0 ≤ u ≤ 1, then f1 ≤ f2 for all σi

and u.

Proof. The ratio of f1 to f2 is given as

f1

f2

=

(
1− σT
σF

)(
1− σF
σT

)
. (B.1)

Since 0.5 ≤ σi ≤ 1 for i ∈ {T, F}, it is true that
(

1−σi

σi

)
≤ 1 holds. Therefore,

f1

f2

≤ 1⇒ f1 ≤ f2. (B.2)

Proof for Theorem III.6

Assume u is fixed. By the multivariable chain rule,

∆I(X;Y ) =
∂I(X;Y )

∂σT
∆σT +

∂I(X;Y )

∂σF
∆σF . (B.3)
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The partial derivative of I(X;Y ) with respect to σT is given as

∂I(X;Y )

∂σT
= u log

(
1 + 1/f1

1 + 1/f2

)
, (B.4)

while the partial derivative of I(X;Y ) with respect to σF is given as

∂I(X;Y )

∂σF
= (1− u) log

(
1 + f2

1 + f1

)
. (B.5)

Due to Lemma B.1, it is true that

∂I(X;Y )

∂σi
≥ 0, (B.6)

holds for all σi and u for i ∈ {T, F}. Therefore, I(X;Y ) is a monotonically increasing

function with respect to σT and σF .

The following is a direct consequence of Lemma B.1.

Corollary B.2. f1 > 1 ∧ f2 ≤ 1 is false for all σi and u for i ∈ {T, F}.

Proof for Theorem III.7

Depending on the range of f1 and f2, Pm can be expressed as

Pm =



1− u if f1 > 1 ∧ f2 > 1,

(1− σF )(1− u) + (1− σT )u if f1 ≤ 1 ∧ f2 > 1,

σF (1− u) + σTu if f1 > 1 ∧ f2 ≤ 1,

u if f1 ≤ 1 ∧ f2 ≤ 1.

(B.7)

Due to Corollary B.2, the results for the condition f1 > 1 ∧ f2 ≤ 1 do not hold.

With careful examinations, it can be shown that Pm is continuous at the boundary

conditions, i.e., f1 = 1 and f2 = 1.
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The partial derivatives of Pm with respect to σT and σF are given as

∂Pm
∂σT

=


0 if f1 > 1 ∧ f2 > 1,

−u if f1 ≤ 1 ∧ f2 > 1,

0 if f1 ≤ 1 ∧ f2 ≤ 1,

(B.8)

and

∂Pm
∂σF

=


0 if f1 > 1 ∧ f2 > 1,

−1 + u if f1 ≤ 1 ∧ f2 > 1,

0 if f1 ≤ 1 ∧ f2 ≤ 1.

(B.9)

Thus,

∂Pm
∂σi

≤ 0, (B.10)

for all σi and u for i ∈ {T, F}. Therefore, Pm is a monotonically decreasing function

with respect to σT and σF .
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APPENDIX C

ANALYTICAL SOLUTIONS OF GAUSSIAN

CUMULATIVE PROBABILITY DISTRIBUTION

Dichotomous thresholding

Let τ ∈ R be the threshold variable. Let the rates of true positives and negatives

be evaluated as:

σT =

τ∫
−∞

aT e
−(w+bT )2/c2T dw, (C.1a)

σF =

∞∫
τ

aF e
−(w+bF )2/c2F dw, (C.1b)

where ai = 1/
√

2πs2
i , bi = −mi, and ci =

√
2s2

i , i ∈ {T, F}. The closed-form

solutions to Eq. (C.1) are

σT =


limw→−∞

(
−1

2
aT cT

√
π
(

erf
(
w+bT
cT

)
− erf

(
|τ |+bT
cT

)))
if τ > 0,

limw→−∞
(
−1

2
aT cT

√
π
(

erf
(
w+bT
cT

)
+ erf

(
|τ |−bT
cT

)))
if τ < 0,

limw→−∞
(

1
2
aT cT

√
π
(
−erf

(
w+bT
cT

)
+ erf

(
bT
cT

)))
if τ = 0,

(C.2)
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and

σF =


limw→∞

(
1
2
aF cF

√
π
(

erf
(
w+bF
cF

)
− erf

(
|τ |+bF
cF

)))
if τ > 0,

limw→∞
(

1
2
aF cF

√
π
(

erf
(
w+bF
cF

)
+ erf

(
|τ |−bF
cF

)))
if τ < 0,

limw→∞
(
−1

2
aF cF

√
π
(
−erf

(
w+bF
cF

)
+ erf

(
bF
cF

)))
if τ = 0.

