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Microarrays of tumor cell derived proteins uncover
a distinct pattern of prostate cancer serum
immunoreactivity

The broad characterization of the immune responses elicited by tumors has valuable
applications in diagnostics and basic research. We present here the use of microarrays
of tumor-derived proteins to profile the antibody repertoire in the sera of prostate can-
cer patients and controls. Two-dimensional liquid chromatography was used to separate
proteins from the prostate cancer cell line LNCaP into 1760 fractions. These fractions
were spotted in microarrays on coated microscope slides, and the microarrays were
incubated individually with serum samples from 25 men with prostate cancer and
25 male controls. The amount of immunoglobulin bound to each fraction by each serum
sample was quantified. Statistical analysis revealed that 38 of the fractions had signifi-
cantly higher levels of immunoglobulin binding in the prostate cancer samples compared
to the controls. Two fractions showed higher binding in the control samples. The signifi-
cantly higher immunoglobulin reactivity from the prostate cancer samples may reflect a
strong immune response to the tumors in the prostate cancer patients. We used multi-
variate analysis to classify the samples as either prostate cancer or control. In a cross-
validation study, recursive partitioning classified the samples with 84% accuracy. A deci-
sion tree with two levels of partitioning classified the samples with 98% accuracy. Addi-
tional studies will allow further characterization of tumor antigens in prostate cancer and
their significance for diagnosis. These results suggest that microarrays of fractionated
proteins could be a powerful tool for tumor antigen discovery and cancer diagnosis.
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1 Introduction

Protein microarrays allow high-throughput investigations
of protein interactions for a variety of applications. Early
feasibility studies showed the detection of specific inter-
actions with purified recombinant proteins spotted onto
derivatized glass slides [1] and nitrocellulose [2]. Micro-
arrays of peptides have been used to study the immuno-
globulin repertoires in sera of patients with autoimmune
diseases [3, 4]. High-throughput protein expression and
purification has been used to produce many different
types of proteins for microarrays, using bacterial libraries
of human cDNA clones that were induced to express
protein and arrayed onto membranes [5]. In another
demonstration, proteins from the entire yeast proteome
were expressed, purified, spotted onto arrays and prob-
ed to identify specific protein-protein interactions [6]. The

acquisition of a sufficient variety and quantity of various
proteins for microarrays has been a challenge that high-
throughput protein expression has in part addressed.

A promising alternative method of producing proteins for
microarrays is multidimensional liquid-based separations
of proteins from nonrecombinant sources such as human
cells and tissues. Multiple modes of separation in succes-
sion (for example ion-exchange chromatography followed
by reverse phase) yield greater resolving power than sin-
gle modes of separation, and liquid phase methods allow
convenient fraction collection. As previously suggested
[7], protein fractions separated by liquid chromatography
(LC) and spotted onto microarrays could be used for the
parallel interrogation of thousands of proteins. The pro-
teins loaded onto the columns would be taken from their
native states, in which modifications and alterations to the
proteins are present. In contrast, proteins expressed in
foreign systems, such as in bacterial or insect cells, may
not have correct post-translational modifications.

An important application of protein microarrays is the
study of immune responses in cancer [7, 8]. Many human
tumors elicit immune responses to mutant or other-
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wise aberrantly expressed proteins. P53 autoantibodies
are common in the sera of patients with multiple cancer
types, such as breast [9], colon [10] and prostate [11] can-
cers. A study of serum antibodies to seven common tumor-
associated antigens found that over half of the cancer
patients studied showed reactivity to at least one of the
antigens [11]. Large-scale profiling of immunoglobulin re-
activity in the sera of lung cancer patients uncovered a sig-
nificant occurrence of antibodies to the proteins annexin I
and II [12]. Prostate tumors are often immunogenic for the
proteins PSA and HER-2/neu [13], and men with metastatic
prostate cancer often produce antibodies against the
secretory granules of the prostatic epithelium [14]. The
measurement of autoantibodies could have value in the
diagnosis of prostate cancer. In addition, a characterization
of the immune response in cancer patients could contri-
bute to the understanding of molecular alterations in
tumors and the host interaction with the tumors.

We applied our protein microarray of natural proteins
approach to study immunogenicity in prostate cancer
patients and to determine if distinct patterns of immuno-
reactivity associated with the disease may be uncovered.
We used the LNCaP cell line to produce proteins that
were fractionated by IEF and reverse phase chromatog-
raphy. LNCaP cells retain many of the characteristics of
prostate cells and are a good model of androgen-de-
pendent prostate cancer. Microarrays spotted with the
chromatography fractions from the LNCaP proteins were
used to characterize the immune recognition of prostate
cancer proteins in sera. We investigated whether certain
fractions exhibit antibody binding that is associated with
prostate cancer and whether the serum samples could be
classified based on their patterns of immune reactivity.

