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NEURAL CONNECTIVITY OF ATTENTION IN ADHD PARTICIPANTS 

Abstract 

This project aimed to identify abnormalities in brain regions underlying cognitive control, 

including differences in activation within these regions and differences in connectivity between 

these regions, in participants with ADHD versus healthy controls.  The Multi-Source Interference 

Task (MSIT) has been particularly effective for studying both response inhibition and attention 

control in neuroimaging by implementing both 'congruent' and contrasting 'incongruent' task 

conditions (Bush & Shin, 2006; Bush et al., 2003).  The present study used the MSIT in 

conjunction with fMRI neuroimaging to examine the possible neural connectivity variations of 

regions specifically activated during the incongruent tasks between ADHD and healthy 

participants.  We expected hypoactivation in cognitive control regions including the anterior 

cingulate cortex, supplementary motor cortex, and superior parietal cortex in ADHD participants, 

which would be consistent with typical clinical ADHD symptoms such as diminished attention 

regulation and response inhibition.  The ultimate goals of the connectivity analysis were to help 

map the brain's cognitive control network and elucidate underlying causes of ADHD.  The 

results, demonstrating hyperactivation of cognitive control regions and increased region coupling 

in ADHD participants, support a compensatory hypothesis for ADHD participants' functional 

interconnectivity that invites interesting speculation and directions for future studies. 
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Neural Connectivity Underlying Cognitive Control:  

Variations in ADHD Participants 

Finding the Neural Correlates of Attention 

 The ability to willingly direct attention towards various internal and external stimuli is 

certainly one of the primary and vital components underlying concepts of free-will, human 

consciousness, and the archetypal definition of choice.  Beyond conceptual significance, the 

mechanism for directing cognitive resources in a reasoned fashion holds limitless practical 

importance.  An inattentive student is more likely to perform poorly on tests; an inattentive driver 

is more likely to cause an accident, and a person with less power to intentionally direct attention 

away from distracting stimuli (whether internally/endogenously or externally/exogenously 

generated) and towards a desired processing task (e.g. solving a puzzle or math problem) will 

likely take longer to accomplish a given task, produce an inferior result, or both.  This final case 

can be taken to mean that a person with powerful control over deliberate attention attribution will 

possess more cognitive processing power (or simply, intelligence) than the same person with 

weak attention control.  Thus when one considers the vast influence inherent to the control of 

attention, it is easy to understand why finding the neural correlates and activation variance 

(between humans) is of interest.  

 In attempting to develop an experimental task that can selectively activate a hypothetical 

"attention regulation circuit," researchers have begun to discover a necessity for classifying the 

various types of attention regulation employed by the brain.  Modulation of attention is a 

complex mechanism that is not likely reducible to one or more brain structures or regions.  

Rather, evidence suggests multiple independent (yet likely interconnected) attention-modulation 

mechanisms including impulse control, interference processing, response selection, decision-



4 

NEURAL CONNECTIVITY OF ATTENTION IN ADHD PARTICIPANTS 

making, stimulus/response competition, and cognitive inhibition (Bush & Shin, 2006; Peterson et 

al., 1999; Kipp, 2005).  In fact, it is reasonable to consider attention-modulation to be involved in 

all conscious neural activities, for attention is undoubtedly a core component of consciousness 

and cognitive control.  However, while attention may be internally redirected and modulated in 

different ways to perform various mental deliberations or calculations, there still remains an 

overarching, distinct process of willful attention attribution.  Such strategic directed attention is 

better defined in terms of actual mechanism of action.  Purposely directing attention to a 

particular stimuli entails that there are multiple, competing stimuli to which attention could be 

attributed.  In this light, the action mechanism is to contrast and process multiple interfering 

stimuli.  Thus the activity of intentional attention attribution can be considered synonymous with 

processing interfering stimuli (henceforth referred to as PIS). 

 The first modern attempt to selectively and consistently activate the brain circuit 

responsible for PIS is known as the Stroop task.  This task, developed by John Ridley Stroop, 

borrowed evidence discovered by James Cattell in 1886 that demonstrated how humans can read 

textual names of objects and colors much faster than they can name an image of the same object 

or color (MacLeod, 1991).  Thus it takes longer for the average person to reply ‘blue’ when 

presented with a blue swatch of paper rather than the word "blue" printed on paper.  Cattell 

proposed that reading text is automatic whereas recognizing and identifying images requires 

voluntary effort (MacLeod, 1991). 

 This finding led Stroop to postulate a task that could reliably evoke voluntary effort to 

produce a correct response.  Thus he invented an incongruent stimulus, where the word text and 

color did not match (e.g. "blue" in green ink), and the desired response was the actual color of 

the stimuli, not the text.  The automatic response to read the text must be overridden by voluntary 
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directed attention (at the actual color) in such incongruent trials, and produces what is now 

known as the Stroop effect.  By comparing brain activation in congruent versus incongruent trials 

during a Stroop task, it seems possible that the neural correlates for processing interfering stimuli 

can be identified. 