(C.3)

Trichotomous thresholding

Let τ1 ∈ R and τ2 ∈ R be the threshold variables such that the cumulative

probability distributions are,

σT =

τ1∫
−∞

aT e
−(w+bT )2/c2T dw, (C.4a)

σF =

∞∫
τ2

aF e
−(w+bF )2/c2F dw, (C.4b)

where ai = 1/
√

2πs2
i , bi = −mi, and ci =

√
2s2

i with i ∈ {T, F}. The closed-form

solutions to Eq. (C.4) are

σT =


limw→−∞

(
−1

2
aT cT

√
π
(

erf
(
w+bT
cT

)
− erf

(
|τ1|+bT
cT

)))
if τ1 > 0,

limw→−∞
(
−1

2
aT cT

√
π
(

erf
(
w+bT
cT

)
+ erf

(
|τ1|−bT
cT

)))
if τ1 < 0,

limw→−∞
(

1
2
aT cT

√
π
(
−erf

(
w+bT
cT

)
+ erf

(
bT
cT

)))
if τ1 = 0,

(C.5)

σF =


limw→∞

(
1
2
aF cF

√
π
(

erf
(
w+bF
cF

)
− erf

(
|τ2|+bF
cF

)))
if τ2 > 0,

limw→∞
(

1
2
aF cF

√
π
(

erf
(
w+bF
cF

)
+ erf

(
|τ2|−bF
cF

)))
if τ2 < 0,

limw→∞
(
−1

2
aF cF

√
π
(
−erf

(
w+bF
cF

)
+ erf

(
bF
cF

)))
if τ2 = 0.

(C.6)
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APPENDIX D

DERIVATION OF THE PROBABILITY OF

MISCLASSIFICATION FOR TWO

CLASSIFIERS

Here we derive the probability of misclassification for two classifiers. From Chap. III,

we have defined that the probability of misclassification is the sum of probabilities of

two faulty outcomes: false positive and false negative:

P 2
m = P (Os = T ∧X = F ) + P (Os = F ∧X = T ). (D.1)

Note that the superscript 2 in P 2
m is to denote “two” classifiers. Let Y i ∈ {Y1, Y2}

denote the object property where i ∈ 1, 2 indicates the classifier number. For instance,

Y 1 = Y2 denotes an event where the classifier 1 have observed an object property Y2.
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Then, by the theorem of total probability, each term in Eq. (D.1) expands as follows:

P (Os = T ∧X = F ) = P (Os = T ∧X = F |Y 1 = Y1 ∧ Y 2 = Y1)P (Y 1 = Y1 ∧ Y 2 = Y1)

+ P (Os = T ∧X = F |Y 1 = Y1 ∧ Y 2 = Y2)P (Y 1 = Y1 ∧ Y 2 = Y2)

+ P (Os = T ∧X = F |Y 1 = Y2 ∧ Y 2 = Y1)P (Y 1 = Y2 ∧ Y 2 = Y1)

+ P (Os = T ∧X = F |Y 2 = Y1 ∧ Y 2 = Y2)P (Y 1 = Y2 ∧ Y 2 = Y2),

(D.2)

and

P (Os = F ∧X = T ) = P (Os = F ∧X = T |Y 1 = Y1 ∧ Y 2 = Y1)P (Y 1 = Y1 ∧ Y 2 = Y1)

+ P (Os = F ∧X = F |Y 1 = Y1 ∧ Y 2 = Y2)P (Y 1 = Y1 ∧ Y 2 = Y2)

+ P (Os = F ∧X = T |Y 1 = Y2 ∧ Y 2 = Y1)P (Y 1 = Y2 ∧ Y 2 = Y1)

+ P (Os = F ∧X = T |Y 2 = Y1 ∧ Y 2 = Y2)P (Y 1 = Y2 ∧ Y 2 = Y2).

(D.3)

Assuming that the classifier decision Os and the object status X are conditionally

independent given two classifiers Y1 and Y2, i.e.,

P (Os = F ∧X = T |Y 1 = Y1 ∧ Y 2 = Y1) =

P (Os = F |Y 1 = Y1 ∧ Y 2 = Y1) · P (X = T |Y 1 = Y1 ∧ Y 2 = Y1), (D.4)
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Eq. (D.1) can be expressed as

P 2
m = P (Os = T |Y 1 = Y1 ∧ Y 2 = Y1)P (X = F ∧ Y 1 = Y1 ∧ Y 2 = Y1)

+ P (Os = T |Y 1 = Y1 ∧ Y 2 = Y2)P (X = F ∧ Y 1 = Y1 ∧ Y 2 = Y2)

+ P (Os = T |Y 1 = Y2 ∧ Y 2 = Y1)P (X = F ∧ Y 1 = Y2 ∧ Y 2 = Y1)

+ P (Os = T |Y 1 = Y2 ∧ Y 2 = Y2)P (X = F ∧ Y 1 = Y2 ∧ Y 2 = Y2)

+ P (Os = F |Y 1 = Y1 ∧ Y 2 = Y1)P (X = T ∧ Y 1 = Y1 ∧ Y 2 = Y1)

+ P (Os = F |Y 1 = Y1 ∧ Y 2 = Y2)P (X = T ∧ Y 1 = Y1 ∧ Y 2 = Y2)