2 Materials and methods

2.1 Serum samples

Serum samples were collected as part of a HIPAA com-
pliant, IRB approved, Early Detection Research Network
(EDRN) sponsored protocol at the Johns Hopkins Medical
Institution. Samples from 25 men with prostate cancer
were collected prior to a prostatic biopsy or prostatect-
omy that had been dictated by an elevated prostate spe-
cific antigen (PSA) reading (. 4.0 ng/mL) or an abnormal
digital rectal examination (DRE). Each patient underwent
radical retropubic prostatectomy. The tumors were Glea-
son grade 6 or 7 and had not infiltrated the lymph nodes
or seminal vesicles. Control sera were collected from
25 age-similar men with normal serum PSA levels and a
negative DRE as part of a routine community screening
program. The samples were stored frozen at 2807C and
had been thawed one time prior to use.

2.2 Cell culture and protein extraction

The LNCaP cell line (purchased from ATCC, Manassas,
VA, USA) was grown in RPMI 1650 medium with 10% fetal
calf serum. We collected protein from 12 P100 culture
dishes containing approximately 9.5 million cells per
plate, resulting in approximately 50 mg of protein extract.
The cells were solubilized in a solution of 6 M urea, 2 M

thiourea, 1.0% n-octyl b-D-glucopyranoside, 2 mM

dithioerythritol, protease inhibitor cocktail (Roche, Basel,
Switzerland), and 2% carrier ampholytes, pH 3.5–10 (Bio-
Rad, Hercules, CA, USA). The protein extract was stored
at 2807C until ready for use.

2.3 Protein fractionation

The Hanash laboratory has experimented with several
procedures to obtain liquid based protein separations in
two dimensions that are compatible with the printing of all
fractions on microarrays. In this study, we have coupled a
preparative-scale Rotofor (Bio-Rad) separation in the first
dimension with the use of reverse phase in the second
dimension [7]. For the first dimension separation, whole
cell protein lysates were diluted to 55 mL with a running
buffer consisting of the lysis buffer and 0.5% n-octyl b-D-
glucopyranoside. Proteins were separated by IEF for 6 h
at 107C. Twenty separate fractions were collected. The
protein concentration and pH of each fraction was meas-
ured as previously described [7]. We have ascertained
that, when reacted with patient and control sera, aliquots
from cancer cell lines spotted after even the first dimen-
sion separation exhibited distinct patterns of reactivity
with individual sera (data not shown).

The high-performance liquid chromatography (HPLC)
reversed phase column R2/10 (Applied Biosystems, Fos-
ter City, CA USA) was used for the separation of proteins
in the second dimension. Separations were performed at
a flow rate of 1.3 mL/min using water/acetonitrile gradi-
ents (solvent A: 98% H2O, 2% acetonitrile, 0.1% TFA; sol-
vent B: 90% acetonitrile, 10% H2O, 0.1% TFA). The gra-
dient profile used was as follows: (0) 95% solvent A for
2.5 min; (1) 95–75% A in 2.5 min; (2) 75–35% A in 40 min;
(3) 35% A for 5 min; (4) 35–15% A in 5 min; (5) 15–5% A in
5 min. Protein fractions were collected every 30 s (88 frac-
tions from each of the 20 first dimension fractions) starting
10 min into the gradient, then immediately frozen at
2807C. The fractions were lyophilized under vacuum,
resuspended in 35 mL of 80% PBS/20% glycerol, and fro-
zen at 2807C. An estimated average of 3.5 mg of protein
was collected in each fraction, resulting in a 100 mg/mL
average protein concentration in the resuspended sam-
ples. We have also ascertained that when reacted with
patient and control sera, aliquots from cancer cell lines
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spotted after separation in one dimension by reverse
phase HPLC exhibited distinct patterns of reactivity with
individual sera (data not shown).