 However, upon consideration, a subtraction method of brain activation in incongruent 

versus congruent Stroop tasks should not only result in regions used for processing interfering 

stimuli, but it should also display regions underlying impulse control.  This is because during the 

incongruent trial a subject must not only distinguish the correct response based on the stimuli 

(PIS), but s/he must also inhibit the automatic response to read the text shown.  Thus any 

functional magnetic resonance imaging (fMRI) study that uses the Stroop effect ought to purport 

a circuit that encompasses both neural mechanisms: PIS and impulse control.   

 Peterson et al. (1999) modeled the functional connectivity of said two mechanisms in 

their study: An fMRI Study of Stroop Word-Color Interference: Evidence for Cingulate 

Subregions Subserving Multiple Distributed Attentional Systems.  Using data collected from 34 

normal adult participants, this study analyzed patterns of correlations between brain regions 

using factor analysis and interpreted the resulting factors (i.e., brain networks) in terms of 

functions  related to intentional attention attribution, including: "sensory tuning, receptive 

language, vigilance, working memory, response selection, motor planning, and motor response 

functions" (Peterson et al., 1999).  This study led to the conclusion that the anterior cingulated 

cortex (ACC) modifies neural pathway strengths and allocates attentional resources by "reducing 

cross-talk between information processing modules," and thus acts to process interfering stimuli 

(Peterson et al., 1999).  Thus, excitingly, this data proposes a major player in the PIS circuit (the 

ACC) and also supports the previously mentioned theory of multiple interconnected attentional 
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subsystems, which appear to be coordinated or integrated, at least in part, by the ACC. 

In light of the ACC's widespread interconnectivity, it may be wise, for clarity, to link the 

term attention to the similar yet more encompassing phrase cognitive control, which refers to all 

flexible and adaptive processing that is utilized to satisfy task demands (e.g. impulse control and 

PIS in incongruent Stroop trials).  PIS, therefore, can still be categorized as one of the processes 

of attention, which is itself a form of cognitive control. 

 Findings from multiple imaging studies as reported by Bush and Shin (2006) have 

contributed to the identification of a cognitive/attention network called the cingulo-frontal-

parietal network (CFP network), which consists of the dorsal anterior midcingulate cortex 

(daMCC), dorsolateral prefrontal cortex (DLPFC) and superior portions of parietal cortex 

including the premotor and primary motor cortex, inferior temporal gyrus and the superior 

parietal lobule (Bush & Shin, 2006).  This is believed to be the primary circuit for attention and 

cognitive processing mechanisms specifically related to PIS and similar task-based regulation 

pathways.  It was discovered by analyzing and aggregating activation patterns produced from 

Stroop, Stroop-like, Eriksen Flanker-type and Simon task variants.  These tasks are all designed 

to precipitate cognitive interference in the subject.   

 Stroop-like tasks include any variant of the original Stroop task, for example, a Stroop 

task using auditory instead of visual stimuli, or requesting the subject to sort or match the stimuli 

based on congruency, or changing part of the stimuli from names of colors to names of objects 

(MacLeod, 1991; Bush & Shin, 2006).  Flanker-type tasks require the subject to identify the 

middle letter in a string of text, and use distracter letters for incongruent cases (e.g. AAAAA 

versus ZZAZZ) (Bush & Shin, 2006). Finally, Simon tasks evoke "cognitive interference 

produced by spatial incongruence between the target and response (e.g., given a two-button 
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response pad, it takes longer for participants to respond using the left button when the target 

appears on the right (and vice versa) than when the stimulus and response positions correspond)" 

(Bush & Shin, 2006).  Inspecting the activation patterns for this array of incongruent tasks has 

allowed researchers to map the CFP network, which reliably shows activation when new 

cognitive interference tasks are administered (Bush, Seidman & Valera, 2005). 

 However, all of the aforementioned tasks entail a major setback that hinders future 

progress in both empirical and clinical realms.  None of said tasks are robust enough to reliably 

evoke brain activation in single participants (Bush & Shin, 2006).  Instead, activation patterns 

must be extrapolated from group-averaging techniques.  This unfortunate situation produces 

three separate negative implications for existing task-based cognitive interference experiments.  

Firstly, since these experiments must rely on group-averaging they require a higher number of 

participants.  Secondly, while the intention of these tasks is to elicit activation in regions that 

process cognitive interference, they are not robust enough to guarantee this outcome consistently 

and on the level of the individual.  Thirdly, without a task that can produce CFP network 

activation on the level of the individual, clinical assessment cannot be performed on patients 

seeking diagnostic testing for cognitive dysfunction or impairment.  These reasons demonstrate 

that a more powerful and reliable task should be developed. 

 Bush and Shin (2003 & 2006) sought to develop a task that could produce reliable and 

powerful activation of the CFP network.  In creating an ideal task for cognitive interference 

processing studies, they devised a list of criteria to allow for maximal application value across 

subject and study type.  They wished to be able to measure performance data including reaction 

times and accuracy of the participants to assess both cognitive and behavioral functioning. To 

prevent limitations on suitable participants (e.g. age or cognitive disposition), it was necessary 



8 

NEURAL CONNECTIVITY OF ATTENTION IN ADHD PARTICIPANTS 

for the task be easily taught and retained.  Additional criteria to ensure the broadest reach for a 

diversified set of applications included that the task was short, was not language specific, offered 

temporal stability for retesting and longitudinal studies, and finally, that it produced a narrow 

range of performance data for healthy participants so results could be "disorder specific" (Bush 

& Shin, 2006). 