+ P (Os = F |Y 1 = Y2 ∧ Y 2 = Y1)P (X = T ∧ Y 1 = Y2 ∧ Y 2 = Y1)

+ P (Os = F |Y 1 = Y2 ∧ Y 2 = Y2)P (X = T ∧ Y 1 = Y2 ∧ Y 2 = Y2). (D.5)

Let the conditional probabilities for each classifier defined as

P (Y i = Y1|X = T ) = 1− σTi
,

P (Y i = Y2|X = T ) = σTi
,

P (Y i = Y1|X = F ) = σFi
,

P (Y i = Y2|X = F ) = 1− σFi
,

i ∈ {1, 2}. (D.6)

The posterior probability P (X = X0|Y 1 = Y 1
0 ∧Y 2 = Y 2

0 ) is summarized in Table D.1.
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Table D.1: Summary of the posterior probabilities for two subsequent measurements

X0 Y 1
0 Y 2

0 P (X = X0|Y 1 = Y 1
0 ∧ Y 2 = Y 2

0 )

T Y1 Y1
(1−σT1

)(1−σT2
)u

(1−σT1
)(1−σT2

)u+σF1
σF2

(1−u)

F Y1 Y1
σF1

σF2
(1−u)

(1−σT1
)(1−σT2

)u+σF1
σF2

(1−u)

T Y1 Y2
(1−σT1

)σT2
u

(1−σT1
)σT2

u+σF1
(1−σF2

)(1−u)

F Y1 Y2
σF1

(1−σF2
)(1−u)

(1−σT1
)σT2

u+σF1
(1−σF2

)(1−u)

T Y2 Y1
(1−σT2

)σT1
u

(1−σT2
)σT1

u+σF2
(1−σF1

)(1−u)

F Y2 Y1
σF2

(1−σF1
)(1−u)

(1−σT2
)σT1

u+σF2
(1−σF1

)(1−u)
T Y2 Y2

σT1
σT2

u

σT1
σT2

u+(1−σF1
)(1−σF2

)(1−u)

F Y2 Y2
(1−σF1

)(1−σF2
)(1−u)

σT1
σT2

u+(1−σF1
)(1−σF2

)(1−u)

Let fY 1
0 ,Y

2
0
∈ [0, ∞] denote the ratio of the posterior probabilities such that,

f1,1 =

(
1− σT1

σF1

)(
1− σT2

σF2

)(
u

1− u

)
,

f1,2 =

(
1− σT1

σF1

)(
σT2

1− σF2

)(
u

1− u

)
,

f2,1 =

(
σT1

1− σF1

)(
1− σT2

σF2

)(
u

1− u

)
,

f2,2 =

(
σT1

1− σF1

)(
σT2

1− σF2

)(
u

1− u

)
. (D.7)

Let δOs0 : R → {0, 1} such that

δT (f) = δOs=T (f) =

 1 if f > 1

0 if f ≤ 1,
(D.8a)

δF (f) = δOs=F (f) =

 1 if f ≤ 1

0 if f > 1.
(D.8b)

The conditional probabilities P (Os = Os0|Y 1 = Y 1
0 ∧ Y 2 = Y 2

0 ) are summarized

in Table D.2.
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Table D.2: Summary of the conditional probabilities for two classifiers

Os Y 1
0 Y 2

0 P (Os = Os0|Y 1 = Y 1
0 ∧ Y 2 = Y 2

0 )

T Y1 Y1 δT (f1,1)
F Y1 Y1 δF (f1,1)
T Y1 Y2 δT (f1,2)
F Y1 Y2 δF (f1,2)
T Y2 Y1 δT (f2,1)
F Y2 Y1 δF (f2,1)
T Y2 Y2 δT (f2,2)
F Y2 Y2 δF (f2,2)

Substituting the results in Table D.1 and D.2 into Eq. (D.5) yields

P 2
m = δT (f1,1)σF1σF2(1− u) + δT (f1,2)σF1(1− σF2)(1− u)

+ δT (f2,1)σF2(1− σF1)(1− u) + δT (f2,2)(1− σF1)(1− σF2)(1− u)

+ δF (f1,1)(1− σT1)(1− σT2)u+ δF (f1,2)(1− σT1)σT2u

+ δF (f2,1)(1− σT2)σT1u+ δF (f2,2)σT1σT2u. (D.9)

The expression can be reformulated in matrix form as

P 2
m = σ̄T1 R2σ̄2, (D.10)

where

σ̄i =

[
σFi

1− σFi
1− σTi

σTi

]T
, i = 1, 2

R2 =



δT (f1,1)(1− u) δT (f1,2)(1− u) 0 0

δT (f2,1)(1− u) δT (f2,2)(1− u) 0 0

0 0 δF (f1,1)u δF (f1,2)u

0 0 δF (f2,1)u δF (f2,2)u


.
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géographiques. Journal de la societé de Statistique du Paris, 82:114–122, 1941.
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