2.4 Protein microarrays

The resuspended LNCaP fractions were transferred to
polypropylene 384-well plates. The following controls were
added to empty wells of the 384-well plates: (1) 50 mg/mL
biotinylated anti-Ig (Amersham Biosciences, Piscataway,
NJ, USA); (2) anti-IgG (biotinylated and not), anti-IgM, and
anti-albumin (Bethyl, Montgomery, TX, USA); (3) prostate
specific antigen and tetanus toxoid (Calbiochem, La Jolla,
CA, USA); (4) anti-DNP (Biotrend, Cologne, Germany) and
anti-Flag (Sigma, St. Louis, MO, USA); and (5) biotinylated
and digoxigenin conjugated forms of Flag-labeled bacter-
ial alkaline phosphatase (Sigma) and DNP-labeled BSA.
The plates were stored at 2807C.

The protein solutions were printed in microarrays on
the surfaces of nitrocellulose-coated microscope slides
(Schleicher & Schuell, Keene, NH, USA) using a custom-
built microarraying robot. The microarrays for this study
were printed in one batch. Each solution was printed in
duplicate in adjacent spots. The slides were stored sealed
at 47C. The printed slides were rinsed for 30 s in 16PBS,
0.5% Tween-20 (PBST0.5), then washed with gentle rock-
ing at room temperature for 3 min and 30 min in fresh
changes of PBST0.5. The slides were blocked for one
hour in 16PBS, 0.1% Tween-20 (PBST0.1) at room tem-
perature with gentle shaking, followed by a brief rinse in
PBST0.5 and drying by centrifugation. The array bound-
aries on each slide were circumscribed with a hydrophobic
marker (PAP pen; Polysciences, Warrington, PA, USA)
about 3–4 mm outside the edges of the arrays. The marker
lines were allowed to dry completely before incubation.

Each array was incubated with serum that had been diluted
50-fold in PBST0.1 and spiked with biotinylated/Flag-
labeled bacterial alkaline phosphatase (BAP) fusion protein
and biotinylated/DNA-labeled BSA (for normalization). The
final concentrations of the Flag and DNP labeled controls
were 0.5 mg/mL and 1 mg/mL, respectively. Three hundred
microliters of each serum solution was incubated on each
array for 1.5 h at room temperature with gentle shaking.
The arrays were rinsed for 30 s in PBST0.1 and washed
with gentle rocking at room temperature 365 min each
in fresh changes of PBST0.1. Slides were then dried by
centrifugation.

Five mg/mL of biotinylated anti-Ig (Amersham Biosciences)
in 3% nonfat milk/PBST0.1 was incubated on the arrays for
one hour at room temperature with gentle shaking. Slides
were rinsed and washed as above and dried by centrifuga-
tion. A final incubation of 10 mg/mL streptavidin-phycoery-

thrin (Amersham Biosciences) in 3% nonfat milk/PBST0.1
was carried out for one hour at room temperature with
gentle shaking. The slides were rinsed, washed and dried
as above and stored at 47C until scanned.

2.5 Analysis

The microarrays were scanned for fluorescence (Scan-
Array; PerkinElmer Life Sciences, Boston, MA, USA) using
consistent detector gain and laser power settings (excita-
tion at 532 nm) for all arrays. The program GenePix 4.0
(Axon Laboratories, Union City, CA, USA) was used to cal-
culate the median background-subtracted pixel intensity
of each spot and to assign user-supplied identification
tags to each spot. The identification tags were based on
each fraction’s location in the 96-well plates that were col-
lected after fractionation (e.g., P2B10 refers to plate 2, well
B10). An intensity threshold for each spot was calculated
by the formula 3*B*CVb, where B is each spot’s median
local background and CVb is the average coefficient of var-
iation (SD divided by the average) of all the local back-
grounds on the array. (This threshold is similar to the SD of
the local background but minimizes the effects from spikes
in the local backgrounds.) Duplicate spots with back-
ground-subtracted intensities surpassing the threshold
were averaged, and spots not surpassing the threshold in
either of the duplicates were given a value of zero. Normal-
ization could be performed using data from the anti-DNP
and anti-Flag spots on the array, which bound the control
spikes that had equivalent concentrations in all the sam-
ples. Normalization had a near negligible effect on the
overall trends in the data and was not used in the prepara-
tion of the data for subsequent analyses.

The program CIT [15] was used to identify fractions that
statistically discriminated the patient groups. CIT per-
formed a permutation t-test using 100 permutations and
a maximum p-value of 0.01. Hierarchical clustering and
the visualization of clusters were performed using the
programs Cluster and Treeview (http://rana.lbl.gov/Eisen
Software.htm). Data were median centered by genes prior
to average-linkage clustering. Recursive partitioning to
classify the samples was performed using the program
ArborPharm (NovoDynamics, Ann Arbor, MI, USA).