 Bush and Shin successfully met these criteria with their invention of the multi-source 

interference task (MSIT).  The MSIT was hypothesis driven, meaning that an understanding of 

the function of the CFP network led to the development of the task conditions (and not vice 

versa).  The MSIT "reliably and robustly activates daMCC [and DLPFC and CFP network 

overall] within individuals, permits collection of concomitant imaging and performance data, 

[and] can be a useful task in studies of neuropsychiatric patients and normal volunteers" (Bush & 

Shin, 2006).  This makes the MSIT a useful task for studying cognitive control relating to PIS.  

Furthermore, "single runs of the MSIT have produced CFP network activation in approximately 

95% of tested participants" (Bush & Shin, 2006), which is an astonishing rate considering 

alternative tasks require multiple runs to achieve similar or worse activation (Bush, Holmes, 

Rosen, Shin & Vogt, 2003). 

 Bush et al. (2003) analyzed previous cognitive interference tasks such as the Stroop, 

Flanker and Simon task "in which the processing of one stimulus feature impedes the 

simultaneous processing of a second stimulus attribute" (Bush & Shin, 2006).  This competing 

processing of simultaneous stimuli is the basis for PIS overall, and a necessity to "determine 

what types of activities or tasks would be likely to utilize the CFP network" (Bush & Shin, 

2006).  The goal of this analysis was to develop a set of experimental task conditions that would 

maximally activate the CFP network. 
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 The MSIT displays a set of three numbers (that includes a particular combination of 1, 

2,3 or 0), and instructs participants to respond with either index, middle or ring finger, which are 

each positioned over a separate button (correlating to a response of 'position 1,' 'position 2,' and 

'position 3,' respectively, during trials utilizing the right hand), based on the value of the number 

in the set of three that does not match the other two (distracters), regardless of the spatial 

position.  For example, if "003" is displayed, the appropriate response would be '3', indicated by 

pressing the third finger's button.  Trials that displayed "322," "131," etc. would entail the same 

response (the third button) as the correct answer (because the differing digit is 3).  Participants 

are informed that during some trials (which are control, or congruent) the target (unique) number 

will match the position, thus '1' would appear in the first position, '2' in the second, and '3' in the 

third.  Distracter digits for control trials are always '0.'  Thus the control trials are '100,' '020' and 

'003.' 

 In short, participating participants are instructed to identify the unique number's value 

from a set of three using a single button press from a choice of three buttons.  Interference occurs 

when the unique number's value does not correspond with the position of the associated button.  

For example, the stimulus '131' would require a press of the button in the third position, despite 

the fact that the unique digit ('3') is in the second position of the set of three numbers. 

 One of the clinically relevant applications of this MSIT task, as outlined by Bush and 

Shin (2006) is that "it can be expected to serve as a useful fMRI probe in searching for the neural 

substrates of various neuropsychiatric disorders such as attention deficit disorder [ADD]."  

Because the MSIT requires willing modulation of attention between stimuli, it can help identify 

which individuals are better at response inhibition, impulse control, decision-making and 

processing interfering stimuli by looking at performance data coupled with fMRI results.  This 
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makes the MSIT an ideal candidate for clinical diagnosis of ADD and the related attention-deficit 

hyperactivity disorder (ADHD). 

Attention-deficit hyperactive disorder 

 Attention-deficit hyperactivity disorder (ADHD) is characterized by behavioral 

symptoms involving diminished attention-span and elevated activity believed to be caused by 

abnormalities in inhibitory processing, which is directly correlated to mechanisms for response 

inhibition, PIS, and attention.  Typical ADHD manifestations such as inattention, impulsivity and 

motor restlessness can lead to undesired consequences for afflicted individuals such as poor 

performance (due to lack of focus) in school, work or personal life, and even impaired cognitive 

ability due to deficient ability to inhibit distracting stimuli.  Such broad behavioral symptoms can 

be more easily investigated by identifying and contrasting specific neural mechanisms such as 

cognitive inhibition (which can be further sub-defined as automatic and intentional types), 

behavioral inhibition and resistance to interference (Kipp, 2005).  These postulated neural 

correlates of ADHD share a great deal of similarity with the CFP network; both ADHD 

mechanisms and the CFP network involve a type of executive function dealing with attention, 

inhibition response and interference processing.  As ADHD appears to demonstrate irregularity 

in the CFP network, it is worthwhile to outline the significance and impact of the disorder. 

 The neuropsychiatric disorder ADHD has an estimated prevalence of approximately 5-8% 

in children, making it one of the most common childhood neurobehavioral disorders (Bush, 

2010).  Not only does ADHD contribute to diminished academic, occupational and social 

functioning, as mentioned previously, but it often persists into adulthood (Bush, 2010).  While 

multiple manifestations of the disorder exist in the population, ranging from a purely inattentive 

to a purely hyperactive form, the most common behavioral manifestation of ADHD is a 
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combination of diminished attention and overactive behavior (or hyperactivity).  Bush (2010) 

states that "inattention, or the inability to direct and maintain selective attention to motivationally 

relevant tasks, is a key feature of the disorder."  The other major attributes associated with 

ADHD, impulsivity and hyperactivity, both could be explained by dysfunction or abnormalities 

in neural circuits responsible for behavioral inhibition.  Interestingly, this apparent deficit does 

not present itself consistently.  At times, ADHD patients can perform tasks normally and even 

exceptionally, perhaps depending on interest or mood (Bush, 2010).    

 ADHD should not be solely considered an affliction, however.  Many of the associated 

behavioral dispositions can also lead to attributes valued by society, such as creativity, fast 

reflexes, and hyper focus (Kipp, 2005).  Thus understanding the neural mechanisms responsible 

for the manifestation of ADHD cannot only help improve negative conditions of the disorder, but 

also can help to understand the correlates for some of these potentially valuable characteristics. 

 What are the possible neural mechanisms for ADHD?  Deficits in circuits responsible for 

inhibition were proposed, yet it is also possible that, conversely, circuits controlling action 

commands are extra sensitive and/or hyperactive in ADHD participants.  If the latter proposition 

were the case, than for an ADHD subject to perform normally on a task, that subject would 

require extra activation of inhibitory circuits to compensate for the overactive action/command 

circuits.  Thus we have now developed two hypotheses that could explain the behavioral 

outcomes of ADHD: one, an inhibitory-circuit deficit, and two, a hyper-activation of command-

generating circuits and correlating compensatory inhibitory-circuit hyper-activation. 

 However, it is possible that other factors or abnormalities are resulting in deficits or 

hyperactivation of these circuits.  If this were the case, than the two proposed explanations for 

ADHD in the previous paragraph would merely be symptoms of the disorder, not causes.  Some 
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potential examples could range from irregular task-related reward or motivation attribution to 

inadequate ability to process interfering stimuli.  Another candidate may be a neural disposition 

for attributing attention to a particular type of stimuli in a biased fashion (lacking adequate 

mediation or modulation of attention for PIS).  This was proposed by Allport in 1980 and 1987 

and also by Posner and Peterson in 1990 (Bush, 2010).  The biasing of attention, also known as 

selective attention, was imagined to be 'selection for action' in ADHD participants (Bush, 2010).   

 Studies by Pardo et al. (1990) used PET imaging to contrast selective attention as 

produced by the Stroop task with a basic vigilance task to discover the brain regions responsible 

for the difference in task processing.  The findings, supplemented with further studies by 

Corbetta et al. (1991), outline a circuit involving the ACC, frontal and parietal regions, also 

known as the cingulo-fronto-parietal (CFP) network (Bush, 2010).  The resulting belief that this 

network is the primary circuit responsible for selective attention leads to questions regarding the 

abnormalities in ADHD patients for the CFP network. 

 Bush (2010) states that "the most consistent cross-study and cross-modality data 

identifying a region as dysfunctional in ADHD have been provided for the daMCC" which can 

also be referred to as the dorsal ACC.  This region in particular is implicated in helping modulate 

motivational reward to influence motor responses (Bush, 2010).  Specifically, the daMCC is 

believed to integrate information from multiple inputs to provide feedback-based decision-

making mediation of the rest of the cognitive-reward-motor and CFP networks (Bush, 2010).  A 

dysfunction of the daMCC could, therefore, reduce the efficacy of such modulation leading to 

inappropriate attention selection/PIS and altered decision-making due to abnormal feedback used 

for motivation attribution.  These symptoms parallel those associated with ADHD. 

 If ADHD is produced from an activation abnormality, it would be of clinical relevance to 
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determine exactly how this abnormality can be detected.  Furthermore, knowing the activation 

differences between ADHD and healthy participants could also help researchers further the 

understanding and theories relating to the CFP network and other circuits involved in attention, 

impulse regulation and response selection, among others.  There are two possible magnitude 

deviations for a difference in region activation: increased or decreased activity.  Decreased 

activation of the daMCC could likely support the theory that ADHD were a result of insufficient 

attention-regulation as it relates to aforementioned decision-making relevant feedback and 

motivation.  Decreased activity in other regions of the CFP could communicate a deficiency in 

response inhibition.  Alternatively, however, similar to the second hypothesis proposed in 

paragraph four of this section regarding inhibition, the daMCC or other CFP areas could present 

hyper-activation used for compensation of another (likely also hyper-activated) circuit. 

 Perhaps the most obvious neural candidate for ADHD is the circuit underlying response 

inhibition.  Decreased ability to inhibit responses could likely be a result of altered mechanisms 

for reward, feedback-association, motivation attribution and attention selection as outlined above 

for the CFP network and, more specifically, daMCC.  However, inhibition of response poses the 

most behaviorally-relevant process for ADHD behavior, for it can be implicated in all hallmark 

signs of ADHD: inattention, impulsiveness and hyperactivity.  This hypothesis is supported by 

studies that demonstrate ADHD participants' increased likelihood to make errors of commission 

(false alarms), decreased ability to withhold a prepotent response or interrupt an ongoing 

response and slower response on tasks assessing inhibitory control (Menon, Reiss, Ringel & 

Tamm, 2004). 