3 Results

1760 fractions were collected from the 2-D liquid chroma-
tography separation of proteins from the prostate cancer
cell line LNCaP. The fractions and control proteins were
spotted in microarrays on nitrocellulose-coated micro-
scope slides, and each of 25 sera from men with prostate
cancer and 25 sera from age-similar healthy men were
incubated individually, each on a separate microarray.
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Immunoglobulins from the sera that bound to spotted
fractions were detected by incubating the microarrays
with biotinylated anti-human Ig and a phycoerythrin-strep-
tavidin conjugate, followed by scanning the microarrays
for fluorescence. Representative scanned images (Figs. 1A
and 1B) from both the cancer and control sera show a
consistent level of background signal and multiple spots
with fluorescence well above the background. Each frac-
tion was spotted in duplicate adjacent spots, and consis-
tent pairs of spots are observed in both images. When
anti-Ig and streptavidin-phycoerythrin were incubated on
the arrays without serum, only the biotinylated and con-
trol proteins showed strong signal (data not shown).

The median net fluorescence intensity (after subtraction
of the local background signal) at each spot was calcu-
lated, and the signal from duplicate spots was averaged.

Figure 1. Representative scanned images of microarrays
that had been incubated with serum from (A) a man with
prostate cancer and (B) a control. The array dimensions
were 9636 mm. Each fraction or protein was spotted in
duplicate in adjacent spots.

Spots that had net signal below a statistically-derived
intensity threshold (see Section 2.5) in both replicates
were given a value of zero. An average of 149 fractions
per array (including the 15 control proteins) showed
measurable signal above background, and no statistical
difference between the cancer samples and the controls
was observed in the total number of reactive fractions
per array.

Hierarchical clustering allows visualization of trends in
data from multiple microarray experiments [16]. Data
from all 50 microarray experiments were grouped and
clustered by similarity in intensity pattern (Fig. 2A). The
left 25 columns of Fig. 2A represent data from the cancer
samples, and the right 25 columns represent data from
the control samples. Some fractions showed reactivity in
all the samples, as indicated by rows that are filled over
all 50 columns. Most of these rows represent data from
control spots that bound antibodies in every sample
or that bound the anti-Ig detection antibody (e.g., tetanus
toxoid or biotinylated BSA). Other fractions showed mini-
mal or scattered reactivity. Some patient samples showed
significantly more overall reactivity than others, as shown
by the vertical stripes in the cluster that indicated binding
by a large number of fractions.

A comparison of the relative levels of antibody binding
from the prostate cancer and control sera was investi-
gated. A permutation t-test applied to the entire data set
identified 40 fractions at a 99% confidence level that
showed significantly different levels of reactivity between
the two sample groups. Thirty-eight of the discriminating
fractions had higher reactivity in the prostate cancer sera,
and two fractions had higher reactivity in the control sera.
None of the control proteins showed data that was signif-
icantly different between the groups. The discriminating
fractions were randomly distributed throughout the array,
indicating a lack of systematic bias from array location.
All of the serum samples had measurable reactivity to at
least some of the 40 fractions; the prostate cancer and
control samples reacted with averages of 27 and 19 frac-
tions, respectively. Many of the reactive fractions contain
the same proteins, since they were collected in consecu-
tive fractions. Further analysis of the fractions with mass
spectrometry will be required to clarify the number of
immunogenic proteins.

The data from the discriminating fractions were visualized
using hierarchical clustering (Fig. 2B). Significantly higher
reactivity in the prostate cancer sera is indicated by the
generally red-colored data points in the prostate cancer
samples and the generally green-colored data points in
the control samples. The two fractions with higher reactiv-
ity in the control samples are in the bottom rows. The frac-
tions P20B10 and P8B8 (highlighted in the cluster) had
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Figure 2. (A) Hierarchical clus-
tering of data from all 50 arrays.
Data were median centered (by
rows), filtered for rows that con-
tained data in at least 20% of
the samples, and clustered by
rows (the column order was
fixed). Each column represents
data from one microarray, and
each row represents data from
one fraction. The left 25 col-
umns (indicated by the red bar)
are data from arrays incubated
with prostate cancer sera, and
the right 25 columns (indicated
by the green bar) are data from
arrays incubated with control
sera. The color of each square
indicates the signal intensity
relative to the other data in a
given row. Red indicates high
intensity, green indicates low
intensity, and gray is no data
(no signal detected). (B) Hier-
archical clustering of fractions
that significantly discriminate
the groups. Data were treated
and clustered as described
above, except that blank data
were given a value of zero.
Green data points indicate low

intensity (relative to other data points in a given row), black indicates median values, and red indicates
high intensity. The labels to the rows containing data from the fractions P8B8 and P20B10 are high-
lighted. (C) Detailed view of several spots from fractions P8B8 and P20B10 after incubation with
either cancer sera (left) or control sera (right). Each array was scanned at equivalent scanner settings,
and each image was created with equivalent brightness and contrast settings.

the highest statistical significance of discrimination. An
examination of representative spots from these two frac-
tions in samples from both groups of patients (Fig. 2C)
shows the higher level of binding from the prostate cancer
sera. A more quantitative view of the signal intensities
from these two fractions shows the differences in anti-
body binding between the prostate cancer and control
samples (Fig. 3). All 25 of the prostate cancer sera and
10 of the normal sera showed reactivity to the P20B10
fraction, with average signal intensities of 919 and 104,
respectively. Twenty-five of the prostate cancer sera and
23 of the normal sera had some measurable signal at
fraction P8B8, but the average signal intensity from the
prostate cancer sera was higher: 1257 versus 392 in the
control sera.

Figure 3. Signal intensities measured at fractions P8B8
and P20B10 in the cancer sera and control sera. The error
bars indicate two standard deviations above and below
the mean value.
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We next explored the potential for the diagnostic classifi-
cation of serum samples based on measurements of can-
cer-associated immunoreactivity. An advantage of the
highly-parallel measurements enabled by protein micro-
arrays is the ability to combine multiple measurements
to potentially improve the diagnostic accuracy over in-
dividual measurements. Methods to combine multiple
measurements include discriminant analysis, logistic
regression, neural networks, and decision trees. We eval-
uated the use of recursive partitioning (also known as
decision trees) and ensemble techniques [17] to classify
the serum samples into either the cancer group or the
control group based on the intensity profiles of the frac-
tions. Recursive partitioning is a supervised learning tech-
nique that attempts to construct tree structured models
that can then be used to classify unknown samples.
Some of the strengths of recursive partitioning are that
it can handle large numbers of descriptors (in this case,
fractions), and it can assess the relative importance of
the descriptors for the task of classification.

We first used cross-validation techniques to determine if
the dataset could be accurately classified using recursive
partitioning. We used a “leave-one-out” method for cross-
validation, whereby one sample is left out for independent

testing and the other samples are used as a training set to
define the best decision tree. The decision tree is then
used to classify the sample that had been left out. That
process is repeated for all samples. Using this analysis
we classified samples into their correct groups with 86%
accuracy. This result indicates that the decision trees
should have considerable accuracy when tested against
independent data. We then constructed a tree based on
all the samples (Fig. 4). The p20B10 fraction was powerful
for initially splitting the data at the first layer of the tree;
this fraction correctly classified 21/25 cancer samples
(84% sensitivity) and 24/25 control samples (96% speci-
ficity). The second layer used the fractions P3D2 and
P14E8 to further split the data locally. After the second
layer of the tree, all cancer samples were correctly classi-
fied and only one normal sample was incorrectly classi-
fied as a cancer sample.

To determine which fractions provide the most informa-
tion for classification, all the fractions were tested for their
ability to classify the samples by recursive partitioning
using only that fraction at every level of the decision tree.
Fifteen fractions classified the samples with an accuracy
of 80% or greater (Table 1). There was substantial agree-
ment between the fractions identified by recursive parti-

Figure 4. A decision tree showing that the 50-sample dataset can be discriminated with 98% accu-
racy using measurements from P20B10 in the first level and measurements from P3D2 and P14E8 in
the second level. A red box indicates classification as cancer, and a green box indicates classification
as control. The actual number of cancer/control samples in each group is given in each box. The
protein fraction used to make a distinction is indicated after the term Split, and the values below
each split are the thresholds used in the split.
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Table 1. Fractions that classified the 50 samples with
greater than or equal to 80% accuracy by re-
cursive partitioning. For each fraction, recursive
partitioning was used to classify the samples
using only that fraction in all levels of the deci-
sion tree.

Fraction Accuracy (%)

p20B10 94
p8B8 92
p3H9 88
p18A9 84
p20A9 82
p18B10 82
p20A5 82
p2H4 82
p3H5 82
p7B10 80
p14B1 80
p20A11 80
p6B1 80
p2H5 80
p4D9 80

tioning and those identified by the permutation t-test.
Of the 15 fractions in Table 1, the top seven (P20B10
through P20A5) and three others (P14B1, P20A11 and
P2H5) were among the 40 fractions identified by the
permutation t-test. The two top fractions (P20B10 and
P8B8) were also the top two identified by the permutation
t-test.