 The 'Go/No-Go task' is often used by researchers to measure response inhibition in 

participants, and consists of frequent "go" trials and infrequent "no-go" trials that illicit an 
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inhibitory (of the typical "go") response in participants, and is generally used to evaluate 

prepotent tendencies.  An fMRI study of this task by Schulz et al. (2004) compared ADHD to 

control participants to measure differences in region activation.  The results of this study showed 

an increased activation of left and right ventrolateral inferior frontal gyrus, left anterior cingulate 

gyrus, and left medial frontal gyrus for ADHD participants during the inhibition tasks (Schulz et 

al., 2004).  These data would support a compensatory activation of response inhibition for 

ADHD participants. 

  Tamm et al. (2004) also used fMRI in conjunction with the Go/No-Go task to measure 

neural activation differences relating to response inhibition for ADHD versus control 

participants.   The findings show greater activation in the middle/inferior/superior temporal gyrus 

for ADHD participants, but greater activation in the right inferior frontal gyrus for control 

participants (Tamm et al., 2004). 

   Dickstein et al. (2006) performed a meta-analysis on similar studies using the 

"activation likelihood estimation" (ALE) technique to contrast neural activity across 16 

neuroimaging studies.  The results of this meta-analysis showed "significant patterns of frontal 

hypoactivity," including ACC (Bannon, Castellanos, Dickstein & Millham, 2006).  A focus on 

response inhibition studies resulted in an increased likelihood for activation of the inferior 

prefrontal cortex, medial wall regions (including ACC), inferior frontal and precentral gyrus in 

control versus ADHD participants (Dickstein et al., 2006).  These data leads to disagreement 

regarding a primary sub-region responsible for ADHD, but rather supports the hypothesis of an 

overall dysfunction in frontal-based circuitry. 

 The logical next step in determining neural circuits responsible for ADHD should address 

the findings of the ALE performed by Dickstein et al. (2006).  Since no individual sub-region has 
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been identifiable for response-inhibition deficits in ADHD participants, but rather, findings have 

shown mixed results supporting either hyperactive compensation or hypoactive inhibition, a 

study is needed to measure the connectivity within the response inhibition network during an 

interference processing task to contrast ADHD and control participants.  Based on the results of 

many of the studies outlined herein and the premise that ADHD participants have a deficit in 

inhibitory control, we predicted that ADHD participants would show a hypoactivation of neural 

circuits responsible for inhibitory control. 

Method 

Procedure Overview 

 The present study was designed to assess connectivity in the response inhibition network 

between ADHD and control participants.  The multi-source interference task (MSIT) was 

selected as the event-based producer of interference processing and inhibition response due to its 

robust CFP network activation that can be consistently observed even in single participants.  This 

allowed greater data confidence despite a relatively low number of participants.  Participants 

performed the MSIT while undergoing fMRI for 120 incongruent, 120 congruent and 60 fixation 

trials.  

Participants 

Four patients with pediatric ADHD (14.65 +/- 3.01, range 10-17 years; 2 females, 2 

males) and four healthy participants (13.85 +/- 2.66, range 10-16 years; 4 females) were studied 

as the experimental and control group, respectively.  All participants were trained to be able to 

perform at greater than 70% accuracy. Movement during the experiment was considered 

acceptable if there existed less than 2 mm displacement and less than 2° rotation.   

Imaging 
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 Data acquisition was executed using a 3.0 T GE Signa scanner.  The standard Psychiatric 

Affective Neuroimaging Laboratory (PANLab) technique for normalization was employed to 

allow for contrast and analysis of images.  Outlined briefly, this process entailed a reverse spiral 

image acquisition sequence to measure the blood-oxygen-level dependence (BOLD) signal.  This 

sequence acquired 40 brain image 'slices' at 3.0mm per slice every two seconds.  The reverse 

spiral sequence attempts to minimize artifacts and signal dropout in key regions to allow the 

greatest accuracy during analysis.   

 Statistical Parametric Mapping 2 software (SPM5; Wellcome Department of Cognitive 

Neurology, London; www.fil.ion.ucl.ac.uk/spm) was used to complete the normalization 

sequence, which included standard preprocessing steps such as motion correction, stretching of 

images and noise removal.  To align images onto the same anatomical space, a low resolution 

SPGR (Spoiled Gradient Echo) was taken around the same time as the functional imaging.  The 

low-resolution images were used to align the reverse spiral sequence, and then high resolution 

SPGR images (taken disparate in time from the functional and low-resolution images) were used 

to enhance detail.   

 For a more detailed explanation of the neuroimaging methods used in this study, please 

refer to the appended document, "Neuroimaging methods," which is standardized language used 

by many researchers in the PANLab at the Department of Psychiatry of the University of 

Michigan.   