4 Discussion

A primary goal of this study was to explore the usefulness
of microarrays of protein fractions for the identification
of cancer-specific immunoreactivity. The effectiveness of
the method was shown in several ways. The strong fluo-
rescence signal above background from many of the frac-
tions clearly indicated that the method has sufficient
sensitivity to detect the binding of specific antibodies.
The strong signal from each of the control proteins also
confirmed that the method worked properly. A permuta-
tion t-test identified 40 fractions with generally higher
binding from the prostate cancer samples than from the
normal samples and two fractions with generally higher
binding from the normal samples. None of the control pro-
teins had significantly different measurements between
the sample groups.

The significant nonrandom predominance of higher bind-
ing strengths from the prostate cancer samples could
indicate a high immune response to the prostatic tumor

in the prostate cancer patients. Multiple proteins seem to
have stimulated an immune response in the prostate can-
cer patients. Many of the discriminating fractions likely
share the same protein responsible for the antibody bind-
ing because they had been consecutively collected after
the chromatography. For example, fractions P20A5
through to P20A20 were consecutively collected and all
have similar signals over all the samples. Some of the
discriminating fractions showed low-level binding in all
the normal samples. Low signal strengths from all the
samples could indicate a particularly ‘sticky’ fraction,
to which many proteins nonspecifically bind. For this
reason further investigation into the immunogenicity of
the proteins in the fractions will be required. The identifi-
cation of the particular proteins in the fractions by MS
will aid the further characterization and validation of the
immunogenicity of the proteins and investigation into
the causes of the immungenicity. It would be valuable
to know whether an immune response to the protein is
induced by abnormally abundant presentation to the
immune system, mutations, or aberrant protein modifica-
tions.

A second goal of the study was to explore the potential for
identification of prostate cancer patients through multi-
variate analysis. The use of the measurements to accu-
rately classify the samples as either from prostate cancer
or control patients was tested using recursive partitioning.
Recursive partitioning classified the samples with 90%
accuracy (5 misclassifications out of 50 samples) at the
first level of partitioning using the fraction P20B10. The
accuracy improved to 98% accuracy (1 misclassification
out of 50) after the second level of partitioning using frac-
tions P3D2 and P14E8. The improvement using multiple
tree levels shows the potential benefit from using multiple
measurements to classify samples. Recursive partitioning
also was used to identify fractions that individually classi-
fied the data with high accuracy (Table 1). Most of the
fractions in Table 1 were also identified by the permuta-
tion t-test, further confirming their statistical significance.
Multivariate methods require high sample numbers for
validation, and therefore further experiments using these
fractions to probe larger sample sets will be required.
Expanded studies also will include sera from patients
with benign prostatic diseases, localized and metastatic
cancer, androgen responsive and androgen independent
cancer, and other cancers.

Experiments from multiple different batches of micro-
arrays also will be important to account for potential
systematic variability in a particular batch. The signal
strength at each fraction is influenced by the density of
the spotted fraction, which can be highly variable using
microarrays spotted with contact pin printers. Therefore
in addition to performing more randomized experiments,
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a validation study could be performed using microarrays
prepared using noncontact piezoelectric spotters, which
deposit very consistent volumes onto microarrays.

5 Concluding remarks

These promising results suggest the possibility of using
patterns of immune recognition as a diagnostic test. A
previous example of the use of serum protein patterns
for prostate cancer diagnostics employed multivariate
analysis of surface enhanced laser desorption/ionization
mass spectrometry data [18]. A related approach using
measurements of the immune system repertoire could
likewise prove useful. A great need exists for supplemen-
tation of the PSA test and other clinical indicators in
the management of prostate cancer patients, particularly
for the better discrimination of benign from malignant
disease, better prediction of treatment success, and ear-
lier identification of fast-growing, invasive or metastatic
cancers. The measurement of serum antibody reactivity
to multiple prostate cancer antigens could eventually
be valuable for these objectives. Considering the wide-
spread observations of tumor antigenicity in other types
of cancers, microarrays of fractionated proteins may be
a powerful general tool for the broad screening of tumor-
associated antigens.

The work was supported by grant MEDC 238 from the
Michigan Life Sciences Corridor for the Proteomics Alli-
ance for Cancer.
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