Analysis: Aim Summary and Action Plan 

 The aim of this study was to measure and assess the connectivity within the response 

inhibition network during an interference processing task to contrast ADHD and control 

participants.  This aim can be broken down into several interrelated questions: 
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A) Which brain regions are selectively activated during response inhibition and PIS as 

precipitated by the incongruent task scenario of the MSIT? 

B) Of the regions identified in A, which region shows the strongest activation across all 

participants? 

C) Which brain region more strongly matches region B in BOLD oscillation pattern 

during incongruent trials than congruent trials? 

D) Which group exhibits a stronger 'coupling' or oscillation match of region C with 

region B, ADHD or control participants? 

 Answering these questions entailed many steps of image processing and analysis after 

data collection.  Firstly, to analyze neural connectivity underlying a particular neural mechanism, 

a 'seed' region must be identified.  Many regions of the brain are activated and exhibit 'coupling' 

or interconnectivity during virtually any task, thus it was necessary to isolate a region 

specifically implicated in PIS and response inhibition (questions A & B), which are the neural 

mechanisms meant to be investigated by this study, to function as the 'seed' region.  Second, the 

seed region's BOLD oscillation pattern needed to be mapped and contrasted with all other brain 

regions to find regions with strong 'coupling' or connectivity (question C).  Finally, the ADHD 

connectivity map needed to be contrasted with the control group's map (question D).  Here is a 

breakdown of these steps employed to accomplish these ends: 

1. Create individual BOLD image maps for each subject of both congruent trials 

and incongruent trials 

2. For each individual, subtract the congruent activation map from the incongruent 

map 

3. Average the resulting maps for both groups, control and ADHD, to isolate 
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activation in shared regions of interest (ROI) implicated in response inhibition 

and PIS 

4. Use the strongest common ROI to perform independent connectivity analyses 

for each group 

5. Compare the two resulting connectivity maps, ADHD versus control 

While this thesis is solely meant to answer question D by reporting on steps 4 and 5, it is 

important to outline the necessary data and analysis used to accomplish this aim. 

Analysis: Identifying the Seed Region  

 The original study used for this thesis was performed by Suzanne C. Perkins, Chandra 

Sripada, James Swain, Kate Fitzgerald, Julie Kaplow and Israel Liberzon (2010) of the 

Department of Psychiatry in the University of Michigan.  Led by Perkins, the study aimed to 

isolate the brain regions selectively activated during the MSIT and discover any variations 

between ADHD and control.  Thus the findings helped answer questions A and B and consisted 

of analysis steps 1-3 in addition to further steps done to contrast the activation patterns between 

groups.  These additional steps and their results are just outside of the scope of this thesis, but 

will nonetheless be outlined in an attempt to give proper credit to Perkins et al. 

 Perkins et al. (2010) first derived activation maps for individual participants to contrast 

the incongruent versus congruent trial image data using MATLAB (2007a, The MathWorks, 

Natick, MA; www.mathworks.com/matlabcentral) (steps 1 and 2).  Resulting maps were 

averaged within each group, ADHD and control, before a whole brain analysis was performed to 

compare incongruent versus congruent image data (step 3).  Another contrast of incongruent 

versus congruent was performed for all participants.  All analyses used a p value of .005 and a 

cluster size threshold of 5.  Such a stringent p value was needed because of the huge number of 
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statistical tests computed for neuroimaging (one test for each voxel in the image), and further, a 

low p value helped control for false positives.  A 'cluster' refers to the number of contiguous 

activated voxels. Voxels are essentially individual pixels in a brain map image.  

 Assessing Connectivity with a Psycho-physiological Interaction Analysis 

 Following the analysis of Perkins et al., the present study performed additional 

computations and comparisons using MATLAB.  To determine connectivity between brain 

regions, a psycho-physiological interaction (PPI) analysis was executed.  A PPI analysis aims to 

elucidate interactions between brain regions (physical component) in relation to the task 

environment (psychological component) as designed by the experiment.  Thus, brain activity 

during the congruent and incongruent tasks was analyzed in relation to the activity of a seed 

region found by Perkins et al. that displayed robust and shared selective activation during the 

incongruent task.  A PPI analysis attempts to report interactions in the brain by examining the 

degree of activity synchronization each brain region exhibits to the seed region.  For this to make 

sense, one must first understand how regional activity appears in fMRI data. 

 As stated earlier, the fMRI data is based on the BOLD signal, which can be thought of as 

a measure of neural activity.  When plotted over time for any particular region, this activity 

exhibits a wavelength pattern, with peaks and valleys, where each oscillation pattern 

(wavelength) tends to last between 1-10 seconds.  To assess connectivity, the PPI analysis 

compares the oscillation pattern of a seed region to every other region of the brain.   The greater 

a region matches in oscillation to the seed region, the greater connectivity or 'coupling' that 

region exhibits with the seed.  Figure 1 shows two cases: correlated oscillation between two 

regions and anti-correlated oscillation between two regions.  The former case entails a coupling 

of regions, whereas the latter does not (instead, the regions are likely disjointed).   
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 Thus a PPI analysis was done across subject groups and between congruent and 

incongruent data, using a seed region discovered by Perkins et al. with a p-value of .005. Within 

each group, correlation statistics were computed for voxels in both congruent and incongruent 

trial data.  For each group, voxels displaying enhanced seed coupling during incongruent trials 

were mapped for each group by subtracting the congruent correlation statistics from the 

incongruent correlation statistics (step 4).  Finally, the two PPI maps (ADHD and control) were 

contrasted against each other to determine variations in connectivity (step 5). 

Results 

Imaging Data 

 The MSIT produced robust activation of CFP network regions during the incongruent 

trials.  The analysis done by Perkins et al. comparing congruent to incongruent image data 

averaged for all participants yielded an activation map showing significantly (p < .005) higher 

activation in the posterior medial frontal cortex (Z = 3.06; 0, 9, 51) and specifically in the 

supplementary motor area (including pre-SMA), right inferior frontal gyrus, insula and 

operculum during the incongruent trials.  This map is shown in Figure 2.  The same activation 

map resulted from incongruent - congruent analysis for each group (ADHD and control), yet 

when group maps were contrasted, the ADHD participants' map exhibits increased ACC activity 

(Figure 3).   

 The pre-SMA exhibited the most consistent, robust and non-group-specific activation 

from the incongruent - congruent contrasts performed by Perkins et al. (2010), thus, the pre-SMA 

was used as the seed region for the double-contrast PPI connectivity analysis.  In each group, the 

right inferior frontal gyrus (rIFG) demonstrated the highest degree of coupling with the seed 

region (pre-SMA).  Next, the PPI map of the ADHD participants was contrasted to that of the 
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control participants.  The resulting map (Figure 4) demonstrates increased oscillation (positive 

connectivity) correlation of the rIFG with the pre-SMA seed region for ADHD versus control 

participants, at MNI co-ordinates: x = 51, y = 27, z = -9 and t = 4.68, which coincides with a p 

value of less than .001. 

Behavioral Data 

There was no performance difference between subject groups on the MSIT. 

Discussion 

 As attention regulation, interference processing and response inhibition ability all 

profoundly influence behavior, intelligence and task-performance, it is of great scientific and 

clinical interest to determine underlying neural mechanisms.  Combining the MSIT, a robust task 

capable of activating interference processing circuits, with a set of ADHD participants who 

exhibit symptoms of a deficit in the same interference processing circuits allows for a powerful 

and data-rich neuroimaging study that can hopefully help elucidate the neural underpinnings of 

response inhibition.  While single-contrast analyses in this field of study have left researchers 

with inconclusive results implicating any particular sub-region for ADHD or response inhibition, 

this study employs a wholly new (for this field) mechanism of double-contrast PPI analysis, 

which should dramatically enhance the likelihood for the correct identification of underlying 

neural circuits. 

 The analysis by Perkins et al. yielded activation data consistent with previous studies of 

PIS and response inhibition, which was the desired result of the MSIT.  The pre-SMA was 

chosen as the seed region due to both its strong activation in this study and because PANLab has 

performed over four other MSIT studies whose results also showed the pre-SMA to have the 

most reliable activation in incongruent – congruent trials.  The present study demonstrated a 
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hyperactivation of the pre-SMA in ADHD versus control participants, which was contrary to the 

hypothesis, but consistent with several other studies (Tamm et al., 2004), (Schulz et al., 2004). 

Dickstein et al. (2006) suggests that the finding of higher pre-SMA activity is more reliable in 

kids than adults, and says insula/inferior frontal gyrus is higher in ADHD than controls, which 

may also help explain the findings.  However, it is clear that future studies are needed to clarify 

the role of the SMA and IFG in cognitive control in light of the findings of this study, 

particularly pertaining to ADHD. 

 ADHD participants demonstrated greater rIFG coupling with pre-SMA during 

incongruent trials than control participants.  In simpler terms, ADHD participants exhibited 

greater inhibition circuit connectivity, because the rIFG purportedly ‘talked’ more to the pre-

SMA in ADHD than control participants, which suggests that the inhibitory control network is 

more interconnected (and perhaps functioning more powerfully) in ADHD participants.  This 

finding supports a compensatory hypothesis, meaning that this increased connectivity and 

activation within inhibitory circuitry is needed for ADHD participants to perform tasks as well as 

controls.  However, this conclusion requires further research to determine why the compensation 

is necessary.   

Perhaps the rIFG's signal is hindered or in some way diminished in ADHD participants, 

and thus requires greater activation to achieve the same behavioral result.  Another possibility is 

that there is greater activation or salience for a particular set of actions or command/impulse 

generating circuits, and so the rIFG must be activated more strongly to compensate.  Future 

research is needed to determine what specific process is controlled by the coupling of pre-SMA 

with rIFG.  

 This was one of the first MSIT incongruent versus congruent contrast coupling studies 
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ever performed.  All data presented demonstrates increased activation in neural regions and 

circuitry implicated in processing interfering stimuli, inhibiting response and focusing attention 

for ADHD participants than in controls.  This is truly a puzzling finding without any evidence 

for hyperactivation in impulse-generating circuitry.  Hopefully future research will address this 

discrepancy and determine for what this increased inhibitory activity is needed to compensate.  

By continuing to map inhibition response and PIS neural circuitry in future research, it may be 

possible to determine causes and treatments for ADHD.  

 However, there are several limitations to the PPI analysis technique employed in addition 

to other aspects of the study.  The 'findings' of the PPI connectivity analysis are based on 

correlations in oscillation pattern.  Thus, the PPI analysis is an indirect measure of connectivity 

between brain regions, and certainly does not prove causation.  Instead, regions that match in 

oscillation pattern are merely likely candidates for having connectivity with one another; thus, 

researchers cannot truly be sure what ‘tighter’ ‘coupling’ actually entails.  Future research is 

required to explicate coupling and interconnectivity both overall and specifically in the CFP 

network.  Finally, the sample size for this study was very small, with only 8 participants 

analyzed.  

 Future studies can help determine if the implications from the findings of this study are 

correct.  If methylphenidate and other pharmaceuticals directly address the neural abnormalities 

of ADHD patients, than it would be feasible for a similar study, which substituted ADHD 

participants on placebo for the control group and ADHD participants on methylphenidate for the 

experimental group, to demonstrate the same findings.  In addition to validating these findings, it 

is important for future studies to continue mapping neural coupling in regions associated with 

cognitive control to help understand why compensatory activity occurs in ADHD participants.  
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Discovering the details of these mechanisms will not only help with the diagnosis and treatment 

of ADHD, but may also suggest new ways for enhancing cognitive control.  
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Figure 1. Demonstration of BOLD signal oscillation patterns. The image on the left depicts 

correlated oscillation between two regions while the image on the right depicts anti-correlated 

oscillation between two regions.  The former case entails a coupling of regions, whereas the 

latter does not (instead, the regions are likely disjointed).   
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Figure 2.  Analysis done by Perkins et al. (2010) comparing congruent to incongruent image data 

for all participants.  This map shows significantly (p < .005) higher activation in the posterior 

medial frontal cortex (Z = 3.06; 0, 9, 51) and specifically in the supplementary motor area (pre-

SMA), right inferior frontal gyrus, insula and operculum during the incongruent trials. 
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Figure 3. ADHD versus control contrast of incongruent - congruent activation maps.  This figure 

demonstrates that the ADHD group’s activation map for incongruent versus congruent tasks 

exhibited increased ACC activity as compared to the control group’s map.  
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Figure 4. Contrast of ADHD group’s PPI map with control’s map.  The ADHD group exhibited 

greater coupling of the rIFG to the pre-SMA seed than the control group. 
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Appendices 

Neuroimaging methods 

MRI scanning occurred on a General Electric (Waukesha, WI) 3T Signa scanner [LX (8.3) release, 

neurooptimized gradients]. Scanning began with structural acquisition of a standard T1 image 

(T1-overlay) for anatomic normalization and alignment. A T2*-weighted, reverse spiral 

acquisition sequence [GRE; repetition time, 2000 ms; echo time, 30 ms; flip angle, 90°; field of 

view (FOV), 20 cm; 40 slice; thickness/skip, 3.0/0 mm matrix size equivalent to 64 X 64], which 

has been shown (Glover and Law 2001) to minimize signal drop-out in regions such as ventral 

striatum and orbitofrontal cortex that are vulnerable to susceptibility artifact. After discarding 

four initial volumes to permit thermal equilibration of the MRI signal, 200 volumes were 

acquired per run. After acquisition of functional volumes, a high-resolution T1 scan was 

obtained for anatomic normalization [three-dimensional spoiled gradient-recalled acquisition in 

a steady state (SPGR); 24 FOV; thickness/skip, 1.0/0 mm]. Stimuli were presented and 

responses recorded using a computer running E-prime (Psychology Software Tools, Pittsburgh, 

PA), interfaced to project stimuli onto MR-compatible liquid crystal display goggles (Resonance 

Technology, Northridge, CA). Choices were made using an MRI-compatible button box. 

Neuroimaging Analysis 

Data from all 8 participants met criteria for high quality (uniformity and homogeneity of T2* 

images in regions such as ventral striatum and orbitofrontal cortex prone to susceptibility 

artifact) and scan stability (motion correction <2mm displacement), and were subsequently 
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included in the data processing. Preprocessing steps were implemented using Statistical 

Parametric Mapping 2 software (SPM5; Wellcome Department of Cognitive Neurology, London; 

www.fil.ion.ucl.ac.uk/spm). Preprocessing followed conventional procedures: 1) slice time 

correction; 2) spatial realignment; 3) normalization to the structural (T1-weighted) Montreal 

Neurologic Institute (MNI) template through the use of nonlinear warping algorithm followed 

by resampling by sync interpolation resulting in a voxel size of 3x3x3mm; 4) spatial smoothing 

through the use of a Gaussian 5mm full-with-half-maximum kernel; 5) high-pass temporal 

filtering with a cut-off of 128 s to remove low-frequency drifts in signal. After preprocessing, 

statistical analyses were performed at the individual and group level using the general linear 

model (GLM) and Gaussian random field theory as implemented in SPM5.  
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